WO2022014652A1 - 調湿システム、吸脱着装置、調湿装置及び調湿方法 - Google Patents

調湿システム、吸脱着装置、調湿装置及び調湿方法 Download PDF

Info

Publication number
WO2022014652A1
WO2022014652A1 PCT/JP2021/026523 JP2021026523W WO2022014652A1 WO 2022014652 A1 WO2022014652 A1 WO 2022014652A1 JP 2021026523 W JP2021026523 W JP 2021026523W WO 2022014652 A1 WO2022014652 A1 WO 2022014652A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
adsorbent
humidity control
moisture
air passage
Prior art date
Application number
PCT/JP2021/026523
Other languages
English (en)
French (fr)
Inventor
翔太 田中
雄太 竹ノ内
聡 鈴木
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2022014652A1 publication Critical patent/WO2022014652A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/02Treatment of plants with carbon dioxide
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/18Greenhouses for treating plants with carbon dioxide or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/06Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2

Definitions

  • the present invention relates to a humidity control system, an absorption / desorption device, a humidity control device, and a humidity control method.
  • Patent Document 1 DAC (Direct Air Capture) technology that reduces CO 2 in the atmosphere by directly absorbing carbon dioxide (CO 2 ) in the atmosphere and CCU (Carbon Capture and Utilization) technology that effectively utilizes the recovered CO 2 are being studied.
  • DAC Direct Air Capture
  • CCU Carbon Capture and Utilization
  • plants such as vegetables are controlled by controlling the internal environment such as light, temperature, humidity and carbon dioxide (CO 2 ) concentration in a completely closed or semi-closed facility (building). Is produced. Since it is necessary to keep the indoor environment such as temperature and humidity constant in the plant factory, the environment is controlled by using an air conditioner or a dehumidifier. According to the technique described in Patent Document 1, the adjustment of the CO 2 concentration in the plant factory, it can be utilized CO 2 recovered from the atmosphere by DAC technology.
  • CO 2 carbon dioxide
  • Patent Document 1 CO 2 cannot be recovered when the atmosphere is high humidity.
  • Patent Document 2 does not disclose the use of CO 2.
  • the present invention has been made in view of the above circumstances, and even if the outside air has high humidity, CO 2 recovered from this air can be supplied into the closed space, and the humidity in the closed space is stable. It is an object of the present invention to provide a humidity control system, an absorption / desorption device, a humidity control device, and a humidity control method capable of achieving the same.
  • the humidity control system of the present invention is a humidity control system including a suction / desorption device and a humidity control device, and the suction / desorption device adsorbs carbon dioxide and water in the supplied air under the first condition.
  • the first discharge part that discharges the first gas which is a gas containing carbon dioxide and water desorbed from at least a part of the material, and the air from which the carbon dioxide and water are removed by the adsorbent.
  • the humidity control device passes through a first air passage through which the first gas passes and a low humidity gas containing less water than the first gas. It has an air passage, a moisture permeable film that separates the first air passage and the second air passage, and allows moisture to permeate between the first gas and the low humidity gas.
  • the moisture permeable membrane allows heat to pass between the first gas and the low humidity gas.
  • the suction / desorption device has a supply unit for supplying a regenerated gas for regenerating the adsorbent to at least a part of the adsorbent.
  • the supply unit receives external air, which is the outside air of a closed space to which the first gas is supplied, which has passed through the first air passage. It is supplied as the regenerated gas.
  • the supply unit uses the internal air, which is the air inside the closed space to which the first gas is supplied, which has passed through the first air passage. It is supplied as the regenerated gas.
  • the second air passage allows the second gas to pass through, and the moisture permeable membrane is formed between the first gas and the second gas. Allows moisture to permeate.
  • the second air passage is outside air in a closed space to which the first gas is supplied that has passed through the first air passage.
  • the moisture permeable film allows moisture to permeate between the first gas and the external air.
  • the humidity control system of the present invention includes, for example, a humidifying device that humidifies the air supplied to the adsorbent.
  • the humidity control system of the present invention includes, for example, a steam supply unit that supplies steam or high-humidity air to the adsorbent as the regeneration device.
  • the humidity control system of the present invention is, for example, from a third air passage through which the internal air, which is the air inside the closed space to which the first gas is supplied, has passed through the first air passage, and the internal air.
  • a moisture permeable film that separates the third air passage and the fourth air passage through which a low-humidity gas containing a small amount of water passes, and allows moisture to permeate between the internal air and the low-humidity gas.
  • the low-humidity gas that has passed through the fourth air passage is supplied to the adsorbent.
  • the first condition is that the temperature of the adsorbent is the first temperature
  • the second condition is the second temperature in which the temperature of the adsorbent is higher than the first temperature
  • the regenerating device is a heating unit that heats at least a part of the adsorbent that has adsorbed the carbon dioxide and water to bring the temperature to the second temperature.
  • the suction / desorption device further includes a container for accommodating at least a part of the adsorbent, and the first condition is that the air pressure in the container is the first air pressure.
  • the second condition is a second atmospheric pressure in which the atmospheric pressure in the container is lower than the first atmospheric pressure, and the regeneration device is a decompression device that lowers the atmospheric pressure in the container to the second atmospheric pressure.
  • the suction / desorption device of the present invention is the suction / desorption device in the humidity control system of the present invention, and has a rotor filled with the adsorbent inside, and the heating unit regenerates the adsorbent. By heating the regenerated gas and supplying it to a part of the adsorbent filled in the rotor, a part of the adsorbent is heated.
  • the suction / desorption device of the present invention is the suction / desorption device in the humidity control system of the present invention, each of which has a plurality of columns filled with the adsorbent, and the regeneration device is one of the plurality of columns. The adsorbent filled in some columns is regenerated.
  • the suction / desorption device of the present invention is the suction / desorption device in the humidity control system of the present invention, and has a filter that holds the adsorbent, and the regeneration device regenerates the adsorbent held by the filter. do.
  • the humidity control device of the present invention is the humidity control device in the humidity control system of the present invention, wherein the moisture permeable membrane has a plurality of first ribs forming the first air passage erected on the surface thereof.
  • the first moisture permeable membrane and the first moisture permeable membrane include a plurality of first moisture permeable membranes and a plurality of second moisture permeable membranes having a plurality of second ribs forming the second air passage erected on the surface thereof.
  • the second moisture permeable membrane is alternately laminated.
  • the humidity control method of the present invention comprises an adsorption / desorption device having an adsorbent that adsorbs carbon dioxide and moisture in the supplied air under the first condition and desorbs the adsorbed carbon dioxide and moisture under the second condition. Moisture is separated between the first air passage, the second air passage, the first air passage and the second air passage, and between the first gas and a low-humidity gas containing less water than the first gas. It is a humidity control method for controlling the humidity of air in a closed space in a humidity control system including a moisture permeable film having a moisture permeable film.
  • the suction / desorption device carbon dioxide and water in the supplied air are adsorbed on the adsorbent under the first condition, heating of at least a part of the adsorbent, and the adsorbent.
  • the adsorbed carbon dioxide and water are desorbed by at least one of the depressurization in the container containing at least a part of the gas, and the gas containing the desorbed carbon dioxide and water is the gas.
  • the first gas is discharged
  • the second gas which is the air from which the carbon dioxide and water have been removed by the adsorbent, is discharged, and in the humidity control device, the first air passage passes through the first gas.
  • the second air passage allows the low-humidity gas to pass through, and the moisture contained in the first gas is transferred to the low-humidity gas through the moisture-permeable film, so that the first gas from which the moisture has been removed is transferred. , Supply in the closed space.
  • CO 2 recovered from this air can be supplied into the closed space, and the humidity in the closed space can be stabilized.
  • FIG. 1 is a schematic view showing the configuration of a humidity control system according to the first embodiment of the present invention.
  • FIG. 2 is a schematic perspective view showing a configuration example of the suction / detachment device.
  • FIG. 3 is a schematic view showing a configuration example of a moisture permeable device.
  • FIG. 4 is a diagram showing a humidity control element, (a) a schematic perspective view of the humidity control element, and (b) a schematic view of a moisture permeable membrane.
  • FIG. 5 is a schematic perspective view of the air passage unit.
  • FIG. 6 is a diagram showing the operating principle of the moisture permeable membrane.
  • FIG. 7 is a schematic perspective view showing another example of the humidity control element.
  • FIG. 1 is a schematic view showing the configuration of a humidity control system according to the first embodiment of the present invention.
  • FIG. 2 is a schematic perspective view showing a configuration example of the suction / detachment device.
  • FIG. 3 is a schematic view showing a
  • FIG. 8 is a schematic view showing the configuration of the humidity control system according to the second embodiment of the present invention.
  • FIG. 9 is a schematic view showing the configuration of the humidity control system according to the third embodiment of the present invention.
  • FIG. 10 is a schematic view showing the configuration of the humidity control system according to the fourth embodiment of the present invention.
  • FIG. 11 is a schematic view showing the configuration of the humidity control system according to the fifth embodiment of the present invention.
  • FIG. 12 is a schematic view showing the configuration of the humidity control system according to the sixth embodiment of the present invention.
  • FIG. 13 is a perspective view showing a schematic configuration of the suction / desorption device according to the seventh embodiment of the present invention.
  • FIG. 14 is a schematic perspective view showing a specific configuration example of the suction / desorption device according to the seventh embodiment of the present invention.
  • FIG. 15 is a schematic perspective view showing a specific configuration example of the suction / desorption device according to the seventh embodiment of the present invention.
  • FIG. 16 is a schematic perspective view showing the configuration of the suction / desorption device according to the eighth embodiment of the present invention.
  • FIG. 16 is a schematic perspective view showing the configuration of another humidity control device according to the ninth embodiment of the present invention.
  • FIG. 16 is a schematic perspective view showing the humidity control element shown in FIG.
  • the humidity control system when carbon dioxide (CO 2 ) is supplied to a plant factory, which is an example of a closed space, the humidity control system, the suction / desorption device, the humidity control device, and the humidity control method are used to control the humidity in the plant factory.
  • CO 2 carbon dioxide
  • FIG. 1 is a schematic view showing the configuration of the humidity control system S1 according to the first embodiment of the present invention.
  • the humidity control system S1 includes an absorption / desorption device 300 and a moisture permeation device 200, and is provided in the vicinity of the plant factory 1.
  • the inside of the plant factory 1 is controlled to maintain a constant environment suitable for growing plants. Inside the plant factory 1, as an example, it is necessary to keep the temperature in the range of 22 to 25 ° C., the humidity in the range of 55 to 85% RH, and the CO 2 concentration in the range of higher than 1% (Dry).
  • the suction / desorption device 300 has a suction unit 300b and a regeneration unit 300a.
  • the adsorption unit 300b adsorbs CO 2 and moisture in the atmosphere A02 to the adsorbent 303 (see FIG. 2) under the first condition
  • the regeneration unit 300a adsorbs CO 2 and moisture from the adsorbent 303 under the second condition. It is desorbed to regenerate the adsorbent 303.
  • the suction / desorption device 300 has a heater (heating unit) described later as a regeneration device for regenerating the adsorbent 303.
  • the first condition is, for example, the adsorbent 303 at room temperature (for example, 0 ° C.
  • the second condition is, for example, the adsorbent 303 is about 100 ° C. or higher, and the adsorbent 303 is heated to about 100 by heating with a heater.
  • the adsorbent 303 is regenerated at a temperature of ° C or higher.
  • the suction / desorption device 300 receives the supply of the regenerated gas A01 from a supply port (supply unit) (not shown ), discharges the CO 2 desorbed from the adsorbent 303, and the gas A11 (first gas) containing water. It is supplied to the first air passage P1 (see FIG. 6) of the moisture permeation device 200.
  • the suction / desorption device 300 discharges the gas A21 which is the atmosphere A02 from which CO 2 and moisture have been removed by the adsorbent 303.
  • the discharged gas A21 is supplied to the second air passage P2 (see FIG. 6) of the moisture permeation device 200.
  • the moisture permeable device 200 includes a moisture permeable membrane 100 (see FIG. 6) that separates the first air passage P1, the second air passage P2, and the first air passage P1 and the second air passage P2.
  • the gas A11 and the gas A21 which is a low-humidity gas containing less water than the gas A11, come into contact with each other via the moisture-permeable membrane 100, so that the moisture of the gas A11 moves to the low-humidity gas A21. Then, the water content contained in the gas A11 is reduced (adjusted).
  • the outlet of the first air passage P1 of the moisture permeation device 200 leads to the inside of the plant factory 1, and the gas A12 that has passed through the first air passage P1 and has become low in humidity is supplied to the inside of the plant factory 1.
  • the gas A3, which is the air inside the plant factory 1 is appropriately discharged from the plant factory 1 according to the amount of gas A12 supplied from the moisture permeation device 200 and the like. Further, the gas A4 containing the gas A3 and the high humidity gas A22 discharged from the moisture permeable device 200 is supplied to the adsorbent 303 (adsorption portion 300b) of the suction / desorption device 300 together with the atmosphere A02. This makes it possible to improve the adsorption performance of the adsorbent 303, for example, when an adsorbent having an improved adsorptive power under humidified conditions is used, such as some amine polymer-based adsorbents.
  • FIG. 2 is a schematic perspective view showing a configuration example of the suction / desorption device 300 shown in FIG.
  • the suction / desorption device 300 includes an adsorbent 303, a rotor 302 filled with the adsorbent 303, a heater H (heating unit), and two fans F2 and F3.
  • the adsorbent 303 is a material capable of repeatedly adsorbing and desorbing CO 2 only by changing the temperature.
  • the adsorbent 303 can be used by being filled in a cylindrical body or being held by a filter.
  • the adsorbent 303 adsorbs CO 2 in the air by coming into contact with the supplied air (atmosphere) at room temperature (first temperature, for example, 0 ° C to 40 ° C).
  • first temperature for example, 0 ° C to 40 ° C.
  • second temperature for example, about 100 ° C.
  • the adsorbent 303 adsorbs CO 2 in the supplied air at atmospheric pressure (first atmospheric pressure), and the inside of the container containing the adsorbent 303 is depressurized (second atmospheric pressure, for example, 10000 Pa). in, CO 2 and water was desorbed, it is reproduced can adsorb again CO 2 and moisture.
  • second atmospheric pressure for example, 10000 Pa
  • the adsorbent 303 examples include metal carbonates such as potassium carbonate and calcium carbonate, liquid amines such as monoamine aqueous solutions, those in which a porous body is filled with an amine liquid, those in which the surface of the porous body is modified with an amine monomer, and an amine polymer. It is preferable to use a solid amine.
  • an inorganic porous body such as activated carbon, zeolite or silica, an ion exchange resin such as a quaternary amine-containing ion exchange resin, a metal-organic framework (MOF: Metal Organic Frameworks) alone, or an amine-modified MOF can be used. Can be used.
  • the rotor 302 has a hollow cylindrical shape, is filled with an adsorbent 303, and is rotationally driven around a central axis at a constant speed by a motor or the like (not shown).
  • adsorbent 303 filled in the rotor 302 the region that adsorbs CO 2 and water functions as the adsorption unit 300b, and the region that is heated to desorb CO 2 and water functions as the regeneration unit 300a.
  • the fan F3 is provided below one side of the rotor 302.
  • the fan F3 sucks the CO 2- containing gas A02 (atmosphere A02) from the outside and supplies it to the adsorbent 303.
  • the CO 2- containing gas A02 is adsorbed and removed from CO 2 and water while in contact with the adsorbent 303 filled in the rotating rotor 302, and is used as the CO 2 removing gas A21 (gas A21) to the outside of the suction / desorption device 300. It is discharged.
  • the heater H is an electric heater that is fixedly arranged on the other surface side of the rotor 302 and heats the regenerated gas A01 (atmosphere A01) for regenerating the adsorbent 303.
  • the regenerated gas A01 heated by the heater H becomes hot, and is supplied to the adsorbent 303 by operating the fan F2.
  • the heated regenerated gas A01 is supplied to the adsorbent 303, and the adsorbent 303 adsorbing CO 2 and water is heated to a predetermined temperature.
  • the fan F2 is provided above the one side of the rotor 302.
  • the high temperature regenerated gas A01 is supplied to the adsorbent 303 from the other surface side of the rotor 302.
  • CO 2 and water adsorbed on the adsorbent 303 are desorbed to become CO 2 concentrated gas A11 (gas A11), and the adsorbent 303 is regenerated.
  • the CO 2 concentrated gas A11 is discharged to the outside of the suction / desorption device 300 from one side of the rotor 302.
  • the region to which the heated regenerated gas A01 is supplied functions as the regenerating portion 300a, and the other regions function as the adsorbing portion 300b.
  • the region that was functioning as the suction unit 300b shifts to the region that functions as the regeneration unit 300a due to the rotation of the rotor 302, and the region that functions as the regeneration unit 300a is the region that functions as the suction unit 300b. Move to the area that functions as. These transitions are continuous.
  • adsorption and desorption apparatus 300 shown in FIG. 2 CO 2 and water recovered from CO 2 containing gas A02, the CO 2 enriched gas A11 can be supplied to the moisture permeable device 200.
  • FIG. 3 is a schematic view showing a configuration example of the moisture permeable device 200.
  • the solid arrow indicates the flow of the gas A11 and A12 passing through the first air passage P1
  • the broken line arrow indicates the flow of the gas A21 and A22 passing through the second air passage P2.
  • the moisture permeation device 200 includes a humidity control element 10, a case 201, and fans 212 and 213.
  • the humidity control element 10 will be described later.
  • Case 201 accommodates the humidity control element 10.
  • the case 201 is provided with partition walls 202, 203, 204, 203 inside.
  • the partition walls 202 and 203 extend in the horizontal direction and vertically partition the internal space of the case 201.
  • the partition wall 204 extends in the vertical direction and horizontally partitions the upper side of the internal space of the case 201.
  • the partition wall 205 extends in the vertical direction and horizontally partitions the lower side of the internal space of the case 201.
  • the humidity control element 10 is connected to the partition walls 202 to 205 and is fixed to the center of the internal space of the case 201.
  • the internal space of the case 201 is divided into two spaces, the first space 200a and the second space 200b, on the upper side, and the third space 200c and the fourth space 200d on the lower side.
  • Connection ports 208 to 211 are provided outside the case 201.
  • the connection ports 208 and 210 are attached to the openings (not shown) on the left side wall of the case 201, respectively.
  • the gas A21 is supplied to the first space 200a via the connection port 208.
  • the gas A21 that has passed through the humidity control element 10 via the fan 213 and the connection port 210 is discharged to the outside from the third space 200c as the gas A22 having high humidity.
  • the gas A11 is supplied to the second space 200b via the connection port 209.
  • the gas A11 that has passed through the humidity control element 10 is supplied from the fourth space 200d into the plant factory 1 as the low humidity gas A12 via the fan 212 and the connection port 211.
  • the fan 212 is arranged in the connection port 211 on the right side wall of the case 201 in the fourth small space 200d, and supplies the gas A11 to the first air passage P1 of the humidity control element 10 or the gas A12 from the first air passage P1. Promote the emission of.
  • the fan 213 is arranged in the connection port 210 on the left side wall of the case 201 in the second space 200c, and supplies the gas A21 to the second air passage P2 of the humidity control element 10 or the gas A22 from the second air passage P2. Promote emissions.
  • the operation of the fans 212 and 213 is controlled by a control unit (not shown).
  • the operation of the moisture permeation device 200 will be described.
  • Fans 212 and 213 are driven by the control unit.
  • the gas A11 containing CO 2 and water is taken into the second space 200b in the case 201 from the suction / desorption device 300 via the connection port 209.
  • the taken-in gas A11 is supplied from the inlet P1I to the first air passage P1 of the humidity control element 10.
  • the gas A11 passing through the first air passage P1 is totally heat exchanged (sensible heat and latent heat) with the low humidity gas A21 passing through the second air passage P2 via the moisture permeable film 100, and the fourth space from the outlet P1O. It reaches 200d and is supplied into the plant factory 1 via the fan 212 and the connection port 211.
  • the low-humidity gas A21 discharged from the suction / desorption device 300 is taken into the first space 200a in the case 201 via the connection port 208.
  • the taken-in gas A21 is supplied from the inlet P2I to the second air passage P2 of the humidity control element 10.
  • the gas A21 passing through the second air passage P2 is totally heat exchanged with the gas A11 passing through the first air passage P1 via the moisture permeable membrane 100, and reaches the third space 200e from the outlet P2O.
  • the gas A21 containing water and heat from the gas A11 is discharged to the outside of the moisture permeable device 200 as the gas A22 via the fan 213 and the connection port 210.
  • FIG. 3 The details of the humidity control element 10 shown in FIG. 3 will be described with reference to FIGS. 4 to 6.
  • 4A and 4B are views showing the humidity control element 10,
  • FIG. 4A is a schematic perspective view of the humidity control element
  • FIG. 4B is a schematic view of the moisture permeable membrane.
  • FIG. 5 is a schematic perspective view of the air passage unit
  • FIG. 6 is a diagram showing the operating principle of the moisture permeable membrane.
  • the humidity control element 10 is formed by alternately stacking air passage units 11 and 12, and includes a first air passage P1, a second air passage P2, a moisture permeable membrane 100, and the like. To prepare for.
  • the first air passage P1 is discharged from the adsorption-desorption apparatus 300, a high CO 2 concentration, high humidity, and is passed through a high-temperature gas A11.
  • the second air passage P2 passes through the low-humidity gas A21 discharged from the suction / desorption device 300.
  • the moisture permeable membrane 100 may have at least moisture permeability, gas barrier property and thermal conductivity, and its material and composition are not particularly limited.
  • the moisture permeable film 100 includes, for example, a porous base paper (Japanese paper, kraft paper, etc.) mainly composed of cellulose fibers in which a moisture absorbing material such as calcium chloride (CaCl 2 ) is dispersed (kneaded), or cellophane.
  • a fiber layer containing water-insoluble fibers such as chitin and fibroin in which a hydrophilic material such as aggregated polyethylene glycol and polyvinyl alcohol is dispersed can be used.
  • the moisture permeable membrane 100 includes a support 120 and a composite material 110.
  • the support 120 contains a porous material such as a polymer or hollow fiber.
  • the composite material 110 may be applied onto the support 120.
  • the composite material 110 contains a graphene oxide compound and polyvinyl alcohol.
  • the graphene oxide compound and polyvinyl alcohol may be crosslinked.
  • the graphene oxide compound may be present in an amount of about 0.1% by weight to about 10% by weight based on the weight of polyvinyl alcohol.
  • the graphene oxide compound may be graphene oxide, reduced graphene oxide, functionalized graphene oxide, or functionalized and reduced graphene oxide.
  • the air passage unit 11 has a moisture permeable membrane 100 having a hexagonal shape in a plan view, and ribs 11a1 to 11a5 erected on the surface of the moisture permeable membrane 100.
  • the rib 11a1 has a linear shape along one side of the hexagonal shape.
  • the ribs 11a2 to 11a5 each have a straight portion having the same shape as the rib 11a1 and an extending portion extending from both ends of the straight portion.
  • the ribs 11a5 are provided along the edge of the moisture permeable membrane 100, and the ribs 11a4 to 11a1 are arranged at equal intervals so that the straight portions are parallel to each other.
  • the air passage unit 12 has a moisture permeable membrane 100 having a hexagonal shape in a plan view, and ribs 12a1 to 12a5 erected on the surface of the moisture permeable membrane 100.
  • the rib 12a1 has a linear shape along one side of the hexagonal shape.
  • the ribs 12a2 to 12a5 each have a straight portion having the same shape as the rib 12a1 and an extending portion extending from both ends of the straight portion.
  • the ribs 12a5 are provided along the edge of the moisture permeable membrane 100, and the ribs 12a1 to 12a4 are arranged at equal intervals so that the straight portions are parallel to each other.
  • the ribs 11a1 to 11a5 and the ribs 12a1 to 12a5 resins such as polyethylene and polypropylene, metals such as aluminum, glass, ceramics, fiber materials, wood, paper materials and the like can be used. In particular, if a material having good hygroscopicity is used, the moisture permeability performance (latent heat exchange efficiency) of the humidity control element is improved.
  • the air passage units 11 and 12 are laminated so that the straight portions of the ribs 11a1 to 11a5 and the ribs 12a1 to 12a5 are parallel to each other.
  • the ribs 11a1 to 11a5 and the moisture permeable membranes 100 arranged above and below the ribs 11a1 to 11a5 form the first air passage P1 and form the ribs 12a1 to 12a5.
  • the moisture permeable membranes 100 arranged above and below the ribs 12a1 to 12a5 form the second air passage P2.
  • a moisture permeable membrane 100 is fixed above the air passage unit 12 in the uppermost layer.
  • the inlet P1I of the first air passage P1 leads to the regeneration unit 300a of the suction / desorption device 300, and the outlet P1O leads to the inside of the plant factory 1 (see FIGS. 1 and 3).
  • the inlet P2I of the second air passage P2 leads to the suction portion 300b of the suction / desorption device 300, and the outlet P2O leads to the outside of the plant factory 1 (see FIGS. 1 and 3).
  • the inlet P1I and the outlet P1O of the first air passage P1 connect the moisture permeable membrane 100 to two vertices facing each other across the hexagonal outer center of the moisture permeable membrane 100 (in the left-right direction in FIG. 4A).
  • the inlet P2I and the outlet P2O of the second air passage P2 are arranged on the other side of the other region.
  • the number of laminated air passage units 11 and 12 in the humidity control element 10, and the height, width (interval between adjacent ribs) and number of the ribs 11a1 to 11a5 and the ribs 12a1 to 12a5 are appropriately determined according to the specifications. It is set and is not limited to that shown in FIGS. 4 (a) and 5.
  • the moisture permeable membrane 100 has a gas barrier property and separates the first air passage P1 and the second air passage P2.
  • the moisture permeable membrane 100 has moisture permeability, and has a water vapor concentration between the gas A11 (first gas) passing through the first air passage P1 and the gas A21 (second gas) passing through the second air passage P2. Water vapor is permeated using the gradient. Since the gas A11 flowing into the first air passage P1 has a higher water vapor concentration than the gas A21 flowing into the second air passage P2, the water vapor (humidity) contained in the gas A11 permeates the moisture permeable membrane 100 and the gas A21. Move to.
  • the gas A22 containing an increased amount of water vapor as it passes through the second air passage P2 is discharged to the outside from the second air passage P2.
  • the gas A12 in which the amount of water vapor contained decreases as it passes through the first air passage P1 is supplied from the first air passage P1 into the plant factory 1.
  • the moisture permeable membrane 100 has thermal conductivity, and the heat of the gas A11 passing through the first air passage P1 is transferred to the gas A21 passing through the second air passage P2. In this way, the moisture permeable membrane 100 performs sensible heat exchange and latent heat exchange between the gas A11 and the gas A21.
  • the moisture permeable membrane 100 does not allow CO 2 to permeate due to its gas barrier property.
  • the sensible heat exchange efficiency and the latent heat exchange efficiency of the moisture permeable membrane 100 are affected by the thickness (thinner is better), and the temperature difference and humidity difference through the membrane (the larger the difference, the higher the efficiency). Further, the sensible heat exchange efficiency of the moisture permeable film 100 is affected by the thermal conductivity of the material, and the latent heat exchange efficiency of the moisture permeable film 100 is also affected by the moisture permeability (water vapor permeability) and water absorption of the material. The material and thickness of the moisture permeable membrane 100 are determined in consideration of these influences.
  • the high-temperature gas A11 containing CO 2 and moisture discharged from the suction / desorption device 300 is supplied to the plant factory 1 as the gas A12 through the first air passage P1 and is a gas.
  • A21 passes through the second air passage P2 and is discharged to the outside of the building as gas A22.
  • the moisture and heat contained in the gas A11 can be released to the outside of the plant factory 1.
  • the humidity control system S1 when the suction / desorption device 300 supplies CO 2 recovered from the atmosphere, the humidity and temperature are adjusted by the moisture permeation device 200, so that the humidity in the plant factory 1 is stable. Can be achieved. Further, since the humidity control element 10 can be used to dehumidify without using a dehumidifier, the energy cost for humidity adjustment can be reduced.
  • the number of layers of the air passage units 11 and 12 is appropriately set according to the specifications of the humidity control element 10, for example, 200 steps, but by increasing the number of layers, the moisture permeable membrane 100 and the gas A11 and the gas A21 are combined.
  • the contact area can be increased to improve the amount of dehumidification.
  • the ribs 11a1 to 11a5 and the ribs 12a1 to 12a5 each have a straight line portion parallel to each other, the gas A11 and the gas A21 passing through the straight line portion (parallel portion) come into contact with each other via the moisture permeable membrane 100. Since the time required for dehumidification becomes longer, the amount of dehumidification can be improved.
  • the above-mentioned humidity control element 10 has ribs 11a1 to 11a5 and ribs 12a1 to 12a5 erected on the surface of the moisture permeable membrane 100, but instead of the ribs, a wave shape (wave shape) between adjacent moisture permeable membranes 100.
  • a corrugated spacer may be provided.
  • the spacer SP1 and the moisture permeable membranes 100 arranged above and below the spacer SP1 form the first air passage P1
  • the spacer SP2 and the spacer SP2 are arranged above and below.
  • the moisture permeable membrane 100 constitutes the second air passage P2.
  • the inlet P1I and the outlet P1O of the first air passage P1 lead to the inside of the plant factory, and the inlet P2I and the outlet P2O of the second air passage P2 lead to the outside of the plant factory.
  • the inlet P1I and the outlet P1O of the first air passage P1 connect the moisture permeable membrane 100 to two vertices facing each other across the hexagonal outer center of the moisture permeable membrane 100 (a straight line L extending in the left-right direction in FIG. 7). ) Is divided into two, and it is placed on one side of one area. Further, the inlet P2I and the outlet P2O of the second air passage P2 are arranged on the other side of the other region.
  • the inlet P1I and the outlet P1O of the first air passage P1 are arranged in one region, and the inlet P2I and the outlet P2O of the second air passage P2 are arranged in the other region across the straight line L, whereby the plant is arranged.
  • the number of layers of the moisture permeable membrane 100 and the spacers SP1 and SP2 in the humidity control element 10B, and the height, width (interval between adjacent waves) and number of waves in the spacers SP1 and SP2 are appropriately set according to the specifications. It is not limited to the one shown in FIG. 7.
  • FIG. 8 is a schematic view showing the configuration of the humidity control system S2 according to the second embodiment of the present invention.
  • the same or equivalent members / parts as those shown in FIGS. 1 to 7 may be designated by the same reference numerals, and duplicate description may be omitted.
  • the humidity control system S2 has a point that the high humidity gas A22 discharged from the moisture permeation device 200 is not supplied to the suction / desorption device 300 and a point that the humidification device 400 is provided. different.
  • the supply amount of the regenerated gas A01 to the adsorbent 303 (regeneration unit 300a) of the suction / desorption device 300 is reduced to, for example, 10 m 3 / hr, so that the inside of the plant factory 1 is passed through the moisture permeation device 200.
  • the supply of high CO 2 gas is suppressed.
  • the temperature and humidity of the plant factory 1 are controlled, and it is not preferable to introduce the temperature and humidity.
  • the supply amount of high CO 2 gas is reduced to control the indoor temperature of the plant factory 1. There is no need to exhaust air (internal air). Therefore, it becomes easy to manage the indoor air while appropriately supplying CO 2.
  • the humidifying device 400 humidifies the atmosphere A71 having a CO 2 concentration of about 400 ppm to about 500 m 3 / hr, and supplies it as a highly humid gas A02 to the adsorption unit 300b of the suction / desorption device 300.
  • the humidified gas A02 By supplying the humidified gas A02, the adsorption performance of the adsorbent 303 can be improved.
  • the piping for supplying the gas A22 discharged from the moisture permeation device 200 to the suction / desorption device 300 becomes unnecessary, and the system configuration is simplified. Can be changed.
  • the humidifying device 400 is not essential.
  • FIG. 9 is a schematic view showing the configuration of the humidity control system S3 according to the third embodiment of the present invention.
  • the same or equivalent members / parts as those shown in FIGS. 1 to 8 may be designated by the same reference numerals, and duplicate description may be omitted.
  • the humidity control system S3 has an atmosphere A81 (external) in the second air passage P2 of the moisture permeation device 200 instead of the gas A21 discharged from the suction / desorption device 300.
  • the point of supplying air is different.
  • the humidity control system S3 in addition to the effect of the humidity control system S2, even when the humidity of the gas A21 discharged from the suction / desorption device 300 is high, the gas in the moisture permeation device 200 utilizes the atmosphere A81. By adjusting the humidity of A11, the high CO 2 concentration gas A11 can be dehumidified.
  • FIG. 10 is a schematic view showing the configuration of the humidity control system S4 according to the fourth embodiment of the present invention.
  • the same or equivalent members / parts as those shown in FIGS. 1 to 9 may be designated by the same reference numerals, and duplicate description may be omitted.
  • the humidity control system S4 uses the indoor air A91 (internal air) in the plant factory 1 instead of the atmosphere A01 as the adsorbent 303 (regeneration) of the suction / desorption device 300.
  • the point of supplying to the unit 300a) is different.
  • the humidity control system S4 in addition to the effect of the humidity control system S2, by circulating and reusing the controlled indoor air in the plant factory 1 as the regenerated gas, it is not necessary to reduce the air volume of the regenerated gas, for example, 10 It has the effect of being able to supply regenerated gas as appropriate according to the required amount of CO 2 and the like, such as ⁇ 500 m 3 / hr.
  • FIG. 11 is a schematic view showing the configuration of the humidity control system S5 according to the fifth embodiment of the present invention.
  • the same or equivalent members / parts as those shown in FIGS. 1 to 10 may be designated by the same reference numerals, and duplicate description may be omitted.
  • the humidity control system S5 is different from the humidity control system S4 of the fourth embodiment in that it includes a moisture permeation device 200A.
  • the moisture permeation device 200A has a third air passage through which the gas A101 (internal air), which is the air in the plant factory 1, and a fourth air passage through the atmosphere A103 (low humidity gas) containing less water than the gas A101. And prepare. Further, the moisture permeable device 200A has a moisture permeable film that separates the third air passage and the fourth air passage and allows moisture to permeate between the gas A101 and the atmosphere A103.
  • the gas A101 is transferred to the low humidity atmosphere A103 through the moisture permeable membrane to become the low humidity gas A102, and is returned to the plant factory 1. Further, the low-humidity atmosphere A103 obtains the moisture of the gas A101 through the moisture-permeable membrane to become a high-humidity gas A104, and is supplied to the adsorbent 303 (adsorption portion 300b) of the suction / desorption device 300.
  • the adsorbent 303 can exhibit high adsorption performance without humidifying the atmosphere A71 by the humidifying device 400.
  • FIG. 12 is a schematic view showing the configuration of the humidity control system S6 according to the sixth embodiment of the present invention.
  • the same or equivalent members / parts as those shown in FIGS. 1 to 11 may be designated by the same reference numerals, and duplicate description may be omitted.
  • the humidity control system S6 is provided with a steam supply unit 410 as compared with the humidity control system S3 of the third embodiment, and sucks steam or high humidity air A03 supplied from the steam supply unit 410 instead of the atmosphere A01. The difference is that they are supplied to the regenerating unit 300a of the attachment / detachment device 300. Further, in the humidity control system S3, the high humidity gas A02 humidified by the humidifying device 400 was supplied to the adsorption unit 300b of the suction / desorption device 300, whereas in the humidity control system S6, the low humidity atmosphere A02 was supplied to the adsorption unit 300b. Is supplied to.
  • the steam supply unit 410 is a device that humidifies air by a boiler or a spray, and supplies steam or high-humidity air having a humidity of, for example, 80% RH or more.
  • the steam supply unit 410 supplies the steam A03 to the regeneration unit 300a, which enables high-efficiency heating by latent heat heating or condensation heat transfer.
  • the steam supply unit 410 and the regeneration unit 300a function as a regeneration device that regenerates at least a part of the adsorbent that has adsorbed carbon dioxide and water. Therefore, it is not necessary to provide a heater in the suction / desorption device 300.
  • the steam supply unit 410 supplies steam or high humidity air A03 to the regeneration unit 300a to suppress water desorption from the adsorbent 303, the adsorbent 303 releases CO 2 and moisture during regeneration. The energy consumed at that time can be reduced.
  • suction / desorption device 300A The details of the suction / desorption device 300A will be described with reference to FIGS. 13 to 15.
  • the suction / desorption device 300A can be used in the humidity control systems S1 to S6 according to the first to sixth embodiments instead of the rotor type suction / desorption device 300 shown in FIG.
  • FIG. 13 is a perspective view showing a schematic configuration of the suction / desorption device 300A.
  • the suction / desorption device 300A has an adsorbent 301 and four columns C1 to C4, each of which is filled with the adsorbent 301.
  • the adsorbent 301 is the same material as the adsorbent 303, and is filled in each column C1 to C4.
  • the columns C1 to C4 have a hollow cylindrical shape, and the columns C1 to C4 are collectively arranged so that their side surfaces are close to each other.
  • the CO 2- containing gas A02 (atmosphere A02) is supplied to the three columns C1, C2, and C4, and one column C3 is heated.
  • the CO 2- containing gas A02 supplied to the three columns C1, C2, and C4 is adsorbed and removed by CO 2 and water while in contact with the filled adsorbent 301, and the CO 2 removing gas A21 (gas A21). It is discharged to the outside of the suction / desorption device 300A.
  • the adsorbent 301 inside has already sufficiently adsorbed CO 2 and is in a broken state, and when it is heated, CO 2 and water are desorbed. That is, when the column C3 is heated, the CO 2 concentrated gas A11 (gas A11) is discharged, and the adsorbent 301 is regenerated.
  • the adsorbent 301 filled in the three columns C1, C2, and C4 functions as the adsorbent unit 300b
  • the adsorbent 301 filled in the column C3 functions as the regeneration unit 300a.
  • the suction / desorption device 300A shown in FIG. 13 can continuously function the adsorbent 301 filled in each of the columns C1 to C4 as the adsorbing unit 300b and the regenerating unit 300a.
  • the number of columns is an example and does not have to be four in total, and the column to be heated may be a part of the whole, and is not limited to one.
  • FIG. 14 is a schematic perspective view showing a specific configuration example of the suction / desorption device 300A.
  • the suction / desorption device 300A shown in FIG. 14A has a shaft 304 for fixing the columns C1 to C4 at the center of the assembled columns C1 to C4, and is located near the column C3 on one end side of the columns C1 to C4.
  • the heater H is arranged.
  • the heater H heats the regenerated gas A01 and supplies it to the adsorbent 301 filled in the column C3.
  • the heated regenerated gas A01 is supplied to the adsorbent 301 to heat the adsorbent 301 that has adsorbed CO 2 and moisture.
  • CO 2 and water desorbed from the adsorbent 301 are discharged from the column C3 as CO 2 concentrated gas A11.
  • the shaft 304 When the shaft 304 is rotated by a motor or the like (not shown), the columns C1 to C4 fixed to the outer periphery of the shaft 304 rotate around the shaft 304, and the columns C3 filled with the regenerated adsorbent 301 in addition to the columns C4 and C1.
  • the CO 2- containing gas A02 is supplied to the vehicle.
  • the CO 2 removing gas A21 is discharged from the columns C3, C4, and C1.
  • a column C2 filled with an adsorbent 301 that has become a breakthrough state by adsorbing CO 2 is arranged at a position close to the heater H, and when the heated regenerated gas A01 is supplied to the adsorbent 301, CO 2 and water are desorbed, and the adsorbent 301 is regenerated.
  • the arrangement of the heater H is different from that in FIG. 14A.
  • the heater H is arranged on the side of the column C3.
  • the heater H directly heats the column C3 to heat the adsorbent 301 filled in the column C3 and adsorbing CO 2 and moisture. CO 2 and water desorbed from the adsorbent 301 heated to a predetermined temperature are discharged from the column C3 as CO 2 concentrated gas A11.
  • the shaft 304 When the shaft 304 is rotated by a motor or the like (not shown), the columns C1 to C4 fixed to the outer periphery of the shaft 304 rotate around the shaft 304, and the column is filled with the regenerated adsorbent 301 in addition to the columns C4 and C1.
  • the CO 2- containing gas A02 is supplied to C3.
  • the CO 2 removing gas A21 is discharged from the columns C3, C4, and C1.
  • a column C2 filled with an adsorbent 301 that has been in a broken state by adsorbing CO 2 is arranged at a position close to the heater H.
  • the suction / desorption device 300A shown in FIG. 14C is different from the suction / desorption device 300A in that it does not have a shaft 304, the columns C1 to C4 are fixedly arranged, and the heater H rotates.
  • the heater H is divided into four quarters around the central axis (see axis 304 in FIG. 14A) in the direction indicated by the arrow Db so as to be located near each of the columns C1 to C4 on one end side of the columns C1 to C4. Move one lap at a time.
  • the heater H heats the regenerated gas A01 and supplies it to the adsorbent 301 filled in the column C3.
  • the heated regenerated gas A01 is supplied to the adsorbent 301 to heat the adsorbent 301 that has adsorbed CO 2 and moisture. CO 2 and water desorbed from the adsorbent 301 are discharged from the column C3 as CO 2 concentrated gas A11.
  • the heater H moves in the direction of the arrow Db by a quarter rotation, the heater H is arranged at a position close to the column C2.
  • the heated regenerated gas A01 is supplied to the column C2 from the heater H.
  • the adsorbent 301 that has adsorbed CO 2 and is in a fractured state, CO 2 and water are desorbed, and the adsorbent 301 is regenerated.
  • the CO 2- containing gas A02 is supplied to the column C3 filled with the regenerated adsorbent 301 in addition to the columns C4 and C1 by switching the flow path or the like.
  • the CO 2 removing gas A21 is discharged from the columns C3, C4, and C1.
  • the arrangement of the heater H is different from that in FIG. 14 (c).
  • the heater H moves one quarter around the central axis (see axis 304 in FIG. 14A) in the direction indicated by the arrow Db so as to be located on the side of each column C1 to C4.
  • the heater H directly heats the column C3 to heat the adsorbent 301 filled in the column C3 and adsorbing CO 2 and water. CO 2 and water desorbed from the adsorbent 301 heated to a predetermined temperature are discharged from the column C3 as CO 2 concentrated gas A11.
  • the heater H moves in the direction of the arrow Dd by a quarter rotation, the heater H is arranged at a position close to the column C2 filled with the adsorbent 301 which has adsorbed CO 2 and is in a fractured state.
  • the heater H directly heats the column C2 and the adsorbent 301 is heated to a predetermined temperature, CO 2 and moisture are desorbed from the adsorbent 301 filled in the column C2, and the adsorbent 301 is regenerated. It becomes.
  • the CO 2- containing gas A02 is supplied to the column C3 filled with the regenerated adsorbent 301 in addition to the columns C4 and C1 by switching the flow path or the like.
  • the CO 2 removing gas A21 is discharged from the columns C3, C4, and C1.
  • FIG. 15 is a schematic perspective view showing a specific configuration example of the suction / desorption device 300A.
  • the suction / desorption device 300A shown in FIG. 15 further includes a fan F1 and a heater H in the suction / desorption device 300A shown in FIG. 13, and a connection portion 305 is attached to one end of each column C1 to C4.
  • the fan F1 supplies air (CO 2 containing gas A02) to the columns C1 to C4, and the heater H supplies heated air (regenerated gas A01) to the columns C1 to C4.
  • connection portion 305 connects the pipes PF1 to PF4 from the fan F1 to the columns C1 to C4 and the pipes PH1 to PH4 from the heater H to the columns C1 to C4 to the columns C1 to C4, respectively.
  • the suction / desorption device 300A supplies and stops the supply and supply of air and heated air to the columns C1 to C4 by switching a valve (not shown).
  • the adsorbent 301 filled in any of the columns C1 to C4 to which air is supplied functions as an adsorbent 300b, and the adsorbent 301 filled in any of the columns C1 to C4 to which heated air is supplied is a regeneration unit. Functions as 300a. By switching the valve, which column C1 to C4 functions as the suction unit 300b or the regeneration unit 300a is switched.
  • a decompression device for depressurizing the inside of the column C3 may be provided as a regeneration device, and the gas A11 may be discharged by depressurizing the inside of the column C3.
  • the first condition for the adsorbent 301 (adsorption portion 300b) to adsorb CO 2 and water in the CO 2 containing gas A02 is, for example, the atmospheric pressure in each column C1 to C4 accommodating the adsorbent 301. Atmospheric pressure.
  • the second condition for desorbing CO 2 and water from the adsorbent 301 (regenerating section 300a) to regenerate the adsorbent 301 is that the air pressure in the column C3 is, for example, 10000 Pa, and the column C3 is operated by a decompression device. By lowering the air pressure inside to 10000 Pa, the adsorbent 301 is regenerated.
  • the regenerated gas A01 and A91 are not indispensable in the humidity control systems S1 to S5, and the gas A11 can be discharged only by the depressurization or by the combined use of the depressurization and heating.
  • FIG. 16 is a perspective view showing a schematic configuration of the suction / desorption device 300B.
  • the suction / desorption device 300B has a chamber 310, a filter 320, a supply port 330, and discharge ports 340 and 350.
  • the chamber 310 has a box shape and has an internal space capable of accommodating gas.
  • the filter 320 holds the adsorbent 303 on the entire surface and is fixed to the internal space of the chamber 310.
  • the filter 320 is heated by a heater (not shown).
  • the supply port 330 is attached to an opening on one side wall of the chamber 310, and a pipe or the like leading to the outside is connected to the supply port 330.
  • the CO 2- containing gas A02 is supplied to the internal space of the chamber 310 through the supply port 330.
  • the discharge port 340 is attached to the opening of the other side wall of the chamber 310 facing the side wall to which the supply port 330 is attached, and is connected to the second air passage P2 of the moisture permeable device 200 or a pipe leading to the outside.
  • the CO 2 removing gas A21 is discharged to the moisture permeable device 200 or the outside through the discharge port 340.
  • the discharge port 350 is attached to the opening of the side wall connecting one side wall and the other side wall in the chamber 310, and is connected to a pipe or the like leading to the first air passage P1 of the moisture permeation device 200.
  • the CO 2- containing gas A02 is supplied to the internal space of the chamber 310 through the supply port 330 at room temperature (heater off state).
  • the chamber 310 CO 2 and water are adsorbed on the adsorbent 303 of the filter 320.
  • CO 2 containing gas A02 CO 2 stripping gas A21 to CO 2 and moisture are removed from through the discharge port 340 is discharged to moisture permeation device 200 or external. That is, at room temperature, the adsorbent 303 held by the filter 320 functions as the adsorbent 300b.
  • the suction / desorption device 300B when the filter 320 is heated and the adsorbent 303 reaches a predetermined temperature (heater on state), CO 2 and water are desorbed from the adsorbent 303 of the filter 320. The desorbed CO 2 and water are discharged as CO 2 concentrated gas A11 through the discharge port 350, and the adsorbent 303 is regenerated. That is, at a predetermined temperature, the adsorbent 303 held by the filter 320 functions as the regeneration unit 300a.
  • the entire adsorbent 303 held by the filter 320 adsorbs CO 2 and moisture at room temperature, and when the temperature is brought to a predetermined temperature by heating, the adsorbent 303 is desorbed from CO 2 and moisture. Reproduce.
  • the suction / desorption device 300B causes the adsorbent 303 to function as the regeneration unit 300a or the adsorption unit 300b by turning the heater on and off.
  • adsorption and desorption apparatus 300B shown in FIG. 16 the CO 2 and water recovered from CO 2 containing gas A02, the CO 2 enriched gas A11 can be supplied to the moisture permeable device 200.
  • the suction / desorption device 300B heats the adsorbent 303 with a heater to discharge the CO 2 concentrated gas A11, but instead of the heater, a decompression device (not shown) is provided as a regeneration device.
  • CO 2 concentrated gas A11 may be discharged by reducing the pressure in the chamber 310.
  • the first condition for the adsorbent 303 (adsorption portion 300b) to adsorb CO 2 and water in the CO 2- containing gas A02 is the air pressure in the chamber 310 containing the adsorbent 303 held in the filter 320.
  • it is atmospheric pressure.
  • the second condition for desorbing CO 2 and water from the adsorbent 303 to regenerate the adsorbent 303 is that the air pressure in the chamber 310 is, for example, 10000 Pa, and the air pressure in the chamber 310 is lowered by a decompression device. By setting the value to 10000 Pa, the adsorbent 303 is regenerated.
  • the regenerated gas A01 and A91 are not indispensable in the humidity control systems S1 to S5, and the gas A11 can be discharged only by the depressurization or by the combined use of the depressurization and heating.
  • Membrane dryer 500 instead of the moisture permeable device 200 described above, the membrane dryer 500 shown in FIG. 17 may be used.
  • FIG. 17 is a schematic view of the membrane dryer 500.
  • FIG. 17 is a cross-sectional view of a part of the membrane dryer 500 in a side view.
  • the membrane dryer 500 includes a hollow cylindrical case 402 having both ends open, a plurality of humidity control elements 408 arranged in the case 402, and end cases 404 and 406 that cover both ends of the case 402, respectively. ..
  • the membrane dryer 500 includes a holding member 510 that closes both ends of the case 402 and holds both ends of the humidity control element 408 in the end cases 404 and 406.
  • the holding member 510 closes between the plurality of humidity control elements 408 and the end cases 404, 406.
  • the case 402 is provided with two openings 402a and 402b that allow the inside and outside of the case 402 to communicate with each other.
  • the end cases 404 and 406 have openings 404a and 406a, respectively.
  • FIG. 18 is a schematic perspective view of the humidity control element 408.
  • the humidity control element 408 is a hollow fiber membrane, and has a tubular portion in which a flat moisture permeable film 100 is formed in a hollow tubular shape.
  • the hollow portion inside the cylinder is the first air passage through which the internal air passes
  • the space outside the cylinder that is, the space in contact with the outer peripheral surface is the second air passage through which the outside air passes. ..
  • the humidity control element 408 permeates water vapor using a water vapor concentration gradient between the gas A11 (internal air) passing through the inside of the humidity control element 408 and the external air passing through the outer peripheral surface of the humidity control element 408. Let me. When the gas A11 has a higher water vapor concentration than the external air, the water vapor contained in the gas A11 permeates the moisture permeable membrane 100 and moves to the external air passing through the outer peripheral surface of the humidity control element 408. Further, the humidity control element 408 has thermal conductivity, and the heat of the gas A11 is transferred to the outside air via the humidity control element 408.
  • the difference in water vapor concentration between the internal air and the external air may be provided by pressurizing the internal air to increase the water vapor concentration or depressurizing the external air to decrease the water vapor concentration.
  • the gas A12 in which the amount of water vapor contained and the heat decreased as it passed through the inside of the humidity control element 408 is supplied to the plant factory 1.
  • Either the inside or the outside of the humidity control element 408 may be the first air passage or the second air passage.
  • the gas A11 flowing in from the opening 404a passes through the inside of the plurality of humidity control elements 408.
  • Gas A21 is supplied from the opening 402a to the outer peripheral surface of the humidity control element 408 in the case 402, and total heat exchange with the gas A11 is performed.
  • the gas A12 having a reduced amount of water vapor and heat contained is discharged from the opening 406a and returned to the plant factory 1.
  • the gas A22 which has received the transfer of water vapor and heat from the gas A11 on the outer peripheral surface of the humidity control element 408, is discharged from the opening 402b to the external space outside the plant factory 1, or the adsorbent 303 of the suction / desorption device 300. Is supplied to.
  • the present invention is not limited to the above-described embodiment, and can be appropriately modified, improved, or the like.
  • a plurality of embodiments may be combined and implemented among the above-described embodiments.
  • the material, shape, size, numerical value, form, number, arrangement location, etc. of each component in the above-described embodiment are arbitrary as long as the present invention can be achieved, and are not limited.
  • the gas A12 discharged from the moisture permeation device 200 is supplied to the plant factory 1, but the supply destination of the gas A12 is not limited to the inside of the building such as the plant factory 1.
  • Gas A12 may be supplied into a closed space such as a reactor accommodating a chemical reaction system.
  • the humidity control elements 10 and 10B have a hexagonal shape in a plan view, but the plane shape is divided into two by a straight line, and the inlet and the outlet of the first air passage are arranged on one surface side of one region.
  • the shape may be different, such as a square shape in a plan view, as long as the inlet and outlet of the second air passage are arranged on the other surface side of the other region.
  • a humidity control system (S1 to S5) including a suction / desorption device (300) and a humidity control device (moisture permeation device 200).
  • the suction / desorption device (300, 300A, 300B) is Adsorbents (303, 301) that adsorb carbon dioxide and moisture in the supplied air (A02) under the first condition and desorb the adsorbed carbon dioxide and moisture under the second condition.
  • a regeneration device (heater H, decompression device) that regenerates at least a part of the adsorbent that has adsorbed carbon dioxide and water, and a decompression device.
  • the first discharge unit that discharges the first gas (A11), which is a gas containing carbon dioxide and water desorbed from at least a part of the adsorbent, It has a second discharge unit that discharges the second gas (A21, A81), which is the air from which carbon dioxide and water have been removed by the adsorbent.
  • the humidity control device moisture permeation device 200 is The first air passage (P1) through which the first gas passes and A second air passage (P2) through which a low-humidity gas (A21, A81) containing less water than the first gas is passed, A humidity control system having a moisture permeable membrane (100) that separates the first air passage and the second air passage and allows moisture to permeate between the first gas and the low humidity gas.
  • a humidity control system having a moisture permeable membrane (100) that separates the first air passage and the second air passage and allows moisture to permeate between the first gas and the low humidity gas.
  • the suction / desorption device (300, 300A) is The humidity control system according to the above [1] or [2], wherein at least a part of the adsorbent has a supply unit for supplying a regenerated gas (A01, A91) for regenerating the adsorbent.
  • the suction / desorption device (300) is The supply unit supplies the external air (A01), which is the outside air of the closed space (plant factory 1) to which the first gas has passed through the first air passage, as the regenerated gas
  • the humidity control system (S1, S2, S3) The humidity control system (S1, S2, S3).
  • the suction / desorption device (300) is The supply unit supplies the internal air (A91), which is the air inside the closed space (plant factory 1) to which the first gas has passed through the first air passage, as the regenerated gas [ 3]
  • the humidity control device (200) is The second air passage allows the second gas (A21) to pass through.
  • the humidity control system (S1, S2, S4, S5) according to any one of the above [1] to [5], wherein the moisture permeable membrane allows moisture to permeate between the first gas and the second gas. ..
  • the humidity control device (200) is The second air passage passes through the outside air (A81), which is the outside air of the closed space (plant factory 1) to which the first gas is supplied, which has passed through the first air passage.
  • the humidity control system (S3) according to any one of the above [1] to [5], wherein the moisture permeable membrane allows moisture to permeate between the first gas and the external air.
  • the humidity control system (S2 to S5) according to any one of the above [1] to [7], comprising a humidifying device (400) for humidifying the air (A71) supplied to the adsorbent.
  • the humidity control system (S6) according to any one of [1] to [7] above, wherein the regenerating device includes a steam supply unit that supplies steam or high-humidity air to the adsorbent.
  • a second humidity control device moisture permeable device 200A having a moisture permeable membrane that separates the third air passage and the fourth air passage and allows moisture to permeate between the internal air and the low humidity gas.
  • the humidity control system (S5) according to any one of the above [1] to [9], wherein the low humidity gas (A104) that has passed through the fourth air passage is supplied to the adsorbent.
  • the first condition is that the temperature of the adsorbent is the first temperature.
  • the second condition is a second temperature in which the temperature of the adsorbent is higher than the first temperature.
  • the regenerating device is any one of the above [1] to [10], which is a heating unit (heater H) that heats at least a part of the adsorbent that has adsorbed carbon dioxide and moisture to bring the second temperature.
  • the suction / desorption device further includes a container (columns C1 to C4, chamber 310) for accommodating at least a part of the adsorbent.
  • the first condition is that the atmospheric pressure in the container is the first atmospheric pressure.
  • the second condition is a second atmospheric pressure in which the atmospheric pressure in the container is lower than the first atmospheric pressure.
  • the humidity control system according to any one of the above [1] to [10], wherein the regenerating device is a decompression device that lowers the atmospheric pressure in the container to the second atmospheric pressure.
  • the heating unit heats the regenerated gas (A01) for regenerating the adsorbent and supplies the regenerated gas (A01) to a part of the adsorbent filled in the rotor to heat a part of the adsorbent.
  • Adsorption / detachment device [14] The suction / desorption device (300A) in the humidity control system according to any one of the above [1] to [12]. Each has a plurality of columns (C1 to C4) filled with the adsorbent (301). A suction / desorption device in which the regenerating device regenerates the adsorbent filled in a part of the plurality of columns.
  • the moisture permeable membrane is A plurality of first ribs (11a1 to 11a5) forming the first air passage were erected on the surface.
  • a plurality of second ribs (12a1 to 12a5) forming the second air passage were erected on the surface.
  • a humidity control device in which the first moisture permeable membrane and the second moisture permeable membrane are alternately laminated.
  • An adsorption / desorption device having an adsorbent that adsorbs carbon dioxide and moisture in the supplied air under the first condition and desorbs the adsorbed carbon dioxide and moisture under the second condition. Moisture is separated between the first air passage, the second air passage, the first air passage and the second air passage, and between the first gas and the low-humidity gas containing less water than the first gas.
  • a humidity control device having a moisture permeable membrane that allows it to permeate It is a humidity control method that controls the air in a closed space in a humidity control system equipped with.
  • Carbon dioxide and moisture in the supplied air are adsorbed on the adsorbent under the first condition.
  • the adsorbed carbon dioxide and water are desorbed by heating at least a part of the adsorbent and reducing the pressure in the container containing at least a part of the adsorbent.
  • the first gas which is a gas containing desorbed carbon dioxide and water, is discharged.
  • the second gas which is the air from which carbon dioxide and water have been removed by the adsorbent, is discharged.
  • the first air passage allows the first gas to pass through
  • the second air passage allows the low humidity gas to pass through
  • Moisture contained in the first gas is transferred to the low-humidity gas through the moisture-permeable membrane.
  • the humidity control system, absorption / desorption device, humidity control device, and humidity control method of the present invention are used in a building such as a plant factory, a vinyl house, a glass house, etc., where the indoor environment needs to be kept constant, or a chemistry that dislikes humidity. It can be applied to the internal environment control of a closed space such as a reactor that houses a reaction system.

Abstract

調湿システムは、吸脱着装置と調湿装置とを備える。吸脱着装置は、空気中の二酸化炭素及び水分を第一条件において吸着し、第二条件において脱離させる吸着材と、前記吸着材の少なくとも一部を再生する再生装置と、脱離された二酸化炭素及び水分を含む第一ガスを排出する第一排出部と、前記二酸化炭素及び水分が除去された第二ガスを排出する第二排出部とを有する。前記調湿装置は、前記第一ガスを通過させる第一風路と、前記第一ガスよりも少ない水分を含む低湿ガスを通過させる第二風路と、前記第一風路と前記第二風路とを区画し、前記第一ガスと前記低湿ガスとの間で水分を透過させる透湿膜と、を有する。

Description

調湿システム、吸脱着装置、調湿装置及び調湿方法
 本発明は、調湿システム、吸脱着装置、調湿装置及び調湿方法に関する。
 大気中の二酸化炭素(CO)を直接吸収することにより大気中のCOを減少させるDAC(Direct Air Capture)技術や、回収したCOを有効利用するCCU(Carbon Capture and Utilization)技術が検討されている(例えば、特許文献1参照。)。特許文献1では、低湿度でCOを取り込み高湿度でCOを放出する能力を有するイオン交換樹脂を用いて、環境空気からCOを捕捉し、高湿度の温室内へ放出する。尚、潜水調査船等の加圧密閉空間において人体から排出されるCOを除湿剤と接触させて系外へ放出し、除湿剤の湿気で空気を加湿する方法が提案されている(特許文献2参照)。
日本国特許第6204333号公報 日本国特許第3051330号公報
 ところで、植物工場では、完全に閉鎖された、又は、半閉鎖された施設(建物)内において、光、温度、湿度及び二酸化炭素(CO)濃度といった内部環境を制御して、野菜等の植物が生産される。植物工場は、温度、湿度などの室内環境を一定に保つ必要があるため、エアコンや除湿機を利用して環境制御が行われる。上記特許文献1に記載の技術によれば、この植物工場におけるCO濃度の調整に、DAC技術により大気中から回収したCOを利用することができる。
 しかしながら、上記特許文献1によれば、大気が高湿度の場合、COを回収できない。尚、特許文献2は、COの利用について開示しない。
 本発明は、上述した事情に鑑みてなされたものであり、外部の空気が高湿度であっても、この空気から回収したCOを閉空間内に供給でき、かつ、閉空間内の湿度安定化を図ることができる調湿システム、吸脱着装置、調湿装置及び調湿方法を提供することを目的とする。
 本発明の調湿システムは、吸脱着装置と、調湿装置と、を備えた調湿システムであって、前記吸脱着装置が、供給された空気中の二酸化炭素及び水分を第一条件において吸着し、吸着された二酸化炭素及び水分を第二条件において脱離させる吸着材と、前記二酸化炭素及び水分を吸着した前記吸着材の少なくとも一部を再生する再生装置と、前記第二条件において前記吸着材の少なくとも一部から脱離された二酸化炭素及び水分を含むガスである第一ガスを排出する第一排出部と、前記吸着材によって前記二酸化炭素及び水分が除去された前記空気である第二ガスを排出する第二排出部と、を有し、前記調湿装置が、前記第一ガスを通過させる第一風路と、前記第一ガスよりも少ない水分を含む低湿ガスを通過させる第二風路と、前記第一風路と前記第二風路とを区画し、前記第一ガスと前記低湿ガスとの間で水分を透過させる透湿膜と、を有する。
 本発明の調湿システムは、例えば前記調湿装置は、前記透湿膜が、記第一ガスと前記低湿ガスとの間で熱を透過させる。
 本発明の調湿システムは、例えば、前記吸脱着装置は、前記吸着材の少なくとも一部に、前記吸着材を再生するための再生ガスを供給する供給部を有する。
 本発明の調湿システムは、例えば、前記吸脱着装置において、前記供給部が、前記第一風路を通過した前記第一ガスの供給先である閉空間の外部の空気である外部空気を、前記再生ガスとして供給する。
 本発明の調湿システムは、例えば、前記吸脱着装置において、前記供給部が、前記第一風路を通過した前記第一ガスの供給先である閉空間の内部の空気である内部空気を、前記再生ガスとして供給する。
 本発明の調湿システムは、例えば、前記調湿装置において、前記第二風路が、前記第二ガスを通過させ、前記透湿膜が、前記第一ガスと前記第二ガスとの間で水分を透過させる。
 本発明の調湿システムは、例えば、前記調湿装置において、前記第二風路が、前記第一風路を通過した前記第一ガスの供給先である閉空間の外部の空気である外部空気を通過させ、前記透湿膜が、前記第一ガスと前記外部空気との間で水分を透過させる。
 本発明の調湿システムは、例えば、前記吸着材に供給される空気を加湿する加湿装置を備える。
 本発明の調湿システムは、例えば、前記再生装置として、前記吸着材に蒸気又は高湿度空気を供給する蒸気供給部を備える。
 本発明の調湿システムは、例えば、前記第一風路を通過した前記第一ガスの供給先である閉空間の内部の空気である内部空気を通過させる第三風路と、前記内部空気よりも少ない水分を含む低湿ガスを通過させる第四風路と、前記第三風路と前記第四風路とを区画し、前記内部空気と前記低湿ガスとの間で水分を透過させる透湿膜と、を有する第二調湿装置を備え、前記第四風路を通過した前記低湿ガスが、前記吸着材に供給される。
 本発明の調湿システムは、例えば、前記第一条件が、前記吸着材の温度が第一温度であり、前記第二条件が、前記吸着材の温度が前記第一温度よりも高い第二温度であり、前記再生装置が、前記二酸化炭素及び水分を吸着した前記吸着材の少なくとも一部を加熱して前記第二温度とする加熱部である。
 本発明の調湿システムは、例えば、前記吸脱着装置が、前記吸着材の少なくとも一部を収容する容器をさらに有し、前記第一条件が、前記容器内の気圧が第一気圧であり、前記第二条件が、前記容器内の気圧が前記第一気圧よりも低い第二気圧であり、前記再生装置が、前記容器内の気圧を下げて前記第二気圧とする減圧装置である。
 本発明の吸脱着装置は、本発明の調湿システムにおける前記吸脱着装置であって、前記吸着材が内部に充填されたローターを有し、前記加熱部が、前記吸着材を再生するための再生ガスを加熱して、前記ローター内に充填された前記吸着材の一部に供給することで、前記吸着材の一部を加熱する。
 本発明の吸脱着装置は、本発明の調湿システムにおける前記吸脱着装置であって、それぞれに前記吸着材が充填された複数のカラムを有し、前記再生装置が、前記複数のカラムのうち一部のカラムに充填された前記吸着材を再生する。
 本発明の吸脱着装置は、本発明の調湿システムにおける前記吸脱着装置であって、前記吸着材を保持するフィルターを有し、前記再生装置が、前記フィルターに保持された前記吸着材を再生する。
 本発明の調湿装置は、本発明の調湿システムにおける前記調湿装置であって、前記透湿膜が、前記第一風路を形成する複数の第一リブが表面に立設された、複数の第一透湿膜と、前記第二風路を形成する複数の第二リブが表面に立設された、複数の第二透湿膜と、を含み、前記第一透湿膜と前記第二透湿膜とが交互に積層されたものである。
 本発明の調湿方法は、供給された空気中の二酸化炭素及び水分を第一条件において吸着し、吸着された二酸化炭素及び水分を第二条件において脱離させる吸着材を有する吸脱着装置と、第一風路と、第二風路と、前記第一風路と前記第二風路とを区画し、第一ガスと前記第一ガスよりも少ない水分を含む低湿ガスとの間で水分を透過させる透湿膜と、を有する調湿装置と、を備えた調湿システムにおいて、閉空間内の空気を調湿する調湿方法である。調湿方法は、前記吸脱着装置において、供給された空気中の二酸化炭素及び水分を、前記第一条件において前記吸着材に吸着させ、前記吸着材の少なくとも一部の加熱、及び、前記吸着材の少なくとも一部を収容する容器内の減圧の少なくともいずれか一方により、前記第二条件において、吸着された二酸化炭素及び水分を脱離させ、脱離された二酸化炭素及び水分を含むガスである前記第一ガスを排出し、前記吸着材によって前記二酸化炭素及び水分が除去された前記空気である第二ガスを排出し、前記調湿装置において、前記第一風路が、前記第一ガスを通過させ、前記第二風路が、前記低湿ガスを通過させ、前記透湿膜を介して、前記第一ガスに含まれる水分を前記低湿ガスに移動させ、水分が除去された前記第一ガスを、前記閉空間内に供給する。
 本発明によれば、外部の空気が高湿度であっても、この空気から回収したCOを閉空間内に供給でき、かつ、閉空間内の湿度安定化を図ることができる。
図1は、本発明の第1実施形態に係る調湿システムの構成を示す概略図。 図2は、吸脱着装置の構成例を示す概略斜視図。 図3は、透湿装置の構成例を示す概略図。 図4は、調湿エレメントを示す図、(a)調湿エレメントの概略斜視図、(b)透湿膜の概略図。 図5は、風路ユニットの概略斜視図。 図6は、透湿膜の動作原理を示す図。 図7は、調湿エレメントの他の例を示す概略斜視図。 図8は、本発明の第2実施形態に係る調湿システムの構成を示す概略図。 図9は、本発明の第3実施形態に係る調湿システムの構成を示す概略図。 図10は、本発明の第4実施形態に係る調湿システムの構成を示す概略図。 図11は、本発明の第5実施形態に係る調湿システムの構成を示す概略図。 図12は、本発明の第6実施形態に係る調湿システムの構成を示す概略図。 図13は、本発明の第7実施形態に係る吸脱着装置の概略構成を示す斜視図。 図14は、本発明の第7実施形態に係る吸脱着装置の具体的な構成例を示す概略斜視図。 図15は、本発明の第7実施形態に係る吸脱着装置の具体的な構成例を示す概略斜視図。 図16は、本発明の第8実施形態に係る吸脱着装置の構成を示す概略斜視図。 図16は、本発明の第9実施形態に係る他の調湿装置の構成を示す概略斜視図。 図16は、図17に示された調湿エレメントを示す概略斜視図。
 以下、本発明に係る調湿システム、吸脱着装置、調湿装置及び調湿方法の好適な実施形態を、図面に基づいて詳述する。以下、調湿システム、吸脱着装置、調湿装置及び調湿方法を、閉空間の一例である植物工場内へ二酸化炭素(CO)を供給する際、植物工場内の湿度調整を行う場合に適用した例を示す。
(第1実施形態:調湿システムS1)
 図1は、本発明の第1実施形態に係る調湿システムS1の構成を示す概略図である。調湿システムS1は、吸脱着装置300と、透湿装置200とを備え、植物工場1の近傍等に設けられる。植物工場1内部は、植物の育成に適した一定の環境を維持するよう制御される。植物工場1内部は、一例として、温度を22~25℃、湿度を55~85%RH、CO濃度を1%(Dry)より高い程度、の範囲に保つ必要がある。本開示では、大気中のCOを直接吸着材に吸着させるDAC(Direct Air Capture)技術を利用して、COを植物工場1内に供給する際、吸着材の再生時に発生する湿気を透湿膜で処理して、植物工場1内の湿度安定化を図る例を示す。
 吸脱着装置300は、吸着部300b及び再生部300aを有する。吸着部300bは、第一条件において、大気A02中のCO及び水分を吸着材303(図2参照)に吸着させ、再生部300aは、第二条件において、吸着材303からCO及び水分を脱離させて吸着材303を再生する。吸脱着装置300は、吸着材303を再生する再生装置として、後述するヒーター(加熱部)を有する。第一条件は、例えば吸着材303が室温(例えば、0℃~40℃)であり、第二条件は、例えば吸着材303が約100℃以上であり、ヒーターの加熱により吸着材303を約100℃以上として吸着材303を再生する。吸脱着装置300は、図示しない供給口(供給部)から再生ガスA01の供給を受けて、吸着材303から脱離されたCO及び水分を含むガスA11(第一ガス)を排出して、透湿装置200の第一風路P1(図6参照)に供給する。吸脱着装置300は、吸着材303によってCO及び水分が除去された大気A02であるガスA21を排出する。排出されたガスA21は、透湿装置200の第二風路P2(図6参照)に供給される。
 透湿装置200は、第一風路P1と、第二風路P2と、第一風路P1と第二風路P2とを区画する透湿膜100(図6参照)と、を備える。透湿装置200において、ガスA11と、ガスA11よりも少ない水分を含む低湿ガスであるガスA21とが、透湿膜100を介して接触することで、ガスA11の水分が低湿なガスA21に移動し、ガスA11に含まれる水分が低減(調整)される。透湿装置200の第一風路P1の出口は植物工場1内に通じており、第一風路P1を通過して低湿となったガスA12は、植物工場1内に供給される。
 調湿システムS1において、植物工場1から、透湿装置200からのガスA12供給量等に応じて、適宜、植物工場1内部の空気であるガスA3が排出される。また、このガスA3及び透湿装置200から排出された高湿ガスA22を含むガスA4が、吸脱着装置300の吸着材303(吸着部300b)に、大気A02とともに供給される。これにより、例えば、一部のアミンポリマー系吸着材等のように加湿条件下で吸着力が向上する吸着材を用いた場合では、吸着材303の吸着性能を向上できる。
(吸脱着装置300)
 図2を参照して、吸脱着装置300の詳細を説明する。図2は、図1に示した吸脱着装置300の構成例を示す概略斜視図である。吸脱着装置300は、吸着材303と、吸着材303が内部に充填されたローター302と、ヒーターH(加熱部)と、二つのファンF2、F3と、を有する。
 吸着材303は、温度変化のみで、COを繰り返し吸脱着することが可能な材料である。吸着材303は、筒状体に充填されたり、フィルターに保持されて用いられ得る。吸着材303は、室温(第一温度、例えば0℃~40℃)において、供給された空気(大気)と接触することで空気中のCOを吸着する。吸着材303は、所定温度(第二温度、例えば約100℃)に加熱されることで、CO及び水分を脱離させ、再度CO及び水分を吸着可能に再生される。また、吸着材303は、大気圧(第一気圧)において、供給された空気中のCOを吸着し、吸着材303を収容する容器内が減圧される(第二気圧、例えば10000 Pa)ことで、CO及び水分を脱離させ、再度CO及び水分を吸着可能に再生される。吸着材303の減圧による再生については、後述する。
 吸着材303としては、炭酸カリウム、炭酸カルシウム等の金属炭酸塩、モノアミン水溶液等の液体アミン、又は、多孔体にアミン液体を充填したもの、多孔体表面にアミンモノマー修飾したもの、アミンポリマー等の固体アミンを用いることが好ましい。また、吸着材303として、活性炭、ゼオライト、シリカ等の無機多孔体、4級アミン含有イオン交換樹脂等のイオン交換樹脂、又は、金属有機構造体(MOF:Metal Organic Frameworks)単体もしくはアミン修飾MOFを用いることができる。
 ローター302は、中空円筒形状を有し、吸着材303が内部に充填され、図示しないモーター等によって、中心軸周りに一定速度で回転駆動される。ローター302に充填された吸着材303のうち、CO及び水分を吸着する領域が吸着部300bとして機能し、加熱されてCO及び水分を脱離させる領域が再生部300aとして機能する。
 ファンF3は、ローター302の一面側下方に設けられる。ファンF3は、CO含有ガスA02(大気A02)を外部から吸い込んで吸着材303に供給する。CO含有ガスA02は、回転するローター302に充填された吸着材303と接触しながら、CO及び水分が吸着除去されて、CO除去ガスA21(ガスA21)として吸脱着装置300の外部に排出される。
