JP2017160586A - Multifilament yarn consisting of high density fiber - Google Patents

Multifilament yarn consisting of high density fiber Download PDF

Info

Publication number
JP2017160586A
JP2017160586A JP2017036729A JP2017036729A JP2017160586A JP 2017160586 A JP2017160586 A JP 2017160586A JP 2017036729 A JP2017036729 A JP 2017036729A JP 2017036729 A JP2017036729 A JP 2017036729A JP 2017160586 A JP2017160586 A JP 2017160586A
Authority
JP
Japan
Prior art keywords
specific gravity
multifilament yarn
core component
component
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017036729A
Other languages
Japanese (ja)
Other versions
JP6870822B2 (en
Inventor
弘平 池田
Kohei Ikeda
弘平 池田
翔平 池上
Shohei Ikegami
翔平 池上
田中 知樹
Tomoki Tanaka
知樹 田中
嘉祐 須藤
Yoshihiro Sudo
嘉祐 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Ester Co Ltd
Unitika Ltd
Original Assignee
Nippon Ester Co Ltd
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Ester Co Ltd, Unitika Ltd filed Critical Nippon Ester Co Ltd
Publication of JP2017160586A publication Critical patent/JP2017160586A/en
Application granted granted Critical
Publication of JP6870822B2 publication Critical patent/JP6870822B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Multicomponent Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a multifilament yarn consisting of a high density fiber having high density and high strength, hardly generating fuzz by cut of the fiber and capable of continuous operation with improved productivity.SOLUTION: There is provided a multifilament yarn consisting of a core sheath type composite fiber containing high density particles in a core component and having density of 1.50 or more, strength of the multifilament yarn is 4.7 cN/dtex or more and fuzz number is 20/1,000,000 m or less. It is preferable that a polymer constituting the core component is copolymer polyester having crystal melting point of 200 to 220°C and glass transition temperature of 70 to 80°C and a polymer constituting a sheath component is polyethylene terephthalate.SELECTED DRAWING: None

Description

本発明は、高比重繊維に関し、特に水産資材用途に好適な比重の高さと高強度を有するとともに、毛羽数の少ない高比重繊維からなるマルチフィラメント糸に関するものである。   The present invention relates to a high specific gravity fiber, and particularly relates to a multifilament yarn having a high specific gravity and high strength suitable for marine material use, and comprising a high specific gravity fiber having a small number of fluffs.

従来、ポリエステルやポリアミド等の合成繊維は高強度であるため、漁網等の水産資材用ネットや土木資材等の陸上ネット用繊維として利用されている。また、機能性粒子を高濃度に合成繊維に含有させる技術は合成繊維の性質を損なうことなく、手頃に機能を付与する手段として有効な技術である。   Conventionally, since synthetic fibers such as polyester and polyamide have high strength, they are used as nets for fishery materials such as fishing nets and fibers for land nets such as civil engineering materials. In addition, a technique for adding functional particles to a synthetic fiber at a high concentration is an effective technique as a means for imparting a function in an affordable manner without impairing the properties of the synthetic fiber.

水産資材用の繊維の中でも、定置網用途に用いる繊維としては、水中での沈降速度を速くするためと、潮流に対する漁網の保形性を向上させるために、使用する繊維は比重の高いものが求められている。特許文献1や特許文献2に記載されているように、芯鞘型複合繊維の芯成分に高比重粒子を含有させ、比重を1.5〜1.7以上とした高比重糸が提案されている。   Among the fibers for marine products, the fibers used for stationary nets must have high specific gravity to increase the sedimentation rate in water and improve the shape of the fishing net against tidal currents. It has been. As described in Patent Document 1 and Patent Document 2, a high specific gravity yarn in which the core component of the core-sheath composite fiber contains high specific gravity particles and the specific gravity is 1.5 to 1.7 or more has been proposed. Yes.

特開平8−311721号公報JP-A-8-311721 特開平8−144125号公報JP-A-8-144125

上記した技術における複合繊維では、芯成分に高比重粒子を高濃度に含有させると均一な分散が困難となりやすく、その結果、延伸する際に高濃度に高比重粒子が含有された部分は延伸流動性に劣ることとなり、芯成分にボイド(空隙)が発生し、繊維中の高比重粒子の含有量に相当する比重を有する繊維が得られ難くなったり、あるいは、芯成分の切断によると思われる延伸毛羽が発生したりする。このような一部の繊維が切断してなり毛羽を有するマルチフィラメント糸をラッセル網等に適用すると、毛羽が原因となって網の目合いが閉塞するという問題が生じた。そのため、ビーム捲き取り時に整経試験を同時に行い、毛羽の除去を行っていることが現状であり、生産効率に劣るという問題があった。   In the composite fiber in the above-described technology, when high specific gravity particles are contained in the core component at a high concentration, uniform dispersion tends to be difficult, and as a result, the portion where the high specific gravity particles are contained at a high concentration when drawing is drawn. It is inferior in properties, and voids (voids) are generated in the core component, which makes it difficult to obtain a fiber having a specific gravity corresponding to the content of high specific gravity particles in the fiber, or due to cutting of the core component. Stretch fluff may occur. When such a multifilament yarn having a fluff formed by cutting some fibers is applied to a Russell net or the like, there is a problem that the mesh of the net is blocked due to the fluff. For this reason, a warping test is simultaneously performed at the time of beam cutting to remove fluff, and there is a problem that production efficiency is poor.

本発明は、上記した問題を解決するものであって、芯成分にボイドを発生させることなく、高比重粒子の含有量に見合う比重の高い高比重繊維を得ること、高強度の繊維を得ること、繊維の切断による毛羽が生じにくいマルチフィラメント糸を得ること、生産性が向上し連続操業が可能であることを同時に満たす高比重繊維からなるマルチフィラメント糸を提供することを課題とする。   The present invention solves the above-described problem, and without obtaining a void in the core component, obtains a high specific gravity fiber having a high specific gravity commensurate with the content of the high specific gravity particles, and obtains a high strength fiber. It is an object of the present invention to provide a multifilament yarn composed of high specific gravity fibers that simultaneously satisfies the requirements of obtaining a multifilament yarn that is less prone to fluff due to fiber cutting and improving productivity and enabling continuous operation.

本発明者等は、前記課題を達成するために鋭意検討を行った。特に、高比重粒子を含有させる芯成分に配するポリマーとして種々のものを検討していたところ、結晶性を有する特定の共重合ポリエステルを用いたことにより、生産効率が向上し、連続操業が可能でありながら、高強度でかつ高比重であり、毛羽が生じにくいマルチフィラメントを得ることができることを見出した。そして、この知見に基づき、さらに検討し、本発明に到達した。   The present inventors have intensively studied to achieve the above-mentioned problems. In particular, we were investigating a variety of polymers to be distributed to the core component containing high specific gravity particles. By using a specific copolymer polyester with crystallinity, production efficiency was improved and continuous operation was possible. However, the present inventors have found that a multifilament having high strength and high specific gravity and hardly causing fluff can be obtained. And based on this knowledge, it further examined and reached the present invention.

