JP7048060B2 - Manufacturing method of multifilament yarn made of high density fiber - Google Patents

Manufacturing method of multifilament yarn made of high density fiber Download PDF

Info

Publication number
JP7048060B2
JP7048060B2 JP2021024040A JP2021024040A JP7048060B2 JP 7048060 B2 JP7048060 B2 JP 7048060B2 JP 2021024040 A JP2021024040 A JP 2021024040A JP 2021024040 A JP2021024040 A JP 2021024040A JP 7048060 B2 JP7048060 B2 JP 7048060B2
Authority
JP
Japan
Prior art keywords
component
core component
sheath
core
multifilament yarn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021024040A
Other languages
Japanese (ja)
Other versions
JP2021080624A (en
Inventor
弘平 池田
翔平 池上
知樹 田中
嘉祐 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Ester Co Ltd
Unitika Ltd
Original Assignee
Nippon Ester Co Ltd
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Ester Co Ltd, Unitika Ltd filed Critical Nippon Ester Co Ltd
Publication of JP2021080624A publication Critical patent/JP2021080624A/en
Application granted granted Critical
Publication of JP7048060B2 publication Critical patent/JP7048060B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Multicomponent Fibers (AREA)

Description

本発明は、高比重繊維に関し、特に水産資材用途に好適な比重の高さと高強度を有するとともに、毛羽数の少ない高比重繊維からなるマルチフィラメント糸に関するものである。 The present invention relates to a high density fiber, and more particularly to a multifilament yarn made of a high density fiber having a high density and high strength suitable for use in marine products and having a small number of fluffs.

従来、ポリエステルやポリアミド等の合成繊維は高強度であるため、漁網等の水産資材用ネットや土木資材等の陸上ネット用繊維として利用されている。また、機能性粒子を高濃度に合成繊維に含有させる技術は合成繊維の性質を損なうことなく、手頃に機能を付与する手段として有効な技術である。 Conventionally, since synthetic fibers such as polyester and polyamide have high strength, they are used as fibers for fishery nets such as fishing nets and land nets such as civil engineering materials. Further, the technique of containing the functional particles in the synthetic fiber at a high concentration is an effective technique as a means for imparting the function at a reasonable price without impairing the properties of the synthetic fiber.

水産資材用の繊維の中でも、定置網用途に用いる繊維としては、水中での沈降速度を速くするためと、潮流に対する漁網の保形性を向上させるために、使用する繊維は比重の高いものが求められている。特許文献1や特許文献2に記載されているように、芯鞘型複合繊維の芯成分に高比重粒子を含有させ、比重を1.5~1.7以上とした高比重糸が提案されている。 Among the fibers for fishery materials, the fibers used for fixed nets are required to have a high specific density in order to increase the settling speed in water and to improve the shape retention of fishing nets against tidal currents. Has been done. As described in Patent Document 1 and Patent Document 2, a high-density yarn in which high-density particles are contained in the core component of a core-sheath type composite fiber and the specific density is 1.5 to 1.7 or more has been proposed. There is.

特開平8-311721号公報Japanese Unexamined Patent Publication No. 8-311721 特開平8-144125号公報Japanese Unexamined Patent Publication No. 8-144125

上記した技術における複合繊維では、芯成分に高比重粒子を高濃度に含有させると均一な分散が困難となりやすく、その結果、延伸する際に高濃度に高比重粒子が含有された部分は延伸流動性に劣ることとなり、芯成分にボイド(空隙)が発生し、繊維中の高比重粒子の含有量に相当する比重を有する繊維が得られ難くなったり、あるいは、芯成分の切断によると思われる延伸毛羽が発生したりする。このような一部の繊維が切断してなり毛羽を有するマルチフィラメント糸をラッセル網等に適用すると、毛羽が原因となって網の目合いが閉塞するという問題が生じた。そのため、ビーム捲き取り時に整経試験を同時に行い、毛羽の除去を行っていることが現状であり、生産効率に劣るという問題があった。 In the composite fiber in the above-mentioned technique, if the core component contains high-density particles at a high concentration, uniform dispersion tends to be difficult, and as a result, the portion containing the high-density particles at a high concentration during stretching tends to flow. The properties are inferior, voids (voids) are generated in the core component, and it is difficult to obtain a fiber having a specific density corresponding to the content of high specific density particles in the fiber, or it is considered that the core component is cut. Stretched fluff may occur. When a multifilament yarn having fluff due to cutting of some of such fibers is applied to a Russell net or the like, there arises a problem that the mesh of the net is blocked due to the fluff. Therefore, the current situation is that a warping test is performed at the same time as the beam is wound to remove fluff, and there is a problem that the production efficiency is inferior.

本発明は、上記した問題を解決するものであって、芯成分にボイドを発生させることなく、高比重粒子の含有量に見合う比重の高い高比重繊維を得ること、高強度の繊維を得ること、繊維の切断による毛羽が生じにくいマルチフィラメント糸を得ること、生産性が向上し連続操業が可能であることを同時に満たす高比重繊維からなるマルチフィラメント糸を提供することを課題とする。 The present invention solves the above-mentioned problems, and obtains high-density fibers having a high specific density commensurate with the content of high-density particles without generating voids in the core component, and obtains high-strength fibers. It is an object of the present invention to obtain a multifilament yarn which is less likely to cause fluff due to cutting of the fiber, and to provide a multifilament yarn made of high density fiber which simultaneously satisfies that productivity is improved and continuous operation is possible.

本発明者等は、前記課題を達成するために鋭意検討を行った。特に、高比重粒子を含有させる芯成分に配するポリマーとして種々のものを検討していたところ、結晶性を有する特定の共重合ポリエステルを用いたことにより、生産効率が向上し、連続操業が可能でありながら、高強度でかつ高比重であり、毛羽が生じにくいマルチフィラメントを得ることができることを見出した。そして、この知見に基づき、さらに検討し、本発明に到達した。 The present inventors have conducted diligent studies in order to achieve the above-mentioned problems. In particular, when various polymers were studied as the polymer to be arranged in the core component containing high specific density particles, the production efficiency was improved and continuous operation was possible by using a specific copolymerized polyester having crystallinity. However, it has been found that it is possible to obtain a multifilament having high strength and high specific density and less likely to cause fluff. Then, based on this finding, further studies were carried out to reach the present invention.

すなわち、本発明は、芯成分中に高比重粒子を含有し、比重が1.50以上である芯鞘型複合繊維からなるマルチフィラメント糸の製造方法であり、
芯成分を構成するポリマーとして結晶融点200~220℃、ガラス転移温度70~80℃の共重合ポリエステルを用い、鞘成分を構成するポリマーとしてポリエチレンテレフタレートを用い、
複合型の溶融紡糸装置に、高比重粒子を含有する芯成分と、鞘成分とを導入して、溶融紡糸により紡出された繊維を冷却後、続いて1段目と2段目の熱延伸を行い、速度1500~3500m/分で巻き取ることにより、
マルチフィラメント糸の強度が4.7cN/dtex以上、かつ毛羽数が20個/100万m以下である高比重繊維からなるマルチフィラメント糸を得ることを特徴とするマルチフィラメント糸の製造方法を要旨とする。
That is, the present invention is a method for producing a multifilament yarn composed of a core-sheath type composite fiber containing high specific gravity particles in the core component and having a specific gravity of 1.50 or more.
Copolymerized polyester having a crystal melting point of 200 to 220 ° C. and a glass transition temperature of 70 to 80 ° C. was used as the polymer constituting the core component, and polyethylene terephthalate was used as the polymer constituting the sheath component.
A core component containing high specific gravity particles and a sheath component are introduced into a composite type melt spinning device to cool the fibers spun by melt spinning, and then heat stretching in the first and second stages is performed. By winding at a speed of 1500 to 3500 m / min.
The gist is a method for producing a multifilament yarn, which is characterized by obtaining a multifilament yarn made of high density fibers having a strength of 4.7 cN / dtex or more and a fluff number of 20 pieces / 1 million m or less. do.

