WO2022016609A1 - Procédé de préparation de produits - Google Patents

Procédé de préparation de produits Download PDF

Info

Publication number
WO2022016609A1
WO2022016609A1 PCT/CN2020/106765 CN2020106765W WO2022016609A1 WO 2022016609 A1 WO2022016609 A1 WO 2022016609A1 CN 2020106765 W CN2020106765 W CN 2020106765W WO 2022016609 A1 WO2022016609 A1 WO 2022016609A1
Authority
WO
WIPO (PCT)
Prior art keywords
rod
amorphous alloy
hard
alloy
preparation process
Prior art date
Application number
PCT/CN2020/106765
Other languages
English (en)
Chinese (zh)
Inventor
李扬德
Original Assignee
东莞颠覆产品设计有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞颠覆产品设计有限公司 filed Critical 东莞颠覆产品设计有限公司
Publication of WO2022016609A1 publication Critical patent/WO2022016609A1/fr

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • B22D19/16Casting in, on, or around objects which form part of the product for making compound objects cast of two or more different metals, e.g. for making rolls for rolling mills

Definitions

  • the invention relates to the technical field of manufacturing processes, in particular to a product preparation process.
  • the finished products are generally in the form of rods and filaments.
  • the products are generally produced by powder metallurgy.
  • the processes include powder milling, pressing and sintering.
  • the above-mentioned production methods are complicated, and due to the high melting point of hard metals or hard alloys, the above methods are difficult to convert hard metals or hard alloys.
  • the alloy is processed into a product with a more complex structure, and the hard metal or hard alloy has high brittleness, and it is easy to cause edge chipping during CNC machining.
  • the product feasibility of machining alloys into complex shapes is also relatively low.
  • the embodiment of the present invention discloses a product preparation process, which is used to solve the technical problem of extremely difficult processing when hard metal or hard alloy is used to produce a product with relatively high hardness.
  • the embodiment of the present invention provides a product preparation process, comprising:
  • the metal material is one of copper, copper alloy, titanium, titanium alloy, amorphous alloy, aluminum, aluminum alloy, zinc, and zinc alloy.
  • the temperature at which the metal material is injected is lower than the glass transition temperature of the amorphous alloy in the composite material.
  • the heating temperature range of the above-mentioned mixed material is 200°C to 600°C.
  • the diameter of the hard metal rod is in the range of 0.1 mm to 10 mm
  • the diameter of the hard metal rod is in the range of 0.1 mm to 10 mm
  • the diameter of the amorphous alloy rod is in the range of 0.1 mm to 10 mm;
  • the diameter ratio of the hard metal rod or the cemented carbide rod to the amorphous alloy rod is in the range of 1:1 to 15:1; the hard metal rod or the cemented carbide rod
  • the volume ratio to the amorphous alloy rod ranges from 1:1 to 10:1.
  • the density of the hard metal rod and the cemented carbide rod is greater than 8 g/cm 3 and the hardness is greater than 500HV.
  • the hard metal rod includes one of tungsten, molybdenum, tantalum, nickel, cobalt, and niobium;
  • the cemented carbide rod includes one of tungsten carbide, titanium carbide, tantalum carbide, and niobium carbide;
  • the amorphous alloy rod includes one of rare earth-based amorphous alloy, copper-based amorphous alloy, zirconium-based amorphous alloy, titanium-based amorphous alloy, nickel-based amorphous alloy, and cobalt-based amorphous alloy.
  • step S3 specifically includes:
  • the amorphous alloy rod By applying pressure, the amorphous alloy rod is made to flow in a semi-solid state, and the hard metal rod or hard alloy rod mixed with it is deformed to the shape of the preset cavity together, which has a negative impact on the mixed material in the cavity.
  • Ultrasonic vibration is applied to the forming part, and the frequency range of the ultrasonic wave is 10kHz to 100kHz.
  • the ultrasonic wave With the diameter of the amorphous alloy rod, hard metal rod or cemented carbide rod is 0.1mm to 5mm, the ultrasonic wave with a frequency range of 40kHz to 100kHz is used.
  • amorphous alloy rods hard metal rods or carbide rods with diameters between 5mm and 10mm, use ultrasonic waves in the frequency range of 10kHz to 50kHz.
  • step S3 specifically includes:
  • the amorphous alloy rod is made to flow in a semi-solid state by applying pressure in sections, and the hard metal rod or hard alloy rod mixed with it is deformed to the shape of the preset cavity together;
  • the first stage of pressure is the force F1 that enables the amorphous alloy rod to flow in the superplastic state
  • the time of applying the pressure is T1
  • the second stage of pressure is the force F2 applied after the superplastic state of the amorphous alloy ends.
  • the time is T2, where F2>1.2 ⁇ F1, T2>0.3 ⁇ T1.
  • the embodiments of the present invention have the following advantages:
  • the embodiment of the present invention provides a product preparation process, including S1, mixing hard metal rods or hard alloy rods and amorphous alloy rods in a preset cavity to form a mixed material; S2, mixing the above The material is heated and heated to the temperature range of the supercooled liquid phase region of the amorphous alloy rod; S3, the amorphous alloy rod is made to flow in a semi-solid state by applying pressure to drive the hard metal rod mixed with it. Or the cemented carbide rods are deformed together to the shape of the preset cavity; S4, the above mixed material is cooled to obtain a composite material; S5, the composite material is placed in the product mold; S6, the liquid metal material is injected into the mold.
  • the liquid metal material is mixed with the composite material; S7, a preset pressure is applied to the mold and maintained for a preset time, and then the mold is opened to take out the product.