すなわち、本発明は、芯成分中に高比重粒子を含有し、比重が1.50以上である芯鞘型複合繊維からなるマルチフィラメント糸であり、マルチフィラメント糸の強度が4.7cN/dtex以上、かつ毛羽数が20個/100万m以下であることを特徴とする高比重繊維からなるマルチフィラメント糸を要旨とする。   That is, the present invention is a multifilament yarn comprising a core-sheath type composite fiber containing high specific gravity particles in the core component and having a specific gravity of 1.50 or more, and the strength of the multifilament yarn is 4.7 cN / dtex or more. The gist of the present invention is a multifilament yarn made of high specific gravity fibers, characterized in that the number of fluffs is 20 / million m or less.

本発明の特徴は、比重が1.50以上という高比重の繊維でありながら、この繊維によって構成されるマルチフィラメント糸の強度が4.7cN/dtex以上であり、さらに毛羽数が20個/100万m以下であるという性能を同時に満たし、マルチフィラメント糸の製造工程においても、得られたマルチフィラメント糸を用いて製編網する際においても、連続操業性および連続生産性が向上することにある。   The feature of the present invention is that the strength of the multifilament yarn composed of this fiber is 4.7 cN / dtex or more while the specific gravity is 1.50 or more, and the number of fluff is 20/100. At the same time, it satisfies the performance of 10,000 m or less, and the continuous operability and the continuous productivity are improved both in the production process of the multifilament yarn and in the knitting network using the obtained multifilament yarn. .

比重が1.50以上という高比重の繊維を得るためには、芯成分中に配合する高比重粒子をマトリックスとなる芯成分のポリマーが良好に把持し、ポリマーと高比重粒子との間に空隙や亀裂(ボイド)をできるだけ発生させないことを要する。   In order to obtain fibers with a high specific gravity of 1.50 or more, the core component polymer as a matrix holds the high specific gravity particles blended in the core component well, and there is a gap between the polymer and the high specific gravity particles. And cracks (voids) should be avoided as much as possible.

ここで、問題となるボイド発生は、繊維の製造工程における延伸工程で生じる。すなわち、ポリマーと高比重粒子とは相溶性がなく、また、ポリマー中に多量の高比重粒子を含有させるため、延伸の応力がかかるとポリマーと粒子との界面にボイドが発生する。そこで、延伸中において芯成分ポリマーが流動性を有する状態であれば、ポリマーと高比重粒子との界面にボイドが発生しにくくなるのではないかと、発明者等は考えた。そして、延伸中における芯成分ポリマーが流動性を維持する状態とするために、延伸前の加熱温度を上げてみることとした。すると、芯成分ポリマーの流動性は上がるが、設定温度範囲のコントロールが難しく加熱温度が一定以上を超えると、芯成分ポリマーの結晶化が始まって逆に流動性が下がり、さらには、鞘部ポリマーの結晶化も始まることになり、十分な延伸が施せず、得られる繊維の強度は低く、また、芯成分ポリマーの流動性が下がることから芯成分ポリマー中にボイドが発生して、その箇所から繊維が切断されやすく、その切断した繊維がマルチフィラメント糸中における毛羽となって多量に発生することになってしまった。したがって、このように加熱温度の設定幅が小さいと、結局、目的とする高比重でかつ高強度で毛羽の少ないマルチフィラメント糸を安定して得ることができず、連続操業性や生産性が上がらない。   Here, the generation of a void which is a problem occurs in the drawing process in the fiber manufacturing process. That is, the polymer and the high specific gravity particles are not compatible, and a large amount of the high specific gravity particles are contained in the polymer. Therefore, when stretching stress is applied, voids are generated at the interface between the polymer and the particles. Therefore, the inventors considered that if the core component polymer has fluidity during stretching, voids are less likely to be generated at the interface between the polymer and the high specific gravity particles. And in order to make the core component polymer in the state which maintains fluidity | liquidity in extending | stretching, it decided to raise the heating temperature before extending | stretching. As a result, the fluidity of the core component polymer is increased, but it is difficult to control the set temperature range, and when the heating temperature exceeds a certain level, the core component polymer begins to crystallize and conversely the fluidity decreases. Crystallization will also begin, sufficient stretching will not be performed, the strength of the resulting fiber will be low, and the fluidity of the core component polymer will decrease, so voids will occur in the core component polymer and from there The fibers are easily cut, and the cut fibers become fluff in the multifilament yarn and are generated in large quantities. Therefore, when the setting range of the heating temperature is small as described above, the desired multifilament yarn having high specific gravity, high strength and less fluff cannot be obtained stably, and continuous operability and productivity are improved. Absent.

そこで、加熱温度の設定幅を大きくすることが可能であり、延伸時の流動性を維持することが可能な芯成分ポリマーについて検討していたなかで、芯成分ポリマーのガラス転移温度と融点の関係に着目した。すなわち、ガラス転移温度(Tg)が低いと結晶化しやすくなるため、上記したようなボイドの発生や延伸不良が生じやすくなり、一方、融点が高いと、延伸時の流動性を上げるために加熱温度を上げる必要が生じ、そうすると鞘部ポリマーの結晶化に繋がり、十分な延伸ができなくなる。そこで、種々のポリマーを検討した結果、芯成分ポリマーのガラス転移温度が70〜80℃の範囲、かつ結晶融点が200〜220℃の範囲に設定しうることにより、加熱温度の設定幅を大きくすることが可能であり、延伸中の芯部ポリマーの流動性を維持することが可能であることを見出した。   Therefore, it was possible to increase the setting range of the heating temperature, and while investigating the core component polymer capable of maintaining the fluidity during stretching, the relationship between the glass transition temperature and the melting point of the core component polymer was investigated. Pay attention. That is, when the glass transition temperature (Tg) is low, crystallization is likely to occur, so that the generation of voids and poor stretching as described above are likely to occur. On the other hand, if the melting point is high, the heating temperature is increased to increase the fluidity during stretching. In this case, the sheath polymer is crystallized, and sufficient stretching cannot be performed. Therefore, as a result of examining various polymers, the glass transition temperature of the core component polymer can be set in the range of 70 to 80 ° C., and the crystal melting point can be set in the range of 200 to 220 ° C., thereby increasing the setting range of the heating temperature. It has been found that it is possible to maintain the fluidity of the core polymer during stretching.

ガラス転移温度が70〜80℃であり、かつ結晶融点が200〜220℃の共重合ポリエステルとして、エチレンテレフタレート単位に、共重合成分としてイソフタル酸およびビスフェノールAのエチレンオキシド付加物を下式のモル分率で共重合してなる共重合ポリエステルを用いるとよい。
0.0≦A≦10.0
5.0<B≦15.0
(上式中、Aは共重合ポリエステルの全酸成分に対するイソフタル酸のモル分率(%)、Bは共重合ポリエステルの全グリコール成分に対するビスフェノールAのエチレンオキシド付加物のモル分率(%)である。)
As a copolymer polyester having a glass transition temperature of 70 to 80 ° C. and a crystal melting point of 200 to 220 ° C., an ethylene terephthalate unit, isophthalic acid and an ethylene oxide adduct of bisphenol A as copolymer components are represented by the following molar fraction: It is preferable to use a copolyester obtained by copolymerization with.
0.0 ≦ A ≦ 10.0
5.0 <B ≦ 15.0
(In the above formula, A is the molar fraction (%) of isophthalic acid to the total acid component of the copolyester, and B is the molar fraction (%) of the ethylene oxide adduct of bisphenol A to the total glycol component of the copolyester. .)

