JP5497255B2 - High-strength polyethylene fiber and method for producing the same - Google Patents
High-strength polyethylene fiber and method for producing the same Download PDFInfo
- Publication number
- JP5497255B2 JP5497255B2 JP2007045367A JP2007045367A JP5497255B2 JP 5497255 B2 JP5497255 B2 JP 5497255B2 JP 2007045367 A JP2007045367 A JP 2007045367A JP 2007045367 A JP2007045367 A JP 2007045367A JP 5497255 B2 JP5497255 B2 JP 5497255B2
- Authority
- JP
- Japan
- Prior art keywords
- solvent
- polyethylene
- resin
- dope
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Artificial Filaments (AREA)
Description
本発明は、安価でかつ優れた強度・弾性率を有する高強度ポリエチレン繊維及びその製造方法に関し、更に詳細には、ゲル紡糸法における溶液調製時等に用いるポリエチレンの溶媒に特徴を有する延伸性の優れた高強度ポリエチレン繊維、及び、その製造方法に関するものである。 The present invention relates to a high-strength polyethylene fiber that is inexpensive and has excellent strength and elastic modulus and a method for producing the same, and more particularly, has a stretch property characterized by a solvent of polyethylene used for preparing a solution in a gel spinning method. The present invention relates to an excellent high-strength polyethylene fiber and a method for producing the same.
高強度ポリエチレン繊維に関しては、超高分子量のポリエチレンを原料にし、いわゆる“ゲル紡糸法”により従来にない高強度・高弾性率繊維が得られることが知られており、既に産業上広く利用されている(例えば、特許文献1、特許文献2参照)。
従来のゲル紡糸法のような手法では、達成することが困難であった高生産性(延伸性)を実現し、安価なポリエチレン繊維及びその製造方法を提供することを課題とする。 It is an object of the present invention to realize high productivity (stretchability) that has been difficult to achieve by a technique such as a conventional gel spinning method, and to provide an inexpensive polyethylene fiber and a method for producing the same.
本発明者らは上記課題を解決するため、鋭意研究した結果、ついに本発明を完成するに至った。すなわち、本発明は、(1)極限粘度8dL/g以上の超高分子量ポリエチレン樹脂からなり、該樹脂に対し、貧溶媒を10ppm以上含んでいることを特徴とする高強度ポリエチレン繊維、(2)前記溶媒の粘度指数が0.6以下であることを特徴とする(1)記載の高強度ポリエチレン繊維、(3)極限粘度8dL/g以上の超高分子量ポリエチレン樹脂を、当該樹脂に対する粘度指数が0.6以下である溶媒により、ポリエチレン濃度が0.5重量%以上50重量%未満であるポリエチレンドープとし、該ポリエチレンドープをオリフィスから押出し、冷却させた後、フィラメント糸状を延伸して製造されたことを特徴とする(1)又は(2)記載の高強度ポリエチレン繊維、(4)極限粘度8dL/g以上の超高分子量ポリエチレン樹脂を、当該樹脂に対して良溶媒である溶媒(A)と、溶媒(A)とは相溶で且つ当該樹脂に対して貧溶媒である溶媒(B)との比が、溶媒(A):溶媒(B)=20:80〜99:1(重量比)である混合溶媒を用いて、ポリエチレン濃度が0.5重量%以上50重量%未満である混同ドープを作成し、該ポリエチレンドープをオリフィスから押し出し、冷却させた後、フィラメント糸状を延伸して製造することを特徴とする(1)〜(3)いずれかに記載の高強度ポリエチレン繊維、(5)極限粘度8dL/g以上の超高分子量ポリエチレン樹脂を、当該樹脂に対して良溶媒である溶媒(A)と、溶媒(A)とは相溶で且つ当該樹脂に対して貧溶媒である溶媒(B)との比が、溶媒(A):溶媒(B)=30:70〜95:5(重量比)である混合溶媒を用いて、ポリエチレン濃度が0.5重量%以上50重量%未満である混同ドープを作成し、該ポリエチレンドープをオリフィスから押し出し、冷却させた後、フィラメント糸状を延伸して製造されたことを特徴とする(1)〜(3)いずれかに記載の高強度ポリエチレン繊維、(6)前記溶媒(A)の極限粘度8dL/g以上の超高分子量ポリエチレン樹脂に対する粘度指数が0.6より大きく、溶媒(B)の粘度指数が0.6以下であることを特徴とする(4)又は(5)記載の高強度ポリエチレン繊維、(7)極限粘度8dL/g以上の超高分子量ポリエチレン樹脂からなり、当該樹脂が不溶な非溶媒を、10ppm以上含んでいることを特徴とする高強度ポリエチレン繊維、(8)極限粘度8dL/g以上の超高分子量ポリエチレン樹脂を、当該樹脂に対して良溶媒である溶媒(A)と、溶媒(A)とは相溶で且つ当該樹脂が不溶な非溶媒(C)との比が、溶媒(A):溶媒(C)=50:50〜99:1(重量比)である混合溶媒を用いて、ポリエチレン濃度が0.5重量%以上50重量%未満である混同ドープを作成し、該ポリエチレンドープをオリフィスから押し出し、冷却させた後、フィラメント糸状を延伸して製造されたことを特徴とする(7)に記載の高強度ポリエチレン繊維、(9)極限粘度8dL/g以上の超高分子量ポリエチレン樹脂を、当該樹脂に対して良溶媒である溶媒(A)と、溶媒(A)とは相溶で且つ当該樹脂が不溶な非溶媒(C)との比が、溶媒(A):溶媒(C)=70:30〜90:10(重量比)である混合溶媒を用いて、ポリエチレン濃度が0.5重量%以上50重量%未満である混同ドープを作成し、該ポリエチレンドープをオリフィスから押し出し、冷却させた後、フィラメント糸状を延伸して製造されたことを特徴とする(7)に記載の高強度ポリエチレン繊維、(10)前記溶媒(A)の極限粘度8dL/g以上の超高分子量ポリエチレン樹脂に対する粘度指数が0.6より大きい混合溶媒を用いることを特徴とする(8)又は(9)に記載の高強度ポリエチレン繊維、(11)極限粘度8dL/g以上の超高分子量ポリエチレン樹脂に対する粘度指数が0.6以下である溶媒および当該樹脂が不溶な非溶媒が、10ppm以上含まれていることを特徴とする高強度ポリエチレン繊維、(12)極限粘度8dL/g以上の超高分子量ポリエチレン樹脂を、当該樹脂にして貧溶媒である溶媒(B)と、溶媒(B)とは相溶で且つ当該樹脂が不溶な非溶媒(C)との比が、溶媒(B):溶媒(C)=99:1〜50:50(重量比)である混合溶媒を用いて、ポリエチレン濃度が0.5重量%以上50重量%未満である混同ドープを作成し、該ポリエチレンドープをオリフィスから押し出し、冷却させた後、フィラメント糸状を延伸して製造されたことを特徴とする(11)に記載の高強度ポリエチレン繊維、(13)極限粘度8dL/g以上の超高分子量ポリエチレン樹脂を、当該樹脂に対して貧溶媒である溶媒(B)と、溶媒(B)とは相溶で且つポリエチレンが不溶な非溶媒(C)との比が、溶媒(B):溶媒(C)=99:1〜70:30(重量比)である混合溶媒を用いて、ポリエチレン濃度が0.5重量%以上50重量%未満である混同ドープを作成し、該ポリエチレンドープをオリフィスから押し出し、冷却させた後、フィラメント糸状を延伸して製造されたことを特徴とする(11)に記載の高強度ポリエチレン繊維、(14)前記溶媒(B)の極限粘度8dL/g以上の超高分子量ポリエチレン樹脂に対する粘度指数が0.6以下であることを特徴とする(12)又は(13)に記載の高強度ポリエチレン繊維、(15)極限粘度8dL/g以上の超高分子量ポリエチレン樹脂を、当該樹脂に対する粘度指数が0.6以下である溶媒により、ポリエチレン濃度が0.5重量%以上50重量%未満であるポリエチレンドープとし、該ポリエチレンドープをオリフィスから押出し、冷却させた後、フィラメント糸状を延伸することを特徴とする高強度ポリエチレン繊維の製造方法、(16)極限粘度8dL/g以上の超高分子量ポリエチレン樹脂を、当該樹脂に対して良溶媒である溶媒(A)と、溶媒(A)とは相溶で且つ当該樹脂に対して貧溶媒である溶媒(B)との比が、溶媒(A):溶媒(B)=20:80〜99:1(重量比)である混合溶媒を用いて、ポリエチレン濃度が0.5重量%以上50重量%未満である混同ドープを作成し、該ポリエチレンドープをオリフィスから押し出し、冷却させた後、フィラメント糸状を延伸することを特徴とする高強度ポリエチレン繊維の製造方法、(17)極限粘度8dL/g以上の超高分子量ポリエチレン樹脂を、当該樹脂に対して良溶媒である溶媒(A)と、溶媒(A)とは相溶で且つ当該樹脂に対して貧溶媒である溶媒(B)との比が、溶媒(A):溶媒(B)=30:70〜99:5(重量比)である混合溶媒を用いて、ポリエチレン濃度が0.5重量%以上50重量%未満である混同ドープを作成し、該ポリエチレンドープをオリフィスから押し出し、冷却させた後、フィラメント糸状を延伸することを特徴とする高強度ポリエチレン繊維の製造方法、(18)極限粘度8dL/g以上の超高分子量ポリエチレン樹脂を、当該樹脂に対して良溶媒である溶媒(A)と、溶媒(A)とは相溶で且つ当該樹脂が不溶な非溶媒(C)との比が、溶媒(A):溶媒(C)=50:50〜99:1(重量比)である混合溶媒を用いて、ポリエチレン濃度が0.5重量%以上50重量%未満である混同ドープを作成し、該ポリエチレンドープをオリフィスから押し出し、冷却させた後、フィラメント糸状を延伸することを特徴とする高強度ポリエチレン繊維の製造方法、(19)極限粘度8dL/g以上の超高分子量ポリエチレン樹脂を、当該樹脂に対して良溶媒である溶媒(A)と、溶媒(A)とは相溶で且つ当該樹脂が不溶な非溶媒(C)との比が、溶媒(A):溶媒(C)=70:30〜90:10(重量比)である混合溶媒を用いて、ポリエチレン濃度が0.5重量%以上50重量%未満である混同ドープを作成し、該ポリエチレンドープをオリフィスから押し出し、冷却させた後、フィラメント糸状を延伸することを特徴とする高強度ポリエチレン繊維の製造方法、(20)極限粘度8dL/g以上の超高分子量ポリエチレン樹脂を、当該樹脂に対して貧溶媒である溶媒(B)と、溶媒(B)とは相溶で且つ当該樹脂が不溶な非溶媒(C)との比が、溶媒(B):溶媒(C)=99:1〜50:50(重量比)である混合溶媒を用いて、ポリエチレン濃度が0.5重量%以上50重量%未満である混同ドープを作成し、該ポリエチレンドープをオリフィスから押し出し、冷却させた後、フィラメント糸状を延伸することを特徴とする高強度ポリエチレン繊維の製造方法、(21)極限粘度8dL/g以上の超高分子量ポリエチレン樹脂を、当該樹脂に対して貧溶媒である溶媒(B)と、溶媒(B)とは相溶で且つ当該樹脂が不溶な非溶媒(C)との比が、溶媒(B):溶媒(C)=99:1〜70:30(重量比)である混合溶媒を用いて、ポリエチレン濃度が0.5重量%以上50重量%未満である混同ドープを作成し、該ポリエチレンドープをオリフィスから押し出し、冷却させた後、フィラメント糸状を延伸することを特徴とする高強度ポリエチレン繊維の製造方法、である。 As a result of intensive studies to solve the above problems, the present inventors have finally completed the present invention. That is, the present invention is (1) a high-strength polyethylene fiber comprising an ultrahigh molecular weight polyethylene resin having an intrinsic viscosity of 8 dL / g or more, and containing 10 ppm or more of a poor solvent, (2) (1) high-strength polyethylene fiber according to (1), (3) ultrahigh molecular weight polyethylene resin having an intrinsic viscosity of 8 dL / g or more, wherein the viscosity index of the solvent is A polyethylene dope having a polyethylene concentration of 0.5% by weight or more and less than 50% by weight with a solvent having a value of 0.6 or less was produced by extruding the polyethylene dope through an orifice, cooling, and then drawing a filament yarn. (1) or (2) high-strength polyethylene fiber, (4) ultrahigh molecular weight polyethylene resin having an intrinsic viscosity of 8 dL / g or more The ratio of the solvent (A), which is a good solvent for the resin, and the solvent (B), which is compatible with the solvent (A) and is a poor solvent for the resin, is solvent (A): solvent (B) Using a mixed solvent of 20:80 to 99: 1 (weight ratio), a mixed dope having a polyethylene concentration of 0.5% by weight or more and less than 50% by weight is prepared, and the polyethylene dope is removed from the orifice. (1) High-strength polyethylene fiber according to any one of (1) to (3), (5) Ultra high molecular weight having an intrinsic viscosity of 8 dL / g or more The ratio of the solvent (A), which is a good solvent for the resin, to the solvent (B), which is compatible with the solvent (A) and is a poor solvent for the resin, is determined as the solvent (A ): Solvent (B) = 30: 70 to 95: 5 (weight ratio) Using a mixed solvent, a confusion dope having a polyethylene concentration of 0.5% by weight or more and less than 50% by weight was prepared, the polyethylene dope was extruded from an orifice, cooled, and then produced by drawing a filament yarn (1) The high-strength polyethylene fiber according to any of (1) to (3), (6) The viscosity index of the solvent (A) with respect to an ultrahigh molecular weight polyethylene resin having an intrinsic viscosity of 8 dL / g or more is from 0.6 The high-strength polyethylene fiber according to (4) or (5), wherein the solvent (B) has a viscosity index of 0.6 or less, and (7) an ultrahigh molecular weight polyethylene resin having an intrinsic viscosity of 8 dL / g or more. A high-strength polyethylene fiber comprising 10 ppm or more of a non-solvent insoluble in the resin, and (8) an ultrahigh molecular weight polyethylene having an intrinsic viscosity of 8 dL / g or more. The ratio of the solvent (A), which is a good solvent for the resin, to the non-solvent (C), which is compatible with the solvent (A) and insoluble in the resin, is solvent (A): solvent ( C) A mixed dope having a polyethylene concentration of 0.5% by weight or more and less than 50% by weight is prepared using a mixed solvent of 50:50 to 99: 1 (weight ratio), and the polyethylene dope is extruded from an orifice. The high-strength polyethylene fiber according to (7), the ultrahigh molecular weight polyethylene resin having an intrinsic viscosity of 8 dL / g or more, which is produced by drawing a filament yarn after cooling, The ratio of the solvent (A), which is a good solvent, to the non-solvent (C), which is compatible with the solvent (A) and insoluble in the resin, is solvent (A): solvent (C) = 70: Using a mixed solvent of 30-90: 10 (weight ratio), polyethylene In the present invention, a mixed dope having a concentration of 0.5% by weight or more and less than 50% by weight is prepared, the polyethylene dope is extruded through an orifice, cooled, and then filamentary filaments are drawn (7). (10) A mixed solvent having a viscosity index greater than 0.6 for the ultrahigh molecular weight polyethylene resin having an intrinsic viscosity of 8 dL / g or more of the solvent (A) (8) ) Or (9), (11) a solvent having a viscosity index of 0.6 or less and an ultra-high molecular weight polyethylene resin having an intrinsic viscosity of 8 dL / g or more and a non-solvent in which the resin is insoluble are 10 ppm. A high-strength polyethylene fiber characterized by being contained above, (12) an ultrahigh molecular weight polyethylene resin having an intrinsic viscosity of 8 dL / g or more, The ratio of the solvent (B), which is a poor solvent, to the non-solvent (C), which is compatible with the solvent (B) and insoluble in the resin, is solvent (B): solvent (C) = 99: 1 A mixed dope having a polyethylene concentration of 0.5% by weight or more and less than 50% by weight is prepared using a mixed solvent of 50:50 (weight ratio), the polyethylene dope is extruded from an orifice, cooled, and then a filament. The high-strength polyethylene fiber according to (11), which is produced by drawing a filament, (13) an ultrahigh molecular weight polyethylene resin having an intrinsic viscosity of 8 dL / g or more is a poor solvent for the resin The ratio of the solvent (B) to the non-solvent (C) in which the solvent (B) is compatible and insoluble in polyethylene is solvent (B): solvent (C) = 99: 1 to 70:30 (weight ratio) ), And the polyethylene concentration is 0.5 fold. The high-strength polyethylene according to (11), which is produced by preparing a confusion dope of not less than 50% by weight and less than 50% by weight, extruding the polyethylene dope from an orifice, allowing it to cool, and then drawing a filament thread shape (14) The high strength according to (12) or (13), wherein the viscosity index of the fiber, (14) the ultra-high molecular weight polyethylene resin having an intrinsic viscosity of 8 dL / g or more of the solvent (B) is 0.6 or less Polyethylene fiber, (15) Ultra high molecular weight polyethylene resin having an intrinsic viscosity of 8 dL / g or more, polyethylene concentration is 0.5 wt% or more and less than 50 wt% by a solvent having a viscosity index of 0.6 or less with respect to the resin The polyethylene dope is extruded from the orifice, cooled, and then the filament yarn is drawn. (16) An ultrahigh molecular weight polyethylene resin having an intrinsic viscosity of 8 dL / g or more, a solvent (A) that is a good solvent for the resin, and the solvent (A) are compatible with each other. The ratio of the solvent (B), which is a poor solvent to the resin, is a solvent mixture (A): solvent (B) = 20: 80 to 99: 1 (weight ratio), and the polyethylene concentration is 0. A method for producing a high-strength polyethylene fiber, comprising producing a confusion dope of 5 wt% or more and less than 50 wt%, extruding the polyethylene dope from an orifice, allowing it to cool, and then drawing a filament thread shape (17 ) Solvent (A) that is a good solvent for the resin with an ultra high molecular weight polyethylene resin having an intrinsic viscosity of 8 dL / g or more is compatible with the solvent (A) and is a poor solvent for the resin. The ratio with (B) is A mixed dope having a polyethylene concentration of 0.5% by weight or more and less than 50% by weight is prepared using a mixed solvent of solvent (A): solvent (B) = 30: 70 to 99: 5 (weight ratio). The polyethylene dope is extruded from the orifice, cooled, and then the filament yarn is stretched. (18) An ultrahigh molecular weight polyethylene resin having an intrinsic viscosity of 8 dL / g or more, The ratio of the solvent (A), which is a good solvent for the resin, to the non-solvent (C), which is compatible with the solvent (A) and insoluble in the resin, is solvent (A): solvent (C) = 50. A mixed dope having a polyethylene concentration of 0.5 wt% or more and less than 50 wt% was prepared using a mixed solvent of 50 to 99: 1 (weight ratio), and the polyethylene dope was extruded from an orifice and cooled. Later, Fi A method for producing a high-strength polyethylene fiber, characterized by stretching a lament yarn, (19) an ultrahigh molecular weight polyethylene resin having an intrinsic viscosity of 8 dL / g or more, a solvent (A) that is a good solvent for the resin, Mixed solvent having a ratio of solvent (A): solvent (C) = 70: 30 to 90:10 (weight ratio) that is compatible with the solvent (A) and insoluble in the resin. Is used to prepare a confusion dope having a polyethylene concentration of 0.5 wt% or more and less than 50 wt%, extruding the polyethylene dope from an orifice, cooling, and then drawing a filament yarn. (20) An ultrahigh molecular weight polyethylene resin having an intrinsic viscosity of 8 dL / g or more, a solvent (B) that is a poor solvent for the resin, and the solvent (B) are compatible with the resin. Is bad Using a mixed solvent in which the ratio to the non-solvent (C) is solvent (B): solvent (C) = 99: 1 to 50:50 (weight ratio), the polyethylene concentration is 0.5 wt% or more 50 A method for producing a high-strength polyethylene fiber, comprising preparing a confusion dope of less than% by weight, extruding the polyethylene dope through an orifice, allowing the filament dope to be drawn, and (21) limiting viscosity 8 dL / g The ratio of the above ultrahigh molecular weight polyethylene resin to the solvent (B), which is a poor solvent for the resin, and the non-solvent (C), which is compatible with the solvent (B) and insoluble in the resin, is a solvent. (B): using a mixed solvent in which the solvent (C) = 99: 1 to 70:30 (weight ratio), a mixed dope having a polyethylene concentration of 0.5 wt% or more and less than 50 wt% is prepared, Push polyethylene dope through orifice And, after cooling, a method of producing high-strength polyethylene fiber, which is characterized by stretching the filaments filamentous.
本発明によると、生産性が大きく向上した高強度ポリエチレン繊維を提供することを可能となる。すなわち、大規模な設備投資を必要とせずに生産性(延伸性)が飛躍的に向上するため、従来極めて高価であった高強度ポリエチレン繊維を安価に提供することができるという利点を有する。 According to the present invention, it is possible to provide a high-strength polyethylene fiber having greatly improved productivity. That is, since productivity (stretchability) is dramatically improved without requiring large-scale capital investment, there is an advantage that high-strength polyethylene fibers that have been extremely expensive can be provided at a low cost.
以下、本発明を詳細に記述する。
本発明における原料となる高分子量のポリエチレンは、測定温度として135℃、測定溶媒としてデカリンを用いた場合の極限粘度[η]が8dL/g以上であることが必要であり、より好ましくは10dL/g以上であることが望ましい。極限粘度が8dL/g未満であると、所望とする強度26cN/dTexを超えるような高強度繊維が得られないからである。一方、上限については、所望とする強度が得られる範囲であれば特に問題にならないが、32dL/gを超えると、延伸性が低下し、本願発明の効果が得られ難くなる。より好ましくは30dL/g以下、更に好ましくは25dL/g以下である。
Hereinafter, the present invention will be described in detail.
The high molecular weight polyethylene used as a raw material in the present invention is required to have an intrinsic viscosity [η] of not less than 8 dL / g when measuring temperature is 135 ° C. and decalin is used as a measuring solvent, more preferably 10 dL / g. g or more is desirable. This is because if the intrinsic viscosity is less than 8 dL / g, a high-strength fiber exceeding the desired strength of 26 cN / dTex cannot be obtained. On the other hand, the upper limit is not particularly problematic as long as the desired strength is obtained, but if it exceeds 32 dL / g, the stretchability is lowered, and the effect of the present invention is hardly obtained. More preferably, it is 30 dL / g or less, More preferably, it is 25 dL / g or less.
本発明における超高分子量ポリエチレンとは、その繰り返し単位が実質的にエチレンであることを特徴とし、少量の他のモノマー例えばα−オレフィン,アクリル酸及びその誘導体,メタクリル酸及びその誘導体,ビニルシラン及びその誘導体などとの共重合体であっても良いし、これら共重合物どうし、あるいはエチレン単独ポリマーとの共重合体、さらには他のα−オレフィン等のホモポリマーとのブレンド体であってもよい。特にプロピレン,ブテンー1などのαオレフィンと共重合体を用いることで短鎖あるいは長鎖の分岐をある程度含有させることは本繊維を製造する上で、特に紡糸・延伸においての製糸上の安定を与えることとなり、より好ましい。しかしながらエチレン以外の含有量が増えすぎると反って延伸の阻害要因となるため、高強度・高弾性率繊維を得るという観点からはモノマー単位で0.2mol%以下、好ましくは0.1mol%以下であることが望ましい。もちろんエチレン単独のホモポリマーであっても良い。 The ultra high molecular weight polyethylene in the present invention is characterized in that the repeating unit is substantially ethylene, and a small amount of other monomers such as α-olefin, acrylic acid and its derivatives, methacrylic acid and its derivatives, vinylsilane and its It may be a copolymer with a derivative or the like, or may be a copolymer with these copolymers, a copolymer with an ethylene homopolymer, or a homopolymer such as another α-olefin. . In particular, the use of an α-olefin such as propylene and butene-1 and a copolymer to include some degree of short-chain or long-chain branching provides stability in spinning, especially in spinning and drawing. This is more preferable. However, if the content other than ethylene is excessively increased, it becomes a hindrance to stretching, so from the viewpoint of obtaining high-strength and high-modulus fibers, the monomer unit is 0.2 mol% or less, preferably 0.1 mol% or less. It is desirable to be. Of course, it may be a homopolymer of ethylene alone.
本発明の生産性の高い高強度ポリエチレン繊維を製造する方法において重要な因子はポリエチレンを溶解(膨潤)させる成分、特に溶液調製時に用いる溶媒種である。 In the method for producing high-strength polyethylene fibers with high productivity of the present invention, an important factor is a component for dissolving (swelling) polyethylene, particularly a solvent type used in preparing the solution.
ゲル紡糸方法により高強度ポリエチレン繊維を得るための溶媒として、これまでデカリン・テトラリン、パラフィン等が知られており、これらの溶媒種はポリエチレンの溶解性が良いという特徴で選択されていた。 As a solvent for obtaining high-strength polyethylene fibers by the gel spinning method, decalin, tetralin, paraffin and the like have been known so far, and these solvent types have been selected because of their good polyethylene solubility.
ところが、従来高強度ポリエチレン繊維を製造するに最適とされてきた上記良溶媒に代わり(良溶媒に加え)、若干溶解性が低い溶媒を用いることにより、延伸性を飛躍的に向上させることができることを本願発明者らは見出し本願発明を完成した。このように若干溶解性が低い溶媒を用いることにより延伸性が向上する理由は以下のように考えられる。 However, in place of the above-mentioned good solvent that has been considered optimal for producing high-strength polyethylene fibers (in addition to the good solvent), it is possible to dramatically improve the stretchability by using a slightly lower solubility solvent. The inventors of the present application found and completed the present invention. The reason why the stretchability is improved by using a solvent having a slightly low solubility as described above is considered as follows.
従来のゲル紡糸の技術思想は、溶媒を用いて高分子量ポリエチレン樹脂を膨潤させ、延伸しやすい(分子を引き伸ばし易い)状態とするものであり、その溶媒としては膨潤し易い溶媒、つまり良溶媒が用いられてきた。しかし、生産性の観点から見るとこれらの溶媒を用いた場合、延伸性が十分とはいえず、該ポリエチレン繊維の製造工程の一つである延伸工程において糸切れが多発する、延伸速度を速くすることができない等の問題を発現し易いことを知見した。そこで本願発明者らは、溶媒種とポリエチレン分子の相互作用は溶解性だけではなく、選択した溶媒種によって溶液中でのポリエチレン分子の広がりが大きく異なることに着目した。 The conventional technical idea of gel spinning is to swell a high-molecular-weight polyethylene resin using a solvent to make it easy to stretch (easily stretch the molecule). Has been used. However, from the viewpoint of productivity, when these solvents are used, the drawability is not sufficient, and yarn breakage frequently occurs in the drawing process, which is one of the manufacturing processes of the polyethylene fiber. It has been found that problems such as inability to develop are likely to occur. Therefore, the inventors of the present application paid attention to the fact that the interaction between the solvent species and the polyethylene molecules is not only soluble, but the spread of the polyethylene molecules in the solution varies greatly depending on the selected solvent species.
すなわち、溶液中のポリエチレンの分子量およびポリエチレン分子の濃度が同じ場合、ポリエチレン分子の広がりが小さい方が、1分子あたりの溶液中に占める空間が小さくなり、その結果、ポリエチレン分子同士の絡み合いがより少ないと考えられる。つまり、溶液中のポリエチレン分子の広がりが小さくなるような溶媒種を選択することにより、生産時の延伸性に大きく影響すると考えられている分子同士の絡み合いを少なくすることができると思われる。 That is, when the molecular weight of polyethylene in the solution and the concentration of polyethylene molecules are the same, the smaller the spread of the polyethylene molecules, the smaller the space occupied in the solution per molecule, and as a result, there is less entanglement between the polyethylene molecules. it is conceivable that. That is, by selecting a solvent species that reduces the spread of polyethylene molecules in the solution, it is considered that the entanglement of molecules that are thought to greatly affect the stretchability during production can be reduced.
溶媒種の違いによるポリエチレン分子の広がりに関しては、例えば、「新高分子実験学」に書かれているように、基本的な理論が確立されている。概要は次の通りである。ポリエチレン等の屈曲性高分子が溶解性の良い良溶媒に溶けている場合、同一の分子に沿って遠く離れたセグメント対がお互いに接近するとセグメント間の相互作用は斥力が引力よりも優勢になり、分子はより広がった状態になろうとする。他方、屈曲性高分子が溶解性の悪い貧溶媒に溶けている場合、分子と溶媒種との親和性が悪く、セグメント対の間に働く相互作用は引力が斥力よりも優勢になり、良溶媒を用いた場合よりも分子はより縮まった状態になろうとする。従って、良溶媒よりも貧溶媒を用いた方が、溶液中の分子の広がりが小さくなる。これらのことより、貧溶媒を用いた方がより分子同士の絡み合いが少なくなり、延伸性を向上させることが可能になると考えられる。溶液中における分子の広がりは極限粘度の測定量に反映されることはよく知られており、分子の広がりの分子量依存性は、分子量Mの十分高い領域で次のような指数則に従うことがこれまでの膨大な実験データによりわかっている。 Regarding the spread of polyethylene molecules due to the difference in solvent species, for example, as described in “New Polymer Experimental Science”, a basic theory has been established. The outline is as follows. When a flexible polymer such as polyethylene is dissolved in a good solvent with good solubility, if a pair of segments that are far apart along the same molecule approach each other, the repulsive force is more dominant than the attractive force. , Molecules try to become more spread out. On the other hand, when the flexible polymer is dissolved in a poor solvent with poor solubility, the affinity between the molecule and the solvent species is poor, and the interaction between the segment pairs becomes more attractive than the repulsive force, and the good solvent Molecules tend to be more contracted than when using. Therefore, the use of a poor solvent rather than a good solvent reduces the spread of molecules in the solution. From these facts, it is considered that the use of a poor solvent reduces the entanglement between molecules and improves the stretchability. It is well known that molecular spread in solution is reflected in the measured amount of intrinsic viscosity, and the molecular weight dependence of molecular spread follows the following power law in a sufficiently high molecular weight region: It is known from the huge amount of experimental data up to.
[η]∝Mα
式中のαは粘度指数と呼ばれており、今回、鋭意検討した結果、粘度指数が特定の条件を満たす溶媒種を選択することにより、生産時の延伸性を著しく向上させることが可能となった。すなわち、粘度指数が0.6以下になる溶媒であれば、著しく延伸性が向上する。一方、粘度指数の下限は特に問題とはならないが、0.50未満であると、ポリエチレンの溶解性が低下し、紡糸・延伸性が逆に低下する傾向になる。より好ましい粘度指数は0.50〜0.59、更に好ましくは0.50〜0.57である。尚、粘度指数が0.6より大きいもしくは0.6以下になる溶媒は、例えば、「Polymer Handbook Fourth Edition」第4章(出版社(JOHN WILEY)出版年(1999年))に記載されているポリエチレン溶媒から選択することができる。
[Η] ∝M α
Α in the formula is called the viscosity index, and as a result of intensive investigations this time, it is possible to remarkably improve the stretchability during production by selecting a solvent type whose viscosity index satisfies a specific condition. It was. That is, if the solvent has a viscosity index of 0.6 or less, the stretchability is remarkably improved. On the other hand, the lower limit of the viscosity index is not particularly problematic, but if it is less than 0.50, the solubility of polyethylene tends to decrease, and the spinning / drawing property tends to decrease. A more preferred viscosity index is 0.50 to 0.59, still more preferably 0.50 to 0.57. The solvent having a viscosity index greater than 0.6 or less than 0.6 is described in, for example, “Polymer Handbook Fourth Edition”, Chapter 4 (publishing company (JOHN WILEY) publication year (1999)). It can be selected from polyethylene solvents.
本発明でいう生産性が著しく向上する溶媒は、種々の方法によって調整することができる。例えば、1種又は2種以上の貧溶媒からなる溶媒、1種又は2種以上の良溶媒に1種又は2種以上の貧溶媒及び/又は非溶媒を混合したもの、1種又は2種以上の貧溶媒に、1種又は2種以上の非溶媒を混合したものが挙げられる。 The solvent in which productivity is remarkably improved in the present invention can be adjusted by various methods. For example, a solvent composed of one or two or more poor solvents, one or two or more good solvents mixed with one or two or more poor solvents and / or a non-solvent, one or two or more kinds A mixture of one or two or more non-solvents with the poor solvent.
本発明の高強度ポリエチレン繊維は、貧溶媒を10ppm以上含んでいることが好ましい。本発明のポリエチレン繊維は、冷却された該ドープフィラメントを溶媒除去後に延伸、もしくは溶媒除去及び延伸を同時に行い、場合によっては多段延伸することにより高強度ポリエチレン繊維を製造することが可能となるところ、この時、糸中の貧溶媒の残留溶媒量が重要なパラメータとして挙げられ、10ppm以上あることが好ましい。糸中の残留溶媒量が10ppm未満になると、延伸工程での糸切れが多発する。原理は良くわからないが、残留溶剤が可塑剤のとして作用すると考えている。上限は延伸性に対しては特に問題とならないが、10000ppmを超えると、可塑剤としての効果により、繊維の弾性率・強度が低下する傾向がある。より好ましい範囲は50ppm〜5000ppm更に好ましくは100ppm〜1000ppmである。 The high-strength polyethylene fiber of the present invention preferably contains 10 ppm or more of a poor solvent. The polyethylene fiber of the present invention can be used to produce a high-strength polyethylene fiber by stretching the cooled dope filament after removing the solvent, or simultaneously performing solvent removal and stretching, and in some cases by multi-stage stretching. At this time, the residual solvent amount of the poor solvent in the yarn is mentioned as an important parameter, and it is preferably 10 ppm or more. When the residual solvent amount in the yarn is less than 10 ppm, yarn breakage frequently occurs in the drawing process. Although the principle is not well understood, we believe that the residual solvent acts as a plasticizer. The upper limit is not particularly problematic for stretchability, but if it exceeds 10,000 ppm, the elastic modulus and strength of the fiber tend to decrease due to the effect as a plasticizer. A more preferable range is 50 ppm to 5000 ppm, still more preferably 100 ppm to 1000 ppm.
貧溶媒を繊維に付与する方法は特に限定されず、例えば紡糸中、延伸中に付与してもよいが、ドープ調整時に添加し、延伸時に貧溶媒濃度が10ppmを下回らないようにすることが好ましい。 The method for applying the poor solvent to the fiber is not particularly limited. For example, it may be applied during spinning or stretching, but it is preferably added during dope adjustment so that the poor solvent concentration does not fall below 10 ppm during stretching. .
なお、本発明でいう貧溶媒とは、ポリエチレンを溶解するものであって、粘度指数が0.6以下のものをいう。 In addition, the poor solvent as used in the field of this invention melt | dissolves polyethylene, and means a thing with a viscosity index of 0.6 or less.
本発明の高強度ポリエチレン繊維に含まれる貧溶媒の粘度指数は、上述のとおり、0.6以下であることが好ましい。かかる貧溶媒であれば適度な絡み合いの数となるからである。より好ましい範囲は上述のとおり、0.51〜0.59、更に好ましくは0.52〜0.57である。 As described above, the viscosity index of the poor solvent contained in the high-strength polyethylene fiber of the present invention is preferably 0.6 or less. This is because such a poor solvent has an appropriate number of entanglements. As described above, a more preferable range is 0.51 to 0.59, and more preferably 0.52 to 0.57.
また、この時、延伸時の繊維の変形速度が重要なパラメータとして上げられる。繊維の変形速度があまりにも速いと十分な延伸倍率へ到達する前に繊維の破断が生じてしまい好ましくない。また、繊維の変形速度があまりにも遅いと、延伸中に分子鎖が緩和してしまい延伸により繊維は細くなるものの高い物性の繊維が得られず好ましくない。好ましくは、変形速度で0.005秒−1以上0.5秒−1以下が好ましい。さらに好ましくは、0.01秒−1以上0.1秒−1以下である。変形速度は、繊維の延伸倍率、延伸速度及びオーブンの加熱区間長さより計算可能である。つまり、変形速度(秒−1)=(1―1/延伸倍率)延伸速度/加熱区間の長さである。 At this time, the deformation speed of the fiber at the time of drawing is raised as an important parameter. If the deformation rate of the fiber is too high, the fiber breaks before reaching a sufficient draw ratio. On the other hand, if the deformation rate of the fiber is too slow, the molecular chain is relaxed during stretching, and the fiber becomes thin by stretching, but a fiber having high physical properties cannot be obtained. Preferably, the deformation speed is 0.005 sec- 1 or more and 0.5 sec- 1 or less. More preferably, it is 0.01 second- 1 or more and 0.1 second- 1 or less. The deformation rate can be calculated from the draw ratio of the fiber, the draw rate, and the heating section length of the oven. That is, deformation speed (second −1 ) = (1-1 / stretching ratio) stretching speed / length of heating section.
本発明の超高分子量ポリエチレン繊維は、極限粘度8dL/g以上の超高分子量ポリエチレン樹脂を、当該樹脂に対する粘度指数が0.6以下である溶媒により、ポリエチレン濃度が0.5重量%以上50重量%未満であるポリエチレンドープとし、該ポリエチレンドープをオリフィスから押出し、冷却させた後、フィラメント糸状を延伸して製造されたものであることが好ましい。かかる方法であれば、紡糸・延伸時に分子間の絡み合いが適度なものとなり、生産性が著しく向上するからである。 The ultrahigh molecular weight polyethylene fiber of the present invention is obtained by using an ultrahigh molecular weight polyethylene resin having an intrinsic viscosity of 8 dL / g or more, with a polyethylene concentration of 0.5% by weight or more and 50% by weight with a solvent having a viscosity index of 0.6 or less. It is preferable that the polyethylene dope is less than%, the polyethylene dope is extruded through an orifice, cooled, and then the filament yarn is drawn. This is because, by such a method, the entanglement between molecules becomes appropriate at the time of spinning and drawing, and the productivity is remarkably improved.
また、本発明の超高分子量ポリエチレン繊維は、粘度指数が0.6以上になる溶媒(A)を20重量%以上99重量%未満、粘度指数が0.6以下になる溶媒(B)を1重量%以上80重量%未満含有する混合溶媒を用いたものであることも好ましい形態の一つである。溶媒(A)を99重量%以上、溶媒(B)を1重量%未満含有する混合溶媒を用いた場合、延伸性に与える効果は小さい為、好ましくない。溶媒(A)を20重量部以下、溶媒(B)を80重量部以上含有する混合溶媒を用いた場合、ポリエチレンの溶解性が著しく低下する為、好ましくない。 The ultrahigh molecular weight polyethylene fiber of the present invention has a solvent (A) having a viscosity index of 0.6 or more and a solvent (B) having a viscosity index of 20 or less and less than 99% by weight and a viscosity index of 0.6 or less. It is also a preferred embodiment that a mixed solvent containing not less than 80% by weight is used. When a mixed solvent containing 99% by weight or more of solvent (A) and less than 1% by weight of solvent (B) is used, the effect on stretchability is small, which is not preferable. Use of a mixed solvent containing 20 parts by weight or less of the solvent (A) and 80 parts by weight or more of the solvent (B) is not preferable because the solubility of polyethylene is remarkably lowered.
より好ましくは、溶媒(A):溶媒(B)=30:70〜99:5(重量比)である。 More preferably, solvent (A): solvent (B) = 30: 70 to 99: 5 (weight ratio).
本発明の超高分子量ポリエチレン繊維は、非溶媒を10ppm以上含んでいることも好ましい形態の一つである。かかる繊維は、優れた延伸性を有し、生産性が著しく向上するからである。一方、上限は特に問題にならないが、10000ppm以上含むと強度、弾性率が低下する傾向にある。より好ましい非溶媒含有量の範囲は50ppm〜5000ppm、更に好ましくは100ppm〜1000ppmである。なお、本発明で言う非溶媒とは、超高分子量ポリエチレンに対しては不溶であって、良溶媒又は貧溶媒に相溶なものをいう。 It is one of the preferable forms that the ultra high molecular weight polyethylene fiber of the present invention contains 10 ppm or more of non-solvent. This is because such fibers have excellent stretchability and the productivity is remarkably improved. On the other hand, the upper limit is not particularly problematic, but if it contains 10000 ppm or more, the strength and elastic modulus tend to decrease. A more preferable range of the non-solvent content is 50 ppm to 5000 ppm, still more preferably 100 ppm to 1000 ppm. In addition, the non-solvent said by this invention means a thing insoluble with respect to ultra high molecular weight polyethylene, and compatible with a good solvent or a poor solvent.
また、本発明の超高分子量ポリエチレン繊維は、粘度指数が0.6以上になる溶媒(A)を50重量%以上99重量%未満、溶媒(A)と相溶で且つポリエチレンが不溶な溶媒(C)を1重量%以上50重量%未満含有する混合溶媒を用いたものであってもよい。溶媒(A)を99重量%以上、非溶媒(C)を1重量%未満含有する混合溶媒を用いた場合、延伸性に与える効果はほとんど生じない為、好ましくない。溶媒(A)を50重量%未満、非溶媒(C)を50重量%以上含有する混合溶媒を用いた場合、ポリエチレンの溶解性が著しく低下する為、好ましくない。より好ましくは、溶媒(A):溶媒(C)=70:30〜90:10(重量比)である。 Further, the ultrahigh molecular weight polyethylene fiber of the present invention comprises a solvent (A) having a viscosity index of 0.6 or more and a solvent (A) that is compatible with the solvent (A) and insoluble in polyethylene (50% by weight or more and less than 99% by weight). A mixed solvent containing 1% by weight or more and less than 50% by weight of C) may be used. When a mixed solvent containing 99% by weight or more of the solvent (A) and less than 1% by weight of the non-solvent (C) is used, the effect on stretchability hardly occurs, which is not preferable. When a mixed solvent containing less than 50% by weight of the solvent (A) and 50% by weight or more of the non-solvent (C) is used, the solubility of polyethylene is remarkably lowered, which is not preferable. More preferably, it is solvent (A): solvent (C) = 70: 30-90: 10 (weight ratio).
本発明の高強度ポリエチレン繊維は、前記溶媒(B)及び前記(C)を10ppm以上含んでいることが好ましい。かかるポリエチレン繊維は極めて生産性が高いからである。上限は延伸性に対しては特に問題とならないが、10000ppmを超えると、可塑剤としての効果により、繊維の弾性率・強度が低下する傾向がある。より好ましい範囲は50ppm〜5000ppm更に好ましくは100ppm〜1000ppmである。 The high-strength polyethylene fiber of the present invention preferably contains 10 ppm or more of the solvent (B) and the (C). This is because such polyethylene fibers have extremely high productivity. The upper limit is not particularly problematic for stretchability, but if it exceeds 10,000 ppm, the elastic modulus and strength of the fiber tend to decrease due to the effect as a plasticizer. A more preferable range is 50 ppm to 5000 ppm, still more preferably 100 ppm to 1000 ppm.
また、本発明の超高分子量ポリエチレン繊維は、前記溶媒(B)を50重量%以上99重量%未満、溶媒(B)と相溶で且つポリエチレンが不溶な非溶媒(C)を1重量%以上50重量%未満含有する混合溶媒を用いたものであってもよい。溶媒(B)を99重量%以上、該非溶媒(C)を1重量%未満含有する混合溶媒を用いた場合、延伸性に与える効果はほとんど生じない為、好ましくない。該溶媒(B)を50重量%未満、該非溶媒(C)を50重量%以上含有する混合溶媒を用いた場合、ポリエチレンの溶解性が著しく低下する為、好ましくない。より好ましくは、溶媒(B):溶媒(C)(重量比)=99:1〜70:30である。 Further, the ultrahigh molecular weight polyethylene fiber of the present invention comprises 50% by weight or more and less than 99% by weight of the solvent (B), and 1% by weight or more of the non-solvent (C) that is compatible with the solvent (B) and insoluble in polyethylene. A mixed solvent containing less than 50% by weight may be used. When a mixed solvent containing 99% by weight or more of the solvent (B) and less than 1% by weight of the non-solvent (C) is used, the effect on stretchability hardly occurs, which is not preferable. When a mixed solvent containing less than 50% by weight of the solvent (B) and 50% by weight or more of the non-solvent (C) is used, the solubility of polyethylene is remarkably lowered, which is not preferable. More preferably, it is solvent (B): solvent (C) (weight ratio) = 99: 1-70: 30.
本発明の方法においては溶液中のポリエチレン濃度は、溶媒の性質及びポリエチレンの分子量、分子量分布に依存して変えてもよい。特に非常に高い分子量、例えば測定温度135℃、溶媒としてデカリンを用いた場合の極限粘度[η]が14dL/g以上のポリエチレンを用いた場合、50wt%以上の濃度の混合ドープは、高粘度となるため紡糸時に脆性破断を生じやすくなり紡糸が非常に困難になる。他方、例えば0.5wt%未満の濃度の混合ドープを用いた場合の欠点は、収率が低下し溶媒の分離及び回収の費用が増大することである。 In the method of the present invention, the polyethylene concentration in the solution may be varied depending on the nature of the solvent, the molecular weight of the polyethylene, and the molecular weight distribution. In particular, when polyethylene having an extremely high molecular weight, for example, a measurement temperature of 135 ° C., and an intrinsic viscosity [η] when decalin is used as a solvent is 14 dL / g or more, a mixed dope having a concentration of 50 wt% or more has a high viscosity. Therefore, brittle fracture is likely to occur during spinning, and spinning becomes very difficult. On the other hand, for example, when using a mixed dope having a concentration of less than 0.5 wt%, the yield is lowered and the cost for separating and recovering the solvent is increased.
用いられる該混合ドープは、種々の方法、例えば、固体ポリエチレンを溶媒中に懸濁させ、ついで高温にて撹拌するか、または該懸濁液を混合及び搬送部を備えた2軸スクリュー押出し機を用いることにより製造できる。 The mixed dope used can be prepared by various methods, for example, by suspending solid polyethylene in a solvent and then stirring at a high temperature, or by using a twin screw extruder equipped with a mixing and conveying unit. It can be manufactured by using.
本発明の方法において該混合ドープを複数のオリフィスが配列してなる紡糸口金を通してドープフィラメントとする。ドープフィラメントへの変換の際の温度は、溶解点以上で選択しなければならない。この溶解点は、もちろん選択した溶媒、濃度に依存しており、少なくとも140℃以上、好ましくは少なくとも150℃以上であることが望ましい。もちろん、この温度は該ポリエチレンの分解温度以下にて選択する。 In the method of the present invention, the mixed dope is formed into a dope filament through a spinneret in which a plurality of orifices are arranged. The temperature during conversion to the dope filament must be selected above the melting point. This melting point depends of course on the selected solvent and concentration, and is desirably at least 140 ° C. or higher, preferably at least 150 ° C. or higher. Of course, this temperature is selected below the decomposition temperature of the polyethylene.
本発明の方法においては、該ドープフィラメントは予め整流された気体、もしくは液体を用いて冷却される。本発明に用いる気体として空気、もしくは窒素やアルゴン等の不活性ガスを用いる。また、本発明に用いる液体として水等を用いる。 In the method of the present invention, the dope filament is cooled using a previously rectified gas or liquid. As the gas used in the present invention, air or an inert gas such as nitrogen or argon is used. Moreover, water etc. are used as a liquid used for this invention.
以下実施例により本願発明を詳細に説明するが、本発明はこれらに限定されるものではない。
なお、本発明における特性値に関する測定法および測定条件は下記のとおりである。
(極限粘度)
135℃のデカリンにてウベローデ型毛細粘度管により、種々の希薄溶液の比粘度を測定し、その比粘度を濃度で除した値の濃度に対するプロットの最小2乗近似で得られる直線の原点への外挿点より極限粘度を決定した。測定に際し、サンプルをポリマーに対して1wt%の酸化防止剤(商標名「ヨシノックスBHT」吉富製薬製)を添加し、135℃で24時間攪拌溶解して測定溶液を調整した。
(粘度指数)
例えば「PolymerHandbook Fourth Edition」(出版者、出版年の記載お願いします)等の文献に記載のないポリエチレン溶媒に関しては以下の方法で粘度指数を求める。
Hereinafter, the present invention will be described in detail by way of examples, but the present invention is not limited thereto.
In addition, the measuring method regarding the characteristic value in this invention and measuring conditions are as follows.
(Intrinsic viscosity)
The specific viscosity of various dilute solutions was measured with an Ubbelohde capillary viscosity tube at 135 ° C decalin, and the value obtained by dividing the specific viscosity by the concentration to the origin of the straight line obtained by the least square approximation of the plot. The intrinsic viscosity was determined from the extrapolation point. In the measurement, 1 wt% of an antioxidant (trade name “Yoshinox BHT” manufactured by Yoshitomi Pharmaceutical Co., Ltd.) was added to the polymer, and the sample was stirred and dissolved at 135 ° C. for 24 hours to prepare a measurement solution.
(Viscosity index)
For example, for a polyethylene solvent not described in a document such as “Polymer Handbook Fourth Edition” (publisher, please describe the year of publication), the viscosity index is determined by the following method.
重量平均分子量が既知でその値が5万以上、且つ、分子量分布が単峰性でその値が8以下のポリエチレンを溶媒に溶かして溶液を作成する。このとき、ポリマーに対して1wt%の酸化防止剤(商標名「ヨシノックスBHT」吉富製薬製)を溶液に添加する。次いで上記と同様に極限粘度を求める。重量平均分子量の異なる少なくとも3つ以上のポリエチレンに対して同様の測定を行い、極限粘度を決定し、重量平均分子量に対する極限粘度の両対数プロットを行う。該両対数プロットの最小2乗近似で得られる直線の傾きより粘度指数を決定した。
(繊維の強度、弾性率)
本発明における強度は、オリエンティック社製「テンシロン」を用い、試料長100mm(チャック間長さ)、伸長速度100%/分の条件で歪−応力曲線を雰囲気温度20℃、相対湿度65%条件下で測定し、破断点での応力と伸びから強度(cN/dTex)を計算して求めた。また曲線の原点付近の最大勾配を与える接線から弾性率(cN/dTex)を計算して求めた。尚、各値は10回の測定値の平均値を使用した。
繊度測定は、単糸約2mを各々取り出し、該単糸1mの重さを測定し10000mに換算して繊度(dTex)とした。
(糸中の残留溶媒濃度)
本発明における糸中の残留溶媒濃度は、島津製作所製「ガスクロマトグラフィー」を用いる。まず、試料の糸10mgをガスクロマトグラフィー注入口のガラスインサートにセットする。続いて注入口を溶媒の沸点以上に加熱し、加熱により発生した溶剤を窒素パージでカラムに導入する。次にカラム温度を40℃に設定し、溶媒を5分間トラップさせる。次にカラム温度を80℃まで昇温させた後に測定を開始した。得られたピークより残留溶剤濃度を求めた。
(実施例1)
1−デカノールを溶媒として、極限粘度が21.0dL/gの超高分子量ポリエチレンを重量比3:97で混合しスラリー状液体を形成させた。該物質を分散させながら、160℃の温度に設定した2本の撹拌翼を備えたミキサー型の混練り機で溶解しゲル状物質を形成させた。該ゲル状物質を冷却することなく、185℃に設定した円筒型のシリンダーに充填し、170℃に設定した直径0.8mmを1ホール有する口金より0.8g/分の吐出量で押し出した。吐出したドープフィラメントを7cmのエアギャップを介した後に水浴中に投入させ、冷却し、溶媒を除去することなしに紡糸速度20m/分でドープフィラメントを巻き取った。ついで、該ドープフィラメントを40℃、24時間の条件で真空乾燥させ、溶媒を除去した。このとき該ドープフィラメント中の残留溶剤濃度が10ppm未満になっていないことを確認した。得られた繊維を130℃に設定した金属ヒータに接触させ、6倍の延伸比で延伸し延伸糸を巻き取った。ついで、該延伸糸を149℃で更に延伸し糸が切れる直前の延伸倍率を測定し、その値を最大延伸倍率とした。最大の延伸倍率は17.5倍であった。得られたポリエチレン繊維の諸物性を表1に示した。
最大の延伸倍率が大きく高い強度、弾性率を有していることが判明した。
(実施例2)
重量比50:50であらかじめ混合したデカヒドロナフタレンと1-オクタノールの混合溶媒に極限粘度が21.0dL/gの超高分子量ポリエチレンを重量比3:97で混合しスラリー状液体を形成させたこと以外を実施例1と同様にして延伸すると、最大の延伸倍率は18.0倍であった。得られたポリエチレン繊維の諸物性を表1に示した。
最大の延伸倍率が大きく高い強度、弾性率を有していることが判明した。
(実施例3)
重量比50:50であらかじめ混合したデカヒドロナフタレンと1−ドデカノールの混合溶媒に極限粘度が21.0dL/gの超高分子量ポリエチレンを重量比3:97で混合しスラリー状液体を形成させたこと以外を実施例1と同様にして延伸すると、最大の延伸倍率は18.5倍であった。得られたポリエチレン繊維の諸物性を表1に示した。
最大の延伸倍率が大きく高い強度、弾性率を有していることが判明した。
(実施例4)
重量比95:5であらかじめ混合したデカヒドロナフタレンと1−ヘキサノールの混合溶媒に極限粘度が21.0dL/gの超高分子量ポリエチレンを重量比3:97で混合しスラリー状液体を形成させた。該物質を分散させながら、170℃の温度に設定した2本の撹拌翼を備えたミキサー型の混練り機で溶解しゲル状物質を形成させたこと以外を実施例1と同様にして延伸すると、最大の延伸倍率は18.0倍であった。得られたポリエチレン繊維の諸物性を表1に示した。
最大の延伸倍率が大きく高い強度、弾性率を有していることが判明した。
(実施例5)
重量比98:2であらかじめ混合した1−デカノールと1−ヘキサノールの混合溶媒に極限粘度が21.0dL/gの超高分子量ポリエチレンを重量比3:97で混合しスラリー状液体を形成させた。該物質を分散させながら、170℃の温度に設定した2本の撹拌翼を備えたミキサー型の混練り機で溶解しゲル状物質を形成させたこと以外を実施例1と同様にして延伸すると、最大の延伸倍率は18.0倍であった。得られたポリエチレン繊維の諸物性を表1に示した。
最大の延伸倍率が大きく高い強度、弾性率を有していることが判明した。
(比較例1)
ポリエチレンの溶媒としてデカヒドロナフタレンを用いてドープフィラメントを得た以外を実施例1と同様にして、延伸すると最大の延伸倍率は14.0倍であった。
(比較例2)
ポリエチレンの溶媒としてテトラリンを用いてドープフィラメントを得た以外を実施例1と同様にして、延伸すると最大の延伸倍率は8.0倍であった。
(比較例3)
WO00/24952の用法を用い、ポリエチレンの溶媒としてデカリンとパラフィンを用いること以外を実施例1と同様にして、延伸すると最大の延伸倍率は15.0倍であった。
A solution is prepared by dissolving polyethylene having a known weight average molecular weight and a value of 50,000 or more and a molecular weight distribution of unimodal and a value of 8 or less in a solvent. At this time, 1 wt% antioxidant (trade name “Yoshinox BHT” manufactured by Yoshitomi Pharmaceutical Co., Ltd.) with respect to the polymer is added to the solution. Next, the intrinsic viscosity is determined in the same manner as described above. The same measurement is performed on at least three polyethylenes having different weight average molecular weights, the intrinsic viscosity is determined, and a log-log plot of the intrinsic viscosity against the weight average molecular weight is performed. The viscosity index was determined from the slope of the straight line obtained by least square approximation of the logarithmic plot.
(Fiber strength, elastic modulus)
The strength in the present invention is “Tensilon” manufactured by Orientic Co., Ltd., with a sample length of 100 mm (length between chucks) and an elongation rate of 100% / min. The measurement was performed below, and the strength (cN / dTex) was calculated from the stress and elongation at the breaking point. The elastic modulus (cN / dTex) was calculated from the tangent that gives the maximum gradient near the origin of the curve. In addition, each value used the average value of 10 times of measured values.
In the fineness measurement, about 2 m of each single yarn was taken out, the weight of the single yarn 1 m was measured, and converted to 10000 m to obtain the fineness (dTex).
(Residual solvent concentration in yarn)
“Gas chromatography” manufactured by Shimadzu Corporation is used for the residual solvent concentration in the yarn in the present invention. First, 10 mg of the sample yarn is set in the glass insert of the gas chromatography inlet. Subsequently, the inlet is heated above the boiling point of the solvent, and the solvent generated by the heating is introduced into the column by nitrogen purge. The column temperature is then set to 40 ° C. and the solvent is trapped for 5 minutes. Next, measurement was started after the column temperature was raised to 80 ° C. The residual solvent concentration was determined from the obtained peak.
Example 1
Using 1-decanol as a solvent, ultrahigh molecular weight polyethylene having an intrinsic viscosity of 21.0 dL / g was mixed at a weight ratio of 3:97 to form a slurry liquid. While the substance was dispersed, the substance was dissolved in a mixer-type kneader equipped with two stirring blades set at a temperature of 160 ° C. to form a gel substance. The gel-like substance was filled into a cylindrical cylinder set at 185 ° C. without cooling, and extruded from a die having a diameter of 0.8 mm set at 170 ° C. at a discharge rate of 0.8 g / min. The discharged dope filament was put into a water bath after passing through an air gap of 7 cm, cooled, and wound up at a spinning speed of 20 m / min without removing the solvent. Next, the dope filament was vacuum-dried at 40 ° C. for 24 hours to remove the solvent. At this time, it was confirmed that the residual solvent concentration in the dope filament was not less than 10 ppm. The obtained fiber was brought into contact with a metal heater set at 130 ° C., drawn at a draw ratio of 6 times, and the drawn yarn was wound up. Next, the drawn yarn was further drawn at 149 ° C., and the draw ratio immediately before the yarn was cut was measured, and the value was taken as the maximum draw ratio. The maximum draw ratio was 17.5 times. Various physical properties of the obtained polyethylene fiber are shown in Table 1.
It was found that the maximum draw ratio was large and had high strength and elastic modulus.
(Example 2)
A mixture of decahydronaphthalene and 1-octanol premixed at a weight ratio of 50:50 was mixed with ultrahigh molecular weight polyethylene having an intrinsic viscosity of 21.0 dL / g at a weight ratio of 3:97 to form a slurry liquid. When stretched in the same manner as in Example 1, the maximum stretch ratio was 18.0 times. Various physical properties of the obtained polyethylene fiber are shown in Table 1.
It was found that the maximum draw ratio was large and had high strength and elastic modulus.
(Example 3)
Ultra high molecular weight polyethylene having an intrinsic viscosity of 21.0 dL / g was mixed at a weight ratio of 3:97 to a mixed solvent of decahydronaphthalene and 1-dodecanol previously mixed at a weight ratio of 50:50 to form a slurry liquid. When stretched in the same manner as in Example 1, the maximum stretch ratio was 18.5 times. Various physical properties of the obtained polyethylene fiber are shown in Table 1.
It was found that the maximum draw ratio was large and had high strength and elastic modulus.
(Example 4)
An ultrahigh molecular weight polyethylene having an intrinsic viscosity of 21.0 dL / g was mixed at a weight ratio of 3:97 to a mixed solvent of decahydronaphthalene and 1-hexanol previously mixed at a weight ratio of 95: 5 to form a slurry liquid. When the material is stretched in the same manner as in Example 1 except that it is dissolved in a mixer-type kneader equipped with two stirring blades set at a temperature of 170 ° C. to form a gel-like material while dispersing the material. The maximum draw ratio was 18.0 times. Various physical properties of the obtained polyethylene fiber are shown in Table 1.
It was found that the maximum draw ratio was large and had high strength and elastic modulus.
(Example 5)
An ultrahigh molecular weight polyethylene having an intrinsic viscosity of 21.0 dL / g was mixed at a weight ratio of 3:97 to a mixed solvent of 1-decanol and 1-hexanol previously mixed at a weight ratio of 98: 2, thereby forming a slurry liquid. When the material is stretched in the same manner as in Example 1 except that it is dissolved in a mixer-type kneader equipped with two stirring blades set at a temperature of 170 ° C. to form a gel-like material while dispersing the material. The maximum draw ratio was 18.0 times. Various physical properties of the obtained polyethylene fiber are shown in Table 1.
It was found that the maximum draw ratio was large and had high strength and elastic modulus.
(Comparative Example 1)
When stretched in the same manner as in Example 1 except that decahydronaphthalene was used as a solvent for polyethylene to obtain a dope filament, the maximum stretch ratio was 14.0.
(Comparative Example 2)
When stretched in the same manner as in Example 1 except that tetralin was used as a solvent for polyethylene to obtain a dope filament, the maximum stretch ratio was 8.0.
(Comparative Example 3)
When the method of WO00 / 24952 was used and stretching was performed in the same manner as in Example 1 except that decalin and paraffin were used as the solvent for polyethylene, the maximum stretching ratio was 15.0 times.
本発明に係る高強度ポリエチレン繊維の製造方法により得られた繊維は、各種スポーツ衣料や防弾・防護衣料・防護手袋や各種安全用品などの高性能テキスタイル、タグロープ・係留ロープ、ヨットロープ、建築用ロープなどの各種ロープ製品、釣り糸、ブラインドケーブルなどの各種組み紐製品、漁網・防球ネットなどの網製品さらには化学フィルター・電池セパレーターなどの補強材あるいは各種不織布、またテントなどの幕材、又はヘルメットやスキー板などのスポーツ用やスピーカーコーン用やプリプレグ、コンクリート補強などのコンポジット用の補強繊維など、産業上広範囲に応用可能である。 The fibers obtained by the method for producing high-strength polyethylene fibers according to the present invention are various sports clothing, high-performance textiles such as bulletproof / protective clothing / protective gloves and various safety goods, tag ropes / mooring ropes, yacht ropes, architectural ropes. Various rope products such as fishing lines, various braid products such as blind cables, net products such as fishing nets and ball-proof nets, reinforcing materials such as chemical filters and battery separators, various nonwoven fabrics, curtain materials such as tents, helmets, It can be applied to a wide range of industries, such as sports fibers such as skis, speaker cones, prepregs, and reinforcing fibers for composites such as concrete reinforcement.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007045367A JP5497255B2 (en) | 2006-04-07 | 2007-02-26 | High-strength polyethylene fiber and method for producing the same |
Applications Claiming Priority (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006106305 | 2006-04-07 | ||
JP2006106305 | 2006-04-07 | ||
JP2006106304 | 2006-04-07 | ||
JP2006106304 | 2006-04-07 | ||
JP2006106302 | 2006-04-07 | ||
JP2006106303 | 2006-04-07 | ||
JP2006106302 | 2006-04-07 | ||
JP2006106303 | 2006-04-07 | ||
JP2007045367A JP5497255B2 (en) | 2006-04-07 | 2007-02-26 | High-strength polyethylene fiber and method for producing the same |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013105034A Division JP5742877B2 (en) | 2006-04-07 | 2013-05-17 | High-strength polyethylene fiber and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007297763A JP2007297763A (en) | 2007-11-15 |
JP5497255B2 true JP5497255B2 (en) | 2014-05-21 |
Family
ID=38767485
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007045367A Active JP5497255B2 (en) | 2006-04-07 | 2007-02-26 | High-strength polyethylene fiber and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5497255B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI470125B (en) * | 2007-12-17 | 2015-01-21 | Dsm Ip Assets Bv | Process for spinning uhmwpe, uhmwpe multifilament yarns produced thereof and their use |
CN103772560B (en) * | 2012-10-22 | 2017-03-01 | 中国石油化工股份有限公司 | A kind of fiber polyvinyl resin with super-high molecular weight and preparation method thereof |
US10041191B1 (en) | 2017-05-10 | 2018-08-07 | Asahi Kasei Kabushiki Kaisha | Polyethylene powder, and molded article and fiber thereof |
CN112144138A (en) * | 2019-06-26 | 2020-12-29 | 中石化南京化工研究院有限公司 | Method for improving performance of ultra-high molecular weight polyethylene colored fiber and fiber |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4440711A (en) * | 1982-09-30 | 1984-04-03 | Allied Corporation | Method of preparing high strength and modulus polyvinyl alcohol fibers |
JPS60240432A (en) * | 1984-05-16 | 1985-11-29 | Mitsui Petrochem Ind Ltd | Manufacture of elongated polyethylene of superhigh molecular weight |
JPS618323A (en) * | 1984-06-22 | 1986-01-16 | Mitsui Petrochem Ind Ltd | Manufacture of super high molecular polyethylene stretched product |
JPH07305222A (en) * | 1994-05-09 | 1995-11-21 | Unitika Ltd | Method for producing polyvinyl alcohol fiber |
JP4524644B2 (en) * | 2004-07-08 | 2010-08-18 | 東洋紡績株式会社 | Method for producing high-strength polyethylene fiber |
-
2007
- 2007-02-26 JP JP2007045367A patent/JP5497255B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2007297763A (en) | 2007-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5742877B2 (en) | High-strength polyethylene fiber and method for producing the same | |
JP5005033B2 (en) | Method for preparing ultra high molecular weight multifilament poly (alpha-olefin) yarn | |
JP5976635B2 (en) | Method and product of high strength UHMW-PE fiber | |
JP6760062B2 (en) | High-performance multifilament | |
JPH08504891A (en) | Melt-spun high-strength polyethylene fiber | |
JP5497255B2 (en) | High-strength polyethylene fiber and method for producing the same | |
TW200909621A (en) | High strength polyethylene fiber, its precursor and method of manufacturing the same with high productivity | |
JP2007277763A (en) | High strength polyethylene fiber | |
JP7306375B2 (en) | Polyethylene fiber and products using it | |
JP2011241485A (en) | Producing method of high-strength polyethylene fiber | |
JP3734077B2 (en) | High strength polyethylene fiber | |
WO2020065842A1 (en) | Polyethylene fiber and product employing same | |
TWI845680B (en) | Polyethylene fiber and products containing same | |
JP4337233B2 (en) | High-strength polyethylene fiber and method for producing the same | |
JP2011241486A (en) | High-strength polyethylene fiber | |
JP2004124277A (en) | Highly strong polyethylene fiber | |
JP5696809B1 (en) | Multifilament | |
JP7358774B2 (en) | polyethylene fiber | |
JP7176517B2 (en) | Multifilament and its constituent monofilaments | |
JP5696808B1 (en) | Multifilament | |
JP2021070902A (en) | Polyethylene fibers | |
WO2023127876A1 (en) | Ultra-high molecular weight polyethylene fiber | |
JP2020114955A (en) | Polyethylene filament excellent in knot strength retention | |
JP2004019049A (en) | High-strength polyolefin fiber and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100209 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110517 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110531 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110721 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120403 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120525 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130219 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130517 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20130524 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20130705 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140130 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140306 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5497255 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |