WO2020119279A1 - 准直镜头及投影模组 - Google Patents

准直镜头及投影模组 Download PDF

Info

Publication number
WO2020119279A1
WO2020119279A1 PCT/CN2019/113104 CN2019113104W WO2020119279A1 WO 2020119279 A1 WO2020119279 A1 WO 2020119279A1 CN 2019113104 W CN2019113104 W CN 2019113104W WO 2020119279 A1 WO2020119279 A1 WO 2020119279A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
collimating lens
collimating
object side
satisfies
Prior art date
Application number
PCT/CN2019/113104
Other languages
English (en)
French (fr)
Inventor
刘绪明
曾昊杰
曾吉勇
Original Assignee
江西联益光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江西联益光学有限公司 filed Critical 江西联益光学有限公司
Priority to US16/854,896 priority Critical patent/US11314062B2/en
Publication of WO2020119279A1 publication Critical patent/WO2020119279A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0035Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having three lenses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2513Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object with several lines being projected in more than one direction, e.g. grids, patterns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/0011Arrangements for eliminating or compensation of measuring errors due to temperature or weight
    • G01B5/0014Arrangements for eliminating or compensation of measuring errors due to temperature or weight due to temperature
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0009Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only
    • G02B19/0014Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only at least one surface having optical power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/30Collimators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/008Mountings, adjusting means, or light-tight connections, for optical elements with means for compensating for changes in temperature or for controlling the temperature; thermal stabilisation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • G03B15/02Illuminating scene
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • H04M1/0264Details of the structure or mounting of specific components for a camera module assembly
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3161Modulator illumination systems using laser light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2250/00Details of telephonic subscriber devices
    • H04M2250/52Details of telephonic subscriber devices including functional features of a camera

Definitions

  • the invention relates to the technical field of camera lenses, in particular to a collimating lens and a projection module.
  • 3D structured light means that after projecting specific laser information onto the surface of an object, it is collected by a camera, and information such as the position and depth of the object is calculated according to the change of the light information caused by the object, and then the entire three-dimensional space is restored.
  • This collimating lens that projects an array point light source with a specific solid angle emission on a specific laser surface onto the surface of the measured object is a key link in 3D imaging quality.
  • the focal length f of the lens changes greatly as the temperature under the use environment changes, resulting in a significant change in the angle of light projected by the lens, which will change the original light information, resulting in the entire Errors in the calculation of the system affect the accuracy of the contour restoration of the three-dimensional object.
  • the projected image point becomes larger as the temperature changes, which will also cause the system to reduce the clarity of the three-dimensional object.
  • the ambient temperature changes it is particularly important that the field of view of the light information projected on the measured object and the size of the spot do not change significantly.
  • the first lens of a conventional conventional collimating lens close to the laser emitter is a molded glass lens.
  • This molded glass lens is too small, difficult to produce and process, low in yield, and difficult to mass-produce, which greatly increases production costs.
  • the object of the present invention is to provide a collimating lens and a projection module to solve the above problems.
  • the present invention provides a collimating lens, which sets the laser emitter end as the object side and the measured object end as the image side, and includes, in order from the object side to the image side along the optical axis, a first lens and a second lens , Third lens and diaphragm.
  • the first lens has positive power and the object side of the first lens is convex; the second lens has negative power and the object side of the second lens is concave; the third lens has positive power and the object of the third lens
  • the side is convex or near-plane and the image side is convex; the diaphragm is located between the third lens and the object to be measured.
  • the first lens, the second lens, and the third lens are made of plastic; the collimating lens satisfies the following conditional formula:
  • (dn/dt) 1 represents the temperature coefficient of the refractive index of the first lens in the range of 0 ⁇ 60 °C;
  • (dn/dt) 2 represents the refractive index temperature coefficient of the second lens in the range of 0 to 60°C;
  • (dn/dt) 3 represents the refractive index temperature coefficient of the third lens in the range of 0 to 60°C.
  • the present invention also provides a projection module.
  • the projection module provided by the present invention includes the collimating lens described above.
  • the projection module further includes a light source and a diffractive optical element. The light beam emitted by the light source is condensed by the collimating lens and is diffracted After the optical element expands the beam, the structured pattern beam is projected outward.
  • the collimating lens and projection module provided by the present invention clearly define the rate of change of the refractive index of the three lenses with temperature, and are used to reasonably match the thermal expansion characteristics of the lens, thereby achieving stable focal length and relatively low cost Low, and suitable for different temperature occasions.
  • FIG. 1 is a schematic structural diagram of a collimating lens according to a first embodiment of the present invention
  • FIG. 2 is a field curvature curve diagram of a collimating lens in the first embodiment of the present invention
  • FIG. 3 is a distortion curve diagram of a collimating lens in the first embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the image point size and shape of the collimating lens in the first embodiment of the invention.
  • FIG. 5 is a schematic structural diagram of a collimating lens according to a second embodiment of the present invention.
  • FIG. 6 is a field curvature curve diagram of a collimating lens in a second embodiment of the invention.
  • FIG. 7 is a distortion curve diagram of a collimating lens in a second embodiment of the invention.
  • FIG. 8 is a schematic diagram of the image spot size and shape of the collimating lens in the second embodiment of the invention.
  • FIG. 9 is a schematic structural diagram of a collimating lens according to a third embodiment of the present invention.
  • FIG. 11 is a distortion curve diagram of a collimating lens in a third embodiment of the invention.
  • FIG. 12 is a schematic diagram of the image point size and shape of the collimating lens in the third embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of a collimating lens according to a fourth embodiment of the present invention.
  • FIG. 14 is a field curvature curve diagram of a collimating lens in a fourth embodiment of the invention.
  • 15 is a distortion curve diagram of a collimating lens in a fourth embodiment of the present invention.
  • 16 is a schematic diagram of the image spot size and shape of a collimating lens in a fourth embodiment of the invention.
  • FIG. 17 is a schematic structural diagram of a projection module provided in a fifth embodiment of the present invention.
  • the collimating lens provided by the present invention sets the laser emitter end as the object side and the measured object end as the image side, and includes, in order from the object side to the image side along the optical axis: a first lens, a second lens, a third lens and light Stop.
  • the first lens has positive power and the object side of the first lens is convex; the second lens has negative power and the object side of the second lens is concave; the third lens has positive power and the third lens has The object side is convex or near-plane and the image side is convex; the diaphragm is located between the third lens and the measured object.
  • the first lens, the second lens, and the third lens are made of plastic.
  • the first lens has positive power, and the object side of the first lens is convex, thereby converging the telecentric beam from the laser, and the first lens provides sufficient positive power to effectively control the overall volume of the optical lens group.
  • the second lens has negative refractive power, and the object side of the second lens is concave, which can effectively adjust the aberration generated by the first lens, and can also control the focusing ability of the working band.
  • the third lens has positive power, and the image side of the third lens is convex, which can effectively correct the aberration of the optical lens, and can effectively control the angle of light exit.
  • the object side and the image side of the first lens, the second lens, and the third lens are all aspherical, that is, the object side and the image side of the first lens, the second lens, and the third lens are made into shapes other than spherical. This can obtain more control variables to reduce aberrations.
  • the first lens, the second lens, and the third lens are made of plastic materials, so as to effectively reduce production costs.
  • (dn/dt) 1 represents the temperature coefficient of the refractive index of the first lens in the range of 0 ⁇ 60 °C;
  • (dn/dt) 2 represents the refractive index temperature coefficient of the second lens in the range of 0 to 60°C;
  • (dn/dt) 3 represents the refractive index temperature coefficient of the third lens in the range of 0 to 60°C.
  • This condition limits the rate of change of the refractive index of the first lens, the second lens, and the third lens with temperature, and is mainly used to reasonably match the thermal expansion of the lens to ensure the stability of the lens focal length at different temperatures.
  • the collimating lens provided by the present invention satisfies the conditional expression:
  • f represents the system focal length of the collimating lens
  • r 1 represents the radius of curvature of the object side of the first lens. This condition limits the shape of the object side of the first lens, which is beneficial to the processing and manufacturing of the lens and can reduce the tolerance sensitivity at the same time.
  • the collimating lens provided by the present invention satisfies the conditional expression:
  • r 1 represents the radius of curvature of the object side of the first lens
  • r 6 represents the radius of curvature of the image side of the third lens. This condition limits the orientation of the object side of the first lens and the image side of the third lens, and is mainly used to condense the light passing through the third lens on the imaging surface while reducing the aberration of the collimating lens.
  • the collimating lens provided by the present invention satisfies the conditional expression:
  • f 2 represents the focal length of the second lens
  • f 1 represents the focal length of the first lens. This condition limits the ratio of the first lens to the second lens, which can effectively reduce the aberration of the collimating lens.
  • the collimating lens provided by the present invention satisfies the conditional expression:
  • CT 1 represents the center thickness of the first lens
  • CT 2 represents the center thickness of the second lens. This condition limits the ratio of the center thickness of the second lens to the center thickness of the first lens.
  • the collimating lens provided by the present invention satisfies the conditional expression:
  • CT represents the sum of the center thicknesses of the first lens, the second lens, and the third lens
  • TD represents the distance of the collimating lens on the optical axis from the object side of the first lens to the image side of the third lens.
  • the collimating lens provided by the present invention satisfies the conditional expression:
  • r 3 represents the radius of curvature of the object side of the second lens
  • f represents the system focal length of the collimator lens. Satisfying this condition can shorten the back focal length of the system to reduce the total optical length of the collimating lens.
  • the collimating lens provided by the present invention satisfies the conditional expression:
  • TTL represents the total optical length of the collimating lens
  • ImgH represents the half-image height of the collimating lens. This condition limits the overall length of the lens system and ensures that the system has a sufficiently good imaging quality.
  • the collimating lens provided by the present invention satisfies the conditional expression:
  • TTL represents the total optical length of the collimating lens
  • f represents the system focal length of the collimating lens. This condition limits the proportional relationship between the total length of the system and the focal length of the system, and can achieve the purpose of miniaturization of the system while ensuring the long focal length of the system. Specifically, it can be defined that the total optical length TTL of the collimating lens 10 is less than 3.2 mm, and the system focal length f of the collimating lens is greater than 3.6 mm to ensure better optical characteristics and is more suitable for 3D structured light algorithm implementation.
  • each object side and image side of the first lens, the second lens, and the third lens are aspherical, thereby obtaining more control variables to reduce aberrations.
  • the total optical length of the collimating lens is less than 3.2 mm, which is beneficial to the miniaturization of the collimating lens.
  • a projection module which includes the collimating lens of any of the above embodiments, the projection module further includes a light source and a diffractive optical element, and the light beam emitted by the light source is converged by the collimating lens and is diffracted After the optical element expands the beam, the structured pattern beam is projected outward.
  • the collimating lens and projection module provided by the present invention adopt three plastic lenses, the lens size is smaller and the cost is lower, and the rate of change of the refractive index of each lens with temperature is reasonably allocated, which can be brought with the lens itself and the structural parts.
  • the collimating lens provided by the present invention can achieve a 10°C change in temperature, and the effective focal length change is less than 0.001mm, so that the angle of light projected by the lens No obvious changes or changes to the original light information; and compared with the prior art, under the same size laser emitter, the system can achieve a larger focal length and a smaller field of view, which is more conducive to 3D structured light
  • the cost is lower.
  • each lens of the collimating lens is shown in Table 1, Table 3, Table 5, and Table 7, where r represents the radius of curvature of the vertex of the optical curved surface, and d represents the optical surface spacing (phase The distance between the vertices of two adjacent optical curved surfaces), n d represents the refractive index of each lens, and Vd represents the Abbe number of each lens, which is used to measure the degree of light dispersion of the medium.
  • the optical characteristics corresponding to each embodiment are shown in Table 5, where f represents the focal length of the collimating lens, TTL represents the total optical length of the collimating lens, and NA represents the numerical aperture.
  • z represents the distance of the surface from the surface vertex in the direction of the optical axis
  • c represents the curvature of the surface vertex
  • k represents the quadric surface coefficient
  • h represents the distance from the optical axis to the surface
  • B, C, D, E, F, G, H represents the fourth, sixth, eighth, tenth, twelfth, fourteenth, and sixteenth order surface coefficients, respectively.
  • the thickness and radius of curvature of each lens in the collimating lens are different.
  • FIG. 1 is a schematic structural diagram of a collimating lens 10 provided in this embodiment.
  • the laser emitter end is set to the object side S0, and the measured object end is set to the image side S7.
  • the object side S0 to the image side S7 include : First lens L1, second lens L2, third lens L3, and stop ST.
  • the first lens L1 has positive refractive power, and the object side surface S1 of the first lens L1 is convex and the image side surface S2 is concave.
  • the second lens L2 has negative refractive power, and both the object side S3 and the image side S4 of the second lens L2 are concave.
  • the third lens L3 has positive refractive power, and the object side surface S5 of the third lens L3 is concave and the image side surface S6 is convex.
  • the stop ST is located between the third lens L3 and the object to be measured.
  • the optical center of each lens is on the same straight line, and each lens is made of plastic material.
  • the collimating lens 10 satisfies the following conditional expressions:
  • (dn/dt) 1 represents the temperature coefficient of refractive index of the first lens L1 in the range of 0-60°C
  • (dn/dt) 2 represents the temperature coefficient of refractive index of the second lens L2 in the range of 0-60°C
  • (dn/dt) 3 represents the refractive index temperature coefficient of the third lens L3 in the range of 0 to 60°C.
  • Figure 2 is a field curvature curve of a collimating lens at 40°C and 300mm image distance.
  • the x axis in the figure is the field curvature value
  • the coordinate unit is millimeter
  • the y axis is the view defined by the object height. field.
  • Figure 3 is the distortion curve of the collimator lens at 40°C and 300mm image distance.
  • the x-axis in the figure is the distortion value
  • the coordinate unit is percentage
  • the y-axis is the field of view defined by the object height.
  • Figure 4 is a schematic diagram of the image spot size and shape when the collimating lens is imaged at 40°C and 300mm image distance. The unit is micrometer. From left to right and from top to bottom, the object height and image height are gradually increased.
  • FIG. 5 for a schematic diagram of the collimating lens 20 of this embodiment.
  • the lens structure of this embodiment is similar to that of the first embodiment. The difference is that the relevant parameters of each lens are different.
  • FIG. 6 is a graph of the field curvature of a collimating lens at 40° C. and 300 mm image distance.
  • Fig. 7 is a distortion curve diagram of a collimator lens at 40°C and 300 mm image distance.
  • 8 is a schematic diagram of the size and shape of the image point when the collimating lens is imaged at 40° C. and 300 mm image distance.
  • the structure diagram of the collimating lens 30 of this embodiment can be seen in FIG. 9.
  • the structure diagram of the lens of this embodiment is similar to that of the first embodiment. The difference is that the relevant parameters of each lens are different.
  • FIG. 10 is a graph of the field curvature of the collimator lens at 40° C. and 300 mm image distance.
  • Fig. 11 is a distortion curve diagram of a collimator lens at 40°C and an image distance of 300 mm.
  • 12 is a schematic diagram of the size and shape of the image point when the collimating lens is imaged at 40° C. and 300 mm image distance.
  • the structure diagram of the collimating lens 40 of this embodiment can be referred to FIG. 13.
  • the structure diagram of the lens of this embodiment is substantially similar to that of the first embodiment. The difference is that the relevant parameters of each lens are different.
  • FIG. 14 is a graph of the field curvature of the collimator lens at 40° C. and 300 mm image distance.
  • Fig. 15 is a distortion curve diagram of a collimator lens at 40°C and an image distance of 300 mm.
  • Figure 16 is a schematic diagram of the size and shape of the image point when the collimating lens is imaged at 40°C and 300mm image distance.
  • the first to fourth embodiments and their corresponding optical characteristics are shown in Table 5.
  • the collimating lens provided by the present invention has a reasonable distribution of the rate of change of the refractive index of each lens with temperature, can achieve stable focal length and is suitable for different temperature occasions, and is beneficial to the realization of the algorithm of 3D structured light.
  • this embodiment provides a projection module 100 including the collimating lens (for example, the collimating lens 10) in any of the above embodiments.
  • the projection module 100 further includes a light source 60 and a diffractive optical element 50.
  • the light beam emitted by the light source 60 is converged by the collimating lens 10 and expanded by the diffractive optical element 50 to project a structured pattern light beam outward, and projected in the direction of the object to be measured.
  • the light source 60 may be a laser light source such as visible light or invisible light, such as a light emitted by a vertical cavity surface emitting laser (VCSEL) or an infrared laser diode.
  • VCSEL vertical cavity surface emitting laser
  • the projection module 100 provided by the present invention includes a collimating lens 10. Since the change rate of the refractive index of each lens in the collimating lens 10 with temperature is distributed reasonably, it can achieve stable focal length and is suitable for different temperature occasions.
  • the working mode of the projection module 100 is as follows: the light emitted by the light source 60 passes through the collimating lens 10 and the diffractive optical element 50 to project toward the object to be measured; the projected light beam emits patterned structured light after passing through the diffractive optical element 50 The receiving module receives the patterned structured light information reflected from the object to be measured, and calculates the information such as the position and depth of the object, and then restores the entire three-dimensional space.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Lenses (AREA)