  • the amorphous alloy rod is used as a binder, and the superplastic deformation characteristic of the amorphous alloy rod is used to form at low temperature and low pressure, so that the hard metal or hard alloy is formed without heating to above its melting point. It is only necessary to make the amorphous alloy rod flow in a semi-solid state by applying pressure to drive the hard metal rod or hard alloy rod mixed with it to deform to the shape of the preset cavity, and then cool the above mixed material.
  • FIG. 1 is a schematic flowchart of a product preparation process provided in an embodiment of the present invention.
  • the embodiment of the present invention discloses a product preparation process, which is used to solve the technical problem of extremely difficult processing when hard metal or hard alloy is used to produce a product with relatively high hardness.
  • a product preparation process provided in this embodiment includes:
  • the pressure applied in this step can be provided by an external mechanical device.
  • the external mechanical device can be assembled by a driving device and a pressing block connected to the driving device.
  • the devices for providing pressure are in the prior art, and there are many kinds. Explain in detail.
  • the products in this embodiment are high-hardness and high-strength products, such as bullets, warheads, and the like.
  • the method of applying pressure in this embodiment can be implemented by using an external pressure device (such as a structure in which a cylinder cooperates with a pressure plate), and this embodiment does not limit the method of applying pressure.
  • the amorphous alloy rod is used as a binder, and the superplastic deformation characteristic of the amorphous alloy rod is used to form at low temperature and low pressure, so that the hard metal or hard alloy is formed without heating to above its melting point. It is only necessary to make the amorphous alloy rod flow in a semi-solid state by applying pressure to drive the hard metal rod or hard alloy rod mixed with it to deform to the shape of the preset cavity, and then cool the above mixed material. A composite material with a relatively complex structure and high hardness can be obtained, and then the obtained composite material is placed in the mold of the product, the liquid metal material is injected into the mold, and a preset pressure is applied to the mold and maintained for a preset time.
  • the product can be obtained by opening the mold.
  • the product obtained by the above process has stronger hardness because of the existence of hard metal or hard metal, and the above process is relatively simple, and there is no need to heat the hard metal or hard metal. To its melting point, there is no need to use extremely complex powder metallurgy methods for production, which greatly improves the production efficiency of high-hardness and high-strength products.
  • the metal material is one of copper, copper alloy, titanium, titanium alloy, amorphous alloy, aluminum, aluminum alloy, zinc, and zinc alloy.
  • the temperature when the metal material is injected is lower than the glass transition temperature of the amorphous alloy in the composite material.
  • the amorphous alloy in the composite material can be prevented from appearing in a semi-solid or liquid state.
  • the diameter of the hard metal rod is in the range of 0.1 mm to 10 mm
  • the diameter of the hard metal rod is in the range of 0.1 mm to 10 mm
  • the diameter of the amorphous alloy rod is in the range of 0.1 mm to 10 mm;
  • the diameter ratio of the hard metal rod or the cemented carbide rod and the amorphous alloy rod ranges from 1:1 to 15:1; the hard metal rod or the cemented carbide rod and the The volume ratio of the amorphous alloy rods ranges from 1:1 to 10:1.
  • the density of the hard metal rod and the hard alloy rod is greater than 8g/cm 3 and the hardness is greater than 500HV.
  • the hard metal rod includes one of tungsten, molybdenum, tantalum, nickel, cobalt, and niobium;
  • the cemented carbide rod includes one of tungsten carbide, titanium carbide, tantalum carbide, and niobium carbide;
  • the amorphous alloy rod includes one of rare earth-based amorphous alloy, copper-based amorphous alloy, zirconium-based amorphous alloy, titanium-based amorphous alloy, nickel-based amorphous alloy, and cobalt-based amorphous alloy.
  • the amorphous alloy rod By applying pressure, the amorphous alloy rod is made to flow in a semi-solid state, and the hard metal rod or hard alloy rod mixed with it is deformed to the shape of the preset cavity together, which has a negative impact on the mixed material in the cavity.
  • Ultrasonic vibration is applied to the forming part, and the frequency range of the ultrasonic wave is 10kHz to 100kHz.
  • the ultrasonic wave With the diameter of the amorphous alloy rod, hard metal rod or cemented carbide rod is 0.1mm to 5mm, the ultrasonic wave with a frequency range of 40kHz to 100kHz is used.
  • amorphous alloy rods hard metal rods or carbide rods with diameters between 5mm and 10mm, use ultrasonic waves in the frequency range of 10kHz to 50kHz.
  • ultrasonic vibration can be applied to part of the formed mixed material to increase the fluidity of the semi-solid amorphous alloy rod, improve the amorphous alloy and the hardness.
  • the contact area of the metal or hard alloy improves the bonding strength of the two, and improves the uniformity of the distribution of hard metal or hard alloy in the amorphous alloy.
  • step S3 specifically includes:
  • the first stage of pressure is the force F1 that enables the amorphous alloy rod to flow in the superplastic state
  • the time of applying the pressure is T1
  • the second stage of pressure is the force F2 applied after the superplastic state of the amorphous alloy ends.
  • the time is T2, where F2>1.2 ⁇ F1, T2>0.3 ⁇ T1.
  • the first stage pressure F1 is the force that enables the amorphous alloy to flow in the superplastic state
  • the second stage pressure F2 is the pressure that increases the density of the composite material after the superplastic state ends.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)

