WO2022016727A1 - 环境优化系统 - Google Patents

环境优化系统 Download PDF

Info

Publication number
WO2022016727A1
WO2022016727A1 PCT/CN2020/124207 CN2020124207W WO2022016727A1 WO 2022016727 A1 WO2022016727 A1 WO 2022016727A1 CN 2020124207 W CN2020124207 W CN 2020124207W WO 2022016727 A1 WO2022016727 A1 WO 2022016727A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
working fluid
optimization system
fresh air
indoor
Prior art date
Application number
PCT/CN2020/124207
Other languages
English (en)
French (fr)
Inventor
陈晓宇
杨春
束宏飞
Original Assignee
艾默生环境优化技术(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010711984.XA external-priority patent/CN113970127A/zh
Priority claimed from CN202021461841.XU external-priority patent/CN212565999U/zh
Application filed by 艾默生环境优化技术(苏州)有限公司 filed Critical 艾默生环境优化技术(苏州)有限公司
Publication of WO2022016727A1 publication Critical patent/WO2022016727A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0003Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station characterised by a split arrangement, wherein parts of the air-conditioning system, e.g. evaporator and condenser, are in separately located units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater

Definitions

  • the present disclosure relates to the field of air conditioning and heating, and more particularly, to an environment optimization system that improves the temperature and humidity regulation of a predetermined space.
  • the environmental optimization system includes, for example, an air conditioning system for cooling and/or heating, a fresh air system for supplying fresh air, or a combination thereof.
  • ceiling-mounted independent fresh air dehumidifiers are increasingly used in HVAC systems.
  • the traditional ceiling-type independent fresh air dehumidifier is an integral structure in which the refrigeration cycle mechanism and the fresh air supply mechanism are all placed in a chassis. Under the action of the fan, the fresh air and the return air are mixed, firstly cooled and dehumidified by the evaporator, then reheated by the condenser and sent to the indoor room, so as to achieve the purpose of introducing fresh air and dehumidifying the indoor air.
  • this traditional structure has some defects: poor economy, the integrated structure increases the load, increases the power consumption of the refrigeration equipment, and reduces the overall energy efficiency of the entire system; the dehumidification capacity is limited, the inlet air temperature of the evaporator is high, and the evaporation temperature is high; the comfort is poor, The system has poor adjustment ability, and it is difficult to control the air outlet state and indoor state well; the noise is large, and the compressor runs indoors, which increases the noise; the function is single, the achievable operation mode is few, and it cannot cooperate with the heating and cooling equipment, and cannot meet the For more working conditions, especially, under the general requirement of continuous fresh air, the system can only realize two functional modes of fresh air or fresh air + dehumidification + heating.
  • the integrated structure has high load, low dehumidification efficiency, poor adjustment ability, high noise, and few functional modes, so there is room and need for improvement.
  • An object of the present disclosure is to provide an environment-optimized system that reduces load and noise, and improves dehumidification efficiency and conditioning capabilities.
  • Another object of the present disclosure is to provide an environment optimization system with a dual-source parallel structure and by improving the structural design of the indoor device to improve the regulation capability of units and loads, and to expand the scope of application.
  • an environment optimization system is provided, the environment optimization system is adapted to adjust the temperature and humidity of a predetermined space and includes: an outdoor device, the outdoor device includes a compressor, the compressor is adapted to compress the first working fluid to form a part of the first working fluid circuit; and indoor devices, there are at least two of the indoor devices and are connected in parallel with each other, the indoor devices are respectively opposite to the outdoor
  • the device is arranged in a separate body, the indoor device includes a first working fluid heat exchanger and a second working fluid heat exchanger, the first working fluid heat exchanger being associated with the compressor to also form the first working fluid part of the circuit, the second working fluid heat exchanger forming part of the second working fluid circuit.
  • the environmental optimization system is configured to selectively activate one or both of the first working fluid heat exchanger and the second working fluid heat exchanger.
  • the environmental optimization system includes a four-way valve provided in the outdoor unit, by switching the four-way valve, the first working fluid circuit can be switched between a cooling mode and a heating mode; and /or the second working fluid circuit is configured to be switchable between the second working fluid heat exchanger being adapted to cool and heat the fresh air.
  • the first working fluid heat exchanger comprises a first heat exchanger and a second heat exchanger in series.
  • a first expansion valve and a first shut-off valve are arranged in parallel at the first end of the second heat exchanger, and a second expansion valve and a second expansion valve in parallel are arranged at the second end of the second heat exchanger.
  • Second stop valve is arranged at the first end of the second heat exchanger.
  • the indoor unit is configured such that fresh air flows through the second working fluid heat exchanger, the first heat exchanger and the second heat exchanger sequentially.
  • the outdoor unit includes an outdoor heat exchanger, and the environmental optimization system is configured such that:
  • the outdoor heat exchanger serves as an upstream condenser
  • the second heat exchanger serves as a downstream condenser to constitute a reheat section of the indoor unit suitable for reheating fresh air
  • the first heat exchanger serves as an evaporation to form a dehumidification section of the indoor device suitable for dehumidifying fresh air, thereby realizing the cooling, dehumidifying and reheating mode of the environmental optimization system; or the outdoor heat exchanger is used as a condenser, and the second heat exchange
  • the first heat exchanger is used as an upstream evaporator to constitute a first dehumidification section of the indoor unit suitable for dehumidifying fresh air
  • the first heat exchanger is used as a downstream evaporator to constitute a first dehumidification section of the indoor unit suitable for dehumidifying fresh air.
  • the outdoor heat exchanger is used as an evaporator, and the first heat exchanger is used as an upstream condenser, so as to constitute the fresh air of the indoor device.
  • the first heating section is heated, and the second heat exchanger is used as a downstream condenser to constitute the second heating section of the indoor device for heating the fresh air, thereby realizing the heating mode of the environment optimization system;
  • the outdoor heat exchanger is used as a downstream evaporator
  • the first heat exchanger of the indoor unit is used as a condenser to constitute a heating section of the indoor unit for heating fresh air
  • the second heat exchanger is used as a condenser.
  • the upstream evaporator thus constitutes a drying section of the indoor device for dehumidifying the fresh air, thereby realizing the heating and drying mode of the environment optimization system.
  • the outdoor unit includes a fan for the outdoor heat exchanger
  • the environmental optimization system is configured to adjust the use of the second heat exchanger as the reheat section by adjusting the rotational speed of the fan. Reheat to reheat the fresh air.
  • the environment optimization system is configured to adjust the heating of the first heat exchanger and the second heat exchanger to heat the fresh air when used as the heating section by adjusting the rotational speed of the compressor quantity.
  • the second working fluid circuit has water as the working fluid and an air source, a ground source or a refrigerant circuit source as the heat/cold source.
  • the outdoor unit comprises an economizer adapted to supplement the compressor.
  • the beneficial effects of the present disclosure are: to provide an environment optimization system that reduces load and noise, and improves dehumidification efficiency and adjustment capability; and provides a dual-source parallel structure and improves the structural design of indoor devices to improve the adjustment capability of units and loads, Environment-optimized systems that expand the range of applications.
  • FIG. 1 illustrates an environment optimization system according to an exemplary embodiment of the present disclosure.
  • FIG. 1 An environment optimization system 100 according to an exemplary embodiment of the present disclosure will be described with reference to FIG. 1 .
  • the environment optimization system 100 is adapted to adjust the temperature and humidity of a predetermined space (eg, an indoor space), and the environment optimization system 100 includes: an outdoor unit 200, the outdoor unit 200 includes a single compressor 201, and the compressor 201 is adapted to The first working fluid is compressed to form a part of the first working fluid circuit; and two indoor devices 310 and 320 are connected in parallel with each other, and the two indoor devices 310 and 320 are respectively arranged separately from the outdoor device 200, And, one of the indoor devices 310 includes the first working fluid heat exchangers 311, 315 and the second working fluid heat exchanger 312, and the other indoor device 320 includes the first working fluid heat exchangers 321, 325 and the second working fluid heat exchanger 312 Heater 322.
  • a predetermined space eg, an indoor space
  • the environment optimization system 100 includes: an outdoor unit 200, the outdoor unit 200 includes a single compressor 201, and the compressor 201 is adapted to The first working fluid is compressed to form a part of the first working fluid circuit; and two indoor
  • first working fluid heat exchanger and the second working fluid heat exchanger refer to heat exchangers using different working fluid sources.
  • the first working fluid heat exchanger of each indoor unit is associated with the compressor to also form part of the first working fluid circuit, the second working fluid heat exchanger of each indoor unit forms part of the second working fluid circuit not shown .
  • the first working fluid heat exchangers in the two indoor units are arranged in parallel with respect to the compressor 201 of the outdoor unit 200 .
  • the present disclosure provides a split structure of multiple indoor units relative to a single compressor for a single outdoor unit, thereby reducing load and noise, and improving dehumidification efficiency and conditioning capabilities.
  • the indoor unit including the first working fluid heat exchanger and the second working fluid heat exchanger with dual working fluid sources optimizes the structural design of the indoor unit, thereby improving the adjustment capability of the unit and the load, and expanding the application range.
  • the number of parallel indoor devices can be set as required, for example, more than two.
  • the second working fluid heat exchangers 312 and 322 in the two indoor units 310, 320 may be arranged in parallel to further reduce unit load and noise.
  • one or both of the first working fluid heat exchanger and the second working fluid heat exchanger can be selectively turned on to achieve more different working modes, see the description below for details.
  • the environment optimization system 100 includes a four-way valve 202 disposed in the outdoor device 200 , and the first working fluid circuit can be switched between a cooling mode and a heating mode by switching the four-way valve 202 .
  • the second working fluid circuit is configured to be able to operate in a cooling mode in which the second working fluid heat exchangers 312 and 322 are adapted to cool the fresh air and the second working fluid heat exchangers 312 and 322 are adapted to cool the fresh air. Switch between heating modes for heating.
  • the first working fluid heat exchanger of the indoor device includes the first heat exchangers 311, 321 and the second heat exchangers 315, 325 connected in series, and the first ends of the second heat exchangers 315, 325 are provided with The first expansion valves 313, 323 and the first shut-off valves 314, 324 are connected in parallel, and the second ends of the second heat exchangers 315, 325 are provided with the second expansion valves 316, 326 and the second shut-off valves 317, 317, 327.
  • the first working fluid heat exchangers 311, 321 and the second heat exchangers 315, 325 connected in series, and the first ends of the second heat exchangers 315, 325 are provided with The first expansion valves 313, 323 and the first shut-off valves 314, 324 are connected in parallel, and the second ends of the second heat exchangers 315, 325 are provided with the second expansion valves 316, 326 and the second shut-off valves 317, 317, 327.
  • the indoor units 310, 320 are configured so as to sequentially flow through the second working fluid heat exchangers 312, 322, the first heat exchangers 311, 321 and the second heat exchangers 315, 325.
  • the indoor units 310, 320 may be configured such that the fresh air is first filtered through the filters 318, 328.
  • the outdoor unit 200 includes an outdoor heat exchanger 203 and a fan 206 for the outdoor heat exchanger 203 . The following describes multiple working modes of the environment optimization system of the present disclosure.
  • the first working fluid sequentially flows through the compressor 201 , the outdoor heat exchanger 203 , the second heat exchangers 315 , 325 and the first heat exchanger 311 , 321, by closing the first expansion valve 313, 323 and the second stop valve 317, 327 and opening the second expansion valve 316, 326 and the first stop valve 314, 324, so that the outdoor heat exchanger 203 is used
  • the second heat exchanger 315, 325 acts as a downstream condenser
  • the first heat exchanger 311, 321 acts as an evaporator.
  • the first heat exchangers 311 and 321 are used as evaporators to dehumidify the mixed air to form a dehumidification section of the indoor device suitable for dehumidifying fresh air
  • the second heat exchangers 315 and 325 are used as downstream condensers
  • the mixed air of the first heat exchangers 311 and 321 is reheated to form a reheat section of the indoor device suitable for reheating the fresh air, so as to prevent the fresh air with too low temperature from entering the indoor space and causing discomfort to the user.
  • the second heat exchanger as the reheat section utilizes the waste heat of condensation, the reheat energy is saved and the degree of subcooling of the system is increased, so that the dehumidification system operates efficiently.
  • This realizes the cooling, dehumidifying and reheating mode of the environment-optimized system, which is especially suitable for hot and humid summers, or in transitional seasons with dehumidification needs and small cooling/heat regulation loads.
  • the reheat amount of the second heat exchanger 315, 325 for reheating the fresh air when used as a reheating section is adjusted.
  • the working fluids of the first heat exchangers 311 and 321 and the second heat exchangers 315 and 325 of the first working fluid heat exchanger are refrigerants.
  • the second working fluid circuit uses water as the working fluid and an air source, a ground source or a refrigerant circuit source as a heat/cold source.
  • the working fluid source of the second working fluid heat exchangers 312 and 322 may be cold water.
  • the mixed air first passes through the second working fluid heat exchangers 312 and 322 to cool down, and then passes through the first heat exchangers 311 and 321 for further dehumidification.
  • the second working fluid heat exchangers 312 and 322 are combined with the first heat exchangers 311 and 321 for the dehumidification of the mixed air with dual cold sources. This realizes the working mode of fresh air + deep dehumidification, which is especially suitable for weather or building needs with very heavy humidity load.
  • the fluid circuit of the water source heat exchanger and the fluid circuit of the refrigerant source heat exchanger coordinate and assist each other to uniformly control temperature and humidity, which can also reduce overall energy consumption and equipment costs.
  • the second heat exchangers 315, 325 are used as upstream evaporators to constitute the first dehumidification section of the indoor device suitable for dehumidifying fresh air, and the first dehumidification section
  • the heat exchangers 311 and 321 are used as downstream evaporators to constitute the second dehumidification section of the indoor device suitable for dehumidifying the fresh air, so that the mixed air cooled and dehumidified by the first heat exchanger is cooled again by the second heat exchanger,
  • the cooling deep dehumidification mode of the environmental optimization system can be realized.
  • the first working fluid sequentially flows through the compressor 201, the first heat exchangers 311, 321, the second heat exchangers 315, 325 and the outdoor heat exchanger Heater 203, by closing the second expansion valve 316, 326 and the first shut-off valve 314, 324 and opening the first expansion valve 313, 323 and the second shut-off valve 317, 327, so that the first heat exchanger 311 and 321 are used as upstream condensers to constitute the first heating section of the indoor unit that heats the fresh air, and the second heat exchangers 315 and 325 are used as the downstream condensers to constitute the second heating section of the indoor unit to heat the fresh air.
  • heating section, and the outdoor heat exchanger 203 is used as an evaporator
  • the main heat exchangers 311, 321 and the second heat exchangers 315, 325 which are all condensers, heat the mixed air to realize the heating mode of the environment optimization system. Transition season of heat load.
  • the compressor 201 is an inverter compressor, and when the first working fluid circuit is in the heating mode, the environmental optimization system of the present disclosure adjusts the first heat exchangers 311 , 321 by adjusting the rotational speed of the compressor 201 and the heating amount for heating the fresh air when the second heat exchangers 315 and 325 are used as a heating section.
  • the first working fluid circuit when the first working fluid circuit is in the heating mode, by opening the second expansion valve 316, 326 and the first shut-off valve 314, 324 and closing the first expansion valve 313, 323 and the second shut-off valve Valves 317, 327, so that the first heat exchangers 311, 321 are used as condensers to constitute the heating section of the indoor unit for heating the fresh air, and the second heat exchangers 315, 325 are used as upstream evaporators to constitute the indoor unit
  • the drying section of the device to dehumidify the fresh air, and the outdoor heat exchanger 203 is used as the downstream evaporator, thereby realizing the heating and drying mode of the environment optimization system.
  • the mixed air heated by the first heat exchangers 311 and 321 is appropriately cooled by the second heat exchangers 315 and 325, so as to prevent the overheated fresh air from entering the indoor space and cause discomfort to the user, and at the same time, it can be Play a role in proper dehumidification and drying.
  • the indoor devices 310, 320 may further include indoor fans 319, 329.
  • the working fluid source of the second working fluid heat exchangers 312, 322 is cold water or hot water, so as to cool the indoor fans 319, 329.
  • the mixed air sent by 329 is pre-cooled or pre-heated.
  • the outdoor device 200 includes an economizer 205 adapted to supply air to the compressor 201, so as to supply air to the compressor 201, which is suitable for heating in winter.
  • this supplemental gas can be opened via expansion valve 204 in series with economizer 205 .
  • the present disclosure allows for various possible variations.
  • the refrigeration-heating working fluid circuit is described above, and it is described above that the indoor unit is provided with a water source heat exchanger as a pre-cooling section, a refrigerant source heat exchanger as a dehumidification section, and a reheat as a reheat section Heat Exchanger.
  • a water source heat exchanger as a pre-cooling section
  • a refrigerant source heat exchanger as a dehumidification section
  • a reheat as a reheat section Heat Exchanger.
  • the heat exchange section for adjusting the temperature and humidity of the fresh air in the indoor unit can be appropriately changed.
  • the water source heat exchanger in the precooling section and/or the second heat exchanger in the reheating section may be omitted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种环境优化系统(100),其适于对预定空间进行温湿度调节并且包括:室外装置(200),其包括压缩机(201),压缩机(201)适于对第一工作流体进行压缩而形成第一工作流体回路的一部分;以及室内装置(310;320),室内装置(310;320)至少有两个并且相互并联连接,室内装置(310;320)分别相对于室外装置(200)分体设置,并且,室内装置(310;320)包括第一工作流体换热器(311、315;321、325)和第二工作流体换热器(312;322),第一工作流体换热器(311、315;321、325)与压缩机(201)关联从而也形成第一工作流体回路的一部分,第二工作流体换热器(312;322)形成第二工作流体回路的一部分。该环境优化系统,能够降低负荷和噪音、改进除湿效率和调节能力,并且改进了室内装置结构设计以提高机组及负荷的调节能力、扩大环境优化系统应用范围。