Abstract

一种准直镜头(10)及投影模组(100),设定激光发射器端为物侧(S0),被测物体端为像侧(S7),沿光轴从物侧(S0)到像侧(S7)依次包括:具有正光焦度的第一透镜(L1),具有负光焦度的第二透镜(L2),具有正光焦度的第三透镜(L3)和光阑(ST)。第一透镜(L1)的物侧面(S1)为凸面;第二透镜(L2)的物侧面为凹面(S3);第三透镜(L3)的物侧面(S5)为凸面或近平面且像侧面(S6)为凸面;光阑(ST)位于第三透镜(L3)与被测物体之间。第一透镜(L1)、第二透镜(L2)、第三透镜(L3)均为塑胶材质;准直镜头(10)满足以下条件式:(dn/dt) 1<-30×10 -6/℃;(dn/dt) 2<-30×10 -6/℃;(dn/dt) 3<-30×10 -6/℃;利用准直镜头(10)及投影模组(100)限定的三个透镜的折射率随温度的变化率,合理地搭配镜片的热膨胀特性,从而实现焦距稳定,并适用于不同的温度场合。

Description

准直镜头及投影模组
本申请要求于2018年12月11日提交中国专利局、申请号为2018115127304、发明名称为“准直镜头及投影模组”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及摄像镜头技术领域,特别是涉及一种准直镜头及投影模组。
背景技术
随着智能手机的快速发展,手机的摄像功能也不断涌现出创新的技术,比如苹果公司主推的3D成像技术,这种基于3D结构光的光学感测技术,可用于人脸、手势辨识,强化照相功能,带来AR新应用,将光学图像从过去的二维向三维空间转换,从而带来更加真实、清晰的感知体验。
3D结构光是指将特定的激光信息投射到物体表面后,由摄像头采集,根据物体造成的光信息的变化来计算物体的位置和深度等信息,进而复原整个三维空间。这种把特定激光器表面的有特定立体角发射的阵列点光源投影到被测物体表面的准直镜头,是3D成像质量的一个关键环节。
然而,在现有的智能手机中,随着使用环境下温度的变化,镜头焦距f发生较大变化,从而导致镜头投射光的角度发生明显变化,这会改变原有的光信息,从而导致整个系统的计算出现误差,影响三维物体的轮廓复原精度,同样还存在随着温度的变化,投影的像点变大的情况,这也会导致系统还原三维物体的清晰度下降,因此在随着使用环境温度变化的情况下,投射到被测物体的光信息的视场角和斑点的大小不发生较大的变化就显得尤为重要。
此外,一般传统的准直镜头靠近激光发射器的第一透镜为模造玻璃镜片,这 种模造玻璃镜片太小、生产加工难度大、良率低、不易量产,使生产成本大大提高。
发明内容
本发明的目的在于提供一种准直镜头及投影模组,以解决上述问题。
本发明实施例通过以下技术方案来实现上述目的。
第一方面,本发明提供一种准直镜头,设定激光发射器端为物侧,被测物体端为像侧,沿光轴从物侧到像侧依次包括:第一透镜,第二透镜,第三透镜和光阑。第一透镜具有正光焦度,且第一透镜的物侧面为凸面;第二透镜具有负光焦度,且第二透镜的物侧面为凹面;第三透镜具有正光焦度,第三透镜的物侧面为凸面或近平面且像侧面为凸面;光阑位于第三透镜与被测物体之间。第一透镜、第二透镜、第三透镜均为塑胶材质;准直镜头满足以下条件式:
(dn/dt) 1<-50×10 -6/℃;
(dn/dt) 2<-50×10 -6/℃;
(dn/dt) 3<-50×10 -6/℃;
其中,(dn/dt) 1表示第一透镜在0~60℃范围内的折射率温度系数;
(dn/dt) 2表示第二透镜在0~60℃范围内的折射率温度系数;
(dn/dt) 3表示第三透镜在0~60℃范围内的折射率温度系数。
第二方面,本发明还提供一种投影模组,本发明提供的投影模组包括上述准直镜头,投影模组还包括光源以及衍射光学元件,光源发射的光束经准直镜头汇聚并由衍射光学元件扩束后向外投射出结构化图案光束。
相较于现有技术,本发明提供的准直镜头及投影模组明确限定了三个透镜的折射率随温度的变化率,用于合理地搭配镜片的热膨胀特性,从而实现焦距稳定且成本较低,并适用于不同的温度场合。
本发明的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
图1是根据本发明第一实施例提供的准直镜头的结构示意图;
图2是本发明第一实施例中的准直镜头的场曲曲线图;
图3是本发明第一实施例中的准直镜头的畸变曲线图;
图4为本发明第一实施例中的准直镜头的像点大小及形状的示意图;
图5是根据本发明第二实施例提供的准直镜头的结构示意图。
图6是本发明第二实施例中的准直镜头的场曲曲线图;
图7是本发明第二实施例中的准直镜头的畸变曲线图;
图8为本发明第二实施例中的准直镜头的像点大小及形状的示意图;
图9是根据本发明第三实施例提供的准直镜头的结构示意图。
图10是本发明第三实施例中的准直镜头的场曲曲线图;
图11是本发明第三实施例中的准直镜头的畸变曲线图;
图12为本发明第三实施例中的准直镜头的像点大小及形状的示意图;
图13是本本发明第四实施例提供的准直镜头的结构示意图。
图14是本发明第四实施例中的准直镜头的场曲曲线图;
图15是本发明第四实施例中的准直镜头的畸变曲线图;
图16为本发明第四实施例中的准直镜头的像点大小及形状的示意图;
图17为本发明第五实施例中提供的投影模组的结构示意图。
主要元素符号说明
第一透镜 L1 第二透镜 L2
第三透镜 L3 光阑 ST
光源 60 衍射光学元件 50
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
为了便于更好地理解本发明,下面将结合相关实施例附图对本发明进行在一 种实施方式中解释。附图中给出了本发明的实施例,但本发明并不仅限于上述的优选实施例。相反,提供这些实施例的目的是为了使本发明的公开面更加得充分。
本发明提供的准直镜头,设定激光发射器端为物侧,被测物体端为像侧,沿光轴从物侧到像侧依次包括:第一透镜,第二透镜,第三透镜和光阑。第一透镜具有正光焦度,且第一透镜的物侧面为凸面;第二透镜具有负光焦度,且第二透镜的物侧面为凹面;第三透镜具有正光焦度,且第三透镜的物侧面为凸面或近平面且像侧面为凸面;光阑位于第三透镜与被测物体之间。第一透镜、第二透镜、第三透镜均为塑胶材质。
第一透镜具有正光焦度,第一透镜的物侧面为凸面,借此汇聚来自激光器的远心光束,且搭配第一透镜提供足够的正光焦度,可有效地控制光学透镜组的整体体积。
第二透镜具有负光焦度,第二透镜的物侧面为凹面,可有效地调和第一透镜所产生的像差,亦能控制工作波段的聚焦能力。
第三透镜具有正光焦度,第三透镜的像侧面为凸面,可以有效修正光学透镜的像差,可有效地控制光线的出射角度。