ここで、モル分率とは、芯成分のポリエステルの全酸成分に対するイソフタル酸のモル分率A(モル%)、芯成分のポリエステルの全グリコール成分に対するビスフェノールAのエチレンオキシド付加物のモル分率B(モル%)である。イソフタル酸成分、ビスフェノールAのエチレンオキシド付加物成分を上記したモル分率で共重合することにより、耐熱性が良好な結晶融点を有する低融点ポリエステルとすることができる。   Here, the mole fraction is the mole fraction A (mol%) of isophthalic acid to the total acid component of the polyester of the core component, and the mole fraction B of the ethylene oxide adduct of bisphenol A to the total glycol component of the polyester of the core component. (Mol%). By copolymerizing the isophthalic acid component and the ethylene oxide adduct component of bisphenol A in the above-described molar fraction, a low-melting polyester having a crystalline melting point with good heat resistance can be obtained.

なお、本発明において共重合ポリエステルの組成は、以下に基づき求める。すなわち、共重合ポリエステル樹脂を重水素化ヘキサフルオロイソプロパノールと重水素化クロロホルムとの容量比が1/20の混合溶媒に溶解させ、日本電子社製LA−400型NMR装置にて1H−NMRを測定し、得られたチャートの各成分のプロトンのピークの積分強度から、共重合成分の種類と含有量を求める。   In the present invention, the composition of the copolyester is determined based on the following. That is, the copolyester resin was dissolved in a mixed solvent having a volume ratio of deuterated hexafluoroisopropanol and deuterated chloroform of 1/20, and 1H-NMR was measured with an LA-400 NMR apparatus manufactured by JEOL Ltd. Then, from the integral intensity of the proton peak of each component of the obtained chart, the type and content of the copolymer component are obtained.

上記した共重合ポリエステルは、溶融紡糸の際に溶融時に熱分解が生じにくく、溶融段階にて高比重粒子を良好に保持しうるため、紡糸パックの目詰まりが生じにくく、紡糸の連続生産性が格段と向上する。溶融時に熱分解しやすいポリマーの場合、粘度低下が生じて溶融したポリエステルが高比重粒子を保持しにくくなり、保持できなかった高比重粒子が紡糸口金より上流部である紡糸パック内に徐々に残ってしまうことになって、パックの目詰まりによる紡糸性の問題が発生することから、パック交換を要するため連続操業ができず、生産性が低下する。これは、芯成分に非晶性のポリマーを用いた場合においても同様であり、非晶性のポリマーの場合、延伸時に流動性は確保しやすいために比重や強度は満足する繊維が得られやすいが、溶融紡糸の際に、溶融したポリエステルが高比重粒子を保持しにくく、上記と同様、連続操業が困難で生産性が低下する。   The above-mentioned copolymer polyester is less likely to be thermally decomposed during melting during melt spinning, and can hold high specific gravity particles well in the melting stage, so that clogging of the spinning pack is less likely to occur, and continuous spinning productivity is improved. Greatly improved. In the case of a polymer that is easily thermally decomposed when melted, the viscosity is lowered and the melted polyester becomes difficult to retain high specific gravity particles, and the high specific gravity particles that could not be retained gradually remain in the spin pack upstream of the spinneret. As a result, a problem of spinnability due to clogging of the pack occurs, so that the pack needs to be replaced, so that continuous operation cannot be performed, and productivity is lowered. The same applies to the case where an amorphous polymer is used as the core component. In the case of an amorphous polymer, fluidity is easily ensured at the time of drawing, so that fibers satisfying specific gravity and strength are easily obtained. However, during melt spinning, the melted polyester is difficult to hold high specific gravity particles, and as above, continuous operation is difficult and productivity is lowered.

また、ビスフェノールAのエチレンオキシド付加物成分を特定モル分率にて共重合することにより、イソフタル酸成分のみを共重合する場合と比較してガラス転移温度を比較的高くすることができ、芯成分の結晶化を遅らせることにより、延伸中の延伸流動性の低下を抑制し、芯成分に発生するボイドを抑制することを可能とする。   Also, by copolymerizing the ethylene oxide adduct component of bisphenol A at a specific molar fraction, the glass transition temperature can be made relatively high compared to the case of copolymerizing only the isophthalic acid component, and the core component By delaying crystallization, it is possible to suppress a decrease in stretching fluidity during stretching and to suppress voids generated in the core component.

さらに、ビスフェノールAのエチレンオキシド付加物成分とイソフタル酸成分とを上記した特定のモル分率で共重合することにより、上記したようにガラス転移温度を比較的高くしながら、融点は低め(200〜220℃)に設定することができるため、延伸前に加熱温度の上げ過ぎを防ぎ、芯成分ポリマーの流動性を維持できる。ここで、融点が230℃以上となると、芯成分ポリマーの流動性が低くなるのである。また、融点が200℃未満となると熱分解が生じやすくなり、上記したごとく連続操業ができなくなる。   Furthermore, by copolymerizing the ethylene oxide adduct component of bisphenol A and the isophthalic acid component at the specific molar fraction described above, the glass transition temperature is relatively high as described above, while the melting point is lowered (200 to 220). C.), it is possible to prevent the heating temperature from being raised excessively before stretching and maintain the fluidity of the core component polymer. Here, when the melting point is 230 ° C. or higher, the fluidity of the core component polymer is lowered. Moreover, when the melting point is less than 200 ° C., thermal decomposition tends to occur, and continuous operation cannot be performed as described above.

本発明においては、繊維製造工程での連続操業の目安として、目詰まりが生じることなく20時間以上連続操業できることが好ましく、より好ましくは24時間以上である。   In the present invention, as a guide for continuous operation in the fiber production process, it is preferable that continuous operation can be performed for 20 hours or more without clogging, and more preferably 24 hours or more.

また、芯成分ポリマーの極限粘度〔η〕は、延伸中の芯成分ポリマーの流動性を考慮して0.5〜0.8であることが好ましい。   The intrinsic viscosity [η] of the core component polymer is preferably 0.5 to 0.8 in consideration of the fluidity of the core component polymer during stretching.

芯成分に含有させる高比重粒子としては、バリウム、チタン、アルミニウム、タングステン等の金属粒子や二酸化チタン、酸化亜鉛、沈降性硫酸バリウム等の金属化合物が挙げられる。中でも硫酸バリウムは比重が高く、芯成分のポリエステルへの分散性に優れ、延伸性を阻害しにくいため、好ましい。   Examples of the high specific gravity particles contained in the core component include metal particles such as barium, titanium, aluminum and tungsten, and metal compounds such as titanium dioxide, zinc oxide and precipitated barium sulfate. Of these, barium sulfate is preferred because of its high specific gravity, excellent dispersibility of the core component in polyester, and difficulty in inhibiting stretchability.

また、高比重粒子の最大粒子径(直径)は、延伸性を考慮して4.0μm以下、中でも3.0μm以下とすることが好ましい。   In addition, the maximum particle diameter (diameter) of the high specific gravity particles is preferably 4.0 μm or less, and more preferably 3.0 μm or less in consideration of stretchability.