Description

环境优化系统
本申请要求于2020年7月22日提交中国国家知识产权局、申请号为202010711984.X、名称为“环境优化系统”的中国专利申请的优先权以及要求于2020年7月22日提交中国国家知识产权局、申请号为202021461841.X、名称为“环境优化系统”的中国专利申请的优先权,这些申请的全部内容通过引用结合在本申请中。
技术领域
本公开涉及空调暖通领域,更具体地,涉及在预定空间的温湿度调节方面做出改进的环境优化系统。
背景技术
目前,具有用于对预定空间(例如室内空间)中的空气的温湿度和洁净度进行调节的环境优化系统。环境优化系统例如包括用于冷却和/或加热的空调系统、用于提供新风的新风系统或其组合。
首先,在目前的环境优化系统中,往往仅具有空调(冷却/加热)系统而无新风系统,从而以温度控制为主而无法实现温湿度的独立控制,这导致湿度调节不良(除湿不够或者过度除湿)。而且,利用空调系统本身来进行除湿会造成室内温度下降而给用户带来阴冷的不舒适感觉,同时室内末端除湿的冷凝水还容易滋生细菌。而且,由于没有新风系统,还会导致室内的空气质量较差且含氧量降低。
其次,在目前的环境优化系统中,也已提出在空调系统的基础上附加地采用新风系统。例如,吊顶式独立新风除湿机越来越多地应用到空调暖通系统中。传统的吊顶式独立新风除湿机是将制冷循环机构、新风送风机构全部放置在一个机箱内的整体式结构。在风机的作用下,新风与回风混合之后先经过蒸发器降温除湿、再经过冷凝器再热之后送入室内房间,从而达到引入新风和室内空气除湿的目的。然而该传统结构具有一些缺陷:经济性差,整体式结构增加负荷,增大制冷设备功耗,使整个系统的综合能效降低;除湿能力有限,蒸发器进口风温高,蒸发温度高;舒适性差,系统调节能力差,难以很好的控制出风状态和室内状态;噪音大,压缩机在室内运行,增加噪音;功能单一,可实现的运行模式少,不能与供热供冷设备配合,无法满足更多的工况需求,特别地,在持续新风的普遍要求下,该系统只能实现新风或新风+除湿+加热两种功能模式。
总之,在本领域中,对于环境优化系统而言,整体式结构负荷高、除湿效率低、调节能力差、噪音大、功能模式少,因此存在改进的空间和需要。
本部分的内容仅提供了与本公开相关的背景信息,其可能并不构成现有技术。
发明内容
在本部分中提供本公开的总概要,而不是本公开完全范围或本公开所有特征的全面公开。
本公开的一个目的是提供一种降低负荷和噪音,改进除湿效率和调节能力的环境优化系统。
本公开的另一目的是提供一种具有双源并联结构以及通过改进室内装置结构设计以提高机组及负荷的调节能力、扩大应用范围的环境优化系统。
为了实现上述目的中的一个或多个,根据本公开,提供一种环境优化系统,所述环境优化系统适于对预定空间进行温湿度调节并且包括:室外装置,所述室外装置包括压缩机,所述压缩机适于对第一工作流体进行压缩而形成第一工作流体回路的一部分;以及室内装置,所述室内装置至少有两个并且相互并联连接,所述室内装置分别相对于所述室外装置分体设置,所述室内装置包括第一工作流体换热器和第二工作流体换热器,所述第一工作流体换热器与所述压缩机关联从而也形成所述第一工作流体回路的一部分,所述第二工作流体换热器形成第二工作流体回路的一部分。
有利地,所述环境优化系统构造成能够选择性地开启所述第一工作流体换热器和所述第二工作流体换热器中一者或两者。
有利地,所述环境优化系统包括设置在所述室外装置中的四通阀,通过切换所述四通阀而使得所述第一工作流体回路能够在制冷模式与制热模式之间切换;并且/或者所述第二工作流体回路构造成能够在所述第二工作流体换热器适于对新风进行冷却与加热之间切换。
有利地,所述第一工作流体换热器包括串联的第一换热器和第二换热器。
有利地,在所述第二换热器的第一端设置有并联的第一膨胀阀和第一截止阀并且在所述第二换热器的第二端设置有并联的第二膨胀阀和第二截止阀。
有利地,所述室内装置构造成使得新风顺序地流过所述第二工作流体换热器、所述第一换热器和所述第二换热器。
有利地,所述室外装置包括室外换热器,以及所述环境优化系统构造成使得:
所述室外换热器用作上游冷凝器,所述第二换热器用作下游冷凝器从而构成所述室内装置的适于对新风进行再热的再热段,所述第一换热器用作蒸发器从而构成所述室内装置的适于对新风进行除湿的除湿段,由此实现所述环境优化系统的制冷除湿再热模式;或者所述室外换热器用作冷凝器,所述第二换热器用作上游蒸发器从而构成所述室内装置的适于对新风进行除湿的第一除湿段,所述第一换热器用作下游蒸发器从而构成所述室内装置的适于对新风进行除湿的第二除湿段,由此实现所述环境优化系统的制冷深度除湿模式;或者所述室外换热器用作蒸发器,所述第一换热器用作上游冷凝器从而构成所述室内装置的对新风进行加热的第一制热段,所述第二换热器用作下游冷凝器从而构成所述室内装置的对新风进行加热的第二制热段,由此实现所述环境优化系统的制热模式;或者所述室外换热器用作下游蒸发器,所述室内装置所述第一换热器用作冷凝器从而构成所述室内装置的对新风进行加热的制热段,所述第二换热器用作上游蒸发器从而构成所述室内装置的对新风除湿的干燥段,由此实现所述环境优化系统的制热干燥模式。