Abstract

L'invention concerne un procédé de préparation de produits, qui est utilisé pour résoudre le problème technique existant selon lequel un traitement est extrêmement difficile lorsque des métaux durs ou des alliages durs sont utilisés pour produire des produits à dureté élevée. Le procédé consiste à : placer une tige de métal dur ou une tige d'alliage dur et une tige d'alliage amorphe dans une cavité prédéfinie pour un mélange ; chauffer le matériau mélangé jusqu'à la plage de température d'une zone de phase liquide surfondue de la tige d'alliage amorphe ; amener la tige d'alliage amorphe à s'écouler dans un état semi-solide au moyen de l'application d'une pression, et entraîner la tige de métal dur ou la tige d'alliage dur mélangée avec la tige d'alliage amorphe afin qu'elles se déforment conjointement selon la forme de la cavité prédéfinie ; refroidir le matériau mélangé pour obtenir un matériau composite ; placer le matériau composite dans un moule de produit ; injecter un matériau métallique liquide dans le moule, de telle sorte que le matériau métallique liquide soit mélangé avec le matériau composite ; appliquer une pression prédéfinie sur le moule et maintenir la pression pendant une durée prédéfinie, et ouvrir ensuite le moule pour retirer le produit.
PCT/CN2020/106765 2020-07-22 2020-08-04 Procédé de préparation de produits WO2022016609A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010710281.5A CN111822676A (zh) 2020-07-22 2020-07-22 一种产品制备工艺
CN202010710281.5 2020-07-22

Publications (1)

Publication Number Publication Date
WO2022016609A1 true WO2022016609A1 (fr) 2022-01-27

Family

ID=72924914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/106765 WO2022016609A1 (fr) 2020-07-22 2020-08-04 Procédé de préparation de produits

Country Status (2)

Country Link
CN (1) CN111822676A (fr)
WO (1) WO2022016609A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113737111A (zh) * 2021-09-07 2021-12-03 东莞市无疆科技投资有限公司 一种高密度非晶复合材料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1160375A (zh) * 1994-08-01 1997-09-24 非结晶合金有限公司 非晶形金属增强复合材料
CA2374230A1 (fr) * 1999-06-10 2000-12-21 Phillip Counsell Composants composites sacrificiels
TW200639004A (en) * 2005-05-06 2006-11-16 World Wild Entpr Co Ltd Method for manufacturing cam shaft
CN102529192A (zh) * 2011-12-15 2012-07-04 比亚迪股份有限公司 由非晶合金与异质材料形成的制品及其制造方法
CN103302269A (zh) * 2013-07-11 2013-09-18 孙岗 一种双金属复合产品及其硬质合金熔铸工艺
CN104190902A (zh) * 2014-08-14 2014-12-10 东莞颠覆产品设计有限公司 非金属构件与金属构件的一体成型方法
CN111168591A (zh) * 2020-01-17 2020-05-19 深圳大学 金刚石磨具及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6010580A (en) * 1997-09-24 2000-01-04 California Institute Of Technology Composite penetrator
US6669793B2 (en) * 2000-04-24 2003-12-30 California Institute Of Technology Microstructure controlled shear band pattern formation in ductile metal/bulk metallic glass matrix composites prepared by SLR processing
CN1408494A (zh) * 2002-08-28 2003-04-09 丁刚 挤压铸渗烧结工艺生产复合材料及设备
CN104640699A (zh) * 2012-07-24 2015-05-20 液态金属涂料有限公司 含有纤维的无定形合金复合材料

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1160375A (zh) * 1994-08-01 1997-09-24 非结晶合金有限公司 非晶形金属增强复合材料
CA2374230A1 (fr) * 1999-06-10 2000-12-21 Phillip Counsell Composants composites sacrificiels
TW200639004A (en) * 2005-05-06 2006-11-16 World Wild Entpr Co Ltd Method for manufacturing cam shaft
CN102529192A (zh) * 2011-12-15 2012-07-04 比亚迪股份有限公司 由非晶合金与异质材料形成的制品及其制造方法
CN103302269A (zh) * 2013-07-11 2013-09-18 孙岗 一种双金属复合产品及其硬质合金熔铸工艺
CN104190902A (zh) * 2014-08-14 2014-12-10 东莞颠覆产品设计有限公司 非金属构件与金属构件的一体成型方法
CN111168591A (zh) * 2020-01-17 2020-05-19 深圳大学 金刚石磨具及其制备方法

Also Published As

Publication number Publication date
CN111822676A (zh) 2020-10-27

Similar Documents

Publication Publication Date Title
WO2019085183A1 (fr) Procédés de fabrication de produits métallurgiques en titane et en alliage de titane
CN104694895B (zh) 一种W‑Ti合金靶材及其制造方法
US5306463A (en) Process for producing structural member of amorphous alloy
CN111705234A (zh) 一种高硬度产品制备工艺
JP5679315B2 (ja) 円筒型Mo合金ターゲットの製造方法
WO2016127716A1 (fr) Matériau d'alliage à hautes résistance et ductilité, son procédé de préparation par frittage à l'état semi-solide et ses utilisations
WO2019113995A1 (fr) Procédé et appareil de formage par déformation plastique et de renforcement à base de vibrations ultrasonores
CN104561852B (zh) 径向锻造应变诱发法制备半固态铝合金涡旋盘的工艺
CN106756174B (zh) 一种高品质铜铬合金的致密化工艺
CN108070832A (zh) 钼铌靶坯的制造方法
CN102392147A (zh) 超细晶镍基粉末高温合金的制备方法
WO2022016609A1 (fr) Procédé de préparation de produits
CN108213440A (zh) 一种钼铼合金管材的制备方法
CN105441881A (zh) 铬靶材及其组合的制造方法
CN111804889A (zh) 一种复合材料制备工艺
CN111733343A (zh) 一种复合材料加工方法
US11219949B2 (en) Method for promoting densification of metal body by utilizing metal expansion induced by hydrogen absorption
CN107234196A (zh) 一种等原子比钛镍合金大型铸锭锻造方法
CN117139622B (zh) 一种采用热等静压制备高性能tc11钛合金结构件的方法
CN109530695A (zh) 一种用于增材制造高性能金属制件的方法
CN106475567A (zh) 铬钼靶坯的制造方法
CN115488342B (zh) 异种金属整体叶盘增等材短流程制备方法
KR20240076184A (ko) 고순도 Mo 스퍼터링 타겟의 제조방법
CN113477922B (zh) 非晶合金粉末高致密热塑成型方法
CN111687409B (zh) 一种钛及钛合金近净成形方法及后续烧结工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20945735

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20945735

Country of ref document: EP

Kind code of ref document: A1