WO2020059197A1 - 二酸化炭素分離回収装置 - Google Patents

二酸化炭素分離回収装置 Download PDF

Info

Publication number
WO2020059197A1
WO2020059197A1 PCT/JP2019/016650 JP2019016650W WO2020059197A1 WO 2020059197 A1 WO2020059197 A1 WO 2020059197A1 JP 2019016650 W JP2019016650 W JP 2019016650W WO 2020059197 A1 WO2020059197 A1 WO 2020059197A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
gas
zone
rotor
dioxide separation
Prior art date
Application number
PCT/JP2019/016650
Other languages
English (en)
French (fr)
Inventor
井上宏志
吉田和行
Original Assignee
株式会社西部技研
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社西部技研 filed Critical 株式会社西部技研
Publication of WO2020059197A1 publication Critical patent/WO2020059197A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/06Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/81Solid phase processes
    • B01D53/83Solid phase processes with moving reactants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide

Definitions

  • the present invention relates to a thermal swing carbon dioxide separation / recovery device suitable for obtaining dehumidified carbon dioxide concentrated gas from exhaust gas and hardly affected by water-soluble gas (NOx, SOx, etc.) in the exhaust gas.
  • the present invention particularly relates to a technology for recovering and concentrating dehumidified carbon dioxide from gas discharged from a thermal power plant, a combustion furnace, or the like.
  • thermal power stations those that use oil, natural gas, or coal as fuel are the most widespread, and others include those that incinerate garbage discharged from cities.
  • coal as fuel have the following features. That is, fuel is inexpensive, coal reserves are much larger than oil, and reserves are located all over the world, so it is easy to obtain and can supply power stably.
  • coal has the problem that it emits more carbon dioxide during combustion than oil and natural gas and also contains more sulfides. Furthermore, not only coal but also heavy oil has the same problems as coal. For this reason, in a power plant using coal or heavy oil as a fuel, a device for removing sulfur oxides and nitrogen oxides is provided to prevent environmental pollution.
  • the exhaust gas contains about several tens of ppm of these impurities (particularly water-soluble gas).
  • carbon dioxide used for industrial purposes has been in short supply due to a decrease in carbon dioxide supply sources such as petroleum refining equipment and ammonia production equipment that emitted high concentrations of carbon dioxide. It is becoming a situation of importing carbon dioxide. Therefore, a system capable of efficiently separating and recovering carbon dioxide from combustion exhaust gas having a lower carbon dioxide emission concentration than petroleum production equipment and ammonia production equipment is desired.
  • the cryogenic separation method is a method in which a raw material gas is pressurized, and carbon dioxide is liquefied and separated by utilizing a difference in liquefaction temperature of each gas under the pressurized gas.
  • the power of the compressor for compressing the gas and the power of the refrigerator for deep cooling are required. For example, when the carbon dioxide concentration is around 10%, other 90% gas other than carbon dioxide that does not need to be recovered is also compressed, The energy consumption becomes excessive because it has to be chilled.
  • the absorption method is a method that absorbs and collects in an alkaline solution such as an amine, collects it, desorbs it by heating, and concentrates it.However, handling an alkaline solution requires expensive materials with high corrosion resistance. And high cost. In addition, energy saving of the whole system has been attempted by using heat exchangers at key points, but the heat capacity of the liquid to be handled is nearing the limit due to its large heat capacity.
  • Non-Patent Document 1 Non-Patent Document 1
  • the recovered carbon dioxide is in a water-saturated state, and needs to be dehumidified when supplied to the cryogenic separation device.
  • liquefied carbon dioxide is often used in food applications, recovery with chemicals such as amines used in the wet method is avoided, so large-scale removal of these chemicals besides dehumidification is also required. Equipment is required.
  • the adsorption method uses a gas adsorbent such as zeolite or activated carbon.
  • the pressure swing method (hereinafter, PSA method) that absorbs and desorbs using a pressure difference
  • the thermal swing method (hereinafter, PSA method) that absorbs and desorbs using a temperature difference TSA method).
  • the PAS method is a typical example that does not involve water. After treating the water-soluble gas in the exhaust gas with a denitration / desulfurization device, -20 ° C DP (DP: dew point temperature) with dehumidifying PSA filled with silica gel or zeolite is used. After the treatment to the extent, it is introduced into a PSA for carbon dioxide separation and recovery to separate and recover carbon dioxide.
  • DP dew point temperature
  • Non-Patent Document 2 a pressure vessel is required because it utilizes the principle that the amount of adsorbed carbon dioxide changes according to pressure, and separates and adsorbs only carbon dioxide by applying pressure, and desorbs and recovers carbon dioxide by reducing pressure.
  • precision equipment such as a solenoid valve, a compressor, and a vacuum pump is required as a peripheral device, and there is a problem that it is difficult to increase the size.
  • the TSA method is a method in which carbon dioxide is adsorbed at a temperature of 50 ° C. or less (hereinafter, all temperatures will be referred to as “Celsius”) and heated to a temperature of about 100 to 300 ° C. to desorb and recover the carbon dioxide. .
  • Patent Literature 1 discloses a method of reducing the pressure loss and increasing the size by using a rotary adsorption honeycomb rotor, and improving the carbon dioxide recovery rate, concentration concentration, and energy saving of recovered energy. ing.
  • the present invention relates to a carbon dioxide separation / recovery device using a rotary carbon dioxide adsorption honeycomb rotor, in which a dehumidification rotor is inserted in front of a rotary carbon dioxide adsorption honeycomb rotor to obtain a dehumidified carbon dioxide gas from exhaust gas.
  • the present invention realizes a carbon dioxide separation and capture device that is hardly affected by water-soluble gas in exhaust gas and has high energy saving.
  • Patent Document 1 relates to a honeycomb rotor rotary carbon dioxide separation and capture device, which includes an adsorption zone, a preheating zone, a low-concentration gas purge zone, and a desorption zone by heating gas circulation along the rotation direction of the rotor. And a high-concentration gas purge zone, a pre-cooling zone, and a cooling zone.
  • the exhaust gas to be treated contains water-soluble gases (NOx, SOx, etc.) in the order of tens of ppm, an expensive non-corrosive material may be used to manufacture the device or to corrode it.
  • it is necessary to take measures such as making the structure robust and durable so that there is no problem, and the initial cost becomes extremely high.
  • the moisture adsorbed on the honeycomb rotor is also concentrated, and the moisture is present in the recovered gas in a saturated state.
  • the present invention relates to a honeycomb rotor rotary carbon dioxide separation and capture device, in which a dehumidification rotor is inserted between a cooler of a waste gas to be treated and a carbon dioxide separation and capture rotor, so that water-soluble gas in the waste gas to be treated is (NOx, SOx, etc.) and the dried gas is sent to the adsorption zone of the carbon dioxide separation and recovery rotor.