第一透镜、第二透镜及第三透镜的物侧面及像侧面皆为非球面,也即第一透镜、第二透镜及第三透镜的物侧面及像侧面是制作成球面以外的形状,借此可以获得较多的控制变数,以削减像差。
第一透镜、第二透镜和第三透镜均采用塑胶材质,借以有效降低生产成本。
本实施方式提供的准直镜头满足以下条件式:
(dn/dt) 1<-30×10 -6/℃;
(dn/dt) 2<-30×10 -6/℃;
(dn/dt) 3<-30×10 -6/℃;
其中,(dn/dt) 1表示第一透镜在0~60℃范围内的折射率温度系数;
(dn/dt) 2表示第二透镜在0~60℃范围内的折射率温度系数;
(dn/dt) 3表示第三透镜在0~60℃范围内的折射率温度系数。
此条件限制了第一透镜、第二透镜和第三透镜的折射率随温度的变化率,主要用于合理的搭配镜片的热膨胀,保证在不同温度下镜头焦距的稳定性。
在一种实施方式中,本发明提供的准直镜头满足条件式:
4<f/r 1<7;
其中,f表示准直镜头的系统焦距,r 1表示第一透镜物侧面的曲率半径。此条件限制了第一透镜物侧面的形状,有利于镜片的加工制造,同时可以降低公差敏感度。
在一种实施方式中,本发明提供的准直镜头满足条件式:
-0.7<r 1/r 6<0;
其中,r 1表示第一透镜物侧面的曲率半径,r 6表示第三透镜像侧面的曲率半径。此条件限制了第一透镜物侧面与第三透镜像侧面的朝向相反,主要用于将经过第三透镜的光线会聚于成像面上,同时减少准直镜头的像差。
在一种实施方式中,本发明提供的准直镜头满足条件式:
-1<f 2/f 1<0;
其中,f 2表示第二透镜的焦距,f 1表示第一透镜的焦距。此条件限制了第一透镜与第二透镜的配比,可以有效减少准直镜头的像差。
在一种实施方式中,本发明提供的准直镜头满足条件式:
0<CT 2/CT 1<1;
其中,CT 1表示第一透镜的中心厚度,CT 2表示第二透镜的中心厚度。此条件限制了第二透镜的中心厚度与第一透镜的中心厚度的配比,借由适当配置透镜的中心厚度,有利于光学透镜组的加工制造及组装。
在一种实施方式中,本发明提供的准直镜头满足条件式:
0<CT/TD<0.6;
其中,CT表示第一透镜、第二透镜、第三透镜的中心厚度之和,TD表示该准直镜头从第一透镜物侧面到第三透镜像侧面在光轴上的距离。
在一种实施方式中,本发明提供的准直镜头满足条件式:
-1<r 3/f<0;
其中,r 3表示第二透镜物侧面的曲率半径,f表示准直镜头的系统焦距。满足此条件,可缩短系统的后焦距,以降低准直镜头的光学总长度。
在一种实施方式中,本发明提供的准直镜头满足条件式:
6<TTL/ImgH<9;
其中,TTL表示准直镜头的光学总长,ImgH表示准直镜头的半像高。此条件限制了镜头系统的总长,并且保证了系统具有足够好的成像质量。
在一种实施方式中,本发明提供的准直镜头满足条件式:
TTL/<1.0;
其中,TTL表示准直镜头的光学总长,f表示准直镜头的系统焦距。此条件限制了系统总长和系统焦距的比例关系,在保证系统长焦距的情况下,能达到系统小型化的目的。具体地,可以限定,准直镜头10的光学总长TTL小于3.2mm,且准直镜头的系统焦距f大于3.6mm,以保证更好的光学特性,更适合3D结构光的算法实现。
在一种实施方式中,第一透镜、第二透镜和第三透镜的各物侧面与像侧面均为非球面,借此可以获得较多的控制变数,以削减像差。
在一种实施方式中,准直镜头的光学总长小于3.2mm,利于准直镜头的小型化。
在一种实施方式中,还提供一种投影模组,包括上述任意一种实施方式的准直镜头,投影模组还包括光源以及衍射光学元件,光源发射的光束经准直镜头汇聚并由衍射光学元件扩束后向外投射出结构化图案光束。
本发明提供的准直镜头及投影模组由于采用三片塑胶镜片,镜头尺寸更小成本更低,且各镜片的折射率随温度的变化率分配合理,能够和镜片本身及结构件带来的热膨胀对焦距的影响相抵消,所以能够实现焦距稳定及适用于不同的温度场合;本发明提供的准直镜头能够达到温度每变化10℃,有效焦距变化量小于0.001mm,以致镜头投射光的角度不发生明显变化,不改变原有的光信息;且相 比现有技术,在同样尺寸的激光发射器下,可以实现系统的焦距更大,视场角更小,从而更有利于3D结构光的算法实现,成本也更低。
在本发明的所有实施例中,准直镜头的各个镜片的相关参数如表1、表3、表5和表7所示,其中r表示光学曲面顶点的曲率半径,d表示光学表面间距(相邻的两个光学曲面顶点之间的距离),n d表示各个透镜的折射率,Vd表示各个透镜的阿贝数,用来衡量介质的光线色散程度。各实施例对应的光学特性如表5所示,其中,f表示准直镜头的焦距,TTL表示准直镜头的光学总长,NA表示数值孔径。
准直镜头的各个透镜的非球面参数如表2、表4、表6和表8所示,且本发明各个实施例中准直镜头的非球面表面形状均满足下列方程:
Figure PCTCN2019113104-appb-000001
其中,z表示曲面离开曲面顶点在光轴方向的距离,c表示曲面顶点的曲率,k表示二次曲面系数,h表示光轴到曲面的距离,B、C、D、E、F、G、H分别表示四阶、六阶、八阶、十阶、十二阶、十四阶、十六阶曲面系数。
下面分多个实施例对本发明进行进一步的说明。在以下每个实施例中,准直镜头中的各个透镜的厚度、曲率半径有所不同,具体不同可参见各实施例中的参数表。
第一实施例
请参阅图1,本实施例提供的一种准直镜头10的结构示意图,设定激光发射器端为物侧S0,被测物体端为像侧S7,从物侧S0到像侧S7依次包括:第一透镜L1,第二透镜L2,第三透镜L3和光阑ST。
第一透镜L1具有正光焦度,第一透镜L1的物侧面S1为凸面且像侧面S2为凹面。
第二透镜L2具有负光焦度,第二透镜L2的物侧面S3和像侧面S4均为凹面。
第三透镜L3具有正光焦度,第三透镜L3的物侧面S5为凹面且像侧面S6为凸面。
光阑ST位于第三透镜L3与被测物体之间。各个透镜的光学中心位于同一直线上,且各个透镜均为塑胶材质。准直镜头10满足以下条件式:
(dn/dt) 1<-30×10 -6/℃;
(dn/dt) 2<-30×10 -6/℃;
(dn/dt) 3<-30×10 -6/℃;
其中,(dn/dt) 1表示第一透镜L1在0~60℃范围内的折射率温度系数;(dn/dt) 2表示第二透镜L2在0~60℃范围内的折射率温度系数;(dn/dt) 3表示第三透镜L3在0~60℃范围内的折射率温度系数。
本实施例中的准直镜头10中各个镜片的相关参数如表1所示。
表1
表面序号 代号 表面类型 r d n d Vd
物面S0   球面 0.245    
S1 第一透镜 非球面 0.700 0.482 1.640 23.529
