WO2022014554A1 - 炭酸塩の製造方法及び製造装置 - Google Patents

炭酸塩の製造方法及び製造装置 Download PDF

Info

Publication number
WO2022014554A1
WO2022014554A1 PCT/JP2021/026218 JP2021026218W WO2022014554A1 WO 2022014554 A1 WO2022014554 A1 WO 2022014554A1 JP 2021026218 W JP2021026218 W JP 2021026218W WO 2022014554 A1 WO2022014554 A1 WO 2022014554A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbonate
mist
exhaust gas
producing
aqueous solution
Prior art date
Application number
PCT/JP2021/026218
Other languages
English (en)
French (fr)
Inventor
一雄 松浦
俊治 秩父
知由 野村
祐司 安達
壮一郎 島田
慎吾 留守
Original Assignee
ナノミストテクノロジーズ株式会社
双日株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナノミストテクノロジーズ株式会社, 双日株式会社 filed Critical ナノミストテクノロジーズ株式会社
Priority to JP2022536363A priority Critical patent/JPWO2022014554A1/ja
Priority to US18/015,635 priority patent/US20230242410A1/en
Publication of WO2022014554A1 publication Critical patent/WO2022014554A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • C01F11/181Preparation of calcium carbonate by carbonation of aqueous solutions and characterised by control of the carbonation conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/16Evaporating by spraying
    • B01D1/18Evaporating by spraying to obtain dry solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0042Degasification of liquids modifying the liquid flow
    • B01D19/0052Degasification of liquids modifying the liquid flow in rotating vessels, vessels containing movable parts or in which centrifugal movement is caused
    • B01D19/0057Degasification of liquids modifying the liquid flow in rotating vessels, vessels containing movable parts or in which centrifugal movement is caused the centrifugal movement being caused by a vortex, e.g. using a cyclone, or by a tangential inlet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1431Pretreatment by other processes
    • B01D53/145Pretreatment by separation of solid or liquid material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1481Removing sulfur dioxide or sulfur trioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/79Injecting reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/017Combinations of electrostatic separation with other processes, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/019Post-treatment of gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/12Plant or installations having external electricity supply dry type characterised by separation of ionising and collecting stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/41Ionising-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/47Collecting-electrodes flat, e.g. plates, discs, gratings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C9/00Combinations with other devices, e.g. fans, expansion chambers, diffusors, water locks
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D7/00Carbonates of sodium, potassium or alkali metals in general
    • C01D7/07Preparation from the hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/10Oxidants
    • B01D2251/11Air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/30Alkali metal compounds
    • B01D2251/304Alkali metal compounds of sodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/604Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/10Inorganic absorbents
    • B01D2252/103Water
    • B01D2252/1035Sea water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/60Simultaneously removing sulfur oxides and nitrogen oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Definitions

