WO2018049616A1 - 光学系统及使用该光学系统的头戴显示装置 - Google Patents

光学系统及使用该光学系统的头戴显示装置 Download PDF

Info

Publication number
WO2018049616A1
WO2018049616A1 PCT/CN2016/099099 CN2016099099W WO2018049616A1 WO 2018049616 A1 WO2018049616 A1 WO 2018049616A1 CN 2016099099 W CN2016099099 W CN 2016099099W WO 2018049616 A1 WO2018049616 A1 WO 2018049616A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical system
focal length
present
display unit
Prior art date
Application number
PCT/CN2016/099099
Other languages
English (en)
French (fr)
Inventor
施宏艳
Original Assignee
深圳市柔宇科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市柔宇科技有限公司 filed Critical 深圳市柔宇科技有限公司
Priority to KR1020197001709A priority Critical patent/KR20190018719A/ko
Priority to EP16916001.7A priority patent/EP3514596A4/en
Priority to JP2019513367A priority patent/JP2019529987A/ja
Priority to PCT/CN2016/099099 priority patent/WO2018049616A1/zh
Priority to CN201680034169.6A priority patent/CN108064352A/zh
Priority to US16/063,490 priority patent/US10558023B2/en
Publication of WO2018049616A1 publication Critical patent/WO2018049616A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/60Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having five components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/011Head-up displays characterised by optical features comprising device for correcting geometrical aberrations, distortion
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0123Head-up displays characterised by optical features comprising devices increasing the field of view
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0123Head-up displays characterised by optical features comprising devices increasing the field of view
    • G02B2027/0125Field-of-view increase by wavefront division

