JP7070667B2 - Polyethylene fiber and products using it - Google Patents

Polyethylene fiber and products using it Download PDF

Info

Publication number
JP7070667B2
JP7070667B2 JP2020510239A JP2020510239A JP7070667B2 JP 7070667 B2 JP7070667 B2 JP 7070667B2 JP 2020510239 A JP2020510239 A JP 2020510239A JP 2020510239 A JP2020510239 A JP 2020510239A JP 7070667 B2 JP7070667 B2 JP 7070667B2
Authority
JP
Japan
Prior art keywords
polyethylene
less
fiber
hard particles
polyethylene fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020510239A
Other languages
Japanese (ja)
Other versions
JPWO2019186696A1 (en
Inventor
優二 池田
幸成 奥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Publication of JPWO2019186696A1 publication Critical patent/JPWO2019186696A1/en
Application granted granted Critical
Publication of JP7070667B2 publication Critical patent/JP7070667B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/46Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polyolefins
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/283Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B1/00Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B1/14Other fabrics or articles characterised primarily by the use of particular thread materials
    • D04B1/16Other fabrics or articles characterised primarily by the use of particular thread materials synthetic threads

Description

本発明は、耐切創性に優れたポリエチレン繊維および該繊維を含む製品に関する。 The present invention relates to polyethylene fibers having excellent cut resistance and products containing the fibers.

従来、天然繊維の綿や一般的な有機繊維が耐切創性素材として用いられてきた。また、それらの繊維などを編みあげた手袋が耐切創性を必要とする分野で多く用いられてきた。そこで耐切創性機能の付与として、アラミド繊維などの高強度繊維の紡績糸からなる編物や織物などが考案されてきた。しかしながら、これらは、毛抜けや耐久性の観点で不満が見受けられた。一方、別の手段として、金属繊維を有機繊維や天然繊維と合わせて用いることにより耐切創性を向上させる試みが行われている。しかしながら、金属繊維を合わせることにより、風合いが堅くなり、柔軟性が損なわれるという問題がある。 Conventionally, natural fibers such as cotton and general organic fibers have been used as cut-resistant materials. In addition, gloves made by knitting these fibers have been widely used in fields where cut resistance is required. Therefore, knits and woven fabrics made of spun yarns of high-strength fibers such as aramid fibers have been devised to impart a cut resistance function. However, these were dissatisfied in terms of hair loss and durability. On the other hand, as another means, attempts have been made to improve cut resistance by using metal fibers in combination with organic fibers and natural fibers. However, there is a problem that the texture becomes hard and the flexibility is impaired by combining the metal fibers.

上記の問題を解決するため、重量平均分子量(Mw)、及び重量平均分子量と数平均分子量(Mn)の比(Mw/Mn)を規定した、耐切創性に優れるポリエチレン繊維の技術が知られている(例えば、特許文献1を参照)。 In order to solve the above problems, a technique of polyethylene fiber having excellent cut resistance, which defines a weight average molecular weight (Mw) and a ratio (Mw / Mn) of a weight average molecular weight to a number average molecular weight (Mn), is known. (See, for example, Patent Document 1).

また、硬質繊維を含む糸により耐切創性に優れる超高分子量ポリエチレン繊維の技術が知られている(例えば、特許文献2および3を参照)。 Further, a technique of ultra-high molecular weight polyethylene fiber having excellent cut resistance due to a thread containing a hard fiber is known (see, for example, Patent Documents 2 and 3).

更にアルミナのような硬質粒子を含む耐切創性に優れたポリエチレン繊維も提案されている(特許文献4を参照)。 Further, a polyethylene fiber containing hard particles such as alumina and having excellent cut resistance has also been proposed (see Patent Document 4).

特開2004-019050号公報Japanese Unexamined Patent Publication No. 2004-019050 特表2010-507026号公報Special Table 2010-5007026 特表2015-518528号公報Japanese Patent Publication No. 2015-518528 特開2017-179684号公報Japanese Unexamined Patent Publication No. 2017-179684

しかし、特許文献2や3に開示の技術を溶融紡糸に利用すると、添加する硬質繊維が紡糸工程における濾過フィルターを目詰まりさせ、生産性を著しく低下させるという問題がある。 However, when the technique disclosed in Patent Documents 2 and 3 is used for melt spinning, there is a problem that the added hard fiber clogs the filtration filter in the spinning process and significantly reduces the productivity.

そこで、本発明は、かかる従来技術の課題を解決するためになされた。すなわち、本発明の目的は、優れた耐切創性を有し、生産性の高い新規なポリエチレン繊維、および該繊維を用いた製品を提供することにある。 Therefore, the present invention has been made to solve the problems of the prior art. That is, an object of the present invention is to provide a novel polyethylene fiber having excellent cut resistance and high productivity, and a product using the fiber.

本発明者らは上記課題を解決するため、鋭意検討を行った。その結果、所定の硬質粒子を含むポリエチレン繊維について、V1/V2で表される密度の比V(式中、V1は密度勾配管法で測定されるポリエチレン繊維の密度であり、V2はピクノメーター法で測定されるポリエチレン繊維の密度である。)を所定範囲に制御すれば所期の目的が達成されることを見出し、本発明を完成した。
すなわち、本発明は、以下の構成からなる。
The present inventors have conducted diligent studies in order to solve the above problems. As a result, for the polyethylene fiber containing predetermined hard particles, the density ratio V represented by V1 / V2 (in the formula, V1 is the density of the polyethylene fiber measured by the density gradient tube method, and V2 is the pycnometer method). The present invention was completed by finding that the intended purpose can be achieved by controlling the density of the polyethylene fiber measured in 1) within a predetermined range.
That is, the present invention has the following configuration.

1.アスペクト比が3未満、平均短径が20μm以下の硬質粒子であって、前記硬質粒子は原子番号14以上の元素を含み、
下式で表される密度の比Vが0.70以上、0.97未満を満足することを特徴とするポリエチレン繊維。
V=V1/V2
式中、
V1は密度勾配管法で測定されるポリエチレン繊維の密度であり、
V2はピクノメーター法で測定されるポリエチレン繊維の密度である。
2.ポリエチレンの極限粘度[η]は0.8dL/g以上、4.9dL/g未満である上記1に記載のポリエチレン繊維。
3.前記硬質粒子が、金属、珪素化合物、または鉱物である上記1または2に記載のポリエチレン繊維。
4.ポリエチレン繊維中に前記硬質粒子を5質量%以上含有する上記1から3のいずれか1つに記載のポリエチレン繊維。
5.上記1から4のいずれか1つに記載のポリエチレン繊維を含むことを特徴とする製品。
1. 1. Hard particles having an aspect ratio of less than 3 and an average minor axis of 20 μm or less, the hard particles containing an element having an atomic number of 14 or more.
A polyethylene fiber having a density ratio V represented by the following formula, which satisfies 0.70 or more and less than 0.97.
V = V1 / V2
During the ceremony
V1 is the density of polyethylene fibers measured by the density gradient tube method.
V2 is the density of polyethylene fibers measured by the pycnometer method.
2. 2. The polyethylene fiber according to 1 above, wherein the ultimate viscosity [η] of polyethylene is 0.8 dL / g or more and less than 4.9 dL / g.
3. 3. The polyethylene fiber according to 1 or 2 above, wherein the hard particles are a metal, a silicon compound, or a mineral.
4. The polyethylene fiber according to any one of 1 to 3 above, wherein the polyethylene fiber contains 5% by mass or more of the hard particles.
5. A product comprising the polyethylene fiber according to any one of 1 to 4 above.

本発明により、優れた耐切創性を有し、生産性の高いポリエチレン繊維、および該繊維を用いた製品を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a polyethylene fiber having excellent cut resistance and high productivity, and a product using the fiber.

以下、本発明を詳述する。
本発明のポリエチレン繊維は、その極限粘度[η]が0.8dL/g以上、4.9dL/g未満であることが好ましく、より好ましくは1.0dL/g以上、4.0dL/g以下、更に好ましくは1.2dL/g以上、2.5dL/g以下である。
Hereinafter, the present invention will be described in detail.
The polyethylene fiber of the present invention preferably has an intrinsic viscosity [η] of 0.8 dL / g or more and less than 4.9 dL / g, more preferably 1.0 dL / g or more and 4.0 dL / g or less. More preferably, it is 1.2 dL / g or more and 2.5 dL / g or less.

極限粘度を4.9dL/g未満とすることにより、溶融紡糸法での製糸が容易になり、いわゆるゲル紡糸等で製糸する必要がない。そのため、製造コストの抑制、作業工程の簡略化の点で優位である。さらに、製造時に溶剤を用いないため、作業者や環境への影響も小さい。また製品となった繊維中の残留溶剤も存在しないため製品使用者に対する溶媒の悪影響がない。また、極限粘度を0.8dL/g以上とすることにより、ポリエチレンの分子末端基の減少により、繊維中の構造欠陥数を減少させることができる。そのため、強度や弾性率等の繊維の力学物性や耐切創性能を向上させることができる。 By setting the ultimate viscosity to less than 4.9 dL / g, spinning by the melt spinning method becomes easy, and it is not necessary to spin by so-called gel spinning or the like. Therefore, it is advantageous in terms of controlling manufacturing costs and simplifying work processes. Furthermore, since no solvent is used during manufacturing, the impact on workers and the environment is small. In addition, since there is no residual solvent in the fibers of the product, there is no adverse effect of the solvent on the product user. Further, by setting the ultimate viscosity to 0.8 dL / g or more, the number of structural defects in the fiber can be reduced by reducing the molecular terminal groups of polyethylene. Therefore, it is possible to improve the mechanical characteristics of the fiber such as strength and elastic modulus and the cut resistance performance.

また本発明に係るポリエチレン繊維の好ましい重量平均分子量(Mw)は50000~600000である。Mwを50000以上とすることにより、ポリエチレンの分子末端基の減少により、繊維中の構造欠陥数を減少させることができる。そのため、強度や弾性率等の繊維の力学物性や耐切創性能が向上する。一方、Mwを600000以下とすることにより、溶融紡糸法での製糸が容易になり、いわゆるゲル紡糸等で製糸する必要がない。そのため、製造コストの抑制、作業工程の簡略化の点で優位である。さらに、製造時に溶剤を用いないため、作業者や環境への影響も小さい。また製品となった繊維中の残留溶剤も存在しないため製品使用者に対する溶媒の悪影響がない。 The preferable weight average molecular weight (Mw) of the polyethylene fiber according to the present invention is 50,000 to 600,000. By setting Mw to 50,000 or more, the number of structural defects in the fiber can be reduced by reducing the molecular terminal groups of polyethylene. Therefore, the mechanical properties of the fiber such as strength and elastic modulus and the cut resistance are improved. On the other hand, when Mw is set to 600,000 or less, spinning by the melt spinning method becomes easy, and it is not necessary to spin by so-called gel spinning or the like. Therefore, it is advantageous in terms of controlling manufacturing costs and simplifying work processes. Furthermore, since no solvent is used during manufacturing, the impact on workers and the environment is small. In addition, since there is no residual solvent in the fibers of the product, there is no adverse effect of the solvent on the product user.

また本発明におけるポリエチレンは、その繰り返し単位が実質的にエチレンであればよく、当該エチレンと、少量の他のモノマー;例えばα-オレフィン、アクリル酸及びその誘導体、メタクリル酸及びその誘導体、ビニルシラン及びその誘導体等との共重合体であってもよい。或は、これら共重合体同士、またはエチレン単独ポリマーと上記共重合体との共重合体、更にはエチレン単独ポリマーと他のα-オレフィン等のホモポリマーとのブレンド体であってもよい。特にプロピレン、ブテン-1などのα-オレフィンとの共重合体を用いて短鎖または長鎖の分岐をある程度含有させることは、本発明のポリエチレン繊維を製造する上で、特に紡糸・延伸における製糸上の安定性が付与されるため、より好ましい。しかしながら、エチレン以外の含有量が増え過ぎると逆に延伸の阻害要因となるため、高強度・高弾性率のポリエチレン繊維を得るという観点からは、ポリエチレン繊維全体に占めるエチレン以外の成分の比率はモノマー単位で好ましくは0.2mol%以下、より好ましくは0.1mol%以下である。もちろん、本発明におけるポリエチレンはエチレン単独で構成されていてもよい。 Further, the polyethylene in the present invention may be used as long as the repeating unit thereof is substantially ethylene, and the ethylene and a small amount of other monomers; for example, α-olefin, acrylic acid and its derivative, methacrylic acid and its derivative, vinylsilane and its derivative. It may be a copolymer with a derivative or the like. Alternatively, it may be a blend of these copolymers, a copolymer of an ethylene homopolymer and the above copolymer, or a blend of an ethylene homopolymer and another homopolymer such as α-olefin. In particular, the inclusion of short-chain or long-chain branches to some extent using a copolymer with an α-olefin such as propylene or butene-1 is a method for producing the polyethylene fiber of the present invention, especially in spinning and drawing. It is more preferable because it imparts the above stability. However, if the content other than ethylene increases too much, it will adversely affect stretching. Therefore, from the viewpoint of obtaining polyethylene fibers with high strength and high elastic modulus, the ratio of components other than ethylene to the total polyethylene fibers is monomer. The unit is preferably 0.2 mol% or less, more preferably 0.1 mol% or less. Of course, the polyethylene in the present invention may be composed of ethylene alone.

本発明のポリエチレン繊維は、下式比で表される密度の比V(以下、単にVと呼ぶ場合がある。)が0.70以上、0.97未満を満足する点に特徴があり、これにより、耐切創性に優れたポリエチレン繊維が得られる。
V=V1/V2
The polyethylene fiber of the present invention is characterized in that the ratio V of the density represented by the following formula ratio (hereinafter, may be simply referred to as V) satisfies 0.70 or more and less than 0.97. As a result, polyethylene fibers having excellent cut resistance can be obtained.
V = V1 / V2

ここでV1は、密度勾配管法で測定されるポリエチレン繊維の密度である。密度勾配管法によれば、ポリエチレン繊維自身のみならずポリエチレン繊維内部の空隙(ボイド)も含めた密度が算出される。一方、V2はピクノメーター法で測定されるポリエチレン繊維の密度である。ピクノメーター法によれば、ポリエチレン繊維内部の空隙を含む密度は算出されず、ポリエチレン繊維自身の密度(真密度)が算出される。 Here, V1 is the density of the polyethylene fiber measured by the density gradient tube method. According to the density gradient tube method, the density including not only the polyethylene fiber itself but also the voids inside the polyethylene fiber is calculated. On the other hand, V2 is the density of polyethylene fibers measured by the pycnometer method. According to the pycnometer method, the density including voids inside the polyethylene fiber is not calculated, but the density (true density) of the polyethylene fiber itself is calculated.

すなわち、上記V1/V2の比で表されるVは、ポリエチレン繊維の空隙率に近い指標となり得るもの(科学的観点からは、必ずしも同じでない)である。Vが大きい程、空隙が少なくて密に詰まっている傾向にあり、吸収する衝撃がやわらげられるため、耐切創性が高くなる。そのため、本発明では上記Vを0.70以上とした。但し、Vが大きくなり過ぎる(すなわち、繊維が引っ張られていない)と結晶化度が下がり、耐切創性が低下することから、その上限を0.97未満とした。 That is, V represented by the ratio of V1 / V2 can be an index close to the porosity of the polyethylene fiber (not necessarily the same from a scientific point of view). The larger the V, the smaller the voids and the more likely it is that they are tightly clogged, and the impact that is absorbed is softened, so that the incision resistance is improved. Therefore, in the present invention, the above V is set to 0.70 or more. However, if V becomes too large (that is, the fibers are not pulled), the crystallinity decreases and the cut resistance decreases, so the upper limit is set to less than 0.97.

上記V1、V2は、いずれもJIS K-0061-2001及びJIS K-7112-1991に準拠した方法で測定される。これらの測定方法は実施例の欄で詳述する。 Both V1 and V2 are measured by a method according to JIS K-0061-2001 and JIS K-7112-1991. These measurement methods will be described in detail in the section of Examples.

本発明のポリエチレン繊維は、複数の硬質粒子を含有する。本発明における硬質粒子はアスペクト比が3未満、平均短径が20μm以下であり、且つ、原子番号が14以上の元素を少なくとも含むものである。 The polyethylene fiber of the present invention contains a plurality of hard particles. The hard particles in the present invention contain at least an element having an aspect ratio of less than 3, an average minor axis of 20 μm or less, and an atomic number of 14 or more.

本発明のポリエチレン繊維が含有する硬質粒子のアスペクト比は、3未満であればよいが、好ましくは1以上2以下である。ここで、硬質粒子のアスペクト比とは、JIS8900-1に基づいて算出される値(すなわち、粒子の顕微鏡像において、(最大直径/最大直径に直交する幅)で定義される粒子の形状を表す指数)である。硬質粒子のアスペクト比の測定方法は、後記する実施例の欄で詳述する。硬質粒子のアスペクト比が3以上になると、紡糸時に濾過フィルターが目詰まりし、繊維の生産性を著しく低下させることが懸念される為、好ましくない。 The aspect ratio of the hard particles contained in the polyethylene fiber of the present invention may be less than 3, but preferably 1 or more and 2 or less. Here, the aspect ratio of the hard particle represents the shape of the particle defined by the value calculated based on JIS89001 (that is, the width orthogonal to the maximum diameter / maximum diameter in the microscope image of the particle). Index). The method for measuring the aspect ratio of hard particles will be described in detail in the column of Examples described later. If the aspect ratio of the hard particles is 3 or more, the filtration filter may be clogged during spinning, which may significantly reduce the productivity of the fibers, which is not preferable.

本発明のポリエチレン繊維が含有する複数の硬質粒子の平均短径は20μm以下である。硬質粒子の平均短径が20μmよりも大きくなると、紡糸時に濾過フィルターが目詰まりし、繊維の生産性を著しく低下させ、特に延伸性を大幅に低下させる。好ましくは10μm以下であり、より好ましくは8μm以下、更に好ましくは5μm以下である。なお、硬質粒子の平均短径の下限は特に限定されないが、おおむね0.05μm以上であることが好ましい。
なお上記硬質粒子の平均短径は、後記する硬質粒子のアスペクト比と同様の方法により硬質粒子10個のそれぞれについて短軸(最大短径)を測定し、その平均値を求めることで算出した。
The average minor axis of the plurality of hard particles contained in the polyethylene fiber of the present invention is 20 μm or less. When the average minor axis of the hard particles is larger than 20 μm, the filtration filter is clogged during spinning, and the productivity of the fiber is significantly reduced, and in particular, the stretchability is significantly reduced. It is preferably 10 μm or less, more preferably 8 μm or less, still more preferably 5 μm or less. The lower limit of the average minor axis of the hard particles is not particularly limited, but it is preferably about 0.05 μm or more.
The average minor axis of the hard particles was calculated by measuring the minor axis (maximum minor axis) of each of the 10 hard particles by the same method as the aspect ratio of the hard particles described later, and obtaining the average value thereof.

本発明に用いられる硬質粒子は、原子番号が14以上の元素を少なくとも含む。よって本発明では、原子番号13のAlは硬質粒子として用いない。原子番号14以上の元素として、例えばSi、Fe、Cu、Ti、Ni、Ag、Au、Pt、Co、Znなどが挙げられる。好ましくはSi、Fe、Tiである。 The hard particles used in the present invention contain at least an element having an atomic number of 14 or more. Therefore, in the present invention, Al having an atomic number of 13 is not used as hard particles. Examples of the element having an atomic number of 14 or more include Si, Fe, Cu, Ti, Ni, Ag, Au, Pt, Co, Zn and the like. It is preferably Si, Fe and Ti.

本発明に用いられる硬質粒子として、具体的には、例えば金属、珪素化合物、または鉱物が挙げられる。
ここで上記金属とはモース硬度が3以上のものを意味し、例えば、タングステン、鉄、チタン、クロム、亜鉛、マンガン、ニッケル、銅、銀、及び金;更には上記金属の化合物などが挙げられる。
また上記珪素化合物とは、珪素を含む化合物であれば特に限定されず、例えば、シリカ、ガラス、炭化珪素などが挙げられる。
また上記鉱物としては、例えば、石英、ロックウール、酸化鉄などが挙げられる。
Specific examples of the hard particles used in the present invention include metals, silicon compounds, and minerals.
Here, the metal means a metal having a Morse hardness of 3 or more, and examples thereof include tungsten, iron, titanium, chromium, zinc, manganese, nickel, copper, silver, and gold; and further, compounds of the metal. ..
The silicon compound is not particularly limited as long as it is a compound containing silicon, and examples thereof include silica, glass, and silicon carbide.
Examples of the mineral include quartz, rock wool, iron oxide and the like.

本発明のポリエチレン繊維が含有する複数の硬質粒子の形状は、真球状、扁球状であることが好ましい。硬質粒子が繊維状の場合、紡糸時に濾過フィルターが目詰まりし、繊維の生産性を著しく低下させることが懸念されるため、好ましくない。 The shape of the plurality of hard particles contained in the polyethylene fiber of the present invention is preferably spherical or oblate. If the hard particles are fibrous, the filtration filter may be clogged during spinning, which may significantly reduce the productivity of the fibers, which is not preferable.

本発明のポリエチレン繊維が含有する複数の硬質粒子は、そのまま用いてもよいし、表面を修飾したものを用いてもよい。表面修飾としては、ジメチル基、エポキシ基、ヘキシル基、フェニル基、メタクリル基、ビニル基、イソシアネート基等が適用できる。 The plurality of hard particles contained in the polyethylene fiber of the present invention may be used as they are or may have a modified surface. As the surface modification, a dimethyl group, an epoxy group, a hexyl group, a phenyl group, a methacrylic group, a vinyl group, an isocyanate group and the like can be applied.

本発明のポリエチレン繊維全体に含まれる上記複数の硬質粒子の好ましい含有量は、5質量%以上であり、より好ましくは10質量%以上30質量%以下である。硬質粒子の含有量が5質量%未満であると、繊維中に存在する硬質粒子と刃の接触頻度が少なく、耐切創性を向上させる効果を得られ難い。 The content of the plurality of hard particles contained in the entire polyethylene fiber of the present invention is preferably 5% by mass or more, more preferably 10% by mass or more and 30% by mass or less. When the content of the hard particles is less than 5% by mass, the contact frequency between the hard particles existing in the fiber and the blade is low, and it is difficult to obtain the effect of improving the cut resistance.

本発明のポリエチレン繊維を紡糸する際、硬質粒子は、事前にポリエチレンと混練したマスターバッチとして用いてもよいし、単体で用いてもよい。 When spinning the polyethylene fiber of the present invention, the hard particles may be used as a masterbatch kneaded with polyethylene in advance, or may be used alone.

本発明のポリエチレン繊維は、単糸あたりの繊維径が45μm以下であるのが好ましく、37μm以下であるのがより好ましい。単糸あたりの繊維径が45μmよりも太くなると、織物または編物(織編物)に形成した際の風合いが堅くなり、柔軟性が損なわれる。なお、単糸あたりの繊維径は、例えば、dtexと繊維の比重より求める方法や、顕微鏡を用いて求める方法を用いることで求めることができる。その上限は、上記観点からは特に限定されないが、生産性などを考慮すると、おおむね10μm以上であることが好ましい。 The polyethylene fiber of the present invention preferably has a fiber diameter per single yarn of 45 μm or less, more preferably 37 μm or less. When the fiber diameter per single yarn is larger than 45 μm, the texture when formed into a woven fabric or a knitted fabric (woven or knitted fabric) becomes firm, and the flexibility is impaired. The fiber diameter per single yarn can be obtained, for example, by using a method of obtaining dtex and the specific gravity of the fiber, or a method of obtaining using a microscope. The upper limit is not particularly limited from the above viewpoint, but is preferably about 10 μm or more in consideration of productivity and the like.

本発明のポリエチレン繊維の平均強度は、4cN/dtex以上であることが望ましく、好ましくは、6cN/dtex以上である。平均強度が4cN/dtex未満の場合、応用製品を作製したとき、強度が不足する可能性がある。その上限は、上記観点からは特に限定されないが、紡糸性などの生産性を考慮すると、おおむね50cN/dtex以下であることが好ましい。 The average strength of the polyethylene fiber of the present invention is preferably 4 cN / dtex or more, preferably 6 cN / dtex or more. If the average strength is less than 4 cN / dtex, the strength may be insufficient when the applied product is manufactured. The upper limit is not particularly limited from the above viewpoint, but is preferably about 50 cN / dtex or less in consideration of productivity such as spinnability.

本発明のポリエチレン繊維は、芯鞘構造を適用してもよく、また星形、三角や、中空等の異形の形状を有していてもよい。 The polyethylene fiber of the present invention may have a core-sheath structure applied thereto, or may have an irregular shape such as a star shape, a triangle shape, or a hollow shape.

本発明のポリエチレン繊維を得る製造方法については、例えば、溶融紡糸法を用いることができる。ここで、例えば、溶剤を用いて行う超高分子量ポリエチレン繊維の製法の一つであるゲル紡糸法を用いると、高強度のポリエチレン繊維を得られるものの、生産性が低いばかりでなく、溶剤使用による製造作業者の健康や環境への影響、また繊維中に残留する溶剤が製品使用者の健康に与える影響が大きい。 As a production method for obtaining the polyethylene fiber of the present invention, for example, a melt spinning method can be used. Here, for example, when the gel spinning method, which is one of the methods for producing ultra-high molecular weight polyethylene fibers using a solvent, is used, high-strength polyethylene fibers can be obtained, but the productivity is not only low, but also due to the use of a solvent. It has a great impact on the health and environment of manufacturing workers, and the solvent remaining in the fiber has a great impact on the health of product users.

よって、本発明のポリエチレン繊維は溶融紡糸法を用いるのが好ましい。溶融紡糸法を用いて本発明のポリエチレン繊維を製造する方法について、具体的に以下に説明する。なお、本発明のポリエチレン繊維を製造する方法は、以下の工程や数値に限定されない。 Therefore, it is preferable to use the melt spinning method for the polyethylene fiber of the present invention. The method for producing the polyethylene fiber of the present invention by using the melt spinning method will be specifically described below. The method for producing the polyethylene fiber of the present invention is not limited to the following steps and numerical values.

上述したポリエチレン樹脂と粉末状態の硬質粒子とをブレンドし、押出機等を用いて、ポリエチレン樹脂の融点よりも例えば10℃以上、好ましくは50℃以上、更に好ましくは80℃以上高い温度で溶融押出しをして、定量供給装置を用いてポリエチレン樹脂の融点より例えば80℃、好ましくは100℃以上高い温度で紡糸ノズル(紡糸口金)に供給する。この時、押出機内に供給する不活性ガスの圧力は、0.001MPa以上、0.8MPa以下とするのが好ましく、より好ましくは0.05MPa以上、0.7MPa以下、更に好ましくは0.1MPa以上、0.5MPa以下とすることが推奨される。その後、例えば直径0.3mm以上、2.5mm以下、好ましくは直径0.5mm以上、1.5mm以下を有する紡糸ノズルより0.1g/min以上の吐出量で吐出する。紡糸ノズルから溶融樹脂を吐出する際の吐出線速度は、10cm/min以上、120cm/min以下とするのが好ましい。より好ましい吐出線速度は、20cm/min以上、110cm/min以下であり、更に好ましくは30cm/min以上、100cm/min以下である。 The above-mentioned polyethylene resin and hard particles in a powder state are blended and melt-extruded using an extruder or the like at a temperature higher than the melting point of the polyethylene resin, for example, 10 ° C. or higher, preferably 50 ° C. or higher, and more preferably 80 ° C. or higher. Then, using a fixed quantity supply device, the polyethylene resin is supplied to the spinning nozzle (spinning cap) at a temperature higher than the melting point of the polyethylene resin, for example, 80 ° C., preferably 100 ° C. or higher. At this time, the pressure of the inert gas supplied into the extruder is preferably 0.001 MPa or more and 0.8 MPa or less, more preferably 0.05 MPa or more, 0.7 MPa or less, still more preferably 0.1 MPa or more. , 0.5 MPa or less is recommended. Then, for example, a spinning nozzle having a diameter of 0.3 mm or more and 2.5 mm or less, preferably a diameter of 0.5 mm or more and 1.5 mm or less is discharged at a discharge amount of 0.1 g / min or more. The discharge line speed at the time of discharging the molten resin from the spinning nozzle is preferably 10 cm / min or more and 120 cm / min or less. More preferable discharge line velocities are 20 cm / min or more and 110 cm / min or less, and more preferably 30 cm / min or more and 100 cm / min or less.

次に、該吐出糸を5~40℃まで冷却した後に50m/min以上で巻き取り、更に得られた該未延伸糸を、少なくとも1回以上の回数で該未延伸糸の融点以下の温度で延伸する。具体的には、2段階以上に分けて延伸工程を行うことが好ましい。延伸の初期の温度は、上記未延伸糸の結晶分散温度未満が好ましく、より好ましくは80℃以下、更に好ましくは75℃以下である。次いで、上記未延伸糸の結晶分散温度以上、融点以下、好ましくは90℃以上、融点未満で延伸するのが好ましい。 Next, the discharged yarn is cooled to 5 to 40 ° C., then wound at 50 m / min or more, and the obtained undrawn yarn is further rolled at least once at a temperature equal to or lower than the melting point of the undrawn yarn. Stretch. Specifically, it is preferable to perform the stretching step in two or more steps. The initial temperature of drawing is preferably less than the crystal dispersion temperature of the undrawn yarn, more preferably 80 ° C. or lower, still more preferably 75 ° C. or lower. Next, it is preferable to draw the undrawn yarn at a crystal dispersion temperature or higher, a melting point or lower, preferably 90 ° C. or higher, and a melting point or lower.

ここで結晶分散温度とは、以下の方法によって測定される温度である。
まず固体粘弾性測定装置(T.A.インスツルメント社製、「DMA Q800」)を用いて固体粘弾性率を測定する。測定した固体粘弾性率の解析には、「T.A.Universal Analysis」(T.A.インスツルメント社製)を用いる。ここで測定開始温度を-140℃、測定終了温度を140℃、昇温速度を1.0℃/minとする。また、歪み量を0.04%とし、測定開始時の初荷重0.05cN/dtexとする。また、測定周波数を11Hzとする。次に、得られた固体粘弾性率に基づいて損失弾性率を計算し、温度分散を低温側より求め、損失弾性率の値を対数で縦軸に取り、横軸に温度を取ってプロットし、最も高温側に現れる損失弾性率のピーク値を結晶分散温度とする。
Here, the crystal dispersion temperature is a temperature measured by the following method.
First, the solid viscoelasticity is measured using a solid viscoelasticity measuring device (“DMA Q800” manufactured by TA Instruments). "TA Universal Analysis" (manufactured by TA Instruments) is used for the analysis of the measured solid viscoelastic modulus. Here, the measurement start temperature is −140 ° C., the measurement end temperature is 140 ° C., and the temperature rise rate is 1.0 ° C./min. Further, the strain amount is 0.04%, and the initial load at the start of measurement is 0.05 cN / dtex. The measurement frequency is 11 Hz. Next, the loss elastic modulus is calculated based on the obtained solid viscoelastic modulus, the temperature dispersion is obtained from the low temperature side, the value of the loss elastic modulus is plotted on the vertical axis and the temperature is plotted on the horizontal axis. The peak value of the loss elastic modulus that appears on the highest temperature side is defined as the crystal dispersion temperature.

延伸倍率は、合計で6倍以上とするのが好ましく、より好ましくは8倍以上であり、更に好ましくは10倍以上である。また、延伸倍率は、合計で30倍以下とするのが好ましく、より好ましくは25倍以下であり、更に好ましくは20倍以下である。なお、多段延伸を採用する場合、例えば、2段延伸を行う場合であれば、1段階目の延伸倍率は1.05倍以上、4.00倍以下とするのが好ましく、2段階目の延伸倍率は2.5倍以上、15倍以下とするのが好ましい。 The draw ratio is preferably 6 times or more in total, more preferably 8 times or more, and further preferably 10 times or more. The total draw ratio is preferably 30 times or less, more preferably 25 times or less, and further preferably 20 times or less. When multi-step stretching is adopted, for example, when two-step stretching is performed, the stretching ratio of the first step is preferably 1.05 times or more and 4.00 times or less, and the second step stretching is preferably performed. The magnification is preferably 2.5 times or more and 15 times or less.

本発明のポリエチレン繊維を使用した製品、例えば、織編物は、耐切創性織編物、手袋及びベスト等として好適に用いられる。例えば、手袋は、本発明のポリエチレン繊維を編み機に掛けることで得られる。もしくは、本発明のポリエチレン繊維を織り機に掛けて布帛を得、それを裁断、縫製して手袋とすることもできる。 Products using the polyethylene fibers of the present invention, for example, woven and knitted fabrics, are suitably used as cut resistant woven and knitted fabrics, gloves, vests and the like. For example, gloves can be obtained by hanging the polyethylene fibers of the present invention on a knitting machine. Alternatively, the polyethylene fiber of the present invention can be woven on a loom to obtain a cloth, which can be cut and sewn to make gloves.

このようにして得られた手袋は、例えば、そのまま手袋として使用することもできるが、必要であれば滑り止め性を付与するために、樹脂を塗布することもできる。ここで用いられる樹脂は、例えば、ウレタン系やエチレン系などが挙げられるが、特に限定されるものではない。 The gloves thus obtained can be used as, for example, gloves as they are, but if necessary, a resin can be applied to impart anti-slip properties. Examples of the resin used here include urethane-based and ethylene-based resins, but the resin is not particularly limited.

本発明のポリエチレン繊維は、後述の実施例からも分かるように、耐切創性能に優れている。
よって、本発明のポリエチレン繊維を使用した製品は、上記した手袋やベスト等の織編物以外にも、テープ、ロープ、ネット、釣糸、資材防護カバー、シート、カイト用糸、洋弓弦、セールクロス、幕材として好適に用いられる。もちろん、本発明のポリエチレン繊維を用いた製品はこれらに限定されない。
As can be seen from the examples described later, the polyethylene fiber of the present invention has excellent cut resistance.
Therefore, in addition to the above-mentioned woven and knitted fabrics such as gloves and vests, the products using the polyethylene fiber of the present invention include tapes, ropes, nets, fishing threads, material protective covers, sheets, kite threads, western bow strings, sail cloths, etc. It is suitably used as a curtain material. Of course, the products using the polyethylene fibers of the present invention are not limited to these.

また、本発明のポリエチレン繊維は、高い耐切創性を有するため、該耐切創性を活かした材料、例えば、繊維強化樹脂補強材、セメント補強材、繊維強化ゴム補強材、あるいは環境変化が想定される防護材、防弾材、医療用縫合糸、人工腱、人工筋肉、繊維強化樹脂補強材、セメント補強材、繊維強化ゴム補強材、工作機械部品、電池セパレーター、化学フィルターとして好適に用いられる。もちろん、本発明のポリエチレン繊維は、これらの材料に限定されず、様々な材料として用いることができる。 Further, since the polyethylene fiber of the present invention has high cut resistance, a material utilizing the cut resistance, for example, a fiber reinforced resin reinforcing material, a cement reinforcing material, a fiber reinforced rubber reinforcing material, or an environmental change is expected. It is suitably used as a protective material, a bulletproof material, a medical suture, an artificial tendon, an artificial muscle, a fiber reinforced resin reinforcing material, a cement reinforcing material, a fiber reinforced rubber reinforcing material, a machine tool part, a battery separator, and a chemical filter. Of course, the polyethylene fiber of the present invention is not limited to these materials and can be used as various materials.

以下に、実施例を例示し、本発明を具体的に説明する。しかし、本発明は下記実施例によって限定されるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。 Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to the following examples, and it is of course possible to carry out the present invention with appropriate modifications within a range that can meet the purposes of the preceding and the following, and all of them are the techniques of the present invention. It is included in the target range.

まず、後述の実施例および比較例で作製した繊維(繊維サンプル)およびそれを用いた筒編み物(編物サンプル)に対して行った特性値の測定及び評価について説明する。 First, the measurement and evaluation of the characteristic values performed on the fibers (fiber samples) produced in the examples and comparative examples described later and the tubular knitting (knitted sample) using the fibers will be described.

(1)極限粘度[η]
極限粘度は、溶媒として135℃に加熱したデカリンを用い、ウベローデ型毛細粘度管を用いて測定した。具体的には、種々の希薄溶液の比粘度を測定し、その粘度の濃度に対するプロットの最小2乗近似で得られる直線の原点への外挿点より極限粘度を決定した。比粘度の測定に際し、繊維サンプルを約5mm長に分割または切断し、ポリマーに対して1質量%の酸化防止剤(ヨシノックスBHT(登録商標)、吉富製薬製)を添加し、135℃で4時間攪拌溶解して測定溶液を調整した。
(1) Extreme viscosity [η]
The ultimate viscosity was measured using a Ubbelohde-type capillary viscosity tube using decalin heated to 135 ° C. as a solvent. Specifically, the specific viscosities of various dilute solutions were measured, and the ultimate viscosity was determined from the extrapolation point to the origin of the straight line obtained by the minimum square approximation of the plot with respect to the concentration of the viscosity. When measuring the specific viscosity, the fiber sample was divided or cut into pieces of about 5 mm length, 1% by mass of an antioxidant (Yoshinox BHT®, manufactured by Yoshitomi Pharmaceutical Co., Ltd.) was added to the polymer, and the temperature was 135 ° C. for 4 hours. The measurement solution was prepared by stirring and dissolving.

(2)V(=V1/V2、密度の比)
V1は密度勾配管法で測定されるポリエチレン繊維の密度であり、V2はピクノメーター法で測定されるポリエチレン繊維の密度である。上記V1、V2は、いずれもJIS K-0061-2001及びJIS K-7112-1991に準拠した方法で測定した。
具体的な測定方法は以下のとおりである。
(2) V (= V1 / V2, density ratio)
V1 is the density of polyethylene fibers measured by the density gradient tube method, and V2 is the density of polyethylene fibers measured by the pycnometer method. Both V1 and V2 were measured by a method according to JIS K-0061-2001 and JIS K-7112-1991.
The specific measurement method is as follows.

まずV1は、溶媒としてイソプロパノールと純水の混液を用い、以下のようにして測定した。
(密度勾配管の作製)
重液として水、軽液としてイソプロピルアルコールを用い、重液に軽液を少しずつ連続的に混合しながらメモリ付きのガラス管に注ぎ入れ、ガラス管の底部には重液が存在し、ガラス管の上部に行くにつれて軽液の比率が多くなるようにして密度勾配管を作製した。この密度勾配管を30℃±0.1℃の恒温槽に入れた。
次いで、比重既知のガラス玉10個(比重は全て異なる)を、上記のようにして作製した密度勾配管に静かに投入し、このまま1日間静置した。その後、各ガラス玉と液面との距離を測定し、このとき得られた距離を縦軸、ガラス球の比重値を横軸にとって検量線のグラフを作成し、該グラフが直線になっていることで正確な比重液が得られていることを確認した。
(比重の測定)
上述のようにして作製した密度勾配管に、繊維サンプル(試料長:6~8mm)を投入し、投入直後、5時間後における繊維サンプルの液面からの位置を測定した。密度勾配管作製時に作成した上記検量線を使用して、サンプルの位置における比重値を求めた。
First, V1 was measured as follows using a mixed solution of isopropanol and pure water as a solvent.
(Making a density gradient tube)
Using water as the heavy liquid and isopropyl alcohol as the light liquid, pour the light liquid into the glass tube with memory while continuously mixing the light liquid little by little. A density gradient tube was prepared so that the ratio of the light liquid increased toward the upper part of the tube. This density gradient tube was placed in a constant temperature bath at 30 ° C. ± 0.1 ° C.
Next, 10 glass balls having known specific densities (all having different specific densities) were gently put into the density gradient tube prepared as described above, and allowed to stand as it was for 1 day. After that, the distance between each glass ball and the liquid level is measured, and a calibration curve graph is created with the distance obtained at this time as the vertical axis and the specific gravity value of the glass sphere as the horizontal axis, and the graph is a straight line. It was confirmed that an accurate specific gravity liquid was obtained.
(Measurement of specific gravity)
A fiber sample (sample length: 6 to 8 mm) was charged into the density gradient tube prepared as described above, and the position of the fiber sample from the liquid surface was measured immediately after charging and 5 hours after charging. Using the above calibration curve prepared at the time of preparing the density gradient tube, the specific gravity value at the position of the sample was obtained.

一方、V2は、溶媒としてヘリウムを用い、島津製作所K-7112-1980 AccuPYC II 1340のピクノメーターを用いて測定した。具体的には上記の繊維サンプル(試料長:6~8mm)を5g精秤し、上記ピクノメーターにヘリウムガスを流し込み、体積を求め、比重を算出した。 On the other hand, V2 was measured using a helium as a solvent and a pycnometer of Shimadzu K-7112-1980 AccuPYC II 1340. Specifically, 5 g of the above fiber sample (sample length: 6 to 8 mm) was precisely weighed, helium gas was poured into the pycnometer, the volume was obtained, and the specific gravity was calculated.

(3)硬質粒子のアスペクト比
硬質粒子のアスペクト比は、SEM写真を用いることによって求めた。繊維サンプルをるつぼの中に入れ、灰と炭素質物質になるまで燃焼をさせた後、電気炉に入れ、ポリエチレンの分解温度以上で加熱した。炭素質物質が完全に灰になったら、デシケータ中で放冷して灰分を得た。灰分のSEM写真を撮影し、無作為に選択した硬質粒子10個のそれぞれについて、長軸(最大長径)および最大長径に直交する幅を測定し、最大長径を、最大長径に直交する幅で除して、その平均値を求めることで、アスペクト比を算出した。なお、硬質粒子は硬度が高い為、加熱しても形状が変化しないと考えられる。
(3) Aspect ratio of hard particles The aspect ratio of hard particles was determined by using an SEM photograph. The fiber sample was placed in a crucible, burned until it became ash and a carbonaceous substance, then placed in an electric furnace and heated above the decomposition temperature of polyethylene. When the carbonaceous material became completely ash, it was allowed to cool in a desiccator to obtain ash. An SEM photograph of the ash is taken, and for each of the 10 randomly selected hard particles, the major axis (maximum major axis) and the width orthogonal to the maximum major axis are measured, and the maximum major axis is divided by the width orthogonal to the maximum major axis. Then, the aspect ratio was calculated by obtaining the average value. Since the hard particles have high hardness, it is considered that the shape does not change even when heated.

(4)硬質粒子の平均短径
硬質粒子の平均短径は、上記アスペクト比と同様にしてSEM写真を撮影し、無作為に選択した硬質粒子10個について短軸(最大短径)を測定し、その平均値を求めることで算出した。
(4) Average minor axis of hard particles For the average minor axis of hard particles, SEM photographs were taken in the same manner as in the above aspect ratio, and the minor axis (maximum minor axis) was measured for 10 randomly selected hard particles. , Calculated by calculating the average value.

(5)硬質粒子の含有量
硬質粒子の含有量は、JIS-2272に基づき、灰分測定を用いることによって求めた。繊維サンプル1.0gをるつぼの中に入れ、灰と炭素質物質になるまで燃焼をさせた後、電気炉に入れ、ポリエチレンの分解温度以上で加熱した。炭素質物質が完全に灰になった後、デシケータ中で放冷して質量を測定し、灰分を求めた。得られた灰分量と上記繊維量の合計に対する灰分量の質量比率に基づき、硬質粒子の含有量を求めた。
(5) Content of hard particles The content of hard particles was determined by using ash content measurement based on JIS-2272. 1.0 g of the fiber sample was placed in a crucible, burned until it became ash and a carbonaceous substance, then placed in an electric furnace and heated at a temperature higher than the decomposition temperature of polyethylene. After the carbonaceous substance was completely turned into ash, it was allowed to cool in a desiccator and the mass was measured to determine the ash content. The content of hard particles was determined based on the mass ratio of the ash content to the total of the obtained ash content and the fiber content.

(6)耐切創性
耐切創性は、クープテスター(ソドマット(SODMAT)社製)の装置を用い、ヨーロッパ規格であるEN388法に基づいて測定を行った。具体的には、後記する方法で作製した各ポリエチレン繊維を用い、島精機製作所社製の丸編み機を用いて、目付が350g/m2±35g/m2の筒編み物を作製した。得られた筒編み物のクープテスターのインデックス値を以下のようにして算出して、耐切創性を評価した。
(6) Cut resistance The cut resistance was measured based on the EN388 method, which is a European standard, using a device of a coup tester (manufactured by SODMAT). Specifically, using each polyethylene fiber produced by the method described later, a tubular knitting machine having a basis weight of 350 g / m 2 ± 35 g / m 2 was produced using a circular knitting machine manufactured by Shima Seiki Seisakusho Co., Ltd. The index value of the obtained tube knitting coup tester was calculated as follows to evaluate the cut resistance.

ここで、上記装置の試料台にはアルミ箔が設けられており、この上に編物サンプルを載置した。次いで、装置に備えられた円形の刃を、走行方向とは逆方向に回転させながら試料の上を走らせた。なお、編物サンプルが切断されると、円形刃とアルミ箔とが接触して通電することで、耐切創性試験が終了したことが検知された。円形刃が作動している間中、装置に取り付けられているカウンターがカウントを行うので、その数値を記録した。 Here, an aluminum foil is provided on the sample table of the above device, and the knitted sample is placed on the aluminum foil. Then, the circular blade provided in the device was run on the sample while rotating in the direction opposite to the running direction. When the knitted sample was cut, it was detected that the cut resistance test was completed by the contact between the circular blade and the aluminum foil and energization. While the circular blade was operating, the counter attached to the device counted and recorded the value.

この試験では、目付け約200g/m2の平織りの綿布をブランクとし、編物サンプルの切創レベルを評価した。ブランクからテストを開始し、ブランクのテストと編物サンプルのテストとを交互に行い、編物サンプルを5回テストし、最後に6回目のブランクをテストして、1セットの試験を終了した。以上の試験を5セット行い、5セットの平均のIndex値(インデックス値)を耐切創性の代用評価とした。インデックス値が高いほど、耐切創性に優れることを意味する。In this test, a plain weave cotton cloth with a basis weight of about 200 g / m 2 was used as a blank, and the cut level of the knitted sample was evaluated. The test was started from the blank, the blank test and the knitted sample test were alternated, the knitted sample was tested 5 times, and finally the 6th blank was tested to complete one set of tests. Five sets of the above tests were performed, and the average Index value (index value) of the five sets was used as a substitute evaluation for cut resistance. The higher the index value, the better the cut resistance.

インデックス値は、次式により算出される。
A=(サンプルテスト前の綿布のカウント値+サンプルテスト後の綿布のカウント値)/2
インデックス値=(サンプルのカウント値+A)/A
The index value is calculated by the following formula.
A = (count value of cotton cloth before sample test + count value of cotton cloth after sample test) / 2
Index value = (sample count value + A) / A

耐切創性の評価に使用したカッターは、OLFA株式会社製のロータリーカッターL型用φ45mmである。材質はSKS-7タングステン鋼であり、刃厚0.3ミリ厚であった。また、テスト時にかかる荷重は3.14N(320gf)にして評価を行った。 The cutter used for the evaluation of cut resistance is a rotary cutter L-shaped φ45 mm manufactured by OLFA Co., Ltd. The material was SKS-7 tungsten steel, and the blade thickness was 0.3 mm. Moreover, the load applied at the time of the test was set to 3.14N (320gf) and the evaluation was performed.

本実施例では、実施例1で得られたインデックス値を耐切創性100とし、これを基準値として、それ以外の実施例2~4および比較例1~5は当該実施例1に対する相対比で耐切創性を表した。例えば比較例1の耐切創性は52であるが、これは、実施例1の耐切創性を100%としたとき、52%(約半分)しか得られなかったことを意味する。 In this example, the index value obtained in Example 1 is set as the cut resistance 100, and this is used as a reference value, and the other Examples 2 to 4 and Comparative Examples 1 to 5 are relative ratios to the Example 1. Represented cut resistance. For example, the cut resistance of Comparative Example 1 is 52, which means that when the cut resistance of Example 1 is 100%, only 52% (about half) is obtained.

(実施例1)
極限粘度が1.9dL/gであるポリエチレンペレット78質量%と、アスペクト比が1.1、平均短径が2.0μmであるシリカ粒子(硬質粒子)22質量%とを混ぜてブレンドポリマーを作製した。なお、硬質粒子のアスペクト比は、上記したように10個の平均であり、その範囲は0.9から1.2であった。このブレンドポリマーを押出機に供給して280℃で溶融し、オリフィス径φ0.8mm、30Hからなる紡糸口金からノズル面温度288℃にて単孔吐出量0.32g/minで吐出させた。
(Example 1)
A blend polymer is prepared by mixing 78% by mass of polyethylene pellets having an ultimate viscosity of 1.9 dL / g and 22% by mass of silica particles (hard particles) having an aspect ratio of 1.1 and an average minor axis of 2.0 μm. bottom. The aspect ratio of the hard particles was an average of 10 particles as described above, and the range was 0.9 to 1.2. This blended polymer was supplied to an extruder, melted at 280 ° C., and discharged from a spinneret having an orifice diameter of φ0.8 mm and 30H at a nozzle surface temperature of 288 ° C. and a single hole discharge rate of 0.32 g / min.

吐出された糸条を10cmの保温区間通過させ、その後18℃、0.5m/secのクエンチで冷却後、紡糸速度200m/minでチーズ形状に捲き取り、未延伸糸を得た。次いで100℃の熱風で加熱して安定に延伸できる最大の延伸倍率にて巻き取って延伸糸を得た。延伸糸を全体として880dtex±88dtexとなるように合糸し、実施例1のポリエチレン繊維を得た。得られたポリエチレン繊維を用いて、上記方法により筒編み物を作製して耐切創性を評価した。これらの結果を表1に示す。なお、本実施例を含め以下の実施例及び比較例では、室温で3倍に延伸し、100℃で2.3倍延伸したものを用いた。 The discharged yarn was passed through a heat insulating section of 10 cm, cooled at 18 ° C. at 0.5 m / sec, and then wound into a cheese shape at a spinning speed of 200 m / min to obtain an undrawn yarn. Then, it was heated with hot air at 100 ° C. and wound at the maximum drawing ratio capable of stably drawing to obtain a drawn yarn. The drawn yarns were combined so as to have a total of 880 dtex ± 88 dtex to obtain the polyethylene fiber of Example 1. Using the obtained polyethylene fiber, a tubular knitted fabric was produced by the above method and the cut resistance was evaluated. These results are shown in Table 1. In the following examples and comparative examples including this example, those stretched 3 times at room temperature and 2.3 times at 100 ° C. were used.

このようにして得られた実施例1のポリエチレン繊維のVを上記方法で算出すると共に、耐切創性を評価した。これらの結果を表1に示す。 The V of the polyethylene fiber of Example 1 thus obtained was calculated by the above method, and the cut resistance was evaluated. These results are shown in Table 1.

(実施例2~6、比較例1、比較例5)
実施例1の条件において、ポリマーの極限粘度;硬質粒子の材質、平均短径、アスペクト比、および含有量;ポリエチレン繊維のVを表1のように変更したこと以外は実施例1と同様にして延伸糸を得て、耐切創性を評価した。これらの結果を表1に示す。
(Examples 2 to 6, Comparative Example 1, Comparative Example 5)
Under the conditions of Example 1, the same as that of Example 1 except that the ultimate viscosity of the polymer; the material of the hard particles, the average minor axis, the aspect ratio, and the content; the V of the polyethylene fiber was changed as shown in Table 1. A drawn yarn was obtained and the cut resistance was evaluated. These results are shown in Table 1.

(比較例2)
実施例1の条件において、極限粘度が5.5dL/gであるポリエチレンペレット94質量%と、アスペクト比が1.1、平均短径が2.0μmであるシリカ粒子(硬質粒子)6質量%とを混ぜてブレンドポリマーを作製したが、ポリマーと硬質粒子が混ざり合わず、未延伸糸を得ることができなかった。
(Comparative Example 2)
Under the conditions of Example 1, 94% by mass of polyethylene pellets having an ultimate viscosity of 5.5 dL / g and 6% by mass of silica particles (hard particles) having an aspect ratio of 1.1 and an average minor axis of 2.0 μm. Was mixed to prepare a blended polymer, but the polymer and the hard particles did not mix and an undrawn yarn could not be obtained.

(比較例3)
実施例1の条件において、アスペクト比が1.1、平均短径が25.0μmであるシリカ粒子(硬質粒子)6質量%を用いてブレンドポリマーを作製したが、紡糸時、詰まりが発生し、未延伸糸を得ることができなかった。
(Comparative Example 3)
Under the conditions of Example 1, a blend polymer was prepared using 6% by mass of silica particles (hard particles) having an aspect ratio of 1.1 and an average minor axis of 25.0 μm, but clogging occurred during spinning. Undrawn yarn could not be obtained.

(比較例4)
実施例1の条件において、アスペクト比が18.0、平均短径が7.0μmであるガラス粒子(硬質粒子)6質量%を用いてブレンドポリマーを作製したが、紡糸時、詰まりが発生し、未延伸糸を得ることができなかった。
(Comparative Example 4)
Under the conditions of Example 1, a blended polymer was produced using 6% by mass of glass particles (hard particles) having an aspect ratio of 18.0 and an average minor axis of 7.0 μm, but clogging occurred during spinning. Undrawn yarn could not be obtained.

Figure 0007070667000001
Figure 0007070667000001

表1から分かるように、本発明の要件を満足するポリエチレン繊維を用いた実施例1~6は、耐切創性に優れている。これに対し、V(V1/V2)が本発明の範囲外である比較例1、5は耐切創性が低下した。また、極限粘度、平均短径、アスペクト比のいずれかが本発明の要件を満足しない比較例2~4では、所望とする未延伸糸が得られなかった。 As can be seen from Table 1, Examples 1 to 6 using polyethylene fibers satisfying the requirements of the present invention are excellent in cut resistance. On the other hand, in Comparative Examples 1 and 5 in which V (V1 / V2) was outside the scope of the present invention, the cut resistance was lowered. Further, in Comparative Examples 2 to 4 in which any of the ultimate viscosity, the average minor diameter, and the aspect ratio did not satisfy the requirements of the present invention, the desired undrawn yarn could not be obtained.

以上、本発明の実施の形態および各実施例について説明したが、今回開示された実施の形態および各実施例はすべての点で例示であって制限的なものではない。本発明の範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内での全ての変更が含まれる。 Although the embodiments and the embodiments of the present invention have been described above, the embodiments and the embodiments disclosed this time are examples in all respects and are not limiting. The scope of the present invention is indicated by the scope of claims and includes all modifications within the meaning and scope equivalent to the scope of claims.

本発明のポリエチレン繊維は、高い耐切創性を有するため、該耐切創性を活かした耐切創性織編物、例えば手袋及びベスト等に利用可能である。また、該ポリエチレン繊維単独としてテープ、ロープ、ネット、釣糸、資材防護カバー、シート、カイト用糸、洋弓弦、セールクロス、幕材、防護材、防弾材、医療用縫合糸、人工腱、人工筋肉、繊維強化樹脂補強材、セメント補強材、繊維強化ゴム補強材、工作機械部品、電池セパレーター、化学フィルター等の産業用資材に利用可能である。このように、本発明のポリエチレン繊維は、優れた性能を発揮でき、幅広く応用できるため、産業界へ大きく寄与できる。 Since the polyethylene fiber of the present invention has high cut resistance, it can be used for cut resistant woven and knitted fabrics utilizing the cut resistance, such as gloves and vests. In addition, as the polyethylene fiber alone, tape, rope, net, fishing thread, material protective cover, sheet, kite thread, western bow string, sail cloth, curtain material, protective material, bulletproof material, medical suture, artificial tendon, artificial muscle , Fiber reinforced resin reinforcing material, cement reinforcing material, fiber reinforced rubber reinforcing material, machine tool parts, battery separators, chemical filters and other industrial materials. As described above, the polyethylene fiber of the present invention can exhibit excellent performance and can be widely applied, so that it can greatly contribute to the industrial world.

Claims (4)

アスペクト比が3未満、平均短径が2.0μm以上、20μm以下の真球状、および/または扁球状の硬質粒子であって、前記硬質粒子は原子番号14以上の元素を含み、
ポリエチレン繊維中に前記硬質粒子を3質量%以上含有すると共に、
前記ポリエチレン繊維の単糸あたりの繊維径が45μm以下であり、
下式で表される密度の比Vが0.70以上、0.97未満を満足することを特徴とするポリエチレン繊維。
V=V1/V2
式中、
V1は密度勾配管法で測定されるポリエチレン繊維の密度であり、
V2はピクノメーター法で測定されるポリエチレン繊維の密度である。
True spherical and / or oblate hard particles having an aspect ratio of less than 3 and an average minor axis of 2.0 μm or more and 20 μm or less, wherein the hard particles contain an element having an atomic number of 14 or more.
In addition to containing 3% by mass or more of the hard particles in the polyethylene fiber,
The fiber diameter per single yarn of the polyethylene fiber is 45 μm or less, and the fiber diameter is 45 μm or less.
A polyethylene fiber having a density ratio V represented by the following formula, which satisfies 0.70 or more and less than 0.97.
V = V1 / V2
During the ceremony
V1 is the density of polyethylene fibers measured by the density gradient tube method.
V2 is the density of polyethylene fibers measured by the pycnometer method.
ポリエチレンの極限粘度[η]は0.8dL/g以上、4.9dL/g未満である請求項1に記載のポリエチレン繊維。 The polyethylene fiber according to claim 1, wherein the ultimate viscosity [η] of polyethylene is 0.8 dL / g or more and less than 4.9 dL / g. 前記硬質粒子が、金属、珪素化合物、または鉱物である請求項1または2に記載のポリエチレン繊維。 The polyethylene fiber according to claim 1 or 2, wherein the hard particles are a metal, a silicon compound, or a mineral. 請求項1から3のいずれか1項に記載のポリエチレン繊維を含むことを特徴とする製品。 A product comprising the polyethylene fiber according to any one of claims 1 to 3.
JP2020510239A 2018-03-27 2018-03-27 Polyethylene fiber and products using it Active JP7070667B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/012429 WO2019186696A1 (en) 2018-03-27 2018-03-27 Polyethylene fiber, and product using same

Publications (2)

Publication Number Publication Date
JPWO2019186696A1 JPWO2019186696A1 (en) 2021-04-22
JP7070667B2 true JP7070667B2 (en) 2022-05-18

Family

ID=68059395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020510239A Active JP7070667B2 (en) 2018-03-27 2018-03-27 Polyethylene fiber and products using it

Country Status (2)

Country Link
JP (1) JP7070667B2 (en)
WO (1) WO2019186696A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102534492B1 (en) * 2020-04-03 2023-05-26 코오롱인더스트리 주식회사 Cut-resistance complex fiber
JPWO2022014391A1 (en) * 2020-07-13 2022-01-20

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010507026A (en) 2006-10-17 2010-03-04 ディーエスエム アイピー アセッツ ビー.ブイ. Cut-resistant yarn, method for producing cut-resistant yarn, and products including cut-resistant yarn
US20100178503A1 (en) 2009-01-09 2010-07-15 Thomas Yiu-Tai Tam Melt spinning blends of UHMWPE and HDPE and fibers made therefrom
JP2010159403A (en) 2008-12-12 2010-07-22 Sumitomo Chemical Co Ltd Resin composition for filament, and the resultant filament
WO2011102186A1 (en) 2010-02-19 2011-08-25 東洋紡績株式会社 Highly-moldable, highly-functional polyethylene fiber
KR101235255B1 (en) 2010-12-06 2013-02-20 주식회사 삼양사 Manufacturing method of high strength polyethylene multifilament drawn fibers containing nano silica particles
JP2014065995A (en) 2012-09-27 2014-04-17 Kuraray Co Ltd Molten anisotropic aromatic polyester fiber excellent in cut resistance
CN106350882A (en) 2016-11-04 2017-01-25 常熟绣珀纤维有限公司 Cutting-resistant ultra high molecular weight polyethylene fiber, preparation method and application thereof
JP2017179684A (en) 2016-03-29 2017-10-05 東洋紡株式会社 Polyethylene fiber having excellent cut resistance, and product using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5851668A (en) * 1992-11-24 1998-12-22 Hoechst Celanese Corp Cut-resistant fiber containing a hard filler
EP0760025B1 (en) * 1994-05-16 2002-08-28 Honeywell International, Inc. Filled cut-resistant fiber

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010507026A (en) 2006-10-17 2010-03-04 ディーエスエム アイピー アセッツ ビー.ブイ. Cut-resistant yarn, method for producing cut-resistant yarn, and products including cut-resistant yarn
JP2010159403A (en) 2008-12-12 2010-07-22 Sumitomo Chemical Co Ltd Resin composition for filament, and the resultant filament
US20100178503A1 (en) 2009-01-09 2010-07-15 Thomas Yiu-Tai Tam Melt spinning blends of UHMWPE and HDPE and fibers made therefrom
WO2011102186A1 (en) 2010-02-19 2011-08-25 東洋紡績株式会社 Highly-moldable, highly-functional polyethylene fiber
KR101235255B1 (en) 2010-12-06 2013-02-20 주식회사 삼양사 Manufacturing method of high strength polyethylene multifilament drawn fibers containing nano silica particles
JP2014065995A (en) 2012-09-27 2014-04-17 Kuraray Co Ltd Molten anisotropic aromatic polyester fiber excellent in cut resistance
JP2017179684A (en) 2016-03-29 2017-10-05 東洋紡株式会社 Polyethylene fiber having excellent cut resistance, and product using the same
CN106350882A (en) 2016-11-04 2017-01-25 常熟绣珀纤维有限公司 Cutting-resistant ultra high molecular weight polyethylene fiber, preparation method and application thereof

Also Published As

Publication number Publication date
JPWO2019186696A1 (en) 2021-04-22
WO2019186696A1 (en) 2019-10-03

Similar Documents

Publication Publication Date Title
KR101361871B1 (en) Highly functional polyethylene fiber, and dyed highly functional polyethylene fiber
KR100943592B1 (en) Polyethylene Fiber and Process for Producing the Same
CN107313126A (en) A kind of method that the fiber of graphene modified nylon 6 is produced by high speed spinning
JP6760062B2 (en) High-performance multifilament
JP7070667B2 (en) Polyethylene fiber and products using it
Yu et al. Effects of the reaction degree of melamine-formaldehyde resin on the structures and properties of melamine-formaldehyde/polyvinyl alcohol composite fiber
JP6996555B2 (en) Polyethylene fiber and products using it
TW200909621A (en) High strength polyethylene fiber, its precursor and method of manufacturing the same with high productivity
KR102224261B1 (en) Multifilament and braid
JP2017179684A (en) Polyethylene fiber having excellent cut resistance, and product using the same
JP7268683B2 (en) Polyethylene fiber and products using it
WO2002064867A1 (en) Resin compositions, monofilaments, process for producing the same and fishng lines
JP6874468B2 (en) Polyethylene fiber and products using it
WO2020230809A1 (en) Polyethylene fibre
KR102224257B1 (en) Multifilament and braid
JP4952868B1 (en) High-performance polyethylene fiber and dyeing high-performance polyethylene fiber
JP2009079343A (en) Method for producing precursor fiber for carbon fiber and carbon fiber
WO2022014391A1 (en) Polyethylene fiber and product containing said fiber
JP2007297763A (en) High-strength polyethylene fiber and method for producing the same
JP4366626B2 (en) Mesh knitted fabric for screen printing
JP5696809B1 (en) Multifilament
JP7176517B2 (en) Multifilament and its constituent monofilaments
JP7048060B2 (en) Manufacturing method of multifilament yarn made of high density fiber
JP2004162205A (en) Sheath/core-type monofilament and fishnet using the same
JP2020114955A (en) Polyethylene filament excellent in knot strength retention

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220418

R151 Written notification of patent or utility model registration

Ref document number: 7070667

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350