有利地,所述室外装置包括用于所述室外换热器的风机,所述环境优化系统构造成通过调节所述风机的转速来调节所述第二换热器在用作所述再热段时对新风进行再热的再热量。
有利地,所述环境优化系统构造成通过调节所述压缩机的转速来调节所述第一换热器和所述第二换热器在用作所述制热段时对新风进行加热的加热量。
有利地,所述第二工作流体回路以水作为工作流体并且以空气源、地源或制冷剂回路源作为热/冷源。
有利地,所述室外装置包括适于对所述压缩机进行补气的经济器。
本公开的有益效果在于:提供了降低负荷和噪音,改进除湿效率和调节能力的环境优化系统;并且提供了一种具有双源并联结构并且改进室内装置结构设计以提高机组及负荷的调节能力、扩大应用范围的环境优化系统。
附图说明
通过以下参照附图的描述,本公开的实施方式的特征和优点将变得更加容易理解,在附图中:
图1示出根据本公开的示例性实施方式的环境优化系统。
具体实施方式
下面参照附图、借助示例性实施方式对本公开进行详细描述。对本公开的以下详细描述仅仅是出于说明目的,而绝不是对本公开及其应用或用途的限制。
首先,参照图1描述根据本公开的示例性实施方式的环境优化系统100。
该环境优化系统100适于对预定空间(例如,室内空间)进行温湿度调节,并且该环境优化系统100包括:室外装置200,该室外装置200包括单个压缩机201,该压缩机201适于对第一工作流体进行压缩而形成第一工作流体回路的一部分;以及相互并联连接的两个室内装置310和320,并且该两个该室内装置310和320分别相对于该室外装置200分体设置,并且,其中一个室内装置310包括第一工作流体换热器311、315和第二工作流体换热器312,另一个室内装置320包括第一工作流体换热器321、325和第二工作流体换热器322。可以理解的是,第一工作流体换热器和第二工作流体换热器指的是使用不同的工作流体源的换热器。各个室内装置的第一工作流体换热器与压缩机关联从而也形成该第一工作流体回路的一部分,各个室内装置的该第二工作流体换热器形成第二工作流体回路未示出的一部分。其中,两个室内装置中的第一工作流体换热器关于室外装置200的压缩机201设置为并联的。
与现有技术的整体式环境优化系统相比,本公开提供了多个室内装置相对于单个室外装置单个压缩机的分体式结构,从而降低负荷和噪音,改进除湿效率和调节能力。同时,包括双工作流体源第一工作流体换热器和第二工作流体换热器的室内装置优化了室内机结构设计,从而提高机组及负荷的调节能力、扩大应用范围。本领域的技术人员可以理解的是,并联的室内装置的数量可以根据需要设置,例如,多于两个。
在实施方式的一个方面中,两个室内装置310、320中的第二工作流体换热器312和322可以设置为并联的,进一步降低机组负荷和噪音。并且,该第一工作流体换热器和该第二工作流体换热器中一者或两者能够选择性地开启以实现更多不同的工作模式,详细参见下文的说明。
进一步参见图1,该环境优化系统100包括设置在该室外装置200中的四通阀202,通过切换该四通阀202而使得该第一工作流体回路能够在制冷模式与制热模式之间切换。并且/或者,该第二工作流体回路构造成能够在该第二 工作流体换热器312、322适于对新风进行冷却的制冷模式与该第二工作流体换热器312、322适于对新风进行加热的制热模式之间切换。
具体地,室内装置的第一工作流体换热器包括串联的第一换热器311、321和第二换热器315、325,在该第二换热器315、325的第一端设置有并联的第一膨胀阀313、323和第一截止阀314、324并且在该第二换热器315、325的第二端设置有并联的第二膨胀阀316、326和第二截止阀317、327。以实现第一工作流体换热器的工作模式的切换。
在新风送风通路中,该室内装置310、320构造成使得顺序地流过该第二工作流体换热器312、322、该第一换热器311、321和该第二换热器315、325。有利地,该室内装置310、320可以构造成使得新风首先通过过滤器318、328进行过滤。该室外装置200包括室外换热器203和用于该室外换热器203的风机206。下面对本公开的环境优化系统的多个工作模式进行描述。
当该第一工作流体回路处于制冷模式时,该第一工作流体顺序地流过该压缩机201、该室外换热器203、该第二换热器315、325和该第一换热器311、321,通过关闭该第一膨胀阀313、323和该第二截止阀317、327并且打开该第二膨胀阀316、326和该第一截止阀314、324,使得该室外换热器203用作上游冷凝器、该第二换热器315、325用作下游冷凝器而该第一换热器311、321用作蒸发器。
