JP2004124277A - Highly strong polyethylene fiber - Google Patents

Highly strong polyethylene fiber Download PDF

Info

Publication number
JP2004124277A
JP2004124277A JP2002286633A JP2002286633A JP2004124277A JP 2004124277 A JP2004124277 A JP 2004124277A JP 2002286633 A JP2002286633 A JP 2002286633A JP 2002286633 A JP2002286633 A JP 2002286633A JP 2004124277 A JP2004124277 A JP 2004124277A
Authority
JP
Japan
Prior art keywords
fiber
elastic modulus
strength
polyethylene fiber
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002286633A
Other languages
Japanese (ja)
Inventor
Godo Sakamoto
阪本 悟堂
Yasuo Ota
大田 康雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2002286633A priority Critical patent/JP2004124277A/en
Publication of JP2004124277A publication Critical patent/JP2004124277A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly strong polyethylene fiber having high strength and excellent heat resistance. <P>SOLUTION: This highly strong polyethylene fiber is a molecule-oriented fiber comprising ultrahigh molecular weight polyethylene which has an intrinsic viscosity [η] of ≥5 and whose repeated units substantially comprise ethylene. The highly strong polyethylene fiber has an average strength of ≥22 cN/dTex and an average elastic modulus of ≥500 cN/dTex, and contains carbon nanotubes in a weight fraction of 1 to 15 wt. %. In the storage elastic modulus curve of dynamic viscoelasticity temperature dispersion characteristics in the fiber axial direction, temperature giving a storage elastic modulus of ≤60% is ≥40 degrees. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、各種スポーツ衣料や防弾・防護衣料・防護手袋などの高性能テキスタイル、タグロープ・係留ロープ、ヨットロープ、建築用ロープなどの各種ロープ製品、釣り糸、ブラインドケーブルなどの各種組み紐製品、さらには化学フィルターや電池セパレーターあるいはテントなどの幕材、またヘルメットやスキー板などのスポーツ用やスピーカーコーン用などのコンポジット用の補強繊維など、産業上広範囲に応用可能な新規な高強度ポリエチレン繊維に関する。
【0002】
【従来の技術】
高強度ポリエチレン繊維に関しては例えば、超高分子量のポリエチレンを原料にし、いわゆる“ゲル紡糸法”により従来にない高強度・高弾性率繊維が得られることが知られており(特許文献1ご参照)、既に産業上広く利用されている。これらの高強度ポリエチレン繊維は極めて優れた高強度・高弾性率を有するが、それら繊維に対して近年はさらなる高性能の要求が非常に高い。その背景として、高強度ポリエチレン繊維はもともと土木・建築分野におけるジオテキスタイルや作業ネットなどの比較的に真夏の高温下で使用される可能性のある用途、あるいは防弾チョッキ・防護衣料などの究極的には戦闘状態での過酷な使用条件での適応性などを求められる用途への展開が多い。これらの用途では、一次的に繊維が高温の状態に暴露され可能性があるため、用途によっては現在の高強度ポリエチレン繊維の耐熱性では不十分であった。つまり。高強度ポリエチレン繊維はその原材料である超高分子量のポリエチレンの性質から、本質的に熱に弱いという特長を持っている。特に繊維とした時の繊維軸方向の弾性率の温度依存性は極めた大きいという問題点があった。つまり、繊維が溶融するような高温に到らなくとも、温度が上がるにつれて繊維の弾性率が低下する割合が高いという課題があった。発明者らは鋭意検討の末その解決方法を見いだした。
【0003】
【特許文献1】
特公昭60−47922号公報
【0004】
【発明が解決しようとする課題】
本発明は、高温に於いても繊維の力学物性の低下が少ない高強度ポリエチレン繊維を提供することを目的とした。
【0005】
【課題を解決するための手段】
極限粘度[η]が5以上、繊維の平均強度が22cN/dTex以上、平均弾性率が500cN/dTex以上であり繊維内部にカーボンナノチューブを含有し、該カーボンナノチューブの含有率が重量分率にして1wt%〜15wt%であることを特徴とする高強度ポリエチレン繊維を提供する。また、繊維軸方向の動的粘弾性の温度分散特性の貯蔵弾性率曲線において、−100度における貯蔵弾性率に対して、貯蔵弾性率が60%以下となる温度が40度以上である事を特徴とする高強度ポリエチレン繊維も提供する。