 ヒーターHは、ローター302の他面側に固定配置され、吸着材303を再生するための再生ガスA01(大気A01)を加熱する電気ヒーターである。ヒーターHに加熱された再生ガスA01は、高温となり、ファンF2が動作することで吸着材303に供給される。加熱された再生ガスA01が吸着材303に供給され、CO及び水分を吸着した吸着材303を所定温度に加熱する。
 ファンF2は、ローター302の一面側上方に設けられる。ファンF2が動作することで、高温の再生ガスA01がローター302の他面側から吸着材303に供給される。高温の再生ガスA01が吸着材303に接触すると、吸着材303に吸着されているCO及び水分が脱離し、CO濃縮ガスA11(ガスA11)となり、吸着材303は再生される。CO濃縮ガスA11は、ローター302の一面側から吸脱着装置300の外部に排出される。
 吸脱着装置300は、ローター302に充填された吸着材303における、加熱された再生ガスA01が供給される領域が再生部300aとして機能し、その他の領域が吸着部300bとして機能する。吸脱着装置300は、ローター302が回転することにより、吸着部300bとして機能していた領域が、再生部300aとして機能する領域に移行し、再生部300aとして機能していた領域が、吸着部300bとして機能する領域に移行する。これらの移行が連続的に行われる。このように、図2に示した吸脱着装置300は、CO含有ガスA02からCO及び水分を回収し、CO濃縮ガスA11を透湿装置200に供給できる。
(透湿装置200)
 図3~図6を参照して、透湿装置200の詳細を説明する。
 図3は、透湿装置200の構成例を示す概略図である。図3において、実線の矢印は第一風路P1を通過するガスA11、A12の流れを示し、破線の矢印は第二風路P2を通過するガスA21、A22の流れを示す。
 図3に示すように、透湿装置200は、調湿エレメント10と、ケース201と、ファン212、213と、を備える。調湿エレメント10については後述する。
 ケース201は、調湿エレメント10を収容する。ケース201は、内部に隔壁202、203、204、203が設けられる。隔壁202、203は、水平方向に延在し、ケース201の内部空間を上下に区画する。隔壁204は、垂直方向に延在し、ケース201の内部空間上側を水平方向に区画する。隔壁205は、垂直方向に延在し、ケース201の内部空間下側を水平方向に区画する。調湿エレメント10は、隔壁202~205に接続され、ケース201内部空間の中央に固定される。ケース201の内部空間は、上側が、第一空間200a、第二空間200bの二つに区画され、下側が、第三空間200c、第四空間200dの二つに区画される。
 ケース201の外部には、接続口208~211が設けられる。接続口208、210は、ケース201左側壁の開口部(図示せず)にそれぞれ取り付けられる。接続口208を介して、ガスA21が第一空間200aに供給される。ファン213及び接続口210を介して、調湿エレメント10を通過したガスA21が、高湿とされたガスA22として、第三空間200cから屋外に排出される。接続口209を介して、ガスA11が第二空間200bに供給される。ファン212及び接続口211を介して、調湿エレメント10を通過したガスA11が、低湿とされたガスA12として、第四空間200dから植物工場1内に供給される。
 ファン212は、第四小空間200d内において、ケース201右側壁の接続口211に配置され、調湿エレメント10の第一風路P1へのガスA11の供給又は第一風路P1からのガスA12の排出を促進する。ファン213は、第二空間200c内において、ケース201左側壁の接続口210に配置され、調湿エレメント10の第二風路P2へのガスA21の供給又は第二風路P2からのガスA22の排出を促進する。ファン212、213は、図示しない制御部によって、動作が制御される。
 透湿装置200の動作を説明する。制御部によってファン212、213が駆動される。ファン212が動作すると、吸脱着装置300から、CO及び水分を含むガスA11が、接続口209を介してケース201内の第二空間200bに取り込まれる。取り込まれたガスA11は、入口P1Iから調湿エレメント10の第一風路P1に供給される。第一風路P1を通過するガスA11は、第二風路P2を通過する低湿ガスA21と、透湿膜100を介して全熱交換(顕熱及び潜熱)されて、出口P1Oから第四空間200dに至り、ファン212及び接続口211を介して、植物工場1内に供給される。
 一方、ファン213が動作すると、吸脱着装置300から排出された低湿ガスA21が接続口208を介してケース201内の第一空間200aに取り込まれる。取り込まれたガスA21は、入口P2Iから調湿エレメント10の第二風路P2に供給される。第二風路P2を通過するガスA21は、第一風路P1を通過するガスA11と、透湿膜100を介して全熱交換されて、出口P2Oから第三空間200eに至る。ガスA11からの水分及び熱を含んだガスA21は、ファン213及び接続口210を経てガスA22として透湿装置200の外部に排出される。
(調湿エレメント10、10B)
 図4~図6を参照して、図3に示した調湿エレメント10の詳細を説明する。図4は、調湿エレメント10を示す図であり、図4(a)が調湿エレメントの概略斜視図、図4(b)が透湿膜の概略図である。図5は、風路ユニットの概略斜視図であり、図6は、透湿膜の動作原理を示す図である。これらの図に示すように、調湿エレメント10は、風路ユニット11、12が交互に積層されたものであり、第一風路P1と、第二風路P2と、透湿膜100と、を備える。第一風路P1は、吸脱着装置300から排出された、高CO濃度、高湿度、かつ高温のガスA11を通過させる。第二風路P2は、吸脱着装置300から排出された、低湿ガスA21を通過させる。
 透湿膜100は、少なくとも、透湿性、ガスバリア性及び熱伝導性を有すればよく、その材質や構成は特に限定されない。透湿膜100としては、例えば、セルロース繊維を主体とする多孔質の原紙(和紙、クラフト紙等)に塩化カルシウム(CaCl)などの吸湿材を分散させた(練り込んだ)ものや、セロファンの他、キチンやフィブロインなどの非水溶性繊維を含む繊維層中に、凝集したポリエチレングリコールやポリビニルアルコール等の親水化材料を分散させたもの、等を用いることができる。
 透湿膜100の好適な一例を、図4(b)を参照して説明する。透湿膜100は、支持体120および複合材110を含む。支持体120は、ポリマーや中空繊維等の多孔質材料を含む。複合材110は、支持体120の上に塗布され得る。複合材110は、酸化グラフェン化合物およびポリビニルアルコールを含む。酸化グラフェン化合物及びポリビニルアルコールは架橋していてもよい。酸化グラフェン化合物が、ポリビニルアルコールの重量と比較して約0.1重量%~約10重量%で存在してもよい。酸化グラフェン化合物が、酸化グラフェン、還元された酸化グラフェン、官能化された酸化グラフェン、または官能化及び還元された酸化グラフェンであってもよい。
 図5に示すように、風路ユニット11は、平面視六角形状の透湿膜100と、透湿膜100の表面に立設されたリブ11a1~11a5とを有する。リブ11a1は六角形状の一辺に沿う直線形状を有する。リブ11a2~リブ11a5は、それぞれ、リブ11a1と同形状の直線部と、直線部の両端からそれぞれ延びる延在部とを有する。リブ11a5は透湿膜100の縁部に沿って設けられ、リブ11a4~11a1は、各直線部が互いに平行となるよう、等間隔に配置される。
 風路ユニット12は、平面視六角形状の透湿膜100と、透湿膜100の表面に立設されたリブ12a1~12a5とを有する。リブ12a1は六角形状の一辺に沿う直線形状を有する。リブ12a2~リブ12a5は、それぞれ、リブ12a1と同形状の直線部と、直線部の両端からそれぞれ延びる延在部とを有する。リブ12a5は透湿膜100の縁部に沿って設けられ、リブ12a1~12a4は、各直線部が互いに平行となるよう、等間隔に配置される。
 リブ11a1~11a5及びリブ12a1~12a5は、ポリエチレンやポリプロピレン等の樹脂、アルミニウム等の金属、ガラス、セラミックス、ファイバー材料、木材、紙材等を用いることができる。特に吸湿性の良い素材を用いると調湿素子の透湿性能(潜熱交換効率)が向上する。
 風路ユニット11、12は、リブ11a1~11a5及びリブ12a1~12a5の各直線部が互いに平行となるように積層される。交互に積層された風路ユニット11、12において、リブ11a1~11a5と、リブ11a1~11a5の上下に配置された透湿膜100とが、第一風路P1を構成し、リブ12a1~12a5と、リブ12a1~12a5の上下に配置された透湿膜100とが、第二風路P2を構成する。最上層の風路ユニット12の上方には、透湿膜100が固定される。第一風路P1の入口P1Iは吸脱着装置300の再生部300aに通じ、出口P1Oは植物工場1内に通じる(図1及び図3参照)。第二風路P2の入口P2Iは吸脱着装置300の吸着部300bに通じ、出口P2Oは植物工場1外に通じる(図1及び図3参照)。第一風路P1の入口P1I及び出口P1Oは、透湿膜100を、透湿膜100の六角形の外心を挟んで対向する二頂点を接続する直線(図4(a)において左右方向に延びる直線L)で二分割した、一方の領域の一面側に配置される。また、第二風路P2の入口P2I及び出口P2Oは、他方の領域の他面側に配置される。尚、調湿エレメント10における風路ユニット11、12の積層数、並びに、リブ11a1~11a5及びリブ12a1~12a5の高さ、幅(隣接するリブ間の間隔)及び数は、仕様に応じて適宜設定されるものであり、図4(a)、図5に示すものに限定されない。
 図6に示すように、透湿膜100は、ガスバリア性を有し、第一風路P1と第二風路P2とを区画する。透湿膜100は、透湿性を有し、第一風路P1を通過するガスA11(第一ガス)と第二風路P2を通過するガスA21(第二ガス)との間で、水蒸気濃度勾配を利用して水蒸気を透過させる。第一風路P1に流入したガスA11は、第二風路P2に流入したガスA21よりも水蒸気濃度が高いため、ガスA11に含まれる水蒸気(湿気)が透湿膜100を透過してガスA21に移動する。第二風路P2を通過するにつれて、含有する水蒸気量が増加したガスA22は、第二風路P2から屋外へ排出される。一方、第一風路P1を通過するにつれて、含有する水蒸気量が減少したガスA12は、第一風路P1から植物工場1内に供給される。また、透湿膜100は、熱伝導性を有し、第一風路P1を通過するガスA11の熱が、第二風路P2を通過するガスA21に移動する。このように、透湿膜100は、ガスA11とガスA21との間で顕熱交換及び潜熱交換を行う。透湿膜100は、ガスバリア性により、COを透過させない。透湿膜100の顕熱交換効率及び潜熱交換効率は、厚み(薄いほうが効率が良い)、膜を介した温度差と湿度差(差が大きいほど効率が高くなる)に影響を受ける。また、透湿膜100の顕熱交換効率は、素材の熱伝導率によって、透湿膜100の潜熱交換効率は素材の透湿度(水蒸気透過度)、吸水性によっても、影響を受ける。これらの影響を考慮して、透湿膜100の材質、厚みが決定される。
 以上説明した調湿システムS1によれば、吸脱着装置300から排出された、CO及び水分を含み高温なガスA11が第一風路P1を通りガスA12として植物工場1内に供給され、ガスA21が第二風路P2を通りガスA22として建物外に排出される。このとき、ガスA11とガスA21とが透湿膜100を介して接触すると、水蒸気濃度及び温度の高いガスA11から水蒸気濃度及び温度の低いガスA21へと、水蒸気(湿気)及び熱が移動し、COは移動しない。すなわち、ガスA11とガスA21とを透湿膜100に接触させることで、ガスA11に含まれる湿気及び熱を植物工場1外へ放出できる。このように、調湿システムS1によれば、吸脱着装置300が大気中から回収したCOを供給する際、湿気及び温度が透湿装置200で調整されるので、植物工場1内の湿度安定化を図ることができる。また、調湿エレメント10を用いて除湿機を用いることなく除湿できるため、湿度調整にかかるエネルギーコストを削減できる。
 風路ユニット11、12の積層数は、例えば200段等、調湿エレメント10の仕様に応じて適宜設定されるが、積層数を増やすことで、透湿膜100とガスA11及びガスA21との接触面積を増加させて、除湿量を向上できる。また、リブ11a1~11a5及びリブ12a1~12a5が、それぞれ、互いに平行な直線部を有することにより、直線部(平行部)を通過するガスA11及びガスA21は、透湿膜100を介して互いに接触する時間が長くなるため、除湿量を向上できる。
 上述した調湿エレメント10は、透湿膜100の表面にリブ11a1~11a5及びリブ12a1~12a5が立設されたものであるが、リブに代えて、隣接する透湿膜100間に波形状(コルゲート)のスペーサーを設けてもよい。図7に示す調湿エレメント10Bは、スペーサーSP1と、スペーサーSP1の上下に配置された透湿膜100とが、第一風路P1を構成し、スペーサーSP2と、スペーサーSP2の上下に配置された透湿膜100とが、第二風路P2を構成する。調湿エレメント10Bにおいても、第一風路P1の入口P1I及び出口P1Oは植物工場内に通じ、第二風路P2の入口P2I及び出口P2Oは植物工場外に通じる。第一風路P1の入口P1I及び出口P1Oは、透湿膜100を、透湿膜100の六角形の外心を挟んで対向する二頂点を接続する直線(図7において左右方向に延びる直線L)で二分割した、一方の領域の一面側に配置される。また、第二風路P2の入口P2I及び出口P2Oは、他方の領域の他面側に配置される。このように、直線Lを挟んで、第一風路P1の入口P1I及び出口P1Oが一方の領域に、第二風路P2の入口P2I及び出口P2Oが他方の領域に配置されることにより、植物工場の内部及び外部のそれぞれへの通風路(配管)構成を簡略化できる。尚、調湿エレメント10Bにおける透湿膜100及びスペーサーSP1、SP2の積層数、並びに、スペーサーSP1、SP2における波の高さ、幅(隣接する波間の間隔)及び数は、仕様に応じて適宜設定されるものであり、図7に示すものに限定されない。
(第2実施形態:調湿システムS2)
 図8は、本発明の第2実施形態に係る調湿システムS2の構成を示す概略図である。第2実施形態において、図1~図7に示した部材・部位と同一又は同等の部材・部位には同一の符号を付し、重複する説明を省略する場合がある。
 調湿システムS2は、第1実施形態の調湿システムS1と比較して、透湿装置200から排出された高湿ガスA22が吸脱着装置300に供給されない点と、加湿装置400を備える点が異なる。調湿システムS2においては、吸脱着装置300の吸着材303(再生部300a)への再生ガスA01の供給量を例えば10m/hrに絞ることで、透湿装置200を介して植物工場1内に対する高COガスの供給量を抑えている。植物工場1は温湿度管理されており、温湿度を導入することは好ましくないが、調湿システムS2においては、高COガスの供給量を絞ることで、植物工場1内の管理された屋内空気(内部空気)を排出する必要がなくなる。よって、COを適切に供給しながら、屋内空気の管理が容易になる。