S2   非球面 1.676 0.660    
S3 第二透镜 非球面 -0.619 0.170 1.516 57.038
S4   非球面 1.060 0.833    
S5 第三透镜 非球面 9.235 0.563 1.640 23.529
S6   非球面 -1.130 0.400    
ST 光阑 球面 300.000    
S7 像面 球面    
本实施例的各透镜的非球面参数如表2所示。
表2
Figure PCTCN2019113104-appb-000002
在本实施例中,图2是准直镜头在40℃,300mm像距成像时的场曲曲线图,图中x轴为场曲值,坐标单位为毫米,y轴为用物高定义的视场。图3是准直镜头在40℃,300mm像距成像时的畸变曲线图,图中x轴为畸变值,坐标单位为百分比,y轴为用物高定义的视场。图4为准直镜头在40℃,300mm像距成像时像点大小及形状的示意图,单位为微米,从左到右、从上到下,物高与像高均逐渐增大。
由于像点的数据范围越小,说明镜头性能越好,由图2至图4可以看出,本实施例中像差能被很好地校正。
第二实施例
本实施例的准直镜头20的结构示意图可参阅图5。本实施例与第一实施例的镜头结构图大抵相似,不同之处在于:各个镜片的相关参数不同。
本实施例中的准直镜头20中各个镜片的相关参数如表3所示。
表3
表面序号   表面类型 r d n d Vd
物面S0   球面 0.420    
S1 第一透镜 非球面 0.646 0.395 1.640 23.529
S2   非球面 1.289 0.823    
S3 第二透镜 非球面 -0.513 0.266 1.516 57.038
S4   非球面 14.889 0.657    
S5 第三透镜 非球面 5.288 0.525 1.640 23.529
S6   非球面 -1.233 0.350    
ST 光阑 球面 300.000    
S7 像面 球面    
本实施例的各透镜的非球面参数如表4所示。
表4
Figure PCTCN2019113104-appb-000003
在本实施例中,图6是准直镜头在40℃,300mm像距成像时的场曲曲线图。图7是准直镜头在40℃,300mm像距成像时的畸变曲线图。图8为准直镜头在40℃,300mm像距成像时像点大小及形状的示意图。
由于像点的数据范围越小,说明镜头性能越好,由图6至图8可以看出,本实施例中的准直镜头20的像差能被很好地校正。
第三实施例
本实施例的准直镜头30的结构示意图可参阅图9,本实施例与第一实施例的镜头结构图大抵相似,不同之处在于:各个镜片的相关参数不同。
本实施例中的准直镜头30中各个镜片的相关参数如表5所示。
表5
表面序号   表面类型 r d n d Vd
物面S0   球面 0.250    
S1 第一透镜 非球面 0.647 0.524 1.640 23.529
S2   非球面 1.412 0.592    
S3 第二透镜 非球面 -0.726 0.170 1.640 23.529
S4   非球面 1.232 0.773    
S5 第三透镜 非球面 21.774 0.641 1.640 23.529
S6   非球面 -1.054 0.400    
ST 光阑 球面 300.000    
S7 像面 球面    
本实施例的各透镜的非球面参数如表6所示。
表6
Figure PCTCN2019113104-appb-000004
在本实施例中,图10是准直镜头在40℃,300mm像距成像时的场曲曲线图。 图11是准直镜头在40℃,300mm像距成像时的畸变曲线图。图12为准直镜头在40℃,300mm像距成像时像点大小及形状的示意图。
由于像点的数据范围越小,说明镜头性能越好,由图10至图12可以看出,本实施例中像差能被很好的校正。
第四实施例
本实施例的准直镜头40的结构示意图可参阅图13,本实施例与第一实施例的镜头结构图大抵相似,不同之处在于:各个镜片的相关参数不同。
本实施例中的准直镜头40中各个镜片的相关参数如表7所示。
表7
表面序号   表面类型 r d n d Vd
物面S0   球面 0.489    
S1 第一透镜 非球面 0.663 0.428 1.640 23.529
S2   非球面 1.595 0.705    
S3 第二透镜 非球面 -0.596 0.200 1.516 57.038
S4   非球面 2.063 0.703    
S5 第三透镜 非球面 54.356 0.573 1.640 23.529
S6   非球面 -1.067 0.350    
ST 光阑 球面 300.000    
S7 像面 球面    
本实施例的各透镜的非球面参数如表8所示。
表8
Figure PCTCN2019113104-appb-000005
在本实施例中,图14是准直镜头在40℃,300mm像距成像时的场曲曲线图。图15是准直镜头在40℃,300mm像距成像时的畸变曲线图。图16为准直镜头 在40℃,300mm像距成像时像点大小及形状的示意图。
由于像点的数据范围越小,说明镜头性能越好,由图14至图16可以看出,本实施例中像差能被很好的校正。
第一实施例至第四实施例及其对应的光学特性如表5所示。
表5
Figure PCTCN2019113104-appb-000006
本发明提供的准直镜头由于各镜片的折射率随温度的变化率分配合理,能实现焦距稳定及适用于不同的温度场合,有利于3D结构光的算法实现。
第五实施例
如图17所示,本实施例提供一种投影模组100,包括上述任一实施例中的准直镜头(例如准直镜头10),投影模组100还包括光源60以及衍射光学元件50,由光源60发射的光束经准直镜头10汇聚并由衍射光学元件50扩束后向外投射出结构化图案光束,并向待测物体方向投射。
其中,光源60可以是可见光、不可见光等激光光源,例如垂直腔面发射激光器(VCSEL)或红外激光二极管发射的光作为光源等。
本发明提供的投影模组100包括准直镜头10,由于准直镜头10中各镜片的折射率随温度的变化率分配合理,能实现焦距稳定及适用于不同的温度场合。投影模组100工作方式如下:光源60发出的光经准直镜头10和衍射光学元件50后向待测物体方向投射;该投影光束在经过衍射光学元件50后向外发射出图案化的结构光,由接收模组接收来自待测物体反射的图案化的结构光信息,并计算物体的位置和深度等信息,进而复原整个三维空间。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (12)

  1. 一种准直镜头,其特征在于,设定激光发射器端为物侧,被测物体端为像侧,沿光轴从所述物侧到所述像侧依次包括:
    具有正光焦度的第一透镜,所述第一透镜的物侧面为凸面;
    具有负光焦度的第二透镜,所述第二透镜的物侧面为凹面;
    具有正光焦度的第三透镜,所述第三透镜的物侧面为凸面或近平面,像侧面为凸面;
    光阑,所述光阑位于所述第三透镜与所述被测物体之间;所述第一透镜、所述第二透镜、所述第三透镜均为塑胶材质;
    所述准直镜头满足以下条件式:
    (dn/dt) 1<-30×10 -6/℃;
    (dn/dt) 2<-30×10 -6/℃;
    (dn/dt) 3<-30×10 -6/℃;
    其中,(dn/dt) 1表示所述第一透镜在0~60℃范围内的折射率温度系数;
    (dn/dt) 2表示所述第二透镜在0~60℃范围内的折射率温度系数;
    (dn/dt) 3表示所述第三透镜在0~60℃范围内的折射率温度系数。
  2. 如权利要求1所述的准直镜头,其特征在于,所述准直镜头满足条件式:
    4<f/r 1<7;
    其中,f表示所述准直镜头的系统焦距,r 1表示所述第一透镜物侧面的曲率半径。
  3. 如权利要求1所述的准直镜头,其特征在于,所述准直镜头满足条件式:
    -0.7<r 1/r 6<0;
    其中,r 1表示所述第一透镜物侧面的曲率半径,r 6表示所述第三透镜像侧面的曲率半径。
  4. 如权利要求1所述的准直镜头,其特征在于,所述准直镜头满足条件式:
    -1<f 2/f 1<0;
    其中,f 2表示所述第二透镜的焦距,f 1表示所述第一透镜的焦距。
  5. 如权利要求1所述的准直镜头,其特征在于,所述准直镜头满足条件式:
    0<CT 2/CT 1<1;
    其中,CT 1表示所述第一透镜的中心厚度,CT 2表示所述第二透镜的中心厚度。
  6. 如权利要求1所述的准直镜头,其特征在于,所述准直镜头满足条件式:
    0<CT/TD<0.6;
    其中,CT表示所述第一透镜、所述第二透镜和所述第三透镜的中心厚度之和,TD表示所述准直镜头从所述第一透镜的物侧面到所述第三透镜的像侧面在光轴上的距离。
  7. 如权利要求1所述的准直镜头,其特征在于,所述准直镜头满足条件式:
    -1<r 3/f<0;
    其中,r 3表示所述第二透镜物侧面的曲率半径,f表示所述准直镜头的系统焦距。
  8. 如权利要求1所述的准直镜头,其特征在于,所述准直镜头满足条件式:
    6<TTL/ImgH<9;
    其中,TTL表示所述准直镜头的光学总长,ImgH表示所述准直镜头的半像高。
  9. 如权利要求1所述的准直镜头,其特征在于,所述准直镜头满足条件式:
    TTL/f<1.0;
    其中,TTL表示所述准直镜头的光学总长,f表示所述准直镜头的系统焦距。
  10. 如权利要求1所述的准直镜头,其特征在于,所述第一透镜、所述第二透镜和所述第三透镜的各物侧面与像侧面均为非球面。
  11. 如权利要求1所述的准直镜头,其特征在于,所述准直镜头的光学总长小于3.2mm。
  12. 一种投影模组,其特征在于,包括如权利要求1-11任一项所述的准直镜头,所述投影模组还包括光源以及衍射光学元件,所述光源发射的光束经所述准直镜头汇聚并由所述衍射光学元件扩束后向外投射出结构化图案光束。
PCT/CN2019/113104 2018-12-11 2019-10-24 准直镜头及投影模组 WO2020119279A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/854,896 US11314062B2 (en) 2018-12-11 2020-04-22 Collimating lens, projecting module and mobile phone

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811512730.4 2018-12-11
CN201811512730.4A CN109557650B (zh) 2018-12-11 2018-12-11 准直镜头及投影模组

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/854,896 Continuation US11314062B2 (en) 2018-12-11 2020-04-22 Collimating lens, projecting module and mobile phone

Publications (1)

Publication Number Publication Date
WO2020119279A1 true WO2020119279A1 (zh) 2020-06-18

Family

ID=65869810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113104 WO2020119279A1 (zh) 2018-12-11 2019-10-24 准直镜头及投影模组

Country Status (3)

Country Link
US (1) US11314062B2 (zh)
CN (1) CN109557650B (zh)
WO (1) WO2020119279A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109557650B (zh) 2018-12-11 2020-06-23 江西联益光学有限公司 准直镜头及投影模组
CN110275180A (zh) * 2019-06-27 2019-09-24 Oppo广东移动通信有限公司 准直镜头、激光模组、深度相机及电子装置
CN110579880B (zh) * 2019-09-29 2021-08-17 Oppo广东移动通信有限公司 一种近眼显示光学系统及近眼显示装置
TWI757732B (zh) * 2020-05-05 2022-03-11 大立光電股份有限公司 攝像用光學透鏡組、取像裝置及電子裝置
CN111766689B (zh) * 2020-07-20 2022-04-22 苏州中科全象智能科技有限公司 一种非球面大景深沙姆镜头
CN111853699B (zh) * 2020-08-28 2021-02-12 广东烨嘉光电科技股份有限公司 一种大孔径的三片式透镜光学镜头
CN111812828B (zh) * 2020-09-14 2021-05-25 深圳市汇顶科技股份有限公司 红外准直镜头和红外镜头模组
CN114420020B (zh) * 2021-12-15 2024-08-23 惠州星聚宇智能科技有限公司 光学投影系统、投影模组以及迎宾灯
CN114217426B (zh) * 2022-02-23 2022-07-15 江西联益光学有限公司 光学镜头
CN116107066B (zh) * 2023-04-14 2023-10-20 江西联昊光电有限公司 光学镜头及近眼显示系统
CN118444491A (zh) * 2024-07-08 2024-08-06 安徽阿凡达三界外科技有限公司 镜片模组和可穿戴设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110013070A1 (en) * 2008-02-12 2011-01-20 Konica Minolta Opto, Inc. Lens unit, image capturing lens, image capturing device and portable terminal
CN105043725A (zh) * 2015-09-01 2015-11-11 凯迈(洛阳)测控有限公司 一种红外准直光学系统
CN107505689A (zh) * 2017-09-15 2017-12-22 江西联创电子有限公司 投影镜头系统
CN107861317A (zh) * 2017-12-19 2018-03-30 浙江舜宇光学有限公司 投影镜头
JP2018077291A (ja) * 2016-11-07 2018-05-17 京セラオプテック株式会社 撮像レンズ
CN108279485A (zh) * 2018-03-09 2018-07-13 浙江舜宇光学有限公司 投影镜头
CN108318996A (zh) * 2018-03-09 2018-07-24 江西联益光学有限公司 准直镜头
CN109557650A (zh) * 2018-12-11 2019-04-02 江西联益光学有限公司 准直镜头及投影模组

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01133016A (ja) * 1987-11-18 1989-05-25 Minolta Camera Co Ltd 絞り後置のトリプレットレンズ系
CN1312492C (zh) * 2002-11-06 2007-04-25 宇东科技股份有限公司 具有可调变曲率的透镜系统及其曲率调变方法
JP2005308963A (ja) * 2004-04-20 2005-11-04 Canon Inc 変倍ファインダー
JP4760109B2 (ja) * 2005-04-22 2011-08-31 コニカミノルタオプト株式会社 撮像レンズ、撮像装置及び携帯端末
JP4910723B2 (ja) * 2007-01-29 2012-04-04 コニカミノルタオプト株式会社 撮像レンズ及び撮像装置並びに携帯端末
CN102053341B (zh) * 2009-11-05 2012-10-03 大立光电股份有限公司 近红外线取像透镜组
US20170269340A1 (en) * 2016-02-19 2017-09-21 Almalence Inc. Collapsible imaging system having lenslet arrays for aberration correction
CN114002811A (zh) * 2017-11-03 2022-02-01 玉晶光电(厦门)有限公司 光学透镜组
CN208092311U (zh) * 2018-03-09 2018-11-13 江西联益光学有限公司 准直镜头
CN111580252B (zh) * 2020-05-22 2022-04-22 玉晶光电(厦门)有限公司 光学成像镜头

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110013070A1 (en) * 2008-02-12 2011-01-20 Konica Minolta Opto, Inc. Lens unit, image capturing lens, image capturing device and portable terminal
CN105043725A (zh) * 2015-09-01 2015-11-11 凯迈(洛阳)测控有限公司 一种红外准直光学系统
JP2018077291A (ja) * 2016-11-07 2018-05-17 京セラオプテック株式会社 撮像レンズ
CN107505689A (zh) * 2017-09-15 2017-12-22 江西联创电子有限公司 投影镜头系统
CN107861317A (zh) * 2017-12-19 2018-03-30 浙江舜宇光学有限公司 投影镜头
CN108279485A (zh) * 2018-03-09 2018-07-13 浙江舜宇光学有限公司 投影镜头
CN108318996A (zh) * 2018-03-09 2018-07-24 江西联益光学有限公司 准直镜头
CN109557650A (zh) * 2018-12-11 2019-04-02 江西联益光学有限公司 准直镜头及投影模组

Also Published As

Publication number Publication date
CN109557650A (zh) 2019-04-02
US11314062B2 (en) 2022-04-26
CN109557650B (zh) 2020-06-23
US20200249446A1 (en) 2020-08-06

Similar Documents

Publication Publication Date Title
WO2020119279A1 (zh) 准直镜头及投影模组
CN107505689B (zh) 投影镜头系统
CN108227149B (zh) 准直镜头
CN108318996B (zh) 准直镜头
CN107436484B (zh) 投影镜头
JP6667035B2 (ja) 投影レンズ
TWI647505B (zh) 四片式紅外單波長投影鏡片組
US11143843B2 (en) Projection lens assembly
CN111239977B (zh) 一种低畸变工业投影镜头
CN207301461U (zh) 投影镜头系统
TWI467262B (zh) 透鏡調芯裝置及攝像透鏡
CN208092311U (zh) 准直镜头
CN108319002A (zh) 一种镜头
CN208847938U (zh) 一种投影透镜系统及投影模组
CN111812828B (zh) 红外准直镜头和红外镜头模组
WO2022052133A1 (zh) 红外准直镜头和红外镜头模组
CN104570305A (zh) 自由曲面透镜及含有该自由曲面透镜的成像系统
CN208013518U (zh) 准直镜头
CN207281378U (zh) 投影镜头
JP6135127B2 (ja) 光学系、および面形状測定装置
CN116088147A (zh) 准直镜头
CN208270837U (zh) 一种镜头
CN115993719A (zh) 单非球面透镜设计方法、单非球面透镜
CN114924393A (zh) 红外投影镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19895651

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19895651

Country of ref document: EP

Kind code of ref document: A1