其中,该第一换热器311、321用作蒸发器对混风进行除湿构成室内装置的适于对新风进行除湿的除湿段,该第二换热器315、325用作下游冷凝器对经过第一换热器311、321的混风再热从而构成室内装置的适于对新风进行再热的再热段,以防止温度过低的新风进入室内空间而给用户造成不舒适感。同时,由于作为再热段的第二换热器利用冷凝废热,因此节省了再热能源并且增加了系统过冷度,使得除湿系统高效运行。这实现了环境优化系统的制冷除湿再热模式,该模式特别适用于在潮湿炎热的夏季、或在有除湿需求、小冷/热调节负荷的过渡季节。
有利地,通过调节该室外换热器203的风机206的转速来调节该第二换热器315、325在用作再热段时对新风进行再热的再热量。
进一步地,该第一工作流体换热器的第一换热器311、321和第二换热器315、325的工作流体为制冷剂。该第二工作流体回路以水作为工作流体并且以空气源、地源或制冷剂回路源作为热/冷源。第二工作流体换热器312、322 的工作流体源可以为冷水,上述混风先经过第二工作流体换热器312、322降温,然后经过第一换热器311、321进一步除湿。因此,第二工作流体换热器312、322与第一换热器311、321结合以用于混风的双冷源除湿。这实现了新风+深度除湿的工作模式,该模式特别地适用于湿负荷非常大的天气或建筑需要。另外,水源换热器的流体回路和制冷剂源换热器的流体回路相互协调和辅助而统一地控制温湿度,也可以降低整体能耗及设备成本。
此外,当上述第一工作流体回路处于制冷模式时,通过打开该第一膨胀阀313、323和该第二截止阀317、327并且关闭该第二膨胀阀316、326和该第一截止阀314、324,使得该室外换热器203用作冷凝器,该第二换热器315、325用作上游蒸发器从而构成室内装置的适于对新风进行除湿的第一除湿段,而该第一换热器311、321用作下游蒸发器从而构成室内装置的适于对新风进行除湿的第二除湿段,使得经过第一换热器冷却去湿的混风通过第二换热器再次冷却,可以实现环境优化系统的制冷深度除湿模式。
当该第一工作流体回路处于制热模式时,该第一工作流体顺序地流过该压缩机201、该第一换热器311、321、该第二换热器315、325和该室外换热器203,通过关闭该第二膨胀阀316、326和该第一截止阀314、324并且打开该第一膨胀阀313、323和该第二截止阀317、327,使得该第一换热器311、321用作上游冷凝器从而构成室内装置的对新风进行加热的第一制热段,该第二换热器315、325用作下游冷凝器从而构成室内装置的对新风进行加热的第二制热段,而该室外换热器203用作蒸发器,
其中,均为冷凝器的主热器311、321和第二换热器315、325对混风进行加热,以实现环境优化系统的制热模式,该模式特别地适用于在没有除湿需求、小热负荷的过渡季节。
有利地,压缩机201为变频压缩机,当该第一工作流体回路处于该制热模式时,本公开的环境优化系统通过调节该压缩机201的转速来调节该第一换热器311、321和该第二换热器315、325在用作制热段时对新风进行加热的加热量。
进一步地,当该第一工作流体回路处于制热模式时,通过打开该第二膨胀阀316、326和该第一截止阀314、324并且关闭该第一膨胀阀313、323和该第二截止阀317、327,使得该第一换热器311、321用作冷凝器从而构成室内装置的对新风进行加热的制热段,该第二换热器315、325用作上游蒸发器 从而构成室内装置的对新风除湿的干燥段,而该室外换热器203用作下游蒸发器,由此实现环境优化系统的制热干燥模式。在该制热模式中,经过第一换热器311、321加热的混风经过第二换热器315、325适当冷却,使得避免过热的新风进入室内空间而给用户造成不舒适感,同时可以起到适当除湿干燥的作用。
另外,室内装置310、320还可以包括室内风机319、329,在仅需要新风的情况下,第二工作流体换热器312、322的工作流体源为冷水或热水以对由室内风机319、329送出的混风进行预冷或预热。
在实施方式的一个方面中,该室外装置200包括适于对该压缩机201进行补气的经济器205,从而对压缩机201进行补气,适用于在冬天制热的情况。有利地,该补气可以通过与经济器205串联的膨胀阀204开启。
本公开容许各种可行的变型。
在上文中描述了制冷-制热工作流体回路,在上文中描述了室内装置设置有作为预冷段的水源换热器、作为除湿段的制冷剂源换热器和作为再热段的再热换热器。然而,可以构想,在室内装置中用于对新风进行温湿度调节的换热段可以适当地变化。例如,可以省略预冷段水源换热器和/或再热段第二换热器。
另外,需要说明的是,除非在技术上不相兼容,否则在上文中描述的各个实施方式及其变型的技术特征可以任意地相互组合。
虽然已经参照示例性实施方式对本公开进行了描述,但是应当理解,本公开并不局限于文中详细描述和示出的具体实施方式,在不偏离权利要求书所限定的范围的情况下,本领域技术人员可以对示例性实施方式做出各种改变。

Claims (11)

  1. 一种环境优化系统(100),所述环境优化系统(100)适于对预定空间进行温湿度调节并且包括:
    室外装置(200),所述室外装置(200)包括压缩机(201),所述压缩机(201)适于对第一工作流体进行压缩而形成第一工作流体回路的一部分;以及室内装置(310;320),
    其特征在于,所述室内装置(310;320)至少有两个并且相互并联连接,所述室内装置(310;320)分别相对于所述室外装置(200)分体设置,所述室内装置包括第一工作流体换热器(311、315;321、325)和第二工作流体换热器(312;322),所述第一工作流体换热器(311、315;321、325)与所述压缩机(201)关联从而也形成所述第一工作流体回路的一部分,所述第二工作流体换热器(312;322)形成第二工作流体回路的一部分。
  2. 根据权利要求1所述的环境优化系统(100),其中:
    所述环境优化系统(100)构造成能够选择性地开启所述第一工作流体换热器(311、315;321、325)和所述第二工作流体换热器(312;322)中的一者或两者。
  3. 根据权利要求1所述的环境优化系统(100),其中:
    所述环境优化系统(100)包括设置在所述室外装置(200)中的四通阀(202),通过切换所述四通阀(202)而使得所述第一工作流体回路能够在制冷模式与制热模式之间切换;并且/或者
    所述第二工作流体回路构造成能够在所述第二工作流体换热器(312;322)适于对新风进行冷却与加热之间切换。
  4. 根据权利要求1至3中的任一项所述的环境优化系统(100),其中:
    所述第一工作流体换热器(311、315;321、325)包括串联的第一换热器(311;321)和第二换热器(315;325)。
  5. 根据权利要求4所述的环境优化系统(100),其中:在所述第二换热器(315;325)的第一端设置有并联的第一膨胀阀(313;323)和第一截止阀(314;324),并且在所述第二换热器(315;325)的第二端设置有并联的第二膨胀阀(316;326)和第二截止阀(317;327)。
  6. 根据权利要求4所述的环境优化系统(100),其中:
    所述室内装置(310;320)构造成使得新风顺序地流过所述第二工作流体换热器(312;322)、所述第一换热器(311;321)和所述第二换热器(315;325)。
  7. 根据权利要求4所述的环境优化系统(100),其中:
    所述室外装置(200)包括室外换热器(203),以及
    所述环境优化系统(100)构造成使得:
    所述室外换热器(203)用作上游冷凝器,所述第二换热器(315;325)用作下游冷凝器从而构成所述室内装置的适于对新风进行再热的再热段,所述第一换热器(311;321)用作蒸发器从而构成所述室内装置的适于对新风进行除湿的除湿段,由此实现所述环境优化系统的制冷除湿再热模式;或者
    所述室外换热器(203)用作冷凝器,所述第二换热器(315;325)用作上游蒸发器从而构成所述室内装置的适于对新风进行除湿的第一除湿段,所述第一换热器(311;321)用作下游蒸发器从而构成所述室内装置的适于对新风进行除湿的第二除湿段,由此实现所述环境优化系统的制冷深度除湿模式;或者
    所述室外换热器(203)用作蒸发器,所述第一换热器(311;321)用作上游冷凝器从而构成所述室内装置的对新风进行加热的第一制热段,所述第二换热器(315;325)用作下游冷凝器从而构成所述室内装置的对新风进行加热的第二制热段,由此实现所述环境优化系统的制热模式;或者
    所述室外换热器(203)用作下游蒸发器,所述室内装置(310;320)所述第一换热器(311;321)用作冷凝器从而构成所述室内装置的对新风进行加热的制热段,所述第二换热器(315;325)用作上游蒸发器从而构成所述室内装置的对新风除湿的干燥段,由此实现所述环境优化系统的制热干燥模式。
  8. 根据权利要求7所述的环境优化系统(100),其中:
    所述室外装置(200)包括用于所述室外换热器(203)的风机(206),所述环境优化系统构造成通过调节所述风机(206)的转速来调节所述第二换热器(315;325)在用作所述再热段时对新风进行再热的再热量。
  9. 根据权利要求7所述的环境优化系统(100),其中:
    所述环境优化系统构造成通过调节所述压缩机(201)的转速来调节所述第一换热器(311;321)和所述第二换热器(315;325)在用作所述制热段时对新风进行加热的加热量。
  10. 根据权利要求1至3中的任一项所述的环境优化系统(100),其中:
    所述第二工作流体回路以水作为工作流体并且以空气源、地源或制冷剂回路源作为热/冷源。
  11. 根据权利要求1至3中的任一项所述的环境优化系统(100),其中:
    所述室外装置(200)包括适于对所述压缩机(201)进行补气的经济器(205)。
PCT/CN2020/124207 2020-07-22 2020-10-28 环境优化系统 WO2022016727A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010711984.XA CN113970127A (zh) 2020-07-22 2020-07-22 环境优化系统
CN202021461841.XU CN212565999U (zh) 2020-07-22 2020-07-22 环境优化系统
CN202010711984.X 2020-07-22
CN202021461841.X 2020-07-22