  • dehumidified carbon dioxide concentrated gas can be obtained from exhaust gas, when producing liquefied carbon dioxide gas using a cryogenic separation device, etc., do not insert a dehumidification device in front of the cryogenic separation device, or reduce the size of the dehumidification device. It is possible to do.
  • the regeneration energy of the dehumidification rotor can be reduced to almost zero.
  • FIG. 1 is a flow chart of the carbon dioxide separation and recovery device of the present invention.
  • FIG. 2 shows the results of a carbon dioxide separation and recovery test with and without a dehumidification rotor when a zeolite rotor is used as the carbon dioxide separation and recovery rotor in the carbon dioxide separation and recovery apparatus of the present invention.
  • FIG. 3 shows the results of a carbon dioxide separation and recovery test with and without a dehumidification rotor when a Ce oxide rotor is used as the carbon dioxide separation and recovery rotor in the carbon dioxide separation and recovery apparatus of the present invention.
  • the dehumidifying rotor of the present invention can be formed by corrugating inorganic fiber paper such as glass fiber, fiber paper made of resin such as PET (polyethylene terephthalate) or PP (polypropylene), metal foil such as aluminum, or a nonflammable sheet such as a resin sheet. (Corrugated) processed and wrapped in a rotor shape, known in which silica gel, zeolite, polymer sorbent, etc. are supported using an inorganic binder or an organic binder such as vinyl acetate or acrylic. Of the rotor.
  • the carbon dioxide separation and recovery rotor of the present invention is a metal oxide mainly composed of cerium (Ce) or zirconium (Zr) that adsorbs carbon dioxide on a honeycomb formed by corrugating an inorganic fiber sheet such as glass fiber. Or a mesoporous material thereof, or a rotor carrying 13X zeolite, LSX zeolite, activated carbon, carbonate, or the like as an adsorbent for carbon dioxide using an inorganic binder.
  • the gas to be treated is cooled and dehumidified by passing it through a cooler and supplied to the adsorption zone of the dehumidification rotor.
  • the gas that has passed through the adsorption zone of the dehumidification rotor is cooled by a cooler and branched into two paths, a part of which is sent to the adsorption zone of the carbon dioxide separation and recovery rotor, and the remaining part is returned to the adsorption zone of the dehumidification rotor.
  • the gas that has passed through the adsorption zone of the carbon dioxide separation and recovery rotor is mixed with a part of the gas that has passed through the cooling zone of the carbon dioxide separation and recovery rotor, cooled by a cooler, and sent to the cooling zone of the carbon dioxide separation and recovery rotor. .
  • the gas that has passed through the cooling zone of the carbon dioxide separation and recovery rotor is branched into two paths, a part of which is mixed with the gas that has passed through the adsorption zone of the carbon dioxide separation and recovery rotor as described above, and the remaining part of which is of the dehumidification rotor.
  • the gas sent to the regeneration zone and passing through the regeneration zone of the dehumidifying rotor is exhausted outside the apparatus.
  • the gas passing through the regeneration zone of the carbon dioxide separation and recovery rotor is branched into two paths, a part of which is sent to the purge zone of the carbon dioxide separation and recovery rotor and exhausted out of the device, and the remaining part is part of the carbon dioxide separation and recovery rotor. It is returned to the entrance of the regeneration zone and recycled.
  • the carbon dioxide in the regeneration circuit increases by the volume of the desorbed carbon dioxide, and the increased carbon dioxide is recovered, but part of the carbon dioxide is sent to the purge zone of the carbon dioxide separation and recovery rotor and used for prepurge.
  • the gas that has passed through the purge zone of the carbon dioxide separation and recovery rotor is exhausted out of the apparatus.
  • the regeneration heater heats to the temperature required for regeneration of the carbon dioxide separation and recovery rotor to remove moisture adsorbed on the regeneration-side rotor and moisture remaining in the regeneration-side piping.
  • An operation may be performed to send the outside air OA to the regeneration zone of the carbon dioxide separation and recovery rotor.
  • FIG. 1 shows a first embodiment of the present invention.
  • the dehumidifying rotor 1 divided into an adsorption zone 2 and a regeneration zone 3 and the rotation direction of the rotor are divided into four in an adsorption zone 9, a purge zone 10 (prepurge), a regeneration zone 11, and a cooling zone 12.
  • a carbon dioxide separation and recovery rotor 8 is used, and is rotated in the direction of an arrow by a geared motor or the like (not shown).
  • zeolite is used as the adsorbent for the carbon dioxide separation and recovery rotor 8 in this embodiment, an adsorbent (for example, Ce oxide) that adsorbs carbon dioxide may be used.
  • the exhaust gas to be treated is sent to a first cooler 4 such as a direct expansion coil by a blower 5 such as a vortex blower.
  • the gas cooled and dehumidified by the first cooler 4 is sent to the adsorption zone 2 of the dehumidifier rotor 1 and passes therethrough, and then cooled by the second cooler 6 as an intercooler and branched into two paths. Is returned to the adsorption zone 2 through the blower 5 and dehumidified and circulated, and the remaining part is sent to the adsorption zone 9 of the carbon dioxide separation and recovery rotor 8.
  • the gas that has passed through the adsorption zone 9 of the carbon dioxide separation and recovery rotor 8 is mixed with a part of the gas that has passed through the cooling zone 12 of the carbon dioxide separation and recovery rotor 8, and after being cooled by the third cooler 13, It is sent to the cooling zone 12 of the carbon dioxide separation and recovery rotor 8 through.
  • the gas that has passed through the cooling zone 12 of the carbon dioxide separation and recovery rotor 8 is branched into two paths, a part of which is mixed with the gas that has passed through the adsorption zone 9, and the remaining part is sent to the regeneration zone 3 of the dehumidifying rotor 1. . If the energy required for regeneration of the dehumidifying rotor 1 is insufficient, the regeneration gas is heated by the auxiliary regeneration heater 15.
  • the damper 19 and the damper 22 are closed, and the gas is circulated in the regeneration circulation path by the blower 17.
  • the heater 18 heats the carbon dioxide adsorbed to the carbon dioxide separation and recovery rotor 8 to a temperature at which the carbon dioxide is desorbed. Is done.
  • the increased amount of the desorbed carbon dioxide is recovered through the damper 20. A part is sent to the purge zone 10 and exhausted to the outside as the exhaust EA3.
  • zeolite is used as an adsorbent for the carbon dioxide separation / recovery rotor 8, and therefore, if moisture is present in the carbon dioxide separation / recovery rotor 8 at the beginning of operation, it becomes difficult to adsorb carbon dioxide. You need to do it.