  • the present invention relates to a method and an apparatus for producing a carbonate from carbon dioxide contained in an exhaust gas as a raw material.
  • Patent Document 1 A method for producing calcium carbonate from exhaust gas has been developed.
  • Patent Document 1 carbon dioxide gas in exhaust gas from a combustion furnace or the like is absorbed by a caustic soda solution by a gas-liquid contact method to generate a sodium carbonate solution, while a caustic soda aqueous solution is used as hydration water.
  • Fresh lime is hydrated to produce lime milk, and this lime milk is reacted with a sodium carbonate solution to synthesize calcium carbonate.
  • the above method is a gas-liquid contact method in which the exhaust gas is introduced into the caustic soda solution, and the carbon dioxide gas of the exhaust gas reacts with the caustic soda of the caustic soda solution to form sodium carbonate. It is difficult to react well to make sodium carbonate.
  • the present invention has been developed for the purpose of eliminating this drawback, and an important object of the present invention is a method for producing carbonate and a manufacturing apparatus capable of efficiently producing carbonate from carbon dioxide of exhaust gas as a raw material. Is to provide.
  • an atomization step of using an alkaline aqueous solution as a mist and an exhaust gas by mixing the mist of the alkaline aqueous solution obtained in the atomization step and exhaust gas are used.
  • the carbon dioxide gas is absorbed by the mist, and the cations of the mist and the carbon dioxide gas are combined to form a carbonate, and the mist is in a state of containing carbonate, and the mist containing the carbonate obtained in the mixing step is exhausted. It includes a separation step of separating from the gas.
  • the carbonate manufacturing apparatus mixes an atomizer that atomizes an alkaline aqueous solution into mist, and mist and exhaust gas generated by the atomizer, and mixes mist cations and carbon dioxide. It is equipped with a mixer that combines with gas to form carbonate, and a separator that separates the mist obtained by the mixer from the exhaust gas and recovers the mist containing carbonate.
  • the above manufacturing method and manufacturing equipment have the feature of being able to efficiently manufacture carbonate from the carbon dioxide of the exhaust gas.
  • FIG. 11 is an enlarged cross-sectional view showing a spray unit of the electrostatic atomizer shown in FIG. 11.
  • an atomization step of using an alkaline aqueous solution as a mist and a mist of the alkaline aqueous solution obtained in the atomization step and exhaust gas are mixed.
  • a mixing step in which the carbon dioxide gas of the exhaust gas is absorbed by the mist and the cations of the mist and the carbon dioxide gas are combined to form a carbonate, and the mist is in a state of containing a carbonate, and a mist containing a carbonate obtained in the mixing step. Includes a separation step of separating from the exhaust gas.
  • the atomizer in the atomization step, ultrasonically vibrates the alkaline aqueous solution to form mist.
  • the atomizer in the atomization step, ultrasonically vibrates the alkaline aqueous solution and blows exhaust gas to the surface of the liquid column protruding from the liquid surface. , Mix mist and exhaust gas.
  • the atomizer vibrates the alkaline aqueous solution ultrasonically and blows the conveyed gas to the surface of the liquid column protruding from the liquid surface.
  • the mist mixed gas is used, and the mist mixed gas and the exhaust gas are mixed in the mixing step.
  • the atomizer electrostatically atomizes the spray water of the alkaline aqueous solution sprayed from the nozzle into mist.
  • the atomizer blows exhaust gas to the mist jetted from the nozzle and electrostatically atomized, and the mist and the exhaust gas are blown. And mix.
  • the atomizer blows a conveyed gas to the mist jetted from the nozzle and electrostatically atomized to form a mist mixed gas.
  • the mixing step the mist mixed gas and the exhaust gas are mixed.
  • the average particle size of the mist of the alkaline aqueous solution is 50 ⁇ m or less in the atomization step. Further, in the method for producing a carbonate according to the ninth aspect of the present invention, the average particle size of the mist of the alkaline aqueous solution is 30 ⁇ m or less in the atomization step.
  • the average particle size of the mist of the alkaline aqueous solution is 100 nm or more in the atomization step.
  • a caustic soda solution is used in an alkaline aqueous solution in the atomization step, and in the mixing step, the carbon dioxide gas of the exhaust gas and the caustic soda of the mist are reacted to form sodium carbonate.
  • the mist containing sodium carbonate is separated from the exhaust gas in the separation step.
  • the method for producing carbonate according to the twelfth invention of the present invention further includes a reaction step of reacting the sodium carbonate solution obtained in the separation step with calcium hydroxide to obtain calcium carbonate.
  • reaction step in the reaction step, calcium hydroxide is mixed with the sodium carbonate solution, and the sodium carbonate and calcium hydroxide are reacted to obtain calcium carbonate, and in the reaction step. It comprises a drying step of separating and drying the resulting calcium carbonate precipitate.
  • the mist containing carbonate is separated from the exhaust gas by a cyclone in the separation step.
  • a caustic soda solution produced from seawater as a raw material is used as an alkaline aqueous solution used in the atomization step.
  • the mist of an alkaline aqueous solution and the exhaust gas are mixed by a static mixer in the mixing step.
  • the mist of the alkaline aqueous solution and the exhaust gas are mixed by a mixer, and the inside of the mixer is kept below the dew point temperature.
  • the method for producing a carbonate according to the eighteenth invention of the present invention further includes a pretreatment step of separating the air pollutants contained in the exhaust gas, and in the pretreatment step, carbon dioxide of the exhaust gas from which the air pollutants are separated is carbon dioxide. Carbonate is produced from gas as a raw material.
  • the method for producing a carbonate according to the nineteenth aspect of the present invention further includes a pretreatment step of removing the fine particle substances contained in the exhaust gas, and in the pretreatment step, carbonation of the exhaust gas from which the fine particles are separated is included. Carbonate is produced from gas as a raw material.
  • an alkaline aqueous solution is dissolved in an aqueous solution containing an alkali metal or an alkaline earth metal, or a natural product or a waste containing an alkali metal or an alkaline earth metal is dissolved in water. It is supposed to have been done.
  • the carbonate production apparatus mixes an atomizer that atomizes an alkaline aqueous solution into mist, and mist and exhaust gas generated by the atomizer to form mist cations. It is equipped with a mixer that combines carbon dioxide with carbon dioxide to form a carbonate, and a separator that separates the mist obtained by the mixer from the exhaust gas and recovers the mist containing the carbonate.
  • the atomizer is an ultrasonic atomizer that ultrasonically vibrates an alkaline aqueous solution to make a mist.
  • an ultrasonic atomizer ultrasonically vibrates an alkaline aqueous solution and blows exhaust gas to the surface of a liquid column protruding from the liquid surface to form a mist. It is equipped with a ventilation mechanism that mixes with exhaust gas.
  • an ultrasonic atomizer ultrasonically vibrates an alkaline aqueous solution and blows a conveyed gas to the surface of a liquid column protruding from the liquid surface to blow a mist mixed gas.
  • the mixer is equipped with a ventilation mechanism to mix the mist mixed gas and the exhaust gas.
  • the carbonate manufacturing apparatus is an electrostatic atomizer that electrostatically atomizes spray water of an alkaline aqueous solution sprayed from a nozzle into mist.
  • the carbonate manufacturing apparatus includes a blowing mechanism in which an electrostatic atomizer blows exhaust gas to the electrostatic atomized mist to mix the mist and the exhaust gas. ing.
  • the carbonate manufacturing apparatus includes a blower mechanism in which an electrostatic atomizer blows a conveyed gas to an electrostatically atomized mist to make a mist mixed gas, and a mixer is used. Mixing mist mixed gas and exhaust gas.
  • the atomizer has an average particle size of mist of an alkaline aqueous solution of 50 ⁇ m or less. Further, in the carbonate production apparatus according to the 29th invention of the present invention, the atomizer has an average particle size of mist of an alkaline aqueous solution of 30 ⁇ m or less.
  • the atomizer has an average particle size of mist of an alkaline aqueous solution of 100 nm or more.
  • the alkaline aqueous solution used as the mist by the atomizer is a caustic soda solution
  • the mixer reacts the caustic soda of the mist with the carbon dioxide gas of the exhaust gas to obtain sodium carbonate.
  • the carbonate production apparatus further includes a reactor that reacts the sodium carbonate solution obtained by the separator with calcium hydroxide to obtain calcium carbonate.
  • the apparatus for producing calcium carbonate according to the 33rd invention of the present invention further comprises a dryer for drying calcium carbonate produced in the reactor, and the reactor is prepared by mixing calcium hydroxide with a sodium carbonate solution.
  • a mixing container for reacting sodium carbonate and calcium hydroxide to precipitate calcium carbonate is provided, and a dryer dries the calcium carbonate obtained in the mixing container into a powder.
  • the carbonate manufacturing apparatus according to the 34th invention of the present invention uses a cyclone as a separator.
  • the carbonate manufacturing apparatus uses an alkaline aqueous solution used as a mist by the atomizer as a caustic soda solution produced from seawater as a raw material.
  • the carbonate manufacturing apparatus uses an alkaline aqueous solution as a mist in an atomizer, an aqueous solution containing an alkali metal or an alkaline earth metal, or a natural product containing an alkali metal or an alkaline earth metal.
  • the waste is an aqueous solution in which water is dissolved.
  • the carbonate production apparatus according to the 37th invention of the present invention uses a mixer as a static mixer.
  • the carbonate production apparatus according to the 38th invention of the present invention further includes a pretreatment machine for separating SOx and NOx of air pollutants from exhaust gas.
  • the carbonate production apparatus according to the 39th invention of the present invention further includes a pretreatment machine for removing fine particle substances contained in exhaust gas.
  • FIG. 1 shows a block diagram of a manufacturing apparatus that manufactures carbonates from carbonic acid gas contained in exhaust gas discharged from factory equipment such as a power plant or a blast furnace.
  • the carbonate to be manufactured is calcium carbonate.
  • This manufacturing apparatus manufactures sodium carbonate using the carbon dioxide gas of the exhaust gas as a raw material, and reacts the sodium carbonate with calcium hydroxide to produce calcium carbonate.
  • Calcium carbonate produced by this manufacturing apparatus has a higher commercial value than sodium carbonate and has a feature that it can be effectively used for various purposes.
  • sodium carbonate and calcium hydroxide are reacted to obtain calcium carbonate.
  • the carbon dioxide gas of the exhaust gas is reacted with the mist of the caustic soda solution to form a carbonate of sodium carbonate, and the sodium carbonate and calcium hydroxide are further reacted to obtain calcium carbonate.
  • the present invention does not specify the carbonate to be produced as calcium carbonate, but all carbonates produced by reacting the carbonate to be produced with the carbonic acid gas of the exhaust gas and the cations of the alkaline aqueous solution, for example, carbonic acid. It can be sodium or the like.
  • the manufacturing apparatus 100 shown in the block diagram of FIG. 1 includes a pretreatment machine 4 that separates SO x and NO x of air pollutants and fine particle substances (PM) from exhaust gas.
  • the pretreatment machine 4 includes a PM pretreatment machine 3 for removing PM and an air pollutant pretreatment machine 2 for separating SO x and NO x.
  • the manufacturing apparatus 100 removes the fine particles of the exhaust gas and then removes SO x and NO x of air pollutants to produce a carbonate from the carbon dioxide of the exhaust gas.
  • the carbonate production apparatus 100 shown in FIG. 1 produces carbonate from the carbon dioxide gas of the exhaust gas in which the fine particle substance and SO x and NO x are separated by the pretreatment machine 4.
  • the manufacturing apparatus 100 mixes the atomizer 1 that turns an alkaline aqueous solution into a mist, and the mist and carbon dioxide gas generated by the atomizer 1, and absorbs the carbon dioxide gas of the exhaust gas into the mist to obtain carbon dioxide gas.
  • a mixer 6 that reacts with cations of mist to form carbonate, and a separator 7 that separates mist that absorbs carbon dioxide in the form of carbonate from exhaust gas are provided. Further, the manufacturing apparatus 100 of FIG.
  • a reactor in which a caustic soda solution is used in an alkaline aqueous solution to react carbon dioxide gas with mist caustic soda to generate sodium carbonate, and the produced sodium carbonate is used as calcium carbonate. It includes 80 and a controller 5 that controls the atomizer 1.
  • the atomizer 1 uses an alkaline aqueous solution as a mist.
  • the cations contained in the mist react with the carbon dioxide in the exhaust gas to produce carbonate.
  • the mist of the alkaline aqueous solution can have a large surface area with respect to the unit weight as a fine mist having a small particle size.
  • the fine mist having a large surface area has a large contact area with the exhaust gas and quickly absorbs the carbon dioxide gas contained in the exhaust gas.
  • FIG. 2 shows a schematic configuration diagram of the atomizer 1.
  • the alkaline aqueous solution is ultrasonically vibrated to make a mist.
  • the atomizer 1 in FIG. 2 is an ultrasonic atomizer 1A, and the alkaline aqueous solution 9 is used as mist by ultrasonic vibration.
  • the alkaline aqueous solution 9 is ultrasonically vibrated to project the liquid column P onto the liquid surface W, and fine mist is dispersed from the surface of the liquid.
  • the ultrasonic atomizer 1A in the figure blows a transport gas onto the surface of the liquid column P of the alkaline aqueous solution 9 to disperse fine nanomist in the transport gas to obtain a mist mixed gas.
  • the atomizer 1 is connected to an atomizing chamber 10 for storing an alkaline aqueous solution 9, an ultrasonic vibrator 11 for ultrasonically vibrating the alkaline aqueous solution 9 to project a liquid column P from a liquid surface W, and an ultrasonic vibrator 11.
  • the high-frequency power supply 12 that supplies high-frequency power to the ultrasonic transducer 11 to ultrasonically vibrate it, and the conveyed gas is blown to the atomization chamber 10 to separate the mist from the surface of the liquid column P and combine it with the mist mixed gas.
  • the ventilation mechanism 20 is provided.
  • the atomization chamber 10 is a closed chamber in which an alkaline aqueous solution 9 is stored at a constant liquid level W, and mist is generated inside.
  • the mist generated in the atomization chamber 10 is dispersed in the conveyed gas to be blown and discharged as a mist mixture gas.
  • the atomization chamber 10 can be partially opened without being completely sealed.
  • the atomizing chamber 10 of the ultrasonic atomizer 1A shown in FIG. 2 is provided with a supply port 13 for an alkaline aqueous solution 9 below the liquid level.
  • the overflow port 14 is opened in order to control the level of the supplied alkaline aqueous solution 9 to be constant.
  • the alkaline aqueous solution 9 is supplied from the supply port 13 and discharged from the overflow port 14.
  • the liquid level is controlled to be constant by the overflow port 14, but the liquid level can also be controlled by controlling the amount of the alkaline aqueous solution supplied from the supply port 13.
  • the atomization chamber 10 that constantly controls the liquid level can maintain the water depth of the alkaline aqueous solution 9 that is ultrasonically vibrated by the ultrasonic vibrator 11 at a water depth that can be atomized most efficiently.
  • the alkaline aqueous solution 9 is supplied to the atomization chamber 10 by the supply mechanism 15.
  • the supply mechanism 15 shown in FIG. 2 includes a solution tank 16 that stores the alkaline aqueous solution 9 supplied to the atomization chamber 10 and a solution pump 17 that supplies the alkaline aqueous solution 9 of the solution tank 16 to the atomization chamber 10. Be prepared.
  • the suction side is connected to the solution tank 16 and the discharge side is connected to the atomization chamber 10.
  • the supply mechanism 15 continuously supplies the alkaline aqueous solution 9 from the solution tank 16 to the atomization chamber 10 by the solution pump 17.
  • the ultrasonic vibrator 11 is fixed so as to watertightly close the opening 18A provided in the bottom plate 18 of the atomization chamber 10.
  • the ultrasonic vibrator 11 is ultrasonically vibrated by the electric power supplied from the high frequency power supply 12 by connecting the electrode provided on the lower surface to the high frequency power supply 12.
  • the high frequency power supply 12 is connected to the ultrasonic vibrator 11 via the lead wire 19 and outputs a high frequency output to the ultrasonic vibrator 11.
  • the blowing mechanism 20 blows a conveyed gas onto the surface of the liquid column P generated by ultrasonic vibration to blow mist from the surface of the liquid column P to obtain a mist mixed gas.
  • the liquid column P generated by ultrasonic vibration innumerable fine mists are separated from the liquid column surface H and dispersed in a high-concentration mist.
  • the conveyed gas blown to the liquid column surface H blows off the mist dispersed in the form of mist on the liquid column surface H to obtain a mist mixed gas.
  • Promptly blowing off the mist on the surface H of the liquid column to reduce the mist concentration on the surface H of the liquid column is effective in increasing the atomization efficiency.
  • the conveyed gas blown to the liquid column surface H separates the mist from the liquid column surface H, further vaporizes a part of the fine mist, and is discharged as a mist mixed gas cooled by the heat of vaporization.
  • Increasing the amount of the conveyed gas blown to the surface H of the liquid column is effective in increasing the atomization efficiency of the mist.
  • the atomizer 1 that blows the conveyed gas to the surface H of the liquid column reduces the mist concentration of the mist mixture gas when the air volume of the conveyed gas is increased. Therefore, the optimum air volume is the mist atomization efficiency and the mist concentration. It is set in consideration of both.
  • the blower mechanism 20 is controlled by the controller 5 to adjust the air volume of the conveyed gas supplied to the atomization chamber 10.
  • the ultrasonic vibrator 11 is arranged in a horizontal posture, and the liquid column P is projected vertically from the liquid surface W.
  • the atomizer 1 may also arrange the ultrasonic transducer 11 in an inclined posture so that the liquid column P is projected in an inclined posture with respect to the liquid surface W.
  • the atomizer 1 in the figure includes one ultrasonic transducer 11, but it is also possible to provide a plurality of ultrasonic transducers to increase the amount of mist atomized in a unit time. Further, the amount of mist generated can be adjusted by the output of the ultrasonic vibrator 11.
  • the atomizer 1 of FIG. 2 includes an air warmer 21 for heating the air of the conveyed gas and a solution warmer 22 for heating the alkaline aqueous solution 9.
  • the atomizer 1 can heat air or an alkaline aqueous solution 9 to increase the atomization efficiency and increase the amount of mist generated in a unit time.
  • the air warmer 21 and the solution warmer 22 are controlled by the controller 5 to adjust the temperature of the conveyed gas and the temperature of the alkaline aqueous solution.
  • the atomizer 1 uses an alkaline aqueous solution 9 that atomizes into mist, preferably an alkaline aqueous solution containing cations as metal ions, such as caustic soda or potassium hydroxide.
  • an alkaline aqueous solution containing cations as metal ions such as caustic soda or potassium hydroxide.
  • Power plants and factories located near the sea can preferably use an aqueous solution of caustic soda that can be separated from seawater to reduce running costs.
  • potassium hydroxide can also be used as the alkaline aqueous solution.
  • a device that uses potassium hydroxide as an alkaline aqueous solution can effectively utilize the nitrogen component contained in the exhaust gas to make nitrogen potassium fertilizer with potassium hydroxide. Nitrogen potassium fertilizer can be effectively used in agriculture as a fertilizer containing both nitrogen and potassium.
  • This manufacturing apparatus is extremely economical because it effectively uses the nitrogen component as fertilizer while recovering carbon dioxide gas from the exhaust gas.
  • the present invention does not specify an alkaline aqueous solution as an aqueous solution of caustic soda or potassium hydroxide, but an aqueous solution containing another alkali metal or alkaline earth metal, an alkali metal, or a natural product containing an alkaline earth metal. Wastes dissolved in water can also be used.
  • the atomizer 1 is controlled by the controller 5.
  • the controller 5 controls the flow rate of the exhaust gas and the mist mixed gas in addition to the atomizer 1.