本発明の特徴は、比重が1.50以上という高比重の繊維でありながら、この繊維によって構成されるマルチフィラメント糸の強度が4.7cN/dtex以上であり、さらに毛羽数が20個/100万m以下であるという性能を同時に満たし、マルチフィラメント糸の製造工程においても、得られたマルチフィラメント糸を用いて製編網する際においても、連続操業性および連続生産性が向上することにある。 The features of the present invention are that the fiber has a high specific gravity of 1.50 or more, the strength of the multifilament yarn composed of this fiber is 4.7 cN / dtex or more, and the number of fluffs is 20/100. The performance of 10,000 m or less is satisfied at the same time, and continuous operability and continuous productivity are improved both in the manufacturing process of multifilament yarn and in knitting and knitting using the obtained multifilament yarn. ..

比重が1.50以上という高比重の繊維を得るためには、芯成分中に配合する高比重粒子をマトリックスとなる芯成分のポリマーが良好に把持し、ポリマーと高比重粒子との間に空隙や亀裂(ボイド)をできるだけ発生させないことを要する。 In order to obtain a fiber having a high specific density of 1.50 or more, the polymer of the core component as a matrix grips the high specific density particles blended in the core component well, and a gap is formed between the polymer and the high specific gravity particles. It is necessary to prevent the generation of cracks (voids) as much as possible.

ここで、問題となるボイド発生は、繊維の製造工程における延伸工程で生じる。すなわち、ポリマーと高比重粒子とは相溶性がなく、また、ポリマー中に多量の高比重粒子を含有させるため、延伸の応力がかかるとポリマーと粒子との界面にボイドが発生する。そこで、延伸中において芯成分ポリマーが流動性を有する状態であれば、ポリマーと高比重粒子との界面にボイドが発生しにくくなるのではないかと、発明者等は考えた。そして、延伸中における芯成分ポリマーが流動性を維持する状態とするために、延伸前の加熱温度を上げてみることとした。すると、芯成分ポリマーの流動性は上がるが、設定温度範囲のコントロールが難しく加熱温度が一定以上を超えると、芯成分ポリマーの結晶化が始まって逆に流動性が下がり、さらには、鞘部ポリマーの結晶化も始まることになり、十分な延伸が施せず、得られる繊維の強度は低く、また、芯成分ポリマーの流動性が下がることから芯成分ポリマー中にボイドが発生して、その箇所から繊維が切断されやすく、その切断した繊維がマルチフィラメント糸中における毛羽となって多量に発生することになってしまった。したがって、このように加熱温度の設定幅が小さいと、結局、目的とする高比重でかつ高強度で毛羽の少ないマルチフィラメント糸を安定して得ることができず、連続操業性や生産性が上がらない。 Here, the problematic void generation occurs in the drawing step in the fiber manufacturing process. That is, since the polymer and the high-density particles are incompatible with each other and a large amount of the high-density particles are contained in the polymer, voids are generated at the interface between the polymer and the particles when stretching stress is applied. Therefore, the inventors thought that if the core component polymer had fluidity during stretching, voids would be less likely to occur at the interface between the polymer and the high-density particles. Then, in order to maintain the fluidity of the core component polymer during stretching, it was decided to raise the heating temperature before stretching. Then, the fluidity of the core component polymer increases, but it is difficult to control the set temperature range, and when the heating temperature exceeds a certain level, the core component polymers start to crystallize and the fluidity decreases, and further, the sheath polymer. Crystallization of materials will also start, sufficient stretching will not be applied, the strength of the obtained fiber will be low, and the fluidity of the core component polymer will decrease, so voids will be generated in the core component polymer, and from that point. The fibers are easily cut, and the cut fibers become fluff in the multifilament yarn and are generated in large quantities. Therefore, if the setting range of the heating temperature is small in this way, it is not possible to stably obtain the desired multifilament yarn having a high specific density, high strength, and little fluff, and continuous operability and productivity are improved. not.

そこで、加熱温度の設定幅を大きくすることが可能であり、延伸時の流動性を維持することが可能な芯成分ポリマーについて検討していたなかで、芯成分ポリマーのガラス転移温度と融点の関係に着目した。すなわち、ガラス転移温度(Tg)が低いと結晶化しやすくなるため、上記したようなボイドの発生や延伸不良が生じやすくなり、一方、融点が高いと、延伸時の流動性を上げるために加熱温度を上げる必要が生じ、そうすると鞘部ポリマーの結晶化に繋がり、十分な延伸ができなくなる。そこで、種々のポリマーを検討した結果、芯成分ポリマーのガラス転移温度が70~80℃の範囲、かつ結晶融点が200~220℃の範囲に設定しうることにより、加熱温度の設定幅を大きくすることが可能であり、延伸中の芯部ポリマーの流動性を維持することが可能であることを見出した。 Therefore, while studying a core component polymer that can increase the setting range of the heating temperature and maintain the fluidity during stretching, the relationship between the glass transition temperature and the melting point of the core component polymer was investigated. I paid attention to it. That is, when the glass transition temperature (Tg) is low, crystallization is likely to occur, so that voids and stretching defects as described above are likely to occur, while when the melting point is high, the heating temperature is increased in order to increase the fluidity during stretching. It becomes necessary to raise the temperature, which leads to crystallization of the sheath polymer and prevents sufficient stretching. Therefore, as a result of examining various polymers, the glass transition temperature of the core component polymer can be set in the range of 70 to 80 ° C. and the crystal melting point can be set in the range of 200 to 220 ° C., thereby increasing the setting range of the heating temperature. It has been found that it is possible and it is possible to maintain the fluidity of the core polymer during stretching.

ガラス転移温度が70~80℃であり、かつ結晶融点が200~220℃の共重合ポリエステルとして、エチレンテレフタレート単位に、共重合成分としてイソフタル酸およびビスフェノールAのエチレンオキシド付加物を下式のモル分率で共重合してなる共重合ポリエステルを用いるとよい。
0.0≦A≦10.0
5.0<B≦15.0
(上式中、Aは共重合ポリエステルの全酸成分に対するイソフタル酸のモル分率(%)、Bは共重合ポリエステルの全グリコール成分に対するビスフェノールAのエチレンオキシド付加物のモル分率(%)である。)
As a copolymerized polyester having a glass transition temperature of 70 to 80 ° C. and a crystal melting point of 200 to 220 ° C., an ethylene oxide adduct of isophthalic acid and bisphenol A as a copolymerization component is added in ethylene terephthalate units to the molar fraction of the following formula. It is preferable to use a copolymerized polyester obtained by copolymerizing with.
0.0 ≤ A ≤ 10.0
5.0 <B ≦ 15.0
(In the above formula, A is the mole fraction (%) of isophthalic acid with respect to the total acid component of the copolymerized polyester, and B is the mole fraction (%) of the ethylene oxide adduct of bisphenol A with respect to the total glycol component of the copolymerized polyester. .)