Publications (1)

Publication Number Publication Date
WO2022016727A1 true WO2022016727A1 (zh) 2022-01-27

Family

ID=79728480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/124207 WO2022016727A1 (zh) 2020-07-22 2020-10-28 环境优化系统

Country Status (1)

Country Link
WO (1) WO2022016727A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115950010A (zh) * 2022-12-30 2023-04-11 广东申菱环境系统股份有限公司 一种利用海水间接换热的新风空调系统及其控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101245957A (zh) * 2007-02-13 2008-08-20 珠海格力电器股份有限公司 可以同时制冷和制热的空调机组
CN203375573U (zh) * 2013-05-31 2014-01-01 广东美的暖通设备有限公司 提高多联机的冷媒过冷度的装置及具有该装置的多联机
CN207471689U (zh) * 2017-10-27 2018-06-08 国安瑞(北京)科技有限公司 空调系统
JP2019066097A (ja) * 2017-09-29 2019-04-25 ダイキン工業株式会社 空気調和装置
CN209279429U (zh) * 2018-11-28 2019-08-20 上海朗绿建筑科技股份有限公司 双蒸发器新风除湿机组
CN209706219U (zh) * 2019-03-22 2019-11-29 艾默生环境优化技术(苏州)有限公司 环境优化系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101245957A (zh) * 2007-02-13 2008-08-20 珠海格力电器股份有限公司 可以同时制冷和制热的空调机组
CN203375573U (zh) * 2013-05-31 2014-01-01 广东美的暖通设备有限公司 提高多联机的冷媒过冷度的装置及具有该装置的多联机
JP2019066097A (ja) * 2017-09-29 2019-04-25 ダイキン工業株式会社 空気調和装置
CN207471689U (zh) * 2017-10-27 2018-06-08 国安瑞(北京)科技有限公司 空调系统
CN209279429U (zh) * 2018-11-28 2019-08-20 上海朗绿建筑科技股份有限公司 双蒸发器新风除湿机组
CN209706219U (zh) * 2019-03-22 2019-11-29 艾默生环境优化技术(苏州)有限公司 环境优化系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115950010A (zh) * 2022-12-30 2023-04-11 广东申菱环境系统股份有限公司 一种利用海水间接换热的新风空调系统及其控制方法

Similar Documents

Publication Publication Date Title
JP4207166B2 (ja) 除湿空調機
US9920963B1 (en) System for conditioning air with temperature and humidity control and heat utilization
CN112460696B (zh) 一种温湿度独立控制空调系统
WO2022022642A1 (zh) 空调及除湿方法
CN209706219U (zh) 环境优化系统
CN110953755B (zh) 可调温除湿的空调系统及其控制方法
WO2022110771A1 (zh) 空调器
CN210725423U (zh) 可调温除湿的空调系统
US11828507B2 (en) Air conditioning system and control method therefor
CN112880034A (zh) 新风温湿度控制系统、新风空调及新风除湿风温控制方法
CN111811035A (zh) 一种除湿再热的单元式空调系统及其控制方法
CN111442448A (zh) 一种对新风单独冷却除湿的组合式空调机组
CN113720034A (zh) 空调循环系统以及空调的控制方法
CN216281897U (zh) 新风设备
JP2000274879A (ja) 空気調和機
WO2020244207A1 (zh) 空调系统
CN109827304B (zh) 一种新风-毛细管网空气联合调节系统及其冬、夏季新风温度调节方法
WO2022016727A1 (zh) 环境优化系统
CN105444298A (zh) 一种可控出风温度的空调系统及控制方法
CN109506311A (zh) 一种复叠式双冷源温湿度独立控制空调系统
CN114087681A (zh) 单通道新风除湿空气处理系统
CN111442449A (zh) 一种带独立冷源的双风机组合式空调机组
CN212565999U (zh) 环境优化系统
CN108317650B (zh) 一种带独立新风的多联式空调热泵系统
CN208936579U (zh) 一种温湿度独立控制的新风空调系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20946248

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20946248

Country of ref document: EP

Kind code of ref document: A1