  • the outside air OA is taken in from the damper 22 by the blower 17 so that the gas in the adsorption line of the carbon dioxide separation and recovery rotor 8 does not flow, heated by the heater 18 and sent to the regeneration zone 11 of the carbon dioxide separation and recovery rotor 8.
  • the damper 19 is opened, the damper 20 and the damper 21 are closed, and the moisture desorbed from the carbon dioxide separation / recovery rotor 8 through the damper 19 is discharged out of the apparatus as the exhaust EA2 to dry the carbon dioxide separation / recovery rotor 8.
  • the dampers 19 and 22 are closed, and the dampers 20 and 21 are opened to start the operation of the entire carbon dioxide separation and recovery apparatus.
  • the exhaust gas to be treated which has been pretreated with flue gas or the like, is sent to a first cooler 4 by a blower 5 to be cooled and dehumidified, and then introduced into an adsorption zone 4 of a dehumidification rotor 1.
  • a first cooler 4 by a blower 5 to be cooled and dehumidified, and then introduced into an adsorption zone 4 of a dehumidification rotor 1.
  • most of the water-soluble gases NOx, SOx, etc.
  • the water-soluble gas (NOx, SOx, etc.) is further adsorbed and removed together with the moisture, and the dew point can be reduced to a gas containing no water-soluble gas having a dew point of -20 ° C DP or less.
  • the gas that has passed through the adsorption zone 2 is cooled by the second cooler 6 and then branched into two paths, a part of which is returned to the front of the blower 5 and a part of which is remaining in the adsorption zone of the carbon dioxide separation and recovery rotor 8.
  • the gas that has passed through the adsorption zone 9 is mixed with a part of the gas that has passed through the cooling zone 12 of the carbon dioxide separation and recovery rotor 8, then cooled by the third cooler 13 and sent to the cooling zone 12 by the blower 14. .
  • the gas that has passed through the cooling zone 12 is branched into two paths, a portion of which is mixed with the gas that has passed through the adsorption zone 9, and a portion of which is sent to the regeneration zone 3 of the dehumidifying rotor 1 by the blower 16. Is exhausted outside the apparatus as exhaust EA1.
  • the gas which has passed through the cooling zone 12 of the carbon dioxide separation and recovery rotor 8 has a dew point of -20 ° C. DP or less and a temperature of around 140 ° C., and has a very low relative humidity, and is therefore a highly useful gas as a regeneration gas for the dehumidifying rotor 1. It has become. Therefore, the dew point of the gas passing through the adsorption zone 2 of the dehumidifying rotor 1 can be reduced by ⁇ 20 ° C. DP by simply rotating the dehumidifying rotor 1 without using the auxiliary regeneration heater 15 installed on the inlet side of the regeneration zone 3. It can be:
  • the carbon dioxide adsorbed on the carbon dioxide separation / recovery rotor 8 is desorbed by the gas heated by the regeneration heater 18 and increases by the capacity of the desorbed carbon dioxide. Is recovered through the damper 20, and a part of the carbon dioxide passes through the damper 21 and is returned to the regeneration zone 11 through the regeneration circuit. Further, the remaining part is sent to the purge zone 10 and used for pre-purge, and then discharged outside the apparatus as exhaust EA3.
  • the temperature of the carbon dioxide separation / recovery rotor 8 that has passed through the regeneration zone 11 is high. Therefore, the gas heated through the cooling zone 12 and the gas passed through the adsorption zone 9 are mixed and cooled through a third cooler 13 such as a cooling coil or a heat exchanger. To the cooling zone 12.
  • the amount of carbon dioxide recovered from the regeneration circuit through the damper 20 and the excess from the cooling zone 12 are set so that the balance between the carbon dioxide concentration and the carbon dioxide capture rate is the best. It is important to adjust the gas volume.
  • ⁇ ⁇ A portion surrounded by a dotted line A in FIG. 1 is a portion that does not require corrosion-resistant specifications.
  • Most of the water-soluble gas is discharged as drain water in the first cooler 4, but a small amount of the remaining water-soluble gas is contained in the water to be dehumidified by the dehumidification rotor 1.
  • the water-soluble gas is also adsorbed simultaneously with the adsorption of water, so that the water-soluble gas on the adsorption inlet side of the dehumidifying rotor 1 is concentrated. Therefore, unless the material of the dehumidifying rotor 1 is made of a material having corrosion-resistant specifications, the device is deteriorated due to corrosion of the material. Corrosive water-soluble gas does not come to the area surrounded by the dotted line A in FIG.
  • FIG. 2 shows the results of a carbon dioxide separation and recovery test when zeolite is used as an adsorbent for the carbon dioxide separation and recovery rotor 8. Test results when the dehumidifying rotor 1 is provided as Example 1 and when the dehumidifying rotor 1 is not provided as Comparative Example 1 are shown. In Comparative Example 1 without the dehumidifying rotor 1, lower carbon dioxide separation and recovery performance was observed.
  • FIG. 3 shows the results of a carbon dioxide separation and recovery test when Ce oxide was used as the adsorbent for the carbon dioxide separation and recovery rotor 8. Test results when the dehumidifying rotor 1 is provided as Example 2 and when the dehumidifying rotor 1 is not provided as Comparative Example 2 are shown. In Comparative Example 2 without the dehumidifying rotor 1, lower carbon dioxide separation and recovery performance was observed.
  • Example 2 Further, the dew point temperature of the recovered gas in Example 2 was ⁇ 10 ° C. DP to ⁇ 20 ° C. DP. Condensation was found on the line.
  • Table 1 shows the breakdown of the power consumption when the test was performed in Example 1.
  • the electric energy of the auxiliary regeneration heater 15 of the dehumidifying rotor 1 was 0.2 kW, which was a small electric power of 0.9% of the total electric power consumed by the carbon dioxide separation and recovery device.
  • the carbon dioxide separation and recovery device in the dry method of the present invention, it is possible to obtain a carbon dioxide-enriched gas dehumidified from exhaust gas, and thus a cryogenic separation device for producing liquefied carbon dioxide gas Can be eliminated or reduced in size. Furthermore, since an expensive corrosion-resistant material is not used for the carbon dioxide separation and recovery portion of the apparatus, the initial cost can be reduced, and the apparatus can be easily enlarged. Further, since the exhaust gas from the carbon dioxide separation and recovery rotor is used as a regeneration gas for the dehumidification rotor, the energy for lowering the dew point of the gas to be supplied to the carbon dioxide separation and recovery rotor can be reduced to almost zero.
  • the carbon dioxide separation and recovery apparatus of this invention can obtain the carbon dioxide concentrated gas dehumidified from exhaust gas by putting a dehumidification rotor between the cooler of the to-be-processed exhaust gas, and the carbon dioxide separation and recovery rotor, and is effective with little energy consumption. Since carbon dioxide can be separated and recovered in a specific manner, it can be applied to the case where carbon dioxide having a low exhaust gas concentration is concentrated and removed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Treating Waste Gases (AREA)
  • Drying Of Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

【課題】排ガスから除湿された二酸化炭素濃縮ガスを得るとともに、排ガス中の水溶性ガスの影響を受けにくい二酸化炭素分離回収装置を提供することを目的とする。 【解決手段】本発明の二酸化炭素分離回収装置は、被処理排ガスを除湿ロータの吸着ゾーンに供給し、通過したガスの一部を二酸化炭素分離回収ロータの吸着ゾーンに送り、残りの一部を除湿ロータの吸着ゾーンに戻す。二酸化炭素分離回収ロータの吸着ゾーンを通過したガスは冷却ゾーンに送られ、冷却ゾーンを通過したガスの一部は吸着ゾーンを通過したガスと混合され、残りの一部は除湿ロータの再生ゾーンへ送られて装置外へ排気される。二酸化炭素分離回収ロータの再生ゾーンを通過したガスを二路に分岐し、一部は再生ゾーンの入口に戻され再生循環され、脱着された二酸化炭素の容量分、二酸化炭素は回収するが、残りの一部はパージゾーンに送られ装置外へ排気されるようにした。

Description

二酸化炭素分離回収装置
 本発明は、排ガスから除湿された二酸化炭素濃縮ガスを得ることに適し、排ガス中の水溶性ガス(NOx、SOx等)の影響を受けにくい、サーマルスイング二酸化炭素分離回収装置に関するものである。
 地球温暖化対策として、産業や自動車及び家庭から排出される二酸化炭素をできるだけ削減しようとする取り組みが世界レベルで行われている。これには、エネルギーを消費する機器を省エネルギーとなるように改良し、古い機器と置き換えるという取り組みをしている。また、発電などのエネルギーを生み出す機器としては、太陽光や風力等再生可能エネルギーを利用したものを用いたり、火力発電所の発電効率を上げる改良を行ったり、将来的には火力発電所から排出される二酸化炭素を回収濃縮して、地中や深海に貯留する技術等も研究開発されている。
 以上のような取り組みの中で、本件発明は特に火力発電所や燃焼炉等から排出されるガスから、除湿された二酸化炭素を回収して濃縮する技術に関するものである。
 火力発電所としては、燃料に石油や天然ガスや石炭を用いるものが最も普及しており、これ以外には都市より排出されるゴミを焼却するもの等がある。このような火力発電所の中で、石炭を燃料として使用するものは、次のような特徴がある。即ち燃料が安価であり、石炭の世界的な埋蔵量は石油よりも遥かに多く、埋蔵場所も世界各地にあるため入手が容易であり、よって安定して電力を供給できるという特徴がある。
 しかし、石炭は燃焼時に排出する二酸化炭素が石油や天然ガスと比較して多く、硫化物も多いという問題が有る。さらに石炭だけでなく、重質の石油も石炭と同様の問題がある。このため、石炭や重質油を燃料とする発電所などでは、硫黄酸化物や窒素酸化物を除去する装置を設けて、環境汚染を防止している。
 しかしながら、発電所やごみ焼却場には、脱硝・脱硫・排煙装置が備わっているが、大気汚染防止法の排出基準を下回りさえすればよい粗処理レベルの装置である。そのため、排ガス中には 数十ppm程度のこれら不純物(特に水溶性ガス)が含まれている。
 一方で、産業用で使用される二酸化炭素は、高濃度の二酸化炭素を排出していた石油精製設備やアンモニア製造設備といった二酸化炭素供給源が減少したことで、供給不足に陥っており、海外から二酸化炭素を輸入する状況になりつつある。そのため、石油製造設備やアンモニア製造設備よりも二酸化炭素排出濃度の低い燃焼排ガスから、二酸化炭素を効率よく分離回収できるシステムが望まれている。
 産業用の二酸化炭素は輸送や利便性から液化炭酸ガスにすることが多い。液化炭酸ガスを製造する方法として、深冷分離法がある。深冷分離法は原料ガスを加圧して、加圧下での各ガスの液化温度の差を利用して、二酸化炭素を液化分離する方法である。ガスを圧縮するコンプレッサの電力と、深冷する冷凍機の電力が必要で、例えば二酸化炭素濃度が10%前後の場合、二酸化炭素以外の回収する必要のないその他90%のガスも一緒に圧縮、深冷しなくてはならない為、エネルギー消費が過大になる。また、ガス中に多量の水分が含まれると、圧縮による発熱が生じ、冷却のための冷凍機容量を大きくする必要があること、さらには深冷分離装置に過剰負荷がかかるため、装置の破損につながることもある。そのため深冷分離法では事前に水分を除去したガスを装置に供給させる必要がある。
 排ガス中の二酸化炭素を分離回収して濃縮する手段として吸収法、吸着法、膜分離法等種々提案されている。
 吸収法はアミン系等アルカリ液に吸収させて回収し、加熱することで脱離させて濃縮する方法で、すでに実用化されているが、アルカリ液を取り扱うことで耐蝕性の高価な材料が必要で高コストである。また要所に熱交換器を用いて全体システムの省エネルギー化を図ってきたが、取り扱う液体の熱容量が大きいため限界に近づいている。
 アミン吸収法をはじめとした二酸化炭素分離回収装置の多くは湿式法である。湿式法は水を介するため、排ガス中に水溶性ガス(特にSO)がわずかでも残存すると、排ガスを水に接触させた際に酸性あるいはアルカリ溶液(SOの場合は硫酸)となり、装置の内部を著しく腐食させる。そのため、湿式法の二酸化炭素分離回収装置に排ガスを供給する場合は、水溶性ガス(特にSO)を徹底的に除去するための装置を備え付ける必要がある。
 しかしながら、排ガス中の水溶性ガスは100%除去できず、湿式法の中でも例えば、アミン吸収法の場合では、装置の腐食やアミン吸収液の劣化が生じる。そのため、耐蝕性の高価な材料を使用した装置となることや、短期間でのアミン吸収液の交換が必要となりイニシャルコストやランニングコストが非常に高くなる。(非特許文献1)
 さらに、回収した二酸化炭素は水分飽和状態となっており、深冷分離装置に供給する場合には、除湿が必要となる。また、液化炭酸ガスは食品用途に使われることが多いことから、湿式法で使用されるアミンなどの化学物質での回収は敬遠されるため、除湿以外にもこれら化学物質除去のための大規模な装置が必要となる。
 吸着法はゼオライトや活性炭などのガス吸着材を用いるもので、圧力差を利用して吸・脱着するプレッシャースイング法(以下PSA法)と温度差を利用して吸・脱着するサーマルスイング法(以下TSA法)とがある。PAS法は水を介さない代表格であり、排ガス中の水溶性ガスを脱硝・脱硫装置で処理した後に、シリカゲルやゼオライト等を充填した除湿用のPSAで-20℃DP(DP:露点温度)程度まで処理した後に、二酸化炭素分離回収用のPSAに導入して二酸化炭素を分離回収している。(非特許文献2)しかし、圧力により二酸化炭素の吸着量が変わる原理を利用しており、加圧して二酸化炭素のみを分離吸着させ、減圧して二酸化炭素を脱着回収する方法なので圧力容器が必要で、周辺機器として電磁弁やコンプレッサ、真空ポンプ等精密機械も必要となり大型化が困難という問題が有る。
 TSA法は摂氏50℃(以降、温度は全て「摂氏」とする)以下の温度で二酸化炭素を吸着させ、100~300℃前後の温度に加熱して二酸化炭素を脱着させて回収する方法である。
 TSA法の中でも、回転型吸着ハニカムロータを用いることにより、低圧力損失化や大型化が可能で、二酸化炭素の回収率、濃縮濃度、回収エネルギーの省エネ性を高める方法が特許文献1に示されている。
特開2016-175014号公報
「化学吸収法によるCO2の分離・回収技術」、CO2分離・回収と貯留・隔離技術P105~P124、(株)エヌ・ティー・エス、2009 「高炉ガスからの二酸化炭素回収用PSAシステムの開発CO2分離における操作条件の影響」、化学工学論文集、39巻 2013 5 号p.439-444
 本発明は回転型二酸化炭素吸着ハニカムロータを用いた二酸化炭素分離回収装置に関するもので、回転型二酸化炭素吸着ハニカムロータの前段に除湿ロータを入れることによって、排ガスから除湿された二酸化炭素濃縮ガスを得るとともに、排ガス中の水溶性ガスの影響を受けにくく、省エネ性の高い二酸化炭素分離回収装置を実現するものである。
 特許文献1に開示されたものは、ハニカムロータ回転式二酸化炭素分離回収装置に関するもので、ロータの回転方向に沿って吸着ゾーンと、予熱ゾーンと、低濃度ガスパージゾーンと、加熱ガス循環による脱着ゾーンと、高濃度ガスパージゾーンと、予冷ゾーンと、冷却ゾーンを経て再び吸着ゾーンに戻る構成にすることにより、二酸化炭素の回収率、回収濃度、回収エネルギーの省エネ性の高い二酸化炭素分離回収装置を実現するものであるが、被処理排ガス中に水溶性ガス(NOx、SOx等)が数十ppm程度含まれている場合、腐食性の無い高価な材料を使って装置を製作したり、腐食しても問題の無いような堅牢で丈夫な構造としたりするなどの対策が必要となり、イニシャルコストが非常に高くなる。また、脱着ゾーンでの加熱ガス循環回数が増えるにつれて、ハニカムロータに吸着した水分も濃縮され、回収ガス中に水分が飽和状態で存在することになる。
 本発明は、ハニカムロータ回転式二酸化炭素分離回収装置に関するもので、被処理排ガスの冷却器と二酸化炭素分離回収ロータの間に除湿ロータを入れる構成とすることで、被処理排ガス中の水溶性ガス(NOx、SOx等)を除去して乾燥したガスを二酸化炭素分離回収ロータの吸着ゾーンに送るようにしている。
 排ガスから除湿された二酸化炭素濃縮ガスを得ることができるため、深冷分離装置などで液化炭酸ガスを製造する際に、深冷分離装置の前段に除湿装置を入れない、あるいは、除湿装置を小さくすることが可能となる。
 二酸化炭素分離回収ロータを設けた二酸化炭素を分離回収する装置部分に、特別に耐蝕性の材料を用いる必要が無くなる。
 また、二酸化炭素分離回収ロータからの排ガスを除湿ロータの再生ガスとして利用することで除湿ロータの再生エネルギーをほぼゼロにすることができる。
図1は本発明の二酸化炭素分離回収装置のフロー図である。 図2は本発明の二酸化炭素分離回収装置において、二酸化炭素分離回収ロータとしてゼオライトロータを用いた場合の除湿ロータ有りと無しの場合の二酸化炭素分離回収試験結果である。 図3は本発明の二酸化炭素分離回収装置において、二酸化炭素分離回収ロータとしてCe酸化物ロータを用いた場合の除湿ロータ有りと無しの場合の二酸化炭素分離回収試験結果である。
 本発明の除湿ロータは、ガラス繊維などの無機繊維紙、PET(ポリエチレンテレフタレート)やPP(ポリプロピレン)などの樹脂製の繊維紙、アルミなどの金属箔、樹脂シートなどの不燃性のシートを、コルゲート(波付け)加工し、ロータ状に巻き付け加工したもので、無機系バインダーや酢酸ビニル系やアクリル系などの有機系バインダーを使って、シリカゲルやゼオライト、高分子収着材などが担持された公知のロータである。
 本発明の二酸化炭素分離回収ロータは、ガラス繊維などの無機繊維シート等をコルゲート加工して出来たハニカムに、二酸化炭素を吸着するセリウム(Ce)やジルコニウム(Zr)を主成分とする金属酸化物やそのメソ多孔体、あるいは、13Xゼオライト、LSXゼオライト、活性炭、炭酸塩などを二酸化炭素吸着材として無機系バインダーを使って担持したロータである。
 本発明の二酸化炭素分離回収装置は、被処理ガスを冷却器に通して冷却除湿され除湿ロータの吸着ゾーンに供給される。除湿ロータの吸着ゾーンを通過したガスを冷却器で冷却して二路に分岐し、一部を二酸化炭素分離回収ロータの吸着ゾーンに送り、残りの一部を除湿ロータの吸着ゾーンに戻す。二酸化炭素分離回収ロータの吸着ゾーンを通過したガスは、二酸化炭素分離回収ロータの冷却ゾーンを通過したガスの一部と混合され、冷却器で冷却して二酸化炭素分離回収ロータの冷却ゾーンに送られる。二酸化炭素分離回収ロータの冷却ゾーンを通過したガスは二路に分岐され、一部は前記のように二酸化炭素分離回収ロータの吸着ゾーンを通過したガスと混合され、残りの一部は除湿ロータの再生ゾーンへ送られ、除湿ロータの再生ゾーンを通過したガスは装置外へ排気される。二酸化炭素分離回収ロータの再生ゾーンを通過したガスを二路に分岐し、一部は二酸化炭素分離回収ロータのパージゾーンへ送られ装置外へ排気し、残りの一部は二酸化炭素分離回収ロータの再生ゾーンの入口に戻され再生循環される。再生循環路の二酸化炭素は、脱着された二酸化炭素の容量分増加して、増加分の二酸化炭素は回収するが、一部は二酸化炭素分離回収ロータのパージゾーンに送られプレパージに使用される。二酸化炭素分離回収ロータのパージゾーンを通過したガスは装置外へ排気される。
 二酸化炭素を分離回収する前に、再生側のロータに吸着した水分や再生側配管等に残留している水分を除去するために、再生ヒータで二酸化炭素分離回収ロータの再生に必要な温度まで加熱した外気OAを、二酸化炭素分離回収ロータの再生ゾーンに送るような操作をしてもよい。
 図1に本発明の実施例1を示す。この実施例では、吸着ゾーン2と再生ゾーン3に分割された除湿ロータ1とロータの回転方向に対し、吸着ゾーン9、パージゾーン10(プレパージ)、再生ゾーン11、冷却ゾーン12に4分割された二酸化炭素分離回収ロータ8が使われており、ギヤードモータなど(図示せず)で矢印の方向に回転する。なお、この実施例では、二酸化炭素分離回収ロータ8の吸着材としてゼオライトを用いたが、二酸化炭素を吸着する吸着材(例えば、Ce酸化物)を用いてもよい。
 被処理排ガスはボルテックスブロワなどの送風機5により直膨コイルなどの第一の冷却器4に送られる。第一の冷却器4で冷却除湿されたガスは、除湿ロータ1の吸着ゾーン2に送られて通過後、インタークーラとしての第二の冷却器6で冷却されて二路に分岐し、一部は送風機5を通って吸着ゾーン2に戻されて除湿循環され、残りの一部は、二酸化炭素分離回収ロータ8の吸着ゾーン9に送られる。
 二酸化炭素分離回収ロータ8の吸着ゾーン9を通過したガスは、二酸化炭素分離回収ロータ8の冷却ゾーン12を通過したガスの一部と混合され、第三の冷却器13で冷却された後、送風機14を通って二酸化炭素分離回収ロータ8の冷却ゾーン12に送られる。
 二酸化炭素分離回収ロータ8の冷却ゾーン12を通過したガスは二路に分岐され、一部は吸着ゾーン9を通過したガスと混合され、残りの一部は除湿ロータ1の再生ゾーン3に送られる。なお、除湿ロータ1の再生に必要なエネルギーが不足する場合は、補助再生ヒータ15によって再生ガスを加熱する。
 再生ゾーン11では、ダンパ19とダンパ22を閉じて、送風機17によって再生循環路をガスが循環しており、ヒータ18で二酸化炭素分離回収ロータ8に吸着している二酸化炭素を脱着する温度まで加熱される。再生循環路では、脱着された二酸化炭素の容量増加分がダンパ20を通して二酸化炭素回収される。また、一部はパージゾーン10に送られて排気EA3として装置外へ排気される。
 この実施例の場合、二酸化炭素分離回収ロータ8の吸着材としてゼオライトを用いているため、運転当初に二酸化炭素分離回収ロータ8に湿気が存在すると二酸化炭素を吸着しにくくなるためロータの乾燥運転を行なう必要がある。二酸化炭素分離回収ロータ8の吸着ラインのガスが流れないようにして、ダンパ22から送風機17によって外気OAを取り込み、ヒータ18で加熱して二酸化炭素分離回収ロータ8の再生ゾーン11へ送る。ダンパ19を開け、ダンパ20とダンパ21を閉じて、ダンパ19を通して二酸化炭素分離回収ロータ8から脱着した湿気を排気EA2として装置外へ排出することにより二酸化炭素分離回収ロータ8を乾燥させる。この乾燥運転完了後にダンパ19、22を閉じて、ダンパ20、21を開けて二酸化炭素分離回収装置全体の運転を開始する。
 本発明の実施例1の動作を以下説明する。煙道ガス等を前処理した被処理排ガスは送風機5により第一の冷却器4に送られ冷却除湿された後、除湿ロータ1の吸着ゾーン4に導入される。ここで第一の冷却器4でのドレン水と一緒に大部分の水溶性ガス(NOx、SOx等)も除去される。除湿ロータ1の吸着ゾーン2で、さらに水分と一緒に水溶性ガス(NOx、SOx等)が吸着除去され露点が-20℃DP以下の水溶性ガスを含まないガスにすることができる。吸着ゾーン2を通過したガスは第二の冷却器6で冷却された後二路に分岐され、一部は送風機5の前に戻され、残りの一部は二酸化炭素分離回収ロータ8の吸着ゾーン9に送られる。
 吸着ゾーン9を通過したガスは、二酸化炭素分離回収ロータ8の冷却ゾーン12を通過したガスの一部と混合された後、第三の冷却器13で冷却され送風機14で冷却ゾーン12に送られる。冷却ゾーン12を通過したガスは二路に分岐され、一部は吸着ゾーン9を通過したガスと混合され、残りの一部は送風機16によって除湿ロータ1の再生ゾーン3に送られ、再生ゾーン3を通過したガスは排気EA1として装置外に排気される。
 この二酸化炭素分離回収ロータ8の冷却ゾーン12を通過したガスは、露点が-20℃DP以下で温度が140℃前後と相対湿度が極めて低いため、除湿ロータ1の再生ガスとして利用価値の高いガスとなっている。従って、再生ゾーン3の入口側に設置している補助再生ヒータ15を使用しなくても、除湿ロータ1を回転させるだけで除湿ロータ1の吸着ゾーン2を通過したガスの露点を-20℃DP以下にすることができる。
 二酸化炭素分離回収ロータ8の再生ゾーン11では、再生ヒータ18で加熱されたガスで二酸化炭素分離回収ロータ8に吸着した二酸化炭素が脱着され、脱着された二酸化炭素の容量分増加して、増加分の二酸化炭素はダンパ20を通して回収され、一部はダンパ21を通って、再生循環路で再生ゾーン11に戻される。また、残りの一部はパージゾーン10に送られプレパージに使用された後、排気EA3として装置外へ排出される。このプレパージでは、二酸化炭素分離回収ロータ8の回転によってハニカム空隙内の低濃度の二酸化炭素が吸着ゾーン9から再生循環路に流入することを抑制する効果と、二酸化炭素分離回収ロータ8のプレヒート効果がある。
 再生ゾーン11を通過した二酸化炭素分離回収ロータ8は、温度が高く、そのままの状態では、吸着材の吸着能力が低いので冷却する必要がある。そのため、冷却ゾーン12を通って昇温したガスと吸着ゾーン9を通過したガスとを混合させて、冷却コイルや熱交換器などの第三の冷却器13を通して冷却し、二酸化炭素分離回収ロータ8の冷却ゾーン12に送る。
 冷却ゾーン12を通過したガスの多くは再度第三の冷却器13に戻って冷却循環するが、吸着ゾーン9を通過して冷却循環路に供給される被処理ガスに押され、余剰になった分は除湿ロータ1の再生ガスとして使用される。本発明の二酸化炭素分離回収装置では、二酸化炭素濃度と二酸化炭素回収率のバランスが最も良くなるように、再生循環路からダンパ20を通して回収する二酸化炭素の量と、冷却ゾーン12から余剰になったガス量を調整することが重要となる。
 図1の点線Aで囲まれた箇所は、耐蝕仕様を必要としない箇所となっている。第一の冷却器4で大部分の水溶性ガスはドレン水として排出されるが、残存している微量の水溶性ガスは除湿ロータ1で除湿される水分に含まれている。除湿ロータ1では、水分の吸着と同時に水溶性ガスの吸着も生じるため、除湿ロータ1の吸着入口側の水溶性ガスが濃縮される。そのため、除湿ロータ1の装置部分は、耐蝕仕様の材料を使用しないと、材料の腐食による装置の劣化が生じてしまう。図1の点線Aで囲まれた箇所には、腐食性の水溶性ガスが来なくなるため耐蝕仕様を必要としない。
 図2に二酸化炭素分離回収ロータ8の吸着材としてゼオライトを用いた場合の二酸化炭素分離回収試験結果を示す。実施例1として除湿ロータ1が有る場合、比較例1として除湿ロータ1が無い場合の試験結果を示す。除湿ロータ1が無い比較例1の方が二酸化炭素分離回収性能の低下が認められた。
 図3に二酸化炭素分離回収ロータ8の吸着材としてCe酸化物を用いた場合の二酸化炭素分離回収試験結果を示す。実施例2として除湿ロータ1が有る場合、比較例2として除湿ロータ1が無い場合の試験結果を示す。除湿ロータ1が無い比較例2の方が二酸化炭素分離回収性能の低下が認められた。
 また、実施例2の回収ガスの露点温度が-10℃DPから-20℃DPであったことに対して、除湿ロータ1が無い比較例では飽和露点温度(0℃)を超えており、再生ラインに結露が認められた。
 表1に実施例1で試験をした際の消費電力の内訳を示す。除湿ロータ1の補助再生ヒータ15の電力量は0.2kWで、二酸化炭素分離回収装置の全消費電力に対して0.9%とわずかな電力となった。
Figure JPOXMLDOC01-appb-T000001
 以上のように、本発明の乾式法での二酸化炭素分離回収装置を用いることにより、排ガスから除湿された二酸化炭素濃縮ガスを得ることができるため、液化炭酸ガスを製造するための深冷分離装置の前処理装置をなくす、あるいは小さくすることができる。さらに、装置の二酸化炭素分離回収部分に耐蝕性の高価な材料を使用しないため、イニシャルコストを下げることができ、装置の大型化も容易となる。また、二酸化炭素分離回収ロータからの排ガスを除湿ロータの再生ガスとして利用するため、二酸化炭素分離回収ロータに供給するためのガスの露点を下げるためのエネルギーをほぼゼロにすることができる。
 本発明の二酸化分離回収装置は、除湿ロータを被処理排ガスの冷却器と二酸化炭素分離回収ロータの間に入れることで、排ガスから除湿された二酸化炭素濃縮ガスを得られるとともに、少ない消費エネルギーで効果的に二酸化炭素の分離回収を行うことができるため、排ガス濃度の低い二酸化炭素を濃縮除去する場合に適用できる。
1  除湿ロータ
2  吸着ゾーン
3  再生ゾーン
4  第一の冷却器
5  送風機
6  第二の冷却器
7  ダンパ
8  二酸化炭素分離回収ロータ
9  吸着ゾーン
10  パージゾーン
11  再生ゾーン
12  冷却ゾーン
13  第三の冷却器
14  送風機
15  補助再生ヒータ
16  送風機
17  送風機
18  再生ヒータ
19、20、21、22  ダンパ

Claims (4)

  1.  被処理ガスを第一の冷却器に通して、吸着ゾーンと再生ゾーンに2分割された除湿ロータの吸着ゾーンに送り、吸着ゾーンを通過したガスを第二の冷却器に送り二路に分岐し、一部を前記除湿ロータの吸着ゾーンに戻し、残りの一部をロータの回転方向に対し、吸着ゾーン、パージゾーン、再生ゾーン、冷却ゾーンに4分割された二酸化炭素分離回収ロータの吸着ゾーンに送り、前記二酸化炭素分離回収ロータの吸着ゾーンを通過したガスに冷却ゾーンを通過したガスの一部を混合して第三の冷却器に送り、第三の冷却器を通過したガスを前記冷却ゾーンに送り、前記冷却ゾーンを通過したガスを二路に分岐し、一部を前記二酸化炭素分離回収ロータの吸着ゾーンを通過したガスと混合し、残りの一部を前記除湿ロータの再生ゾーンに送り、前記除湿ロータの再生ゾーンを通過したガスを装置外へ排気し、前記二酸化炭素分離回収ロータの再生ゾーンを通過したガスを二路に分岐し、一部を前記パージゾーンに送り、前記パージゾーンを通過したガスを装置外に排気し、残りの一部を前記二酸化炭素分離回収ロータの再生ゾーンに戻して再生循環して二酸化炭素を回収することを特徴とする二酸化炭素分離回収装置。
  2.  前記除湿ロータの再生ゾーンの前に補助再生ヒータを設けたことを特徴とする請求項1記載の二酸化炭素分離回収装置。
  3.  前記再生循環する循環路の前記再生ヒータの前に外気取り入れ配管を設け、前記二酸化炭素分離回収ロータの再生ゾーンの後に装置外への排気用配管を設けたことを特徴とする請求項1、請求項2いずれか1項に記載の二酸化炭素分離回収装置。
  4.  前記二酸化炭素分離回収ロータとして、無機系バインダーを使ってゼオライトまたはCe酸化物からなる二酸化炭素吸着材が担持されていることを特徴とする請求項1から3いずれか1項に記載の二酸化炭素分離回収装置。
PCT/JP2019/016650 2018-09-20 2019-04-18 二酸化炭素分離回収装置 WO2020059197A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-175486 2018-09-20
JP2018175486A JP7112081B2 (ja) 2018-09-20 2018-09-20 二酸化炭素分離回収装置

Publications (1)

Publication Number Publication Date
WO2020059197A1 true WO2020059197A1 (ja) 2020-03-26

Family

ID=69886822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016650 WO2020059197A1 (ja) 2018-09-20 2019-04-18 二酸化炭素分離回収装置

Country Status (2)

Country Link
JP (1) JP7112081B2 (ja)
WO (1) WO2020059197A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022014652A1 (ja) * 2020-07-15 2022-01-20 日東電工株式会社 調湿システム、吸脱着装置、調湿装置及び調湿方法
TWI765783B (zh) * 2021-07-22 2022-05-21 華懋科技股份有限公司 串聯式二氧化碳吸附轉輪系統及其方法
JP7174205B1 (ja) 2022-05-23 2022-11-17 岡野 浩志 空調給気も可能な空気中二酸化炭素をガス源とするドライアイス製造システム

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7230884B2 (ja) * 2020-06-11 2023-03-01 三菱マテリアル株式会社 セメント製造排ガス中のco2活用方法及びco2活用システム
JP7230885B2 (ja) * 2020-06-11 2023-03-01 三菱マテリアル株式会社 セメント製造排ガス中のco2活用方法及びco2活用システム
KR102541125B1 (ko) * 2021-05-03 2023-06-12 한국전력공사 대용량 석탄 취급설비용 다중 대기오염물질 처리 시스템
WO2023112862A1 (ja) * 2021-12-14 2023-06-22 日立造船株式会社 廃棄物焼却設備
JP7226751B1 (ja) * 2022-04-19 2023-02-21 株式会社レブセル 空気清浄機
WO2024013957A1 (ja) * 2022-07-15 2024-01-18 三菱電機株式会社 二酸化炭素回収システム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001205045A (ja) * 2000-01-25 2001-07-31 Tokyo Electric Power Co Inc:The 二酸化炭素除去方法および二酸化炭素除去装置
JP2003181242A (ja) * 2001-12-21 2003-07-02 Tokyo Electric Power Co Inc:The 脱硫装置一体型二酸化炭素除去装置および二酸化炭素除去装置付きボイラー設備
JP2012005943A (ja) * 2010-06-24 2012-01-12 Seibu Giken Co Ltd 二酸化炭素回収装置
JP2012250150A (ja) * 2011-06-01 2012-12-20 Seibu Giken Co Ltd 除湿装置
JP6383467B1 (ja) * 2017-07-19 2018-08-29 株式会社西部技研 除湿空調装置
JP2019013906A (ja) * 2017-07-11 2019-01-31 株式会社西部技研 ガス回収濃縮装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001205045A (ja) * 2000-01-25 2001-07-31 Tokyo Electric Power Co Inc:The 二酸化炭素除去方法および二酸化炭素除去装置
JP2003181242A (ja) * 2001-12-21 2003-07-02 Tokyo Electric Power Co Inc:The 脱硫装置一体型二酸化炭素除去装置および二酸化炭素除去装置付きボイラー設備
JP2012005943A (ja) * 2010-06-24 2012-01-12 Seibu Giken Co Ltd 二酸化炭素回収装置
JP2012250150A (ja) * 2011-06-01 2012-12-20 Seibu Giken Co Ltd 除湿装置
JP2019013906A (ja) * 2017-07-11 2019-01-31 株式会社西部技研 ガス回収濃縮装置
JP6383467B1 (ja) * 2017-07-19 2018-08-29 株式会社西部技研 除湿空調装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022014652A1 (ja) * 2020-07-15 2022-01-20 日東電工株式会社 調湿システム、吸脱着装置、調湿装置及び調湿方法
TWI765783B (zh) * 2021-07-22 2022-05-21 華懋科技股份有限公司 串聯式二氧化碳吸附轉輪系統及其方法
JP7174205B1 (ja) 2022-05-23 2022-11-17 岡野 浩志 空調給気も可能な空気中二酸化炭素をガス源とするドライアイス製造システム
WO2023228457A1 (ja) * 2022-05-23 2023-11-30 岡野浩志 空調給気も可能な空気中二酸化炭素をガス源とするドライアイス製造システム
JP2023172311A (ja) * 2022-05-23 2023-12-06 岡野 浩志 空調給気も可能な空気中二酸化炭素をガス源とするドライアイス製造システム
KR20240044518A (ko) * 2022-05-23 2024-04-04 히로시 오카노 공조 급기도 가능한 공기 중 이산화탄소를 가스원으로 하는 드라이아이스 제조 시스템
KR102670625B1 (ko) 2022-05-23 2024-05-31 히로시 오카노 공조 급기도 가능한 공기 중 이산화탄소를 가스원으로 하는 드라이아이스 제조 시스템

Also Published As

Publication number Publication date
JP2020044504A (ja) 2020-03-26
JP7112081B2 (ja) 2022-08-03

Similar Documents

Publication Publication Date Title
WO2020059197A1 (ja) 二酸化炭素分離回収装置
CN107915227B (zh) 气体回收浓缩装置
CA3077339C (en) Gas recovery and concentration device
JP6498483B2 (ja) ガス回収濃縮装置
CA3064029C (en) Gas recovery and concentration device
JP5485812B2 (ja) 二酸化炭素回収装置
CN106524771B (zh) 一种烧结烟气脱硝的工艺方法
JP5571085B2 (ja) 二酸化炭素分離方法及び装置
KR101110661B1 (ko) 발전설비용 산성가스 분리 시스템
CN103785289A (zh) 处理富含二氧化碳的烟道气的方法和烟道气处理系统
CN110917814A (zh) 印刷行业和排放VOCs废气的其他行业节能减排废气处理系统
CN102266702A (zh) 一种捕集工业废气中氨气的方法和设备及其应用
WO2023228457A1 (ja) 空調給気も可能な空気中二酸化炭素をガス源とするドライアイス製造システム
CN113813744A (zh) 一种提升燃煤锅炉烟气中co2捕集经济性的系统和方法
CN204768144U (zh) 一种有机废气吸附回收装置
JP3592648B2 (ja) 消化ガスの利用方法及び装置
CN205700032U (zh) 废气处理用活性炭吸附与再生装置
EP2724770A1 (en) Absorption unit for drying flue gas
JP6578492B1 (ja) 二酸化炭素回収施用一体型発電機
EP2540377A1 (en) A method of cleaning a carbon dioxide rich flue gas
Ohta et al. CO2 removal technology by chemical absorption and physical adsorption methods
CZ28872U1 (cs) Technologický systém pro záchyt CO2 ze spalin na bázi pevného sorbentu
GHVIU et al. REVIEW OF POST-COMBUSTION CARBON DIOXIDE CAPTURE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19863005

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19863005

Country of ref document: EP

Kind code of ref document: A1