 加湿装置400は、例えばCO濃度が400ppm程度の大気A71を500m/hr程度、加湿し、高湿なガスA02として、吸脱着装置300の吸着部300bに供給する。加湿されたガスA02を供給することで吸着材303の吸着性能を向上できる。
 このように、調湿システムS2によれば、調湿システムS1の効果に加え、透湿装置200から排出されたガスA22を吸脱着装置300に供給するための配管が不要となり、システム構成を簡素化できる。尚、加湿装置400は必須ではない。
(第3実施形態:調湿システムS3)
 図9は、本発明の第3実施形態に係る調湿システムS3の構成を示す概略図である。第3実施形態において、図1~図8に示した部材・部位と同一又は同等の部材・部位には同一の符号を付し、重複する説明を省略する場合がある。
 調湿システムS3は、第2実施形態の調湿システムS2と比較して、透湿装置200の第二風路P2に、吸脱着装置300から排出されるガスA21に代えて、大気A81(外部空気)を供給する点が異なる。
 調湿システムS3によれば、調湿システムS2の効果に加え、吸脱着装置300から排出されたガスA21の湿度が高い場合であっても、透湿装置200において、大気A81を利用してガスA11の湿気を調整することにより、高CO濃度ガスA11を除湿できる効果を奏する。
(第4実施形態:調湿システムS4)
 図10は、本発明の第4実施形態に係る調湿システムS4の構成を示す概略図である。第4実施形態において、図1~図9に示した部材・部位と同一又は同等の部材・部位には同一の符号を付し、重複する説明を省略する場合がある。
 調湿システムS4は、第2実施形態の調湿システムS2と比較して、大気A01に代えて、植物工場1内の屋内空気A91(内部空気)を、吸脱着装置300の吸着材303(再生部300a)に供給する点が異なる。
 調湿システムS4によれば、調湿システムS2の効果に加え、植物工場1内の管理された屋内空気を再生ガスとして循環利用することで、再生ガスの風量を少なく絞る必要がなくなり、例えば10~500m/hrのように、必要なCO量等に応じて、適宜再生ガスを供給できる効果を奏する。
(第5実施形態:調湿システムS5)
 図11は、本発明の第5実施形態に係る調湿システムS5の構成を示す概略図である。第5実施形態において、図1~図10に示した部材・部位と同一又は同等の部材・部位には同一の符号を付し、重複する説明を省略する場合がある。
 調湿システムS5は、第4実施形態の調湿システムS4と比較して、透湿装置200Aを備える点が異なる。透湿装置200Aは、植物工場1内の空気であるガスA101(内部空気)を通過させる第三風路と、ガスA101よりも少ない水分を含む大気A103(低湿ガス)を通過させる第四風路と、を備える。また、透湿装置200Aは、第三風路と第四風路とを区画し、ガスA101と大気A103との間で水分を透過させる透湿膜と、を有する。
 透湿装置200Aにおいて、ガスA101は、透湿膜を介して低湿な大気A103に水分が移動されて低湿なガスA102となって、植物工場1内に戻される。また、低湿な大気A103は透湿膜を介してガスA101の水分を得て高湿なガスA104となって、吸脱着装置300の吸着材303(吸着部300b)に供給される。
 調湿システムS5によれば、高湿なガスA104が吸着部300bに供給されるため、加湿装置400による大気A71の加湿をすることなく、吸着材303に高い吸着性能を発揮させ得る。
(第6実施形態:調湿システムS6)
 図12は、本発明の第6実施形態に係る調湿システムS6の構成を示す概略図である。第6実施形態において、図1~図11に示した部材・部位と同一又は同等の部材・部位には同一の符号を付し、重複する説明を省略する場合がある。
 調湿システムS6は、第3実施形態の調湿システムS3と比較して、蒸気供給部410を備え、大気A01に代えて、蒸気供給部410から供給されたる蒸気又は高湿度の空気A03を吸脱着装置300の再生部300aに供給する点が異なる。また調湿システムS3では、加湿装置400によって加湿された高湿なガスA02が吸脱着装置300の吸着部300bに供給されたのに対し、調湿システムS6では、低湿な大気A02が吸着部300bに供給される。
 蒸気供給部410は、ボイラー、又は、スプレーによって空気を加湿する装置であり、蒸気、又は、湿度が例えば80%RH以上の高湿度空気を供給する。
 調湿システムS6によれば、蒸気供給部410が再生部300aに蒸気A03を供給することにより、潜熱加熱又は凝縮伝熱による高効率加熱が可能となる。言い換えれば、蒸気供給部410及び再生部300aが、二酸化炭素及び水分を吸着した吸着材の少なくとも一部を再生する再生装置として機能する。よって、吸脱着装置300内にヒーターを設ける必要がない。また、蒸気供給部410が再生部300aに蒸気又は高湿度空気A03を供給することにより、吸着材303からの水脱離が抑制されるため、再生時に吸着材303がCO及び水分を放出する際に消費されるエネルギーを低減できる。
 また再生時に蒸気で吸着材に吸湿させた後に、吸着時に低湿空気を送ることで、水の脱離による吸熱反応が発生する。それによってCOを吸着する際に発生する発熱反応による吸着材の温度上昇を抑制し、吸着量の低下を防ぐことができる。
(第7実施形態:吸脱着装置300A)
 図13~図15を参照して、吸脱着装置300Aの詳細を説明する。吸脱着装置300Aは、図2に示したローター方式の吸脱着装置300に代えて、第1~第6実施形態に係る調湿システムS1~S6に用いることができる。
 図13は、吸脱着装置300Aの概略構成を示す斜視図である。吸脱着装置300Aは、吸着材301と、それぞれに吸着材301が充填された四本のカラムC1~C4と、を有する。吸着材301は、吸着材303と同様の材料であり、各カラムC1~C4に充填される。カラムC1~C4は、中空円筒形状を有し、各側面が互いに近接するように集合配置される。
 吸着材301が充填された四本のカラムC1~C4のうち、三本のカラムC1、C2、C4にCO含有ガスA02(大気A02)が供給され、一本のカラムC3は加熱される。三本のカラムC1、C2、C4に供給されたCO含有ガスA02は、充填された吸着材301と接触しながら、CO及び水分が吸着除去されて、CO除去ガスA21(ガスA21)として吸脱着装置300Aの外部に排出される。一本のカラムC3は、内部の吸着材301がすでにCOを十分に吸着して破過状態とされており、加熱されることによって、CO及び水分を脱離させる。すなわち、カラムC3が加熱されることにより、CO濃縮ガスA11(ガスA11)が排出され、吸着材301は再生される。
 このように、三本のカラムC1、C2、C4に充填された吸着材301は吸着部300bとして機能し、カラムC3に充填された吸着材301は再生部300aとして機能する。カラムC1~C4は、CO含有ガスA02が供給されるカラムと、加熱されるカラムとが、順次切り替わり、COを吸着して破過した吸着材301が加熱により再生し、再度COを吸着する。図13に示した吸脱着装置300Aは、各カラムC1~C4に充填された吸着材301を、吸着部300b及び再生部300aとして連続的に機能させることができる。尚、カラムの本数は例示であり、計四本でなくてもよいし、加熱対象のカラムは全体の内一部であればよく、一本に限定されない。
 図14は、吸脱着装置300Aの具体的な構成例を示す概略斜視図である。
 図14(a)に示す吸脱着装置300Aは、集合させたカラムC1~C4の中心部にカラムC1~C4を固定する軸304を有し、カラムC1~C4の一端側におけるカラムC3の近傍にヒーターHが配置される。ヒーターHは、再生ガスA01を加熱して、カラムC3に充填された吸着材301に供給する。加熱された再生ガスA01が吸着材301に供給され、CO及び水分を吸着した吸着材301を加熱する。吸着材301から脱離したCO及び水分は、カラムC3からCO濃縮ガスA11として排出される。
 軸304が図示しないモーター等により回転すると、軸304の外周に固定されたカラムC1~C4が軸304周りに回転し、カラムC4、C1に加え、再生された吸着材301が充填されたカラムC3に、CO含有ガスA02が供給される。カラムC3、C4、C1からCO除去ガスA21が排出される。ヒーターHの近接位置には、COを吸着して破過状態となった吸着材301が充填されたカラムC2が配置され、加熱された再生ガスA01がこの吸着材301に供給されると、CO及び水分が脱離して、吸着材301が再生されることとなる。
 図14(b)に示す吸脱着装置300Aは、図14(a)と比較して、ヒーターHの配置が異なる。ヒーターHは、カラムC3の側方にヒーターHが配置される。ヒーターHは、カラムC3を直接加熱することで、カラムC3に充填されCO及び水分を吸着した吸着材301を加熱する。所定温度に加熱された吸着材301から脱離したCO及び水分は、カラムC3からCO濃縮ガスA11として排出される。
 軸304が、図示しないモーター等により回転すると、軸304の外周に固定されたカラムC1~C4が軸304周りに回転し、カラムC4、C1に加え、再生された吸着材301が充填されたカラムC3に、CO含有ガスA02が供給される。カラムC3、C4、C1からCO除去ガスA21が排出される。ヒーターHの近接位置には、COを吸着して破過状態となった吸着材301が充填されたカラムC2が配置される。ヒーターHがカラムC2を直接加熱してこの吸着材301が所定温度に加熱されると、カラムC2に充填された吸着材301からCO及び水分が脱離して、吸着材301が再生されることとなる。
 図14(c)に示す吸脱着装置300Aは、図14(a)と比較して、軸304を有さず、カラムC1~C4が固定配置され、ヒーターHが回転する点が異なる。ヒーターHは、カラムC1~C4の一端側において、各カラムC1~C4の近傍に位置するよう、矢印Dbに示される方向に、中心軸(図14(a)の軸304参照)周りに四分の一周ずつ移動する。図示の位置において、ヒーターHは、再生ガスA01を加熱して、カラムC3に充填された吸着材301に供給する。加熱された再生ガスA01が吸着材301に供給され、CO及び水分を吸着した吸着材301を加熱する。吸着材301から脱離したCO及び水分は、カラムC3からCO濃縮ガスA11として排出される。
 ヒーターHが矢印Dbの方向へ、四分の一周回転移動すると、ヒーターHはカラムC2の近接位置に配置される。ヒーターHから、加熱された再生ガスA01がカラムC2に供給される。COを吸着して破過状態となった吸着材301に、加熱された再生ガスA01が供給されることで、CO及び水分が脱離され、吸着材301は再生される。一方、CO含有ガスA02は、流路の切替等により、カラムC4、C1に加え、再生された吸着材301が充填されたカラムC3に、供給される。カラムC3、C4、C1からCO除去ガスA21が排出される。
 図14(d)に示す吸脱着装置300Aは、図14(c)と比較して、ヒーターHの配置が異なる。ヒーターHは、各カラムC1~C4の側方に位置するよう、矢印Dbに示される方向に、中心軸(図14(a)の軸304参照)周りに四分の一周ずつ移動する。図示の位置において、ヒーターHは、カラムC3を直接加熱することで、カラムC3に充填されCO及び水分を吸着した吸着材301を加熱する。所定温度に加熱された吸着材301から脱離したCO及び水分は、カラムC3からCO濃縮ガスA11として排出される。
 ヒーターHが矢印Ddの方向へ、四分の一周回転移動すると、ヒーターHは、COを吸着して破過状態となった吸着材301が充填されたカラムC2の近接位置に配置される。ヒーターHがカラムC2を直接加熱してこの吸着材301が所定温度に加熱されると、カラムC2に充填された吸着材301からCO及び水分が脱離して、吸着材301が再生されることとなる。一方、CO含有ガスA02は、流路の切替等により、カラムC4、C1に加え、再生された吸着材301が充填されたカラムC3に、供給される。カラムC3、C4、C1からCO除去ガスA21が排出される。
 図15は、吸脱着装置300Aの具体的な構成例を示す概略斜視図である。図15に示す吸脱着装置300Aは、図13に示す吸脱着装置300Aにおいて、ファンF1とヒーターHとをさらに備え、各カラムC1~C4の一端に接続部305をそれぞれ取り付けたものである。ファンF1は、空気(CO含有ガスA02)を各カラムC1~C4に供給し、ヒーターHは、加熱空気(再生ガスA01)を各カラムC1~C4に供給する。接続部305は、ファンF1から各カラムC1~C4に至る配管PF1~PF4、及び、ヒーターHから各カラムC1~C4に至る配管PH1~PH4を、各カラムC1~C4にそれぞれ接続する。この吸脱着装置300Aは、図示しないバルブを切り替えることで、各カラムC1~C4への空気及び加熱空気の供給及び供給停止を行う。
 空気が供給されたいずれかのカラムC1~C4に充填された吸着材301は吸着部300bとして機能し、加熱空気が供給されたいずれかのカラムC1~C4に充填された吸着材301は再生部300aとして機能する。バルブを切り替えることで、いずれのカラムC1~C4を吸着部300b又は再生部300aとして機能させるかを切り替える。
 図15に示す状態において、ファンF1からカラムC1、C2、C4に空気が供給されて、CO除去ガスA21が排出される。ヒーターHからカラムC3に加熱空気が供給されて、CO濃縮ガスA11が排出される。このように、図15に示す吸脱着装置300Aは、ファンF1及びヒーターHから各カラムC1~C4バルブへの空気又は加熱空気の供給有無を、バルブによって切り替える。これにより、吸脱着装置300Aは、いずれのカラムC1~C4を吸着部300b又は再生部300aとして機能させるかを操作できる。
 尚、吸脱着装置300Aにおいて、ヒーターHに代えて、カラムC3(容器)内を減圧する減圧装置を再生装置として設け、カラムC3内を減圧することでガスA11を排出してもよい。この場合、吸着材301(吸着部300b)がCO含有ガスA02中のCO及び水分を吸着するための第一条件は、吸着材301を収容する各カラムC1~C4内の気圧が、例えば大気圧である。また、吸着材301(再生部300a)からCO及び水分を脱離させて吸着材301を再生するための第二条件は、カラムC3内の気圧が例えば10000 Paであり、減圧装置によってカラムC3内の気圧を下げて10000 Paとすることで、吸着材301を再生する。吸着材301を減圧によって再生する場合、調湿システムS1~S5において、再生ガスA01、A91の供給は必須ではなく、減圧のみによって、又は減圧と加熱との併用によって、ガスA11を排出できる。
(第8実施形態:吸脱着装置300B)
 図16は、吸脱着装置300Bの概略構成を示す斜視図である。吸脱着装置300Bは、チャンバー310と、フィルター320と、供給口330と、排出口340、350と、を有する。
 チャンバー310は、箱型形状であり、ガスを収容可能な内部空間を有する。フィルター320は、全面において吸着材303を保持し、チャンバー310の内部空間に固定される。フィルター320は、図示しないヒーターにより加熱される。
 供給口330は、チャンバー310の一側壁の開口部に取り付けられ、外部へ通じる配管等が接続される。供給口330を介して、CO含有ガスA02がチャンバー310の内部空間に供給される。排出口340は、チャンバー310における、供給口330が取り付けられた側壁と対向する他側壁の開口部に取り付けられ、透湿装置200の第二風路P2又は外部へ通じる配管等が接続される。排出口340を介して、CO除去ガスA21が透湿装置200又は外部へ排出される。排出口350は、チャンバー310における、一側壁と他側壁とを接続する側壁の開口部に取り付けられ、透湿装置200の第一風路P1に通じる配管等が接続される。
 吸脱着装置300Bは、室温(ヒーターオフ状態)において、供給口330を介してチャンバー310の内部空間にCO含有ガスA02が供給される。チャンバー310内において、フィルター320の吸着材303に、CO及び水分が吸着される。CO含有ガスA02からCO及び水分が除去されたCO除去ガスA21は、排出口340を介して、透湿装置200又は外部へ排出される。すなわち、室温において、フィルター320に保持された吸着材303は、吸着部300bとして機能する。
 吸脱着装置300Bは、フィルター320が加熱されて吸着材303が所定温度となる(ヒーターオン状態)と、フィルター320の吸着材303からCO及び水分が脱離される。脱離されたCO及び水分は、CO濃縮ガスA11として排出口350を介して排出され、吸着材303は再生される。すなわち、所定温度において、フィルター320に保持された吸着材303は、再生部300aとして機能する。
 吸脱着装置300Bにおいて、フィルター320に保持された吸着材303の全体が、室温においてCO及び水分を吸着し、加熱により所定温度とされると、CO及び水分を脱離させ吸着材303を再生する。吸脱着装置300Bは、ヒーターのオンオフにより吸着材303を再生部300a又は吸着部300bとして機能させる。このように、図16に示した吸脱着装置300Bは、CO含有ガスA02からCO及び水分を回収し、CO濃縮ガスA11を透湿装置200に供給できる。
 本実施形態において、吸脱着装置300Bが、ヒーターにより吸着材303を加熱して、CO濃縮ガスA11を排出する例を示したが、ヒーターに代えて、図示しない減圧装置を再生装置として設け、チャンバー310内を減圧することでCO濃縮ガスA11を排出してもよい。この場合、吸着材303(吸着部300b)がCO含有ガスA02中のCO及び水分を吸着するための第一条件は、フィルター320に保持された吸着材303を収容するチャンバー310内の気圧が、例えば大気圧である。また、吸着材303からCO及び水分を脱離させて吸着材303を再生するための第二条件は、チャンバー310内の気圧が例えば10000 Paであり、減圧装置によってチャンバー310内の気圧を下げて10000 Paとすることで、吸着材303を再生する。吸着材303を減圧によって再生する場合、調湿システムS1~S5において、再生ガスA01、A91の供給は必須ではなく、減圧のみによって、又は減圧と加熱との併用によって、ガスA11を排出できる。
 (第9実施形態:メンブレンドライヤー500)
 上述した透湿装置200に代えて、図17に示すメンブレンドライヤー500を用いてもよい。
 図17は、メンブレンドライヤー500の概略図である。図17は、メンブレンドライヤー500の側面視において一部を断面図としたものである。メンブレンドライヤー500は、両端が開放された中空円筒状のケース402と、ケース402内に配置された複数の調湿エレメント408と、ケース402の両端をそれぞれ覆う端部ケース404,406と、を備える。また、メンブレンドライヤー500は、ケース402の両端を閉鎖し、端部ケース404,406内において調湿エレメント408の両端部を保持する保持部材510と、を備える。保持部材510は、複数の調湿エレメント408及び端部ケース404,406の間を閉鎖する。ケース402には、ケース402の内外を連通させる二つの開口部402a,402bが設けられる。端部ケース404,406は、開口部404a,406aをそれぞれ有する。
 図18は、調湿エレメント408の概略斜視図である。調湿エレメント408は、中空糸膜であり、平面状の透湿膜100が中空筒状に形成された筒部を有する。調湿エレメント408は、一例として、筒内部である中空部分が、内部空気を通過させる第一風路であり、筒外部すなわち外周面に接する空間が、外部空気を通過させる第二風路である。
 調湿エレメント408は、調湿エレメント408の内部を通過するガスA11(内部空気)と、調湿エレメント408の外周面を通過する外部空気との間で、水蒸気濃度勾配を利用して水蒸気を透過させる。ガスA11が外部空気よりも水蒸気濃度が高い場合、ガスA11に含まれる水蒸気が透湿膜100を透過して、調湿エレメント408の外周面を通過する外部空気に移動する。また、調湿エレメント408は熱伝導性を有し、ガスA11の熱が調湿エレメント408を介して外部空気に移動する。なお、内部空気を加圧して水蒸気濃度を高めたり、外部空気を減圧して水蒸気濃度を低下させることで、内部空気と外部空気との水蒸気濃度差を設けてもよい。
 調湿エレメント408の内部を通過するにつれて、含有する水蒸気量及び熱が減少したガスA12は、植物工場1内に供給される。尚、調湿エレメント408の内部及び外部のいずれを第一風路又は第二風路としてもよい。
 開口部404aから流入したガスA11は、複数の調湿エレメント408の内部を通過する。ケース402内において調湿エレメント408の外周面には、開口部402aからガスA21が供給されて、ガスA11との間で全熱交換が行われる。含有する水蒸気量及び熱が減少したガスA12は、開口部406aから排出されて、植物工場1内に戻される。一方、調湿エレメント408の外周面においてガスA11から水蒸気及び熱の移動を受けたガスA22は、開口部402bから、植物工場1外の外部空間に排出され、又は吸脱着装置300の吸着材303に供給される。
 尚、本発明は、上述した実施形態に限定されるものではなく、適宜、変形、改良、等が可能である。上述した実施形態のうち複数の実施形態を組み合わせて実施してもよい。その他、上述した実施形態における各構成要素の材質、形状、寸法、数値、形態、数、配置箇所、等は本発明を達成できるものであれば任意であり、限定されない。例えば、上述した実施形態において、透湿装置200から排出されるガスA12を植物工場1内に供給する例を示したが、ガスA12の供給先は植物工場1等の建物内に限定されず、化学反応系を収容する反応器等の閉空間内にガスA12を供給してもよい。また、上述した実施形態において、調湿エレメント10、10Bは平面視六角形状を有するが、平面形状を直線で二分割した、一方の領域の一面側に、第一風路の入口及び出口が配置され、他方の領域の他面側に、第二風路の入口及び出口が配置される構成であれば、平面視正方形状等、異なる形状であってもよい。
 ここで、上述した本発明の実施形態に係る調湿システム、吸脱着装置、調湿装置及び調湿方法の特徴をそれぞれ以下[1]~[17]に簡潔に纏めて列記する。
[1]吸脱着装置(300)と、調湿装置(透湿装置200)と、を備えた調湿システム
(S1~S5)であって、
 前記吸脱着装置(300、300A、300B)は、
  供給された空気(A02)中の二酸化炭素及び水分を第一条件において吸着し、吸着された二酸化炭素及び水分を第二条件において脱離させる吸着材(303、301)と、
  前記二酸化炭素及び水分を吸着した前記吸着材の少なくとも一部を再生する再生装置(ヒーターH、減圧装置)と、
  前記第二条件において前記吸着材の少なくとも一部から脱離された二酸化炭素及び水分を含むガスである第一ガス(A11)を排出する第一排出部と、
  前記吸着材によって前記二酸化炭素及び水分が除去された前記空気である第二ガス(A21、A81)を排出する第二排出部と、を有し、
 前記調湿装置(透湿装置200)は、
  前記第一ガスを通過させる第一風路(P1)と、
  前記第一ガスよりも少ない水分を含む低湿ガス(A21、A81)を通過させる第二風路(P2)と、
  前記第一風路と前記第二風路とを区画し、前記第一ガスと前記低湿ガスとの間で水分を透過させる透湿膜(100)と、を有する
 調湿システム。
[2]前記調湿装置(200)は、前記透湿膜(100)が、前記第一ガスと前記低湿ガスとの間で熱を透過させる
 上記[1]に記載の調湿システム。
[3]前記吸脱着装置(300、300A)は、
  前記吸着材の少なくとも一部に、前記吸着材を再生するための再生ガス(A01、A91)を供給する供給部を有する
 上記[1]又は[2]に記載の調湿システム。
[4]前記吸脱着装置(300)は、
  前記供給部が、前記第一風路を通過した前記第一ガスの供給先である閉空間(植物工場1)の外部の空気である外部空気(A01)を、前記再生ガスとして供給する
 上記[3]に記載の調湿システム(S1、S2、S3)。
[5]前記吸脱着装置(300)は、
  前記供給部が、前記第一風路を通過した前記第一ガスの供給先である閉空間(植物工場1)の内部の空気である内部空気(A91)を、前記再生ガスとして供給する
 上記[3]に記載の調湿システム(S4、S5)。
[6]前記調湿装置(200)は、
  前記第二風路が、前記第二ガス(A21)を通過させ、
  前記透湿膜が、前記第一ガスと前記第二ガスとの間で水分を透過させる
 上記[1]~[5]のいずれか一に記載の調湿システム(S1、S2、S4、S5)。
[7]前記調湿装置(200)は、
  前記第二風路が、前記第一風路を通過した前記第一ガスの供給先である閉空間(植物工場1)の外部の空気である外部空気(A81)を通過させ、
  前記透湿膜が、前記第一ガスと前記外部空気との間で水分を透過させる
 上記[1]~[5]のいずれか一に記載の調湿システム(S3)。
[8]前記吸着材に供給される空気(A71)を加湿する加湿装置(400)を備える
 上記[1]~[7]のいずれか一に記載の調湿システム(S2~S5)。
[9]前記再生装置として、前記吸着材に蒸気又は高湿度空気を供給する蒸気供給部を備える
 上記[1]~[7]のいずれか一に記載の調湿システム(S6)。
[10]前記第一風路を通過した前記第一ガスの供給先である閉空間の内部の空気である内部空気(A101)を通過させる第三風路と、
 前記内部空気よりも少ない水分を含む低湿ガス(A103)を通過させる第四風路と、
 前記第三風路と前記第四風路とを区画し、前記内部空気と前記低湿ガスとの間で水分を透過させる透湿膜と、を有する第二調湿装置(透湿装置200A)を備え、
 前記第四風路を通過した前記低湿ガス(A104)が、前記吸着材に供給される
 上記[1]~[9]のいずれか一に記載の調湿システム(S5)。
[11]前記第一条件は、前記吸着材の温度が第一温度であり、
 前記第二条件は、前記吸着材の温度が前記第一温度よりも高い第二温度であり、
 前記再生装置は、前記二酸化炭素及び水分を吸着した前記吸着材の少なくとも一部を加熱して前記第二温度とする加熱部(ヒーターH)である
 上記[1]~[10]のいずれか一に記載の調湿システム。
[12]前記吸脱着装置は、前記吸着材の少なくとも一部を収容する容器(カラムC1~C4、チャンバー310)をさらに有し、
 前記第一条件は、前記容器内の気圧が第一気圧であり、
 前記第二条件は、前記容器内の気圧が前記第一気圧よりも低い第二気圧であり、
 前記再生装置は、前記容器内の気圧を下げて前記第二気圧とする減圧装置である
 上記[1]~[10]のいずれか一に記載の調湿システム。
[13]上記[11]に記載の調湿システムにおける前記吸脱着装置(300)であって、
 前記吸着材(303)が内部に充填されたローター(302)を有し、
 前記加熱部が、前記吸着材を再生するための再生ガス(A01)を加熱して、前記ローター内に充填された前記吸着材の一部に供給することで、前記吸着材の一部を加熱する
 吸脱着装置。
[14]上記[1]~[12]のいずれか一に記載の調湿システムにおける前記吸脱着装置(300A)であって、
 それぞれに前記吸着材(301)が充填された複数のカラム(C1~C4)を有し、
 前記再生装置が、前記複数のカラムのうち一部のカラムに充填された前記吸着材を再生する
 吸脱着装置。
[15]上記[1]~[12]のいずれか一に記載の調湿システムにおける前記吸脱着装置(300B)であって、
 前記吸着材を保持するフィルター(320)を有し、
 前記再生装置が、前記フィルターを加熱することで、前記フィルターに保持された前記吸着材を再生する
 吸脱着装置。
[16]上記[1]~[12]のいずれか一に記載の調湿システムにおける前記調湿装置
(200)であって、
 前記透湿膜は、
 前記第一風路を形成する複数の第一リブ(11a1~11a5)が表面に立設された、
複数の第一透湿膜と、
 前記第二風路を形成する複数の第二リブ(12a1~12a5)が表面に立設された、
複数の第二透湿膜と、を含み、
 前記第一透湿膜と前記第二透湿膜とが交互に積層された
 調湿装置。
[17]供給された空気中の二酸化炭素及び水分を第一条件において吸着し、吸着された二酸化炭素及び水分を第二条件において脱離させる吸着材を有する吸脱着装置と、
 第一風路と、第二風路と、前記第一風路と前記第二風路とを区画し、第一ガスと前記第一ガスよりも少ない水分を含む低湿ガスとの間で水分を透過させる透湿膜と、を有する調湿装置と、
を備えた調湿システムにおいて、閉空間内の空気を調湿する調湿方法であって、
 前記吸脱着装置において、
  供給された空気中の二酸化炭素及び水分を、前記第一条件において前記吸着材に吸着させ、
  前記吸着材の少なくとも一部の加熱、及び、前記吸着材の少なくとも一部を収容する容器内の減圧の少なくともいずれか一方により、前記第二条件において、吸着された二酸化炭素及び水分を脱離させ、
  脱離された二酸化炭素及び水分を含むガスである前記第一ガスを排出し、
  前記吸着材によって前記二酸化炭素及び水分が除去された前記空気である第二ガスを排出し、
 前記調湿装置において、
  前記第一風路が、前記第一ガスを通過させ、
  前記第二風路が、低湿ガスを通過させ、
  前記透湿膜を介して、前記第一ガスに含まれる水分を前記低湿ガスに移動させ、
  水分が除去された前記第一ガスを、前記閉空間内に供給する
 調湿方法。
 以上、図面を参照しながら各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。
 なお、本出願は、2020年7月15日出願の日本特許出願(特願2020-121610)に基づくものであり、その内容は本出願の中に参照として援用される。
 本発明によれば、外部の空気が高湿度であっても、この空気から回収したCOを閉空間内に供給でき、かつ、閉空間内の湿度安定化を図ることができる。このため、本発明の調湿システム、吸脱着装置、調湿装置及び調湿方法は、植物工場、ビニールハウス、ガラスハウス等、屋内環境を一定に保つ必要がある建物、又は、湿気を嫌う化学反応系を収容する反応器といった閉空間の内部環境制御に適用可能である。
10、10B 調湿エレメント
11、12 風路ユニット
11a1~11a5、12a1~12a5 リブ
100 透湿膜
110 複合材
120 支持体
200、200A 透湿装置
300、300A、300B 吸脱着装置
301、303 吸着材
410 蒸気供給部
F1~F3、212、213 ファン
H ヒーター
P1 第一風路
P2 第二風路
S1~S6 調湿システム