芯成分に含有させる高比重粒子の含有量は、芯成分中の30〜70質量%とすることが好ましい。高比重粒子の含有量が芯成分中に30質量%未満では、繊維比重を高くするためには芯成分の複合比率を大きくする必要性が生じ、そのため鞘成分の複合比率を低下すると、高強度の繊維を得ることが困難となりやすい。一方、芯成分中における高比重粒子の含有量が70質量%以下とすることにより、芯成分中に均一に練り込むことを可能とし、ボイドが生じにくく、延伸流動性も良好となる。   The content of the high specific gravity particles to be contained in the core component is preferably 30 to 70% by mass in the core component. When the content of the high specific gravity particles is less than 30% by mass in the core component, it is necessary to increase the composite ratio of the core component in order to increase the fiber specific gravity. It is difficult to obtain the fibers. On the other hand, when the content of the high specific gravity particles in the core component is 70% by mass or less, the core component can be uniformly kneaded, voids are hardly generated, and stretching fluidity is improved.

また、高比重粒子を芯成分ポリマーに含有させる方法としては、あらかじめ芯成分に用いる共重合ポリエステルに任意の高比重粒子を均一に練り込んでチップ化したものを、溶融紡糸の際に、そのまま芯成分として用いることが好ましい。   In addition, as a method of incorporating the high specific gravity particles into the core component polymer, a copolymer polyester used for the core component is kneaded into arbitrary high specific gravity particles in advance to form a chip as it is at the time of melt spinning. It is preferable to use it as a component.

次に、芯鞘型複合繊維における鞘成分について説明する。本発明において、マルチフィラメント糸の強度は、芯鞘複合繊維における鞘部が担う。本発明においては、強度と製糸性を考慮し、また、安価で比較的比重も高く、寸法安定性に優れることから、エチレンテレフタレートを主たる繰り返し単位とするポリエステルを用いることが好ましく、ポリエチレンテレフタレート(以下、PETと称す。)を用いることがより好ましい。そして、PETの極限粘度〔η〕は0.9〜1.3が好ましい。極限粘度が0.9より低くなると強度の高い繊維とすることが困難となる場合があり、一方、1.3より高くなると、延伸性が低下する場合があるので好ましくない。   Next, the sheath component in the core-sheath composite fiber will be described. In the present invention, the sheath of the core-sheath composite fiber bears the strength of the multifilament yarn. In the present invention, it is preferable to use a polyester having ethylene terephthalate as a main repeating unit in consideration of strength and yarn-making property, and is inexpensive, relatively high in specific gravity, and excellent in dimensional stability. , Referred to as PET). The intrinsic viscosity [η] of PET is preferably 0.9 to 1.3. If the intrinsic viscosity is lower than 0.9, it may be difficult to obtain a fiber having high strength. On the other hand, if the intrinsic viscosity is higher than 1.3, stretchability may be deteriorated.

芯鞘型複合繊維の芯鞘複合比は、質量比(芯:鞘)で50/50〜20/80が好ましい。芯成分の比率が20/80より小さいと、芯成分の割合が小さくなるため、高比重の繊維を得にくい。一方、芯成分の比率が50/50より大きいと、鞘成分の割合が少なくなり、繊維の強度が低くなる傾向となる。   The core-sheath composite fiber core-sheath composite ratio is preferably 50/50 to 20/80 in terms of mass ratio (core: sheath). When the ratio of the core component is smaller than 20/80, the ratio of the core component becomes small, so that it is difficult to obtain a high specific gravity fiber. On the other hand, when the ratio of the core component is larger than 50/50, the ratio of the sheath component is decreased, and the strength of the fiber tends to be lowered.

なお、芯成分と鞘成分ともにその効果や特性を損なわない範囲において、酸化チタンなどの艶消し剤、ヒンダートフェノール系化合物等の酸化防止剤、紫外線吸収剤、光安定剤、顔料、難燃剤、抗菌材、導電性付与剤等が配合されてもよい。   In addition, as long as the core component and the sheath component do not impair their effects and properties, matting agents such as titanium oxide, antioxidants such as hindered phenol compounds, ultraviolet absorbers, light stabilizers, pigments, flame retardants, An antibacterial material, a conductivity imparting agent, or the like may be blended.

本発明における複合繊維の横断面形状は、芯成分、鞘成分ともに多角形や多葉形状等の異形であってもよく、また、芯成分と鞘成分の中心点が一致していない偏心芯鞘型のものであってもよいが、高強度となりやすいため、芯成分と鞘成分の中心点が略一致しており、円形断面形状のものである同心芯鞘で円形断面である芯鞘型複合繊維が特に好ましい。   The cross-sectional shape of the conjugate fiber in the present invention may be an irregular shape such as a polygonal shape or a multilobal shape for both the core component and the sheath component, and the center point of the core component and the sheath component is not the same. A core-sheath composite that has a circular cross-section with a concentric core-sheath that has a circular cross-sectional shape, because the center point of the core component and the sheath component are approximately the same, because it is likely to be high strength. Fiber is particularly preferred.

本発明のマルチフィラメント糸は、毛羽数が20個/100万m以下であり、特に10個/100万m以下が好ましい。このマルチフィラメント糸の毛羽とは、マルチフィラメント糸を構成する複数本の複合繊維のうちの一部の複合繊維が切断したものがマルチフィラメント糸表面に毛羽として存在するものである。毛羽数が20個/100万mを超えると、マルチフィラメント糸を製編網に適用する際の製編網前のビーム捲き取り時に、毛羽が存在すると、機台を停止して毛羽を補修する作業(複合繊維の切断部分をつなぎ合せる作業)を要し、毛羽数が多い程、機台停止回数が増加し、生産効率を悪化させてしまう。また、毛羽の存在を見逃してしまい、ビーム捲き取り時に補修せずに除去できなかった毛羽があると、編網時に毛羽が隣の網糸に取られて、目合いが閉じた状態となってしまい、得られた網において閉じた目合いを広げる作業が必要となる。したがって、毛羽数は少ないほど好ましく、10個/100万m以下が好ましく、5個/100万m以下がより好ましい。なお、本発明において、毛羽数20個/100万m以下を達成できたのは、上記したように、溶融紡糸後の延伸の際に、芯成分が流動性を保持した状態で延伸を可能とし、芯成分の切断に起因する繊維の切断が発生しにくくなったことによると推定する。   The multifilament yarn of the present invention has a fluff number of 20 / 1,000,000 m or less, particularly preferably 10 / 1,000,000 m or less. The fluff of the multifilament yarn is one in which some of the composite fibers constituting the multifilament yarn are cut and present on the surface of the multifilament yarn as fluff. When the number of fluff exceeds 20 million / 1,000,000 m, if fluff is present when the multifilament yarn is applied to the braided net before beaming, the machine is stopped and the fluff is repaired. Work (work to join the cut parts of the composite fiber) is required, and the greater the number of fuzz, the greater the number of machine stand stops and the worse the production efficiency. In addition, if there is a fluff that misses the presence of fluff and cannot be removed without repairing at the time of beam cutting, the fluff is taken up by the adjacent net yarn during knitting, and the mesh is closed. Therefore, it is necessary to expand the closed mesh in the obtained net. Therefore, the smaller the number of fluffs, the better, preferably 10 / million m or less, and more preferably 5 / million m or less. In addition, in the present invention, the number of fluffs of 20/1 million m or less could be achieved because, as described above, in the stretching after melt spinning, the core component can be stretched while maintaining fluidity. It is presumed that the fiber is less likely to be cut due to the cutting of the core component.

本発明における芯鞘型複合繊維の比重は、1.50以上であり、特に1.51以上であることが好ましい。複合繊維の比重が1.50未満であると、本発明のマルチフィラメント糸を例えば定置網用途に用いる際に、漁網の沈降性や保形性が不十分となる。比重の上限としては1.80程度がよい。すなわち、芯成分に含有させる高比重粒子の含有量を多くすると比重が大きくなると考えるが、高比重粒子の含有量が多くなるに従って、繊維を高強度化することはより困難となる。したがって、芯成分中に含有させる高比重粒子の含有量を考慮し、かつ高強度4.7cN/dtex以上となる繊維を得るためには、繊維比重の上限は1.80がよい。   The specific gravity of the core-sheath type composite fiber in the present invention is 1.50 or more, and particularly preferably 1.51 or more. When the specific gravity of the composite fiber is less than 1.50, when the multifilament yarn of the present invention is used for, for example, a stationary net, the sedimentation and shape retention of the fishing net are insufficient. The upper limit of the specific gravity is preferably about 1.80. That is, it is considered that the specific gravity increases as the content of the high specific gravity particles contained in the core component increases. However, as the content of the high specific gravity particles increases, it becomes more difficult to increase the strength of the fiber. Therefore, in order to obtain a fiber having a high strength of 4.7 cN / dtex or more in consideration of the content of high specific gravity particles contained in the core component, the upper limit of the fiber specific gravity is preferably 1.80.

本発明のマルチフィラメント糸の強度は4.7cN/dtex以上である。強度を4.7cN/dtex以上とすることによって、水産資源用途に用いるには十分な強度となる。なお、前記同様に繊維比重を考慮すると、強度の上限は5.5cN/dtexがよい。   The strength of the multifilament yarn of the present invention is 4.7 cN / dtex or more. By setting the strength to 4.7 cN / dtex or more, the strength is sufficient for use in fishery resources. In addition, considering the fiber specific gravity as described above, the upper limit of the strength is preferably 5.5 cN / dtex.

また、耐磨耗性や製糸性を考慮すれば、本発明で得られる芯鞘型複合繊維の単繊維繊度は10〜30dtex、伸度は15〜30%であることが好ましい。   Further, in consideration of wear resistance and yarn production, it is preferable that the core-sheath composite fiber obtained in the present invention has a single fiber fineness of 10 to 30 dtex and an elongation of 15 to 30%.

本発明の高比重繊維からなるマルチフィラメント糸は、上記したように、高比重でかつ高強度でありながら、また、毛羽数が20個/100万m以下を達成しているため、編網して得られるネットに良好に適用できる。   As described above, the multifilament yarn made of the high specific gravity fiber of the present invention has a high specific gravity and high strength, and has achieved the number of fluffs of 20 pieces / 1,000,000 m or less. It can be applied well to the net obtained.

次に本発明の高比重繊維からなるマルチフィラメント糸の製造方法の好ましい態様について説明する。   Next, the preferable aspect of the manufacturing method of the multifilament yarn which consists of high specific gravity fiber of this invention is demonstrated.

芯成分ポリマーとして、常法の重合法によって得られた固有粘度が0.5〜0.8の共重合ポリエステルと高比重粒子と、必要に応じて顔料等の添加剤を準備し、それぞれ計量し、常法により2軸押出機等により溶融混練した後、ノズルから押し出し、ペレット状にカットすることによって得る。チップ化された高比重粒子含有してなる共重合ポリエステルを乾燥させ、紡糸に供する。   As the core component polymer, prepare a copolyester having an intrinsic viscosity of 0.5 to 0.8 obtained by a conventional polymerization method, high specific gravity particles, and additives such as pigments as necessary, and weigh each. It is obtained by melt-kneading with a twin-screw extruder or the like by a conventional method, and then extruding from a nozzle and cutting into pellets. The copolymerized polyester containing the high specific gravity particles formed into chips is dried and subjected to spinning.

一方、鞘成分ポリマーとしては、常法の重合法によって得られたポリエチレンテレフタレートを固相重合し、高粘度化したもの準備する。この際、鞘のポリエチレンテレフタレートは、高強度と毛羽数を考慮して極限粘度0.9以上のPETが好ましく、極限粘度は1.3以上がより好ましい。また、繊維の強度、比重、毛羽数に影響を及ばさない範囲において、酸化チタンなどの艶消し剤、ヒンダートフェノール系化合物等の酸化防止剤、紫外線吸収剤、光安定剤、顔料、難燃剤、抗菌材、導電性付与剤等を含有するマスターバッチを計量混合することもできる。   On the other hand, the sheath component polymer is prepared by solid-phase polymerization of polyethylene terephthalate obtained by a conventional polymerization method to increase the viscosity. In this case, the polyethylene terephthalate of the sheath is preferably PET having an intrinsic viscosity of 0.9 or more, more preferably 1.3 or more in consideration of high strength and the number of fluff. In addition, matting agents such as titanium oxide, antioxidants such as hindered phenol compounds, ultraviolet absorbers, light stabilizers, pigments, flame retardants, as long as they do not affect the strength, specific gravity, and number of fluff of the fiber In addition, a master batch containing an antibacterial material, a conductivity imparting agent, or the like can be mixed.

次いで、複合型の溶融紡糸装置に、芯鞘複合型の紡糸口金を装着し、高比重粒子を含有してなる芯成分と鞘成分とをそれぞれ導入して溶融紡糸を行う。紡出された繊維を口金直下に設置された壁面温度200〜500℃の加熱筒内を通過させた後、冷却装置で温度10〜30℃、速度0.5〜1m/秒の冷却風を吹き付けて冷却し、油剤を付与する。   Next, a core-sheath composite type spinneret is attached to a composite type melt spinning apparatus, and a core component and a sheath component containing high specific gravity particles are respectively introduced to perform melt spinning. After passing the spun fiber through a heating cylinder with a wall surface temperature of 200-500 ° C. installed directly under the die, cooling air is blown with a cooling air at a temperature of 10-30 ° C. and a speed of 0.5-1 m / sec. Cool and apply oil.

その後、非加熱の第1ローラーに引き取り、引き続き、表面温度120〜170℃の第2ローラーに掛けて1.01〜1.10倍の引き揃えを行い、表面温度130℃〜200℃の第3ローラーとの間で1段目の延伸を行う。続いて表面温度200〜260℃の第4ローラーと第3ローラーとの間にスチーム処理機を設置し、300℃以上のスチームを吹き付けながら、全延伸倍率が4.0〜6.0倍となるように、延伸倍率1.2〜1.6倍で2段目の延伸を行う。この後、表面温度100〜200℃の第5ローラーとの間で2〜5%の弛緩熱処理を行い、速度1500〜3500m/分でワインダーに巻き取り、毛羽数が20個/100万m以下、強度が4.7cN/dtex以上、比重が1.50以上のマルチフィラメント糸を得る。   After that, it is taken up by a non-heated first roller, and subsequently drawn by a second roller having a surface temperature of 120 to 170 ° C., and is aligned 1.01 to 1.10 times, and a third having a surface temperature of 130 ° C. to 200 ° C. First-stage stretching is performed with the roller. Subsequently, a steam processor is installed between the fourth roller and the third roller having a surface temperature of 200 to 260 ° C, and the total draw ratio is 4.0 to 6.0 times while spraying steam of 300 ° C or higher. Thus, the second stage stretching is performed at a stretching ratio of 1.2 to 1.6 times. Thereafter, a relaxation heat treatment of 2 to 5% is performed between the fifth roller having a surface temperature of 100 to 200 ° C., wound around a winder at a speed of 1500 to 3500 m / min, and the number of fluff is 20 / 1,000,000 m or less. A multifilament yarn having a strength of 4.7 cN / dtex or more and a specific gravity of 1.50 or more is obtained.

本発明によれば、高比重かつ高強度でありながら、繊維の切断による毛羽が生じにくいマルチフィラメント糸を、連続操業性が良好で生産効率が向上したものを提供することができる。毛羽が生じにくいマルチフィラメント糸であることから、このマルチフィラメント糸を用いて製編網する際においても生産効率を向上させることができる。   According to the present invention, it is possible to provide a multifilament yarn having high specific gravity and high strength, in which fuzz due to fiber cutting is less likely to occur, with good continuous operability and improved production efficiency. Since the multifilament yarn is less prone to fluff, the production efficiency can be improved even when the multifilament yarn is used for knitting.

次に、本発明の実施例によって具体的に説明する。なお、本発明における各物性の評価は、次の方法で行った。
(A)極限粘度
フェノールと四塩化エタンとの等質量混合物を溶媒とし、濃度0.5g/dl、温度20℃で測定した。
(B)ポリエステルの組成
ポリエステル樹脂を重水素化ヘキサフルオロイソプロパノールと重水素化クロロホルムとの容量比が1/20の混合溶媒に溶解させ、日本電子社製LA−400型NMR装置にて1H−NMRを測定し、得られたチャートの各成分のプロトンのピークの積分強度から、共重合成分の種類と含有量を求めた。
(C)強伸度
JIS L−1013 引張強さおよび伸び率の標準時試験に従い、島津製作所オートグラフDSS−500を用い、試料長25cm、引張速度30cm/分で測定した。
(D)繊維の比重
JIS l−1013 比重(浮沈法)に従い測定した。
(E)毛羽数
春日電機製毛羽発見器F9−AN型を用い、引き取り速度300m/分で測定した。
(F)融点(℃)
パーキンエルマー社製の示差走査型熱量計DSC−7型を使用し、昇温速度20℃/分で測定した。
(G)ガラス転移温度(℃)
パーキンエルマー社製の示差走査型熱量計DSC−7型を使用し、昇温速度20℃/分で測定した。なお、補外ガラス転移開始温度(Tig)をガラス転移温度とした。
(H)操業性
口金当たりの連続操業時間により下記三段階で評価した。
○:20時間以上
△:10時間以上、20時間未満
×:10時間未満
Next, an embodiment of the present invention will be specifically described. In addition, evaluation of each physical property in this invention was performed with the following method.
(A) Intrinsic viscosity Measured at a concentration of 0.5 g / dl and a temperature of 20 ° C. using an equal mass mixture of phenol and ethane tetrachloride as a solvent.
(B) Composition of polyester The polyester resin was dissolved in a mixed solvent having a volume ratio of deuterated hexafluoroisopropanol and deuterated chloroform of 1/20, and 1H-NMR was measured with an LA-400 NMR apparatus manufactured by JEOL Ltd. From the integrated intensity of the proton peak of each component of the obtained chart, the type and content of the copolymer component were determined.
(C) Strong Elongation According to JIS L-1013, a standard test of tensile strength and elongation, Shimadzu Autograph DSS-500 was used and measured at a sample length of 25 cm and a tensile speed of 30 cm / min.
(D) Specific gravity of fiber Measured according to JIS 1-1013 specific gravity (floating and sinking method).
(E) Number of fluff Using a Kasuga Denki fluff detector F9-AN type, measurement was performed at a take-up speed of 300 m / min.
(F) Melting point (° C)
A differential scanning calorimeter DSC-7 manufactured by Perkin Elmer was used, and the temperature was measured at a heating rate of 20 ° C./min.
(G) Glass transition temperature (° C)
A differential scanning calorimeter DSC-7 manufactured by Perkin Elmer was used, and the temperature was measured at a heating rate of 20 ° C./min. The extrapolated glass transition start temperature (T ig ) was defined as the glass transition temperature.
(H) Operability The following three stages were evaluated according to the continuous operation time per base.
○: 20 hours or more Δ: 10 hours or more, less than 20 hours ×: less than 10 hours

実施例1
鞘成分として、極限粘度1.2のPETにカーボンブラックを高濃度に含有したマスターバッチとレギュラーのPET(極限粘度1.2)とを混合し、鞘成分中のカーボンブラック濃度が0.8質量%となるようにしたブレンドチップを用いた。一方、芯成分として、極限粘度0.58でイソフタル酸共重合率が8.0モル%、ビスフェノールAのエチレンオキシド付加物共重合率が6.5モル%である共重合ポリエステルに平均粒子径が0.6μm、最大粒子径2.0μm、比重4.3の沈降性硫酸バリウムを芯成分中に65質量%およびカーボンブラックを1.5質量%となるように溶融混合したもの(チップ)を用いた。
Example 1
As a sheath component, a master batch containing a high concentration of carbon black in PET having an intrinsic viscosity of 1.2 and a regular PET (ultimate viscosity of 1.2) are mixed, and the concentration of carbon black in the sheath component is 0.8 mass. %, Blended chips were used. On the other hand, an average particle size of 0 is used as a core component in a copolyester having an intrinsic viscosity of 0.58, an isophthalic acid copolymerization rate of 8.0 mol%, and an ethylene oxide adduct copolymerization rate of bisphenol A of 6.5 mol%. A chip (chip) prepared by melting and mixing precipitated barium sulfate having a maximum particle size of 2.0 μm and a specific gravity of 4.3 in a core component to 65% by mass and carbon black to 1.5% by mass was used. .

上記の芯成分と鞘成分を複合型溶融紡糸装置に導入し、直径0.6mm、孔数64個の紡糸孔を有する芯鞘型複合紡糸口金より、温度286℃、芯鞘質量比(芯:鞘)26:74で溶融紡糸した。   The core component and the sheath component are introduced into a composite melt spinning apparatus, and the temperature is 286 ° C., the core-sheath mass ratio (core: core: from the core-sheath composite spinneret having a diameter of 0.6 mm and a number of holes of 64. Sheath) Melt spinning at 26:74.