  • the signals input from the temperature sensor 27 and the humidity sensor 28 control the inside of the mixer 6 to an environment that suppresses the vaporization of mist. Further, the controller 5 adjusts the flow rate of the exhaust gas and the mist mixed gas to control the ratio of SO x and NO x , which are air pollutants in the exhaust gas, to the alkaline component of the alkaline aqueous solution.
  • the mixer 6 mixes the mist mixed gas supplied from the atomizer 1 and the exhaust gas containing carbon dioxide gas, causes the mist to absorb the carbon dioxide gas, and reacts the carbon dioxide gas with the cations of the mist to form carbon dioxide.
  • the mist contains salt.
  • the mixer 6 suppresses the vaporization of mist by setting the internal temperature to be equal to or lower than the dew point temperature. This is because when the mist evaporates and the liquid component decreases, the efficiency of carbon dioxide gas dissolving in the liquid mist to form a carbonate decreases.
  • the mixer 6 can control the inside to be below the dew point temperature by adjusting the flow rate and temperature of the mist mixture gas and the exhaust gas to be supplied by the controller 5.
  • FIG. 4 shows a schematic perspective view of the static mixer 6A.
  • the elements 26 are arranged in multiple stages inside the pipe member 25.
  • the exhaust gas and the mist mixture gas flowing through the pipe member 25 are flowed and mixed by the elements 26 arranged in multiple stages while alternately reversing the right direction and the left direction.
  • the element 26 has a rectangular plate having an inner diameter of the pipe member 25 in the width direction, preferably 1.5 times the length in the width direction, twisted 180 degrees, and twisted to the right with the right element 26A and the left.
  • the left elements 26B twisted in the direction are alternately arranged in the flow direction.
  • the right element 26A and the left element 26B arranged adjacent to each other are arranged on the pipe member 25 in a posture orthogonal to each other at the boundary.
  • the static mixer 6A is divided into two parts each time it flows into the adjacent element 26, flows into the element 26 on the downstream side, and flows in the reverse direction of rotation.
  • the static mixer 6A can increase the number of stages of the right element 26A and the left element 26B arranged alternately, so that the exhaust gas and the mist mixed gas can be mixed more uniformly.
  • the static mixer 6A Since the static mixer 6A is divided into two each time it flows into the adjacent element 26, for example, the static mixer 6A in which the right element 26A and the left element 26B are arranged in 20 stages has 220 divisions (1,048, 576 times), the exhaust gas and the mist mixed gas are efficiently mixed, the exhaust gas and the mist are efficiently contacted, the carbon dioxide gas of the exhaust gas is absorbed by the mist, and the cations and carbonic acid of the mist are absorbed. Efficiently reacts with gas to form a mist containing carbonate.
  • the total length of the right element 26A and the left element 26B is shortened to 1.5 times the width, and the number of elements 26 arranged in multiple stages is increased to shorten the total length of the two fluids.
  • the manufacturing apparatus 100 of FIG. 1 mixes the mist mixed gas supplied from the atomizer 1 and the exhaust gas, causes the mist to absorb the carbon dioxide gas, and reacts the cations of the mist with the carbon dioxide gas to form carbon dioxide. Use salt.
  • the separator 7 separates the mist containing carbonate from the exhaust gas and recovers it.
  • the separator 7 collects the mist and collects the carbonate solution.
  • the separator 7 preferably uses a cyclone 70.
  • the cyclone 70 shown in FIG. 5 has a cylindrical shape in which a lower narrowed tapered portion 72 is connected to the lower end of the cylindrical portion 71.
  • the cyclone 70 rotates the exhaust gas containing the mist in a spiral shape inside, and separates the exhaust gas from the mist and the exhaust gas by centrifugal force.
  • the mist is separated by the action of the centrifugal force of the cyclone 70.
  • the mist moves outward while rotating due to the rotating centrifugal force.
  • the centrifugal force acting on the mist increases in proportion to the mass.
  • the mass of the mist is larger than that of the exhaust gas, and the mass of the mist increases in proportion to the cube of the particle size.
  • the micron-order mist generated by ultrasonic vibration has an extremely large mass as compared with the nano-order mist, and the separation efficiency of the cyclone 70 can be increased. Since the ultrasonic atomizer 1A efficiently generates micron-order mist, the mist generated by the ultrasonic atomizer 1A can be efficiently separated from the exhaust gas by the cyclone 70.
  • an inflow duct 73 for flowing the mist-containing exhaust gas in the tangential direction is connected to the cylindrical portion 71.
  • the mist-containing exhaust gas flowing tangentially from the inflow duct 73 into the cylindrical portion 71 rotates at high speed inside the cylindrical portion 71.
  • the mist-containing exhaust gas rotating at high speed in the cylindrical portion 71 moves the mist toward the outer periphery by centrifugal force.
  • the mist moving to the outer periphery contacts the inner peripheral surface of the cylindrical portion 71 and flows down the inner peripheral surface of the tapered portion 72 along the inner peripheral surface of the cylindrical portion in a liquid state.
  • the tapered portion 72 is provided with a liquid discharge port 74 at the lower end in order to discharge the flowing liquid to the outside.
  • a liquid tank 76 for storing a carbonate solution is arranged below the liquid discharge port 74.
  • the separated exhaust gas of the mist is discharged to the outside from the exhaust duct 75 arranged in a vertical posture extending in the axial direction at the center of the cylindrical portion 71. Exhaust gas having a smaller specific gravity than mist has a small centrifugal force due to rotation and can be exhausted to the outside from the central portion of the cylindrical portion 71.
  • the above separator 7 separates the mist from the exhaust gas with one cyclone 70, but the separator uses a multi-cyclone in which a plurality of cyclones are connected in series and in parallel to separate the mist more efficiently. You can also do it.
  • the cyclone on the discharge side is connected to the cyclone on the inflow side.
  • the cyclone on the discharge side connects a plurality of cyclones smaller than the cyclone on the inflow side in parallel.
  • the cyclone on the inflow side branches off the exhaust duct and is connected to the inflow duct of the cyclone on the exhaust side.
  • the mist-containing exhaust gas from which the mist is separated is branched and flows into the cyclone on the inflow side.
  • the cyclone on the discharge side further separates the mist from the inflowed mist-containing exhaust gas.
  • the multi-cyclone separates the mist from the mist-containing exhaust gas at both the inflow side cyclone and the discharge side cyclone, and efficiently separates the mist.
  • the device that uses the cyclone 70 for the separator 7 has the feature that mist can be efficiently separated with a simple structure.
  • the present invention does not specify the separator 7 as the cyclone 70, and all other separators capable of separating mist from the mist-containing exhaust gas, such as electrostatic separators and demisters already used, can also be used.
  • the electrostatic separator is provided with a discharge electrode for charging the mist in the passage of the mist-containing exhaust gas to charge the mist, and the static electricity-resistant mist is adsorbed to the current collecting electrode by the action of static electricity and separated. Since the electrostatic separator adsorbs mist by the action of static electricity, it is possible to efficiently separate finer mist.
  • the liquid tank 76 arranged below the cyclone 70 collects mist and stores a carbonate solution.
  • a device that uses a caustic soda solution for an alkaline aqueous solution of mist reacts the caustic soda of mist with the carbon dioxide gas of the exhaust gas to produce sodium carbonate. Therefore, this device stores the sodium carbonate solution as a carbonate solution in the liquid tank 76.
  • the manufacturing apparatus 100 of FIG. 1 includes a reactor 80 that converts sodium carbonate into calcium carbonate having a higher commercial value.
  • the reactor 80 mixes calcium hydroxide with a sodium carbonate solution and reacts sodium carbonate with calcium hydroxide to produce calcium carbonate.
  • the reactor 80 of FIG. 6 adds calcium hydroxide to the sodium carbonate solution supplied to the mixing vessel 81 and mixes them to generate calcium carbonate.
  • the added calcium hydroxide dissolves and reacts with sodium carbonate to produce calcium carbonate, as shown in the reaction formula (1) below. Since the calcium carbonate produced has a low solubility, it precipitates at the bottom of the mixing vessel 81.
  • Sodium hydroxide (caustic soda) has high solubility and is dissolved in a liquid.
  • the reactor 80 produces calcium carbonate by mixing calcium hydroxide having a molar concentration substantially the same as that of the sodium carbonate solution.
  • the calcium carbonate settled on the bottom of the mixing container 81 is recovered from the mixing container 81 to remove water by filtration or the like, and further dried by a dryer 82 to be recovered as powdered calcium carbonate.
  • the controller 5 controls the flow rate and temperature of the conveyed gas and the exhaust gas supplied to the atomizer 1 in consideration of the atomization efficiency and the mist concentration of the atomizer 1.
  • the controller 5 controls an air warmer 21 for heating the air provided in the atomizer 1 and a solution warmer 22 for heating the alkaline aqueous solution 9.
  • the atomizer 1 can heat air or an alkaline aqueous solution 9 to increase the atomization efficiency and increase the amount of mist generated in a unit time.
  • the air warmer 21 and the solution warmer 22 are controlled by the controller 5 to adjust the air temperature and the alkaline aqueous solution temperature.
  • the controller 5 also controls the flow rates of the exhaust gas and the mist mixture gas supplied to the mixer 6.
  • the controller 5 controls the inside of the mixer 6 to an environment that suppresses the vaporization of mist, for example, by signals input from the temperature sensor 27 and the humidity sensor 28 provided in the mixer 6. Further, the controller 5 adjusts the flow rate of the exhaust gas and the mist mixed gas to control the ratio of the CO 2 of the exhaust gas to the alkaline component of the alkaline aqueous solution.
  • the mixer 6 when sodium carbonate is produced by reacting a mist that uses an alkaline aqueous solution as a caustic soda solution with CO 2 of the exhaust gas, the mixer 6 is capable of efficiently producing sodium carbonate with carbon dioxide gas and caustic soda as a specific ratio.
  • the supply amount of the mist mixed gas supplied to the supply fan 29 is adjusted by the supply fan 29.
  • the controller 5 can detect the pH of the mist collected by the separator 7 and control the supply amount of the mist mixture gas.
  • the controller 5 controls the flow rate of the mist mixture gas supplied from the atomizer 1 to the mixer 6.
  • the controller 5 adjusts the temperature and flow rate of the mist mixture gas and the exhaust gas supplied to the mixer 6 to suppress the vaporization of the mist in the mixer 6. Further, the controller 5 adjusts the flow rate and temperature of the air of the transport gas supplied to the atomizer 1, further adjusts the temperature of the alkaline aqueous solution that vibrates ultrasonically, and adjusts the temperature of the mist mixed gas supplied to the mixer 6. Humidity can be controlled. When the temperature of the mist mixture gas supplied to the mixer 6 is high and the air flow rate is high, the relative humidity in the mixer 6 is lowered and the mist is easily vaporized.
  • the controller 5 detects the temperature and humidity in the mixer 6, adjusts the air warmer 21 and the solution warmer 22 so that the relative humidity inside is within the set range, and also atomizes the atomizer 1.
  • the flow rate of the air supplied to the air is controlled by the blower mechanism 20.
  • the controller 5 also adjusts the flow rate of the exhaust gas and the flow rate of the outside air supplied to the exhaust gas, and the relative humidity in the mixer 6 is set within the set range, preferably the relative humidity is 100% or more in a supersaturated state. That is, the vaporization of mist is effectively suppressed by setting it below the dew point temperature.
  • the atomizer 1 can increase the flow rate of the air blown to the liquid column P to increase the air temperature to increase the atomization efficiency, and further, the alkaline aqueous solution 9 is heated to increase the temperature to atomize. Efficiency can be increased. For this reason, the controller 5 adjusts the flow rate and temperature of the air supplied to the liquid column P in consideration of the atomization efficiency. When the flow rate of air is increased to raise the temperature, the atomization efficiency is increased, but the ratio of mist vaporization in the mixer 6 is increased. Therefore, the controller 5 detects the temperature and humidity in the mixer 6 and adjusts the flow rate and temperature of the air supplied by the atomizer 1 to the liquid column P.
  • the controller 5 preferably keeps the water in the mixer 6 to be supersaturated or almost supersaturated, while increasing the flow rate of air and setting the temperature high to increase the atomization efficiency of the mist. Suppress vaporization.
  • the atomizer 1 provided with the solution warmer 22 raises the temperature of the alkaline aqueous solution to be heated within a range in which the inside of the mixer 6 can be kept in a supersaturated or almost supersaturated state.
  • the flow rate and temperature of the exhaust gas supplied to the mixer 6 affect the amount of mist vaporized in the mixer 6.
  • the high-temperature exhaust gas containing water vapor can be cooled below the dew point temperature and supplied to the mixer 6 to suppress the vaporization of mist in the mixer 6.
  • the relative humidity in the mixer 6 decreases and the vaporization of mist is promoted.
  • the relative humidity in the mixer 6 decreases and the vaporization of mist is promoted. Therefore, the high temperature exhaust gas is cooled to increase the relative humidity.
  • the relative humidity of the mist mixed gas supplied from the atomizer 1 is lowered to maintain the relative humidity in the mixer 6 higher than the set range and control the mixer so that the humidity can be supplied to the mixer.
  • the controller 5 detects the temperature and humidity of the mixer and controls the temperature, humidity, and flow rate of the exhaust gas and the mist mixed gas supplied to the mixer 6 so as to suppress the vaporization of the mist by keeping the inside of the mixer below the dew point temperature. ..
  • the pretreatment machine 4 separates fine particles of exhaust gas and air pollutants emitted from a power plant, a blast furnace, a diesel engine, and the like.
  • the pretreatment machine 4 includes a PM pretreatment machine 3 for separating fine particle substances (PM) and an air pollutant pretreatment machine 2 for separating air pollutants.
  • PM fine particle substances
  • air pollutant pretreatment machine 2 for separating air pollutants.
  • SO x and NO x are separated by the air pollutant pretreatment machine 2
  • the carbon dioxide gas of the exhaust gas is separated. Produce carbonate from.
  • the PM pretreatment machine 3 can efficiently remove ultrafine particles by using an electrostatic precipitator.
  • the electrostatic precipitator 30 includes a discharge electrode 31, a dust collection electrode 32, and a power supply 33, and separates fine particles from exhaust gas by the action of static electricity.
  • the discharge electrode 31 is arranged in the air circulation path 35 with the positive electrode 31A and the negative electrode 31B facing each other.
  • the negative electrode 31B is two thin metal wires arranged in parallel with each other via an insulator (not shown).
  • a plate-shaped positive electrode 31A is arranged between the two negative electrodes 31B.
  • the plate-shaped positive electrode 31A is fixed in parallel with the air flow method so that air can pass smoothly.
  • the positive electrode 31A is directly connected to the power supply 33 via the switch 34.
  • the power supply 33 applies a voltage for corona discharge, for example, a voltage of 3000 to 10000V, to the positive electrode 31A and the negative electrode 31B. When the switch 34 is turned on, a negative high voltage is applied to the negative electrode 31B.
  • the positive electrode 31A is connected to the ground side of the power supply.
  • the linear negative electrode 31B is connected to the negative side of the power supply 33
  • the plate-shaped positive electrode 31A is connected to the positive side of the power supply 33 to generate a negative corona discharge.
  • the negative corona discharge has a higher current than the positive corona discharge and can effectively charge the fine particle substances in the air.
  • the linear electrode can be connected to the positive side of the power supply as a positive electrode
  • the plate-shaped electrode can be connected to the negative side of the power supply as a negative electrode.
  • the dust collection electrode 32 is an air circulation path 35 and is arranged on the air discharge side with respect to the discharge electrode 31.
  • the dust collecting electrode 32 adsorbs the fine particle-like substance charged by the discharge electrode 31 with an electrostatic adsorption force. Therefore, the dust collecting electrode 32 has plate-shaped electrodes arranged in parallel via an insulating material.
  • the plate-shaped electrode is connected to the power supply 33 and is charged with a voltage capable of adsorbing the fine particle-like substance by the power supply 33, for example, 2000 to 15000 V.
  • the fine particle substance contained in the exhaust gas is charged by the discharge electrode 31, and the charged fine particle substance is adsorbed on the surface of the dust collection electrode 32 by the action of static electricity and recovered.
  • the electrostatic precipitator 30 can efficiently recover ultrafine particles contained in the exhaust gas.
  • the PM pretreatment machine does not necessarily use an electrostatic precipitator, and any other device capable of separating fine particle substances, such as a bag filter or a cyclone, can also be used.
  • Pretreatment machine for air pollutants 2 As the pretreatment machine 2 for air pollutants, all pretreatment machines that are already in use and will be developed in the future can be used. Therefore, the present invention does not specify the air pollutant pretreatment machine 2, but the following examples are preferable air pollutant pretreatment machines.
  • the air pollutant pretreatment machine 2 of FIG. 8 mixes the exhaust gas with the mist and absorbs SO x and NO x into the mist to separate them, similarly to the carbonate production device 100.
  • the air pollutant pretreatment machine 2 mixes an atomizer 1 that uses an alkaline aqueous solution as a mist, and the mist and exhaust gas generated by the atomizer 1 to make SO x and NO x of the exhaust gas into mist.
  • a mixer 6 for absorbing mist and a separator 7 for collecting mist that has absorbed mist are provided.
  • the atomizer 1, the mixer 6, and the separator 7 can have the same structure as the carbonate production apparatus 100.
  • the atomizer 1 uses, for example, a caustic soda solution as a mist.
  • the mist of the caustic soda solution is mixed with the exhaust gas in the mixer 6 to absorb SO x and NO x and react with the metal ion sodium.
  • the mist that has absorbed SO x and NO x is recovered by the cyclone 70 of the separator 7, and SO x and NO x are separated from the exhaust gas.
  • the air pollutant pretreatment machine 2 mixes the exhaust gas with the mist of the caustic soda solution to separate SO x and NO x. Since SO x and NO x are more reactive than carbon dioxide gas, SO x and NO x can be separated from the exhaust gas in a state where the exhaust gas and the mist of the caustic soda solution are mixed and the carbon dioxide gas remains.
  • the air pollutant pretreatment machine 2 shown in FIG. 8 is composed of a first treatment machine 2A and a second treatment machine 2B.
  • the second treatment machine 2B is connected to the discharge side of the first treatment machine 2A, and the first treatment machine 2A mainly separates SO x from the exhaust gas.
  • the processing machine 2B of 2 mainly separates NO x.
  • SO x has higher reactivity with caustic soda solution than NO x , and is efficiently absorbed in contact with mist.
  • the second processing machine 2B separates NO x from the exhaust gas from which SO x is separated by the first processing machine 2A.
  • the oxidizing device 8 is connected between the first treatment machine 2A and the second treatment machine 2B.
  • the oxidizer 8 oxidizes NO 1 of the exhaust gas to NO 2 .
  • Exhaust gas contains NO x in the state of NO 1 and NO 2 , but NO 1 is difficult to dissolve in water.
  • the air pollutant pretreatment machine 2 of FIG. 8 is provided with an oxidizer 8 that mixes the outside air as an oxygen-containing gas with the exhaust gas in order to oxidize NO 1 of the exhaust gas to make NO 2 easily dissolved. ..
  • the oxidizer 8 mixes the exhaust gas with the outside air as an oxygen-containing gas to oxidize NO 1 to NO 2.
  • NO 1 of the exhaust gas is easily oxidized and combines with oxygen contained in the air to become NO 2.
  • the outside air mixed with the exhaust gas oxidizes NO 1 and lowers the temperature of the high-temperature exhaust gas discharged from the blast furnace, power plant, etc. to keep the exhaust gas below the dew point temperature.
  • Exhaust gas whose temperature has dropped below the dew point temperature is liquefied with supersaturated water vapor and becomes fine water droplets. Therefore, in the exhaust gas mixed with the outside air, NO 1 becomes NO 2 , the temperature drops below the dew point temperature, and the exhaust gas is in a supersaturated state.
  • the temperature of the exhaust gas, whose temperature drops due to the outside air can be lowered by increasing the mixing amount of the outside air.
  • the mixing amount of the outside air is preferably adjusted so that the exhaust gas is below the dew point temperature, for example, 150 ° C. or less.
  • the oxidizing device 8 is connected to the inflow side of the second treatment machine 2B that mainly separates NO x.
  • the oxidizer 8 supplies NO 1 contained in the separated exhaust gas of SO x as NO 2 to the second processing machine 2B.
  • the air pollutant pretreatment machine 2 connects the oxidizer 8 between the first treatment machine 2A and the second treatment machine 2B, and the oxidizer 8 is the inflow of the first treatment machine 2A.
  • the caustic soda solution is used as a mist, and the mist and the exhaust gas are mixed to separate SO x and NO x. Since the air pollutant pretreatment machine 2 mixes fine mist and exhaust gas, the contact area between the caustic soda solution and the exhaust gas is large, and the air pollutants SO x and NO x can be efficiently separated. However, the air pollutant pretreatment machine 2 can also separate SOx and NOx from the exhaust gas by a conventional wet scrubber or the like. In the wet scrubber 78 shown in FIG.
  • an aqueous solution that reacts with SO x and NO x and is absorbed such as a caustic soda solution
  • a caustic soda solution is injected from the nozzle 79 into the exhaust gas passage, and the injected atomized caustic soda solution and the exhaust gas are combined.
  • the carbonate manufacturing apparatus 100 of FIG. 1 manufactures carbonate from the carbon dioxide of the exhaust gas as a raw material in the following steps. Since the manufacturing apparatus 100 in this figure is provided with a pretreatment machine 4 on the inflow side, after removing fine particles from the exhaust gas, SO x and NO x of air pollutants are removed to carbonate the exhaust gas. Produce carbonate from gas.
  • Pretreatment process In the pretreatment step, SO x and NO x of fine particles and air pollutants are separated from the exhaust gas supplied to the mixer 6.
  • a PM pretreatment machine 3 and an air pollutant pretreatment machine 2 are arranged on the supply side of the mixer 6, and the PM pretreatment machine 3 is used to prepare particulate matter from exhaust gas.
  • SO x and NO x of the air pollutants are separated and removed by the air pollutant pretreatment machine 2.
  • the atomizer 1 uses an alkaline aqueous solution as a mist.
  • the atomizer 1 uses an alkaline aqueous solution as a mist and mixes it with a transport gas to obtain a mist mixture gas.
  • the atomizer 1 uses an alkaline aqueous solution as a caustic soda solution as a mist.
  • the atomizer 1 does not specify an alkaline aqueous solution as a mist as a caustic soda solution, but is an alkaline aqueous solution of another alkali metal such as potassium hydroxide, an aqueous solution containing an alkaline earth metal, or an alkali metal or alkaline earth.
  • Natural products containing metals or those obtained by dissolving waste in water can also be used.
  • the atomizer 1 ultrasonically vibrates with an ultrasonic vibrator 11 to blow a conveyed gas to the surface of a liquid column P protruding from the liquid surface to generate mist.
  • the mist is blown off from the surface of the liquid column P to obtain a mist mixture gas.
  • the mist can control the absorption of carbon dioxide gas by adjusting the sodium hydroxide concentration.
  • the concentration of the alkaline aqueous solution of mist is, for example, 1 vol% or more.
  • the mist can increase the concentration of the alkaline aqueous solution to efficiently absorb air pollutants. Therefore, the concentration of the alkaline aqueous solution of mist is preferably as high as possible at a concentration at which sodium hydroxide, potassium hydroxide and the like do not become supersaturated.
  • the mixing step the exhaust gas and the mist mixed gas are supplied to the mixer 6 and mixed, the carbon dioxide gas of the exhaust gas is absorbed by the mist, and the cations of the mist and the carbon dioxide gas are combined to form a carbonate.
  • a static mixer 6A is used as a mixer, the exhaust gas and the mist mixed gas are mixed, and the carbon dioxide gas of the exhaust gas is absorbed by the mist.
  • the static mixer 6A of the mixer 6 mixes the mist mixed gas supplied from the atomizer 1 with the exhaust gas, and absorbs the carbon dioxide gas of the exhaust gas into the mist of the alkaline aqueous solution.
  • the carbon dioxide gas of the exhaust gas combines with the cations of the mist to form a carbonate, and makes the mist a state containing the carbonate.
  • the separation step the mist containing carbonate generated in the mixing step is separated from the exhaust gas by the separator 7 connected to the discharge side of the mixer 6.
  • a cyclone 70 is used in the separator 7 to separate the carbonate-containing mist from the exhaust gas.
  • the alkaline component of the mist is used as a caustic soda solution
  • the caustic soda of the mist reacts with the carbonic acid gas of the exhaust gas to generate sodium carbonate as a carbonate. Therefore, in this separation step, a sodium carbonate solution is obtained as the carbonate solution.
  • the manufacturing apparatus 100 of FIG. 1 absorbs the carbon dioxide gas of the exhaust gas into the mist and separates the carbonate from the exhaust gas in the above steps, but the controller 5 efficiently absorbs the carbon dioxide gas of the exhaust gas into the mist.
  • the atomizer 1 and the mixer 6 are controlled so that they can be separated.
  • the controller 5 detects the temperature and humidity in the mixer 6 and supplies the inside of the mixer 6 to the atomizer 1 so as to keep the inside of the mixer 6 preferably below the dew point temperature and efficiently atomize the alkaline aqueous solution into mist. Adjust the air temperature of the transported gas, the air flow rate, the temperature at which the alkaline aqueous solution is heated, and the like. Further, the controller 5 also adjusts the flow rate ratio and the temperature of the exhaust gas and the conveyed gas, brings the exhaust gas and the mist into contact with each other in the mixer 6, and efficiently absorbs the carbon dioxide gas into the mist.
  • reaction step the sodium carbonate solution obtained in the separation step and calcium hydroxide are reacted with each other in the reactor 80 to generate calcium carbonate.
  • the manufacturing apparatus 100 of FIG. 1 produces calcium carbonate having a higher commercial value by mixing calcium hydroxide with sodium carbonate obtained in the separation step and reacting them.
  • calcium hydroxide is mixed with the sodium carbonate solution in the mixing container 81, and the sodium carbonate and calcium hydroxide are reacted to obtain calcium carbonate.
  • the calcium carbonate precipitate obtained in the reaction step is separated and dried in a dryer in the drying step to obtain powdered calcium carbonate.
  • the carbonate production apparatus 200 of FIG. 10 supplies exhaust gas to the atomizer 1.
  • This atomizer is provided with a blower mechanism 20 that blows exhaust gas to the surface of the liquid column P generated by ultrasonic vibration, and the mist is blown off from the surface of the liquid column P by the blown exhaust gas to exhaust the mist. Let it be gas.
  • the exhaust gas supplied to the atomizer 1 is supplied by controlling the temperature.
  • the high-temperature exhaust gas cools the inside of the atomizer 1 to a temperature below the dew point temperature and supplies the atomizer 1.
  • the water vapor contained therein can be dewed and removed, so that the absolute humidity can be lowered and the exhaust gas can be supplied to the atomizer 1.
  • the exhaust gas whose temperature is controlled to a low humidity state does not vaporize the mist inside the atomizer 1, and can suppress a decrease in atomization efficiency due to the vaporization of the mist.
  • the temperature of the exhaust gas supplied to the atomizer 1 is too low, the atomization efficiency will decrease. Therefore, the exhaust gas to be cooled and supplied to the atomizer 1 is controlled to a temperature at which the atomization efficiency does not decrease. Is supplied.
  • the atomizer 1 can be used together with the mixer 6 for mixing the mist and the carbon dioxide gas.
  • the manufacturing apparatus that uses the atomizer 1 together with the mixer 6 mixes carbon dioxide and mist without connecting a dedicated mixer to the next stage of the atomizer 1 to mix carbon dioxide in the exhaust gas and cations in the mist. It can react to produce carbon dioxide.
  • a mixer 6 is connected to the discharge side of the atomizer 1, and the mist-containing exhaust gas mixed by the atomizer 1 is further mixed by the mixer 6. Then, the exhaust gas and mist are mixed more efficiently to generate carbonate. Since the manufacturing apparatus 200 that supplies the exhaust gas to the atomizer 1 does not supply the conveyed gas to the mixer 6 as in the manufacturing apparatus 100 of FIG. 1, the mist concentration in the mixer 6 is increased to efficiently remove the carbon dioxide gas. Can produce carbonate.
  • the alkaline aqueous solution is made into a fine mist by ultrasonic vibration, but the manufacturing devices of the third and fourth embodiments electrostatically charge the atomizer in the above-mentioned manufacturing devices of the first and second embodiments.
  • the electrostatic atomizer As an atomizer, it generates mist of alkaline aqueous solution.
  • the electrostatic atomizer is provided with a sprayer 41 composed of a plurality of nozzles on the upper part of a closed spray case 47, and sprays an alkaline aqueous solution from top to bottom.
  • an atomizing electrode 42 that turns the spray water from the atomizer 41 into a fine mist by the action of static electricity is arranged inside the spray case 47.
  • a sprayer 41 composed of a plurality of spray units 50 is provided in the spray case 47.
  • the spray unit 50 is shown in FIG.
  • a plurality of capillary tubes 53 are fixed in parallel to the nozzle block 54.
  • the capillary tube 53 is a thin metal tube having an inner diameter of 0.1 mm ⁇ to 0.2 mm ⁇ , and a pressurized alkaline aqueous solution is sprayed from the tip to spray the mist.
  • the nozzle block 54 has a flange-shaped flange 54a on the outer peripheral portion, and a plurality of capillary tubes 53 are provided in the central portion.
  • the plate portion 54B fixing the capillary tube 53 is screwed to the main body portion 54A provided with the flange 54a.
  • the plate portion 54B is provided with a through hole 54x through which the capillary tube 53 is inserted.
  • the inner shape of the through hole 54x is substantially equal to the outer shape of the capillary tube 53, and the capillary tube 53 is inserted in a state where there is almost no gap.
  • a packing 55 is arranged on the inner surface of the plate portion 54B in order to prevent liquid leakage between the capillary tube 53 and the through hole 54x.
  • the packing 55 is a rubber-like elastic body and airtightly seals the gap between the capillary tube 53 and the plate portion 54B.
  • a sandwiching plate 56 is arranged to fix the packing 55 in a pressed state.
  • the packing 55 is crushed by the plate portion 54B and the sandwiching plate 56 and fixed to the main body portion 54A.
  • the sandwiching plate 56 also has a through hole 56x.
  • the sandwiching plate 56 is arranged on the stepped portion 54b of the main body portion 54A, and the packing 55 is elastically pressed by the plate portion 54B fixed to the main body portion 54A to be fixed to the main body portion 54A.
  • the main body portion 54A has a tubular portion 54c protruding to the back surface.
  • the tubular portion 54c has an inner shape in which a plurality of capillary tubes 53 can be arranged on the inner side, and has an outer shape in which a male screw 54d is provided on the outer side.
  • the main body portion 54A has a capillary tube 53 arranged inside the tubular portion 54c.
  • the tubular portion 54c is connected to the rear end of a water tap socket 57 that supplies an alkaline aqueous solution.
  • a plurality of through holes 54x provided in the plate portion 54B are arranged in a ring shape of a plurality of rows.
  • the capillary tube 53 protrudes from the nozzle block 54, the tip thereof is a discharge protrusion 51, and the inner central hole is a fine spray hole 52.
  • the number of capillary tubes 53 fixed to the nozzle block 54 specifies the number of fine spray holes 52 in the spray unit 50.
  • the spray unit 50 is provided with preferably 10 or more, preferably 20 or more, more preferably 30 or more fine spray holes 52, and the amount of mist sprayed by one set of spray units 50 in a unit time is increased. There is.
  • the entire spray unit 50 becomes large, so 100 or less fine spray holes 52 are provided.
  • the protrusion amount of the capillary tube 53 arranged in the central portion of the nozzle block 54 is made higher than that of the capillary tube 53 in the outer peripheral portion, and the tip surface formed by the large amount of the capillary tube 53 is centered. It has a convex chevron shape.
  • the tip surface formed by a large amount of capillary tubes can be made flat, assuming that the amount of protrusion of the capillary tubes is the same.
  • the above spraying unit 50 includes thin tubes composed of a large number of capillary tubes 53, and sprays an alkaline aqueous solution onto mist from each capillary tube 53.
  • the spray unit may be a perforated plate provided with a large number of fine spray holes instead of the capillary tube.
  • the porous plate is made of a conductive material such as metal. This perforated plate can be manufactured by providing a fine spray hole with a laser on a metal plate. Further, the perforated plate can be a sintered metal having fine spray holes.
  • the conductive perforated plate is connected to a high voltage power source and can apply a high voltage to and from the atomizing electrode. However, the porous plate does not necessarily have to be made of a conductive material.
  • the alkaline aqueous solution has conductivity, so that a high voltage can be applied between the alkaline aqueous solution sprayed from the spray hole and the atomizing electrode to atomize the sprayed mist by the action of static electricity. Therefore, as the perforated plate, an open-cell plastic foam having fine spray holes or the like can also be used.
  • the spray case 47 is insulated from the sprayer 41 and provided with an atomizing electrode 42.
  • the atomizing electrode 42 has a high voltage with respect to the atomizer 41. Therefore, the atomizing electrode 42 and the atomizer 41 are insulated from each other and fixed to the atomizing case 47.
  • the electrostatic atomizer 1B which fixes the atomizer to the metal atomizer case without insulating it, insulates the atomizing electrode from the atomizer case. Further, the electrostatic atomizer 1B, which insulates the atomizer from the atomizer case, fixes the atomizing electrode to the atomizer case.
  • both the atomizer and the atomizing electrode can be insulated and fixed to the atomizing case.
  • the atomizing electrode 42 discharges from the discharge protrusion 51 of the atomizer 41 to atomize the mist sprayed from the atomizer 41 into fine particles.
  • the atomization electrode 42 is located in front of the fine spray hole 52 apart from the fine spray hole 52 in the mist spray direction.
  • the atomizing electrode 42 of FIG. 11 is an annular metal ring 42A located on the outer periphery of the nozzle block 54, and is located on the outer periphery of a plurality of capillary tubes 53 fixed to the nozzle block 54.
  • the atomization electrode 42 which is a metal ring shown in FIG. 11, is in the passage of the transport gas ejected from the blowout hole 64, and it is possible to reduce the amount of mist adhering to the atomization electrode 42 due to the transport gas blown.
  • a metal net can be used for the atomizing electrode.
  • the atomizing electrode of the metal net is arranged away from the discharge protrusion 51 in the mist spraying direction.
  • the atomizing electrode of the metal net can uniformly discharge with each discharge protrusion 51 and atomize the mist sprayed from each fine spray hole 52 into fine particles.
  • the atomizing electrode 42 is located in front of each spray unit 50, and in the electrostatic atomizer 1B of FIG. 11, the atomizer 41 sprays mist downward, so that the atomizing electrode 42 is placed below the spray unit 50. It is arranged.
  • the high voltage power supply 43 applies a high voltage between the spray unit 50 and the atomizing electrode 42.
  • the high-voltage power supply 43 is a DC power supply, and the positive side is connected to the atomizing electrode 42 and the negative side is connected to the spray unit 50. However, the positive side can be connected to the spray unit and the negative side can be connected to the atomizing electrode.
  • a closed chamber is provided in the upper part of the spray case 47 to form an air chamber 62.
  • the partition wall 63 is airtightly fixed to the upper part of the spray case 47.
  • the partition wall 63 partitions the inside of the spray case 47 into an air chamber 62 and a spray chamber 61, and fixes a plurality of spray units 50 at a fixed position as a fixing portion for fixing the sprayer 41.
  • the spray unit 50 of the sprayer 41 is fixed to the partition wall 63, which is a fixing portion, so as to spray the mist into the spray chamber 61.
  • the spray unit 50 is fixed to the partition wall 63 with a detachable structure via a connecting bolt 58 penetrating the connecting hole 54e opened in the flange 54a of the nozzle block 54.
  • the air chamber 62 has a closed structure, is connected to a blower mechanism 67 which is a gas supply mechanism, and allows the conveyed gas blown from the blower mechanism 67 to pass through the partition wall 63 into the spray chamber 61 through a blowout hole 64. It spouts out.
  • the blowing hole 64 is a slit-shaped through hole, and is provided between the spray units 50 so as to blow out the conveyed gas to be blown around each spray unit 50.
  • the blowout hole does not necessarily have to be slit-shaped.
  • a plurality of circular or polygonal through holes may be provided between the spraying units, and the conveyed gas may be blown out between the spraying units.
  • the conveyed gas ejected from the blowout hole 64 into the spray chamber 61 transfers the atomized mist.
  • the spray case 47 of FIG. 11 is provided with a blowout hole 64 between adjacent spray units 50.
  • the conveyed gas ejected from the blowout hole 64 into the spray chamber 61 is sprayed from the spray unit 50, mixed with the mist made into fine particles by the atomization electrode 42, and supplied to the static mixer 6A as a mist mixed gas.
  • the sprayer 41 fixes the spray unit 50 to the spray chamber 61 side of the partition wall 63 and sprays mist into the spray chamber 61.
  • the atomizer 41 is connected to a pump 65 that supplies an alkaline aqueous solution under pressure.
  • the pump 65 pressurizes the alkaline aqueous solution 9 stored in the liquid tank 66 and supplies it to the spray unit 50.
  • the pump 65 filters the alkaline aqueous solution 9 with a filter and supplies it to the atomizer 41.
  • the filter is a filter that removes foreign matter clogged in the atomizer 41.
  • the pump 65 can increase the discharge pressure to increase the flow rate of the alkaline aqueous solution injected from the spray unit 50 and reduce the average particle size of the mist.
  • the average particle size of the mist changes not only with the pressure of the alkaline aqueous solution supplied from the pump 65 but also with the structure of the spray unit 50.
  • the pressure at which the pump 65 pressurizes the alkaline aqueous solution and supplies it to the spray unit 50 is set to an optimum value in consideration of the structure of the spray unit 50 and the required particle size of the mist, but is preferably 0. .1 MPa or more, preferably 0.2 MPa or more, more preferably 0.3 MPa or more. If the pressure of the alkaline aqueous solution supplied by the pump 65 to the spray unit 50 is high, the pump 65 becomes expensive, the power consumption of the motor for operating the pump 65 increases, and the running cost increases.
  • the pressure of the alkaline aqueous solution supplied by the pump 65 to the spray unit 50 is, for example, 1 MPa or less, preferably 0.8 MPa or less, and more preferably 0.7 MPa or less.
  • the pressure at which the pump 65 pressurizes the alkaline aqueous solution and supplies it to the spray unit 50 is preferably 0.3 MPa to 0.6 MPa, preferably the average particle size of the mist is 50 ⁇ m or less, preferably 30 ⁇ m or less, and is 100 nm or more. ..
  • the method and apparatus for producing carbonate of the present invention are suitably used as a method and apparatus for producing carbonate from carbonic acid gas contained in exhaust gas of a blast furnace, a power plant, or the like.
  • Electrostatic atomizer 2 Air pollutant pretreatment machine 2A ... First treatment machine 2B ... Second treatment machine 3 ... PM pretreatment machine 4 ... Pretreatment machine 5 ... Controller 6 ... Mixer 6A ... Static mixer 7 ... Separator 8 ... Oxidator 9 ... Alkaline aqueous solution 10 ... Atomization chamber 11 ... Ultrasonic transducer 12 ... High frequency power supply 13 ... Supply Port 14 ... Overflow port 15 ... Supply mechanism 16 ... Solution tank 17 ... Solution pump 18 ... Bottom plate 18A ... Opening 19 ... Lead wire 20 ... Blower mechanism 21 ... Air warmer 22 ... Solution warmer 24 ...
  • Supply fan 25 ... Tube member 26 ... Element 26A ... Right element 26B ... Left element 27 ... Temperature sensor 28 ... Humidity sensor 29 ... Supply fan 30 ... Electrostatic dust collector 31 ... Discharge electrode 31A ... Positive electrode 31B ... Negative electrode 32 ... Dust collection electrode 33 ... Power supply 34 ... Switch 35 ... Air circulation path 41 ... Atomizer 42 ... Atomized electrode 42A ... Metal ring 43 ... High pressure power supply 47 ... Spray case 50 ... Spray unit 51 ... Discharge protrusion 52 ... Fine spray hole 53 ... Capillary tube 54 ... Nozzle block 54A ... Main body 54B ... Plate 54a ... Flange 54b ... Step 54c ... Cylinder 54d ... Male screw 54e ...

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Treating Waste Gases (AREA)

Abstract

排気ガスの炭酸ガスから効率よく炭酸塩を製造する。 炭酸塩の製造方法は、アルカリ水溶液を霧化機でミストとする霧化工程と、霧化工程で得られるアルカリ水溶液のミストと排気ガスとを混合して、排気ガスの炭酸ガスをミストに吸収して、ミストの陽イオンと炭酸ガスを結合して炭酸塩とし、ミストを炭酸塩を含む状態とする混合工程と、混合工程で得られる炭酸塩を含むミストを排気ガスから分離する分離工程とを含んでいる。

Description

炭酸塩の製造方法及び製造装置
 本発明は、排気ガスに含まれる炭酸ガスを原料として炭酸塩を製造する方法と装置に関する。
 排気ガスを原料として炭酸カルシウムを製造する方法は開発されている。(特許文献1)
 この公報に記載される方法は、燃焼炉等の排ガス中の炭酸ガスを気液接触法により苛性ソーダ溶液で吸収して炭酸ソーダ溶液を生成し、一方、水和水として、苛性ソーダ水溶液を用いて、生石灰を水和して石灰乳を生成し、この石灰乳と炭酸ソーダ溶液を反応させて炭酸カルシウムを合成する。
特開2002-293537号公報
 以上の方法は、苛性ソーダ溶液中に排気ガスを導入する気液接触法で排気ガスの炭酸ガスと苛性ソーダ溶液の苛性ソーダとを反応して炭酸ナトリウムとするので、排気ガスの炭酸ガスと苛性ソーダとを効率よく反応させて炭酸ナトリウムとすることが難しい。
 本発明は、この欠点を解消することを目的に開発されたもので、本発明の大切な目的は、排気ガスの炭酸ガスを原料として効率良く炭酸塩を製造できる炭酸塩の製造方法及び製造装置を提供することにある。
 本発明のある態様に係る炭酸塩の製造方法は、アルカリ水溶液を霧化機でミストとする霧化工程と、霧化工程で得られるアルカリ水溶液のミストと排気ガスとを混合して、排気ガスの炭酸ガスをミストに吸収して、ミストの陽イオンと炭酸ガスを結合して炭酸塩とし、ミストを炭酸塩を含む状態とする混合工程と、混合工程で得られる炭酸塩を含むミストを排気ガスから分離する分離工程とを含んでいる。
 本発明のある態様に係る炭酸塩の製造装置は、アルカリ水溶液を霧化してミストとする霧化機と、霧化機で発生するミストと排気ガスとを混合して、ミストの陽イオンと炭酸ガスとを結合して炭酸塩とするミキサーと、ミキサーで得られるミストを排気ガスから分離して、炭酸塩を含むミストを回収する分離器とを備えている。
 以上の製造方法と製造装置は、排気ガスの炭酸ガスから効率よく炭酸塩を製造できる特長がある。
本発明の実施形態1に係る炭酸塩の製造装置の概略構成図である。 霧化機の一例であって、超音波霧化機を示す概略構成図である。 超音波振動子の連結構造を示す拡大断面図である。 ミキサーの一例であって、スタティックミキサーを示す概略斜視図である。 分離器の一例であって、サイクロンを示す概略斜視図である。 反応工程の一例を示す工程図である。 PMの前処理機の一例を示す概略構成図である。 大気汚染物質の前処理機の一例を示す概略構成図である。 大気汚染物質の前処理機の他の一例である湿式スクラバーを示す概略図である。 本発明の実施形態2に係る炭酸塩の製造装置の概略構成図である。 霧化機の他の一例であって、静電霧化機を示す概略構成図である。 図11に示す静電霧化機の噴霧ユニットを示す拡大断面図である。
 以下、図面に基づいて本発明を詳細に説明する。なお、以下の説明では、必要に応じて特定の方向や位置を示す用語(例えば、「上」、「下」、及びそれらの用語を含む別の用語)を用いるが、それらの用語の使用は図面を参照した発明の理解を容易にするためであって、それらの用語の意味によって本発明の技術的範囲が制限されるものではない。また、複数の図面に表れる同一符号の部分は同一もしくは同等の部分又は部材を示す。
 さらに以下に示す実施形態は、本発明の技術思想の具体例を示すものであって、本発明を以下に限定するものではない。また、以下に記載されている構成部品の寸法、材質、形状、その相対的配置等は、特定的な記載がない限り、本発明の範囲をそれのみに限定する趣旨ではなく、例示することを意図したものである。また、一の実施の形態、実施例において説明する内容は、他の実施の形態、実施例にも適用可能である。また、図面が示す部材の大きさや位置関係等は、説明を明確にするため、誇張していることがある。
 本発明の第1の発明に係る炭酸塩の製造方法は、アルカリ水溶液を霧化機でミストとする霧化工程と、霧化工程で得られるアルカリ水溶液のミストと排気ガスとを混合して、排気ガスの炭酸ガスをミストに吸収して、ミストの陽イオンと炭酸ガスを結合して炭酸塩とし、ミストを炭酸塩を含む状態とする混合工程と、混合工程で得られる炭酸塩を含むミストを排気ガスから分離する分離工程とを含んでいる。
 本発明の第2の発明に係る炭酸塩の製造方法は、霧化工程において、霧化機がアルカリ水溶液を超音波振動してミストとする。
 本発明の第3の発明に係る炭酸塩の製造方法は、霧化工程において、霧化機が、アルカリ水溶液を超音波振動して液面から突出する液柱の表面に排気ガスを送風して、ミストと排気ガスとを混合する。
 本発明の第4の発明に係る炭酸塩の製造方法は、霧化工程において、霧化機が、アルカリ水溶液を超音波振動して液面から突出する液柱の表面に搬送気体を送風してミスト混合気体とし、混合工程において、ミスト混合気体と排気ガスとを混合する。
 本発明の第5の発明に係る炭酸塩の製造方法は、霧化工程において、霧化機が、ノズルから噴射されるアルカリ水溶液のスプレー水を静電霧化してミストとする。
 本発明の第6の発明に係る炭酸塩の製造方法は、霧化工程において、霧化機が、ノズルから噴射されて静電霧化されたミストに排気ガスを送風して、ミストと排気ガスとを混合する。
 本発明の第7の発明に係る炭酸塩の製造方法は、霧化工程において、霧化機が、ノズルから噴射されて静電霧化されたミストに搬送気体を送風してミスト混合気体とし、混合工程において、ミスト混合気体と排気ガスとを混合する。
 本発明の第8の発明に係る炭酸塩の製造方法は、霧化工程において、アルカリ水溶液のミストの平均粒径を50μm以下とする。また、本発明の第9の発明に係る炭酸塩の製造方法は、霧化工程において、アルカリ水溶液のミストの平均粒径を30μm以下とする。
 本発明の第10の発明に係る炭酸塩の製造方法は、霧化工程において、アルカリ水溶液のミストの平均粒径を100nm以上とする。
 本発明の第11の発明に係る炭酸塩の製造方法は、霧化工程において、アルカリ水溶液に苛性ソーダ溶液を使用し、混合工程において、排気ガスの炭酸ガスとミストの苛性ソーダとを反応させて炭酸ナトリウムを含むミストとし、分離工程において、炭酸ナトリウムを含むミストを排気ガスから分離する。
 本発明の第12の発明に係る炭酸塩の製造方法は、さらに、分離工程で得られる炭酸ナトリウム溶液と、水酸化カルシウムとを反応させて、炭酸カルシウムとする反応工程を含んでいる。
 本発明の第13の発明に係る炭酸塩の製造方法は、反応工程において、炭酸ナトリウム溶液に水酸化カルシウムを混合して、炭酸ナトリウムと水酸化カルシウムとを反応させて炭酸カルシウムとし、反応工程で得られる炭酸カルシウムの沈殿物を分離して乾燥する乾燥工程を含んでいる。
 本発明の第14の発明に係る炭酸塩の製造方法は、分離工程において、炭酸塩を含むミストを、サイクロンで排気ガスから分離する。
 本発明の第15の発明に係る炭酸塩の製造方法は、霧化工程において使用するアルカリ水溶液に、海水を原料として生成する苛性ソーダ溶液を使用する。
 本発明の第16の発明に係る炭酸塩の製造方法は、混合工程において、アルカリ水溶液のミストと排気ガスとをスタティックミキサーで混合する。
 本発明の第17の発明に係る炭酸塩の製造方法は、混合工程において、アルカリ水溶液のミストと排気ガスとをミキサーで混合すると共に、ミキサー内を、露点温度以下に保持する。
 本発明の第18の発明に係る炭酸塩の製造方法は、さらに、排気ガスに含まれる大気汚染物質を分離する前処理工程を含み、前処理工程において、大気汚染物質を分離した排気ガスの炭酸ガスを原料として炭酸塩を製造する。
 本発明の第19の発明に係る炭酸塩の製造方法は、さらに、排気ガスに含まれる微粒子状物質を除去する前処理工程を含み、前処理工程において、微粒子状物質を分離した排気ガスの炭酸ガスを原料として炭酸塩を製造する。
 本発明の第20の発明に係る炭酸塩の製造方法は、アルカリ水溶液を、アルカリ金属又はアルカリ土類金属を含む水溶液、もしくはアルカリ金属又はアルカリ土類金属を含む天然物あるいは廃棄物を水に溶解したものとしている。
 本発明の第21の発明に係る炭酸塩の製造装置は、アルカリ水溶液を霧化してミストとする霧化機と、霧化機で発生するミストと排気ガスとを混合して、ミストの陽イオンと炭酸ガスとを結合して炭酸塩とするミキサーと、ミキサーで得られるミストを排気ガスから分離して、炭酸塩を含むミストを回収する分離器とを備えている。
 本発明の第22の発明に係る炭酸塩の製造装置は、霧化機を、アルカリ水溶液を超音波振動してミストとする超音波霧化機としている。
 本発明の第23の発明に係る炭酸塩の製造装置は、超音波霧化機が、アルカリ水溶液を超音波振動して液面から突出する液柱の表面に排気ガスを送風して、ミストと排気ガスとを混合する送風機構を備えている。
 本発明の第24の発明に係る炭酸塩の製造装置は、超音波霧化機が、アルカリ水溶液を超音波振動して液面から突出する液柱の表面に搬送気体を送風してミスト混合気体とする送風機構を備え、ミキサーが、ミスト混合気体と排気ガスとを混合する。
 本発明の第25の発明に係る炭酸塩の製造装置は、霧化機を、ノズルから噴射するアルカリ水溶液のスプレー水を静電霧化してミストとする静電霧化機としている。
 本発明の第26の発明に係る炭酸塩の製造装置は、静電霧化機が、静電霧化されたミストに排気ガスを送風して、ミストと排気ガスとを混合する送風機構を備えている。
 本発明の第27の発明に係る炭酸塩の製造装置は、静電霧化機が、静電霧化されたミストに搬送気体を送風してミスト混合気体とする送風機構を備え、ミキサーが、ミスト混合気体と排気ガスとを混合すること。
 本発明の第28の発明に係る炭酸塩の製造装置は、霧化機が、アルカリ水溶液のミストの平均粒径を50μm以下としている。また、本発明の第29の発明に係る炭酸塩の製造装置は、霧化機が、アルカリ水溶液のミストの平均粒径が30μm以下としている。
 本発明の第30の発明に係る炭酸塩の製造装置は、霧化機が、アルカリ水溶液のミストの平均粒径を100nm以上としている。
 本発明の第31の発明に係る炭酸塩の製造装置は、霧化機がミストとするアルカリ水溶液が苛性ソーダ溶液で、ミキサーが、ミストの苛性ソーダと排気ガスの炭酸ガスとを反応させて炭酸ナトリウムとしている。
 本発明の第32の発明に係る炭酸塩の製造装置は、さらに、分離器で得られる炭酸ナトリウム溶液と、水酸化カルシウムとを反応させて、炭酸カルシウムとする反応器を備えている。
 本発明の第33の発明に係る炭酸塩の製造装置は、さらに、反応器で生成される炭酸カルシウムを乾燥する乾燥機を備え、反応器は、炭酸ナトリウム溶液に水酸化カルシウムを混合して、炭酸ナトリウムと水酸化カルシウムとを反応させて炭酸カルシウムを沈殿させる混合容器を備え、乾燥機が、混合容器で得られる炭酸カルシウムを乾燥して粉末状としている。
 本発明の第34の発明に係る炭酸塩の製造装置は、分離器をサイクロンとしている。
 本発明の第35の発明に係る炭酸塩の製造装置は、霧化機がミストとするアルカリ水溶液を、海水を原料として生成する苛性ソーダ溶液としている。
 本発明の第36の発明に係る炭酸塩の製造装置は、霧化機がミストとするアルカリ水溶液を、アルカリ金属又はアルカリ土類金属を含む水溶液、もしくはアルカリ金属又はアルカリ土類金属を含む天然物あるいは廃棄物を水に溶解した水溶液であとしている。
 本発明の第37の発明に係る炭酸塩の製造装置は、ミキサーをスタティックミキサーとしている。
 本発明の第38の発明に係る炭酸塩の製造装置は、さらに、排気ガスから大気汚染物質のSOxとNOxを分離する前処理機を備えている。
 本発明の第39の発明に係る炭酸塩の製造装置は、さらに、排気ガスに含まれる微粒子状物質を除去する前処理機を備えている。
(実施形態1)
 図1は、発電所や高炉等の工場設備から排出される排気ガスに含まれる炭酸ガスを原料として炭酸塩を製造する製造装置のブロック図を示している。この図の製造装置は、製造する炭酸塩を炭酸カルシウムとする。この製造装置は、排気ガスの炭酸ガスを原料として炭酸ナトリウムを製造し、この炭酸ナトリウムと水酸化カルシウムとを反応させて炭酸カルシウムを製造する。この製造装置で生成される炭酸カルシウムは、炭酸ナトリウムよりも商品価値が高く、種々の用途に有効利用できる特長がある。この装置は、排気ガスの炭酸ガスを炭酸ナトリウムとした後、炭酸ナトリウムと水酸化カルシウムとを反応させて炭酸カルシウムとする。図の製造装置は、排気ガスの炭酸ガスを苛性ソーダ溶液のミストと反応させて炭酸ナトリウムの炭酸塩とし、さらに炭酸ナトリウムと水酸化カルシウムとを反応させて炭酸カルシウムとする。ただ、本発明は製造する炭酸塩を炭酸カルシウムに特定するものでなく、製造する炭酸塩を、排気ガスの炭酸ガスとアルカリ水溶液の陽イオンと反応させて生成される全ての炭酸塩、たとえば炭酸ナトリウム等とすることができる。
 さらに、図1のブロック図に示す製造装置100は、排気ガスから大気汚染物質のSOとNOと、微粒子状物質(PM)を分離する前処理機4を備える。前処理機4は、PMを除去するPMの前処理機3と、SOとNOを分離する大気汚染物質の前処理機2とを備えている。この製造装置100は、排気ガスから微粒子状物質を除去した後、大気汚染物質のSOとNOを除去して、排気ガスの炭酸ガスから炭酸塩を製造する。
 図1に示す炭酸塩の製造装置100は、前処理機4で微粒子状物質とSOとNOを分離した排気ガスの炭酸ガスを原料として炭酸塩を製造する。この製造装置100は、アルカリ水溶液をミストにする霧化機1と、霧化機1で発生するミストと炭酸ガスとを混合して、排気ガスの炭酸ガスをミストに吸収して、炭酸ガスとミストの陽イオンとを反応させて炭酸塩とするミキサー6と、炭酸ガスを炭酸塩の状態で吸収しているミストを排気ガスから分離する分離器7とを備える。さらに、図1の製造装置100は、アルカリ水溶液に苛性ソーダ溶液を使用して、炭酸ガスとミストの苛性ソーダとを反応させて炭酸ナトリウムを生成し、さらに生成された炭酸ナトリウムを炭酸カルシウムとする反応器80と、霧化機1をコントロールするコントローラ5とを備える。
(霧化機1)
 霧化機1は、アルカリ水溶液をミストとする。ミストに含まれる陽イオンは、排気ガスの炭酸ガスと反応して炭酸塩を生成する。アルカリ水溶液のミストは、粒径の小さい微細ミストとして単位重量に対する表面積を大きくできる。表面積の大きい微細ミストは、排気ガスとの接触面積が大きく、排気ガスに含まれる炭酸ガスを速やかに吸収する。図2は、霧化機1の概略構成図を示している。図2の霧化機1は、アルカリ水溶液を微細なミストとするために、アルカリ水溶液を超音波振動させてミストとする。図2の霧化機1は超音波霧化機1Aで、アルカリ水溶液9を超音波振動でミストとする。超音波霧化機1Aは、アルカリ水溶液9を超音波振動して液面Wに液柱Pを突出させて、液体の表面から微細なミストが分散される。図の超音波霧化機1Aは、アルカリ水溶液9の液柱Pの表面に搬送気体を送風して、微細なナノミストを搬送気体中に分散させてミスト混合気体とする。霧化機1は、アルカリ水溶液9を蓄える霧化室10と、アルカリ水溶液9を超音波振動させて液面Wから液柱Pを突出させる超音波振動子11と、超音波振動子11に接続されて超音波振動子11に高周波電力を供給して超音波振動させる高周波電源12と、霧化室10に搬送気体を送風して、液柱Pの表面からミストを分離してミスト混合気体とする送風機構20とを備える。
 霧化室10は、一定の液面Wにアルカリ水溶液9を蓄えている閉鎖されたチャンバーで、内部でミストを発生させる。霧化室10で発生するミストは、送風される搬送気体中に分散されてミスト混合気体として排出される。霧化室10は、完全に密閉することなく部分的に開口することができる。図2に示す超音波霧化機1Aの霧化室10は、液面レベルよりも下方にアルカリ水溶液9の供給口13を設けている。供給されるアルカリ水溶液9のレベルを一定に制御するために、オーバーフロー口14を開口している。アルカリ水溶液9は供給口13から供給されてオーバーフロー口14から排出される。この霧化室10は、オーバーフロー口14で液面レベルを一定に制御するが、供給口13から供給されるアルカリ水溶液量をコントロールして、液面レベルを一定にすることもできる。液面レベルを一定に制御する霧化室10は、超音波振動子11で超音波振動させるアルカリ水溶液9の水深を、最も効率よく霧化できる水深に保持できる。
 アルカリ水溶液9は、供給機構15で霧化室10に供給される。図2に示す供給機構15は、霧化室10に供給されるアルカリ水溶液9を蓄えている溶液タンク16と、この溶液タンク16のアルカリ水溶液9を霧化室10に供給する溶液ポンプ17とを備える。溶液ポンプ17は、吸入側を溶液タンク16に連結して、排出側を霧化室10に連結している。この供給機構15は、溶液ポンプ17でもって、溶液タンク16から連続的に、霧化室10にアルカリ水溶液9を供給する。
 超音波振動子11は、図3の拡大断面図に示すように、霧化室10の底板18に設けている開口部18Aを水密に閉塞するように固定されている。超音波振動子11は、下面に設けている電極を高周波電源12に接続して、高周波電源12から供給される電力で超音波振動される。高周波電源12は、リード線19を介して超音波振動子11に接続されて、超音波振動子11に高周波出力を出力する。
 送風機構20は、図2に示すように、超音波振動によって発生する液柱Pの表面に、搬送気体を送風してミストを液柱Pの表面から吹き飛ばしてミスト混合気体とする。超音波振動で発生する液柱Pは、無数の微細なミストが液柱表面Hから分離して高濃度な霧状に分散する。液柱表面Hに送風される搬送気体は、液柱表面Hに霧状に分散するミストを吹き飛ばして、ミスト混合気体とする。液柱表面Hのミストを速やかに吹き飛ばして、液柱表面Hのミスト濃度を低くすることは、霧化効率を高くすることに効果がある。液柱表面Hのミスト濃度が高いと、液柱Pの表面から効率よくミストを分離できないからである。液柱表面Hに送風される搬送気体は、液柱表面Hからミストを引き離し、さらに一部の微細なミストを気化して気化熱で冷却されたミスト混合気体となって排出される。液柱表面Hに送風する搬送気体の送風量を多くすることは、ミストの霧化効率を高くすることに効果的である。ただ、液柱表面Hに搬送気体を送風する霧化機1は、搬送気体の風量を多くすると、ミスト混合気体のミスト濃度を低下させるので、最適な風量は、ミストの霧化効率とミスト濃度の両方を考慮して設定される。送風機構20はコントローラ5に制御されて霧化室10に供給する搬送気体の風量を調整する。
 図2の霧化機1は、超音波振動子11を水平姿勢に配置して、液柱Pを液面Wから垂直に突出させる。霧化機1は、超音波振動子11を傾斜する姿勢に配置して、液柱Pを液面Wに対して傾斜する姿勢に突出させることもできる。図の霧化機1は、ひとつの超音波振動子11を備えるが、複数の超音波振動子を設けて、単位時間に霧化するミスト量を多くすることもできる。また、超音波振動子11の出力でミストの発生量を調整することもできる。
 図2の霧化機1は、搬送気体の空気を加温する空気加温器21と、アルカリ水溶液9を加温する溶液加温器22とを備えている。霧化機1は、空気やアルカリ水溶液9を加温して、霧化効率を高くして単位時間に発生するミスト量を多くできる。空気加温器21と溶液加温器22は、コントローラ5に制御されて、搬送気体の温度とアルカリ水溶液温度を調整する。
 霧化機1は、ミストに霧化するアルカリ水溶液9に、好ましくは、陽イオンを金属イオンとするアルカリ水溶液であって、苛性ソーダや水酸化カリウムの水溶液を使用する。海の近くに設けられる発電所や工場は、好ましくは海水から分離できる苛性ソーダの水溶液を使用して、ランニングコストを低減できる。ただ、アルカリ水溶液には、水酸化カリウムも使用できる。アルカリ水溶液を水酸化カリウムとする装置は、排気ガスに含まれる窒素成分を有効利用して、水酸化カリウムのカリウムとで窒素カリ肥料にできる。窒素カリ肥料は、窒素とカリウムの両方を含む肥料として農業に有効に利用できる。この製造装置は、排気ガスから炭酸ガスを回収しながら、窒素成分を肥料として有効利用するので、極めて経済性に優れている。ただ、本発明はアルカリ水溶液を苛性ソーダや水酸化カリウムに水溶液に特定するものでなく、他のアルカリ金属、又はアルカリ土類金属を含む水溶液、もしくはアルカリ金属、又はアルカリ土類金属を含む天然物あるいは廃棄物を水に溶解したものも使用できる。
 霧化機1はコントローラ5に制御される。コントローラ5は、霧化機1に加えて、排気ガスやミスト混合気体の流量も制御する。温度センサ27と湿度センサ28から入力される信号で、ミキサー6内をミストの気化を抑制する環境に制御する。さらに、コントローラ5は、排気ガスとミスト混合気体の流量を調整して、排気ガスの大気汚染物質であるSOやNOとアルカリ水溶液のアルカリ成分との比率もコントロールしている。
(ミキサー6)
 ミキサー6は、霧化機1から供給されるミスト混合気体と炭酸ガスを含有する排気ガスとを混合して、ミストに炭酸ガスを吸収させて炭酸ガスとミストの陽イオンとを反応させて炭酸塩を含むミストとする。ミキサー6は、内部温度を露点温度以下としてミストの気化を抑制する。ミストが気化して液体成分が減少すると、液体のミストに炭酸ガスが溶解して炭酸塩となる効率が低下するからである。ミキサー6は、供給するミスト混合気体と排気ガスの流量と温度をコントローラ5で調整して内部を露点温度以下にコントロールできる。
 ミキサー6には、好ましくはスタティックミキサーを使用する。図4は、スタティックミキサー6Aの概略斜視図を示している。スタティックミキサー6Aは、管部材25の内部に多段にエレメント26を配置している。スタティックミキサー6Aは、管部材25を流れる排気ガスとミスト混合気体を、多段に配置しているエレメント26で右方向と左方向とに交互に逆転させながら流して混合する。エレメント26は、管部材25の内径を幅方向とし、好ましくは長さを幅方向の1.5倍とする長方形の板材を180度ねじった形状で、右方向にねじった右エレメント26Aと、左方向にねじった左エレメント26Bとを交互に流動方向に並べている。隣接して配置される右エレメント26Aと左エレメント26Bは、境界において互いに直交する姿勢で、管部材25に配置される。このスタティックミキサー6Aは、隣接するエレメント26に流入する毎に2分割して下流側のエレメント26に流入され、回転方向が逆転して流動される。スタティックミキサー6Aは、交互に配置される右エレメント26Aと左エレメント26Bの段数を多くして、排気ガスとミスト混合気体とをより均一に混合できる。
 スタティックミキサー6Aは、隣接するエレメント26に流入する毎に2分割されるので、たとえば、右エレメント26Aと左エレメント26Bとを20段に配置するスタティックミキサー6Aは、分割数が220(1,048,576回)となって、排気ガスとミスト混合気体とを効率よく混合し、排気ガスとミストとを効率よく接触させて、排気ガスの炭酸ガスをミストに吸収して、ミストの陽イオンと炭酸ガスとを効率よく反応させて炭酸塩を含むミストとする。スタティックミキサー6Aは、右エレメント26Aと左エレメント26Bの全長を、横幅の1.5倍と短くして、多段に配置するエレメント26の個数を多くすることで、全長を短くしながら、2つの流体を効率よく混合し、炭酸ガスとミストの陽イオンを反応させて高効率に炭酸塩を生成させる。さらに、スタティックミキサー6Aは、エレメントを長くして2つの流体を効率よく混合することができる。図1の製造装置100は、霧化機1から供給されるミスト混合気体と排気ガスとを混合して、ミストに炭酸ガスを吸収させて、ミストの陽イオンと炭酸ガスとを反応させて炭酸塩とする。
(分離器7)
 分離器7は、炭酸塩を含むミストを排気ガスから分離して回収する。分離器7は、ミストを回収して炭酸塩の溶液を回収する。分離器7は、好ましくはサイクロン70を使用する。図5に示すサイクロン70は、円筒部71の下端に下窄み状のテーパー部72を連結する円筒状である。サイクロン70は、ミストを含む排気ガスを内部で渦巻き状に回転させて、遠心力でミストと排気ガスから分離する。サイクロン70の遠心力の作用でミストを分離する。ミストは回転する遠心力で回転しながら外側に移動する。ミストに作用する遠心力は質量に比例して増加する。ミストの質量は排気ガスよりも大きく、さらにミストの質量は粒径の三乗に比例して増加する。超音波振動で発生するミクロンオーダーのミストは、ナノオーダーのミストに比較して質量が極めて大きく、サイクロン70の分離効率を高くできる。超音波霧化機1Aは、ミクロンオーダーのミストを効率よく発生するので、超音波霧化機1Aで発生したミストはサイクロン70で効率よく排気ガスから分離できる。
 サイクロン70は、排気ガスとミスト混合気体とを混合しているミスト含有排気ガスを高速回転させるために、円筒部71には、ミスト含有排気ガスを接線方向に流入させる流入ダクト73を連結している。流入ダクト73から円筒部71に接線方向に流入するミスト含有排気ガスは、円筒部71の内部を高速回転する。円筒部71で高速回転するミスト含有排気ガスは、ミストを遠心力で外周に向かって移動させる。外周に移動するミストは、円筒部71の内周面に接触し、円筒部の内周面に沿ってテーパー部72の内周面を液状に流れ落ちる。テーパー部72は、流れ落ちる液体を外部に排出するために、下端に液体排出口74を設けている。液体排出口74の下方には炭酸塩の溶液を蓄える液タンク76を配置している。ミストの分離された排気ガスは、円筒部71の中心に軸方向に伸びる垂直姿勢に配置している排気ダクト75から外部に排出される。ミストよりも比重の小さい排気ガスは、回転による遠心力が小さく、円筒部71の中央部から外部に排気できる。
 以上の分離器7は、ひとつのサイクロン70でミストを排気ガスから分離するが、分離器は、複数のサイクロンを直列と並列に連結しているマルチサイクロンを使用して、ミストをより効率よく分離することもできる。マルチサイクロンは、流入側のサイクロンに排出側のサイクロンを連結している。排出側のサイクロンは、流入側のサイクロンよりも小さい複数のサイクロンを並列に連結している。流入側のサイクロンは排気ダクトを分岐して、排出側のサイクロンの流入ダクトに連結している。排出側のサイクロンは、流入側のサイクロンでミストの分離されたミスト含有排気ガスが分岐して流入される。排出側のサイクロンは、流入されたミスト含有排気ガスからさらにミストを分離する。マルチサイクロンは、流入側のサイクロンと排出側のサイクロンの両方でミスト含有排気ガスからミストを分離して効率よくミストを分離する。
 分離器7にサイクロン70を使用する装置は、簡単な構造でミストを効率よく分離できる特長がある。ただ、本発明は分離器7をサイクロン70に特定するものでなく、ミスト含有排気ガスからミストを分離できる他の全ての分離器、たとえば既に使用されている静電セパレータやデミスター等も使用できる。静電セパレータは、ミスト含有排気ガスの通路にミストを帯電させる放電電極を設けてミストを帯電し、耐電されたミストを、静電気の作用で集電電極に吸着して分離する。静電セパレータは静電気の作用でミストを吸着するので、より微細なミストを効率よく分離できる。
(反応器80)
 サイクロン70の下方に配置している液タンク76は、ミストを回収して炭酸塩溶液が蓄えられる。ミストのアルカリ水溶液に苛性ソーダ溶液を使用する装置は、ミストの苛性ソーダと排気ガスの炭酸ガスとが反応して炭酸ナトリウムを生成する。したがって、この装置は、液タンク76に炭酸塩溶液として炭酸ナトリウム溶液を蓄える。図1の製造装置100は、炭酸ナトリウムをより商品価値の高い炭酸カルシウムとする反応器80を備える。
 反応器80は、図6に示すように、炭酸ナトリウム溶液に水酸化カルシウムを混合して、炭酸ナトリウムと水酸化カルシウムを反応させて炭酸カルシウムを生成する。図6の反応器80は、混合容器81に供給される炭酸ナトリウム溶液に水酸化カルシウムを添加、混合して炭酸カルシウムを生成する。添加される水酸化カルシウムは溶解し、以下の(1)の反応式で示すように、炭酸ナトリウムと反応して炭酸カルシウムを生成する。生成された炭酸カルシウムは溶解度が小さいので混合容器81の底に沈殿する。水酸化ナトリウム(苛性ソーダ)は溶解度が高く液体に溶解される。反応器80は、炭酸ナトリウム溶液とほぼ同じモル濃度の水酸化カルシウムを混合して炭酸カルシウムを生成する。混合容器81の底に沈殿した炭酸カルシウムは、混合容器81から回収して濾過する等の方法で水分を除去し、さらに乾燥機82で乾燥して粉末状の炭酸カルシウムとして回収する。
   NaCO+Ca(OH)→CaCO+2NaOH……(1)
(コントローラ5)
 コントローラ5は霧化機1の霧化効率とミスト濃度を考慮して、霧化機1に供給する搬送気体や排気ガスの流量や温度を制御する。コントローラ5は、霧化機1に設けている空気を加温する空気加温器21と、アルカリ水溶液9を加温する溶液加温器22とを制御する。霧化機1は、空気やアルカリ水溶液9を加温して、霧化効率を高くして単位時間に発生するミスト量を多くできる。この空気加温器21と溶液加温器22は、コントローラ5に制御されて、空気温度やアルカリ水溶液温度を調整する。
 コントローラ5は、霧化機1に加えて、ミキサー6に供給する排気ガスとミスト混合気体の流量も制御する。コントローラ5は、例えば、ミキサー6に設けた温度センサ27と湿度センサ28から入力される信号で、ミキサー6内をミストの気化を抑制する環境に制御する。さらに、コントローラ5は、排気ガスとミスト混合気体の流量を調整して、排気ガスのCOとアルカリ水溶液のアルカリ成分との比率もコントロールしている。たとえば、アルカリ水溶液を苛性ソーダ溶液とするミストと排気ガスのCOとを反応させて炭酸ナトリウムを生成する際に、炭酸ガスと苛性ソーダを特定の比率として効率よく炭酸ナトリウムを生成できるように、ミキサー6に供給するミスト混合気体の供給量を供給ファン29で調整する。コントローラ5は、分離器7で回収するミストのpHを検出して、ミスト混合気体の供給量をコントロールすることができる。このコントローラ5は、霧化機1からミキサー6に供給するミスト混合気体の流量を制御する。
 コントローラ5は、ミキサー6に供給するミスト混合気体と排気ガスの温度と流量を調整して、ミキサー6内におけるミストの気化を抑制する。さらに、コントローラ5は、霧化機1に供給する搬送気体の空気の流量と温度を調整し、さらに超音波振動するアルカリ水溶液の温度を調整して、ミキサー6に供給するミスト混合気体の温度や湿度をコントロールすることができる。ミキサー6に供給するミスト混合気体の温度が高く、空気流量が多くなると、ミキサー6内の相対湿度が低下してミストが気化しやすくなる。したがって、コントローラ5は、ミキサー6内の温度と湿度を検出して、内部の相対湿度が設定範囲となるように、空気加温器21と溶液加温器22を調整し、また霧化機1に供給する空気の流量を送風機構20でコントロールする。さらに、コントローラ5は、排気ガスの流量と、排気ガスに供給する外気の流量も調整して、ミキサー6内の相対湿度を設定範囲に、好ましくは相対湿度を100%以上とする過飽和な状態、すなわち露点温度以下としてミストの気化を効果的に抑制する。
 霧化機1は、液柱Pに送風する空気の流量を多くし、空気温度を高くして霧化効率を高くでき、さらに、アルカリ水溶液9を加温して温度を高くすることで霧化効率を高くできる。このことから、コントローラ5は、霧化効率を考慮して液柱Pに供給する空気の流量と温度を調整する。空気の流量を増加して温度を高くすると、霧化効率は高くなるが、ミキサー6内でミストが気化する割合が多くなる。したがって、コントローラ5は、ミキサー6内の温度と湿度を検出して、霧化機1が液柱Pに供給する空気の流量と温度を調整する。コントローラ5は、好ましくは、ミキサー6内で水分が過飽和ないしほぼ過飽和な状態となるように保持しながら、空気の流量を多く、温度を高く設定して、霧化効率を高くして、ミストの気化を抑制する。溶液加温器22を備える霧化機1は、ミキサー6内を過飽和ないしほぼ過飽和な状態に保持できる範囲で、加温するアルカリ水溶液の温度を高くする。
 ミキサー6に供給する排気ガスの流量と温度は、ミキサー6内におけるミストの気化量に影響がある。水蒸気を含む高温の排気ガスは、露点温度以下に冷却してミキサー6に供給して、ミキサー6内におけるミストの気化を抑制できる。高温で低湿度の排気ガスが、ミキサー6に供給されると、ミキサー6内の相対湿度が低下してミストの気化が促進される。とくに、低湿度の排気ガスが多量にミキサー6に供給されると、ミキサー6内の相対湿度が低下してミストの気化が促進されるので、高温の排気ガスを冷却して相対湿度を高くし、あるいは霧化機1から供給されるミスト混合気体の相対湿度を低くして、ミキサー6内の相対湿度を設定範囲よりも高く維持してミキサーに供給できるよう制御する。ミキサー内を露点温度以下としてミストの気化を抑制するように、コントローラ5は、ミキサーの温度や湿度を検出して、ミキサー6に供給する排気ガスとミスト混合気体の温度、湿度、流量を制御する。
(前処理機4)
 前処理機4は、発電所や高炉、ディーゼルエンジン等から排出される排気ガスの微粒子状物質と大気汚染物質を分離する。前処理機4は、微粒子状物質(PM)を分離するPMの前処理機3と、大気汚染物質を分離する大気汚染物質の前処理機2とを備える。図1の製造装置100は、PMの前処理機3で排気ガスから微粒子状物質を分離した後、大気汚染物質の前処理機2でSOとNOを分離して、排気ガスの炭酸ガスから炭酸塩を製造する。
(PMの前処理機3)
 PMの前処理機3は、静電集塵機を使用して超微粒子を効率よく除去できる。静電集塵機30は、図7に示すように、放電電極31と、集塵電極32と、電源33とを備え、静電気の作用で微粒子状物質を排気ガスから分離する。
 放電電極31はプラス電極31Aとマイナス電極31Bとを対向させて空気循環路35に配設している。マイナス電極31Bは絶縁物(図示せず)を介して互いに平行に配設された2本の細い金属線である。2本のマイナス電極31Bの間に、板状のプラス電極31Aを配設している。板状のプラス電極31Aは、空気がスムーズに通過できるように、空気の流動方法に平行に固定している。プラス電極31Aは直接に、マイナス電極31Bはスイッチ34を介して電源33に接続されている。電源33は、プラス電極31Aとマイナス電極31Bとに、コロナ放電する電圧、例えば、3000~10000Vの電圧を印加する。スイッチ34をオンにすると、マイナス電極31Bに負の高電圧が印加される。プラス電極31Aは電源のアース側に接続されている。通常の使用状態においては、線状のマイナス電極31Bを電源33のマイナス側に接続し、板状のプラス電極31Aを電源33のプラス側に接続し、負コロナ放電とする。それは、負コロナ放電は、正コロナ放電に比較すると、高電流となって空気中の微粒子状物質に効果的に荷電できるからである。ただし、線状の電極をプラス電極として電源のプラス側に、板状の電極をマイナス電極として電源のマイナス側に接続することもできる。
 集塵電極32は、空気循環路35であって放電電極31よりも空気の排出側に配設されている。集塵電極32は、放電電極31で荷電された微粒子状物質を、静電的な吸着力で吸着する。したがって、集塵電極32は板状の電極を絶縁材を介して平行に配設している。板状の電極は電源33に接続され、電源33によって微粒子状物質を吸着できる電圧、例えば、2000~15000Vに帯電されている。
 以上の静電集塵機30は、排気ガスに含まれる微粒子状物質を放電電極31で帯電し、帯電した微粒子状物質を集塵電極32の表面に静電気の作用で吸着して回収する。静電集塵機30は、排気ガスに含まれる超微粒子を効率よく回収できる。ただし、PMの前処理機は、必ずしも静電集塵機を使用することなく、微粒子状物質を分離できる他の全ての装置、たとえばバグフィルターやサイクロン等も使用できる。
(大気汚染物質の前処理機2)
 この大気汚染物質の前処理機2には、現在すでに使用されており、さらにこれから開発される全ての前処理機を使用できる。したがって、本発明は、大気汚染物質の前処理機2を特定するものでないが、以下に好ましい大気汚染物質の前処理機を例示する。
 図8の大気汚染物質の前処理機2は、炭酸塩の製造装置100と同様に、排気ガスをミストと混合して、SOとNOをミストに吸収して分離する。この大気汚染物質の前処理機2は、アルカリ水溶液をミストとする霧化機1と、霧化機1で発生するミストと排気ガスとを混合して排気ガスのSOとNOをミストに吸収させるミキサー6と、ミストを吸収したミストを回収する分離器7とを備える。霧化機1とミキサー6と分離器7は、炭酸塩の製造装置100と同じ構造とすることができる。霧化機1は、例えば苛性ソーダ溶液をミストとする。苛性ソーダ溶液のミストは、ミキサー6で排出ガスと混合されて、SOとNOを吸収して金属イオンのナトリウムと反応する。SOとNOを吸収したミストを分離器7のサイクロン70で回収して、排気ガスからSOとNOが分離される。
 大気汚染物質の前処理機2は、排気ガスを苛性ソーダ溶液のミストと混合してSOとNOを分離する。SOとNOは炭酸ガスよりも反応性が高いので、排気ガスと苛性ソーダ溶液のミストと混合して、炭酸ガスを残存させる状態で排気ガスからSOとNOを分離できる。
 図8に示す大気汚染物質の前処理機2は、第1の処理機2Aと第2の処理機2Bで構成している。この大気汚染物質の前処理機2は、第1の処理機2Aの排出側に第2の処理機2Bを連結して、第1の処理機2Aでは主として排気ガスからSOを分離し、第2の処理機2Bは主としてNOを分離する。SOはNOよりも苛性ソーダ溶液との反応性が高く、ミストに接触して効率よく吸収される。第2の処理機2Bは、第1の処理機2AでSOを分離した排気ガスからNOを分離する。
 図8の大気汚染物質の前処理機2は、第1の処理機2Aと第2の処理機2Bとの間に酸化器8を連結している。酸化器8は排気ガスのNOを酸化してNOとする。排気ガスはNOをNOとNOの状態で含有するが、NOは水に溶解され難い。図8の大気汚染物質の前処理機2は、排気ガスのNOを酸化して溶解しやすいNOとするために、排気ガスに酸素含有気体として外気を混合する酸化器8を備えている。酸化器8は、排気ガスに酸素含有気体として外気を混合して、NOをNOに酸化する。排気ガスのNOは酸化されやすく、空気に含まれる酸素と結合してNOとなる。排気ガスに混合される外気は、NOを酸化すると共に、高炉や発電所等から排出された高温の排気ガスの温度を低下して、排気ガスを露点温度以下とする。露点温度以下に温度低下した排気ガスは、過飽和な水蒸気が液化して微細な水滴となる。したがって、外気が混合された排気ガスは、NOがNOとなり、露点温度以下に温度低下して過飽和状態にある。外気で温度低下する排気ガスの温度は、外気の混合量を多くしてより低温にできる。外気の混合量は、好ましくは、排気ガスを露点温度以下とするように、たとえば150℃以下になるように調整される。
 図8の大気汚染物質の前処理機2は、主としてNOを分離する第2の処理機2Bの流入側に酸化器8を連結している。この酸化器8は、SOの分離された排気ガスに含まれるNOをNOとして、第2の処理機2Bに供給する。この大気汚染物質の前処理機2は、酸化器8を第1の処理機2Aと第2の処理機2Bとの間に連結しているが、酸化器8は第1の処理機2Aの流入側に接続して、NOをNOに酸化できる。したがって、酸化器は、第1の処理機2Aの流入側、あるいはPMの前処理機3の流入側に連結することもできる。
 以上の大気汚染物質の前処理機2は、苛性ソーダ溶液をミストとして、ミストと排気ガスを混合してSOとNOを分離する。この大気汚染物質の前処理機2は、微細なミストと排気ガスとを混合するので、苛性ソーダ溶液と排気ガスとの接触面積が大きく、大気汚染物質のSOとNOを効率よく分離できる。ただし、大気汚染物質の前処理機2は、従来から使用されている湿式スクラバーなどで排気ガスからSOxとNOxを分離することもできる。図9に示す湿式スクラバー78は、排気ガスの通路に苛性ソーダ溶液などの、SOとNOと反応して吸収する水溶液をノズル79から噴射し、噴射された霧状の苛性ソーダ溶液と排気ガスとを接触させて、SOとNOを苛性ソーダ溶液に吸入して分離する。
 図1の炭酸塩の製造装置100は、以下の工程で排気ガスの炭酸ガスを原料として炭酸塩を製造する。この図の製造装置100は、流入側に前処理機4を設けているので、排気ガスから微粒子状物質を除去した後、大気汚染物質のSOとNOを除去して、排気ガスの炭酸ガスから炭酸塩を製造する。
[前処理工程]
 前処理工程では、ミキサー6に供給される排気ガスから微粒子状物質と大気汚染物質のSOとNOを分離する。図1に示す製造装置100は、ミキサー6の供給側にPMの前処理機3と大気汚染物質の前処理機2とを配置しており、PMの前処理機3で排気ガスから微粒子状物質を分離して除去した後、大気汚染物質の前処理機2で大気汚染物質のSOとNOを分離して除去する。
[霧化工程]
 この工程は、霧化機1がアルカリ水溶液をミストとする。霧化機1は、アルカリ水溶液をミストとして、搬送気体に混合してミスト混合気体とする。霧化機1は、アルカリ水溶液を苛性ソーダ溶液としてミストとする。霧化機1は、ミストとするアルカリ水溶液を苛性ソーダ溶液に特定するものでなく、水酸化カリウムなど、他のアルカリ金属のアルカリ水溶液、さらにアルカリ土類金属を含む水溶液、又はアルカリ金属もしくはアルカリ土類金属を含む天然物あるいは廃棄物を水に溶解したものも使用できる。霧化機1は、図2に示すように、超音波振動子11で超音波振動させて液面から突出する液柱Pの表面に搬送気体を送風してミストを発生させる。搬送気体は、液柱Pの表面からミストを吹き飛ばしてミスト混合気体とする。ミストは、水酸化ナトリウム濃度を調整して、炭酸ガスの吸収をコントロールできる。ミストのアルカリ水溶液の濃度は、たとえば1vol%以上とする。ミストは、アルカリ水溶液の濃度を高くして、大気汚染物質の吸収を効率よくできる。したがって、ミストのアルカリ水溶液の濃度は、好ましくは水酸化ナトリウムや水酸化カリウムなどが過飽和とならない濃度で出来る限り高くする。
[混合工程]
 混合工程は、排気ガスとミスト混合気体とをミキサー6に供給して混合し、排気ガスの炭酸ガスをミストに吸収させて、ミストの陽イオンと炭酸ガスとを結合して炭酸塩とする。混合工程は、例えば、ミキサーにスタティックミキサー6Aを使用し、排気ガスとミスト混合気体を混合して、排気ガスの炭酸ガスをミストに吸収させる。ミキサー6のスタティックミキサー6Aは、霧化機1から供給されるミスト混合気体と排気ガスとを混合して、排気ガスの炭酸ガスをアルカリ水溶液のミストに吸収させる。排気ガスの炭酸ガスは、ミストの陽イオンと結合して炭酸塩となって、ミストを炭酸塩を含む状態とする。
[分離工程]
 分離工程は、ミキサー6の排出側に連結された分離器7により、混合工程で生じた炭酸塩を含むミストを排気ガスから分離する。分離工程では、例えば、分離器7にサイクロン70を使用して炭酸塩を含むミストを排気ガスから分離する。図1の製造装置100は、ミストのアルカリ成分を苛性ソーダ溶液としているので、ミストの苛性ソーダと排気ガスの炭酸ガスとが反応して、炭酸塩として炭酸ナトリウムが生成される。したがって、この分離工程においては、炭酸塩溶液として炭酸ナトリウム溶液が得られる。
 図1の製造装置100は、以上の工程で排気ガスの炭酸ガスをミストに吸収させて、炭酸塩を排気ガスから分離するが、コントローラ5は効率よく排気ガスの炭酸ガスをミストに吸収して分離できるように霧化機1やミキサー6を制御する。コントローラ5は、ミキサー6内の温度と湿度を検出し、ミキサー6内を、好ましくは露点温度以下に保持し、かつ効率よくアルカリ水溶液をミストに霧化できるように、霧化機1に供給する搬送気体の空気温度、空気流量、アルカリ水溶液を加温する温度等を調整する。さらに、コントローラ5は、排気ガスと搬送気体との流量比や温度も調整し、ミキサー6内で排気ガスとミストとを接触させて、炭酸ガスを効率よくミストに吸収させる。
[反応工程]
 さらに、反応工程において、分離工程で得られる炭酸ナトリウム溶液と、水酸化カルシウムとを反応器80で反応させて炭酸カルシウムを生成する。図1の製造装置100は、分離工程で得られる炭酸ナトリウムに水酸化カルシウムを混合して反応させることにより、より商品価値の高い炭酸カルシウムを生成する。この反応工程では、混合容器81において炭酸ナトリウム溶液に水酸化カルシウムを混合して、炭酸ナトリウムと水酸化カルシウムとを反応させて炭酸カルシウムとする。さらに、反応工程で得られる炭酸カルシウムの沈殿物を分離し、乾燥工程において乾燥機で乾燥することにより、粉末状の炭酸カルシウムが得られる。
(実施の形態2)
 図10の炭酸塩の製造装置200は、排気ガスを霧化機1に供給する。この霧化機は、超音波振動で発生する液柱Pの表面に排気ガスを送風する送風機構20を備えており、送風される排気ガスでミストを液柱Pの表面から吹き飛ばしてミスト含有排気ガスとする。霧化機1に供給する排気ガスは、温度が高いと、ミストを気化して霧化効率を低下させる。したがって、霧化機1に供給される排気ガスは温度をコントロールして供給する。高温の排気ガスは、霧化機1の内部を露点温度以下とする温度に冷却して霧化機1に供給する。排気ガスは、強制的に冷却することで、含有する水蒸気を結露させて除去できるので、絶対湿度を低下して霧化機1に供給できる。低湿度な状態に温度がコントロールされた排気ガスは、霧化機1の内部でミストを気化することがなく、ミストの気化に起因する霧化効率の低下を抑制できる。ただし、霧化機1は供給される排気ガスの温度が低すぎると霧化効率が低下するので、冷却して霧化機1に供給される排気ガスは、霧化効率が低下しない温度にコントロールして供給される。
 図10の製造装置200は、霧化機1で排気ガスとミストを混合してミスト含有排気ガスとするので、霧化機1がミストと炭酸ガスとを混合するミキサー6に併用できる。霧化機1をミキサー6に併用する製造装置は、霧化機1の次段に専用のミキサーを連結することなく炭酸ガスとミストを混合して、排気ガスの炭酸ガスとミストの陽イオンを反応して炭酸塩を生成できる。ただ、この製造装置においても、好ましくは図10に示すように、霧化機1の排出側にミキサー6を連結して、霧化機1で混合されたミスト含有排気ガスをさらにミキサー6で混合して、排気ガスとミストとをより効率よく混合して炭酸塩を生成する。霧化機1に排気ガスを供給する製造装置200は、図1の製造装置100のように、ミキサー6に搬送気体が供給されないので、ミキサー6内のミスト濃度を高くして効率よく炭酸ガスから炭酸塩を生成できる。
(実施形態3及び4)
 以上の製造装置100、200は、アルカリ水溶液を超音波振動で微細なミストとするが、実施形態3及び4の製造装置は、前述の実施形態1及び2の製造装置における霧化機を静電霧化機として、アルカリ水溶液のミストを発生させる。静電霧化機は、図11に示すように、閉鎖された噴霧ケース47の上部に複数のノズルからなる噴霧器41を設けて、上から下にアルカリ水溶液をスプレーしている。さらに、静電霧化機1Bは、噴霧器41からのスプレー水を静電気の作用で微細なミストとする霧化電極42を噴霧ケース47の内部に配置している。
 図11に示す静電霧化機1Bは、複数の噴霧ユニット50からなる噴霧器41を噴霧ケース47に設けている。噴霧ユニット50を、図12に示す。この図に示す噴霧ユニット50は、ノズルブロック54に複数のキャピラリーチューブ53を平行に固定している。キャピラリーチューブ53は、内径を0.1mmφ~0.2mmφとする金属製の細管で、加圧されたアルカリ水溶液を先端から噴射してミストに噴霧する。
 ノズルブロック54は、外周部に鍔状のフランジ54aを有し、複数のキャピラリーチューブ53を中央部に設けている。図12のノズルブロック54は、フランジ54aを設けている本体部54Aに、キャピラリーチューブ53を固定しているプレート部54Bをネジ止めしている。プレート部54Bは、キャピラリーチューブ53を挿通する貫通孔54xを設けている。貫通孔54xの内形はキャピラリーチューブ53の外形にほぼ等しく、キャピラリーチューブ53をほぼ隙間のない状態に挿通している。キャピラリーチューブ53と貫通孔54xとの液漏れを防止するために、プレート部54Bの内面にはパッキン55を配置している。パッキン55はゴム状弾性体で、キャピラリーチューブ53とプレート部54Bとの隙間を気密に密閉する。パッキン55を押圧状態で固定するために、挟着プレート56を配置している。パッキン55は、プレート部54Bと挟着プレート56に押し潰されて、本体部54Aに固定される。挟着プレート56も貫通孔56xを設けている。挟着プレート56は、本体部54Aの段差部54bに配設され、本体部54Aに固定されるプレート部54Bでパッキン55を弾性的に押圧して本体部54Aに固定される。さらに、本体部54Aは、背面に突出する筒部54cを有する。筒部54cは、内側に複数のキャピラリーチューブ53を配置できる内形として、外側には雄ネジ54dを設けている外形としている。本体部54Aは、この筒部54cの内側にキャピラリーチューブ53を配置している。筒部54cは、アルカリ水溶液を供給する給水栓ソケット57を後端に連結している。
 図12のノズルブロック54は、プレート部54Bに設けた複数の貫通孔54xを複数列のリング状に配置している。キャピラリーチューブ53は、ノズルブロック54から突出して、その先端を放電突出部51として、内部の中心孔を微細噴霧孔52としている。ノズルブロック54に固定されるキャピラリーチューブ53の数は、噴霧ユニット50の微細噴霧孔52の個数を特定する。噴霧ユニット50は、好ましくは10個以上、好ましくは20個以上、さらに好ましくは30個以上の微細噴霧孔52を設けて、1組の噴霧ユニット50が単位時間に噴霧するミスト量を多くしている。噴霧ユニット50は、微細噴霧孔52の個数が多すぎると、全体が大きくなるので、100個以下の微細噴霧孔52を設けている。図12に示す噴霧ユニット50は、ノズルブロック54の中央部に配置するキャピラリーチューブ53の突出量を外周部のキャピラリーチューブ53よりも高くして、多量のキャピラリーチューブ53で形成される先端面を中央凸の山形としている。ただ、噴霧ユニットは、キャピラリーチューブの突出量を同じとして、多量のキャピラリーチューブで形成される先端面を平面状とすることもできる。
 以上の噴霧ユニット50は、多数のキャピラリーチューブ53からなる細管を備え、各々のキャピラリーチューブ53からアルカリ水溶液をミストに噴霧する。噴霧ユニットは、キャピラリーチューブに代わって、多数の微細な噴霧孔を設けた多孔板とすることもできる。多孔板は、金属等の導電性のある材料で製作される。この多孔板は、金属板にレーザーで微細な噴霧孔を設けて製作できる。さらに、多孔板は、微細な噴霧孔のある焼結金属とすることもできる。導電性のある多孔板は、高圧電源に接続されて、霧化電極との間に高電圧を印加できる。ただし、多孔板は必ずしも導電性のある材質とする必要はない。それは、アルカリ水溶液が導電性を有するので、噴霧孔から噴霧されるアルカリ水溶液と霧化電極との間に高電圧を印加して、噴霧されるミストを静電気の作用で霧化できるからである。したがって、多孔板は、微細な噴霧孔を有する連続気泡のプラスチック発泡体等も使用できる。
 噴霧ケース47は、噴霧器41に対して絶縁して霧化電極42を設けている。霧化電極42は噴霧器41に対して高電圧となる。したがって、霧化電極42と噴霧器41とは互いに絶縁して噴霧ケース47に固定される。金属製の噴霧ケースに絶縁することなく噴霧器を固定している静電霧化機1Bは、霧化電極を噴霧ケースから絶縁している。また、噴霧器を噴霧ケースから絶縁している静電霧化機1Bは、霧化電極を噴霧ケースに固定している。ただし、噴霧器と霧化電極の両方を噴霧ケースに絶縁して固定することもできる。
 霧化電極42は、噴霧器41の放電突出部51との間で放電して、噴霧器41から噴霧されるミストを微細な粒子に霧化する。この霧化電極42は、微細噴霧孔52からミストの噴霧方向に離してその前方に位置する。図11の霧化電極42は、ノズルブロック54の外周に位置する環状の金属リング42Aで、ノズルブロック54に固定している複数のキャピラリーチューブ53の外周に位置する。図11に示す金属リングである霧化電極42は、吹き出し孔64から噴き出す搬送気体の通路にあって、送風される搬送気体で霧化電極42にミストが付着するのを少なくできる。
 また、霧化電極は金属網を使用することもできる。金属網の霧化電極は、放電突出部51からミストの噴霧方向に離して配置する。金属網の霧化電極は、各々の放電突出部51と均一に放電して、各々の微細噴霧孔52から噴霧されるミストを微細な粒子に霧化できる。
 霧化電極42は、各々の噴霧ユニット50の前方、図11の静電霧化機1Bにあっては、噴霧器41が下方にミストを噴霧するので、噴霧ユニット50の下方に霧化電極42を配置している。
 高圧電源43は、噴霧ユニット50と霧化電極42との間に高電圧を印加する。高圧電源43は直流電源で、プラス側を霧化電極42に、マイナス側を噴霧ユニット50に接続する。ただし、プラス側を噴霧ユニットに、マイナス側を霧化電極に接続することもできる。
 図11の静電霧化機1Bは、噴霧ケース47の上部に、閉鎖されたチャンバーを設けて空気チャンバー62としている。空気チャンバー62を区画するために、噴霧ケース47の上部に気密に区画壁63を固定している。区画壁63は、噴霧ケース47の内部を空気チャンバー62と噴霧チャンバー61とに区画すると共に、噴霧器41を固定する固定部として、複数の噴霧ユニット50を定位置に固定している。噴霧器41の噴霧ユニット50は、ミストを噴霧チャンバー61に噴霧するように、固定部である区画壁63に固定している。噴霧ユニット50は、図12に示すようにノズルブロック54のフランジ54aに開口した連結孔54eを貫通する連結ボルト58を介して区画壁63に脱着構造で固定している。
 空気チャンバー62は閉鎖構造で、気体の供給機構である送風機構67に連結されて、送風機構67から送風される搬送気体を、区画壁63に貫通して設けた吹き出し孔64から噴霧チャンバー61内に噴き出す。吹き出し孔64は、スリット状の貫通孔で、噴き出す搬送気体を各々の噴霧ユニット50の周囲に噴き出すように、噴霧ユニット50の間に設けている。ただ、吹き出し孔は必ずしもスリット状とする必要はない。吹き出し孔は、噴霧ユニットの間に、円形や多角形の貫通孔を複数個設けて、噴霧ユニットの間に搬送気体を噴き出すこともできる。吹き出し孔64から噴霧チャンバー61に噴き出される搬送気体は、霧化されたミストを移送する。図11の噴霧ケース47は、隣接する噴霧ユニット50の間に吹き出し孔64を設けている。吹き出し孔64から噴霧チャンバー61に噴き出された搬送気体は、噴霧ユニット50から噴霧されて霧化電極42で微細な粒子とされたミストと混合してミスト混合気体として、スタティックミキサー6Aに供給される。
 噴霧器41は、図11に示すように、噴霧ユニット50を区画壁63の噴霧チャンバー61側に固定して、噴霧チャンバー61にミストを噴霧する。噴霧器41は、アルカリ水溶液を加圧状態で供給するポンプ65に連結している。ポンプ65は、液体タンク66に蓄えられたアルカリ水溶液9を加圧して噴霧ユニット50に供給する。ポンプ65は、アルカリ水溶液9をフィルターでろ過して噴霧器41に供給する。フィルターは、噴霧器41に詰まる異物を除去するフィルターである。ポンプ65は、吐出圧力を高くして、噴霧ユニット50から噴射されるアルカリ水溶液の流量を多くし、またミストの平均粒径を小さくできる。ただ、ミストの平均粒径は、ポンプ65から供給されるアルカリ水溶液の圧力のみでなく、噴霧ユニット50の構造によっても変化する。このことから、ポンプ65がアルカリ水溶液を加圧して噴霧ユニット50に供給する圧力は、噴霧ユニット50の構造や要求されるミストの粒径を考慮して最適値に設定されるが、好ましくは0.1MPa以上、好ましくは0.2MPa以上、さらに好ましくは0.3MPa以上とする。ポンプ65が噴霧ユニット50に供給するアルカリ水溶液の圧力が高いと、ポンプ65が高価になると共に、ポンプ65を運転するモータの消費電力が大きくなってランニングコストが高くなる。したがって、ポンプ65が噴霧ユニット50に供給するアルカリ水溶液の圧力は、たとえば1MPa以下、好ましくは0.8MPa以下、さらに好ましくは0.7MPa以下とする。ポンプ65がアルカリ水溶液を加圧して噴霧ユニット50に供給する圧力は、好ましくは0.3MPa~0.6MPaとして、好ましくはミストの平均粒径を50μm以下、好ましくは30μm以下として、100nm以上とする。
 本発明の炭酸塩の製造方法及び製造装置は、高炉や発電所等の排気ガスに含まれる炭酸ガスを原料として炭酸塩を製造する方法及び装置として好適に使用される。
100、200…製造装置
1…霧化機
1A…超音波霧化機
1B…静電霧化機
2…大気汚染物質の前処理機
2A…第1の処理機
2B…第2の処理機
3…PMの前処理機
4…前処理機
5…コントローラ
6…ミキサー
6A…スタティックミキサー
7…分離器
8…酸化器
9…アルカリ水溶液
10…霧化室
11…超音波振動子
12…高周波電源
13…供給口
14…オーバーフロー口
15…供給機構
16…溶液タンク
17…溶液ポンプ
18…底板
18A…開口部
19…リード線
20…送風機構
21…空気加温器
22…溶液加温器
24…供給ファン
25…管部材
26…エレメント
26A…右エレメント
26B…左エレメント
27…温度センサ
28…湿度センサ
29…供給ファン
30…静電集塵機
31…放電電極
31A…プラス電極
31B…マイナス電極
32…集塵電極
33…電源
34…スイッチ
35…空気循環路
41…噴霧器
42…霧化電極
42A…金属リング
43…高圧電源
47…噴霧ケース
50…噴霧ユニット
51…放電突出部
52…微細噴霧孔
53…キャピラリーチューブ
54…ノズルブロック
54A…本体部
54B…プレート部
54a…フランジ
54b…段差部
54c…筒部
54d…雄ネジ
54e…連結孔
54x…貫通孔
55…パッキン
56…挟着プレート
56x…貫+通孔
57…給水栓ソケット
58…連結ボルト
61…噴霧チャンバー
62…空気チャンバー
63…区画壁
64…吹き出し孔
65…ポンプ
66…液体タンク
67…送風機構
70…サイクロン
71…円筒部
72…テーパー部
73…流入ダクト
74…液体排出口
75…排気ダクト
76…液タンク
78…湿式スクラバー
79…ノズル
80…反応器
81…混合容器
82…乾燥機
W…液面
P…液柱
H…液柱表面

Claims (39)

  1.  アルカリ水溶液を霧化機でミストとする霧化工程と、
     前記霧化工程で得られるアルカリ水溶液のミストと排気ガスとを混合して、
      排気ガスの炭酸ガスをミストに吸収して、
      ミストの陽イオンと炭酸ガスを結合して炭酸塩とし、
      ミストを炭酸塩を含む状態とする混合工程と、
     前記混合工程で得られる炭酸塩を含むミストを排気ガスから分離する分離工程と
    を含む炭酸塩の製造方法。
  2.  請求項1に記載の炭酸塩の製造方法であって、
     前記霧化工程において、
      前記霧化機がアルカリ水溶液を超音波振動してミストとする炭酸塩の製造方法。
  3.  請求項2に記載の炭酸塩の製造方法であって、
     前記霧化工程において、
      前記霧化機が、アルカリ水溶液を超音波振動して液面から突出する液柱の表面に排気ガスを送風して、ミストと排気ガスとを混合する炭酸塩の製造方法。
  4.  請求項2に記載の炭酸塩の製造方法であって、
     前記霧化工程において、
      前記霧化機が、アルカリ水溶液を超音波振動して液面から突出する液柱の表面に搬送気体を送風してミスト混合気体とし、
     前記混合工程において、
      前記ミスト混合気体と排気ガスとを混合する炭酸塩の製造方法。
  5.  請求項1に記載の炭酸塩の製造方法であって、
     前記霧化工程において、
      前記霧化機が、ノズルから噴射されるアルカリ水溶液のスプレー水を静電霧化してミストとする炭酸塩の製造方法。
  6.  請求項5に記載の炭酸塩の製造方法であって、
     前記霧化工程において、
      前記霧化機が、ノズルから噴射されて静電霧化されたミストに排気ガスを送風して、ミストと排気ガスとを混合する炭酸塩の製造方法。
  7.  請求項5に記載の炭酸塩の製造方法であって、
     前記霧化工程において、
      前記霧化機が、ノズルから噴射されて静電霧化されたミストに搬送気体を送風してミスト混合気体とし、
     前記混合工程において、
      ミスト混合気体と排気ガスとを混合する炭酸塩の製造方法。
  8.  請求項1~7のいずれか一項に記載の炭酸塩の製造方法であって、
     前記霧化工程において、
      アルカリ水溶液のミストの平均粒径を50μm以下とする炭酸塩の製造方法。
  9.  請求項1~7のいずれか一項に記載の炭酸塩の製造方法であって、
     前記霧化工程において、
      アルカリ水溶液のミストの平均粒径を30μm以下とする炭酸塩の製造方法。
  10.  請求項8又は9に記載の炭酸塩の製造方法であって、
     前記霧化工程において、
      アルカリ水溶液のミストの平均粒径を100nm以上とする炭酸塩の製造方法。
  11.  請求項1~10のいずれか一項に記載の炭酸塩の製造方法であって、
     前記霧化工程において、
      アルカリ水溶液に苛性ソーダ溶液を使用し、
     前記混合工程において、
      排気ガスの炭酸ガスとミストの苛性ソーダとを反応させて炭酸ナトリウムを含むミストとし、
     前記分離工程において、
      炭酸ナトリウムを含むミストを排気ガスから分離する炭酸塩の製造方法。
  12.  請求項11に記載の炭酸塩の製造方法であって、さらに、
     前記分離工程で得られる炭酸ナトリウム溶液と、水酸化カルシウムとを反応させて、
      炭酸カルシウムとする反応工程を含む炭酸塩の製造方法。
  13.  請求項12に記載の炭酸塩の製造方法であって、
     前記反応工程において、
      炭酸ナトリウム溶液に水酸化カルシウムを混合して、炭酸ナトリウムと水酸化カルシウムとを反応させて炭酸カルシウムとし、
     前記反応工程で得られる炭酸カルシウムの沈殿物を分離して乾燥する乾燥工程を含む炭酸塩の製造方法。
  14.  請求項1~13のいずれか一項に記載の炭酸塩の製造方法であって、
     前記分離工程において、
      炭酸塩を含むミストを、サイクロンで排気ガスから分離する炭酸塩の製造方法。
  15.  請求項1~14のいずれか一項に記載の炭酸塩の製造方法であって、
     前記霧化工程において使用するアルカリ水溶液に、
      海水を原料として生成する苛性ソーダ溶液を使用する炭酸塩の製造方法。
  16.  請求項1~15のいずれか一項に記載の炭酸塩の製造方法であって、
     前記混合工程において、
      アルカリ水溶液のミストと排気ガスとをスタティックミキサーで混合する炭酸塩の製造方法。
  17.  請求項1~16のいずれか一項に記載の炭酸塩の製造方法であって、
     前記混合工程において、
      アルカリ水溶液のミストと排気ガスとをミキサーで混合すると共に、
     前記ミキサー内を、露点温度以下に保持する炭酸塩の製造方法。
  18.  請求項1~17のいずれか一項に記載の炭酸塩の製造方法であって、さらに、
     排気ガスに含まれる大気汚染物質を分離する前処理工程を含み、
     前記前処理工程において、
      大気汚染物質を分離した排気ガスの炭酸ガスを原料として炭酸塩を製造する炭酸塩の製造方法。
  19.  請求項1~18のいずれか一項に記載の炭酸塩の製造方法であって、さらに、
     排気ガスに含まれる微粒子状物質を除去する前処理工程を含み、
     前記前処理工程において、
      微粒子状物質を分離した排気ガスの炭酸ガスを原料として炭酸塩を製造する炭酸塩の製造方法。
  20.  請求項1~19のいずれか一項に記載の炭酸塩の製造方法であって、
     アルカリ水溶液が、
      アルカリ金属又はアルカリ土類金属を含む水溶液、もしくは
      アルカリ金属又はアルカリ土類金属を含む天然物あるいは廃棄物を水に溶解したものである炭酸塩の製造方法。
  21.  アルカリ水溶液を霧化してミストとする霧化機と、
     前記霧化機で発生するミストと排気ガスとを混合して、
      ミストの陽イオンと炭酸ガスとを結合して炭酸塩とするミキサーと、
     前記ミキサーで得られるミストを排気ガスから分離して、
      炭酸塩を含むミストを回収する分離器と、
    を備える炭酸塩の製造装置。
  22.  請求項21に記載の炭酸塩の製造装置であって、
     前記霧化機が、
      アルカリ水溶液を超音波振動してミストとする超音波霧化機である炭酸塩の製造装置。
  23.  請求項22に記載の炭酸塩の製造装置であって、
     前記超音波霧化機が、
      アルカリ水溶液を超音波振動して液面から突出する液柱の表面に排気ガスを送風して、ミストと排気ガスとを混合する送風機構を備える炭酸塩の製造装置。
  24.  請求項22に記載の炭酸塩の製造装置であって、
     前記超音波霧化機が、
      アルカリ水溶液を超音波振動して液面から突出する液柱の表面に搬送気体を送風してミスト混合気体とする送風機構を備え、
     前記ミキサーが、
      前記ミスト混合気体と排気ガスとを混合する炭酸塩の製造装置。
  25.  請求項21に記載の炭酸塩の製造装置であって、
     前記霧化機が、
      ノズルから噴射するアルカリ水溶液のスプレー水を静電霧化してミストとする静電霧化機である炭酸塩の製造装置。
  26.  請求項25に記載の炭酸塩の製造装置であって、
     前記静電霧化機が、
      静電霧化されたミストに排気ガスを送風して、ミストと排気ガスとを混合する送風機構を備える炭酸塩の製造装置。
  27.  請求項25に記載の炭酸塩の製造装置であって、
     前記静電霧化機が、
      静電霧化されたミストに搬送気体を送風してミスト混合気体とする送風機構を備え、
     前記ミキサーが、
      ミスト混合気体と排気ガスとを混合する炭酸塩の製造装置。
  28.  請求項21~27のいずれか一項に記載の炭酸塩の製造装置であって、
     前記霧化機が、
      アルカリ水溶液のミストの平均粒径を50μm以下とする炭酸塩の製造装置。
  29.  請求項21~27のいずれか一項に記載の炭酸塩の製造装置であって、
     前記霧化機が、
      アルカリ水溶液のミストの平均粒径が30μm以下とする炭酸塩の製造装置。
  30.  請求項28または29に記載の炭酸塩の製造装置であって、
     前記霧化機が、
      アルカリ水溶液のミストの平均粒径を100nm以上とする炭酸塩の製造装置。
  31.  請求項21~30のいずれか一項に記載の炭酸塩の製造装置であって、
     前記霧化機がミストとするアルカリ水溶液が苛性ソーダ溶液で、
     前記ミキサーが、
      ミストの苛性ソーダと排気ガスの炭酸ガスとを反応させて炭酸ナトリウムとする炭酸塩の製造装置。
  32.  請求項31に記載の炭酸塩の製造装置であって、さらに、
     前記分離器で得られる炭酸ナトリウム溶液と、水酸化カルシウムとを反応させて、
      炭酸カルシウムとする反応器を備える炭酸塩の製造装置。
  33.  請求項32に記載の炭酸塩の製造装置であって、さらに、
     前記反応器で生成される炭酸カルシウムを乾燥する乾燥機を備え、
     前記反応器は、
      炭酸ナトリウム溶液に水酸化カルシウムを混合して、
      炭酸ナトリウムと水酸化カルシウムとを反応させて炭酸カルシウムを沈殿させる混合容器を備え、
     前記乾燥機が、前記混合容器で得られる炭酸カルシウムを乾燥して粉末状とする炭酸塩の製造装置。
  34.  請求項21~33のいずれか一項に記載の炭酸塩の製造装置であって、
     前記分離器がサイクロンである炭酸塩の製造装置。
  35.  請求項21~34のいずれか一項に記載の炭酸塩の製造装置であって、
     前記霧化機がミストとするアルカリ水溶液が、
      海水を原料として生成する苛性ソーダ溶液である炭酸塩の製造装置。
  36.  請求項21~35のいずれか一項に記載の炭酸塩の製造装置であって、
     前記霧化機がミストとするアルカリ水溶液が、
      アルカリ金属又はアルカリ土類金属を含む水溶液、もしくは
      アルカリ金属又はアルカリ土類金属を含む天然物あるいは廃棄物を水に溶解した水溶液である炭酸塩の製造装置。
  37.  請求項21~36のいずれか一項に記載の炭酸塩の製造装置であって、
     前記ミキサーが、スタティックミキサーである炭酸塩の製造装置。
  38.  請求項21~37のいずれか一項に記載の炭酸塩の製造装置であって、さらに、
     排気ガスから大気汚染物質のSOとNOを分離する前処理機を備える炭酸塩の製造装置。
  39.  請求項21~38のいずれか一項に記載の炭酸塩の製造装置であって、さらに、
     排気ガスに含まれる微粒子状物質を除去する前処理機を備える炭酸塩の製造装置。
PCT/JP2021/026218 2020-07-13 2021-07-13 炭酸塩の製造方法及び製造装置 WO2022014554A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022536363A JPWO2022014554A1 (ja) 2020-07-13 2021-07-13
US18/015,635 US20230242410A1 (en) 2020-07-13 2021-07-13 Method and apparatus for producing carbonate salts

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020120179 2020-07-13
JP2020-120179 2020-07-13

Publications (1)

Publication Number Publication Date
WO2022014554A1 true WO2022014554A1 (ja) 2022-01-20

Family

ID=79555506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/026218 WO2022014554A1 (ja) 2020-07-13 2021-07-13 炭酸塩の製造方法及び製造装置

Country Status (3)

Country Link
US (1) US20230242410A1 (ja)
JP (1) JPWO2022014554A1 (ja)
WO (1) WO2022014554A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023225509A1 (en) * 2022-05-17 2023-11-23 ColdStream Energy IP, LLC System and method for capture and utilization of carbon dioxide from dilute fluid streams

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002293537A (ja) * 2001-04-02 2002-10-09 Okutama Kogyo Co Ltd 炭酸カルシウムの製造方法
JP2005211826A (ja) * 2004-01-30 2005-08-11 Toshiba Corp 排ガス中の二酸化炭素の回収システムおよび回収方法
JP2009172596A (ja) * 2009-02-02 2009-08-06 Choonpa Jozosho Kk 溶液の超音波霧化方法とこの方法に使用される超音波霧化機
JP2011131140A (ja) * 2009-12-22 2011-07-07 Honke Matsuura Shuzojo:Kk 超音波霧化方法と霧化装置
JP2019171255A (ja) * 2018-03-27 2019-10-10 国立大学法人東北大学 酸性ガス分離装置及び酸性ガス分離方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002293537A (ja) * 2001-04-02 2002-10-09 Okutama Kogyo Co Ltd 炭酸カルシウムの製造方法
JP2005211826A (ja) * 2004-01-30 2005-08-11 Toshiba Corp 排ガス中の二酸化炭素の回収システムおよび回収方法
JP2009172596A (ja) * 2009-02-02 2009-08-06 Choonpa Jozosho Kk 溶液の超音波霧化方法とこの方法に使用される超音波霧化機
JP2011131140A (ja) * 2009-12-22 2011-07-07 Honke Matsuura Shuzojo:Kk 超音波霧化方法と霧化装置
JP2019171255A (ja) * 2018-03-27 2019-10-10 国立大学法人東北大学 酸性ガス分離装置及び酸性ガス分離方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023225509A1 (en) * 2022-05-17 2023-11-23 ColdStream Energy IP, LLC System and method for capture and utilization of carbon dioxide from dilute fluid streams

Also Published As

Publication number Publication date
US20230242410A1 (en) 2023-08-03
JPWO2022014554A1 (ja) 2022-01-20

Similar Documents

Publication Publication Date Title
US4963329A (en) Gas reacting apparatus and method
CN101443970B (zh) 放电装置及空气净化装置
US5023064A (en) Method for removing sulfur oxide
KR20160088261A (ko) 습식 스크러버 노즐 시스템 및 공정 가스를 세정하기 위한 사용 방법
CA2520110A1 (en) Coal flue gas scrubber
JP3844776B2 (ja) 気液接触用ガス分散管と,これを用いる気液接触方法及び装置
JPS6336817B2 (ja)
CN104174279B (zh) 一种双极性电晕放电烟气脱硫除尘方法及其设备
JPH07308539A (ja) 湿式排煙脱硫装置
JP2010234335A (ja) 脱臭装置
WO2022014554A1 (ja) 炭酸塩の製造方法及び製造装置
KR20160030176A (ko) 배기가스 처리방법 및 배기가스 처리장치
WO2022014553A1 (ja) 排気ガスの浄化方法と浄化装置
CN204911125U (zh) 旋风式荷电水雾分离微尘空气的净化系统
HUT65105A (en) Direct current dry scrubber
CN107126829A (zh) 湿法脱硫塔前废液零排放及烟气降温节水的方法及装置
CN105107366A (zh) 一种顺流喷雾半干式烟气脱硫方法
CN113680194A (zh) 一种半干法脱硫脱硝的烟气处理系统及烟气处理方法
KR102262666B1 (ko) 배기가스 정화용 스크러버 및 이를 이용한 배기가스 정화 방법
US5362464A (en) Method for removing sulfur oxides
WO2021015274A1 (ja) 溶解方法
JP2021023900A (ja) 排気ガスの浄化方法と浄化装置
CN103657375B (zh) 气相氧化脱出并回收尾气中痕量so2的方法和系统
CN206858237U (zh) 一种脱硫除尘废水处理系统及石灰质循环净化系统
JPH10323533A (ja) 排気ガス処理装置及び排気ガス処理設備

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21842743

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022536363

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21842743

Country of ref document: EP

Kind code of ref document: A1