Claims (17)

  1.  吸脱着装置と、調湿装置と、を備えた調湿システムであって、
     前記吸脱着装置は、
      供給された空気中の二酸化炭素及び水分を第一条件において吸着し、吸着された二酸化炭素及び水分を第二条件において脱離させる吸着材と、
      前記二酸化炭素及び水分を吸着した前記吸着材の少なくとも一部を再生する再生装置と、
      前記第二条件において前記吸着材の少なくとも一部から脱離された二酸化炭素及び水分を含むガスである第一ガスを排出する第一排出部と、
      前記吸着材によって前記二酸化炭素及び水分が除去された前記空気である第二ガスを排出する第二排出部と、を有し、
     前記調湿装置は、
      前記第一ガスを通過させる第一風路と、
      前記第一ガスよりも少ない水分を含む低湿ガスを通過させる第二風路と、
      前記第一風路と前記第二風路とを区画し、前記第一ガスと前記低湿ガスとの間で水分を透過させる透湿膜と、を有する
     調湿システム。
  2.  前記調湿装置は、前記透湿膜が、前記第一ガスと前記低湿ガスとの間で熱を透過させる
     請求項1に記載の調湿システム。
  3.  前記吸脱着装置は、
      前記吸着材の少なくとも一部に、前記吸着材を再生するための再生ガスを供給する供給部を有する
     請求項1又は2に記載の調湿システム。
  4.  前記吸脱着装置は、
      前記供給部が、前記第一風路を通過した前記第一ガスの供給先である閉空間の外部の空気である外部空気を、前記再生ガスとして供給する
     請求項3に記載の調湿システム。
  5.  前記吸脱着装置は、
      前記供給部が、前記第一風路を通過した前記第一ガスの供給先である閉空間の内部の空気である内部空気を、前記再生ガスとして供給する
     請求項3に記載の調湿システム。
  6.  前記調湿装置は、
      前記第二風路が、前記第二ガスを通過させ、
      前記透湿膜が、前記第一ガスと前記第二ガスとの間で水分を透過させる
     請求項1~5のいずれか一項に記載の調湿システム。
  7.  前記調湿装置は、
      前記第二風路が、前記第一風路を通過した前記第一ガスの供給先である閉空間の外部の空気である外部空気を通過させ、
      前記透湿膜が、前記第一ガスと前記外部空気との間で水分を透過させる
     請求項1~5のいずれか一項に記載の調湿システム。
  8.  前記吸着材に供給される空気を加湿する加湿装置を備える
     請求項1~7のいずれか一項に記載の調湿システム。
  9.  前記再生装置として、前記吸着材に蒸気又は高湿度空気を供給する蒸気供給部を備える
     請求項1~7のいずれか一項に記載の調湿システム。
  10.  前記第一風路を通過した前記第一ガスの供給先である閉空間の内部の空気である内部空気を通過させる第三風路と、
     前記内部空気よりも少ない水分を含む低湿ガスを通過させる第四風路と、
     前記第三風路と前記第四風路とを区画し、前記内部空気と前記低湿ガスとの間で水分を透過させる透湿膜と、を有する第二調湿装置を備え、
     前記第四風路を通過した前記低湿ガスが、前記吸着材に供給される
     請求項1~9のいずれか一項に記載の調湿システム。
  11.  前記第一条件は、前記吸着材の温度が第一温度であり、
     前記第二条件は、前記吸着材の温度が前記第一温度よりも高い第二温度であり、
     前記再生装置は、前記二酸化炭素及び水分を吸着した前記吸着材の少なくとも一部を加熱して前記第二温度とする加熱部である
     請求項1~10のいずれか一項に記載の調湿システム。
  12.  前記吸脱着装置は、前記吸着材の少なくとも一部を収容する容器をさらに有し、
     前記第一条件は、前記容器内の気圧が第一気圧であり、
     前記第二条件は、前記容器内の気圧が前記第一気圧よりも低い第二気圧であり、
     前記再生装置は、前記容器内の気圧を下げて前記第二気圧とする減圧装置である
     請求項1~10のいずれか一項に記載の調湿システム。
  13.  請求項11に記載の調湿システムにおける前記吸脱着装置であって、
     前記吸着材が内部に充填されたローターを有し、
     前記加熱部が、前記吸着材を再生するための再生ガスを加熱して、前記ローター内に充填された前記吸着材の一部に供給することで、前記吸着材の一部を加熱する
     吸脱着装置。
  14.  請求項1~12のいずれか一項に記載の調湿システムにおける前記吸脱着装置であって、
     それぞれに前記吸着材が充填された複数のカラムを有し、
     前記再生装置が、前記複数のカラムのうち一部のカラムに充填された前記吸着材を再生する
     吸脱着装置。
  15.  請求項1~12のいずれか一項に記載の調湿システムにおける前記吸脱着装置であって、
     前記吸着材を保持するフィルターを有し、
     前記再生装置が、前記フィルターに保持された前記吸着材を再生する
     吸脱着装置。
  16.  請求項1~12のいずれか一項に記載の調湿システムにおける前記調湿装置であって、
     前記透湿膜は、
     前記第一風路を形成する複数の第一リブが表面に立設された、複数の第一透湿膜と、
     前記第二風路を形成する複数の第二リブが表面に立設された、複数の第二透湿膜と、を含み、
     前記第一透湿膜と前記第二透湿膜とが交互に積層された
     調湿装置。
  17.  供給された空気中の二酸化炭素及び水分を第一条件において吸着し、吸着された二酸化炭素及び水分を第二条件において脱離させる吸着材を有する吸脱着装置と、
     第一風路と、第二風路と、前記第一風路と前記第二風路とを区画し、第一ガスと前記第一ガスよりも少ない水分を含む低湿ガスとの間で水分を透過させる透湿膜と、を有する調湿装置と、
    を備えた調湿システムにおいて、閉空間内の空気を調湿する調湿方法であって、
     前記吸脱着装置において、
      供給された空気中の二酸化炭素及び水分を、前記第一条件において前記吸着材に吸着させ、
      前記吸着材の少なくとも一部の加熱、及び、前記吸着材の少なくとも一部を収容する容器内の減圧の少なくともいずれか一方により、前記第二条件において、吸着された二酸化炭素及び水分を脱離させ、
      脱離された二酸化炭素及び水分を含むガスである前記第一ガスを排出し、
      前記吸着材によって前記二酸化炭素及び水分が除去された前記空気である第二ガスを排出し、
     前記調湿装置において、
      前記第一風路が、前記第一ガスを通過させ、
      前記第二風路が、前記低湿ガスを通過させ、
      前記透湿膜を介して、前記第一ガスに含まれる水分を前記低湿ガスに移動させ、
      水分が除去された前記第一ガスを、前記閉空間内に供給する
     調湿方法。
PCT/JP2021/026523 2020-07-15 2021-07-14 調湿システム、吸脱着装置、調湿装置及び調湿方法 WO2022014652A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-121610 2020-07-15
JP2020121610 2020-07-15

Publications (1)

Publication Number Publication Date
WO2022014652A1 true WO2022014652A1 (ja) 2022-01-20

Family

ID=79554720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/026523 WO2022014652A1 (ja) 2020-07-15 2021-07-14 調湿システム、吸脱着装置、調湿装置及び調湿方法

Country Status (2)

Country Link
TW (1) TW202218735A (ja)
WO (1) WO2022014652A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023167260A1 (ja) * 2022-03-04 2023-09-07 日東電工株式会社 酸性ガスの回収システム及び回収方法
WO2023233956A1 (ja) * 2022-05-30 2023-12-07 株式会社西部技研 二酸化炭素供給装置及び方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001205045A (ja) * 2000-01-25 2001-07-31 Tokyo Electric Power Co Inc:The 二酸化炭素除去方法および二酸化炭素除去装置
JP2012522627A (ja) * 2008-04-06 2012-09-27 イノセプラ エルエルシー 二酸化炭素回収
JP2013202595A (ja) * 2012-03-29 2013-10-07 Takasago Thermal Eng Co Ltd 吸着処理装置
JP2017164683A (ja) * 2016-03-16 2017-09-21 株式会社Ihi 二酸化炭素の回収方法及び回収装置
WO2020059197A1 (ja) * 2018-09-20 2020-03-26 株式会社西部技研 二酸化炭素分離回収装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001205045A (ja) * 2000-01-25 2001-07-31 Tokyo Electric Power Co Inc:The 二酸化炭素除去方法および二酸化炭素除去装置
JP2012522627A (ja) * 2008-04-06 2012-09-27 イノセプラ エルエルシー 二酸化炭素回収
JP2013202595A (ja) * 2012-03-29 2013-10-07 Takasago Thermal Eng Co Ltd 吸着処理装置
JP2017164683A (ja) * 2016-03-16 2017-09-21 株式会社Ihi 二酸化炭素の回収方法及び回収装置
WO2020059197A1 (ja) * 2018-09-20 2020-03-26 株式会社西部技研 二酸化炭素分離回収装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023167260A1 (ja) * 2022-03-04 2023-09-07 日東電工株式会社 酸性ガスの回収システム及び回収方法
WO2023233956A1 (ja) * 2022-05-30 2023-12-07 株式会社西部技研 二酸化炭素供給装置及び方法

Also Published As

Publication number Publication date
TW202218735A (zh) 2022-05-16

Similar Documents

Publication Publication Date Title
KR102546428B1 (ko) 환기 공조 장치
KR102511403B1 (ko) 환기 공조 장치
WO2022014652A1 (ja) 調湿システム、吸脱着装置、調湿装置及び調湿方法
US11391474B2 (en) System, components, and methods for air, heat, and humidity exchanger
US20180328601A1 (en) Heat recovery adsorber as ventilation system in buildings
WO2018221740A1 (ja) 換気システム
EP3743665A1 (en) System, components, and methods for air, heat, and humidity exchanger
JP4341924B2 (ja) デシカント換気システム
JP2001070736A (ja) 吸着素子、エアフィルター、エアコンディショナー、酸素冨化装置、二酸化炭素除去装置および燃料電池システム
JP2011089665A (ja) 調湿装置
JP2009090979A (ja) 小型デシカント空調装置
JP2011033302A (ja) 調湿換気装置
JP2671436B2 (ja) 医療用酸素濃縮空気の製造方法
JP2011143358A (ja) 吸湿フィルタおよび加湿装置
JP2021169079A (ja) 空気調和システム、ビル空調システム及び二酸化炭素回収方法
JP5241693B2 (ja) デシカントシステム
JP5413881B2 (ja) 酸素濃縮器
JP3642022B2 (ja) 調湿換気装置
JP2005016945A (ja) 調湿換気装置
JP2002273148A (ja) 調湿機
KR101547292B1 (ko) 플레이트형 제습기
JP4393478B2 (ja) デシカント換気システム
JP2012061438A (ja) 高表面積型吸着剤による連続除湿装置
JP3594486B2 (ja) 湿気交換素子
JP2001311537A (ja) 調湿装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21842126

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21842126

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP