WO2022014391A1 - Polyethylene fiber and product containing said fiber - Google Patents

Polyethylene fiber and product containing said fiber Download PDF

Info

Publication number
WO2022014391A1
WO2022014391A1 PCT/JP2021/025323 JP2021025323W WO2022014391A1 WO 2022014391 A1 WO2022014391 A1 WO 2022014391A1 JP 2021025323 W JP2021025323 W JP 2021025323W WO 2022014391 A1 WO2022014391 A1 WO 2022014391A1
Authority
WO
WIPO (PCT)
Prior art keywords
hard particles
polyethylene
less
fiber
polyethylene fiber
Prior art date
Application number
PCT/JP2021/025323
Other languages
French (fr)
Japanese (ja)
Inventor
優二 池田
靖憲 福島
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2022536269A priority Critical patent/JPWO2022014391A1/ja
Publication of WO2022014391A1 publication Critical patent/WO2022014391A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/46Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polyolefins

Definitions

  • the present invention relates to polyethylene fibers and products containing the fibers.
  • ultra-high molecular weight polyethylene is spun by a solution spinning method.
  • high-strength polyethylene fibers can be obtained by the above manufacturing method, not only the productivity is low, but also a large-scale ventilation facility is required to recover the solvent at the time of producing the yarn.
  • elution of the solvent remaining on the polyethylene fiber has become a problem, and the usage of the polyethylene fiber has been limited.
  • an object of the present invention is to provide a polyethylene fiber having excellent cut resistance and hardly or no solvent remaining, and a product using the fiber.
  • the present invention has the following configuration.
  • the ultimate viscosity [ ⁇ ] of polyethylene is 0.8 dL / g or more and less than 8.0 dL / g.
  • the polyethylene fiber described in. 3. 3. 1.
  • the weight average molecular weight of polyethylene is 40,000 or more and 900,000 or less. Or 2.
  • the hard particles are a metal, a silicon compound, or a mineral. ⁇ 3.
  • the hard particles contain 20% by mass or more of SiO 2 in the hard particles. ⁇ 4.
  • the average minor axis of the hard particles is 1.0 ⁇ m or more.
  • ⁇ 5. The polyethylene fiber described in any of. 7. The above 1. that contains 2% by mass or more of the hard particles. ⁇ 6.
  • ⁇ 7. A product characterized by containing the polyethylene fiber described in any of the above. 9. The product is a cut-resistant woven or knitted fabric. The products listed in. 10. The product is a glove. Or 9. The products listed in.
  • the present invention relates to polyethylene fibers containing hard particles.
  • the present invention will be described in detail.
  • the polyethylene fiber of the present invention preferably has an intrinsic viscosity [ ⁇ ] of 0.8 dL / g or more and less than 8.0 dL / g, more preferably 1.0 dL / g or more and 6.0 dL / g or less. More preferably, it is 1.2 dL / g or more and less than 4.9 dL / g, and particularly preferably 1.5 dL / g or more and 2.5 dL / g or less.
  • the ultimate viscosity By setting the ultimate viscosity to 0.8 dL / g or more, the number of structural defects in the fiber can be reduced by reducing the molecular terminal groups of polyethylene. Therefore, it is possible to improve the mechanical characteristics and cut resistance of the fiber such as strength and elastic modulus. Further, by setting the ultimate viscosity to less than 8.0 dL / g, clogging of the filtration filter in the spinning process due to the added hard particles can be suppressed, and productivity can be improved. Further, by setting the ultimate viscosity to less than 8.0 dL / g, the spinning by the melt spinning method becomes easy, and it is not necessary to spin by the solution spinning method such as so-called gel spinning.
  • the melt spinning method When the melt spinning method is used, no solvent is used during manufacturing, so the impact on workers and the environment is small. Further, since there is no residual solvent in the fiber produced as a product, there is no problem of elution of the residual solvent, and the usage of the polyethylene fiber is not limited.
  • the polyethylene fiber of the present invention preferably has a weight average molecular weight (Mw) of 40,000 or more and 900,000 or less.
  • Mw weight average molecular weight
  • the polyethylene fiber of the present invention preferably has a weight average molecular weight (Mw) of 40,000 or more and 900,000 or less.
  • Mw is more preferably 60,000 or more, further preferably 80,000 or more, further preferably 700,000 or less, further preferably 500,000 or less, and 350,000 or less. Is particularly preferable.
  • the polyethylene in the present invention may be used as long as the repeating unit thereof is substantially ethylene, and the ethylene and a small amount of other monomers; for example, ⁇ -olefin, acrylic acid and its derivative, methacrylic acid and its derivative, vinylsilane and its derivative. It may be a copolymer with a derivative or the like. Alternatively, these copolymers may be used together, a copolymer of an ethylene homopolymer and the above copolymer, or a blend of an ethylene homopolymer and another homopolymer such as ⁇ -olefin.
  • the inclusion of short-chain or long-chain branches to some extent using a copolymer with an ⁇ -olefin such as propylene or butene-1 is used in producing the polyethylene fiber of the present invention, especially in spinning and drawing. It is more preferable because it imparts the above stability. However, if the content other than ethylene increases too much, it will adversely affect stretching. Therefore, from the viewpoint of obtaining polyethylene fibers with high strength and high elastic modulus, the ratio of components other than ethylene to the total polyethylene fibers is monomer.
  • the unit is preferably 0.2 mol% or less, more preferably 0.1 mol% or less.
  • the polyethylene in the present invention may be composed of ethylene alone.
  • the polyethylene fiber of the present invention may have a core-sheath structure, or may have an irregular shape such as a star shape, a triangle shape, or a hollow shape.
  • the polyethylene fiber of the present invention contains hard particles.
  • the "hard particles” mean particles that are difficult to aggregate in a polymer (polyethylene fiber).
  • the major axis of the hard particles indicates the length at the position where the length of the hard particles is maximum (the length of the maximum diameter), and the minor axis of the hard particles is the width orthogonal to the major axis. Specifically, the length at the position where the length is the maximum in the direction orthogonal to the direction of the length L of the long axis at the position where the maximum is (the major axis of the hard particle) is shown.
  • the average value of the major axis of the hard particles used in the present invention (hereinafter referred to as the average major axis) is preferably 25 ⁇ m or more, more preferably 45 ⁇ m or more, and further preferably 80 ⁇ m or more. Further, the average major axis of the hard particles used in the present invention is preferably 500 ⁇ m or less, more preferably 300 ⁇ m or less, and further preferably 200 ⁇ m or less.
  • the method of measuring the major axis of the hard particles and the method of calculating the average major axis will be described in detail in the column of Examples described later. calculate.
  • the average value of the minor axis of the hard particles used in the present invention (hereinafter referred to as the average minor axis) is 18 ⁇ m or less, preferably 15 ⁇ m or less, and more preferably 10 ⁇ m or less. If the average minor axis of the hard particles exceeds 18 ⁇ m, the filtration filter is clogged during spinning, which significantly reduces the productivity of the fibers, and particularly the stretchability. Further, if the average minor axis of the hard particles exceeds 18 ⁇ m, it becomes difficult to perform melt spinning.
  • the average minor axis of the hard particles used in the present invention is preferably 1.0 ⁇ m or more, more preferably 3.0 ⁇ m or more, and further preferably 5.0 ⁇ m or more.
  • the average minor axis of the hard particles is less than 1.0 ⁇ m, the specific surface area increases and the hard particles aggregate as an aggregate, which may cause clogging during spinning.
  • the method of measuring the minor diameter of the hard particles and the method of calculating the average minor diameter will be described in detail in the column of Examples described later, but by measuring the minor diameter of each of the 10 hard particles and obtaining the average value thereof. Calculate the average minor axis.
  • the aspect ratio of the hard particles used in the present invention is 3 or more and 100 or less. If the aspect ratio is less than 3, the cut resistance will be poor. Further, if the aspect ratio exceeds 100, it becomes difficult to perform melt spinning.
  • the aspect ratio is preferably 5 or more and 70 or less, more preferably 7 or more and 50 or less, and particularly preferably 9 or more and 30 or less.
  • the aspect ratio of the hard particles is a value calculated based on JIS89001 (that is, an index representing the shape of the particles defined by the major axis / minor axis in the microscope image of the particles).
  • the method of measuring and calculating the aspect ratio of the hard particles will be described in detail in the column of Examples described later, but the aspect ratio of each particle is calculated from the major axis and the minor axis of each of the 10 hard particles, and 10 particles are used.
  • the average value of the aspect ratios of the hard particles is defined as the aspect ratio of the hard particles.
  • the average particle size of the hard particles used in the present invention is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, further preferably 30 ⁇ m or more, and particularly preferably 50 ⁇ m or more.
  • the average particle size of the hard particles used in the present invention is preferably 300 ⁇ m or less, more preferably 200 ⁇ m or less, still more preferably 135 ⁇ m or less, and particularly preferably 100 ⁇ m or less.
  • the average particle size of the hard particles By setting the average particle size of the hard particles to 10 ⁇ m or more, the cut resistance can be improved. Further, by setting the average particle diameter of the hard particles to 300 ⁇ m or less, clogging of the filtration filter during spinning can be suppressed and productivity can be improved.
  • the average major axis and the average minor axis are calculated by the above method, and the average value of the average major axis and the average minor axis is taken as the average particle diameter.
  • the hard particles used in the present invention include metals, silicon compounds, minerals, etc., and only one kind may be used, or two or more kinds may be used.
  • examples of the metal include aluminum, tungsten, iron, titanium, chromium, zinc, manganese, nickel, copper, silver, and gold; and further, compounds of the metal.
  • the silicon compound is not particularly limited as long as it is a compound containing silicon, and examples thereof include silica, glass, and silicon carbide.
  • the mineral include quartz, rock wool, iron oxide and the like.
  • Rock wool is a material (mineral fiber) in which a material mainly composed of rock or blast furnace slag melted in a melting furnace is rapidly cooled and fiberized. For example, slag wool manufactured from a material mainly composed of blast furnace slag is also included.
  • the hard particles used in the present invention preferably contain an aluminum compound or a silicon compound, and more preferably contain an aluminum compound and a silicon compound.
  • the aluminum compound is not particularly limited as long as it is a compound containing aluminum, but is preferably Al 2 O 3.
  • the silicon compound is not particularly limited as long as it is a compound containing silicon, and examples thereof include silica, glass, and silicon carbide, but silica and / or glass are preferable, and glass is more preferable.
  • Silica and glass are mainly distinguished by the content of SiO 2. Silica is substantially composed of SiO 2 only, and the SiO 2 content of silica is approximately 95% by mass or more.
  • the main component of glass is SiO 2 , and in addition, Al 2 O 3 , B 2 O 3 , P 2 O 5, and the like may be contained.
  • the shape of the glass used in the present invention is not particularly limited, but is preferably glass fiber.
  • the hard particles preferably contain 5% by mass or more, more preferably 10% by mass or more, preferably 40% by mass or less, and more preferably 30% by mass or less. Further, the hard particles preferably contain 20% by mass or more, more preferably 30% by mass or more, preferably 70% by mass or less, and more preferably 60% by mass or less. In particular, the hard particles preferably contain 20% by mass or more of SiO 2 , more preferably 30% by mass or more, further preferably 50% by mass or more, preferably 70% by mass or less, and 60% by mass or less. It is more preferable to include it.
  • the hard particles used in the present invention may be used as they are or may have a modified surface.
  • a dimethyl group, an epoxy group, a hexyl group, a phenyl group, a methacrylic group, a vinyl group, an isocyanate group and the like can be applied.
  • the content of the hard particles contained in the entire polyethylene fiber of the present invention is 2% by mass or more, preferably 3% by mass or more, preferably 20% by mass or less, and more preferably 10% by mass or less. be.
  • the content of the hard particles is 2% by mass or more, the contact frequency between the hard particles existing in the fiber and the blade is increased, and the effect of improving the cut resistance can be easily obtained.
  • the hard particles When spinning the polyethylene fiber of the present invention, the hard particles may be used as a masterbatch kneaded with polyethylene in advance, or may be used alone.
  • the polyethylene fiber of the present invention may contain an antioxidant, a lubricant, an antistatic agent, a peroxide, a pigment, a dye, a dispersant and the like as additives in addition to the above-mentioned hard particles.
  • a melt spinning method can be used as a production method for obtaining the polyethylene fiber of the present invention.
  • the melt spinning method polyethylene fibers with little or no residual solvent can be obtained.
  • the residual solvent in the polyethylene fiber is preferably 20 ppm or less, and more preferably 10 ppm or less.
  • the components eluted by soxley extraction with chloroform are concentrated by an evaporator and qualitatively quantified by nuclear magnetic resonance (NMR). It can be carried out by two measurement methods: analysis or ii) measurement by gas chromatography.
  • NMR nuclear magnetic resonance
  • the boiling point of the residual solvent exceeds 350 ° C, it is preferable to measure the amount of residual solvent by performing qualitative quantitative analysis by the former NMR, and when the boiling point of the residual solvent is 350 ° C or less, the latter gas chromatography method. It is preferable to measure the amount of residual solvent using.
  • the detailed measurement methods of i) and ii) will be described later.
  • the residual solvent amount is measured by the above two measuring methods, and the larger value is taken as the residual solvent amount in the polyethylene fiber.
  • the gel spinning method which is one of the methods for producing ultra-high molecular weight polyethylene fibers using a solvent (solution spinning method)
  • a solvent is used.
  • the use of solvent has a great impact on the health and environment of manufacturing workers, and the solvent remaining in the fiber has a great impact on the health of product users. Further, when the gel spinning method is used, there is a problem that the productivity is low.
  • the method for producing the polyethylene fiber of the present invention by using the melt spinning method will be specifically described below.
  • the method for producing the polyethylene fiber of the present invention is not limited to the following steps and numerical values.
  • the above-mentioned polyethylene resin and hard particles in a powder state are blended and melt-extruded using an extruder or the like at a temperature higher than the melting point of the polyethylene resin, for example, 10 ° C. or higher, preferably 50 ° C. or higher, and more preferably 80 ° C. or higher. Then, using a fixed quantity supply device, the polyethylene resin is supplied to the spinning nozzle (spinning cap) at a temperature higher than the melting point of the polyethylene resin, for example, 80 ° C. or higher, preferably 100 ° C. or higher.
  • the pressure of the inert gas supplied into the extruder is preferably 0.001 MPa or more and 0.8 MPa or less, more preferably 0.05 MPa or more, 0.7 MPa or less, still more preferably 0.1 MPa or more. , 0.5 MPa or less is recommended.
  • a spinning nozzle having a diameter of 0.3 mm or more and 2.5 mm or less, preferably a diameter of 0.5 mm or more and 1.5 mm or less is discharged at a discharge amount of 0.1 g / min or more.
  • the discharge line speed at the time of discharging the molten resin from the spinning nozzle is preferably 10 cm / min or more and 120 cm / min or less. More preferable discharge line velocities are 20 cm / min or more and 110 cm / min or less, and more preferably 30 cm / min or more and 100 cm / min or less.
  • the discharged yarn is cooled to 5 to 40 ° C., then wound at 50 m / min or more, and the obtained undrawn yarn is further rolled at least once at a temperature equal to or lower than the melting point of the undrawn yarn.
  • Stretch. Specifically, it is preferable to perform the stretching step in two or more steps.
  • the initial temperature of drawing is preferably less than the crystal dispersion temperature of the undrawn yarn, more preferably 80 ° C. or lower, still more preferably 75 ° C. or lower.
  • the crystal dispersion temperature is a temperature measured by the following method.
  • the solid viscoelasticity is measured using a solid viscoelasticity measuring device (“DMA Q800” manufactured by TA Instruments).
  • TA Universal Analysis manufactured by TA Instruments
  • the measurement start temperature is ⁇ 140 ° C.
  • the measurement end temperature is 140 ° C.
  • the temperature rise rate is 1.0 ° C./min.
  • the strain amount is 0.04%
  • the initial load at the start of measurement is 0.05 cN / dtex.
  • the measurement frequency is 11 Hz.
  • the loss elastic modulus is calculated based on the obtained solid viscoelastic modulus, the temperature dispersion is obtained from the low temperature side, the value of the loss elastic modulus is plotted on the vertical axis in logarithm, and the temperature is plotted on the horizontal axis.
  • the peak value of the loss elastic modulus that appears on the highest temperature side is defined as the crystal dispersion temperature.
  • the draw ratio is preferably 6 times or more in total, more preferably 8 times or more, and further preferably 10 times or more.
  • the total draw ratio is preferably 30 times or less, more preferably 25 times or less, and further preferably 20 times or less.
  • the stretching ratio of the first step is preferably 1.05 times or more and 4.00 times or less, and the second step stretching is preferably performed.
  • the magnification is preferably 2.5 times or more and 15 times or less.
  • Examples of the product containing the polyethylene fiber of the present invention include woven and knitted fabrics, which can be suitably used as cut resistant woven and knitted fabrics, gloves, vests and the like.
  • gloves can be obtained by hanging the polyethylene fibers of the present invention on a knitting machine.
  • the polyethylene fiber of the present invention can be woven on a loom to obtain a cloth, which can be cut and sewn to make gloves.
  • the gloves thus obtained can be used as gloves as they are, for example, but if necessary, a resin can be applied to impart anti-slip properties.
  • a resin can be applied to impart anti-slip properties.
  • the resin used here include urethane-based and ethylene-based resins, but the resin is not particularly limited.
  • the polyethylene fiber of the present invention has excellent cut resistance, as can be seen from the examples described later. Therefore, in addition to the above-mentioned woven and knitted fabrics such as gloves and vests, the products using the polyethylene fiber of the present invention include tapes, ropes, nets, fishing lines, material protective covers, sheets, kite threads, western bow strings, sail cloths, etc. It is suitably used as a curtain material. Of course, the products using the polyethylene fibers of the present invention are not limited to these.
  • the polyethylene fiber of the present invention has high cut resistance
  • a material utilizing the cut resistance for example, a fiber reinforced resin reinforcing material, a cement reinforcing material, a fiber reinforced rubber reinforcing material, or an environmental change is assumed. It is suitably used as a protective material, a bulletproof material, a medical suture, an artificial tendon, an artificial muscle, a fiber reinforced resin reinforcing material, a cement reinforcing material, a fiber reinforced rubber reinforcing material, a machine tool part, a battery separator, and a chemical filter.
  • the polyethylene fiber of the present invention is not limited to these materials and can be used as various materials.
  • the maximum minor axis was defined as the length at the position where the maximum length was obtained in the direction orthogonal to the maximum major axis.
  • the average major axis was obtained by obtaining the average value of the maximum major axis of the 10 hard particles, and the average minor axis was determined by obtaining the average value of the maximum minor axis of the 10 hard particles. Since the hard particles have high hardness, it is considered that the shape does not change even when heated.
  • the aspect ratio of hard particles was determined by using an SEM photograph. Specifically, each fiber sample prepared by the method described later was placed in a crucible, burned until it became ash and a carbonaceous substance, placed in an electric furnace, and heated above the decomposition temperature of polyethylene. When the carbonaceous material became completely ash, it was allowed to cool in a desiccator to obtain ash to room temperature. SEM photographs of the ash thus obtained were taken, and the major axis (maximum major axis) and minor axis (maximum minor axis) were measured for each of the 10 randomly selected hard particles, and the maximum major axis was maximized. The aspect ratio of each particle was calculated by dividing by the minor axis.
  • the maximum minor axis was defined as the length at the position where the maximum length was obtained in the direction orthogonal to the maximum major axis. Then, the average value of the aspect ratios of the 10 hard particles was taken as the aspect ratio of the hard particles. Since the hard particles have high hardness, it is considered that the shape does not change even when heated.
  • the content of hard particles was determined by using ash content measurement based on JIS-2272. 1.0 g of the fiber sample was placed in a crucible, burned until it became ash and a carbonaceous substance, then placed in an electric furnace and heated at a temperature higher than the decomposition temperature of polyethylene. After the carbonaceous substance was completely turned into ash, it was allowed to cool in a desiccator and the mass was measured to determine the ash content. The content of hard particles was determined based on the mass ratio of the ash content to the total of the obtained ash content and the fiber content.
  • Cut resistance (coup test) The cut resistance was measured based on the EN388 method, which is a European standard, using a device of a coup tester (manufactured by SODEMAT). Specifically, using each polyethylene fiber produced by the method described later, a tubular knitting machine having a basis weight of 350 g / m 2 ⁇ 35 g / m 2 was produced using a circular knitting machine manufactured by Shima Seiki Seisakusho Co., Ltd. The index value of the obtained coupe tester for tubular knitting was calculated as follows to evaluate the cut resistance.
  • an aluminum foil was provided on the sample table of the above device, and the knitted sample was placed on this. Then, the circular blade provided in the device was run on the sample while rotating in the direction opposite to the running direction. When the knitted sample was cut, it was detected that the cut resistance test was completed by the contact between the circular blade and the aluminum foil and energization. While the circular blade was operating, the counter attached to the device counted and recorded the value.
  • index value (count value of cotton cloth before sample test + count value of cotton cloth after sample test) / 2
  • Index value (sample count value + K) / K
  • the cutter used for the evaluation of cut resistance is a rotary cutter L type ⁇ 45 mm manufactured by OLFA Co., Ltd.
  • the material was SKS-7 tungsten steel, and the blade thickness was 0.3 mm.
  • the load applied during the test was set to 5N for evaluation.
  • the index value obtained in Comparative Example 4 is set as the incision resistance 100, and using this as a reference value, the other Examples 1 to 8, Comparative Examples 1 to 3, and Comparative Example 9 are Comparative Example 4.
  • the cut resistance was expressed by the relative ratio to.
  • the incision resistance of Example 1 is 120, which means that when the incision resistance of Comparative Example 4 is 100%, a high incision resistance of 120% (1.2 times) is obtained. do.
  • Cut resistance (ISO test) The cut resistance value was measured using TDM-100 manufactured by RGI in accordance with ISO13997 "Protective clothing-Mechanical properties-Cut resistance test method for sharp objects". The cutting direction was 45 degrees.
  • the amount of residual solvent in the polyethylene fiber of Comparative Example 9 produced by the solution spinning method was 50 ppm.
  • NMR measurement It was determined by analysis using 1 H-NMR (solvent: CDCl 3 , frequency: 600 MHz) by AVANCE NEO 600 manufactured by BRUKER.
  • AVANCE NEO 600 manufactured by BRUKER.
  • Gas chromatography method Using the GCMS thermal decomposition system TD-20 manufactured by Shimadzu Corporation, the gas was heated at 80 ° C. for 10 minutes under a helium stream (50 ml / min), and the generated gas was cooled and collected in a Tenax-TA adsorption tube and desorbed by heating.
  • Example 1 A blend polymer was prepared by mixing 97% by mass of polyethylene pellets having an ultimate viscosity of 1.9 dL / g and 3% by mass of rock wool (hard particles) having an average major axis of 125 ⁇ m and an average minor axis of 7 ⁇ m. This blended polymer was supplied to an extruder, melted at 280 ° C., and discharged from a spun mouthpiece having an orifice diameter of ⁇ 0.8 mm and 30 H at a nozzle surface temperature of 288 ° C. and a single hole discharge rate of 0.32 g / min.
  • the discharged yarn was passed through a heat insulating section of 10 cm, cooled at 18 ° C. and 0.5 m / sec quenching, and then wound into a cheese shape at a spinning speed of 80 m / min to obtain an undrawn yarn.
  • the undrawn yarn was wound three times between the two drive rolls and then heated with hot air at 100 ° C. at the maximum drawing ratio capable of stable drawing to obtain a drawn yarn.
  • the drawn yarns were combined so as to have a total of 880 dtex ⁇ 88 dtex to obtain the polyethylene fiber of Example 1.
  • a tubular knitted fabric was produced by the above method and the cut resistance was evaluated. These results are shown in Table 1.
  • the drawn yarns are combined so as to have a desired dtex, but fiber splitting may be performed.
  • Example 2 In the conditions of Example 1, polyethylene fibers and tubular knitted fabrics were obtained in the same manner as in Example 1 except that the polymer, hard particles, and spinning speed used were the conditions shown in Table 1, and the cut resistance was evaluated. These results are shown in Table 1.
  • Example 5 In the conditions of Example 1, polyethylene fibers were tried to be produced in the same manner as in Example 1 except that the polymer, hard particles, and spinning speed used were the conditions shown in Table 2, but in Comparative Examples 5 and 6, they were melted. The viscosity of the state was so high that it could not be extruded, and in Comparative Examples 7 and 8, clogging occurred during spinning, and undrawn yarn could not be obtained in any of the Comparative Examples. These results are shown in Table 2.
  • Comparative Example 10 An attempt was made to produce polyethylene fibers in the same manner as in Comparative Example 9, except that the ultimate viscosity of the ultra-high molecular weight polyethylene was 1.9 dL / g, but the polyethylene fibers could not be produced because they could not be spun. .. These results are shown in Table 2.
  • the polyethylene fibers of Examples 1 to 8 in detail, in a tubular knitting using polyethylene fibers containing hard particles having an aspect ratio of 3 or more and 100 or less and an average minor axis of 18 ⁇ m or less, the index is used. High value, that is, high level of cut resistance.
  • the polyethylene fiber satisfying the requirements of the present invention is a fiber having excellent cut resistance and hardly or no solvent remaining. I understand.
  • the polyethylene fiber of the present invention has high cut resistance, it can be used for cut resistant woven and knitted fabrics utilizing the cut resistance, such as gloves and vests.
  • the polyethylene fiber alone tape, rope, net, fishing line, material protective cover, sheet, kite thread, western bow string, sail cloth, curtain material, protective material, bulletproof material, medical suture thread, artificial tendon, artificial muscle , Fiber reinforced resin reinforcing material, cement reinforcing material, fiber reinforced rubber reinforcing material, machine tool parts, battery separators, chemical filters and other industrial materials.
  • the polyethylene fiber of the present invention can exhibit excellent performance and can be widely applied, so that it can greatly contribute to the industrial world.

Abstract

The present invention provides: a polyethylene fiber which has excellent cut resistance, while having almost or completely no residual solvent; and a product which uses this fiber. A polyethylene fiber which is characterized by containing hard particles that have an average breadth of 18 μm or less, while having an aspect ratio of from 3 to 100.

Description

ポリエチレン繊維および該繊維を含む製品Polyethylene fiber and products containing the fiber
 本発明は、ポリエチレン繊維および該繊維を含む製品に関する。 The present invention relates to polyethylene fibers and products containing the fibers.
 従来、天然繊維の綿や一般的な有機繊維が耐切創性素材として用いられてきた。また、それらの繊維などを編みあげた手袋が耐切創性を必要とする分野で多く用いられてきた。そこで耐切創性機能の付与として、アラミド繊維などの高強度繊維の紡績糸からなる編物や織物などが考案されてきた。しかしながら、これらは、毛抜けや耐久性の観点で不満が見受けられた。一方、別の手段として、金属繊維を有機繊維や天然繊維と合わせて用いることにより耐切創性を向上させる試みが行われている。しかしながら、金属繊維を合わせることにより、風合いが堅くなり、柔軟性が損なわれるという問題がある。 Conventionally, natural fiber cotton and general organic fiber have been used as cut resistant materials. In addition, gloves made by knitting these fibers have been widely used in fields where cut resistance is required. Therefore, knits and woven fabrics made of spun yarns of high-strength fibers such as aramid fibers have been devised to impart a cut resistance function. However, these were dissatisfied in terms of hair loss and durability. On the other hand, as another means, attempts have been made to improve cut resistance by using metal fibers in combination with organic fibers and natural fibers. However, there is a problem that the texture becomes hard and the flexibility is impaired by combining the metal fibers.
 上記の問題を解決する技術として、例えば、平均径が最大25μmの複数の硬質繊維を含む糸により耐切創性に優れる超高分子量ポリエチレン繊維が知られている(特許文献1を参照)。 As a technique for solving the above problems, for example, an ultra-high molecular weight polyethylene fiber having excellent cut resistance due to a yarn containing a plurality of hard fibers having an average diameter of 25 μm at the maximum is known (see Patent Document 1).
特表2010-507026号公報Special Table 2010-5007026
 特許文献1では、溶液紡糸法により超高分子量ポリエチレンを紡糸している。上記製法では高強度のポリエチレン繊維を得られるものの、生産性が低いばかりでなく、糸の製造時に溶剤の回収のために大がかりな換気設備が必要であった。また、ポリエチレン繊維に残留する溶剤の溶出が問題となり、ポリエチレン繊維の使用用途が制限されていた。 In Patent Document 1, ultra-high molecular weight polyethylene is spun by a solution spinning method. Although high-strength polyethylene fibers can be obtained by the above manufacturing method, not only the productivity is low, but also a large-scale ventilation facility is required to recover the solvent at the time of producing the yarn. In addition, elution of the solvent remaining on the polyethylene fiber has become a problem, and the usage of the polyethylene fiber has been limited.
 そこで、本発明は、かかる従来技術の課題を解決するためになされた。すなわち、本発明の目的は、優れた耐切創性を有し、かつ、溶剤がほとんどあるいは全く残留しないポリエチレン繊維、および該繊維を用いた製品を提供することにある。 Therefore, the present invention has been made to solve the problems of the prior art. That is, an object of the present invention is to provide a polyethylene fiber having excellent cut resistance and hardly or no solvent remaining, and a product using the fiber.
 本発明者らは鋭意検討した結果、以下に示す手段により、上記課題を解決できることを見出し、本発明を完成するに到った。すなわち、本発明は、以下の構成からなる。 As a result of diligent studies, the present inventors have found that the above problems can be solved by the means shown below, and have completed the present invention. That is, the present invention has the following configuration.
 1.アスペクト比が3以上100以下であり、平均短径が18μm以下の硬質粒子を含むことを特徴とするポリエチレン繊維。
 2.ポリエチレンの極限粘度[η]は0.8dL/g以上、8.0dL/g未満である上記1.に記載のポリエチレン繊維。
 3.ポリエチレンの重量平均分子量が40,000以上900,000以下である上記1.又は2.に記載のポリエチレン繊維。
 4.前記硬質粒子は、金属、珪素化合物、又は鉱物である上記1.~3.のいずれかに記載のポリエチレン繊維。
 5.前記硬質粒子は、硬質粒子中にSiO2を20質量%以上含む上記1.~4.のいずれかに記載のポリエチレン繊維。
 6.前記硬質粒子の平均短径は1.0μm以上である上記1.~5.のいずれかに記載のポリエチレン繊維。
 7.前記硬質粒子を2質量%以上含有する上記1.~6.のいずれかに記載のポリエチレン繊維。
 8.上記1.~7.のいずれかに記載のポリエチレン繊維を含むことを特徴とする製品。
 9.前記製品は耐切創性織編物である上記8.に記載の製品。
 10.前記製品は手袋である上記8.又は9.に記載の製品。
1. 1. A polyethylene fiber having an aspect ratio of 3 or more and 100 or less and containing hard particles having an average minor axis of 18 μm or less.
2. 2. The ultimate viscosity [η] of polyethylene is 0.8 dL / g or more and less than 8.0 dL / g. The polyethylene fiber described in.
3. 3. 1. The weight average molecular weight of polyethylene is 40,000 or more and 900,000 or less. Or 2. The polyethylene fiber described in.
4. The hard particles are a metal, a silicon compound, or a mineral. ~ 3. The polyethylene fiber described in any of.
5. The hard particles contain 20% by mass or more of SiO 2 in the hard particles. ~ 4. The polyethylene fiber described in any of.
6. The average minor axis of the hard particles is 1.0 μm or more. ~ 5. The polyethylene fiber described in any of.
7. The above 1. that contains 2% by mass or more of the hard particles. ~ 6. The polyethylene fiber described in any of.
8. Above 1. ~ 7. A product characterized by containing the polyethylene fiber described in any of the above.
9. The product is a cut-resistant woven or knitted fabric. The products listed in.
10. The product is a glove. Or 9. The products listed in.
 本発明により、優れた耐切創性を有し、かつ、溶剤がほとんどあるいは全く残留しないポリエチレン繊維、および該繊維を用いた製品を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a polyethylene fiber having excellent cut resistance and hardly or no solvent remaining, and a product using the fiber.
 本発明は、硬質粒子を含むポリエチレン繊維に関する発明である。以下、本発明を詳述する。 The present invention relates to polyethylene fibers containing hard particles. Hereinafter, the present invention will be described in detail.
<ポリエチレン繊維>
 本発明のポリエチレン繊維は、その極限粘度[η]が0.8dL/g以上、8.0dL/g未満であることが好ましく、より好ましくは1.0dL/g以上、6.0dL/g以下、さらに好ましくは1.2dL/g以上、4.9dL/g未満、特に好ましくは1.5dL/g以上、2.5dL/g以下である。
<Polyethylene fiber>
The polyethylene fiber of the present invention preferably has an intrinsic viscosity [η] of 0.8 dL / g or more and less than 8.0 dL / g, more preferably 1.0 dL / g or more and 6.0 dL / g or less. More preferably, it is 1.2 dL / g or more and less than 4.9 dL / g, and particularly preferably 1.5 dL / g or more and 2.5 dL / g or less.
 極限粘度を0.8dL/g以上とすることにより、ポリエチレンの分子末端基の減少により、繊維中の構造欠陥数を減少させることができる。そのため、強度や弾性率等の繊維の力学物性や耐切創性を向上させることができる。また、極限粘度を8.0dL/g未満とすることにより、添加する硬質粒子による紡糸工程における濾過フィルターの目詰まりを抑制でき、生産性を向上させることができる。さらに、極限粘度を8.0dL/g未満とすることにより、溶融紡糸法での製糸が容易になり、いわゆるゲル紡糸等の溶液紡糸法で製糸する必要がない。溶融紡糸法を用いる場合、製造時に溶剤を用いないため、作業者や環境への影響も小さい。また製品となった繊維中の残留溶剤も存在しないため、残留溶剤が溶出する問題が生じず、ポリエチレン繊維の使用用途が制限されることもない。 By setting the ultimate viscosity to 0.8 dL / g or more, the number of structural defects in the fiber can be reduced by reducing the molecular terminal groups of polyethylene. Therefore, it is possible to improve the mechanical characteristics and cut resistance of the fiber such as strength and elastic modulus. Further, by setting the ultimate viscosity to less than 8.0 dL / g, clogging of the filtration filter in the spinning process due to the added hard particles can be suppressed, and productivity can be improved. Further, by setting the ultimate viscosity to less than 8.0 dL / g, the spinning by the melt spinning method becomes easy, and it is not necessary to spin by the solution spinning method such as so-called gel spinning. When the melt spinning method is used, no solvent is used during manufacturing, so the impact on workers and the environment is small. Further, since there is no residual solvent in the fiber produced as a product, there is no problem of elution of the residual solvent, and the usage of the polyethylene fiber is not limited.
 本発明のポリエチレン繊維は、重量平均分子量(Mw)が40,000以上900,000以下であることが好ましい。Mwを40,000以上とすることにより、ポリエチレンの分子末端基の減少により、繊維中の構造欠陥数を減少させることができる。そのため、強度や弾性率等の繊維の力学物性や耐切創性が向上する。また、Mwを900,000以下とすることにより、溶融紡糸法での製糸が容易になり、いわゆるゲル紡糸等の溶液紡糸法で製糸する必要がない。そのため、製造コストの抑制、作業工程の簡略化の点で優位である。Mwは60,000以上であることがより好ましく、80,000以上であることがさらに好ましく、700,000以下であることがより好ましく、500,000以下であることがさらに好ましく、350,000以下であることが特に好ましい。
 なお、Mwは以下の式により、単位をdL/gとしたときの極限粘度の数値から算出することが可能である。
 極限粘度=4.6×10-4×Mw0.73
The polyethylene fiber of the present invention preferably has a weight average molecular weight (Mw) of 40,000 or more and 900,000 or less. By setting Mw to 40,000 or more, the number of structural defects in the fiber can be reduced by reducing the molecular terminal groups of polyethylene. Therefore, the mechanical properties and cut resistance of the fiber such as strength and elastic modulus are improved. Further, by setting Mw to 900,000 or less, spinning by the melt spinning method becomes easy, and it is not necessary to spin by a solution spinning method such as so-called gel spinning. Therefore, it is advantageous in terms of controlling manufacturing costs and simplifying work processes. Mw is more preferably 60,000 or more, further preferably 80,000 or more, further preferably 700,000 or less, further preferably 500,000 or less, and 350,000 or less. Is particularly preferable.
In addition, Mw can be calculated from the numerical value of the ultimate viscosity when the unit is dL / g by the following formula.
Extreme viscosity = 4.6 × 10 -4 × Mw 0.73
 また本発明におけるポリエチレンは、その繰り返し単位が実質的にエチレンであればよく、当該エチレンと、少量の他のモノマー;例えばα-オレフィン、アクリル酸及びその誘導体、メタクリル酸及びその誘導体、ビニルシラン及びその誘導体等との共重合体であってもよい。或は、これら共重合体同士、またはエチレン単独ポリマーと上記共重合体との共重合体、更にはエチレン単独ポリマーと他のα-オレフィン等のホモポリマーとのブレンド体であってもよい。特にプロピレン、ブテン-1などのα-オレフィンとの共重合体を用いて短鎖または長鎖の分岐をある程度含有させることは、本発明のポリエチレン繊維を製造する上で、特に紡糸・延伸における製糸上の安定性が付与されるため、より好ましい。しかしながら、エチレン以外の含有量が増え過ぎると逆に延伸の阻害要因となるため、高強度・高弾性率のポリエチレン繊維を得るという観点からは、ポリエチレン繊維全体に占めるエチレン以外の成分の比率はモノマー単位で好ましくは0.2mol%以下、より好ましくは0.1mol%以下である。もちろん、本発明におけるポリエチレンはエチレン単独で構成されていてもよい。 Further, the polyethylene in the present invention may be used as long as the repeating unit thereof is substantially ethylene, and the ethylene and a small amount of other monomers; for example, α-olefin, acrylic acid and its derivative, methacrylic acid and its derivative, vinylsilane and its derivative. It may be a copolymer with a derivative or the like. Alternatively, these copolymers may be used together, a copolymer of an ethylene homopolymer and the above copolymer, or a blend of an ethylene homopolymer and another homopolymer such as α-olefin. In particular, the inclusion of short-chain or long-chain branches to some extent using a copolymer with an α-olefin such as propylene or butene-1 is used in producing the polyethylene fiber of the present invention, especially in spinning and drawing. It is more preferable because it imparts the above stability. However, if the content other than ethylene increases too much, it will adversely affect stretching. Therefore, from the viewpoint of obtaining polyethylene fibers with high strength and high elastic modulus, the ratio of components other than ethylene to the total polyethylene fibers is monomer. The unit is preferably 0.2 mol% or less, more preferably 0.1 mol% or less. Of course, the polyethylene in the present invention may be composed of ethylene alone.
 本発明のポリエチレン繊維は、芯鞘構造を適用してもよく、また星形、三角や、中空等の異形の形状を有していてもよい。 The polyethylene fiber of the present invention may have a core-sheath structure, or may have an irregular shape such as a star shape, a triangle shape, or a hollow shape.
<硬質粒子>
 本発明のポリエチレン繊維は、硬質粒子を含有している。本発明において「硬質粒子」とは、ポリマー(ポリエチレン繊維)中で凝集し難い粒子を意味する。なお、本発明において、硬質粒子の長径とは、硬質粒子の長さが最大となる位置での長さ(最大直径の長さ)を示し、硬質粒子の短径とは、長径に直交する幅を示し、具体的には最大となる位置での長軸の長さLの方向(硬質粒子の長径)に直交する方向において長さが最大となる位置での長さを示す。
<Hard particles>
The polyethylene fiber of the present invention contains hard particles. In the present invention, the "hard particles" mean particles that are difficult to aggregate in a polymer (polyethylene fiber). In the present invention, the major axis of the hard particles indicates the length at the position where the length of the hard particles is maximum (the length of the maximum diameter), and the minor axis of the hard particles is the width orthogonal to the major axis. Specifically, the length at the position where the length is the maximum in the direction orthogonal to the direction of the length L of the long axis at the position where the maximum is (the major axis of the hard particle) is shown.
 本発明で用いられる硬質粒子の長径の平均値(以下、平均長径という)は25μm以上であることが好ましく、より好ましくは45μm以上であり、さらに好ましくは80μm以上である。また、本発明で用いられる硬質粒子の平均長径は500μm以下であることが好ましく、300μm以下であることがより好ましく、200μm以下であることがさらに好ましい。なお硬質粒子の長径の測定方法及び平均長径の算出方法は、後記する実施例の欄で詳述するが、硬質粒子10個のそれぞれについて長径を測定し、その平均値を求めることで平均長径を算出する。 The average value of the major axis of the hard particles used in the present invention (hereinafter referred to as the average major axis) is preferably 25 μm or more, more preferably 45 μm or more, and further preferably 80 μm or more. Further, the average major axis of the hard particles used in the present invention is preferably 500 μm or less, more preferably 300 μm or less, and further preferably 200 μm or less. The method of measuring the major axis of the hard particles and the method of calculating the average major axis will be described in detail in the column of Examples described later. calculate.
 本発明で用いられる硬質粒子の短径の平均値(以下、平均短径という)は18μm以下であり、15μm以下であることが好ましく、10μm以下であることがより好ましい。硬質粒子の平均短径が18μmを超えると、紡糸時に濾過フィルターが目詰まりし、繊維の生産性を著しく低下させ、特に延伸性を大幅に低下させてしまう。また、硬質粒子の平均短径が18μmを超えると溶融紡糸を行うことが困難となる。本発明で用いられる硬質粒子の平均短径は1.0μm以上であることが好ましく、より好ましくは3.0μm以上であり、さらに好ましくは5.0μm以上である。硬質粒子の平均短径が1.0μm未満になると、比表面積が増えて硬質粒子が集合体として凝集してしまい、紡糸時に詰まりが発生するおそれがある。なお硬質粒子の短径の測定方法及び平均短径の算出方法は、後記する実施例の欄で詳述するが、硬質粒子10個のそれぞれについて短径を測定し、その平均値を求めることで平均短径を算出する。 The average value of the minor axis of the hard particles used in the present invention (hereinafter referred to as the average minor axis) is 18 μm or less, preferably 15 μm or less, and more preferably 10 μm or less. If the average minor axis of the hard particles exceeds 18 μm, the filtration filter is clogged during spinning, which significantly reduces the productivity of the fibers, and particularly the stretchability. Further, if the average minor axis of the hard particles exceeds 18 μm, it becomes difficult to perform melt spinning. The average minor axis of the hard particles used in the present invention is preferably 1.0 μm or more, more preferably 3.0 μm or more, and further preferably 5.0 μm or more. If the average minor axis of the hard particles is less than 1.0 μm, the specific surface area increases and the hard particles aggregate as an aggregate, which may cause clogging during spinning. The method of measuring the minor diameter of the hard particles and the method of calculating the average minor diameter will be described in detail in the column of Examples described later, but by measuring the minor diameter of each of the 10 hard particles and obtaining the average value thereof. Calculate the average minor axis.
 本発明で用いられる硬質粒子のアスペクト比は3以上100以下である。アスペクト比が3未満であると、耐切創性が劣ってしまう。また、アスペクト比が100を超えると、溶融紡糸を行うことが困難となる。アスペクト比は、好ましくは5以上70以下であり、より好ましくは7以上50以下であり、特に好ましくは9以上30以下である。ここで、硬質粒子のアスペクト比とは、JIS8900-1に基づいて算出される値(すなわち、粒子の顕微鏡像において、長径/短径で定義される粒子の形状を表す指数)である。硬質粒子のアスペクト比の測定方法及び算出方法は、後記する実施例の欄で詳述するが、硬質粒子10個の各粒子における長径と短径から各粒子のアスペクト比をそれぞれ算出し、10個の硬質粒子のアスペクト比の平均値を硬質粒子のアスペクト比とする。 The aspect ratio of the hard particles used in the present invention is 3 or more and 100 or less. If the aspect ratio is less than 3, the cut resistance will be poor. Further, if the aspect ratio exceeds 100, it becomes difficult to perform melt spinning. The aspect ratio is preferably 5 or more and 70 or less, more preferably 7 or more and 50 or less, and particularly preferably 9 or more and 30 or less. Here, the aspect ratio of the hard particles is a value calculated based on JIS89001 (that is, an index representing the shape of the particles defined by the major axis / minor axis in the microscope image of the particles). The method of measuring and calculating the aspect ratio of the hard particles will be described in detail in the column of Examples described later, but the aspect ratio of each particle is calculated from the major axis and the minor axis of each of the 10 hard particles, and 10 particles are used. The average value of the aspect ratios of the hard particles is defined as the aspect ratio of the hard particles.
 本発明で用いられる硬質粒子の平均粒子径は10μm以上であることが好ましく、より好ましくは20μm以上であり、さらに好ましくは30μm以上であり、特に好ましくは50μm以上である。また、本発明で用いられる硬質粒子の平均粒子径は300μm以下であることが好ましく、より好ましくは200μm以下であり、さらに好ましくは135μm以下であり、特に好ましくは100μm以下である。硬質粒子の平均粒子径を10μm以上にすることにより、耐切創性を高めることができる。また、硬質粒子の平均粒子径を300μm以下とすることにより、紡糸時に濾過フィルターの目詰まりを抑制でき、生産性を向上させることができる。なお上記硬質粒子の平均粒子径は、上述した方法で平均長径及び平均短径を算出し、平均長径と平均短径との平均値を平均粒子径とする。 The average particle size of the hard particles used in the present invention is preferably 10 μm or more, more preferably 20 μm or more, further preferably 30 μm or more, and particularly preferably 50 μm or more. The average particle size of the hard particles used in the present invention is preferably 300 μm or less, more preferably 200 μm or less, still more preferably 135 μm or less, and particularly preferably 100 μm or less. By setting the average particle size of the hard particles to 10 μm or more, the cut resistance can be improved. Further, by setting the average particle diameter of the hard particles to 300 μm or less, clogging of the filtration filter during spinning can be suppressed and productivity can be improved. For the average particle size of the hard particles, the average major axis and the average minor axis are calculated by the above method, and the average value of the average major axis and the average minor axis is taken as the average particle diameter.
 本発明で用いられる硬質粒子として、具体的には、例えば金属、珪素化合物、鉱物などが挙げられ、一種のみを用いてもよいし、二種以上を用いてもよい。ここで上記金属とは、例えば、アルミニウム、タングステン、鉄、チタン、クロム、亜鉛、マンガン、ニッケル、銅、銀、及び金;更には上記金属の化合物などが挙げられる。また上記珪素化合物とは、珪素を含む化合物であれば特に限定されず、例えば、シリカ、ガラス、炭化珪素などが挙げられる。また上記鉱物としては、例えば、石英、ロックウール、酸化鉄などが挙げられる。ロックウールとは、溶融炉で溶融された岩石や高炉スラグ等を主体とする材料が、急冷されながら、繊維化された素材(鉱物繊維)である。例えば、高炉スラグを主体とする材料より製造されたスラグウールなども含まれる。 Specific examples of the hard particles used in the present invention include metals, silicon compounds, minerals, etc., and only one kind may be used, or two or more kinds may be used. Here, examples of the metal include aluminum, tungsten, iron, titanium, chromium, zinc, manganese, nickel, copper, silver, and gold; and further, compounds of the metal. The silicon compound is not particularly limited as long as it is a compound containing silicon, and examples thereof include silica, glass, and silicon carbide. Examples of the mineral include quartz, rock wool, iron oxide and the like. Rock wool is a material (mineral fiber) in which a material mainly composed of rock or blast furnace slag melted in a melting furnace is rapidly cooled and fiberized. For example, slag wool manufactured from a material mainly composed of blast furnace slag is also included.
 本発明で用いられる硬質粒子は、アルミニウム化合物又は珪素化合物が含まれていることが好ましく、アルミニウム化合物及び珪素化合物が含まれていることがより好ましい。 The hard particles used in the present invention preferably contain an aluminum compound or a silicon compound, and more preferably contain an aluminum compound and a silicon compound.
 アルミニウム化合物は、アルミニウムを含む化合物であれば特に限定されないが、Al23であることが好ましい。珪素化合物は、珪素を含む化合物であれば特に限定されず、例えば、シリカ、ガラス、炭化珪素などが挙げられるが、好ましくはシリカ及び/又はガラスであり、より好ましくはガラスである。なおシリカとガラスは、主にSiO2の含有量で区別される。シリカは実質的にSiO2のみで構成され、シリカのSiO2含有量は概ね95質量%以上である。これに対し、一般にガラスの主成分はSiO2であり、その他に、Al23、B23、P25などが含まれ得る。本発明で用いられるガラスの形状は、特に限定されないが、ガラス繊維であることが好ましい。 The aluminum compound is not particularly limited as long as it is a compound containing aluminum, but is preferably Al 2 O 3. The silicon compound is not particularly limited as long as it is a compound containing silicon, and examples thereof include silica, glass, and silicon carbide, but silica and / or glass are preferable, and glass is more preferable. Silica and glass are mainly distinguished by the content of SiO 2. Silica is substantially composed of SiO 2 only, and the SiO 2 content of silica is approximately 95% by mass or more. On the other hand, in general, the main component of glass is SiO 2 , and in addition, Al 2 O 3 , B 2 O 3 , P 2 O 5, and the like may be contained. The shape of the glass used in the present invention is not particularly limited, but is preferably glass fiber.
 硬質粒子中にアルミニウム化合物を5質量%以上含むことが好ましく、10質量%以上含むことがより好ましく、40質量%以下含むことが好ましく、30質量%以下含むことがより好ましい。また、硬質粒子中に珪素化合物を20質量%以上含むことが好ましく、30質量%以上含むことがより好ましく、70質量%以下含むことが好ましく、60質量%以下含むことがより好ましい。特に硬質粒子中にSiO2を20質量%以上含むことが好ましく、30質量%以上含むことがより好ましく、50質量%以上含むことがさらに好ましく、70質量%以下含むことが好ましく、60質量%以下含むことがより好ましい。 The hard particles preferably contain 5% by mass or more, more preferably 10% by mass or more, preferably 40% by mass or less, and more preferably 30% by mass or less. Further, the hard particles preferably contain 20% by mass or more, more preferably 30% by mass or more, preferably 70% by mass or less, and more preferably 60% by mass or less. In particular, the hard particles preferably contain 20% by mass or more of SiO 2 , more preferably 30% by mass or more, further preferably 50% by mass or more, preferably 70% by mass or less, and 60% by mass or less. It is more preferable to include it.
 本発明で用いられる硬質粒子は、そのまま用いてもよいし、表面を修飾したものを用いてもよい。表面修飾としては、ジメチル基、エポキシ基、ヘキシル基、フェニル基、メタクリル基、ビニル基、イソシアネート基等が適用できる。 The hard particles used in the present invention may be used as they are or may have a modified surface. As the surface modification, a dimethyl group, an epoxy group, a hexyl group, a phenyl group, a methacrylic group, a vinyl group, an isocyanate group and the like can be applied.
 本発明のポリエチレン繊維全体に含まれる硬質粒子の含有量は、2質量%以上であり、3質量%以上であることが好ましく、好ましくは20質量%以下であり、より好ましくは10質量%以下である。硬質粒子の含有量が2質量%以上とすることにより、繊維中に存在する硬質粒子と刃との接触頻度が高くなり、耐切創性を向上させる効果が得られやすい。 The content of the hard particles contained in the entire polyethylene fiber of the present invention is 2% by mass or more, preferably 3% by mass or more, preferably 20% by mass or less, and more preferably 10% by mass or less. be. When the content of the hard particles is 2% by mass or more, the contact frequency between the hard particles existing in the fiber and the blade is increased, and the effect of improving the cut resistance can be easily obtained.
 本発明のポリエチレン繊維を紡糸する際、硬質粒子は、事前にポリエチレンと混練したマスターバッチとして用いてもよいし、単体で用いてもよい。 When spinning the polyethylene fiber of the present invention, the hard particles may be used as a masterbatch kneaded with polyethylene in advance, or may be used alone.
 本発明のポリエチレン繊維は、上記硬質粒子以外に、添加剤として、酸化防止剤、滑剤、帯電防止剤、過酸化物、顔料、染料、分散剤等を含んでもいてもよい。 The polyethylene fiber of the present invention may contain an antioxidant, a lubricant, an antistatic agent, a peroxide, a pigment, a dye, a dispersant and the like as additives in addition to the above-mentioned hard particles.
<ポリエチレン繊維の製造方法>
 本発明のポリエチレン繊維を得る製造方法については、例えば、溶融紡糸法を用いることができる。溶融紡糸法を用いることにより、溶剤がほとんどあるいは全く残留しないポリエチレン繊維を得ることができる。具体的には、ポリエチレン繊維中の残留溶剤が20ppm以下であることが好ましく、10ppm以下であることがより好ましい。
<Manufacturing method of polyethylene fiber>
As a production method for obtaining the polyethylene fiber of the present invention, for example, a melt spinning method can be used. By using the melt spinning method, polyethylene fibers with little or no residual solvent can be obtained. Specifically, the residual solvent in the polyethylene fiber is preferably 20 ppm or less, and more preferably 10 ppm or less.
 ポリエチレン繊維に含まれる残留溶剤の種類の特定やポリエチレン繊維中の残留溶剤量の測定は、i)クロロホルムでのソックスレー抽出により溶出させた成分をエバポレーターで濃縮し、核磁気共鳴(NMR)で定性定量分析する、又はii)ガスクロマトグラフィー法により測定するという2つの測定方法により行うことができる。残留溶剤の沸点が350℃を超える場合には前者のNMRで定性定量分析を行うことにより残留溶剤量を測定することが好ましく、残留溶剤の沸点が350℃以下であれば後者のガスクロマトグラフィー法を用いて残留溶剤量を測定することが好ましい。上記i)、ii)の詳細な測定方法については後述する。本明細書では、上記2つの測定方法により残留溶剤量を測定し、大きい方の値をポリエチレン繊維中の残留溶剤量とする。 To identify the type of residual solvent contained in polyethylene fiber and measure the amount of residual solvent in polyethylene fiber, i) the components eluted by soxley extraction with chloroform are concentrated by an evaporator and qualitatively quantified by nuclear magnetic resonance (NMR). It can be carried out by two measurement methods: analysis or ii) measurement by gas chromatography. When the boiling point of the residual solvent exceeds 350 ° C, it is preferable to measure the amount of residual solvent by performing qualitative quantitative analysis by the former NMR, and when the boiling point of the residual solvent is 350 ° C or less, the latter gas chromatography method. It is preferable to measure the amount of residual solvent using. The detailed measurement methods of i) and ii) will be described later. In the present specification, the residual solvent amount is measured by the above two measuring methods, and the larger value is taken as the residual solvent amount in the polyethylene fiber.
 一方、溶剤を用いて行う超高分子量ポリエチレン繊維の製法(溶液紡糸法)の一つであるゲル紡糸法を用いた場合、高強度のポリエチレン繊維を得られるものの、溶剤を用いることになるので、溶剤使用による製造作業者の健康や環境への影響、また繊維中に残留する溶剤が製品使用者の健康に与える影響が大きい。また、ゲル紡糸法を用いると、生産性が低いという問題もある。 On the other hand, when the gel spinning method, which is one of the methods for producing ultra-high molecular weight polyethylene fibers using a solvent (solution spinning method), is used, high-strength polyethylene fibers can be obtained, but a solvent is used. The use of solvent has a great impact on the health and environment of manufacturing workers, and the solvent remaining in the fiber has a great impact on the health of product users. Further, when the gel spinning method is used, there is a problem that the productivity is low.
 溶融紡糸法を用いて本発明のポリエチレン繊維を製造する方法について、具体的に以下に説明する。なお、本発明のポリエチレン繊維を製造する方法は、以下の工程や数値に限定されない。 The method for producing the polyethylene fiber of the present invention by using the melt spinning method will be specifically described below. The method for producing the polyethylene fiber of the present invention is not limited to the following steps and numerical values.
 上述したポリエチレン樹脂と粉末状態の硬質粒子とをブレンドし、押出機等を用いて、ポリエチレン樹脂の融点よりも例えば10℃以上、好ましくは50℃以上、更に好ましくは80℃以上高い温度で溶融押出しをして、定量供給装置を用いてポリエチレン樹脂の融点より例えば80℃以上、好ましくは100℃以上高い温度で紡糸ノズル(紡糸口金)に供給する。この時、押出機内に供給する不活性ガスの圧力は、0.001MPa以上、0.8MPa以下とするのが好ましく、より好ましくは0.05MPa以上、0.7MPa以下、更に好ましくは0.1MPa以上、0.5MPa以下とすることが推奨される。その後、例えば直径0.3mm以上、2.5mm以下、好ましくは直径0.5mm以上、1.5mm以下を有する紡糸ノズルより0.1g/min以上の吐出量で吐出する。紡糸ノズルから溶融樹脂を吐出する際の吐出線速度は、10cm/min以上、120cm/min以下とするのが好ましい。より好ましい吐出線速度は、20cm/min以上、110cm/min以下であり、更に好ましくは30cm/min以上、100cm/min以下である。 The above-mentioned polyethylene resin and hard particles in a powder state are blended and melt-extruded using an extruder or the like at a temperature higher than the melting point of the polyethylene resin, for example, 10 ° C. or higher, preferably 50 ° C. or higher, and more preferably 80 ° C. or higher. Then, using a fixed quantity supply device, the polyethylene resin is supplied to the spinning nozzle (spinning cap) at a temperature higher than the melting point of the polyethylene resin, for example, 80 ° C. or higher, preferably 100 ° C. or higher. At this time, the pressure of the inert gas supplied into the extruder is preferably 0.001 MPa or more and 0.8 MPa or less, more preferably 0.05 MPa or more, 0.7 MPa or less, still more preferably 0.1 MPa or more. , 0.5 MPa or less is recommended. Then, for example, a spinning nozzle having a diameter of 0.3 mm or more and 2.5 mm or less, preferably a diameter of 0.5 mm or more and 1.5 mm or less is discharged at a discharge amount of 0.1 g / min or more. The discharge line speed at the time of discharging the molten resin from the spinning nozzle is preferably 10 cm / min or more and 120 cm / min or less. More preferable discharge line velocities are 20 cm / min or more and 110 cm / min or less, and more preferably 30 cm / min or more and 100 cm / min or less.
 次に、該吐出糸を5~40℃まで冷却した後に50m/min以上で巻き取り、更に得られた該未延伸糸を、少なくとも1回以上の回数で該未延伸糸の融点以下の温度で延伸する。具体的には、2段階以上に分けて延伸工程を行うことが好ましい。延伸の初期の温度は、上記未延伸糸の結晶分散温度未満が好ましく、より好ましくは80℃以下、更に好ましくは75℃以下である。次いで、上記未延伸糸の結晶分散温度以上、融点以下で延伸するのが好ましく、90℃以上、融点未満で延伸するのがより好ましい。 Next, the discharged yarn is cooled to 5 to 40 ° C., then wound at 50 m / min or more, and the obtained undrawn yarn is further rolled at least once at a temperature equal to or lower than the melting point of the undrawn yarn. Stretch. Specifically, it is preferable to perform the stretching step in two or more steps. The initial temperature of drawing is preferably less than the crystal dispersion temperature of the undrawn yarn, more preferably 80 ° C. or lower, still more preferably 75 ° C. or lower. Next, it is preferable to stretch the undrawn yarn at a crystal dispersion temperature of the undrawn yarn or more and below the melting point, and more preferably at 90 ° C. or higher and below the melting point.
 ここで結晶分散温度とは、以下の方法によって測定される温度である。
 まず固体粘弾性測定装置(T.A.インスツルメント社製、「DMA Q800」)を用いて固体粘弾性率を測定する。測定した固体粘弾性率の解析には、「T.A.Universal Analysis」(T.A.インスツルメント社製)を用いる。ここで測定開始温度を-140℃、測定終了温度を140℃、昇温速度を1.0℃/minとする。また、歪み量を0.04%とし、測定開始時の初荷重0.05cN/dtexとする。また、測定周波数を11Hzとする。次に、得られた固体粘弾性率に基づいて損失弾性率を計算し、温度分散を低温側より求め、損失弾性率の値を対数で縦軸に取り、横軸に温度を取ってプロットし、最も高温側に現れる損失弾性率のピーク値を結晶分散温度とする。
Here, the crystal dispersion temperature is a temperature measured by the following method.
First, the solid viscoelasticity is measured using a solid viscoelasticity measuring device (“DMA Q800” manufactured by TA Instruments). "TA Universal Analysis" (manufactured by TA Instruments) is used for the analysis of the measured solid viscoelasticity. Here, the measurement start temperature is −140 ° C., the measurement end temperature is 140 ° C., and the temperature rise rate is 1.0 ° C./min. Further, the strain amount is 0.04%, and the initial load at the start of measurement is 0.05 cN / dtex. The measurement frequency is 11 Hz. Next, the loss elastic modulus is calculated based on the obtained solid viscoelastic modulus, the temperature dispersion is obtained from the low temperature side, the value of the loss elastic modulus is plotted on the vertical axis in logarithm, and the temperature is plotted on the horizontal axis. The peak value of the loss elastic modulus that appears on the highest temperature side is defined as the crystal dispersion temperature.
 延伸倍率は、合計で6倍以上とするのが好ましく、より好ましくは8倍以上であり、更に好ましくは10倍以上である。また、延伸倍率は、合計で30倍以下とするのが好ましく、より好ましくは25倍以下であり、更に好ましくは20倍以下である。なお、多段延伸を採用する場合、例えば、2段延伸を行う場合であれば、1段階目の延伸倍率は1.05倍以上、4.00倍以下とするのが好ましく、2段階目の延伸倍率は2.5倍以上、15倍以下とするのが好ましい。 The draw ratio is preferably 6 times or more in total, more preferably 8 times or more, and further preferably 10 times or more. The total draw ratio is preferably 30 times or less, more preferably 25 times or less, and further preferably 20 times or less. When multi-step stretching is adopted, for example, when two-step stretching is performed, the stretching ratio of the first step is preferably 1.05 times or more and 4.00 times or less, and the second step stretching is preferably performed. The magnification is preferably 2.5 times or more and 15 times or less.
<ポリエチレン繊維を含む製品>
 本発明のポリエチレン繊維を含む製品として、例えば織編物が挙げられ、耐切創性織編物、手袋、ベスト等として好適に用いることができる。例えば、手袋は、本発明のポリエチレン繊維を編み機に掛けることで得られる。もしくは、本発明のポリエチレン繊維を織り機に掛けて布帛を得、それを裁断、縫製して手袋とすることもできる。
<Products containing polyethylene fiber>
Examples of the product containing the polyethylene fiber of the present invention include woven and knitted fabrics, which can be suitably used as cut resistant woven and knitted fabrics, gloves, vests and the like. For example, gloves can be obtained by hanging the polyethylene fibers of the present invention on a knitting machine. Alternatively, the polyethylene fiber of the present invention can be woven on a loom to obtain a cloth, which can be cut and sewn to make gloves.
 このようにして得られた手袋は、例えば、そのまま手袋として使用することもできるが、必要であれば滑り止め性を付与するために、樹脂を塗布することもできる。ここで用いられる樹脂は、例えば、ウレタン系やエチレン系などが挙げられるが、特に限定されるものではない。 The gloves thus obtained can be used as gloves as they are, for example, but if necessary, a resin can be applied to impart anti-slip properties. Examples of the resin used here include urethane-based and ethylene-based resins, but the resin is not particularly limited.
 本発明のポリエチレン繊維は、後述の実施例からも分かるように、耐切創性に優れている。よって、本発明のポリエチレン繊維を使用した製品は、上記した手袋やベスト等の織編物以外にも、テープ、ロープ、ネット、釣糸、資材防護カバー、シート、カイト用糸、洋弓弦、セールクロス、幕材として好適に用いられる。もちろん、本発明のポリエチレン繊維を使用した製品はこれらに限定されない。 The polyethylene fiber of the present invention has excellent cut resistance, as can be seen from the examples described later. Therefore, in addition to the above-mentioned woven and knitted fabrics such as gloves and vests, the products using the polyethylene fiber of the present invention include tapes, ropes, nets, fishing lines, material protective covers, sheets, kite threads, western bow strings, sail cloths, etc. It is suitably used as a curtain material. Of course, the products using the polyethylene fibers of the present invention are not limited to these.
 また、本発明のポリエチレン繊維は、高い耐切創性を有するため、該耐切創性を活かした材料、例えば、繊維強化樹脂補強材、セメント補強材、繊維強化ゴム補強材、あるいは環境変化が想定される防護材、防弾材、医療用縫合糸、人工腱、人工筋肉、繊維強化樹脂補強材、セメント補強材、繊維強化ゴム補強材、工作機械部品、電池セパレーター、化学フィルターとして好適に用いられる。もちろん、本発明のポリエチレン繊維は、これらの材料に限定されず、様々な材料として用いることができる。 Further, since the polyethylene fiber of the present invention has high cut resistance, a material utilizing the cut resistance, for example, a fiber reinforced resin reinforcing material, a cement reinforcing material, a fiber reinforced rubber reinforcing material, or an environmental change is assumed. It is suitably used as a protective material, a bulletproof material, a medical suture, an artificial tendon, an artificial muscle, a fiber reinforced resin reinforcing material, a cement reinforcing material, a fiber reinforced rubber reinforcing material, a machine tool part, a battery separator, and a chemical filter. Of course, the polyethylene fiber of the present invention is not limited to these materials and can be used as various materials.
 本願は、2020年7月13日に出願された日本国特許出願第2020-120057号に基づく優先権の利益を主張するものである。2020年7月13日に出願された日本国特許出願第2020-120057号の明細書の全内容が、本願に参考のため援用される。 This application claims the benefit of priority based on Japanese Patent Application No. 2020-120057 filed on July 13, 2020. The entire contents of the specification of Japanese Patent Application No. 2020-120057 filed on 13 July 2020 are incorporated herein by reference.
 以下に、実施例を例示し、本発明を具体的に説明する。しかし、本発明は下記実施例によって限定されるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。 Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to the following examples, and it is of course possible to carry out the present invention with appropriate modifications within a range that can meet the purposes of the preceding and the following, and both of them are the techniques of the present invention. It is included in the target range.
 まず、後述の実施例および比較例で作製した繊維(繊維サンプル)およびそれを用いた筒編み物(編物サンプル)に対して行った特性値の測定及び評価について説明する。 First, the measurement and evaluation of the characteristic values performed on the fibers (fiber samples) produced in the examples and comparative examples described later and the tubular knitting (knitted sample) using the fibers will be described.
(1)極限粘度[η]
 極限粘度は、溶剤として135℃に加熱したデカリンを用い、ウベローデ型毛細粘度管を用いて測定した。具体的には、種々の希薄溶液の比粘度を測定し、その粘度の濃度に対するプロットの最小2乗近似で得られる直線の原点への外挿点より極限粘度を決定した。比粘度の測定に際し、繊維サンプルを約5mm長に分割または切断し、ポリマーに対して1質量%の酸化防止剤(ヨシノックスBHT(登録商標)、吉富製薬製)を添加し、135℃で4時間攪拌溶解して測定溶液を調整した。
(1) Extreme viscosity [η]
The ultimate viscosity was measured using a Ubbelohde type capillary viscosity tube using decalin heated to 135 ° C. as a solvent. Specifically, the specific viscosities of various dilute solutions were measured, and the ultimate viscosity was determined from the extrapolation point to the origin of the straight line obtained by the minimum square approximation of the plot with respect to the concentration of the viscosity. When measuring the specific viscosity, the fiber sample was divided or cut into pieces of about 5 mm length, 1% by mass of an antioxidant (Yoshinox BHT®, manufactured by Yoshitomi Pharmaceutical Co., Ltd.) was added to the polymer, and the temperature was 135 ° C. for 4 hours. The measurement solution was prepared by stirring and dissolving.
(2)硬質粒子の平均長径及び平均短径
 硬質粒子の平均長径及び平均短径は、走査電子顕微鏡(SEM)写真を用いることによって求めた。繊維サンプルをるつぼの中に入れ、灰と炭素質物質になるまで燃焼をさせた後、電気炉に入れ、ポリエチレンの分解温度以上で加熱した。炭素質物質が完全に灰になったら、デシケータ中で放冷して灰分を得た。灰分のSEM写真を撮影し、無作為に選択した硬質粒子10個のそれぞれについて長軸(最大長径)と短軸(最大短径)を測定した。なお、最大短径は、最大長径に直交する方向において長さが最大となる位置での長さとした。10個の硬質粒子の最大長径の平均値を求めることにより平均長径とし、10個の硬質粒子の最大短径の平均値を求めることにより平均短径とした。なお、硬質粒子は硬度が高い為、加熱しても形状が変化しないと考えられる。
(2) Average major axis and average minor axis of hard particles The average major axis and average minor axis of hard particles were determined by using scanning electron microscope (SEM) photographs. The fiber sample was placed in a crucible, burned until it became ash and a carbonaceous substance, then placed in an electric furnace and heated above the decomposition temperature of polyethylene. When the carbonaceous material was completely ash, it was allowed to cool in a desiccator to obtain ash. SEM photographs of the ash were taken and the major axis (maximum major axis) and minor axis (maximum minor axis) were measured for each of the 10 randomly selected hard particles. The maximum minor axis was defined as the length at the position where the maximum length was obtained in the direction orthogonal to the maximum major axis. The average major axis was obtained by obtaining the average value of the maximum major axis of the 10 hard particles, and the average minor axis was determined by obtaining the average value of the maximum minor axis of the 10 hard particles. Since the hard particles have high hardness, it is considered that the shape does not change even when heated.
(3)硬質粒子のアスペクト比
 硬質粒子のアスペクト比は、SEM写真を用いることによって求めた。詳細には、後記する方法で作製した各繊維サンプルをるつぼの中に入れ、灰と炭素質物質になるまで燃焼した後、電気炉に入れ、ポリエチレンの分解温度以上で加熱した。炭素質物質が完全に灰になったら、デシケータ中で放冷して室温まで灰分を得た。このようにして得られた灰分のSEM写真を撮影し、無作為に選択した硬質粒子10個のそれぞれについて、長軸(最大長径)および短軸(最大短径)を測定し、最大長径を最大短径で除して各粒子のアスペクト比をそれぞれ算出した。なお、最大短径は、最大長径に直交する方向において長さが最大となる位置での長さとした。そして10個の硬質粒子のアスペクト比の平均値を硬質粒子のアスペクト比とした。なお、硬質粒子は硬度が高い為、加熱しても形状が変化しないと考えられる。
(3) Aspect ratio of hard particles The aspect ratio of hard particles was determined by using an SEM photograph. Specifically, each fiber sample prepared by the method described later was placed in a crucible, burned until it became ash and a carbonaceous substance, placed in an electric furnace, and heated above the decomposition temperature of polyethylene. When the carbonaceous material became completely ash, it was allowed to cool in a desiccator to obtain ash to room temperature. SEM photographs of the ash thus obtained were taken, and the major axis (maximum major axis) and minor axis (maximum minor axis) were measured for each of the 10 randomly selected hard particles, and the maximum major axis was maximized. The aspect ratio of each particle was calculated by dividing by the minor axis. The maximum minor axis was defined as the length at the position where the maximum length was obtained in the direction orthogonal to the maximum major axis. Then, the average value of the aspect ratios of the 10 hard particles was taken as the aspect ratio of the hard particles. Since the hard particles have high hardness, it is considered that the shape does not change even when heated.
(4)硬質粒子の含有率
 硬質粒子の含有率は、JIS-2272に基づき、灰分測定を用いることによって求めた。繊維サンプル1.0gをるつぼの中に入れ、灰と炭素質物質になるまで燃焼をさせた後、電気炉に入れ、ポリエチレンの分解温度以上で加熱した。炭素質物質が完全に灰になった後、デシケータ中で放冷して質量を測定し、灰分を求めた。得られた灰分量と上記繊維量の合計に対する灰分量の質量比率に基づき、硬質粒子の含有率を求めた。
(4) Content of hard particles The content of hard particles was determined by using ash content measurement based on JIS-2272. 1.0 g of the fiber sample was placed in a crucible, burned until it became ash and a carbonaceous substance, then placed in an electric furnace and heated at a temperature higher than the decomposition temperature of polyethylene. After the carbonaceous substance was completely turned into ash, it was allowed to cool in a desiccator and the mass was measured to determine the ash content. The content of hard particles was determined based on the mass ratio of the ash content to the total of the obtained ash content and the fiber content.
(5)耐切創性(クープ試験)
 耐切創性は、クープテスター(ソドマット(SODEMAT)社製)の装置を用い、ヨーロッパ規格であるEN388法に基づいて測定を行った。具体的には、後記する方法で作製した各ポリエチレン繊維を用い、島精機製作所社製の丸編み機を用いて、目付が350g/m2±35g/m2の筒編み物を作製した。得られた筒編み物のクープテスターのインデックス値を以下のようにして算出して、耐切創性を評価した。
(5) Cut resistance (coup test)
The cut resistance was measured based on the EN388 method, which is a European standard, using a device of a coup tester (manufactured by SODEMAT). Specifically, using each polyethylene fiber produced by the method described later, a tubular knitting machine having a basis weight of 350 g / m 2 ± 35 g / m 2 was produced using a circular knitting machine manufactured by Shima Seiki Seisakusho Co., Ltd. The index value of the obtained coupe tester for tubular knitting was calculated as follows to evaluate the cut resistance.
 ここで、上記装置の試料台にはアルミ箔が設けられており、この上に編物サンプルを載置した。次いで、装置に備えられた円形の刃を、走行方向とは逆方向に回転させながら試料の上を走らせた。なお、編物サンプルが切断されると、円形刃とアルミ箔とが接触して通電することで、耐切創性試験が終了したことが検知された。円形刃が作動している間中、装置に取り付けられているカウンターがカウントを行うので、その数値を記録した。 Here, an aluminum foil was provided on the sample table of the above device, and the knitted sample was placed on this. Then, the circular blade provided in the device was run on the sample while rotating in the direction opposite to the running direction. When the knitted sample was cut, it was detected that the cut resistance test was completed by the contact between the circular blade and the aluminum foil and energization. While the circular blade was operating, the counter attached to the device counted and recorded the value.
 この試験では、目付け約380g/m2の平織りの綿布をブランクとし、編物サンプルの切創レベルを評価した。ブランクからテストを開始し、ブランクのテストと編物サンプルのテストとを交互に行い、編物サンプルを5回テストし、最後に6回目のブランクをテストして、1セットの試験を終了した。以上の試験を10セット行い、10セットの平均のIndex値(インデックス値)を耐切創性の代用評価とした。インデックス値が高いほど、耐切創性に優れることを意味する。 In this test, a plain weave cotton cloth with a basis weight of about 380 g / m 2 was used as a blank, and the cut level of the knitted sample was evaluated. The test was started from the blank, the blank test and the knitted sample test were alternated, the knitted sample was tested 5 times, and finally the 6th blank was tested to complete one set of tests. The above tests were performed in 10 sets, and the average Index value (index value) of the 10 sets was used as a substitute evaluation for cut resistance. The higher the index value, the better the cut resistance.
 インデックス値は、次式により算出される。
 K=(サンプルテスト前の綿布のカウント値+サンプルテスト後の綿布のカウント値)/2
 インデックス値=(サンプルのカウント値+K)/K
The index value is calculated by the following formula.
K = (count value of cotton cloth before sample test + count value of cotton cloth after sample test) / 2
Index value = (sample count value + K) / K
 耐切創性の評価に使用したカッターは、OLFA株式会社製のロータリーカッターL型用φ45mmである。材質はSKS-7タングステン鋼であり、刃厚0.3ミリ厚であった。また、テスト時にかかる荷重は5Nにして評価を行った。 The cutter used for the evaluation of cut resistance is a rotary cutter L type φ45 mm manufactured by OLFA Co., Ltd. The material was SKS-7 tungsten steel, and the blade thickness was 0.3 mm. In addition, the load applied during the test was set to 5N for evaluation.
 本実施例では、比較例4で得られたインデックス値を耐切創性100とし、これを基準値として、それ以外の実施例1~8、比較例1~3、及び比較例9は比較例4に対する相対比で耐切創性を表した。例えば実施例1の耐切創性は120であるが、これは比較例4の耐切創性を100%としたとき、120%(1.2倍)もの高い耐切創性が得られたことを意味する。 In this example, the index value obtained in Comparative Example 4 is set as the incision resistance 100, and using this as a reference value, the other Examples 1 to 8, Comparative Examples 1 to 3, and Comparative Example 9 are Comparative Example 4. The cut resistance was expressed by the relative ratio to. For example, the incision resistance of Example 1 is 120, which means that when the incision resistance of Comparative Example 4 is 100%, a high incision resistance of 120% (1.2 times) is obtained. do.
(6)耐切創性(ISO試験)
 ISO13997「防護服-機械的特性-鋭利物に対する切創抵抗性試験方法」に準拠し、RGI社製TDM-100を用いて切創抵抗値を測定した。カット方向は45度方向とした。
(6) Cut resistance (ISO test)
The cut resistance value was measured using TDM-100 manufactured by RGI in accordance with ISO13997 "Protective clothing-Mechanical properties-Cut resistance test method for sharp objects". The cutting direction was 45 degrees.
(7)残留溶剤量
 後記する方法で作製した各ポリエチレン繊維からヘキサンとエタノールとを1:1で混合した溶媒にて油剤を除去した後にi)クロロホルムでのソックスレー抽出により、溶出させた成分をエバポレーターで濃縮し、NMRで定性定量分析する、ii)ガスクロマトグラフィー法により測定するという2つの測定方法によりポリエチレン繊維中の残留溶剤量を測定した。2つの測定方法により測定された残留溶剤量の大きい方の値をポリエチレン繊維中の残留溶剤量とした。なお、溶融紡糸法で作製した実施例1~8のポリエチレン繊維中の残留溶剤量は、いずれも1ppm以下であった。一方、溶液紡糸法で作製した比較例9のポリエチレン繊維中の残留溶剤量は50ppmであった。
[i)NMR測定]
 BRUKER社製AVANCE NEO 600により1H-NMR(溶媒:CDCl3、周波数:600MHz)を用いて分析することにより求めた。
[ii)ガスクロマトグラフィー法]
 島津製作所社製GCMSサーマルデソープションシステムTD-20を用い、ヘリウム気流下(50ml/min)、80℃で10分間加熱し、発生したガスをTenax-TA吸着管に冷却捕集、加熱脱着して、島津製作所社製GCMS-QP2010Ultraからなるガスクロマトグラフ質量分析計GC/MSにて、以下の条件で分析した。
<分析条件>
 試料加熱温度:80℃×10min
 カラム:RESTEK Rxi-1ms(島津ジーエルシー社製、長さ60m、内径0.32mm、膜厚0.25μm)
 カラム線速度:35cm/sec
 スプリット比:50:1
 カラムオーブン温度:50℃で2分間保持後、15℃/分で320℃まで昇温した後、15分間保持
 質量測定範囲(m/z):35~500
(7) Amount of residual solvent After removing the oil from each polyethylene fiber prepared by the method described below with a solvent in which hexane and ethanol were mixed at a ratio of 1: 1 i) Socksley extraction with chloroform was performed to elute the eluted components. The amount of residual solvent in the polyethylene fiber was measured by two measuring methods: iii) measuring by gas chromatography, and qualitatively quantitatively analyzing by NMR. The larger value of the residual solvent amount measured by the two measuring methods was taken as the residual solvent amount in the polyethylene fiber. The amount of residual solvent in the polyethylene fibers of Examples 1 to 8 produced by the melt spinning method was 1 ppm or less. On the other hand, the amount of residual solvent in the polyethylene fiber of Comparative Example 9 produced by the solution spinning method was 50 ppm.
[I) NMR measurement]
It was determined by analysis using 1 H-NMR (solvent: CDCl 3 , frequency: 600 MHz) by AVANCE NEO 600 manufactured by BRUKER.
[Ii) Gas chromatography method]
Using the GCMS thermal decomposition system TD-20 manufactured by Shimadzu Corporation, the gas was heated at 80 ° C. for 10 minutes under a helium stream (50 ml / min), and the generated gas was cooled and collected in a Tenax-TA adsorption tube and desorbed by heating. Then, analysis was performed under the following conditions with a gas chromatograph mass spectrometer GC / MS made of GCMS-QP2010 Ultra manufactured by Shimadzu Corporation.
<Analysis conditions>
Sample heating temperature: 80 ° C x 10 min
Column: RESTEK Rxi-1ms (manufactured by Shimadzu GLC, length 60m, inner diameter 0.32mm, film thickness 0.25μm)
Column linear velocity: 35 cm / sec
Split ratio: 50: 1
Column oven temperature: Hold at 50 ° C for 2 minutes, heat up to 320 ° C at 15 ° C / min, then hold for 15 minutes Mass measurement range (m / z): 35-500
(実施例1)
 極限粘度が1.9dL/gであるポリエチレンペレット97質量%と、平均長径が125μm、平均短径が7μmであるロックウール(硬質粒子)3質量%とを混ぜてブレンドポリマーを作製した。このブレンドポリマーを押出機に供給して280℃で溶融し、オリフィス径φ0.8mm、30Hからなる紡糸口金からノズル面温度288℃にて単孔吐出量0.32g/minで吐出させた。
(Example 1)
A blend polymer was prepared by mixing 97% by mass of polyethylene pellets having an ultimate viscosity of 1.9 dL / g and 3% by mass of rock wool (hard particles) having an average major axis of 125 μm and an average minor axis of 7 μm. This blended polymer was supplied to an extruder, melted at 280 ° C., and discharged from a spun mouthpiece having an orifice diameter of φ0.8 mm and 30 H at a nozzle surface temperature of 288 ° C. and a single hole discharge rate of 0.32 g / min.
 吐出された糸条を10cmの保温区間を通過させ、その後18℃、0.5m/secのクエンチで冷却後、紡糸速度80m/minでチーズ形状に捲き取り、未延伸糸を得た。次いで、上記の未延伸糸を2個の駆動ロール間で3倍、次いで100℃の熱風で加熱して安定に延伸できる最大の延伸倍率にて巻き取って延伸糸を得た。延伸糸を全体として880dtex±88dtexとなるように合糸し、実施例1のポリエチレン繊維を得た。得られたポリエチレン繊維を用いて、上記方法により筒編み物を作製して耐切創性を評価した。これらの結果を表1に示す。なお、本実施例を含め以下の実施例及び比較例では、延伸糸を所望のdtexとなるように合糸を行ったが、分繊を行う場合もある。 The discharged yarn was passed through a heat insulating section of 10 cm, cooled at 18 ° C. and 0.5 m / sec quenching, and then wound into a cheese shape at a spinning speed of 80 m / min to obtain an undrawn yarn. Next, the undrawn yarn was wound three times between the two drive rolls and then heated with hot air at 100 ° C. at the maximum drawing ratio capable of stable drawing to obtain a drawn yarn. The drawn yarns were combined so as to have a total of 880 dtex ± 88 dtex to obtain the polyethylene fiber of Example 1. Using the obtained polyethylene fiber, a tubular knitted fabric was produced by the above method and the cut resistance was evaluated. These results are shown in Table 1. In the following examples and comparative examples including this example, the drawn yarns are combined so as to have a desired dtex, but fiber splitting may be performed.
(実施例2~8)
 実施例1の条件において、用いるポリマー、硬質粒子、及び紡糸速度を表1に記載の条件とした以外は、実施例1と同様にポリエチレン繊維および筒編み物を得て耐切創性を評価した。これらの結果を表1に示す。
(Examples 2 to 8)
In the conditions of Example 1, polyethylene fibers and tubular knitted fabrics were obtained in the same manner as in Example 1 except that the polymer, hard particles, and spinning speed used were the conditions shown in Table 1, and the cut resistance was evaluated. These results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(比較例1~4)
 実施例1の条件において、用いるポリマー、硬質粒子、及び紡糸速度を表2に記載の条件とした以外は、実施例1と同様にポリエチレン繊維および筒編み物を得て耐切創性を評価した。これらの結果を表2に示す。
(Comparative Examples 1 to 4)
In the conditions of Example 1, polyethylene fibers and tubular knitted fabrics were obtained in the same manner as in Example 1 except that the polymer, hard particles, and spinning speed used were the conditions shown in Table 2, and the cut resistance was evaluated. These results are shown in Table 2.
(比較例5~8)
 実施例1の条件において、用いるポリマー、硬質粒子、及び紡糸速度を表2に記載の条件とする以外は、実施例1と同様にポリエチレン繊維を作製しようとしたが、比較例5及び6では溶融状態の粘度が高く押し出すことができず、比較例7及び8では、紡糸時、詰まりが発生し、いずれの比較例においても未延伸糸を得ることができなかった。これらの結果を表2に示す。
(Comparative Examples 5 to 8)
In the conditions of Example 1, polyethylene fibers were tried to be produced in the same manner as in Example 1 except that the polymer, hard particles, and spinning speed used were the conditions shown in Table 2, but in Comparative Examples 5 and 6, they were melted. The viscosity of the state was so high that it could not be extruded, and in Comparative Examples 7 and 8, clogging occurred during spinning, and undrawn yarn could not be obtained in any of the Comparative Examples. These results are shown in Table 2.
(比較例9)
 極限粘度が27.0dL/gの超高分子量ポリエチレンをデカリンに9質量%の濃度で溶解した。こうして得られた溶液を、歯車式ポンプを備えるスクリュー径が25mmの二軸押出機に供給した。このようにして溶液を180℃の温度に加熱した。この溶液をそれぞれの孔径が1ミリメートルの64個の孔を有する紡糸口金を通過させるようにポンプ供給した。こうして得られたフィラメントを全体で80倍に延伸し、熱風オーブンで乾燥した。フィラメントを乾燥した後、束ねて糸とし、ボビンに巻き取った。延伸糸を全体として880dtex±88dtexとなるように合糸し、比較例9のポリエチレン繊維を得た。得られたポリエチレン繊維を用いて、上記方法により筒編み物を作製して耐切創性を評価した。これらの結果を表2に示す。
(Comparative Example 9)
Ultra-high molecular weight polyethylene having an intrinsic viscosity of 27.0 dL / g was dissolved in decalin at a concentration of 9% by mass. The solution thus obtained was supplied to a twin-screw extruder equipped with a gear pump and having a screw diameter of 25 mm. In this way the solution was heated to a temperature of 180 ° C. The solution was pumped through a spinneret with 64 holes, each with a diameter of 1 mm. The filament thus obtained was stretched 80 times in total and dried in a hot air oven. After the filament was dried, it was bundled into a thread and wound on a bobbin. The drawn yarns were combined so as to have a total of 880 dtex ± 88 dtex to obtain polyethylene fibers of Comparative Example 9. Using the obtained polyethylene fiber, a tubular knitted fabric was produced by the above method and the cut resistance was evaluated. These results are shown in Table 2.
(比較例10)
 超高分子量ポリエチレンの極限粘度を1.9dL/gとした以外は、比較例9と同様にポリエチレン繊維を作製しようとしたが、紡糸することができず、ポリエチレン繊維を作製することができなかった。これらの結果を表2に示す。
(Comparative Example 10)
An attempt was made to produce polyethylene fibers in the same manner as in Comparative Example 9, except that the ultimate viscosity of the ultra-high molecular weight polyethylene was 1.9 dL / g, but the polyethylene fibers could not be produced because they could not be spun. .. These results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1から分かるように、実施例1~8のポリエチレン繊維;詳細にはアスペクト比が3以上100以下であり、平均短径が18μm以下の硬質粒子を含むポリエチレン繊維を用いた筒編み物では、インデックス値が高く、つまり、耐切創性レベルが高い。このように、上記実施例1~8および比較例1~10の対比から、本発明の要件を満足するポリエチレン繊維は、耐切創性に優れ、かつ、溶剤がほとんどあるいは全く残留しない繊維であることがわかる。 As can be seen from Table 1, the polyethylene fibers of Examples 1 to 8; in detail, in a tubular knitting using polyethylene fibers containing hard particles having an aspect ratio of 3 or more and 100 or less and an average minor axis of 18 μm or less, the index is used. High value, that is, high level of cut resistance. As described above, from the comparison of Examples 1 to 8 and Comparative Examples 1 to 10, the polyethylene fiber satisfying the requirements of the present invention is a fiber having excellent cut resistance and hardly or no solvent remaining. I understand.
 以上、本発明の実施の形態および各実施例について説明したが、今回開示された実施の形態および各実施例はすべての点で例示であって制限的なものではない。本発明の範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内での全ての変更が含まれる。 Although the embodiments and examples of the present invention have been described above, the embodiments and examples disclosed this time are examples in all respects and are not limiting. The scope of the present invention is indicated by the scope of claims and includes all modifications within the meaning and scope equivalent to the scope of claims.
 本発明のポリエチレン繊維は、高い耐切創性を有するため、該耐切創性を活かした耐切創性織編物、例えば手袋及びベスト等に利用可能である。また、該ポリエチレン繊維単独としてテープ、ロープ、ネット、釣糸、資材防護カバー、シート、カイト用糸、洋弓弦、セールクロス、幕材、防護材、防弾材、医療用縫合糸、人工腱、人工筋肉、繊維強化樹脂補強材、セメント補強材、繊維強化ゴム補強材、工作機械部品、電池セパレーター、化学フィルター等の産業用資材に利用可能である。このように、本発明のポリエチレン繊維は、優れた性能を発揮でき、幅広く応用できるため、産業界へ大きく寄与できる。 Since the polyethylene fiber of the present invention has high cut resistance, it can be used for cut resistant woven and knitted fabrics utilizing the cut resistance, such as gloves and vests. In addition, as the polyethylene fiber alone, tape, rope, net, fishing line, material protective cover, sheet, kite thread, western bow string, sail cloth, curtain material, protective material, bulletproof material, medical suture thread, artificial tendon, artificial muscle , Fiber reinforced resin reinforcing material, cement reinforcing material, fiber reinforced rubber reinforcing material, machine tool parts, battery separators, chemical filters and other industrial materials. As described above, the polyethylene fiber of the present invention can exhibit excellent performance and can be widely applied, so that it can greatly contribute to the industrial world.

Claims (10)

  1.  アスペクト比が3以上100以下であり、平均短径が18μm以下の硬質粒子を含むことを特徴とするポリエチレン繊維。 A polyethylene fiber characterized by containing hard particles having an aspect ratio of 3 or more and 100 or less and an average minor axis of 18 μm or less.
  2.  ポリエチレンの極限粘度[η]は0.8dL/g以上、8.0dL/g未満である請求項1に記載のポリエチレン繊維。 The polyethylene fiber according to claim 1, wherein the ultimate viscosity [η] of polyethylene is 0.8 dL / g or more and less than 8.0 dL / g.
  3.  ポリエチレンの重量平均分子量が40,000以上900,000以下である請求項1又は2に記載のポリエチレン繊維。 The polyethylene fiber according to claim 1 or 2, wherein the weight average molecular weight of polyethylene is 40,000 or more and 900,000 or less.
  4.  前記硬質粒子は、金属、珪素化合物、又は鉱物である請求項1~3のいずれかに記載のポリエチレン繊維。 The polyethylene fiber according to any one of claims 1 to 3, wherein the hard particles are a metal, a silicon compound, or a mineral.
  5.  前記硬質粒子は、硬質粒子中にSiO2を20質量%以上含む請求項1~4のいずれかに記載のポリエチレン繊維。 The polyethylene fiber according to any one of claims 1 to 4, wherein the hard particles contain 20% by mass or more of SiO 2 in the hard particles.
  6.  前記硬質粒子の平均短径は1.0μm以上である請求項1~5のいずれかに記載のポリエチレン繊維。 The polyethylene fiber according to any one of claims 1 to 5, wherein the average minor axis of the hard particles is 1.0 μm or more.
  7.  前記硬質粒子を2質量%以上含有する請求項1~6のいずれかに記載のポリエチレン繊維。 The polyethylene fiber according to any one of claims 1 to 6, which contains 2% by mass or more of the hard particles.
  8.  請求項1~7のいずれかに記載のポリエチレン繊維を含むことを特徴とする製品。 A product characterized by containing the polyethylene fiber according to any one of claims 1 to 7.
  9.  前記製品は耐切創性織編物である請求項8に記載の製品。 The product according to claim 8, wherein the product is a cut-resistant woven knit.
  10.  前記製品は手袋である請求項8又は9に記載の製品。
     
    The product according to claim 8 or 9, wherein the product is a glove.
PCT/JP2021/025323 2020-07-13 2021-07-05 Polyethylene fiber and product containing said fiber WO2022014391A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022536269A JPWO2022014391A1 (en) 2020-07-13 2021-07-05

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-120057 2020-07-13
JP2020120057 2020-07-13

Publications (1)

Publication Number Publication Date
WO2022014391A1 true WO2022014391A1 (en) 2022-01-20

Family

ID=79555311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025323 WO2022014391A1 (en) 2020-07-13 2021-07-05 Polyethylene fiber and product containing said fiber

Country Status (2)

Country Link
JP (1) JPWO2022014391A1 (en)
WO (1) WO2022014391A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010507026A (en) * 2006-10-17 2010-03-04 ディーエスエム アイピー アセッツ ビー.ブイ. Cut-resistant yarn, method for producing cut-resistant yarn, and products including cut-resistant yarn
JP2017179684A (en) * 2016-03-29 2017-10-05 東洋紡株式会社 Polyethylene fiber having excellent cut resistance, and product using the same
WO2018181309A1 (en) * 2017-03-29 2018-10-04 東洋紡株式会社 Polyethylene fiber and product using same
WO2019186696A1 (en) * 2018-03-27 2019-10-03 東洋紡株式会社 Polyethylene fiber, and product using same
WO2020065842A1 (en) * 2018-09-27 2020-04-02 東洋紡株式会社 Polyethylene fiber and product employing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010507026A (en) * 2006-10-17 2010-03-04 ディーエスエム アイピー アセッツ ビー.ブイ. Cut-resistant yarn, method for producing cut-resistant yarn, and products including cut-resistant yarn
JP2017179684A (en) * 2016-03-29 2017-10-05 東洋紡株式会社 Polyethylene fiber having excellent cut resistance, and product using the same
WO2018181309A1 (en) * 2017-03-29 2018-10-04 東洋紡株式会社 Polyethylene fiber and product using same
WO2019186696A1 (en) * 2018-03-27 2019-10-03 東洋紡株式会社 Polyethylene fiber, and product using same
WO2020065842A1 (en) * 2018-09-27 2020-04-02 東洋紡株式会社 Polyethylene fiber and product employing same

Also Published As

Publication number Publication date
JPWO2022014391A1 (en) 2022-01-20

Similar Documents

Publication Publication Date Title
KR101361871B1 (en) Highly functional polyethylene fiber, and dyed highly functional polyethylene fiber
KR101311105B1 (en) Highly-moldable, highly-functional polyethylene fiber
KR100943592B1 (en) Polyethylene Fiber and Process for Producing the Same
JP5742877B2 (en) High-strength polyethylene fiber and method for producing the same
JP6760062B2 (en) High-performance multifilament
JP2017179684A (en) Polyethylene fiber having excellent cut resistance, and product using the same
TW200909621A (en) High strength polyethylene fiber, its precursor and method of manufacturing the same with high productivity
JP6996555B2 (en) Polyethylene fiber and products using it
JP7070667B2 (en) Polyethylene fiber and products using it
JP7268683B2 (en) Polyethylene fiber and products using it
JP6874468B2 (en) Polyethylene fiber and products using it
JP3734077B2 (en) High strength polyethylene fiber
WO2022014391A1 (en) Polyethylene fiber and product containing said fiber
KR102224257B1 (en) Multifilament and braid
JP5497255B2 (en) High-strength polyethylene fiber and method for producing the same
JP4952868B1 (en) High-performance polyethylene fiber and dyeing high-performance polyethylene fiber
JP2014113727A (en) Polyethylene tape, polyethylene split yarn and manufacturing method thereof
JP2014065995A (en) Molten anisotropic aromatic polyester fiber excellent in cut resistance
JP5696809B1 (en) Multifilament
JP2003221731A (en) Staple fiber of polyphenylene sulfide
JP7176517B2 (en) Multifilament and its constituent monofilaments
JP4332775B2 (en) Minimal metal composite fiber and method for producing the same
JP6089658B2 (en) Polyethylene tape, polyethylene split yarn and method for producing them
JP5696808B1 (en) Multifilament
JP2020114955A (en) Polyethylene filament excellent in knot strength retention

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21841591

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022536269

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21841591

Country of ref document: EP

Kind code of ref document: A1