【0006】
本発明の高強度ポリエチレン繊維を得る為には、カーボンナノチューブの長軸が繊維中で繊維軸方向に配向し、且つ均一に分散している必要がある。この構造は溶液中にカーボンナノチューブを均一に分散かつ十分な延伸が行えたとき自発的に発現することを鋭意検討の結果見出した。さらにそのような構造となった時、繊維の耐熱性が向上することを偶然見いだした。この事は、動的粘弾性測定によって得られる貯蔵弾性率の温度分散を調べる事により明確に確認できる。この理由に関しては、導入されたカーボンナノチューブがポリエチレン分子鎖の運動を阻害することにより弾性率の低下を抑制しているのではないかと考えているが、詳細は定かではない。
【0007】
本発明に係る繊維を製造する方法は、慎重でかつ新規な製造法を採用する必要があり以下に開示する方法を推奨するがもちろんそれに限定されるものではない。即ち、当該繊維の製造に当たっては、その原料となる高分子量のポリエチレンの極限粘度[η]は5以上であることが肝要であり、好ましくは8以上、さらに好ましくは10以上である。極限粘度が5未満であると、本来所望とする繊維の平均強度が22cN/dTex以上、平均弾性率が500cN/dTex以上の高強度繊維が得られない。一方、上記の如く極限粘度に上限は無いが、成型加工状の観点からは原料となるポリマーの極限粘度は30以下が好ましい。
【0008】
本発明においてはポリマーの主成分はエチレン成分が99.5mol%以上、好ましくは99.8mol%以上の実質的にポリエチレンのホモポリマーであることが重要である。重合の副反応や重合速度を向上せしめる、あるいは得られる繊維のクリープ特性等を改善する目的で極く少量の分岐の導入はむしろ推奨されるが、αオレフィン等の共重合成分が増えすぎると、繊維の物性向上には好ましくない。この原因は定かではないが少量のαオレフィンを共重合すると結晶内での分子鎖間の滑りが抑制され、これが連続的な繰り返しの変形に対して応力を緩和させる作用を抑制するのではないかと推定している。
【0009】
本発明においてカーボンナノチューブは実質的に炭素からなる管状の化合物で、層は単層でも多層でもよく層の数を問わない。表面処理を施したカーボンナノチューブは易分散の観点からより好ましい。製造方法としては、特開2001−80913号公報に開示されるがごとく、アーク放電法、気相成長法などが知られているが何れの方法で得たカーボンナノチューブを用いても良い。外径は20nm以下。長さは0.5μm以上10μm以下、好ましくは1μm以上5μm以下である。外径が20nm又は長さが10μmの場合後述するように繊維中に均一に分散せしめることが難しくなるため、延伸糸の強度低下を招き好ましくない。長さが0.5μmの場合、紡糸・延伸工程でカーボンナノチューブが繊維軸方向に十分配向しないため好ましくない。
【0010】
本発明の推奨する製造方法においては、このような超高分子量ポリエチレンとカーボンナノチューブをデカリン・テトラリン・ジクロロベンゼン等の揮発性の溶剤やパラフィン、固体パラフィン等の不揮発性の溶剤を用いて均一な溶液調整を行い紡糸用のドープを得ることができる。この際、ポリマー濃度は30%以下、好ましくは20%以下が好ましい。ポリマー濃度が高くなりすぎるとノズルからの吐出時に不安定流動が起こりやすく、均一な未延伸糸を得るのが困難となる。逆にあまりにもポリマー濃度が薄い場合、例えば1%以下の様な場合は、ポリマーの絡み合いが少なく十分延伸が行えない。また、使用する溶媒はカーボンナノチューブの分散性を向上させる意味で、極性溶媒である方が好ましい。
【0011】
本発明においては超高分子量ポリエチレン、溶剤、カーボンナノチューブの混合物を140度以上の温度で均一な溶液とすることが最も重要である。また、超高分子量ポリエチレンの酸化劣化を抑制する意味で、酸化防止剤や安定剤を加えても良い。混合時の温度は、150度以上が好ましい。さらに好ましくは160度以上である。しかしながら、あまり温度が高くなりすぎるとポリマーの劣化速度が速くなるので好ましくない。均一な溶液を作成するために超高分子量ポリエチレンは、予め使用する溶媒で膨潤させておくことが好ましい。また、使用するカーボンナノチューブも予め使用溶媒中に分散させておくことが好ましい。溶液を作成する装置は特に規制されるものでは無いが、カーボンナノチューブが均一に分散した溶液を作成するために、高いせん断を印加できる装置が望ましい。特に、二軸の押し出し機が推奨される。
【0012】
この様にして調整される溶液は紡糸部に供給され、紡糸口金から通常140度以上の温度で吐出される。吐出された糸状は、一定の冷却区間を通った後所定の引き取り速度で引き取られ未延伸糸が得られる。
【0013】
未延伸糸は十分な延伸倍率を得るため、十分時間をかけて延伸することがもっと重要である。変形速度を0.5sec−1以下とすることが必要であり、望ましくは0.3sec−1以下であり、さらに望ましくは0.1sec−1以下である。延伸速度が速すぎると張力が急激に増加し、最大延伸倍率まで到達しない段階で破断が生じてしまい好ましくない。逆に延伸速度が遅すぎる場合は、ポリマー鎖とカーボンナノチューブに十分な延伸応力が伝わらず延伸を行っても繊維軸方法に両者が十分配向した繊維が得られない。変形速度は、延伸倍率と延伸時の繊維の速度及び繊維の変形区間の長さから式(1)で計算される。
【0014】
変形速度=延伸倍率X延伸時の繊維の速度/繊維の変形区間の長さ  式(1)
【0015】
延伸装置に関しては、公知である何れの方法を用いてもかまわない。例えばゴデットロールとホットプレートを組み合わせて延伸してもよいし、繊維を加熱するのに液体や気体を用いてももちろんかまわない。
【0016】
以下に本発明における特性値に関する測定法および測定条件を説明する。
(動的粘弾弾性測定)
本発明における動的粘度測定は、オリエンテック社製「レオバイブロンDDV−01FP型」を用いて行った。繊維は全体として100デニール±10デニールとなるように分繊あるいは合糸し、各単繊維ができる限り均一に配列するように配慮して、測定長(鋏金具間距離)が20mmとなるように繊維の両末端をアルミ箔で包みセルロース系接着剤で接着する。その際の糊代ろ長さは、鋏金具との固定を考慮して5mm程度とする。各試験片は、20mmの初期幅に設定された鋏金具(チャック)に糸が弛んだり捩じれたりしないように慎重に設置され、予め60℃の温度、110Hzの周波数にて数秒、予備変形を与えてから本実験を実施した。本実験では−150℃から150℃の温度範囲で約1℃/分の昇温速度において110Hzの周波数での温度分散を低温側より求めた。測定においては静的な荷重を5gfに設定し、繊維が弛まない様に試料長を自動調整させた。動的な変形の振幅は15μmに設定した。得られた貯蔵弾性率の温度分散から、−100度での貯蔵弾性率が60%以下の値となる時の温度(T60%)を求めた。
【0017】
(強度・弾性率)
本発明における強度,弾性率は、オリエンティック社製「テンシロン」を用い、試料長200mm(チャック間長さ)、伸長速度100%/分の条件で歪ー応力曲線を雰囲気温度20℃、相対湿度65%条件下で測定し、曲線の破断点での応力を強度(cN/dTex)、曲線の原点付近の最大勾配を与える接線より弾性率(cN/dTex)を計算して求めた。なお、各値は10回の測定値の平均値を使用した。
【0018】
(極限粘度)
135℃のデカリンにてウベローデ型毛細粘度管により、種々の希薄溶液の比粘度を測定し、その粘度の濃度に対するプロットの最小2乗近似で得られる直線の原点への内挿点より極限粘度を決定した。測定に際し、サンプルを約5mm長の長さにサンプルを分割または切断し、ポリマーに対して1wt%の酸化防止剤(商標名「ヨシノックスBHT」吉富製薬製)を添加し、135℃で4時間攪拌溶解して測定溶液を調整した。
【0019】
以下、実施例及び比較例を示すが本発明はこれらの実施例に限定されるものではない。
【0020】
【実施例】
(実施例1−3)
IVpが20.0の超高分子量ポリエチレン3wt%、オルトジクロロベンゼン97wt%、単層カーボンナノチューブ3wt%(ポリマーに対して)の混合物を160度で作成した。安定剤として、3,5−ジエチル−tert−ブチル−4−ハイドロキシトルエン(BHT)を0.01g加えた。ついで得られた混合物をプランジャー型紡糸装置を用いて、繊維化を行った。ノズルは、φ0.8mmの物を用いた。吐出量は、0.4g/minとした。紡出した繊維状物を150cmのエアギャップで伸長しながら未延伸糸を20m/minの巻き取り速度で巻き取った。エタノールで溶剤置換を行った後、未延伸糸を80度に加熱した真空乾燥機を用いて減圧乾燥を行い、糸状に残る溶媒を取り除いた。こうして得られた未延伸糸を種々の延伸倍率で延伸し、延伸糸を得た。得られて繊維の物性を表1に示す。
【0021】
(実施例4)
単層カーボンナノチューブをポリマーに対して1wt%とし、溶媒を融点69度のパラフィンワックスとした以外は実施例1と同様にして延伸糸を作成した。尚、未延伸糸に残るパラフィンワックスは一度n−デカンで置換した後、減圧乾燥にて溶媒を取り除いた。得られた繊維の物性を表1に示す。
【0022】
(実施例5)
単層カーボンナノチューブをポリマーに対して7wt%とした以外は実施例1と同様にして延伸糸を作成した。得られて繊維の物性を表1に示す。
【0023】
(実施例6)
多層カーボンナノチューブとした以外は実施例1と同様にして延伸糸を作成した。得られて繊維の物性を表1に示す。
【0024】
(比較例1)
極限粘度が20.0の超高分子量ポリエチレン3wt%、融点69度のパラフィンワックス97wt%、単層カーボンナノチューブ20wt%(ポリマーに対して)の混合物を160度で作成した。安定剤として、3,5−ジエチル−tert−ブチル−4−ハイドロキシトルエン(BHT)を0.01g加えた。ついで得られた混合物をプランジャー型紡糸装置を用いて、繊維化を行った。カーボンナノチューブの溶液内の分散性が非常に悪く、凝集体が#100のフィルターに詰まってしまい紡糸を行うことが出来なかった。
【0025】
(比較例2)
極限粘度が20.0の超高分子量ポリエチレンを15wt%およびデカヒドロナフタレン85wt%の溶液を作成し、177度に設定したφ0.8mmを10ホール有する口金に軽量ポンプにて単孔吐出量1.2g/分供給した。115度に設定された窒素流にて繊維に残るデカリンを蒸発させ、ノズル下流に設置されたネルソン状のローラーにて80m/分の速度で引き取らせた。引き続き、得られた繊維を130度の加熱オーブン下で4.0倍に延伸した、引き続きこの繊維を149度に設置した加熱オーブン中にて4.1倍で延伸した。得られた繊維の物性を表1に示した。
【0026】
(比較例3)
比較例1の実験において、溶媒をパラフィンワックスとしエアギャップを30mmとしてn−ヘキサンを満たした紡糸浴に浸析した。浸析した繊維をネルソン状のローラーで50m/分の速度で引き取った。引き続き、得られた繊維を130度の加熱オーブン下で4.0倍に延伸した、さらにこの繊維を149度に設置した加熱オーブン中にて3.6倍で延伸した後、もう一度1.33倍で延伸した。得られた繊維の物性値を表1に示す。
【0027】
(比較例4−5)
IVpが20.0の超高分子量ポリエチレン3wt%、オルトジクロロベンゼン97wt%の混合物を160度で作成した。安定剤として、3,5−ジエチル−tert−ブチル−4−ハイドロキシトルエン(BHT)を0.01g加えた。ついで得られた混合物をプランジャー型紡糸装置を用いて、繊維化を行った。ノズルは、φ0.8mmの物を用いた。吐出量は、0.4g/minとした。紡出した繊維状物を150cmのエアギャップで伸長しながら未延伸糸を20m/minの巻き取り速度で巻き取った。エタノールで溶剤置換を行った後、未延伸糸を80度に加熱した真空乾燥機を用いて減圧乾燥を行い、糸状に残る溶媒を取り除いた。こうして得られた未延伸糸を種々の延伸倍率で延伸し、延伸糸を得た。得られて繊維の物性を表1に示す。
【0028】
【表1】

Figure 2004124277
【0029】
上記表1示される様に高強度かつ耐熱性に優れる高強度ポリエチレン繊維が得られていることがわかる。
【0030】
【発明の効果】
高性能テキスタイルやジオテキスタイルや屋外ネットなど産業上広範囲に適応可能な新規な耐熱性に優れる高強度ポリエチレン繊維を提供することを可能とした。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to high-performance textiles such as various sports clothing, bulletproof / protective clothing / protective gloves, various rope products such as tag ropes / mooring ropes, yacht ropes, architectural ropes, fishing lines, various braided products such as blind cables, and more. The present invention relates to novel high-strength polyethylene fibers that can be widely used in industry, such as curtain materials such as chemical filters, battery separators, and tents, and reinforcing fibers for composites such as helmets and skis for sports and speaker cones.
[0002]
[Prior art]
With respect to high-strength polyethylene fibers, for example, it is known that unprecedented high-strength and high-modulus fibers can be obtained by so-called “gel spinning method” using ultrahigh molecular weight polyethylene as a raw material (see Patent Document 1). Is already widely used in industry. These high-strength polyethylene fibers have extremely high strength and high elastic modulus, but in recent years there has been a very high demand for higher performance. Behind this, high-strength polyethylene fibers are originally used in civil engineering and construction fields, such as geotextiles and work nets, and are likely to be used at relatively high temperatures in the summer, or ultimately in combat such as bulletproof vests and protective clothing. There are many applications to applications that require adaptability under severe use conditions in the state. In these applications, the heat resistance of current high-strength polyethylene fibers was not sufficient for some applications, as the fibers could be primarily exposed to high temperatures. I mean. High-strength polyethylene fibers have the characteristic of being inherently vulnerable to heat due to the properties of ultra-high molecular weight polyethylene as a raw material. In particular, there is a problem that the temperature dependence of the elastic modulus in the fiber axis direction when the fiber is used is extremely large. That is, even if the temperature does not reach a high temperature at which the fiber melts, there is a problem that the elastic modulus of the fiber decreases at a high rate as the temperature increases. The inventors have studied hard and found a solution to this problem.
[0003]
[Patent Document 1]
Japanese Patent Publication No. 60-47922
[Problems to be solved by the invention]
An object of the present invention is to provide a high-strength polyethylene fiber in which the mechanical properties of the fiber are hardly reduced even at a high temperature.
[0005]
[Means for Solving the Problems]
The intrinsic viscosity [η] is 5 or more, the average strength of the fiber is 22 cN / dTex or more, the average elastic modulus is 500 cN / dTex or more, the carbon nanotube is contained inside the fiber, and the content of the carbon nanotube is expressed as a weight fraction. Provided is a high-strength polyethylene fiber having a content of 1 wt% to 15 wt%. Further, in the storage elastic modulus curve of the temperature dispersion characteristic of the dynamic viscoelasticity in the fiber axis direction, the temperature at which the storage elastic modulus becomes 60% or less with respect to the storage elastic modulus at -100 degrees is 40 degrees or more. A featured high strength polyethylene fiber is also provided.
[0006]
In order to obtain the high-strength polyethylene fiber of the present invention, it is necessary that the long axis of the carbon nanotube is oriented in the fiber axis direction in the fiber and is uniformly dispersed. As a result of intensive studies, it has been found that this structure appears spontaneously when the carbon nanotubes are uniformly dispersed in the solution and sufficient stretching is performed. Furthermore, when such a structure was obtained, it was accidentally found that the heat resistance of the fiber was improved. This can be clearly confirmed by examining the temperature dispersion of the storage modulus obtained by dynamic viscoelasticity measurement. For this reason, it is thought that the introduced carbon nanotubes suppress the decrease in the elastic modulus by inhibiting the movement of the polyethylene molecular chain, but the details are not clear.
[0007]
A method for producing the fiber according to the present invention requires a careful and novel production method, and the method disclosed below is recommended, but is not limited thereto. That is, in producing the fiber, it is important that the intrinsic viscosity [η] of the high-molecular-weight polyethylene used as the raw material is 5 or more, preferably 8 or more, and more preferably 10 or more. When the intrinsic viscosity is less than 5, high-strength fibers whose originally desired average strength of the fibers is 22 cN / dTex or more and whose average elastic modulus is 500 cN / dTex or more cannot be obtained. On the other hand, there is no upper limit to the intrinsic viscosity as described above, but the intrinsic viscosity of the polymer as a raw material is preferably 30 or less from the viewpoint of molding process.
[0008]
In the present invention, it is important that the main component of the polymer is substantially a homopolymer of polyethylene having an ethylene component of 99.5 mol% or more, preferably 99.8 mol% or more. It is rather recommended to introduce a very small amount of branching for the purpose of improving the side reaction and the polymerization rate of the polymerization, or for improving the creep characteristics and the like of the obtained fiber.However, if the copolymerization component such as α-olefin is too large, It is not preferable for improving the physical properties of the fiber. The cause of this is not clear, but copolymerization of a small amount of α-olefin suppresses slippage between molecular chains in the crystal, which may suppress the effect of relieving stress against continuous repeated deformation. Estimated.
[0009]
In the present invention, the carbon nanotube is a tubular compound substantially composed of carbon, and the number of layers may be any single layer or multiple layers. Carbon nanotubes subjected to surface treatment are more preferable from the viewpoint of easy dispersion. As a manufacturing method, as disclosed in Japanese Patent Application Laid-Open No. 2001-80913, an arc discharge method, a vapor phase growth method, and the like are known, but carbon nanotubes obtained by any method may be used. The outer diameter is 20 nm or less. The length is 0.5 μm or more and 10 μm or less, preferably 1 μm or more and 5 μm or less. When the outer diameter is 20 nm or the length is 10 μm, it is difficult to uniformly disperse the fibers in the fiber as described later, and this is not preferable because the strength of the drawn yarn is reduced. When the length is 0.5 μm, the carbon nanotubes are not sufficiently oriented in the fiber axis direction in the spinning / drawing step, which is not preferable.
[0010]
In the production method recommended by the present invention, such ultra-high-molecular-weight polyethylene and carbon nanotubes are uniformly dissolved in a volatile solvent such as decalin, tetralin and dichlorobenzene and a non-volatile solvent such as paraffin and solid paraffin. After adjustment, a dope for spinning can be obtained. At this time, the polymer concentration is preferably 30% or less, more preferably 20% or less. If the polymer concentration is too high, unstable flow tends to occur at the time of discharge from the nozzle, and it is difficult to obtain a uniform undrawn yarn. On the other hand, if the polymer concentration is too low, for example, 1% or less, the entanglement of the polymer is so small that stretching cannot be performed sufficiently. The solvent used is preferably a polar solvent from the viewpoint of improving the dispersibility of the carbon nanotube.
[0011]
In the present invention, it is most important that a mixture of the ultra-high molecular weight polyethylene, the solvent, and the carbon nanotube is formed into a uniform solution at a temperature of 140 ° C. or higher. Further, an antioxidant or a stabilizer may be added in order to suppress the oxidative deterioration of the ultrahigh molecular weight polyethylene. The temperature during mixing is preferably 150 ° C. or higher. More preferably, it is 160 degrees or more. However, if the temperature is too high, the deterioration rate of the polymer increases, which is not preferable. In order to prepare a uniform solution, it is preferable that the ultrahigh molecular weight polyethylene is swollen with a solvent to be used in advance. Further, it is preferable that the carbon nanotubes to be used are also dispersed in the solvent to be used in advance. The device for preparing the solution is not particularly limited, but a device capable of applying high shear is desirable in order to prepare a solution in which the carbon nanotubes are uniformly dispersed. In particular, a twin-screw extruder is recommended.
[0012]
The solution adjusted in this way is supplied to the spinning unit and discharged from the spinneret at a temperature of usually 140 ° C. or higher. The discharged thread shape passes through a certain cooling section and is taken off at a predetermined take-up speed to obtain an undrawn yarn.
[0013]
It is more important that the undrawn yarn is drawn over a sufficient time in order to obtain a sufficient drawing ratio. It is necessary that the deformation speed is 0.5 sec -1 or less, preferably 0.3 sec -1 or less, and more preferably 0.1 sec -1 or less. If the stretching speed is too high, the tension rapidly increases, and breakage occurs before reaching the maximum stretching ratio, which is not preferable. On the other hand, if the stretching speed is too slow, sufficient stretching stress is not transmitted to the polymer chains and carbon nanotubes, and even if the stretching is performed, a fiber in which both are sufficiently oriented by the fiber axis method cannot be obtained. The deformation speed is calculated from the drawing ratio, the speed of the fiber at the time of drawing, and the length of the deformation section of the fiber by the formula (1).
[0014]
Deformation speed = Drawing ratio × Fiber speed at the time of drawing / Length of fiber deformation section Equation (1)
[0015]
Regarding the stretching device, any known method may be used. For example, drawing may be performed by combining a godet roll and a hot plate, or a liquid or a gas may be used to heat the fibers.
[0016]
Hereinafter, measurement methods and measurement conditions relating to characteristic values in the present invention will be described.
(Dynamic viscoelasticity measurement)
The dynamic viscosity measurement in the present invention was performed using "Ryo Vibron DDV-01FP" manufactured by Orientec. The fibers are split or ligated so as to be 100 denier ± 10 denier as a whole, and the measurement length (distance between scissors metal fittings) is 20 mm in consideration of arranging each single fiber as uniformly as possible. Both ends of the fiber are wrapped in aluminum foil and adhered with a cellulosic adhesive. In this case, the length of the adhesive margin is set to about 5 mm in consideration of fixing to the scissors metal fittings. Each test piece was carefully set on a scissor fitting (chuck) set to an initial width of 20 mm so that the thread would not be loosened or twisted, and was preliminarily deformed for several seconds at a temperature of 60 ° C. and a frequency of 110 Hz. After that, this experiment was performed. In this experiment, the temperature dispersion at a frequency of 110 Hz was obtained from the lower temperature side at a temperature rise rate of about 1 ° C./min in a temperature range of −150 ° C. to 150 ° C. In the measurement, the static load was set to 5 gf, and the sample length was automatically adjusted so that the fiber did not loosen. The amplitude of the dynamic deformation was set at 15 μm. From the temperature dispersion of the obtained storage elastic modulus, the temperature (T 60% ) at which the storage elastic modulus at −100 ° became a value of 60% or less was determined.
[0017]
(Strength and elastic modulus)
The strength and elastic modulus in the present invention were measured by using a Tensilon manufactured by Orientic Co., Ltd., under the conditions of a sample length of 200 mm (length between chucks) and an elongation speed of 100% / min. Measured under 65% condition, the stress at the break point of the curve was determined by calculating the strength (cN / dTex) and the elastic modulus (cN / dTex) from the tangent line giving the maximum gradient near the origin of the curve. In addition, each value used the average value of 10 measured values.
[0018]
(Intrinsic viscosity)
The specific viscosities of various dilute solutions were measured with decalin at 135 ° C using an Ubbelohde capillary viscometer, and the intrinsic viscosity was determined from the interpolation point of the straight line obtained by the least square approximation of the plot of the concentration of the viscosity to the origin. Were determined. For the measurement, the sample is divided or cut into a length of about 5 mm, an antioxidant (trade name “Yoshinox BHT” manufactured by Yoshitomi Pharmaceutical Co., Ltd.) is added to the polymer, and the mixture is stirred at 135 ° C. for 4 hours. The solution was dissolved to prepare a measurement solution.
[0019]
Hereinafter, Examples and Comparative Examples are shown, but the present invention is not limited to these Examples.
[0020]
【Example】
(Example 1-3)
A mixture of 3 wt% of ultrahigh molecular weight polyethylene having an IVp of 20.0, 97 wt% of orthodichlorobenzene, and 3 wt% of single-walled carbon nanotubes (based on the polymer) was prepared at 160 degrees. 0.01 g of 3,5-diethyl-tert-butyl-4-hydroxytoluene (BHT) was added as a stabilizer. Then, the obtained mixture was converted into a fiber using a plunger type spinning apparatus. A nozzle having a diameter of 0.8 mm was used. The discharge rate was 0.4 g / min. The undrawn yarn was wound at a winding speed of 20 m / min while elongating the spun fibrous material with an air gap of 150 cm. After replacing the solvent with ethanol, the undrawn yarn was dried under reduced pressure using a vacuum dryer heated to 80 ° C., and the solvent remaining in the form of a thread was removed. The undrawn yarn thus obtained was drawn at various draw ratios to obtain a drawn yarn. Table 1 shows the physical properties of the obtained fibers.
[0021]
(Example 4)
A drawn yarn was prepared in the same manner as in Example 1 except that the single-walled carbon nanotubes were 1 wt% with respect to the polymer, and the solvent was paraffin wax having a melting point of 69 ° C. The paraffin wax remaining on the undrawn yarn was once replaced with n-decane, and the solvent was removed by drying under reduced pressure. Table 1 shows the physical properties of the obtained fiber.
[0022]
(Example 5)
A drawn yarn was prepared in the same manner as in Example 1 except that the amount of the single-walled carbon nanotube was 7 wt% with respect to the polymer. Table 1 shows the physical properties of the obtained fibers.
[0023]
(Example 6)
A drawn yarn was prepared in the same manner as in Example 1 except that a multi-walled carbon nanotube was used. Table 1 shows the physical properties of the obtained fibers.
[0024]
(Comparative Example 1)
A mixture of 3 wt% of ultrahigh molecular weight polyethylene having an intrinsic viscosity of 20.0, 97 wt% of paraffin wax having a melting point of 69 °, and 20 wt% of single-walled carbon nanotubes (based on the polymer) was prepared at 160 °. 0.01 g of 3,5-diethyl-tert-butyl-4-hydroxytoluene (BHT) was added as a stabilizer. Then, the obtained mixture was converted into a fiber using a plunger type spinning apparatus. The dispersibility of the carbon nanotubes in the solution was very poor, and the aggregates were clogged in the # 100 filter and spinning could not be performed.
[0025]
(Comparative Example 2)
A solution of 15 wt% of ultra-high molecular weight polyethylene having an intrinsic viscosity of 20.0 and 85 wt% of decahydronaphthalene was prepared. 2 g / min was fed. Decalin remaining in the fiber was evaporated by a nitrogen flow set at 115 degrees, and was taken up at a speed of 80 m / min by a Nelson-shaped roller installed downstream of the nozzle. Subsequently, the obtained fiber was drawn 4.0 times in a heating oven at 130 degrees, and then the fiber was drawn 4.1 times in a heating oven set at 149 degrees. Table 1 shows the physical properties of the obtained fiber.
[0026]
(Comparative Example 3)
In the experiment of Comparative Example 1, the solvent was paraffin wax, and the air gap was set to 30 mm. The infiltrated fiber was pulled off at a speed of 50 m / min with a Nelson roller. Subsequently, the obtained fiber was stretched 4.0 times in a heating oven at 130 degrees and further stretched 3.6 times in a heating oven set at 149 degrees, and then 1.33 times again. Stretched. Table 1 shows the physical property values of the obtained fibers.
[0027]
(Comparative Example 4-5)
A mixture of 3 wt% of ultrahigh molecular weight polyethylene having an IVp of 20.0 and 97 wt% of orthodichlorobenzene was prepared at 160 degrees. 0.01 g of 3,5-diethyl-tert-butyl-4-hydroxytoluene (BHT) was added as a stabilizer. Then, the obtained mixture was converted into a fiber using a plunger type spinning apparatus. A nozzle having a diameter of 0.8 mm was used. The discharge rate was 0.4 g / min. The undrawn yarn was wound at a winding speed of 20 m / min while elongating the spun fibrous material with an air gap of 150 cm. After replacing the solvent with ethanol, the undrawn yarn was dried under reduced pressure using a vacuum dryer heated to 80 ° C., and the solvent remaining in the form of a thread was removed. The undrawn yarn thus obtained was drawn at various draw ratios to obtain a drawn yarn. Table 1 shows the physical properties of the obtained fibers.
[0028]
[Table 1]
Figure 2004124277
[0029]
As shown in Table 1, it can be seen that high strength polyethylene fibers having high strength and excellent heat resistance were obtained.
[0030]
【The invention's effect】
It has made it possible to provide a new high-strength polyethylene fiber having excellent heat resistance, which can be applied to a wide range of industries such as high-performance textiles, geotextiles and outdoor nets.

Claims (3)

極限粘度[η]が5以上、繊維の平均強度が22cN/dTex以上、平均弾性率が500cN/dTex以上であり繊維内部にカーボンナノチューブを含有してなることを特徴とする高強度ポリエチレン繊維。A high-strength polyethylene fiber having an intrinsic viscosity [η] of 5 or more, an average fiber strength of 22 cN / dTex or more, an average elastic modulus of 500 cN / dTex or more, and containing carbon nanotubes inside the fiber. カーボンナノチューブの含有量が重量分率にして1wt%〜15wt%であることを特徴とする請求項1に記載のポリエチレン繊維。The polyethylene fiber according to claim 1, wherein the content of the carbon nanotube is 1 wt% to 15 wt% in terms of weight fraction. 繊維軸方向の動的粘弾性の温度分散特性の貯蔵弾性率曲線において、−100度における貯蔵弾性率に対して、貯蔵弾性率が60%以下となる温度(T60%)が40度以上であることを特徴とする請求項1に記載の高強度ポリエチレン繊維。In the storage modulus curve of the temperature dispersion characteristic of the dynamic viscoelasticity in the fiber axis direction, the temperature (T 60% ) at which the storage modulus becomes 60% or less with respect to the storage modulus at −100 degrees is 40 degrees or more. The high-strength polyethylene fiber according to claim 1, wherein
JP2002286633A 2002-09-30 2002-09-30 Highly strong polyethylene fiber Pending JP2004124277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002286633A JP2004124277A (en) 2002-09-30 2002-09-30 Highly strong polyethylene fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002286633A JP2004124277A (en) 2002-09-30 2002-09-30 Highly strong polyethylene fiber

Publications (1)

Publication Number Publication Date
JP2004124277A true JP2004124277A (en) 2004-04-22

Family

ID=32279652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002286633A Pending JP2004124277A (en) 2002-09-30 2002-09-30 Highly strong polyethylene fiber

Country Status (1)

Country Link
JP (1) JP2004124277A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006152491A (en) * 2004-11-30 2006-06-15 Mitsubishi Materials Corp Conductive fiber and use thereof
JP2008508433A (en) * 2004-07-27 2008-03-21 ディーエスエム アイピー アセッツ ビー.ブイ. Method for producing carbon nanotube / ultra high molecular weight polyethylene composite fiber
JP2010538183A (en) * 2008-07-08 2010-12-09 東洋紡績株式会社 Method for producing high-strength polyethylene fiber and high-strength polyethylene fiber
JP2012167403A (en) * 2011-02-14 2012-09-06 Nitta Ind Corp Cnt-containing resin fiber and nonwoven fabric using the same
JP2018048438A (en) * 2012-03-20 2018-03-29 ディーエスエム アイピー アセッツ ビー.ブイ. Polyolefin fiber
US10041191B1 (en) 2017-05-10 2018-08-07 Asahi Kasei Kabushiki Kaisha Polyethylene powder, and molded article and fiber thereof
JP7468972B2 (en) 2017-07-14 2024-04-16 アビエント プロテクティブ マテリアルズ ビー. ブイ. Uniform filled yarn

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008508433A (en) * 2004-07-27 2008-03-21 ディーエスエム アイピー アセッツ ビー.ブイ. Method for producing carbon nanotube / ultra high molecular weight polyethylene composite fiber
JP4669876B2 (en) * 2004-07-27 2011-04-13 ディーエスエム アイピー アセッツ ビー.ブイ. Method for producing carbon nanotube / ultra high molecular weight polyethylene composite fiber
JP2006152491A (en) * 2004-11-30 2006-06-15 Mitsubishi Materials Corp Conductive fiber and use thereof
JP2010538183A (en) * 2008-07-08 2010-12-09 東洋紡績株式会社 Method for producing high-strength polyethylene fiber and high-strength polyethylene fiber
JP4734556B2 (en) * 2008-07-08 2011-07-27 東洋紡績株式会社 Method for producing high-strength polyethylene fiber and high-strength polyethylene fiber
JP2012167403A (en) * 2011-02-14 2012-09-06 Nitta Ind Corp Cnt-containing resin fiber and nonwoven fabric using the same
JP2018048438A (en) * 2012-03-20 2018-03-29 ディーエスエム アイピー アセッツ ビー.ブイ. Polyolefin fiber
US10041191B1 (en) 2017-05-10 2018-08-07 Asahi Kasei Kabushiki Kaisha Polyethylene powder, and molded article and fiber thereof
JP7468972B2 (en) 2017-07-14 2024-04-16 アビエント プロテクティブ マテリアルズ ビー. ブイ. Uniform filled yarn

Similar Documents

Publication Publication Date Title
JP4389142B2 (en) Method for producing high-strength polyethylene fiber
JP5742877B2 (en) High-strength polyethylene fiber and method for producing the same
JP6760062B2 (en) High-performance multifilament
JP5597922B2 (en) braid
WO1999063137A1 (en) High-strength polyethylene fiber and process for producing the same
JPWO2009028590A1 (en) High-productivity high-strength polyethylene fiber, precursor thereof, and method for producing the precursor
JP2001303358A (en) High-performance fishline excellent in abrasion resistance
JP7306375B2 (en) Polyethylene fiber and products using it
JP3734077B2 (en) High strength polyethylene fiber
TW201544641A (en) Multifilament and braid
JP2004124277A (en) Highly strong polyethylene fiber
JP3666635B2 (en) High-strength polyethylene fiber with excellent uniformity
WO2020230809A1 (en) Polyethylene fibre
JP2011241485A (en) Producing method of high-strength polyethylene fiber
JP3738873B2 (en) High strength polyethylene fiber
JP3832614B2 (en) High-strength polyethylene fiber and method for producing the same
JP5497255B2 (en) High-strength polyethylene fiber and method for producing the same
JP2007277763A (en) High strength polyethylene fiber
JP2003055833A (en) High-strength polyolefin fiber and method for producing the same
TW201544654A (en) Multifilament and braid
JP2011241486A (en) High-strength polyethylene fiber
JP3849852B2 (en) Nonwoven fabric and filter
Economy et al. Morphological modification of UHMPE fibers
JP7358775B2 (en) polyethylene fiber
JP7358774B2 (en) polyethylene fiber