Definitions

  • the present invention relates to the field of optical technologies, and in particular, to an optical system and a head mounted display device using the same.
  • the head-mounted display device enlarges the image on the display screen through a set of optical systems, and presents an enlarged virtual image at a certain distance in front of the human eye, so that the user can completely immerse in the virtual scene without interference from external information.
  • the optical system is an important component of the head mounted display device.
  • the head-mounted display requires a larger field of view while ensuring high-resolution imaging quality due to its compact structure, light weight and ease of wearing.
  • an optical system includes a first lens, a second lens, a third lens, a fourth lens, and a second line that are coaxially arranged in the optical axis direction from the human eye observation side to the image display unit side.
  • a five lens wherein a focal length of the first lens is f1, a focal length of the second lens is f2, a focal length of the third lens is f3, a focal length of the fourth lens is f4, a focal length of the fifth lens is f5, and a total length of the system Is ft and satisfies the following relationship:
  • the first lens, the third lens and the fourth lens are both positive lenses, and the second lens and the fifth lens are both negative lenses.
  • the fourth lens and the fifth lens are aspherical surfaces, and a surface of the third lens facing the fourth lens is aspherical.
  • a surface of the first lens, the second lens, and the third lens facing the second lens is a spherical surface.
  • a surface of the first lens, the second lens, and the third lens facing the second lens is aspherical.
  • the fourth lens is convex toward the third lens side toward the third lens.
  • the first lens is convex toward the side of the pupil facing the human eye.
  • the second lens faces the first lens facing the third lens side concave.
  • the third lens is convex toward the fourth lens side toward the fourth lens.
  • the present invention further provides a head mounted display device including a display unit and an optical system, the optical system being located between a human eye and the display unit, wherein the optical system is any one of the above The optical system described.
  • the optical system and the headgear using the optical system of the present invention are combined by positive and negative lenses, and the focal length, refractive index and Abbe number of each lens satisfy a certain relationship.
  • the optical system has the characteristics of large angle of view and high resolution, and is suitable for comfortable use by a wider range of people, achieving a visual experience with a high sense of presence.
  • FIG. 1 is an optical path diagram of an optical system in a first embodiment of the present invention.
  • FIG. 2 is a diagram showing an optical system transfer function (MTF) in the first embodiment of the present invention.
  • MTF optical system transfer function
  • Fig. 3 is a dot-column diagram of an optical system in the first embodiment of the present invention.
  • Fig. 4a is a field curvature diagram of the optical system in the first embodiment of the present invention.
  • Fig. 4b is a distortion diagram of the optical system in the first embodiment of the present invention.
  • Fig. 5 is a view showing the optical path of the optical system in the second embodiment of the present invention.
  • FIG. 6 is a diagram showing an optical system transfer function (MTF) in a second embodiment of the present invention.
  • MTF optical system transfer function
  • Fig. 7 is a dot-column diagram of an optical system in a second embodiment of the present invention.
  • Fig. 8a is a field curve diagram of an optical system in a second embodiment of the present invention.
  • Fig. 8b is a distortion diagram of the optical system in the second embodiment of the present invention.
  • Fig. 9 is a schematic view showing the optical path of the optical system in the third embodiment of the present invention.
  • Fig. 10 is a diagram showing an optical system transfer function (MTF) in the third embodiment of the present invention.
  • Fig. 11 is a dot-column diagram of an optical system in a third embodiment of the present invention.
  • Figure 12a is a field curve diagram of an optical system in a third embodiment of the present invention.
  • Fig. 12b is a distortion diagram of the optical system in the third embodiment of the present invention.
  • the optical system 1 can be mounted on a head mounted display device (not shown).
  • the head mounted display device also includes a display unit 30.
  • the optical system 1 includes a pupil 10, a first lens 21, a second lens 22, a third lens 23, and a fourth lens 24 which are sequentially arranged from the human eye side to the display unit 30 side (from left to right).
  • the aperture 10 is an exit pupil for imaging the optical system, and is a virtual light exit aperture. When the pupil of the human eye is at the position of the aperture 10, an optimal imaging effect can be observed.
  • the first lens 21, the third lens 23, and the fourth lens 24 are all positive lenses
  • the second lens 22 and the fifth lens 25 are negative lenses.
  • the surface number of the aperture 10 is F0, and so on (from left to right), the surface of the display unit 30 is F11.
  • the first lens 21 is convex toward the pupil 10 side toward the surface F1 of the aperture 10 .
  • the radius of curvature of the first lens 21 facing the face F1 of the aperture 10 is a positive value.
  • the second lens 22 is concave toward the third lens 23 side toward the surface F3 of the first lens 21, and the second lens 22 is convex toward the third lens 23 side toward the surface F4 of the third lens 23.
  • the radius of curvature of the face F3 and the face F4 of the second lens 22 are both negative.
  • the third lens 23 is convex toward the fourth lens 24 side toward the surface F6 of the fourth lens 24, and the radius of curvature of the third lens 23 toward the surface F6 of the fourth lens 24 is a negative value.
  • the fourth lens 24 is convex toward the third lens 23 side toward the surface F7 of the third lens 23, and the fourth lens 24 is concave toward the third lens 23 side toward the surface F8 of the fifth lens 25, and the curvature of the surface F7 of the fourth lens 24 Radius is positive
  • the radius of curvature of the face F8 of the fourth lens 24 is a negative value.
  • the fifth lens 25 is recessed toward the fourth lens 24 side toward the surface F10 on the display unit 30 side, and the fifth lens 25 is recessed toward the display unit 30 toward both edge ends of the surface F9 of the fourth lens 24.
  • the radius of curvature of the surface F9 and the surface F10 of the fifth lens 25 are both positive values.
  • the first lens 21 and the second lens 22 both adopt a spherical surface
  • the fourth lens 24 and the fifth lens 25 adopt an aspherical surface
  • the surface F5 of the third lens 23 close to the second lens 22 adopts a spherical surface
  • the third lens 23 approaches the fourth lens 24 .
  • the face F6 is aspherical. In this way, the system aberrations are more fully corrected.
  • the focal length of the first lens is f1
  • the focal length of the second lens is f2
  • the focal length of the third lens is f3
  • the focal length of the fourth lens is f4
  • the focal length of the fifth lens is f5
  • the total length of the system is Ft and satisfy the following relationship:
  • Table 1 shows design data of the optical system in the first embodiment of the present invention.
  • Table 2 shows design data of the aspherical lens in the first embodiment of the present invention.
  • Table 3 shows design data of the focal length of each lens in the first embodiment of the present invention.
  • the optical transfer function MTF can comprehensively reflect the imaging quality of the system.
  • the curve of the transfer function is smooth and compact, the MTF value represented by the curve is very high, and the aberration of the system is well corrected.
  • Figure 3 is a dot-column diagram of an optical system in accordance with a first embodiment of the present invention.
  • the dot-column ignores the diffraction effect and reflects the geometrical mechanism of the optical system imaging.
  • the distribution of points can approximately represent the energy distribution of the point image. Therefore, in the image quality evaluation, the intensity of the available point maps can more intuitively reflect and measure the quality of the system image quality. The smaller the RMS radius of the point map, the better the imaging quality of the system. It can be seen from the dot-column diagram shown in FIG. 3 that the spot of each field of view of the optical system is small, indicating that the system energy distribution is better optimized, and the aberration correction is better.
  • the field curvature is an aberration of the surface image formed by the object plane, which needs to be characterized by the meridional field curvature and the sagittal field curvature.
  • the T line in the field curvature curve is the meridional field curvature
  • the S line is The sagittal curvature of field
  • Field curvature and astigmatism are important aberrations affecting the optical field of the optical system.
  • the over-the-field imaging quality of the optical system is seriously affected. It can be seen that the field curvature and astigmatism of the optical system are all corrected to a very small range.
  • Distortion does not affect the clarity of the optical system, but it can cause distortion of the system.
  • correcting distortion is extremely difficult and can be solved by post-image processing.
  • Figures 2-4 collectively illustrate the features of the large field of view and high image quality of the optical system in the first embodiment of the present invention.
  • FIG. 5 there is shown a schematic diagram of an optical system 2 in a second embodiment of the present invention.
  • the optical system includes a pupil 10, a first lens 21, a second lens 22, a third lens 23, a fourth lens 24, and a first order from the human eye side to the display unit 30 side (from left to right).
  • the first lens 21, the third lens 23, and the fourth lens 24 are all positive lenses, and the second lens 22 and the fifth lens 25 are negative lenses.
  • the surface number of the aperture 10 is F0, and so on (from left to right), the surface of the display unit 30 is F11.
  • the first lens 21 is convex toward the pupil 10 side toward the surface F1 of the aperture 10 .
  • the radius of curvature of the first lens 21 facing the surface F1 of the aperture 10 is a positive value, and the first lens 21 faces the first
  • the radius of curvature of the face F2 of the two lenses 22 is a negative value.
  • the second lens 22 is concave toward the third lens 23 side toward the surface F3 of the first lens 21, and the second lens 22 is convex toward the third lens 23 side toward the surface F4 of the third lens 23.
  • the radius of curvature of the face F3 and the face F4 of the second lens 22 are both negative.
  • the third lens 23 is convex toward the fourth lens 24 side toward the surface F6 of the fourth lens 24, and the radius of curvature of the third lens 23 toward the surface F6 of the fourth lens 24 is a negative value.
  • the fourth lens 24 is convex toward the third lens 23 side toward the surface F7 of the third lens 23, and the fourth lens 24 is concave toward the third lens 23 side toward the surface F8 of the fifth lens 25, and the fourth lens 24 faces F7 and The radius of curvature of F8 is positive.
  • the fifth lens 25 is concave toward the fourth lens 24 side toward the surface F10 of the display unit 30, and the fifth lens 25 is convex toward the fourth lens 24 side toward the surface F9 of the fourth lens 24.
  • the radius of curvature of the faces F9 and F10 of the fifth lens 25 is a positive value.
  • the first lens 21, the second lens 22, the third lens 23, the fourth lens 24, and the fifth lens 25 each have an aspherical surface.
  • all the lenses of the optical system provided by the second embodiment adopt an aspherical design, which not only can more fully correct the system aberration, solve the problem of distortion of the video, but also make the lens lighter, thinner and flatter. .
  • the focal length of the first lens is f1
  • the focal length of the second lens is f2
  • the focal length of the third lens is f3
  • the focal length of the fourth lens is f4
  • the focal length of the fifth lens is f5
  • the total length of the system is Ft and satisfy the following relationship:
  • Table 4 shows design data of the optical system in the second embodiment of the present invention.
  • Table 5 shows design data of the aspherical lens in the second embodiment of the present invention.
  • Table 6 shows design data of the focal length of each lens in the second embodiment of the present invention.
  • the image quality at the image height of 0.000 mm to 25.50 mm is respectively plotted, and as can be seen from FIG. 6, the transfer function is shown.
  • the curve is smooth and compact, the MTF value represented by the curve is very high, and the aberration of the system is well corrected.
  • FIG. 7 is a dot-column diagram of an optical system according to a second embodiment of the present invention. As can be seen from the dot-column diagram, the diffuse radii of the respective field-of-view rays in the image source plane (display device I) in this embodiment Small and uniform, the diffuse spot dislocation formed by the different wavelengths of light in the same field of view is low, the optical system aberration is well corrected, and the overall uniform and high optical performance display image can be observed through the eyepiece optical system.
  • 8(a) and 8(b) respectively show field curvature and distortion curves of the optical system in the second embodiment according to the present invention. It is characterized in that the field curvature, astigmatism and distortion aberration control of the present embodiment are better, and the effect of high image quality at a large angle of view can be achieved.
  • 6-8 collectively illustrate features of the optical system with a large field of view and high imaging quality in the second embodiment.
  • the optical system 1 includes a pupil 10, a first lens 21, a second lens 22, a third lens 23, and a fourth lens 24 which are sequentially arranged from the human eye side to the display unit 30 side (from left to right).
  • the first lens 21, the third lens 23, and the fourth lens 24 are all positive lenses, and the second lens 22 and the fifth lens 25 are negative lenses.
  • the surface number of the aperture 10 is F0, and so on (from left to right), the surface of the display unit 30 is F11.
  • the first lens 21 is convex toward the pupil 10 side toward the surface F1 of the aperture 10, and the first lens 21 is concave toward the pupil 10 side toward the surface F2 of the second lens 22, and the first lens 21 surface F1 and The radius of curvature of the surface F1 is a positive value.
  • the second lens 22 is concave toward the third lens 23 side toward the surface F3 of the first lens 21, and the curvature radii of the faces F3 and F4 of the second lens 22 are both negative.
  • the third lens 23 is convex toward the fourth lens 24 side toward the surface F6 of the fourth lens 24.
  • the radius of curvature of the third lens 23 toward the face F6 of the fourth lens 24 is a negative value.
  • the fourth lens 24 is convex toward the third lens 23 side toward the surface F7 of the third lens 23, and the fourth lens 24 is convex toward the third lens 23 side toward the surface F8 of the fifth lens 25, and the surface F7 of the fourth lens 24 is convex.
  • the radius of curvature is a positive value, and the radius of curvature of the face F8 of the fourth lens 24 is a negative value.
  • the fifth lens 25 is concave toward the display unit 30 side toward the surface F9 of the fourth lens 24, and the fifth lens 25 faces the face F10 of the display unit 30 to the fourth direction.
  • the side of the lens 24 is concave.
  • the curvature radii of the faces F9 and F10 of the fifth lens 25 are both negative.
  • the first lens 21 and the second lens 22 are spherical surfaces; the surface of the third lens 23 facing the second lens 22 is a spherical surface, and the surface of the third lens 23 facing the fourth lens 24 is aspherical; the fourth lens 24 and the fifth lens 25 are Use an aspheric surface.
  • the focal length of the first lens is f1
  • the focal length of the second lens is f2
  • the focal length of the third lens is f3
  • the focal length of the fourth lens is f4
  • the focal length of the fifth lens is f5
  • the total length of the system is Ft and satisfy the following relationship:
  • Table 7 shows design data of the optical system in the third embodiment of the present invention.
  • Table 8 shows the design number of the aspherical lens in the third embodiment of the present invention. according to.
  • Table 9 shows design data of the focal length of each lens in the third embodiment of the present invention.
  • the image quality at the image height of 0.000 mm to 25.50 mm is respectively plotted, and as can be seen from FIG. 3, the transfer function is shown.
  • the curve is smooth and compact, the MTF value represented by the curve is very high, and the aberration of the system is well corrected.
  • Figure 11 is a dot-column diagram of an optical system in accordance with a third embodiment of the present invention. From this As can be seen from the dot-column diagram, in the present embodiment, the diffuse radii of the respective field of view rays in the image source plane (display device I) are small and uniform, and the dispersion of the different wavelengths of light in the same field of view is low, and the optical system is low. The aberration is well corrected, and a uniform uniform, high optical performance display image can be observed by the eyepiece optical system.
  • Fig. 12 (a) and Fig. 12 (b) respectively show field curvature and distortion curves of the optical system in the third embodiment according to the present invention. It is characterized in that the field curvature, astigmatism and distortion aberration control of the present embodiment are better, and the effect of high image quality at a large angle of view can be achieved.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

公开了一种超广角高清的光学系统,其包括位于人眼观察侧到图像显示单元(30)侧沿光轴方向同轴依次排列的第一透镜(21)、第二透镜(22)、第三透镜(23)、第四透镜(24)以及第五透镜(25),其中,第一透镜(21)、第二透镜(22)、第三透镜(23)、第四透镜(24)以及第五透镜(25)的焦距需满足一特定的关系,且第一透镜(21)、第三透镜(23)与第四透镜(24)均为正透镜,第二透镜(22)与第五透镜(25)均为负透镜。同时,第一透镜(21)、第二透镜(22)、第三透镜(23)、第四透镜(24)以及第五透镜(25)的在d线的折射率与阿贝数也同时满足一特定的关系。最终,使在显示单元上显示的图像经过光学系统放大后在人眼上成像。还公开了一种包括这种光学系统的头戴显示设备。

Description

光学系统及使用该光学系统的头戴显示装置 技术领域
本发明涉及光学技术领域,尤其涉及一种光学系统及使用该光学系统的头戴显示装置。
背景技术
随着技术的发展,头戴显示装置(Head Mount Display,HMD)的开发与研究也得到了蓬勃地发展。头戴显示装置是通过一组光学系统将显示屏上的图像放大,并在人眼前一定距离处呈现一个放大的虚像,使用户可以完全沉浸在虚拟的情景之中,不受外界信息的干扰。光学系统是头戴显示装置的重要组件。头戴显示因其结构紧凑、轻便利于头戴等特征要求光学系统在保证高分辨率成像品质的同时还需具备更大的视场。
发明内容
本发明的目的就是提供一种适用于头戴显示装置的兼具大视场与高分辨率的光学系统。。
为了实现上述目的,本发明所提供的光学系统,包括位于人眼观察侧到图像显示单元侧沿光轴方向同轴依次排列的第一透镜、第二透镜、第三透镜、第四透镜以及第五透镜,其中,所述第一透镜的焦距为f1,第二透镜的焦距为f2,第三透镜的焦距为f3,第四透镜的焦距为f4,第五透镜的焦距为f5,系统总长度为ft,且满足下列关系:
1.5<f1/ft<3,-2<f2/ft<-1.2,2<f3/ft<2.5,0.5<f4/ft<1.5,-6<f5/ft<-1,
所述第一透镜、第三透镜与第四透镜均为正透镜,所述第二透镜与第五透镜均为负透镜。
进一步地,所述第四透镜和第五透镜为非球面,所述第三透镜朝向所述第四透镜的面为非球面。
进一步地,所述第一透镜、第二透镜、第三透镜朝向所述第二透镜的面为球面。
进一步地,所述第一透镜、第二透镜、第三透镜朝向所述第二透镜的面均为非球面。
进一步地,所述第四透镜朝向所述第三透镜的面向所述第三透镜侧外凸。
进一步地,所述第一透镜朝向所述光阑的面向所述人眼观察侧外凸。
进一步地,所述第二透镜朝向所述第一透镜的面向所述第三透镜侧内 凹。
进一步地,所述第三透镜朝向所述第四透镜的面向所述第四透镜侧外凸。
此外,为实现上述目的,本发明还提供了一种头戴显示设备,包括显示单元及光学系统,所述光学系统位于人眼与所述显示单元之间,所述光学系统为上述任意一项所述的光学系统。
较之于现有技术,本发明所提供的光学系统及使用该光学系统的头戴设备,通过正负透镜相结合,且使各个透镜的焦距、折射率与阿贝数满足一定的关系。如此,该光学系统具有大视场角与高分辨率的特征,适合更广泛人群舒适使用,达到高临场感的视觉体验效果。
附图说明
下列附图用于结合具体实施方式详细说明本发明的各个实施方式。应当理解,附图中示意出的各元件并不代表实际的大小及比例关系,仅是为了清楚说明而示意出来的示意图,不应理解成对本发明的限制。
图1为本发明第一实施方式中的光学系统的光路图。
图2为本发明第一实施方式中的光学系统传递函数(MTF)图。
图3为本发明第一实施方式中的光学系统的点列图。
图4a为本发明第一实施方式中的光学系统的场曲曲线图。
图4b为本发明第一实施方式中的光学系统的畸变曲线图。
图5为本发明第二实施方式中的光学系统的光路图。
图6为本发明第二实施方式中的光学系统传递函数(MTF)图。
图7为本发明第二实施方式中的光学系统的点列图。
图8a为本发明第二实施方式中的光学系统的场曲曲线图。
图8b为本发明第二实施方式中的光学系统的畸变曲线图。
图9为本发明第三实施方式中的光学系统的光路示意图。
图10为本发明第三实施方式中的光学系统传递函数(MTF)图。
图11为本发明第三实施方式中的光学系统的点列图。
图12a为本发明第三实施方式中的光学系统的场曲曲线图
图12b为本发明第三实施方式中的光学系统的畸变曲线图。
主要原件符号说明
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合多个实施方式及附图,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施方式仅仅用以解释本发明,并不用于限定本发明。
请参见图1,其示意图了本发明第一实施方式中的光学系统1的示意图。该光学系统1可安装于一头戴显示设备(图未示)上。该头戴显示设备还包括一显示单元30。该光学系统1包括从人眼观察侧到显示单元30侧(从左到右),依序排列的光阑10、第一透镜21、第二透镜22、第三透镜23、第四透镜24、第五透镜25以及显示单元30。在本实施方式中,光阑10为光学系统成像的出瞳,为一个虚拟的出光孔径,人眼的瞳孔在光阑10的位置时,可以观察到最佳的成像效果。在本实施方式中,第一透镜21、第三透镜23以及第四透镜24均为正透镜,第二透镜22与第五透镜25为负透镜。
以光阑10的表面序号为F0,依序类推(从左往右),显示单元30表面为F11。具体的,第一透镜21朝向光阑10的面F1向光阑10侧外凸。第一透镜21朝向光阑10的面F1的曲率半径为正值。第二透镜22朝向第一透镜21的面F3向第三透镜23侧内凹,第二透镜22朝向第三透镜23的面F4向第三透镜23侧外凸。第二透镜22的面F3与面F4的曲率半径均为负值。第三透镜23朝向第四透镜24的面F6向第四透镜24侧外凸,且第三透镜23朝向第四透镜24的面F6的曲率半径为负值。第四透镜24朝向第三透镜23的面F7向第三透镜23侧外凸,第四透镜24朝向第五透镜25的面F8向第三透镜23侧内凹,第四透镜24的面F7曲率半径为正 值,第四透镜24的面F8曲率半径为负值。第五透镜25朝向显示单元30侧的面F10向第四透镜24侧内凹,第五透镜25朝向第四透镜24的面F9的两边缘端向显示单元30内凹。第五透镜25的面F9与面F10曲率半径均为正值。
第一透镜21与第二透镜22都采用球面,第四透镜24与第五透镜25采用非球面,第三透镜23靠近第二透镜22的面F5采用球面,第三透镜23靠近第四透镜24的面F6采用非球面。如此,以更充分地矫正系统像差。
在本实施方式中,第一透镜的焦距为f1,第二透镜的焦距为f2,第三透镜的焦距为f3,第四透镜的焦距为f4,第五透镜的焦距为f5,系统总长度为ft,且满足下列关系:
1.5<f1/ft<3,-2<f2/ft<-1.2,2<f3/ft<2.5,0.5<f4/ft<1.5,-6<f5/ft<-1。
具体的,请参见表1,其示出了本发明第一实施方式中的光学系统的设计数据。
表1
Figure PCTCN2016099099-appb-000001
请参见表2,其示出了本发明第一实施方式中的非球面透镜的设计数据。
表2
Surface K A2 A4 A6 A8 A10 A12
F6 -1.1E+00 0.0E+00 -2.5E-04 1.9E-06 -7.7E-09 1.5E-11 -1.1E-14
F7 -5.5E+00 0.0E+00 1.0E-04 -2.0E-06 1.8E-08 -7.1E-11 1.1E-13
F8 1.9E-01 0.0E+00 2.0E-04 -1.4E-06 3.0E-09 1.8E-12 -1.1E-14
F9 -4.5E+20 0.0E+00 4.2E-04 -4.5E-06 2.1E-08 -1.0E-10 2.9E-13
F10 -1.1E-01 0.0E+00 6.6E-04 -1.3E-05 1.0E-07 -4.1E-10 6.6E-13
请参见表3,其示出了本发明第一实施方式中的各透镜的焦距的设计数据。
表3
各透镜的焦距 各透镜焦距与总焦距的比值
f1=45 f1/ft=2.368
f2=-34 f2/ft=-1.789
f3=43 f3/ft=2.263
f4=23 f4/ft=1.211
f5=19 f5/ft=-5.211
ft=19  
请参阅图2所示的根据本发明第一实施方式中的光学系统传递函数图。光学传递函数MTF可以综合反映系统的成像质量,其曲线形状越平滑、且相对横轴高度越高(即越接近1),系统的成像质量越好;图中分别绘出了0.000mm至25.50mm像高下的像质,从图3中可以看出,传递函数的曲线较为平滑紧凑,曲线所表征的MTF值很高,系统的像差得到了良好的校正。
图3所述的根据本发明第一实施方式中光学系统的点列图。点列图忽略衍射效应,反映的是光学系统成像的几何机构。在大像差系统的点列图中,点的分布能近似地代表点像的能量分布。因此,在像质评价中,可用点列图的密集程度更加直观反映和衡量系统成像质量的优劣,点列图的RMS半径越小,证明系统的成像质量越好。由如图3所示的点列图可知该光绪系统的各视场的光斑较小,表明系统能量分布得到较好的优化,像差校正比较好。
图4(a)和附图4(b)分别示出了根据本发明第一实施方式中的光学系统的场曲和畸变曲线。场曲是物平面形成曲面像的一种像差,需要以子午场曲和弧矢场曲来表征,如图4(a)所示,场曲曲线中T线为子午场曲,S线为弧矢场曲,两者之差即为光学系统的像散,场曲和像散是影响光学系统轴外视场光线的重要像差,二者过大会严重影响光学系统的轴外光线成像质量,可以看到,光学系统的场曲和像散均被校正到极小的范围内。
畸变不影响光学系统的清晰度,但是会引起系统的图形变形,对于广角镜头来说,校正畸变是极为困难的,可由后期图像处理来解决。
图2-4综合示出了本发明第一实施方式中的光学系统的大视场及高成像质量的特征。
请参见图5,其示出了本发明第二实施方式中的光学系统2的示意图。该光学系统包括从人眼观察侧到显示单元30侧(从左到右),依序排列的光阑10、第一透镜21、第二透镜22、第三透镜23、第四透镜24、第五透镜25以及显示单元30。其中,第一透镜21、第三透镜23以及第四透镜24均为正透镜,第二透镜22与第五透镜25为负透镜。
以光阑10的表面序号为F0,依序类推(从左往右),显示单元30表面为F11。具体的,第一透镜21朝向光阑10的面F1向光阑10侧外凸。第一透镜21朝向光阑10的面F1的曲率半径为正值,第一透镜21朝向第 二透镜22的面F2的曲率半径为负值。第二透镜22朝向第一透镜21的面F3向第三透镜23侧内凹,第二透镜22朝向第三透镜23的面F4向第三透镜23侧外凸。第二透镜22的面F3与面F4的曲率半径均为负值。第三透镜23朝向第四透镜24的面F6向第四透镜24侧外凸,且第三透镜23朝向第四透镜24的面F6的曲率半径为负值。第四透镜24朝向第三透镜23的面F7向第三透镜23侧外凸,第四透镜24朝向第五透镜25的面F8向第三透镜23侧内凹,第四透镜24面F7与面F8的曲率半径均为正值。第五透镜25朝向显示单元30的面F10向第四透镜24侧内凹,第五透镜25朝向第四透镜24的面F9向第四透镜24侧外凸。第五透镜25面F9与F10的曲率半径为正值。
第一透镜21、第二透镜22、第三透镜23、第四透镜24与第五透镜25均采用非球面。如此,第二实施方式所提供的光学系统的所有透镜均采用非球面设计,不仅能更充分地矫正系统像差,解决视像歪曲的问题,同时还可使镜片更轻、更薄、更平。
在本实施方式中,第一透镜的焦距为f1,第二透镜的焦距为f2,第三透镜的焦距为f3,第四透镜的焦距为f4,第五透镜的焦距为f5,系统总长度为ft,且满足下列关系:
1.5<f1/ft<3,-2<f2/ft<-1.2,2<f3/ft<2.5,0.5<f4/ft<1.5,-6<f5/ft<-1。
具体的,请参见表4,其示出了本发明第二实施方式中的光学系统的设计数据。
表4
Figure PCTCN2016099099-appb-000002
请参见表5,其示出了本发明第二实施方式中的非球面透镜的设计数据。
表5
Sur K A2 A4 A6 A8 A10 A12 A14 A16
F1 9.1E-04 0.0E+00 -1.2E-06 -1.1E-06 1.8E-08 -1.4E-10 -4.2E-14 5.7E-15 -2.2E-17
F2 0.0E+00 0.0E+00 6.6E-35 8.1E-46 1.1E-46 1.5E-48 1.4E-50 1.3E-52 0.0E+00
F3 0.0E+00 0.0E+00 -1.4E-34 5.1E-45 -5.4E-47 -1.0E-48 -1.1E-50 -1.1E-52 0.0E+00
F4 -5.2E+04 0.0E+00 -4.7E+00 5.6E-08 6.9E-10 2.6E-12 -1.7E-14 -3.9E-16 1.8E-18
F5 0.0E+00 0.0E+00 -9.9E-35 -3.9E-46 -4.0E-48 -2.7E-50 -1.4E-52 -4.8E-55 0.0E+00
F6 -9.0E-01 0.0E+00 -7.5E-04 1.1E-05 -9.7E-08 4.7E-10 -1.2E-12 1.2E-15 2.5E-19
F7 -3.9E+00 0.0E+00 5.5E-04 -1.5E-05 1.9E-07 -1.3E-09 4.3E-12 -7.6E-15 1.7E-17
F8 -4.3E+00 0.0E+00 5.3E-04 -1.1E-05 2.3E-08 1.1E-09 -1.1E-11 2.8E-14 4.5E-17
F9 -4.5E+20 0.0E+00 1.1E-03 -1.8E-05 9.1E-08 5.2E-10 -7.8E-12 9.3E-15 1.2E-16
F10 -1.3E+00 0.0E+00 2.1E-03 -7.1E-05 1.3E-06 -1.4E-08 7.5E-11 -1.7E-13 0.0E+00
请参见表6,其示出了本发明第二实施方式中的各透镜的焦距的设计数据。
表6
各透镜的焦距 各透镜焦距与总焦距的比值
f1=34 f1/ft=1.789
f2=-27 f2/ft=-1.421
f3=46 f3/ft=2.421
f4=17 f4/ft=0.895
f5=-32 f5/ft=-1.684
ft=19  
请参阅图6所示的根据本发明第二实施方式中的光学系统传递函数图,图中分别绘出了0.000mm至25.50mm像高下的像质,从图6中可以看出,传递函数的曲线较为平滑紧凑,曲线所表征的MTF值很高,系统的像差得到了良好的校正。
图7所述的根据本发明第二实施方式中的光学系统的点列图;从该点列图可以看出,本实施例各个视场光线在像源平面(显示器件I)的弥散斑半径小而均匀,不同波长光线在同个视场聚焦形成的弥散斑错位程度低,光学系统像差得到良好校正,通过所述目镜光学系统可观察到整体均匀、高光学性能的显示画像。
图8(a)和附图8(b)分别示出了根据本发明第二实施方式中的光学系统的场曲和畸变曲线。其表征出本实施例的场曲、像散和畸变像差控制较好,可实现大视场角高像质的效果。
图6-8综合示出了第二实施方式中的光学系统大视场及高成像质量的特征。
请参见图9,其示出了本发明第三实施方式中的光学系统3的示意图。该光学系统1包括从人眼观察侧到显示单元30侧(从左到右),依序排列的光阑10、第一透镜21、第二透镜22、第三透镜23、第四透镜24、第五透镜25以及显示单元30。其中,第一透镜21、第三透镜23以及第四透镜24均为正透镜,第二透镜22与第五透镜25为负透镜。
以光阑10的表面序号为F0,依序类推(从左往右),显示单元30表面为F11。具体的,第一透镜21朝向光阑10的面F1向光阑10侧外凸,第一透镜21朝向第二透镜22的面F2向光阑10侧内凹,且第一透镜21面F1与面F1的曲率半径均为正值。第二透镜22朝向第一透镜21的面F3向第三透镜23侧内凹,第二透镜22的面F3与F4的曲率半径均为负值。第三透镜23朝向第四透镜24的面F6向第四透镜24侧外凸。第三透镜23朝向第四透镜24的面F6的曲率半径为负值。第四透镜24朝向第三透镜23的面F7向第三透镜23侧外凸,第四透镜24朝向第五透镜25的面F8向第三透镜23侧外凸,第四透镜24的面F7的曲率半径为正值,第四透镜24的面F8的曲率半径为负值。第五透镜25朝向第四透镜24的面F9向显示单元30侧内凹,第五透镜25朝向显示单元30的面F10向第四 透镜24侧内凹。第五透镜25的面F9与F10的曲率半径均为负值。
第一透镜21与第二透镜22采用球面;第三透镜23朝向第二透镜22的面为球面,第三透镜23朝向第四透镜24的面为非球面;第四透镜24与第五透镜25采用非球面。
在本实施方式中,第一透镜的焦距为f1,第二透镜的焦距为f2,第三透镜的焦距为f3,第四透镜的焦距为f4,第五透镜的焦距为f5,系统总长度为ft,且满足下列关系:
1.5<f1/ft<3,-2<f2/ft<-1.2,2<f3/ft<2.5,0.5<f4/ft<1.5,-6<f5/ft<-1。
具体的,请参见下表7,其示出了本发明第三实施方式中的光学系统的设计数据。
表7
Figure PCTCN2016099099-appb-000003
请参见表8,其示出了本发明第三实施方式中的非球面透镜的设计数 据。
表8
Surface K A2 A4 A6 A8 A10 A12
F6 9.0E-01 0.0E+00 0.0E+00 -1.1E-07 5.5E-10 0.0E+00 0.0E+00
F7 -3.5E+00 0.0E+00 3.8E-05 -1.2E-07 4.3E-10 -9.5E-13 1.4E-15
F8 -4.0E+00 0.0E+00 3.4E-05 -9.1E-08 1.2E-10 0.0E+00 0.0E+00
F9 -1.3E+38 0.0E+00 -1.5E-04 1.1E-06 -2.9E-09 0.0E+00 0.0E+00
F10 -9.7E-01 0.0E+00 -3.0E-04 1.3E-06 -7.7E-11 0.0E+00 0.0E+00
请参见表9,其示出了本发明第三实施方式中的各透镜的焦距的设计数据。
表9
各透镜的焦距 各透镜焦距与总焦距的比值
f1=53 f1/ft=2.789
f2=-28 f2/ft=-1.474
f3=45 f3/ft=2.368
f4=15 f4/ft=0.789
f5=-20 f5/ft=-1.053
ft=19  
请参阅图10所示的根据本发明第三实施方式中的光学系统传递函数图,图中分别绘出了0.000mm至25.50mm像高下的像质,从图3中可以看出,传递函数的曲线较为平滑紧凑,曲线所表征的MTF值很高,系统的像差得到了良好的校正。
图11所述的根据本发明第三实施方式中的光学系统的点列图。从该 点列图可以看出,本实施例各个视场光线在像源平面(显示器件I)的弥散斑半径小而均匀,不同波长光线在同个视场聚焦形成的弥散斑错位程度低,光学系统像差得到良好校正,通过所述目镜光学系统可观察到整体均匀、高光学性能的显示画像。
图12(a)和附图12(b)分别示出了根据本发明第三实施方式中的光学系统的场曲和畸变曲线。其表征出本实施例的场曲、像散和畸变像差控制较好,可实现大视场角高像质的效果。
图9-12综合示出了本实施例的光学系统大视场及高成像质量等特征。以上所述仅为本发明的较佳实施方式而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种光学系统,其特征在于,所述光学系统包括位于人眼观察侧到图像显示单元侧沿光轴方向同轴依次排列的第一透镜、第二透镜、第三透镜、第四透镜以及第五透镜,其中,所述第一透镜的焦距为f1,第二透镜的焦距为f2,第三透镜的焦距为f3,第四透镜的焦距为f4,第五透镜的焦距为f5,系统总长度为ft,且满足下列关系:
    1.5<f1/ft<3,-2<f2/ft<-1.2,2<f3/ft<2.5,0.5<f4/ft<1.5,-6<f5/ft<-1,
    所述第一透镜、第三透镜与第四透镜均为正透镜,所述第二透镜与第五透镜均为负透镜。
  2. 如权利要求1所述的光学系统,其特征在于,所述第四透镜和第五透镜为非球面,所述第三透镜朝向所述第四透镜的面为非球面。
  3. 如权利要求2所述的光学系统,其特征在于,所述第一透镜、第二透镜、第三透镜朝向所述第二透镜的面为球面。
  4. 如权利要求2所述的光学系统,其特征在于,所述第一透镜、第二透镜、第三透镜朝向所述第二透镜的面均为非球面。
  5. 如权利要求1所述的光学系统,其特征在于,所述第四透镜朝向所述第 三透镜的面向所述第三透镜侧外凸。
  6. 如权利要求5所述的光学系统,其特征在于,所述第四透镜朝向所述第五透镜的面向所述第五透镜侧外凸。
  7. 如权利要求6所述的光学系统,其特征在于,所述第一透镜朝向所述光阑的面向所述人眼观察侧外凸。
  8. 如权利要求7所述的光学系统,其特征在于,所述第二透镜朝向所述第一透镜的面向所述第三透镜侧内凹。
  9. 如权利要求8所述的光学系统,其特征在于,所述第三透镜朝向所述第四透镜的面向所述第四透镜侧外凸。
  10. 一种头戴显示设备,包括显示单元及光学系统,所述光学系统位于人眼与所述显示单元之间,其特征在于,所述光学系统为权利要求1至9任一项所述的光学系统。
PCT/CN2016/099099 2016-09-14 2016-09-14 光学系统及使用该光学系统的头戴显示装置 WO2018049616A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020197001709A KR20190018719A (ko) 2016-09-14 2016-09-14 광학시스템 및 당해 광학시스템을 사용하는 헤드 마운트 디스플레이 장치
EP16916001.7A EP3514596A4 (en) 2016-09-14 2016-09-14 OPTICAL SYSTEM, AND HEAD-MOUNTED DISPLAY APPARATUS USING THE SAME
JP2019513367A JP2019529987A (ja) 2016-09-14 2016-09-14 光学システム及びそれを用いたヘッドマウント表示装置
PCT/CN2016/099099 WO2018049616A1 (zh) 2016-09-14 2016-09-14 光学系统及使用该光学系统的头戴显示装置
CN201680034169.6A CN108064352A (zh) 2016-09-14 2016-09-14 光学系统及使用该光学系统的头戴显示装置
US16/063,490 US10558023B2 (en) 2016-09-14 2016-09-14 Optical system and head-mounted display apparatus using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/099099 WO2018049616A1 (zh) 2016-09-14 2016-09-14 光学系统及使用该光学系统的头戴显示装置

Publications (1)

Publication Number Publication Date
WO2018049616A1 true WO2018049616A1 (zh) 2018-03-22

Family

ID=61618590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/099099 WO2018049616A1 (zh) 2016-09-14 2016-09-14 光学系统及使用该光学系统的头戴显示装置

Country Status (6)

Country Link
US (1) US10558023B2 (zh)
EP (1) EP3514596A4 (zh)
JP (1) JP2019529987A (zh)
KR (1) KR20190018719A (zh)
CN (1) CN108064352A (zh)
WO (1) WO2018049616A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021536023A (ja) * 2019-07-29 2021-12-23 深▲ゼン▼納徳光学有限公司 接眼レンズ光学システム及び頭部装着型ディスプレイ

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10634913B2 (en) * 2018-01-22 2020-04-28 Symbol Technologies, Llc Systems and methods for task-based adjustable focal distance for heads-up displays
CN111308709B (zh) * 2020-02-26 2022-02-22 歌尔光学科技有限公司 光学系统及增强现实设备
CN111880363B (zh) * 2020-09-28 2024-04-05 歌尔股份有限公司 光机和ar设备
WO2022213381A1 (zh) * 2021-04-09 2022-10-13 深圳市大疆创新科技有限公司 光学系统及视频眼镜
CN117539035B (zh) * 2024-01-09 2024-04-05 长春理工大学 细胞工厂生物反应器侧面观察方法及镜头

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202502288U (zh) * 2011-10-25 2012-10-24 大立光电股份有限公司 摄影光学镜片系统
CN102914853A (zh) * 2011-08-04 2013-02-06 大立光电股份有限公司 影像拾取光学透镜组
US20130242411A1 (en) * 2012-03-19 2013-09-19 Chi Ho An Photographic lens optical system
US20130301147A1 (en) * 2012-05-14 2013-11-14 Konica Minolta, Inc. Imaging lens system
CN203324564U (zh) * 2013-02-28 2013-12-04 株式会社光学逻辑 摄像镜头
CN104570286A (zh) * 2014-12-08 2015-04-29 青岛歌尔声学科技有限公司 一种微型鱼眼镜头及头戴显示设备
TWI493221B (zh) * 2014-03-14 2015-07-21 Glory Science Co Ltd 成像鏡頭組
CN104914558A (zh) * 2014-03-14 2015-09-16 光燿科技股份有限公司 成像镜头组

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8437472B2 (en) 2009-02-27 2013-05-07 Red Hat, Inc. Strengthened key schedule for arcfour
JP5839038B2 (ja) * 2011-08-19 2016-01-06 コニカミノルタ株式会社 撮像レンズ及び撮像装置
CN105278109B (zh) * 2015-07-10 2017-11-28 深圳纳德光学有限公司 大视场角目镜光学系统
TWI598628B (zh) * 2016-02-16 2017-09-11 先進光電科技股份有限公司 光學成像系統(三)
CN108333743A (zh) * 2016-04-29 2018-07-27 张琴 可提高用户体验感的光学目镜镜头及头戴显示设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102914853A (zh) * 2011-08-04 2013-02-06 大立光电股份有限公司 影像拾取光学透镜组
CN202502288U (zh) * 2011-10-25 2012-10-24 大立光电股份有限公司 摄影光学镜片系统
US20130242411A1 (en) * 2012-03-19 2013-09-19 Chi Ho An Photographic lens optical system
US20130301147A1 (en) * 2012-05-14 2013-11-14 Konica Minolta, Inc. Imaging lens system
CN203324564U (zh) * 2013-02-28 2013-12-04 株式会社光学逻辑 摄像镜头
TWI493221B (zh) * 2014-03-14 2015-07-21 Glory Science Co Ltd 成像鏡頭組
CN104914558A (zh) * 2014-03-14 2015-09-16 光燿科技股份有限公司 成像镜头组
CN104570286A (zh) * 2014-12-08 2015-04-29 青岛歌尔声学科技有限公司 一种微型鱼眼镜头及头戴显示设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3514596A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021536023A (ja) * 2019-07-29 2021-12-23 深▲ゼン▼納徳光学有限公司 接眼レンズ光学システム及び頭部装着型ディスプレイ
JP7076160B2 (ja) 2019-07-29 2022-05-27 深▲ゼン▼納徳光学有限公司 接眼レンズ光学システム及び頭部装着型ディスプレイ

Also Published As

Publication number Publication date
KR20190018719A (ko) 2019-02-25
JP2019529987A (ja) 2019-10-17
US10558023B2 (en) 2020-02-11
CN108064352A (zh) 2018-05-22
US20190072747A1 (en) 2019-03-07
EP3514596A1 (en) 2019-07-24
EP3514596A4 (en) 2020-05-06

Similar Documents

Publication Publication Date Title
WO2018049616A1 (zh) 光学系统及使用该光学系统的头戴显示装置
US9841586B2 (en) Single focal length lens system, interchangeable lens apparatus, and camera system
JP4792605B1 (ja) 撮像光学系
WO2018145367A1 (zh) 目镜以及包括该目镜的显示装置
WO2017079985A1 (zh) 大视场角的目镜光学系统及头戴显示装置
WO2021016810A1 (zh) 一种目镜光学系统及头戴显示器
WO2019080260A1 (zh) 头戴显示设备
WO2022016757A1 (zh) 沙姆镜头
WO2019080325A1 (zh) 目镜及头戴显示设备
CN109932806B (zh) 光学镜头
CN107831630B (zh) 投影镜头
CN110879471B (zh) 光学系统、投影设备以及头戴设备
CN110018553B (zh) 一种用于虚拟现实头盔的光学镜头
CN109407301B (zh) 一种目镜及头戴式设备
US11536935B2 (en) Lens system and image pickup apparatus
CN115220215A (zh) 光学成像镜头
CN212749381U (zh) 一种目镜镜头及目镜光学系统
CN108663784B (zh) 超广角镜头
CN210427928U (zh) 一种大光圈定焦镜头和拍摄装置
JP2016166968A (ja) 接眼光学系
JP2008134540A (ja) 魚眼レンズ
CN110703414A (zh) 一种大光圈定焦镜头和拍摄装置
CN106154506A (zh) 投影镜头
CN215181166U (zh) 一种光学成像镜头
CN111694147A (zh) 一种目镜镜头及目镜光学系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16916001

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197001709

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019513367

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016916001

Country of ref document: EP

Effective date: 20190415