ここで、モル分率とは、芯成分のポリエステルの全酸成分に対するイソフタル酸のモル分率A(モル%)、芯成分のポリエステルの全グリコール成分に対するビスフェノールAのエチレンオキシド付加物のモル分率B(モル%)である。イソフタル酸成分、ビスフェノールAのエチレンオキシド付加物成分を上記したモル分率で共重合することにより、耐熱性が良好な結晶融点を有する低融点ポリエステルとすることができる。 Here, the mole fraction is the mole fraction A (mol%) of isophthalic acid with respect to the total acid component of the polyester core component, and the mole fraction B of the ethylene oxide adduct of bisphenol A with respect to the total glycol component of the polyester core component. (Mole fraction). By copolymerizing the isophthalic acid component and the ethylene oxide adduct component of bisphenol A at the above-mentioned mole fraction, a low melting point polyester having a good heat resistance and a crystal melting point can be obtained.

なお、本発明において共重合ポリエステルの組成は、以下に基づき求める。すなわち、共重合ポリエステル樹脂を重水素化ヘキサフルオロイソプロパノールと重水素化クロロホルムとの容量比が1/20の混合溶媒に溶解させ、日本電子社製LA-400型NMR装置にて1H-NMRを測定し、得られたチャートの各成分のプロトンのピークの積分強度から、共重合成分の種類と含有量を求める。 In the present invention, the composition of the copolymerized polyester is determined based on the following. That is, the copolymerized polyester resin is dissolved in a mixed solvent having a volume ratio of deuterated hexafluoroisopropanol and deuterated chloroform of 1/20, and 1H-NMR is measured by a LA-400 type NMR apparatus manufactured by JEOL Ltd. Then, the type and content of the copolymerization component are obtained from the integrated intensity of the proton peaks of each component in the obtained chart.

上記した共重合ポリエステルは、溶融紡糸の際に溶融時に熱分解が生じにくく、溶融段階にて高比重粒子を良好に保持しうるため、紡糸パックの目詰まりが生じにくく、紡糸の連続生産性が格段と向上する。溶融時に熱分解しやすいポリマーの場合、粘度低下が生じて溶融したポリエステルが高比重粒子を保持しにくくなり、保持できなかった高比重粒子が紡糸口金より上流部である紡糸パック内に徐々に残ってしまうことになって、パックの目詰まりによる紡糸性の問題が発生することから、パック交換を要するため連続操業ができず、生産性が低下する。これは、芯成分に非晶性のポリマーを用いた場合においても同様であり、非晶性のポリマーの場合、延伸時に流動性は確保しやすいために比重や強度は満足する繊維が得られやすいが、溶融紡糸の際に、溶融したポリエステルが高比重粒子を保持しにくく、上記と同様、連続操業が困難で生産性が低下する。 The above-mentioned copolymerized polyester is less likely to cause thermal decomposition at the time of melting during melt spinning, and can hold high specific gravity particles well at the melting stage, so that the spinning pack is less likely to be clogged and the continuous productivity of spinning is improved. It will improve dramatically. In the case of a polymer that is easily pyrolyzed during melting, the viscosity decreases and it becomes difficult for the melted polyester to retain the high density particles, and the high density particles that could not be retained gradually remain in the spinning pack upstream of the spinneret. This causes a problem of spinnability due to clogging of the pack, so that continuous operation cannot be performed because the pack needs to be replaced, and the productivity is lowered. This is the same even when an amorphous polymer is used as the core component. In the case of an amorphous polymer, it is easy to secure fluidity at the time of stretching, so that it is easy to obtain a fiber satisfying the specific gravity and strength. However, during melt spinning, the molten polyester is difficult to retain high specific gravity particles, and as in the above, continuous operation is difficult and productivity is lowered.

また、ビスフェノールAのエチレンオキシド付加物成分を特定モル分率にて共重合することにより、イソフタル酸成分のみを共重合する場合と比較してガラス転移温度を比較的高くすることができ、芯成分の結晶化を遅らせることにより、延伸中の延伸流動性の低下を抑制し、芯成分に発生するボイドを抑制することを可能とする。 Further, by copolymerizing the ethylene oxide adduct component of bisphenol A at a specific mole fraction, the glass transition temperature can be relatively high as compared with the case where only the isophthalic acid component is copolymerized, and the core component can be used. By delaying the crystallization, it is possible to suppress the decrease in the stretching fluidity during stretching and to suppress the voids generated in the core component.

さらに、ビスフェノールAのエチレンオキシド付加物成分とイソフタル酸成分とを上記した特定のモル分率で共重合することにより、上記したようにガラス転移温度を比較的高くしながら、融点は低め(200~220℃)に設定することができるため、延伸前に加熱温度の上げ過ぎを防ぎ、芯成分ポリマーの流動性を維持できる。ここで、融点が230℃以上となると、芯成分ポリマーの流動性が低くなるのである。また、融点が200℃未満となると熱分解が生じやすくなり、上記したごとく連続操業ができなくなる。 Further, by copolymerizing the ethylene oxide adduct component and the isophthalic acid component of bisphenol A at the above-mentioned specific mole fraction, the glass transition temperature is relatively high as described above, but the melting point is low (200 to 220). Since the temperature can be set to (° C.), it is possible to prevent the heating temperature from being excessively raised before stretching and to maintain the fluidity of the core component polymer. Here, when the melting point is 230 ° C. or higher, the fluidity of the core component polymer becomes low. Further, when the melting point is less than 200 ° C., thermal decomposition is likely to occur, and continuous operation cannot be performed as described above.

本発明においては、繊維製造工程での連続操業の目安として、目詰まりが生じることなく20時間以上連続操業できることが好ましく、より好ましくは24時間以上である。 In the present invention, as a guideline for continuous operation in the fiber manufacturing process, continuous operation for 20 hours or more without clogging is preferable, and more preferably 24 hours or more.

また、芯成分ポリマーの極限粘度〔η〕は、延伸中の芯成分ポリマーの流動性を考慮して0.5~0.8であることが好ましい。 Further, the ultimate viscosity [η] of the core component polymer is preferably 0.5 to 0.8 in consideration of the fluidity of the core component polymer during stretching.

芯成分に含有させる高比重粒子としては、バリウム、チタン、アルミニウム、タングステン等の金属粒子や二酸化チタン、酸化亜鉛、沈降性硫酸バリウム等の金属化合物が挙げられる。中でも硫酸バリウムは比重が高く、芯成分のポリエステルへの分散性に優れ、延伸性を阻害しにくいため、好ましい。 Examples of the high specific gravity particles contained in the core component include metal particles such as barium, titanium, aluminum and tungsten, and metal compounds such as titanium dioxide, zinc oxide and precipitated barium sulfate. Among them, barium sulfate is preferable because it has a high specific gravity, has excellent dispersibility of the core component in polyester, and does not easily hinder stretchability.

また、高比重粒子の最大粒子径(直径)は、延伸性を考慮して4.0μm以下、中でも3.0μm以下とすることが好ましい。 Further, the maximum particle diameter (diameter) of the high specific density particles is preferably 4.0 μm or less, and more preferably 3.0 μm or less in consideration of stretchability.

芯成分に含有させる高比重粒子の含有量は、芯成分中の30~70質量%とすることが好ましい。高比重粒子の含有量が芯成分中に30質量%未満では、繊維比重を高くするためには芯成分の複合比率を大きくする必要性が生じ、そのため鞘成分の複合比率を低下すると、高強度の繊維を得ることが困難となりやすい。一方、芯成分中における高比重粒子の含有量が70質量%以下とすることにより、芯成分中に均一に練り込むことを可能とし、ボイドが生じにくく、延伸流動性も良好となる。 The content of the high specific density particles contained in the core component is preferably 30 to 70% by mass in the core component. When the content of high specific gravity particles is less than 30% by mass in the core component, it is necessary to increase the composite ratio of the core component in order to increase the fiber specific gravity. Therefore, when the composite ratio of the sheath component is lowered, the strength becomes high. It tends to be difficult to obtain the fibers of. On the other hand, when the content of the high specific density particles in the core component is 70% by mass or less, it is possible to knead the particles uniformly into the core component, voids are less likely to occur, and the stretching fluidity is also good.

また、高比重粒子を芯成分ポリマーに含有させる方法としては、あらかじめ芯成分に用いる共重合ポリエステルに任意の高比重粒子を均一に練り込んでチップ化したものを、溶融紡糸の際に、そのまま芯成分として用いることが好ましい。 In addition, as a method of incorporating high-density particles into the core component polymer, a product obtained by uniformly kneading arbitrary high-density particles into a copolymerized polyester used as a core component in advance to form chips is used as it is during melt spinning. It is preferable to use it as an ingredient.

次に、芯鞘型複合繊維における鞘成分について説明する。本発明において、マルチフィラメント糸の強度は、芯鞘複合繊維における鞘部が担う。本発明においては、強度と製糸性を考慮し、また、安価で比較的比重も高く、寸法安定性に優れることから、エチレンテレフタレートを主たる繰り返し単位とするポリエステルを用いることが好ましく、ポリエチレンテレフタレート(以下、PETと称す。)を用いることがより好ましい。そして、PETの極限粘度〔η〕は0.9~1.3が好ましい。極限粘度が0.9より低くなると強度の高い繊維とすることが困難となる場合があり、一方、1.3より高くなると、延伸性が低下する場合があるので好ましくない。 Next, the sheath component in the core-sheath type composite fiber will be described. In the present invention, the strength of the multifilament yarn is borne by the sheath portion of the core-sheath composite fiber. In the present invention, in consideration of strength and yarn-making property, it is inexpensive, has a relatively high specific gravity, and is excellent in dimensional stability. Therefore, it is preferable to use polyester having ethylene terephthalate as a main repeating unit, and polyethylene terephthalate (hereinafter referred to as polyethylene terephthalate). , PET) is more preferable. The ultimate viscosity [η] of PET is preferably 0.9 to 1.3. If the intrinsic viscosity is lower than 0.9, it may be difficult to obtain a fiber having high strength, while if it is higher than 1.3, the stretchability may be lowered, which is not preferable.

芯鞘型複合繊維の芯鞘複合比は、質量比(芯:鞘)で50/50~20/80が好ましい。芯成分の比率が20/80より小さいと、芯成分の割合が小さくなるため、高比重の繊維を得にくい。一方、芯成分の比率が50/50より大きいと、鞘成分の割合が少なくなり、繊維の強度が低くなる傾向となる。 The core-sheath composite ratio of the core-sheath type composite fiber is preferably 50/50 to 20/80 in terms of mass ratio (core: sheath). When the ratio of the core component is smaller than 20/80, the ratio of the core component becomes small, so that it is difficult to obtain a fiber having a high specific density. On the other hand, when the ratio of the core component is larger than 50/50, the ratio of the sheath component is small and the strength of the fiber tends to be low.

なお、芯成分と鞘成分ともにその効果や特性を損なわない範囲において、酸化チタンなどの艶消し剤、ヒンダートフェノール系化合物等の酸化防止剤、紫外線吸収剤、光安定剤、顔料、難燃剤、抗菌材、導電性付与剤等が配合されてもよい。 As long as the effects and characteristics of both the core component and the sheath component are not impaired, matting agents such as titanium oxide, antioxidants such as hindered phenolic compounds, ultraviolet absorbers, light stabilizers, pigments, flame retardants, etc. An antibacterial material, a conductivity-imparting agent, or the like may be blended.

本発明における複合繊維の横断面形状は、芯成分、鞘成分ともに多角形や多葉形状等の異形であってもよく、また、芯成分と鞘成分の中心点が一致していない偏心芯鞘型のものであってもよいが、高強度となりやすいため、芯成分と鞘成分の中心点が略一致しており、円形断面形状のものである同心芯鞘で円形断面である芯鞘型複合繊維が特に好ましい。 The cross-sectional shape of the composite fiber in the present invention may be a variant such as a polygonal shape or a multi-leaf shape for both the core component and the sheath component, and the eccentric core sheath in which the center points of the core component and the sheath component do not match. Although it may be of a mold, it tends to have high strength, so that the center points of the core component and the sheath component are substantially the same, and the concentric core sheath having a circular cross-section and the core-sheath composite having a circular cross section. Fibers are particularly preferred.

本発明により得られるマルチフィラメント糸は、毛羽数が20個/100万m以下であり、特に10個/100万m以下が好ましい。このマルチフィラメント糸の毛羽とは、マルチフィラメント糸を構成する複数本の複合繊維のうちの一部の複合繊維が切断したものがマルチフィラメント糸表面に毛羽として存在するものである。毛羽数が20個/100万mを超えると、マルチフィラメント糸を製編網に適用する際の製編網前のビーム捲き取り時に、毛羽が存在すると、機台を停止して毛羽を補修する作業(複合繊維の切断部分をつなぎ合せる作業)を要し、毛羽数が多い程、機台停止回数が増加し、生産効率を悪化させてしまう。また、毛羽の存在を見逃してしまい、ビーム捲き取り時に補修せずに除去できなかった毛羽があると、編網時に毛羽が隣の網糸に取られて、目合いが閉じた状態となってしまい、得られた網において閉じた目合いを広げる作業が必要となる。したがって、毛羽数は少ないほど好ましく、10個/100万m以下が好ましく、5個/100万m以下がより好ましい。なお、本発明において、毛羽数20個/100万m以下を達成できたのは、上記したように、溶融紡糸後の延伸の際に、芯成分が流動性を保持した状態で延伸を可能とし、芯成分の切断に起因する繊維の切断が発生しにくくなったことによると推定する。


The multifilament yarn obtained by the present invention has 20 fluffs / 1 million m or less, and more preferably 10 fluffs / 1 million m or less. The fluff of this multifilament yarn is one in which some of the plurality of composite fibers constituting the multifilament yarn are cut and the fluff is present on the surface of the multifilament yarn. When the number of fluffs exceeds 20 pieces / 1 million m, if fluff is present when the beam is wound before the knitting net when applying the multifilament yarn to the knitting net, the machine base is stopped and the fluff is repaired. Work (work to join the cut parts of the composite fiber) is required, and as the number of fluffs increases, the number of machine stand stops increases and the production efficiency deteriorates. In addition, if there is fluff that cannot be removed without repairing when the beam is wound because the presence of fluff is overlooked, the fluff is taken by the adjacent net thread during knitting and the mesh is closed. Therefore, it is necessary to widen the closed mesh in the obtained net. Therefore, the smaller the number of fluffs, the more preferable, 10 pieces / 1 million m or less, and more preferably 5 pieces / 1 million m or less. In the present invention, the number of fluffs of 20 pieces / 1 million m or less can be achieved because, as described above, the core component can be stretched while maintaining the fluidity during stretching after melt spinning. It is presumed that this is because the cutting of fibers due to the cutting of the core component is less likely to occur.


本発明における芯鞘型複合繊維の比重は、1.50以上であり、特に1.51以上であることが好ましい。複合繊維の比重が1.50未満であると、本発明により得られるマルチフィラメント糸を例えば定置網用途に用いる際に、漁網の沈降性や保形性が不十分となる。比重の上限としては1.80程度がよい。すなわち、芯成分に含有させる高比重粒子の含有量を多くすると比重が大きくなると考えるが、高比重粒子の含有量が多くなるに従って、繊維を高強度化することはより困難となる。したがって、芯成分中に含有させる高比重粒子の含有量を考慮し、かつ高強度4.7cN/dtex以上となる繊維を得るためには、繊維比重の上限は1.80がよい。 The specific gravity of the core-sheath type composite fiber in the present invention is 1.50 or more, and particularly preferably 1.51 or more. When the specific gravity of the composite fiber is less than 1.50, the sedimentation property and shape retention property of the fishing net become insufficient when the multifilament yarn obtained by the present invention is used, for example, for a fixed net application. The upper limit of the specific gravity is preferably about 1.80. That is, it is considered that the specific gravity increases as the content of the high-density particles contained in the core component increases, but it becomes more difficult to increase the strength of the fiber as the content of the high-density particles increases. Therefore, in order to consider the content of high specific density particles contained in the core component and to obtain a fiber having a high strength of 4.7 cN / dtex or more, the upper limit of the fiber specific gravity is preferably 1.80.

本発明により得られるマルチフィラメント糸の強度は4.7cN/dtex以上である。強度を4.7cN/dtex以上とすることによって、水産資源用途に用いるには十分な強度となる。なお、前記同様に繊維比重を考慮すると、強度の上限は5.5cN/dtexがよい。 The strength of the multifilament yarn obtained by the present invention is 4.7 cN / dtex or more. By setting the strength to 4.7 cN / dtex or more, the strength becomes sufficient for use in fishery resource applications. Considering the fiber specific gravity as described above, the upper limit of the strength is preferably 5.5 cN / dtex.

また、耐磨耗性や製糸性を考慮すれば、本発明で得られる芯鞘型複合繊維の単繊維繊度は10~30dtex、伸度は15~30%であることが好ましい。 Further, in consideration of wear resistance and silk reeling property, the single fiber fineness of the core-sheath type composite fiber obtained in the present invention is preferably 10 to 30 dtex, and the elongation is preferably 15 to 30%.

本発明により得られる高比重繊維からなるマルチフィラメント糸は、上記したように、高比重でかつ高強度でありながら、また、毛羽数が20個/100万m以下を達成しているため、編網して得られるネットに良好に適用できる。 As described above, the multifilament yarn made of high specific density fibers obtained by the present invention has a high specific density and high strength, and has a fluff number of 20 pieces / 1 million m or less. It can be applied well to the net obtained by netting.

次に本発明の高比重繊維からなるマルチフィラメント糸の製造方法の好ましい態様について説明する。 Next, a preferred embodiment of the method for producing a multifilament yarn made of high-density fibers of the present invention will be described.

芯成分ポリマーとして、常法の重合法によって得られた固有粘度が0.5~0.8の共重合ポリエステルと高比重粒子と、必要に応じて顔料等の添加剤を準備し、それぞれ計量し、常法により2軸押出機等により溶融混練した後、ノズルから押し出し、ペレット状にカットすることによって得る。チップ化された高比重粒子含有してなる共重合ポリエステルを乾燥させ、紡糸に供する。 As the core component polymer, a copolymerized polyester having an intrinsic viscosity of 0.5 to 0.8 obtained by a conventional polymerization method, high specific gravity particles, and, if necessary, additives such as pigments are prepared and weighed respectively. It is obtained by melt-kneading with a twin-screw extruder or the like by a conventional method, extruding from a nozzle, and cutting into pellets. A copolymerized polyester containing high-density particles that have been chipped is dried and used for spinning.

一方、鞘成分ポリマーとしては、常法の重合法によって得られたポリエチレンテレフタレートを固相重合し、高粘度化したもの準備する。この際、鞘のポリエチレンテレフタレートは、高強度と毛羽数を考慮して極限粘度0.9以上のPETが好ましく、極限粘度は1.3以上がより好ましい。また、繊維の強度、比重、毛羽数に影響を及ばさない範囲において、酸化チタンなどの艶消し剤、ヒンダートフェノール系化合物等の酸化防止剤、紫外線吸収剤、光安定剤、顔料、難燃剤、抗菌材、導電性付与剤等を含有するマスターバッチを計量混合することもできる。 On the other hand, as the sheath component polymer, polyethylene terephthalate obtained by a conventional polymerization method is subjected to solid phase polymerization to increase the viscosity. At this time, the polyethylene terephthalate of the sheath is preferably PET having a limit viscosity of 0.9 or more in consideration of high strength and the number of fluffs, and more preferably 1.3 or more. In addition, as long as it does not affect the strength, specific gravity, and number of fluffs of the fiber, it is a matting agent such as titanium oxide, an antioxidant such as a hindered phenol compound, an ultraviolet absorber, a light stabilizer, a pigment, and a flame retardant. , An antibacterial material, a masterbatch containing a conductivity-imparting agent, etc. can be measured and mixed.

次いで、複合型の溶融紡糸装置に、芯鞘複合型の紡糸口金を装着し、高比重粒子を含有してなる芯成分と鞘成分とをそれぞれ導入して溶融紡糸を行う。紡出された繊維を口金直下に設置された壁面温度200~500℃の加熱筒内を通過させた後、冷却装置で温度10~30℃、速度0.5~1m/秒の冷却風を吹き付けて冷却し、油剤を付与する。 Next, a core-sheath composite-type spinneret is attached to the composite-type melt-spinning apparatus, and a core component and a sheath component containing high-density particles are introduced to perform melt-spinning. After the spun fibers are passed through a heating cylinder with a wall surface temperature of 200 to 500 ° C. installed directly under the mouthpiece, a cooling device is used to blow cooling air at a temperature of 10 to 30 ° C. and a speed of 0.5 to 1 m / sec. Cool and add oil.

その後、非加熱の第1ローラーに引き取り、引き続き、表面温度120~170℃の第2ローラーに掛けて1.01~1.10倍の引き揃えを行い、表面温度130℃~200℃の第3ローラーとの間で1段目の延伸を行う。続いて表面温度200~260℃の第4ローラーと第3ローラーとの間にスチーム処理機を設置し、300℃以上のスチームを吹き付けながら、全延伸倍率が4.0~6.0倍となるように、延伸倍率1.2~1.6倍で2段目の延伸を行う。この後、表面温度100~200℃の第5ローラーとの間で2~5%の弛緩熱処理を行い、速度1500~3500m/分でワインダーに巻き取り、毛羽数が20個/100万m以下、強度が4.7cN/dtex以上、比重が1.50以上のマルチフィラメント糸を得る。 After that, it is picked up by a first roller that is not heated, and subsequently, it is hung on a second roller having a surface temperature of 120 to 170 ° C. to align 1.01 to 1.10 times, and a third roller having a surface temperature of 130 ° C. to 200 ° C. is performed. The first step of stretching is performed between the rollers and the rollers. Subsequently, a steam processing machine is installed between the 4th roller and the 3rd roller having a surface temperature of 200 to 260 ° C., and the total draw ratio becomes 4.0 to 6.0 times while spraying steam of 300 ° C. or higher. As described above, the second-stage stretching is performed at a stretching ratio of 1.2 to 1.6 times. After that, a relaxation heat treatment of 2 to 5% is performed between the fifth roller having a surface temperature of 100 to 200 ° C., the winding is wound on a winder at a speed of 1500 to 3500 m / min, and the number of fluff is 20/1 million m or less. A multifilament yarn having a strength of 4.7 cN / dtex or more and a specific gravity of 1.50 or more is obtained.

本発明によれば、高比重かつ高強度でありながら、繊維の切断による毛羽が生じにくいマルチフィラメント糸を、連続操業性が良好で生産効率が向上したものを提供することができる。毛羽が生じにくいマルチフィラメント糸であることから、このマルチフィラメント糸を用いて製編網する際においても生産効率を向上させることができる。 According to the present invention, it is possible to provide a multifilament yarn having high specific density and high strength, which is less likely to cause fluff due to fiber cutting, and which has good continuous operability and improved production efficiency. Since the multifilament yarn is less likely to cause fluff, the production efficiency can be improved even when knitting and knitting using this multifilament yarn.

次に、本発明の実施例によって具体的に説明する。なお、本発明における各物性の評価は、次の方法で行った。
(A)極限粘度
フェノールと四塩化エタンとの等質量混合物を溶媒とし、濃度0.5g/dl、温度20℃で測定した。
(B)ポリエステルの組成
ポリエステル樹脂を重水素化ヘキサフルオロイソプロパノールと重水素化クロロホルムとの容量比が1/20の混合溶媒に溶解させ、日本電子社製LA-400型NMR装置にて1H-NMRを測定し、得られたチャートの各成分のプロトンのピークの積分強度から、共重合成分の種類と含有量を求めた。
(C)強伸度
JIS L-1013 引張強さおよび伸び率の標準時試験に従い、島津製作所オートグラフDSS-500を用い、試料長25cm、引張速度30cm/分で測定した。
(D)繊維の比重
JIS l-1013 比重(浮沈法)に従い測定した。
(E)毛羽数
春日電機製毛羽発見器F9-AN型を用い、引き取り速度300m/分で測定した。
(F)融点(℃)
パーキンエルマー社製の示差走査型熱量計DSC-7型を使用し、昇温速度20℃/分で測定した。
(G)ガラス転移温度(℃)
パーキンエルマー社製の示差走査型熱量計DSC-7型を使用し、昇温速度20℃/分で測定した。なお、補外ガラス転移開始温度(Tig)をガラス転移温度とした。
(H)操業性
口金当たりの連続操業時間により下記三段階で評価した。
○:20時間以上
△:10時間以上、20時間未満
×:10時間未満
Next, it will be specifically described with reference to Examples of the present invention. The evaluation of each physical property in the present invention was carried out by the following method.
(A) Extreme Viscosity Measured at a concentration of 0.5 g / dl and a temperature of 20 ° C. using an equal mass mixture of phenol and ethane tetrachloride as a solvent.
(B) Composition of polyester The polyester resin was dissolved in a mixed solvent having a volume ratio of deuterated hexafluoroisopropanol and deuterated chloroform of 1/20, and 1H-NMR was carried out by a LA-400 type NMR apparatus manufactured by JEOL Ltd. Was measured, and the type and content of the copolymerized components were determined from the integrated intensity of the proton peaks of each component in the obtained chart.
(C) Strong elongation JIS L-1013 According to the standard time test of tensile strength and elongation, the sample length was 25 cm and the tensile speed was 30 cm / min using Shimadzu Autograph DSS-500.
(D) Specific gravity of fiber Measured according to JIS l-1013 specific gravity (floating and sinking method).
(E) Number of fluffs Measured at a pick-up speed of 300 m / min using a fluff detector F9-AN type manufactured by Kasuga Electric.
(F) Melting point (° C)
Measurement was performed at a heating rate of 20 ° C./min using a differential scanning calorimeter DSC-7 manufactured by PerkinElmer.
(G) Glass transition temperature (° C)
Measurement was performed at a heating rate of 20 ° C./min using a differential scanning calorimeter DSC-7 manufactured by PerkinElmer. The extrapolated glass transition start temperature ( Tig ) was defined as the glass transition temperature.
(H) Operability The evaluation was made on the following three stages based on the continuous operating hours per mouthpiece.
◯: 20 hours or more Δ: 10 hours or more, less than 20 hours ×: less than 10 hours

実施例1
鞘成分として、極限粘度1.2のPETにカーボンブラックを高濃度に含有したマスターバッチとレギュラーのPET(極限粘度1.2)とを混合し、鞘成分中のカーボンブラック濃度が0.8質量%となるようにしたブレンドチップを用いた。一方、芯成分として、極限粘度0.58でイソフタル酸共重合率が8.0モル%、ビスフェノールAのエチレンオキシド付加物共重合率が6.5モル%である共重合ポリエステルに平均粒子径が0.6μm、最大粒子径2.0μm、比重4.3の沈降性硫酸バリウムを芯成分中に65質量%およびカーボンブラックを1.5質量%となるように溶融混合したもの(チップ)を用いた。
Example 1
As a sheath component, a master batch containing a high concentration of carbon black in PET having an extreme viscosity of 1.2 and a regular PET (extreme viscosity 1.2) are mixed, and the carbon black concentration in the sheath component is 0.8 mass. A blended chip adjusted to% was used. On the other hand, as a core component, the average particle size of the copolymerized polyester having an ultimate viscosity of 0.58, an isophthalic acid copolymerization rate of 8.0 mol%, and an ethylene oxide adduct copolymerization rate of bisphenol A of 6.5 mol% is 0. A melt-mixed product (chip) containing 65% by mass of precipitated barium sulfate having a maximum particle size of 2.0 μm and a specific gravity of 4.3 in the core component and 1.5% by mass of carbon black was used. ..

上記の芯成分と鞘成分を複合型溶融紡糸装置に導入し、直径0.6mm、孔数64個の紡糸孔を有する芯鞘型複合紡糸口金より、温度286℃、芯鞘質量比(芯:鞘)26:74で溶融紡糸した。 The above core component and sheath component are introduced into the composite melt spinning device, and the core-sheath composite spun spout having a diameter of 0.6 mm and a number of holes of 64 has a temperature of 286 ° C. and a core-sheath mass ratio (core: Sheath) was melt-spun at 26:74.

紡出された繊維を壁面温度450℃の加熱筒を通過させた後、横型冷却装置を用いて、温度16℃、速度0.8m/秒の冷却風を吹き付けて冷却し、油剤を付与した。続いて、非加熱の第1ローラーに引き取り、表面温度150℃の第2ローラーとの間で1.01倍の引き揃えを行った後、表面温度160℃の第3ローラーとの間で3.7倍(1段目)の延伸を行った。その後、スチーム処理機を用いて、温度450℃、圧力0.5MPaのスチームを繊維に吹き付けながら、表面温度240℃の第4ローラーとの間で1.4倍(2段目)の延伸を行い、表面温度190℃、速度1840m/分の第5ローラーとの間で2%の弛緩熱処理を行い、速度1800m/分のワインダーに巻き取り、1230dtex/64フィラメントで同心円型の芯鞘型複合繊維からなるマルチフィラメント糸を得た。 After the spun fiber was passed through a heating cylinder having a wall surface temperature of 450 ° C., it was cooled by blowing a cooling air having a temperature of 16 ° C. and a speed of 0.8 m / sec using a horizontal cooling device, and an oil agent was applied. Subsequently, it was taken up by a first roller that was not heated, and 1.01 times aligned with the second roller having a surface temperature of 150 ° C., and then with a third roller having a surface temperature of 160 ° C. Stretching was performed 7 times (first step). Then, using a steam processing machine, while spraying steam at a temperature of 450 ° C. and a pressure of 0.5 MPa onto the fibers, stretching 1.4 times (second stage) between the fibers and the fourth roller having a surface temperature of 240 ° C. is performed. , Surface temperature 190 ° C., 2% relaxation heat treatment with a 5th roller at a speed of 1840 m / min, winding on a winder at a speed of 1800 m / min, from a concentric core-sheath composite fiber with 1230 dtex / 64 filament. A multifilament yarn was obtained.

比較例1~4
芯成分中のイソフタル酸共重合率(A)およびビスフェノールAのエチレンオキシド付加物共重合率(B)を表1に記載したように変更したこと以外は、実施例1と同様に行った。
Comparative Examples 1 to 4
The same procedure as in Example 1 was carried out except that the isophthalic acid copolymerization rate (A) in the core component and the ethylene oxide adduct copolymerization rate (B) of bisphenol A were changed as shown in Table 1.

比較例5
実施例1において、芯成分としてイソフタル酸共重合率(A)を8.0モル%である共重合ポリエステルを用いたこと、芯成分中に混合する沈降性硫酸バリウムの量を50質量%としたこと、芯鞘質量比(芯:鞘)を36:64として溶融紡糸したこと以外は、実施例1と同様に行った。
Comparative Example 5
In Example 1, a copolymerized polyester having an isophthalic acid copolymerization rate (A) of 8.0 mol% was used as the core component, and the amount of precipitated barium sulfate mixed in the core component was 50% by mass. The same procedure as in Example 1 was carried out except that the core-sheath mass ratio (core: sheath) was 36:64 for melt-spinning.

比較例6~9
芯成分中のジオール成分をビスフェノールAのエチレンオキシド付加物に代えて、表2に記載した成分に変更したこと以外は、実施例1と同様に行った。
Comparative Examples 6-9
The same procedure as in Example 1 was carried out except that the diol component in the core component was changed to the component shown in Table 2 in place of the ethylene oxide adduct of bisphenol A.

複合繊維の評価結果を、表1および2に示す。 The evaluation results of the composite fiber are shown in Tables 1 and 2.

Figure 0007048060000001
Figure 0007048060000001

Figure 0007048060000002
実施例1は、毛羽数2個/100万mであり、本発明が規定する高強度(強度4.7cN/dtex)、高比重(比重1.50以上)のものであった。また、紡糸口金の交換頻度も低く、連続生産性に非常に優れていた。
Figure 0007048060000002
Example 1 had two fluffs / 1 million m, and had a high strength (strength 4.7 cN / dtex) and a high specific density (specific gravity 1.50 or more) specified by the present invention. In addition, the frequency of replacement of the spinneret was low, and the continuous productivity was very excellent.

一方、比較例1および4は、共重合成分のモル分率が低く融点が230℃以上もしくは超えており、芯成分の延伸流動性が低く、比重が低くなった。比較例4においては、比重が1.46であって、極めて低いものであったため、その他の性能評価は行わなかった。 On the other hand, in Comparative Examples 1 and 4, the molar fraction of the copolymer component was low and the melting point was 230 ° C. or higher or exceeded, the stretch fluidity of the core component was low, and the specific gravity was low. In Comparative Example 4, the specific gravity was 1.46, which was extremely low, so no other performance evaluation was performed.

比較例2、3はイソフタル酸成分のみの共重合のため、ガラス転移温度が低く熱安定性に劣り、紡糸口金の交換頻度が増加し連続生産性に劣るものとなった。 In Comparative Examples 2 and 3, since only the isophthalic acid component was copolymerized, the glass transition temperature was low and the thermal stability was inferior, the frequency of replacement of the spinneret increased, and the continuous productivity was inferior.

比較例5は、目的とする強度が得られず、毛羽立ちが多いものであった。これの結果は、芯成分における共重合成分のモル分率が低く融点が230℃であり、芯成分の延伸流動性が低いことに起因したと考える。 In Comparative Example 5, the desired strength was not obtained and there was a lot of fluffing. It is considered that this result is due to the fact that the molar fraction of the copolymerized component in the core component is low, the melting point is 230 ° C., and the stretching fluidity of the core component is low.

比較例6~8は、共重合成分に1,4-ブタンジオールを用いたが、熱安定性に劣り、紡糸口金の交換頻度が大幅に増加し、連続生産性に劣っていた。比較例9は、共重合成分に1,4-シクロヘキサンジメタノールを用いたが、融点が230℃を超えており、芯成分の延伸流動性が低く、得られた繊維の比重が1.46であって、極めて低いものであったため、その他の性能評価は行わなかった。 In Comparative Examples 6 to 8, 1,4-butanediol was used as the copolymerization component, but the thermal stability was inferior, the frequency of replacement of the spinneret was significantly increased, and the continuous productivity was inferior. In Comparative Example 9, 1,4-cyclohexanedimethanol was used as the copolymerization component, but the melting point exceeded 230 ° C., the draw fluidity of the core component was low, and the specific gravity of the obtained fiber was 1.46. Since it was extremely low, no other performance evaluation was performed.

なお、比較例2、3、6~8は、連続操業性が良くなかったので、毛羽評価は行っていない。 In Comparative Examples 2, 3, 6 to 8, since the continuous operability was not good, the fluff evaluation was not performed.

連続操業性が良好である実施例1および比較例1、5について、下記の耐摩耗性評価を行った結果を表3に示す。実施例1の結果が最も良好であり、実用的な耐摩耗性を備えていることが分かる。 Table 3 shows the results of the following wear resistance evaluations for Example 1 and Comparative Examples 1 and 5 having good continuous operability. It can be seen that the results of Example 1 are the best and have practical wear resistance.

<耐摩耗性>
得られたマルチフィラメント糸を用いて8本組紐を作成し、これを試料とした。耐摩耗試験装置(米倉製作所製)を用いて、試料を試験装置に取り付けた。すなわち、試料の一端に質量300gのおもりをつるし、他端を丸やすり(ツボミヤ社製 優良鉄工用ヤスリ 丸中目)の上を渡して設置し、試料を繰り返し速度30±1回/分、ストローク幅230±30mmにて往復運動させ、試料と丸やすりの周面とが約90度の角度で接触させて往復摩擦させ、破断に至る往復回数を計測した。
測定は、室温で耐摩耗性を評価したものは「乾摩耗」、一方、試料を工業用水に5分浸漬後、取り出して耐摩耗性を評価したものを「湿摩耗」とした。なお、「湿摩耗」は、試験開始直前と摩耗100回毎に1ccの水を滴下して測定した。
<Abrasion resistance>
An eight braid was prepared using the obtained multifilament yarn, and this was used as a sample. The sample was attached to the test device using a wear resistance test device (manufactured by Yonekura Seisakusho). That is, a weight with a mass of 300 g is hung on one end of the sample, and the other end is placed over a round file (a round file for excellent ironwork manufactured by Tsubomiya Co., Ltd.), and the sample is repeated at a speed of 30 ± 1 time / minute and a stroke. The sample was reciprocated with a width of 230 ± 30 mm, and the sample and the peripheral surface of the round file were brought into contact with each other at an angle of about 90 degrees and rubbed back and forth, and the number of reciprocating times leading to breakage was measured.
In the measurement, the one evaluated for wear resistance at room temperature was defined as "dry wear", while the sample was immersed in industrial water for 5 minutes and then taken out and evaluated for wear resistance as "wet wear". The "wet wear" was measured by dropping 1 cc of water immediately before the start of the test and every 100 times of wear.

Figure 0007048060000003
Figure 0007048060000003

Claims (2)

芯成分中に高比重粒子を含有し、比重が1.50以上である芯鞘型複合繊維からなるマルチフィラメント糸の製造方法であり、
芯成分を構成するポリマーとして結晶融点200~220℃、ガラス転移温度70~80℃の共重合ポリエステルを用い、鞘成分を構成するポリマーとしてポリエチレンテレフタレートを用い、
複合型の溶融紡糸装置に、高比重粒子を含有する芯成分と、鞘成分とを導入して、溶融紡糸により紡出された繊維を冷却後、続いて1段目と2段目の熱延伸を行い、速度1500~3500m/分で巻き取ることにより、
マルチフィラメント糸の強度が4.7cN/dtex以上、かつ毛羽数が20個/100万m以下である高比重繊維からなるマルチフィラメント糸を得ることを特徴とするマルチフィラメント糸の製造方法。
It is a method for producing a multifilament yarn composed of a core-sheath type composite fiber containing high specific density particles in the core component and having a specific gravity of 1.50 or more.
Copolymerized polyester having a crystal melting point of 200 to 220 ° C. and a glass transition temperature of 70 to 80 ° C. was used as the polymer constituting the core component, and polyethylene terephthalate was used as the polymer constituting the sheath component.
A core component containing high specific gravity particles and a sheath component are introduced into a composite type melt spinning device to cool the fibers spun by melt spinning, and then heat stretching in the first and second stages is performed. By winding at a speed of 1500 to 3500 m / min.
A method for producing a multifilament yarn, which comprises obtaining a multifilament yarn made of high-density fibers having a strength of 4.7 cN / dtex or more and a fluff number of 20 pieces / 1 million m or less.
芯鞘比率(質量比)が、芯成分/鞘成分=30~20/70~80であり、芯成分と鞘成分を構成するポリマーがポリエステル系ポリマーであることを特徴とする請求項1記載のマルチフィラメント糸の製造方法。 The first aspect of claim 1, wherein the core-sheath ratio (mass ratio) is core component / sheath component = 30 to 20/70 to 80, and the polymer constituting the core component and the sheath component is a polyester-based polymer. Method for manufacturing multifilament yarn.
JP2021024040A 2016-03-03 2021-02-18 Manufacturing method of multifilament yarn made of high density fiber Active JP7048060B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016041047 2016-03-03
JP2016041047 2016-03-03

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017036729A Division JP6870822B2 (en) 2016-03-03 2017-02-28 Multifilament yarn made of high specific gravity fiber

Publications (2)

Publication Number Publication Date
JP2021080624A JP2021080624A (en) 2021-05-27
JP7048060B2 true JP7048060B2 (en) 2022-04-05

Family

ID=59853795

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017036729A Active JP6870822B2 (en) 2016-03-03 2017-02-28 Multifilament yarn made of high specific gravity fiber
JP2021024040A Active JP7048060B2 (en) 2016-03-03 2021-02-18 Manufacturing method of multifilament yarn made of high density fiber

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017036729A Active JP6870822B2 (en) 2016-03-03 2017-02-28 Multifilament yarn made of high specific gravity fiber

Country Status (1)

Country Link
JP (2) JP6870822B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000096377A (en) 1998-09-25 2000-04-04 Unitika Ltd Production of high density composite filament

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3697882B2 (en) * 1998-01-14 2005-09-21 東レ株式会社 Composite fiber and method for producing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000096377A (en) 1998-09-25 2000-04-04 Unitika Ltd Production of high density composite filament

Also Published As

Publication number Publication date
JP2021080624A (en) 2021-05-27
JP6870822B2 (en) 2021-05-12
JP2017160586A (en) 2017-09-14

Similar Documents

Publication Publication Date Title
JP6708813B2 (en) Polylactic acid resin fiber, polylactic acid long fiber, polylactic acid short fiber and polylactic acid fiber
KR20140010069A (en) Cationic-dyeable polyester fiber and conjugated fiber
JP2007308830A (en) Dyeable polypropylene fiber
JP7332693B2 (en) Conductive composite fiber and fiber structure using the same
JP4954955B2 (en) High-shrinkage polyester fiber and production method and use thereof
JP7048060B2 (en) Manufacturing method of multifilament yarn made of high density fiber
KR20120065356A (en) Poly(trimethylene arylate)/polystyrene composition and process for preparing
WO2014192746A1 (en) Organic resin non-crimped staple fiber
JP5565971B2 (en) Polymer alloy comprising polylactic acid resin and polyethylene terephthalate resin and method for producing the same
JP6996555B2 (en) Polyethylene fiber and products using it
JP2009041124A (en) Dyeable polypropylene fiber
KR101143721B1 (en) High Gravity Polyester Multi-filament and Its manufacturing Method
JP2007056382A (en) Method for producing high specific gravity composite fiber
JP2004162205A (en) Sheath/core-type monofilament and fishnet using the same
JP2011106060A (en) Polyarylene sulfide fiber
JP6089786B2 (en) Sea-island composite fiber made of polylactic acid and polyglycolic acid
CN109563645B (en) Vinylidene fluoride resin fiber and sheet-like structure
JP4595714B2 (en) Method for producing blend type composite fiber
JP2004176205A (en) Recycled polyester fiber for use as industrial material
JPH09503562A (en) Paper machine dryer textile
JP4598411B2 (en) Fineness polyester blended yarn and method for producing the same
JP2024016312A (en) Polyester based hollow fiber for artificial hair, manufacturing method of the same, and hair ornament product containing the same
JP5141870B2 (en) Fluorine resin monofilament, process for producing the same, and industrial fabric
JP2016108702A (en) Polyester fiber
JP2023143680A (en) Manufacturing method for vinyl chloride fiber and vinyl chloride melt-spun fiber

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210218

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220315

R150 Certificate of patent or registration of utility model

Ref document number: 7048060

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150