紡出された繊維を壁面温度450℃の加熱筒を通過させた後、横型冷却装置を用いて、温度16℃、速度0.8m/秒の冷却風を吹き付けて冷却し、油剤を付与した。続いて、非加熱の第1ローラーに引き取り、表面温度150℃の第2ローラーとの間で1.01倍の引き揃えを行った後、表面温度160℃の第3ローラーとの間で3.7倍(1段目)の延伸を行った。その後、スチーム処理機を用いて、温度450℃、圧力0.5MPaのスチームを繊維に吹き付けながら、表面温度240℃の第4ローラーとの間で1.4倍(2段目)の延伸を行い、表面温度190℃、速度1840m/分の第5ローラーとの間で2%の弛緩熱処理を行い、速度1800m/分のワインダーに巻き取り、1230dtex/64フィラメントで同心円型の芯鞘型複合繊維からなるマルチフィラメント糸を得た。   The spun fiber was passed through a heating cylinder having a wall surface temperature of 450 ° C., and then cooled by blowing cooling air at a temperature of 16 ° C. and a speed of 0.8 m / sec using a horizontal cooling device to give an oil agent. Subsequently, the film is taken up by a non-heated first roller, aligned 1.01 times with a second roller having a surface temperature of 150 ° C., and then placed with a third roller having a surface temperature of 160 ° C. The film was stretched 7 times (first stage). Then, using a steam processing machine, while blowing steam at a temperature of 450 ° C. and a pressure of 0.5 MPa onto the fiber, the fiber is stretched 1.4 times (second stage) with a fourth roller having a surface temperature of 240 ° C. 2% relaxation heat treatment with a fifth roller at a surface temperature of 190 ° C. and a speed of 1840 m / min, wound around a winder of 1800 m / min and wound from a concentric core-sheath composite fiber with 1230 dtex / 64 filament A multifilament yarn was obtained.

比較例1〜4
芯成分中のイソフタル酸共重合率(A)およびビスフェノールAのエチレンオキシド付加物共重合率(B)を表1に記載したように変更したこと以外は、実施例1と同様に行った。
Comparative Examples 1-4
The same procedure as in Example 1 was carried out except that the isophthalic acid copolymerization rate (A) and the ethylene oxide adduct copolymerization rate (B) of bisphenol A in the core component were changed as described in Table 1.

比較例5
実施例1において、芯成分としてイソフタル酸共重合率(A)を8.0モル%である共重合ポリエステルを用いたこと、芯成分中に混合する沈降性硫酸バリウムの量を50質量%としたこと、芯鞘質量比(芯:鞘)を36:64として溶融紡糸したこと以外は、実施例1と同様に行った。
Comparative Example 5
In Example 1, a copolymerized polyester having an isophthalic acid copolymerization ratio (A) of 8.0 mol% was used as the core component, and the amount of precipitated barium sulfate mixed in the core component was 50% by mass. This was carried out in the same manner as in Example 1 except that melt spinning was performed with a core-sheath mass ratio (core: sheath) of 36:64.

比較例6〜9
芯成分中のジオール成分をビスフェノールAのエチレンオキシド付加物に代えて、表2に記載した成分に変更したこと以外は、実施例1と同様に行った。
Comparative Examples 6-9
The same procedure as in Example 1 was conducted except that the diol component in the core component was changed to the components described in Table 2 instead of the bisphenol A ethylene oxide adduct.

複合繊維の評価結果を、表1および2に示す。   The evaluation results of the composite fibers are shown in Tables 1 and 2.


実施例1は、毛羽数2個/100万mであり、本発明が規定する高強度(強度4.7cN/dtex)、高比重(比重1.50以上)のものであった。また、紡糸口金の交換頻度も低く、連続生産性に非常に優れていた。

Example 1 had 2 fluffs / 1,000,000 m, and had high strength (strength 4.7 cN / dtex) and high specific gravity (specific gravity 1.50 or more) defined by the present invention. In addition, the frequency of changing the spinneret was low, and the continuous productivity was excellent.

一方、比較例1および4は、共重合成分のモル分率が低く融点が230℃以上もしくは超えており、芯成分の延伸流動性が低く、比重が低くなった。比較例4においては、比重が1.46であって、極めて低いものであったため、その他の性能評価は行わなかった。   On the other hand, in Comparative Examples 1 and 4, the molar fraction of the copolymer component was low, the melting point was 230 ° C. or higher, the core component had low stretching fluidity, and the specific gravity was low. In Comparative Example 4, the specific gravity was 1.46, which was very low, so no other performance evaluation was performed.

比較例2、3はイソフタル酸成分のみの共重合のため、ガラス転移温度が低く熱安定性に劣り、紡糸口金の交換頻度が増加し連続生産性に劣るものとなった。   In Comparative Examples 2 and 3, since only the isophthalic acid component was copolymerized, the glass transition temperature was low, the thermal stability was poor, the replacement frequency of the spinneret was increased, and the continuous productivity was poor.

比較例5は、目的とする強度が得られず、毛羽立ちが多いものであった。これの結果は、芯成分における共重合成分のモル分率が低く融点が230℃であり、芯成分の延伸流動性が低いことに起因したと考える。   In Comparative Example 5, the intended strength was not obtained, and there was much fuzz. This result is considered to be due to the low molar fraction of the copolymer component in the core component and the melting point of 230 ° C., and the low draw fluidity of the core component.

比較例6〜8は、共重合成分に1,4−ブタンジオールを用いたが、熱安定性に劣り、紡糸口金の交換頻度が大幅に増加し、連続生産性に劣っていた。比較例9は、共重合成分に1,4−シクロヘキサンジメタノールを用いたが、融点が230℃を超えており、芯成分の延伸流動性が低く、得られた繊維の比重が1.46であって、極めて低いものであったため、その他の性能評価は行わなかった。   In Comparative Examples 6 to 8, 1,4-butanediol was used as a copolymerization component, but the heat stability was poor, the frequency of changing the spinneret was greatly increased, and the continuous productivity was poor. In Comparative Example 9, 1,4-cyclohexanedimethanol was used as the copolymer component, but the melting point exceeded 230 ° C., the core component had low stretching fluidity, and the resulting fiber had a specific gravity of 1.46. Since it was extremely low, no other performance evaluation was performed.

なお、比較例2、3、6〜8は、連続操業性が良くなかったので、毛羽評価は行っていない。   In Comparative Examples 2, 3, and 6 to 8, since the continuous operability was not good, fluff evaluation was not performed.

連続操業性が良好である実施例1および比較例1、5について、下記の耐摩耗性評価を行った結果を表3に示す。実施例1の結果が最も良好であり、実用的な耐摩耗性を備えていることが分かる。   Table 3 shows the results of the following wear resistance evaluation for Example 1 and Comparative Examples 1 and 5, which have good continuous operability. It can be seen that the result of Example 1 is the best and has practical wear resistance.

<耐摩耗性>
得られたマルチフィラメント糸を用いて8本組紐を作成し、これを試料とした。耐摩耗試験装置(米倉製作所製)を用いて、試料を試験装置に取り付けた。すなわち、試料の一端に質量300gのおもりをつるし、他端を丸やすり(ツボミヤ社製 優良鉄工用ヤスリ 丸中目)の上を渡して設置し、試料を繰り返し速度30±1回/分、ストローク幅230±30mmにて往復運動させ、試料と丸やすりの周面とが約90度の角度で接触させて往復摩擦させ、破断に至る往復回数を計測した。
測定は、室温で耐摩耗性を評価したものは「乾摩耗」、一方、試料を工業用水に5分浸漬後、取り出して耐摩耗性を評価したものを「湿摩耗」とした。なお、「湿摩耗」は、試験開始直前と摩耗100回毎に1ccの水を滴下して測定した。
<Abrasion resistance>
Eight braids were made using the obtained multifilament yarn and used as a sample. The sample was attached to the test apparatus using an abrasion resistance test apparatus (manufactured by Yonekura Seisakusho). That is, a weight of 300 g is hung on one end of the sample, and the other end is placed over a round file (Tsubomiya's excellent ironwork file, round-medium), and the sample is repeated at a speed of 30 ± 1 times / min. The sample was reciprocated at a width of 230 ± 30 mm, the sample and the peripheral surface of the round file were brought into contact with each other at an angle of about 90 degrees, and the reciprocating friction was performed.
The measurement was evaluated as “dry wear” when the abrasion resistance was evaluated at room temperature, and “wet abrasion” when the sample was immersed in industrial water for 5 minutes and then taken out and evaluated for abrasion resistance. “Wet wear” was measured by dropping 1 cc of water just before the start of the test and every 100 wears.



Claims (4)

芯成分中に高比重粒子を含有し、比重が1.50以上である芯鞘型複合繊維からなるマルチフィラメント糸であり、マルチフィラメント糸の強度が4.7cN/dtex以上、かつ毛羽数が20個/100万m以下であることを特徴とする高比重繊維からなるマルチフィラメント糸。   It is a multifilament yarn comprising a core-sheath type composite fiber containing high specific gravity particles in the core component and having a specific gravity of 1.50 or more, the strength of the multifilament yarn is 4.7 cN / dtex or more, and the number of fluff is 20 Multifilament yarn made of high specific gravity fibers, characterized in that the number is 1 million or less. 芯鞘比率(質量比)が、芯成分/鞘成分=30〜20/70〜80であり、芯成分と鞘成分を構成するポリマーがポリエステル系ポリマーであることを特徴とする請求項1記載の高比重繊維からなるマルチフィラメント糸。   The core-sheath ratio (mass ratio) is a core component / sheath component = 30-20 / 70-80, and the polymer constituting the core component and the sheath component is a polyester-based polymer. Multifilament yarn made of high specific gravity fiber. 芯成分を構成するポリマーが、結晶融点200〜220℃、ガラス転移温度70〜80℃の共重合ポリエステルであり、鞘成分を構成するポリマーがポリエチレンテレフタレートであることを特徴とする請求項1または2記載の高比重繊維からなるマルチフィラメント糸。   The polymer constituting the core component is a copolyester having a crystal melting point of 200 to 220 ° C and a glass transition temperature of 70 to 80 ° C, and the polymer constituting the sheath component is polyethylene terephthalate. A multifilament yarn comprising the high specific gravity fiber described. 請求項1〜3のいずれか1項記載のマルチフィラメント糸により構成されてなるネット。
The net | network comprised by the multifilament yarn of any one of Claims 1-3.
JP2017036729A 2016-03-03 2017-02-28 Multifilament yarn made of high specific gravity fiber Active JP6870822B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016041047 2016-03-03
JP2016041047 2016-03-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021024040A Division JP7048060B2 (en) 2016-03-03 2021-02-18 Manufacturing method of multifilament yarn made of high density fiber

Publications (2)

Publication Number Publication Date
JP2017160586A true JP2017160586A (en) 2017-09-14
JP6870822B2 JP6870822B2 (en) 2021-05-12

Family

ID=59853795

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017036729A Active JP6870822B2 (en) 2016-03-03 2017-02-28 Multifilament yarn made of high specific gravity fiber
JP2021024040A Active JP7048060B2 (en) 2016-03-03 2021-02-18 Manufacturing method of multifilament yarn made of high density fiber

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021024040A Active JP7048060B2 (en) 2016-03-03 2021-02-18 Manufacturing method of multifilament yarn made of high density fiber

Country Status (1)

Country Link
JP (2) JP6870822B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11200154A (en) * 1998-01-14 1999-07-27 Toray Ind Inc Conjugated fiber and its production
JP2000096377A (en) * 1998-09-25 2000-04-04 Unitika Ltd Production of high density composite filament

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11200154A (en) * 1998-01-14 1999-07-27 Toray Ind Inc Conjugated fiber and its production
JP2000096377A (en) * 1998-09-25 2000-04-04 Unitika Ltd Production of high density composite filament

Also Published As

Publication number Publication date
JP7048060B2 (en) 2022-04-05
JP2021080624A (en) 2021-05-27
JP6870822B2 (en) 2021-05-12

Similar Documents

Publication Publication Date Title
KR101059594B1 (en) Poly (trimethylene dicarboxylate) fiber, its manufacture and use
KR101858294B1 (en) Cationic-dyeable polyester fiber and conjugated fiber
JPWO2011068195A1 (en) Normal pressure dyeable polyester fiber and method for producing the same
JP7048060B2 (en) Manufacturing method of multifilament yarn made of high density fiber
JP2009041124A (en) Dyeable polypropylene fiber
US20120009418A1 (en) Poly(trimethylene arylate) fibers, process for preparing, and fabric prepared therefrom
JP2012241150A (en) Polymer alloy including polylactic acid resin and polyethylene terephthalate resin, and method of manufacturing the same
JP5964437B2 (en) Poly (trimethylene arylate) fiber, method for making the same, and fabric made therefrom
KR101143721B1 (en) High Gravity Polyester Multi-filament and Its manufacturing Method
US20140234623A1 (en) Poly(trimethylene arylate) fibers, process for preparing, and fabric prepared therefrom
JP6437292B2 (en) Polyester fiber
JP6443127B2 (en) Method for producing hygroscopic polyester fiber
JP2007056382A (en) Method for producing high specific gravity composite fiber
JP2019026991A (en) Black spun-dyed polyester fiber
US8753741B2 (en) Poly(trimethylene arylate) fibers, process for preparing, and fabric prepared therefrom
JP2018119229A (en) Black spun-dyed modified cross-section multifilament stretched yarn
JP2004176205A (en) Recycled polyester fiber for use as industrial material
JP2004162205A (en) Sheath/core-type monofilament and fishnet using the same
US20110263171A1 (en) Poly(trimethylene arylate) fibers, process for preparing, and fabric prepared therefrom
JP2024016312A (en) Polyester based hollow fiber for artificial hair, manufacturing method of the same, and hair ornament product containing the same
JP6089786B2 (en) Sea-island composite fiber made of polylactic acid and polyglycolic acid
US8540912B2 (en) Process of making poly(trimethylene arylate) fibers
JP2008169502A (en) Polyester fiber and method for producing the same
JP2005264418A (en) Flame-retardant reclaimed polyester fiber
JP2006144153A (en) Conjugate fiber having high specific gravity

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170228

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210407

R150 Certificate of patent or registration of utility model

Ref document number: 6870822

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250