JP2006152491A - Conductive fiber and use thereof - Google Patents

Conductive fiber and use thereof Download PDF

Info

Publication number
JP2006152491A
JP2006152491A JP2004345424A JP2004345424A JP2006152491A JP 2006152491 A JP2006152491 A JP 2006152491A JP 2004345424 A JP2004345424 A JP 2004345424A JP 2004345424 A JP2004345424 A JP 2004345424A JP 2006152491 A JP2006152491 A JP 2006152491A
Authority
JP
Japan
Prior art keywords
conductive
resin composition
thermoplastic resin
conductive yarn
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004345424A
Other languages
Japanese (ja)
Other versions
JP4771250B2 (en
Inventor
Hiroyuki Imai
浩之 今井
Osamu Sakatani
修 坂谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Mitsubishi Materials Electronic Chemicals Co Ltd
Original Assignee
Mitsubishi Materials Corp
Jemco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Jemco Inc filed Critical Mitsubishi Materials Corp
Priority to JP2004345424A priority Critical patent/JP4771250B2/en
Publication of JP2006152491A publication Critical patent/JP2006152491A/en
Application granted granted Critical
Publication of JP4771250B2 publication Critical patent/JP4771250B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Artificial Filaments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive fiber excellent in conductivity, tensile strength and the like. <P>SOLUTION: The conductive fiber is one having ≤1.0×10<SP>9</SP>αcm volume resistivity, 5-500 μm fiber diameter and ≥2 g/dTex tensile strength, and preferably one formed from a thermoplastic resin composition containing carbon nanofiber having ≤1.0 αcm volume resistivity and ≥150 ml/100g DBP oil adsorption and which one has ≤1.0×10<SP>6</SP>αcm volume resistivity, 5-500 μm fiber diameter, ≥2.8 g/dTex tensile strength and ≥10% elongation. The conductive material is formed from the conductive fiber. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、導電性および引張強度などの機械的強度に優れた導電糸に関する。さらに詳細には、電子写真装置(複写機、ファクシミリ、ブリンター等)に用いる現像用ブラシ、接触帯電用ブラシ、クリーナー用ブラシ、または除電ブラシ等の導電性繊維製品、あるいは防塵服、静電防止作業着、静電防止手袋、静電防止靴下、静電防止ストッキング、静電防止帽子、などの静電防止用衣料、エチケットブラシ、静電用ベルト、静電シートなどの各種産業資材に用いられる導電性繊維の原料として好適な導電糸に関する。 The present invention relates to a conductive yarn excellent in mechanical strength such as conductivity and tensile strength. More specifically, conductive fiber products such as developing brushes, contact charging brushes, cleaner brushes, or static elimination brushes used in electrophotographic apparatuses (copiers, facsimiles, printers, etc.), dust-proof clothing, and antistatic work Conductives used in various industrial materials such as clothing, anti-static gloves, anti-static socks, anti-static stockings, anti-static hats, anti-static clothing, etiquette brushes, electrostatic belts, electrostatic sheets, etc. The present invention relates to a conductive yarn suitable as a raw material for conductive fibers.

電子写真複写機、電子写真プリンター等には現像用ブラシや感光ドラムクリーナー用ブラシなど各種のブラシが用いられており、これらのブラシはトナー等の帯電残留を防止するために導電性繊維によって形成されており、より導電性に優れたものが求められている。従来、導電性繊維として、導電性微粒子を配合して比抵抗を低減した樹脂によって形成した繊維が知られているが、環境変化に対する耐久性が低く、また繊維表面に存在する導電性微粒子によって微少な凹凸が形成される、このような繊維で形成したブラシを電子写真用機器の使用すると画像の鮮明度が低下する場合がある(特許文献1)。 Various brushes such as developing brushes and photosensitive drum cleaner brushes are used in electrophotographic copying machines, electrophotographic printers, etc., and these brushes are formed of conductive fibers to prevent residual charging of toner and the like. Therefore, there is a demand for a material having higher conductivity. Conventionally, as a conductive fiber, a fiber formed of a resin in which conductive fine particles are blended to reduce specific resistance is known, but the durability against environmental change is low, and the conductive fine particles present on the fiber surface have a small amount. When a brush formed of such a fiber with unevenness is used in an electrophotographic apparatus, the sharpness of the image may be reduced (Patent Document 1).

また、導電性カーボンブラックを含有する熱可塑性合成重合体からなる芯部と導電性カーボンブラックを含有しない非導電性の鞘部からなり、鞘部はフィラメントの断面積の小さいものが知られている(特許文献2)。この導電性繊維は、鞘部に導電性カーボンブラックを含有しないため、繊維表面の微小な凹凸が少ないが、製造工程が煩雑であり、また導電性も低いと云う問題があった。 Further, a core part made of a thermoplastic synthetic polymer containing conductive carbon black and a non-conductive sheath part not containing conductive carbon black are known, and the sheath part is known to have a small filament cross-sectional area. (Patent Document 2). Since this conductive fiber does not contain conductive carbon black in the sheath portion, there are few fine irregularities on the fiber surface, but there is a problem that the manufacturing process is complicated and the conductivity is low.

さらに、カーボンブラック等の導電性微粒子を含有した熱可塑性樹脂Aを複数に分割されて繊維表面に露出し、熱可塑性樹脂Bが繊維中心部を占める導電糸が知られている(特許文献3)。また、カーボンブラック等を含有した樹脂組成物にマグネシウム化合物を添加し、あるいは樹脂組成の粘度等を調整することによって樹脂組成物の紡糸性の改善を試みた導電性フィラメントが知られている(特許文献4、特許文献5)。
特開平09−49116号公報 特開昭52−31450号公報 特開2003−105634号公報 特開2004−183180号公報 特開2004−131899号公報
Furthermore, there is known a conductive yarn in which a thermoplastic resin A containing conductive fine particles such as carbon black is divided into a plurality of parts and exposed on the fiber surface, and the thermoplastic resin B occupies the fiber center (Patent Document 3). . Also known is a conductive filament that attempts to improve the spinnability of the resin composition by adding a magnesium compound to the resin composition containing carbon black or the like, or adjusting the viscosity of the resin composition (patent) Document 4 and Patent document 5).
JP 09-49116 A JP 52-31450 A JP 2003-105634 A JP 2004-183180 A JP 2004-131899 A

樹脂にカーボンブラック等を配合してなる樹脂組成物によって形成した従来の導電性繊維は、導電性を高めるためにカーボンブラックの配合量を多くすると樹脂物性が損なわれる問題があり、高強度であって導電性に優れた繊維を得るのが難しい。カーボンブラックに代えてカーボンナノチューブを用いた導電性繊維も、従来のカーボンナノチューブは樹脂中の分散性が劣るので、この配合量を増やすと引張強度や伸度などの樹脂物性が低下し、紡糸不能になる。本発明は従来の導電性繊維における上記問題を解決したものであり、導電性と共に機械的強度に優れた導電糸を提供する。 Conventional conductive fibers formed from a resin composition in which carbon black or the like is blended with a resin have a problem that the physical properties of the resin are impaired when the blending amount of carbon black is increased in order to increase conductivity, and the strength is high. Therefore, it is difficult to obtain a fiber having excellent conductivity. As for conductive fibers using carbon nanotubes instead of carbon black, conventional carbon nanotubes are inferior in dispersibility in the resin, so increasing this compounding amount decreases the physical properties of the resin such as tensile strength and elongation, making spinning impossible. become. This invention solves the said problem in the conventional electroconductive fiber, and provides the electroconductive yarn excellent in mechanical strength with electroconductivity.

本発明によれば以下の導電糸が提供される。
(1)カーボンナノファイバーを含有する熱可塑性樹脂組成物によって形成され、体積抵抗値が1.0×109Ωcm以下、繊維径5〜500μm、引張強度2g/dTex以上であることを特徴とする導電糸。
(2)体積抵抗値が1.0×106Ωcm以下、繊維径5〜500μm、引張強度2.8g/dTex以上、伸度10%以上である上記(1)の導電糸。
(3)体積抵抗値1.0Ωcm以下およびDBP吸油量150ml/100g以上のカーボンナノファイバーを含有する熱可塑性樹脂組成物によって形成された上記(1)または(2)の導電糸。
(4)カーボンナノファイバーの含有量が、熱可塑性樹脂100重量部に対する該カーボンナノファイバーの表面積換算値(カーボン含有量×比表面積の値)で2000m2以下である上記(1)〜(3)の何れかに記載する導電糸。
(5)カーボンナノファイバーと共に体積抵抗値100Ωcm以下の導電性粉末を含有する樹脂組成物によって形成された上記(1)〜(4)の何れかに記載する導電糸。
(6)カーボンナノファイバーを含有する熱可塑性樹脂組成物の固有粘度(IV値)が0.50〜0.90である上記(1)〜(5)の何れかに記載する導電糸。
(7)カーボンナノファイバーを含有する熱可塑性樹脂組成物の溶融粘度(MFR)が、温度280℃および荷重2160gの条件下で10g/min以上であるポリエステル系樹脂を用いた上記(1)〜(6)の何れかに記載する導電糸。
(8)上記(1)〜(7)の何れかの記載する導電糸によって形成された導電性材料。
(9)上記(8)の導電性材料によって形成されて導電性ブラシ、導電性ベルト、導電シート、または静電衣料。
According to the present invention, the following conductive yarn is provided.
(1) It is formed of a thermoplastic resin composition containing carbon nanofibers, and has a volume resistance of 1.0 × 10 9 Ωcm or less, a fiber diameter of 5 to 500 μm, and a tensile strength of 2 g / dTex or more. Conductive yarn.
(2) The conductive yarn according to the above (1), having a volume resistance value of 1.0 × 10 6 Ωcm or less, a fiber diameter of 5 to 500 μm, a tensile strength of 2.8 g / dTex or more, and an elongation of 10% or more.
(3) The conductive yarn according to the above (1) or (2), which is formed from a thermoplastic resin composition containing carbon nanofibers having a volume resistance of 1.0 Ωcm or less and a DBP oil absorption of 150 ml / 100 g or more.
(4) The above-mentioned (1) to (3), wherein the carbon nanofiber content is 2000 m 2 or less in terms of the surface area of the carbon nanofiber (carbon content × specific surface area value) relative to 100 parts by weight of the thermoplastic resin. A conductive yarn according to any one of the above.
(5) The conductive yarn according to any one of the above (1) to (4), which is formed of a resin composition containing a carbon nanofiber and a conductive powder having a volume resistance value of 100 Ωcm or less.
(6) The conductive yarn according to any one of the above (1) to (5), wherein the thermoplastic resin composition containing carbon nanofibers has an intrinsic viscosity (IV value) of 0.50 to 0.90.
(7) The above (1) to (1) using a polyester-based resin having a melt viscosity (MFR) of a thermoplastic resin composition containing carbon nanofibers of 10 g / min or more under the conditions of a temperature of 280 ° C. and a load of 2160 g. 6) The conductive yarn described in any of the above.
(8) A conductive material formed by the conductive yarn described in any one of (1) to (7) above.
(9) A conductive brush, a conductive belt, a conductive sheet, or an electrostatic garment formed of the conductive material according to (8).

本発明の導電糸は、カーボンナノファイバーを含有する熱可塑性樹脂組成物によって形成され、体積抵抗値が100〜109Ωcm、および繊維径が5〜500μmで引張強度が2g/dTex以上であることを特徴とする導電糸であり、好ましくは、体積抵抗値が106Ωcm以下、および繊維径が5〜500μmで引張強度が2.8g/dTex以上、伸度10%以上の導電糸である。本発明の導電糸は導電性に優れると共に機械的強度が大きいので、従来の導電性繊維よりも繊維径が極細であって高導電性の導電糸を得ることができ、幅広い用途に利用することができる。 The conductive yarn of the present invention is formed of a thermoplastic resin composition containing carbon nanofibers, has a volume resistance value of 10 0 to 10 9 Ωcm, a fiber diameter of 5 to 500 μm, and a tensile strength of 2 g / dTex or more. The conductive yarn is preferably a conductive yarn having a volume resistance of 10 6 Ωcm or less, a fiber diameter of 5 to 500 μm, a tensile strength of 2.8 g / dTex or more, and an elongation of 10% or more. . Since the conductive yarn of the present invention is excellent in electrical conductivity and has high mechanical strength, it is possible to obtain a highly conductive conductive yarn having a finer fiber diameter than conventional conductive fibers, and can be used in a wide range of applications. Can do.

本発明の導電糸は、例えば、体積抵抗値1.0Ωcm以下およびDBP吸油量150ml/100g以上のカーボンナノファイバーを、熱可塑性樹脂100重量部に対する該カーボンナノファイバーの表面積換算値(カーボン含有量×比表面積の値)で2000m2以下になるように含有させた熱可塑性樹脂組成物によって形成することができる。DBP吸油量150ml/100g以上のカーボンナノファイバーは樹脂中で分散性が良く、これを上記含有量の範囲で樹脂に配合することによって樹脂の機械的強度や粘性等を損なうことなく、導電性と共に強度等に優れた導電糸を得ることができる。なお、本発明の導電糸は導電性を安定化させるため、導電性を有する粉末を少量添加することができる。 The conductive yarn of the present invention is, for example, a carbon nanofiber having a volume resistance value of 1.0 Ωcm or less and a DBP oil absorption of 150 ml / 100 g or more, converted into a surface area equivalent value of the carbon nanofiber with respect to 100 parts by weight of the thermoplastic resin (carbon content × It can be formed by a thermoplastic resin composition contained so as to have a specific surface area of 2000 m 2 or less. Carbon nanofibers with a DBP oil absorption of 150ml / 100g or more have good dispersibility in the resin. By blending this into the resin within the above content range, the conductivity and the mechanical strength of the resin are not impaired. A conductive yarn excellent in strength and the like can be obtained. The conductive yarn of the present invention can be added with a small amount of conductive powder in order to stabilize the conductivity.

本発明の導電糸に用いる樹脂組成物は、カーボンナノファイバーを含有する熱可塑性樹脂組成物の固有粘度(IV値)が0.50〜0.90であることが好ましい。また、カーボンナノファイバーを含有する熱可塑性樹脂組成物の溶融粘度(MFR)が、温度280℃および荷重2160gの条件下で10g/min以上で、かつ熱可塑性樹脂としてポリエステル系樹脂を用いると良い。上記樹脂を用いることによって紡糸性に優れ、表面状態の良い導電糸を得ることができる。 The resin composition used for the conductive yarn of the present invention preferably has an intrinsic viscosity (IV value) of a thermoplastic resin composition containing carbon nanofibers of 0.50 to 0.90. The melt viscosity (MFR) of the thermoplastic resin composition containing carbon nanofibers is preferably 10 g / min or more under the conditions of a temperature of 280 ° C. and a load of 2160 g, and a polyester resin is preferably used as the thermoplastic resin. By using the above resin, it is possible to obtain a conductive yarn excellent in spinnability and having a good surface condition.

本発明の導電糸またはこの導電糸を用いた繊維体によって、高強度および高導電性の導電性材料を得ることができ、この導電性材料によって、例えば、高性能の導電性ブラシ、導電性ベルト、導電シート、または静電衣服を得ることができる。 A conductive material of high strength and high conductivity can be obtained by the conductive yarn of the present invention or a fiber body using the conductive yarn. For example, a high-performance conductive brush or conductive belt can be obtained by using the conductive material. A conductive sheet or an electrostatic garment can be obtained.

本発明の導電糸は、体積抵抗値100〜109Ωcmおよび繊維径が5〜500μmで引張強度2g/dTex以上であり、好ましくは、体積抵抗値が106Ωcm以下、および繊維径が5〜500μmで引張強度が2.8g/dTex以上、伸度10%以上であり、さらに好ましくは引張強度が3g/dTex以上、伸度20%以上である。 The conductive yarn of the present invention has a volume resistance value of 10 0 to 10 9 Ωcm, a fiber diameter of 5 to 500 μm and a tensile strength of 2 g / dTex or more, preferably a volume resistance value of 10 6 Ωcm or less and a fiber diameter of 5 The tensile strength is 2.8 g / dTex or more and the elongation is 10% or more at ˜500 μm, more preferably the tensile strength is 3 g / dTex or more and the elongation is 20% or more.

なお、カーボンブラックやカーボンナノチューブを含有した従来の導電糸は、これらの分散性が劣るので均一に導電性ファイラーが均一に分散しない。また、体積抵抗値が105Ωcm以下になるように導電性フィラーを配合したものは樹脂の物性が損なわれるので、連続して紡糸することが不可能である。紡糸したものでも概ね引張強度が1.5g/dTex以下、伸度5%以下であり、一方、2g/dTex以上、伸度10%以上の糸を得ようとした場合には、体積抵抗値は1.0×1012Ωcm以上になる。 Note that conventional conductive yarns containing carbon black or carbon nanotubes have poor dispersibility, and therefore the conductive filer is not uniformly dispersed. In addition, when a conductive filler is blended so that the volume resistance value is 10 5 Ωcm or less, the physical properties of the resin are impaired, so that continuous spinning is impossible. Even when the yarn is spun, the tensile strength is generally 1.5 g / dTex or less and the elongation is 5% or less. On the other hand, when trying to obtain a yarn of 2 g / dTex or more and an elongation of 10% or more, the volume resistance value is It becomes 1.0 × 10 12 Ωcm or more.

本発明の高強度および高導電性の導電糸は分散性の良いカーボンナノファイバーを熱可塑性樹脂に配合してなる樹脂組成物によって形成することができる。本発明に用いるカーボンナノファイバーは、例えば直径が数十ナノメータ以下、長さが数百ミクロンメータ以下であるナノサイズの極微細炭素繊維であり、内部が中空構造のカーボンナノチューブに限らず、内部が充填された構造のものを含み、炭素層が単層構造あるいは多層構造の何れの場合も含み、炭素層が螺旋構造に限らず、また炭素層が繊維の軸長方向に伸びた構造に限らず、炭素層が径方向に伸びた構造のものも含む。 The high-strength and high-conductivity conductive yarn of the present invention can be formed by a resin composition obtained by blending carbon nanofibers with good dispersibility in a thermoplastic resin. The carbon nanofiber used in the present invention is, for example, a nano-sized ultrafine carbon fiber having a diameter of several tens of nanometers or less and a length of several hundreds of micrometers or less. Including those with a filled structure, including a case where the carbon layer has a single layer structure or a multilayer structure, the carbon layer is not limited to a spiral structure, and is not limited to a structure in which the carbon layer extends in the axial direction of the fiber. In addition, a carbon layer having a structure extending in the radial direction is also included.

本発明の導電糸に用いるカーボンナノファイバーは、体積抵抗値1.0Ωcm以下およびDBP吸油量150ml/100g以上のものが好ましい。DBP吸油量が150ml/100gよりも少ないカーボンナノファイバーは樹脂中の分散性が劣り、凝集しやすいので樹脂組成物の導電性が不均一になり、さらに樹脂組成物の加工性が低下するので引張強度や伸度に優れた導電糸を得るのが難しい。また、体積抵抗値が1.0Ωcmより大きいカーボンナノファイバーは導電性が不十分である。 The carbon nanofiber used in the conductive yarn of the present invention preferably has a volume resistance of 1.0 Ωcm or less and a DBP oil absorption of 150 ml / 100 g or more. Carbon nanofibers with a DBP oil absorption of less than 150 ml / 100 g have poor dispersibility in the resin and tend to agglomerate, making the resin composition non-uniform in conductivity and further reducing the processability of the resin composition. It is difficult to obtain a conductive yarn excellent in strength and elongation. Carbon nanofibers having a volume resistance value greater than 1.0 Ωcm have insufficient conductivity.

体積抵抗値1.0Ωcm以下およびDBP吸油量が150ml/100g以上のカーボンナノファイバーは、触媒を用いた気相成長法において、触媒および原料混合ガス組成などを調整することによって製造することができる。具体的には、例えば、触媒粒子としてFe、Ni、Co、Mn、Cuの酸化物から選ばれた1種または2種以上と、Mg、Ca、Al、Siの酸化物から選ばれた1種または2種以上の混合酸化物粉末を用い、400℃〜800℃の温度で、一酸化炭素または二酸化炭素と水素の混合ガスを上記触媒粒子に接触させて、カーボンナノファイバーを製造する気相成長法において、触媒としてCo酸化物とMg酸化物の混合酸化物あるいは、Mg酸化物にCo酸化物が被覆された複合酸化物を用い、原料混合ガスを一酸化炭素および/または二酸化炭素と水素とし、その混合比をCO/H2=50/50〜99/1に調整し、好ましくは、さらに反応後に連続して反応温度と同一温度下で水素ガスで10分間以上処理することによって、体積抵抗値が低くDBP吸油量が高いカーボンナノファイバーを製造することができる。 Carbon nanofibers having a volume resistance value of 1.0 Ωcm or less and a DBP oil absorption of 150 ml / 100 g or more can be produced by adjusting the composition of the catalyst and raw material mixed gas in a vapor phase growth method using a catalyst. Specifically, for example, the catalyst particles are one or more selected from oxides of Fe, Ni, Co, Mn, and Cu and one selected from oxides of Mg, Ca, Al, and Si. Alternatively, vapor phase growth in which carbon nanofibers are produced by using two or more mixed oxide powders and contacting carbon monoxide or a mixed gas of carbon dioxide and hydrogen with the catalyst particles at a temperature of 400 ° C. to 800 ° C. In this method, a mixed oxide of Co oxide and Mg oxide or a composite oxide in which a Mg oxide is coated with a Co oxide is used as a catalyst, and the raw material mixed gas is carbon monoxide and / or carbon dioxide and hydrogen. The volume ratio is adjusted by adjusting the mixing ratio to CO / H 2 = 50/50 to 99/1, preferably by further treating with hydrogen gas for 10 minutes or more continuously at the same temperature as the reaction temperature after the reaction. value Can ku DBP oil absorption of producing high carbon nanofiber.

上記カーボンナノファイバーは、直径5〜100nm、アスペクト比10以上、BET比表面積400m2/g以下であるものが好ましい。直径がこれより小さいと均一に分散することが困難であり、一方、これよりも大きいと繊維系に対してフィラーが大きすぎるため糸糸強度が高くならない。アスペクト比がこれよりも小さいと、充分なネットワークが構成されないため、少量で導電性を得ることができない。また、BET比表面積がこれより大きいと樹脂との接触面積が過大になり、樹脂の物性が損なわれ、樹脂自体が本来有する強度や混練時ないし成形時の粘度が高くなり、流動性が失われるので好ましくない。 The carbon nanofibers preferably have a diameter of 5 to 100 nm, an aspect ratio of 10 or more, and a BET specific surface area of 400 m 2 / g or less. If the diameter is smaller than this, it is difficult to disperse uniformly. On the other hand, if it is larger than this, the yarn strength is not increased because the filler is too large for the fiber system. If the aspect ratio is smaller than this, a sufficient network cannot be formed, so that the conductivity cannot be obtained with a small amount. Also, if the BET specific surface area is larger than this, the contact area with the resin becomes excessive, the properties of the resin are impaired, the inherent strength of the resin itself, the viscosity at the time of kneading or molding increases, and the fluidity is lost. Therefore, it is not preferable.

上記カーボンナノファイバーを含有する熱可塑性樹脂は一般的に溶融紡糸可能な熱可塑性樹脂を使用することができる。具体的にはポリエステル系樹脂、ポリアミド系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂等を用いることができる。上記熱可塑性樹脂のうち、ポリエステルは、いわゆる炭化水素基が主鎖にエステル結合を介して連結された高分子量体であって、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリプロピレンテレフタレートなどが挙げられるが、コストおよび紡糸性能を考慮するとポリエチレンテレフタレートが最も好ましい。 As the thermoplastic resin containing the carbon nanofiber, a thermoplastic resin that can be melt-spun can be generally used. Specifically, a polyester resin, a polyamide resin, a polyethylene resin, a polypropylene resin, or the like can be used. Among the thermoplastic resins, polyester is a high molecular weight body in which a so-called hydrocarbon group is connected to the main chain via an ester bond, and examples thereof include polyethylene terephthalate, polybutylene terephthalate, and polypropylene terephthalate. In view of spinning performance, polyethylene terephthalate is most preferable.

カーボンナノファイバーを含有する熱可塑性樹脂組成物は固有粘度(IV値)が0.50〜0.90であることが好ましい。この値は、使用する熱可塑性樹脂の分子量を表す量であり、この値が0.5より少ないと、分子量が小さいために溶融紡糸の際に樹脂粘度が低すぎて、糸切れが発生し、連続的に糸を製造できない。一方、上記値が0.9より大きいと分子量が大き過ぎ、樹脂が硬いために紡糸の際に押出機のノズルから樹脂が十分に流れ出さず、糸を製造できない。 The thermoplastic resin composition containing carbon nanofibers preferably has an intrinsic viscosity (IV value) of 0.50 to 0.90. This value is an amount representing the molecular weight of the thermoplastic resin used. If this value is less than 0.5, the resin viscosity is too low during melt spinning because the molecular weight is small, and yarn breakage occurs. The yarn cannot be manufactured continuously. On the other hand, if the above value is greater than 0.9, the molecular weight is too large and the resin is hard, so that the resin does not flow sufficiently from the nozzle of the extruder during spinning, and the yarn cannot be manufactured.

カーボンナノファイバーを含有する熱可塑性樹脂組成物の溶融粘度(MFR)が、温度280℃および荷重2160gの条件下で10g/min以上で、かつ熱可塑性樹脂としてポリエステル系樹脂であることが好ましい。MFR値は加工時温度での流動性を示す値であり、10g/minよりも小さいと、流動性が小さいので、溶融紡糸の際に充分に樹脂が流れ出てこない。 The thermoplastic resin composition containing carbon nanofibers preferably has a melt viscosity (MFR) of 10 g / min or more under the conditions of a temperature of 280 ° C. and a load of 2160 g, and is a polyester resin as a thermoplastic resin. The MFR value is a value indicating the fluidity at the processing temperature, and if it is less than 10 g / min, the fluidity is small, so that the resin does not sufficiently flow out during melt spinning.

本発明の導電糸を形成する樹脂組成物のカーボンナノファイバーの含有量は、熱可塑性樹脂100重量部に対する該カーボンナノファイバーの表面積換算値(カーボン含有量×比表面積の値)で2000m2以下であって、樹脂組成物中の含有量が2〜10重量%であるものが好ましい。この含有量が2重量%未満では比抵抗が低い。また、この含有量が10重量%を上回ると溶融紡糸性が低下し、紡糸中に糸切れが多発するようになる。 The carbon nanofiber content of the resin composition forming the conductive yarn of the present invention is 2000 m 2 or less in terms of the surface area of the carbon nanofiber (carbon content × specific surface area value) relative to 100 parts by weight of the thermoplastic resin. And what whose content in a resin composition is 2 to 10 weight% is preferable. When this content is less than 2% by weight, the specific resistance is low. On the other hand, when the content exceeds 10% by weight, melt spinnability is lowered, and yarn breakage frequently occurs during spinning.

具体的には、例えば、BET値100g/m2のカーボンナノファイバーを用いた場合、表面積換算値に基づく条件では20重量部まで樹脂に含有することが可能であるが、10重量%の含有量を超えた場合には、樹脂どうしの連続性という観点から、溶融紡糸性が損なわれ、紡糸は難しい。また、BET値400g/m2のカーボンナノファイバーを用いた場合には、重量比の条件では10重量%まで配合可能ではあるが、表面積換算値に基づく条件では溶融紡糸性は樹脂と接触する面積とに依存するので、実際には5重量%の含有量までしか紡糸できない。いずれかの範囲を超えた場合には、溶融紡糸性に問題があり糸を製造できない。 Specifically, for example, when carbon nanofibers having a BET value of 100 g / m 2 are used, the resin can contain up to 20 parts by weight under the conditions based on the surface area converted value. In the case of exceeding the range, melt spinnability is impaired from the viewpoint of continuity between resins, and spinning is difficult. Further, when carbon nanofibers having a BET value of 400 g / m 2 are used, up to 10% by weight can be blended under the weight ratio condition, but the melt spinnability is the area in contact with the resin under the condition based on the surface area converted value. In practice, it is possible to spin only up to a content of 5% by weight. If any of the ranges is exceeded, there is a problem in melt spinnability and the yarn cannot be produced.

上記樹脂組成物は、カーボンナノファイバーと共に、機械的強度等を大きく損なわない範囲内で、カーボンブラックなどの導電性微粒子を添加することによって導電性の安定性を高めることができる。導電性微粒子としては、炭素粉末、導電性金属酸化物粉末、金属粉末、あるいはこれらを被覆した導電性粉末が挙げられる。さらに難燃剤、分散安定剤などを含有してもよい。 The resin composition can enhance the stability of conductivity by adding conductive fine particles such as carbon black within a range that does not significantly impair the mechanical strength and the like together with the carbon nanofibers. Examples of the conductive fine particles include carbon powder, conductive metal oxide powder, metal powder, and conductive powder coated with these. Furthermore, you may contain a flame retardant, a dispersion stabilizer, etc.

以下に本発明の実施例を比較例と共に示す。なお、紡糸方法および評価方法は以下のとおりである。
〔紡糸方法〕巻取り速度1000m/minで溶融紡糸し、さらに連続して延伸倍率3倍に延伸し、48ファイラメントの糸を製造した。
〔比抵抗値〕 超絶縁抵抗計(東亜電波工業社製品:SM-8210)を用い、試長10cm間に10〜1000Vの電圧を印可し、温度20℃、湿度30%RHの条件下で、電気抵抗値R(Ωcm)を測定し、断面積と長さを換算して求めた。
〔引張強度〕 引っ張り試験機を用いて、最大荷重とそのときの伸びを測定した。引張居度については、別途繊維太さを測定し、単位太さあたりに換算した。
Examples of the present invention are shown below together with comparative examples. The spinning method and the evaluation method are as follows.
[Spinning method] Melt spinning was carried out at a winding speed of 1000 m / min, and the yarn was continuously drawn at a draw ratio of 3 to produce 48 filament yarn.
[Specific Resistance Value] Using a super insulation resistance meter (product of Toa Denpa Kogyo Co., Ltd .: SM-8210), applying a voltage of 10 to 1000 V between 10 cm of test length, under the conditions of temperature 20 ° C. and humidity 30% RH, The electrical resistance value R (Ωcm) was measured, and the cross-sectional area and length were converted and determined.
[Tensile Strength] The maximum load and the elongation at that time were measured using a tensile tester. For the tensile strength, the fiber thickness was measured separately and converted per unit thickness.

表1に示すカーボンナノファイバー(CNF)を樹脂に均一に練り込み、導電性樹脂組成物を製造した。これを溶融紡糸し、さらに延伸して、表1に示す繊度の導電糸を得た。樹脂およびカーボンナノファイバー、製造条件、導電糸の物性を表1に示す。 Carbon nanofibers (CNF) shown in Table 1 were uniformly kneaded into a resin to produce a conductive resin composition. This was melt-spun and further drawn to obtain conductive yarns having the fineness shown in Table 1. Table 1 shows the properties of the resin, carbon nanofibers, production conditions, and conductive yarn.

Figure 2006152491
Figure 2006152491

Claims (9)

カーボンナノファイバーを含有する熱可塑性樹脂組成物によって形成され、体積抵抗値が1.0×109Ωcm以下、繊維径5〜500μm、引張強度2g/dTex以上であることを特徴とする導電糸。
A conductive yarn formed of a thermoplastic resin composition containing carbon nanofibers, having a volume resistance of 1.0 × 10 9 Ωcm or less, a fiber diameter of 5 to 500 μm, and a tensile strength of 2 g / dTex or more.
体積抵抗値が1.0×106Ωcm以下、繊維径5〜500μm、引張強度2.8g/dTex以上、伸度10%以上である請求項1の導電糸。
2. The conductive yarn according to claim 1, having a volume resistance of 1.0 × 10 6 Ωcm or less, a fiber diameter of 5 to 500 μm, a tensile strength of 2.8 g / dTex or more, and an elongation of 10% or more.
体積抵抗値1.0Ωcm以下およびDBP吸油量150ml/100g以上のカーボンナノファイバーを含有する熱可塑性樹脂組成物によって形成された請求項1または2の導電糸。
The conductive yarn according to claim 1 or 2, formed of a thermoplastic resin composition containing carbon nanofibers having a volume resistance value of 1.0 Ωcm or less and a DBP oil absorption of 150 ml / 100 g or more.
カーボンナノファイバーの含有量が、熱可塑性樹脂100重量部に対する該カーボンナノファイバーの表面積換算値(カーボン含有量×比表面積の値)で2000m2以下である請求項1〜3の何れかに記載する導電糸。
The content of the carbon nanofiber is 2000 m 2 or less in terms of the surface area of the carbon nanofiber with respect to 100 parts by weight of the thermoplastic resin (carbon content x specific surface area value). Conductive yarn.
カーボンナノファイバーと共に体積抵抗値100Ωcm以下の導電性粉末を含有する樹脂組成物によって形成された請求項1〜4の何れかに記載する導電糸。
The conductive yarn according to any one of claims 1 to 4, wherein the conductive yarn is formed of a resin composition containing a conductive powder having a volume resistivity of 100 Ωcm or less together with carbon nanofibers.
カーボンナノファイバーを含有する熱可塑性樹脂組成物の固有粘度(IV値)が0.50〜0.90である請求項1〜5の何れかに記載する導電糸。
The conductive yarn according to any one of claims 1 to 5, wherein the thermoplastic resin composition containing carbon nanofibers has an intrinsic viscosity (IV value) of 0.50 to 0.90.
カーボンナノファイバーを含有する熱可塑性樹脂組成物の溶融粘度(MFR)が、温度280℃および荷重2160gの条件下で10g/min以上であるポリエステル系樹脂を用いた請求項1〜6の何れかに記載する導電糸。
7. The polyester resin having a melt viscosity (MFR) of 10 g / min or more under the conditions of a temperature of 280 ° C. and a load of 2160 g, using a thermoplastic resin composition containing carbon nanofibers. Conductive yarn to be described.
請求項1〜7の何れかの記載する導電糸によって形成された導電性材料。
The electroconductive material formed with the electrically conductive thread in any one of Claims 1-7.
請求項8の導電性材料によって形成されて導電性ブラシ、導電性ベルト、導電シート、または静電衣料。


A conductive brush, a conductive belt, a conductive sheet, or an electrostatic garment formed of the conductive material according to claim 8.


JP2004345424A 2004-11-30 2004-11-30 Conductive yarn and its use Active JP4771250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004345424A JP4771250B2 (en) 2004-11-30 2004-11-30 Conductive yarn and its use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004345424A JP4771250B2 (en) 2004-11-30 2004-11-30 Conductive yarn and its use

Publications (2)

Publication Number Publication Date
JP2006152491A true JP2006152491A (en) 2006-06-15
JP4771250B2 JP4771250B2 (en) 2011-09-14

Family

ID=36631112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004345424A Active JP4771250B2 (en) 2004-11-30 2004-11-30 Conductive yarn and its use

Country Status (1)

Country Link
JP (1) JP4771250B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008138304A (en) * 2006-11-30 2008-06-19 Mitsubishi Materials Corp Conductive fiber and use thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001271219A (en) * 2000-03-22 2001-10-02 Gunze Ltd Semiconductive fiber and its use
JP2003234013A (en) * 2002-02-08 2003-08-22 Toyobo Co Ltd Electrical conductor
JP2003308734A (en) * 2002-04-12 2003-10-31 Yuzo Tsunoda Conductive resin material and method of manufacturing the same
JP2004075848A (en) * 2002-08-19 2004-03-11 Asahi Glass Co Ltd Conductive fluoro-copolymer composition and laminate using the same
JP2004124277A (en) * 2002-09-30 2004-04-22 Toyobo Co Ltd Highly strong polyethylene fiber
JP2004143276A (en) * 2002-10-24 2004-05-20 Masaru Matsuo Electroconductive and antistatic polymer film and fiber containing carbon nanotube and method for producing the same
WO2004097852A1 (en) * 2003-04-28 2004-11-11 General Electric Company Electrically conductive compositions and method of manufacture thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001271219A (en) * 2000-03-22 2001-10-02 Gunze Ltd Semiconductive fiber and its use
JP2003234013A (en) * 2002-02-08 2003-08-22 Toyobo Co Ltd Electrical conductor
JP2003308734A (en) * 2002-04-12 2003-10-31 Yuzo Tsunoda Conductive resin material and method of manufacturing the same
JP2004075848A (en) * 2002-08-19 2004-03-11 Asahi Glass Co Ltd Conductive fluoro-copolymer composition and laminate using the same
JP2004124277A (en) * 2002-09-30 2004-04-22 Toyobo Co Ltd Highly strong polyethylene fiber
JP2004143276A (en) * 2002-10-24 2004-05-20 Masaru Matsuo Electroconductive and antistatic polymer film and fiber containing carbon nanotube and method for producing the same
WO2004097852A1 (en) * 2003-04-28 2004-11-11 General Electric Company Electrically conductive compositions and method of manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008138304A (en) * 2006-11-30 2008-06-19 Mitsubishi Materials Corp Conductive fiber and use thereof

Also Published As

Publication number Publication date
JP4771250B2 (en) 2011-09-14

Similar Documents

Publication Publication Date Title
TWI647263B (en) Polymer/filler/metal composite fiber and preparation method thereof
US20090032778A1 (en) Electrically conductive fiber and brush
JP5051571B2 (en) Conductive fiber and its use
US7094467B2 (en) Antistatic polymer monofilament, method for making an antistatic polymer monofilament for the production of spiral fabrics and spiral fabrics formed with such monofilaments
JP4367038B2 (en) Fiber and fabric
JP5070991B2 (en) Conductive yarn with crimp
JP4771250B2 (en) Conductive yarn and its use
JP4923519B2 (en) Conductive mixed yarn
JP4877637B2 (en) Conductive resin
JP4872688B2 (en) Conductive yarn
JP3791919B2 (en) Polypropylene conductive composite fiber and method for producing the same
JP5062503B2 (en) Conductive resin sheet
JP2009174089A (en) Conductive polyester fiber and brush product made therefrom
JP2005194650A (en) Conductive conjugate fiber
JP2007247095A (en) Conductive polyester fiber
KR101126066B1 (en) Static dissipative and anti-bacterial fiber comprising needle shaped zinc oxide whisker
JPS60444B2 (en) conductive fiber
JPH08328356A (en) Semiconductor gigged member
Yan et al. Polyaniline Electrospun Composite Nanofibers Reinforced with Carbon Nanotubes
JP6118561B2 (en) Conductive composite fiber
EP2242064A1 (en) Electrically conductive fiber and brush
CN103789859B (en) A kind of polymer/metal composite fibre and preparation method thereof
JP5071001B2 (en) Conductive yarn
JP2006152131A (en) Resin composition and use of the same
JP2008196074A (en) Conductive polyester fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110610

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4771250

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250