JP2014065995A - Molten anisotropic aromatic polyester fiber excellent in cut resistance - Google Patents

Molten anisotropic aromatic polyester fiber excellent in cut resistance Download PDF

Info

Publication number
JP2014065995A
JP2014065995A JP2012213926A JP2012213926A JP2014065995A JP 2014065995 A JP2014065995 A JP 2014065995A JP 2012213926 A JP2012213926 A JP 2012213926A JP 2012213926 A JP2012213926 A JP 2012213926A JP 2014065995 A JP2014065995 A JP 2014065995A
Authority
JP
Japan
Prior art keywords
aromatic polyester
cut resistance
anisotropic aromatic
fiber
polyester fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012213926A
Other languages
Japanese (ja)
Inventor
Yuji Ogino
祐二 荻野
Takashi Katayama
隆 片山
Kazumasa Kusudo
一正 楠戸
Toshiaki Kobayashi
利章 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2012213926A priority Critical patent/JP2014065995A/en
Publication of JP2014065995A publication Critical patent/JP2014065995A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Artificial Filaments (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a molten anisotropic aromatic polyester fiber excellent in cut resistance.SOLUTION: There is provided a molten anisotropic aromatic polyester fiber in which 0.1 to 10 wt% of inorganic particles is added.

Description

本発明は溶融異方性芳香族ポリエステルにおいて、その繊維中に無機微粒子が均一に添加されているものであり、耐切創性に優れることを特徴としていることから、特に防刃性を必要とする防護材に用いることができる溶融異方性芳香族ポリエステル繊維とその製造方法に関するものである。   The present invention is a melt-anisotropic aromatic polyester, in which inorganic fine particles are uniformly added to the fiber, and it is characterized by excellent cut resistance, and therefore particularly requires blade prevention. The present invention relates to a melt-anisotropic aromatic polyester fiber that can be used as a protective material and a method for producing the same.

溶融異方性芳香族ポリエステル繊維に対して無機微粒子を付与させるという技術は、例えば、モース硬度4以下のケイ酸とマグネシウムを主成分とする平均粒径0.01〜15μmの無機微粒子を0.3〜5.0wt%を繊維表面に付着させてなる溶融異方性芳香族ポリエステル繊維等が知られている(特許文献1参照。)。本技術は溶融異方性芳香族ポリエステル繊維の剛直さゆえの耐屈曲疲労性の改善や、耐摩耗性の向上に効果がある他に、熱処理後のヤーンの膠着回避にも効果的であるが、無機微粒子は繊維表面に塗布されているだけであり、脱落してしまえば耐屈曲疲労性改善の効果もなくなるおそれがあった。 The technique of imparting inorganic fine particles to the melt-anisotropic aromatic polyester fiber is, for example, an inorganic fine particle having an average particle diameter of 0.01 to 15 μm mainly composed of silicic acid having a Mohs hardness of 4 or less and magnesium. A melt anisotropic aromatic polyester fiber or the like obtained by adhering 3 to 5.0 wt% to the fiber surface is known (see Patent Document 1). This technology is effective in improving the bending fatigue resistance due to the rigidity of the melt-anisotropic aromatic polyester fiber and in improving the wear resistance, but also in preventing the yarn from sticking after heat treatment. The inorganic fine particles are only applied to the fiber surface, and if they fall off, the effect of improving the bending fatigue resistance may be lost.

また溶融異方性芳香族ポリエステル繊維の耐切創性に関しては、元々有機繊維の中では比較的耐切創性が高く、種々の防護衣用途にも使用されているものの、耐切創性の優位差はその評価方法により大きく影響をうける。例えばインストロン型万能試験機にカッターナイフの刃を水平から10度の角度で固定し、糸長30cmのヤーンを刃にまわして引張試験を行い、ヤーンが切断したときの強力を比較する方法においては他の有機繊維に対して溶融異方性芳香族ポリエステル繊維に優位性が認められている。   In addition, regarding the cut resistance of melt-anisotropic aromatic polyester fibers, the cut resistance is relatively high among organic fibers and is used for various protective clothing applications. It is greatly influenced by the evaluation method. For example, in a method of comparing the strength when a yarn is cut by fixing a blade of a cutter knife to an Instron type universal testing machine at an angle of 10 degrees from the horizontal, turning a yarn with a length of 30 cm around the blade, and performing a tensile test. Has been recognized as superior to melt-anisotropic aromatic polyester fibers over other organic fibers.

上記以外には英国の規格であるBS EN388:1994の中の6.2に記載のBlade Cut Resistance法による評価がある。この評価方法は、図1に示すようにタングステン鋼円形刃を布帛の上に走らせて、基準布である綿のキャンバス地の織物(目付540g/m、厚み1.2mm)を基準として、評価対照の布帛の耐切創性を相対比較した試験方法であり、5Nの荷重のかかった円形刃をサンプル上に走らせ、貫通するまでのカウント値を測定し、ある式よりIndex値を算出するというものであるが、level1〜level5の5段階評価において従来の溶融異方性芳香族ポリエステル繊維の耐切創性はおよそlevel1〜level2程度と顕著な耐切創性能は認められなかった。 In addition to the above, there is an evaluation by the Blade Cut Resistance method described in 6.2 in BS EN388: 1994 which is a British standard. In this evaluation method, as shown in FIG. 1, a tungsten steel circular blade is run on a fabric, and the evaluation is based on a cotton canvas fabric (weight per unit area 540 g / m 2 , thickness 1.2 mm) as a reference fabric. This is a test method in which the cut resistance of the control fabric is relatively compared. A circular blade with a 5N load is run on the sample, the count value until it penetrates is measured, and the index value is calculated from a certain formula. However, in the 5-level evaluation of level 1 to level 5, the cut resistance of the conventional melt-anisotropic aromatic polyester fiber was about level 1 to level 2, and no remarkable cut resistance performance was recognized.

特開2004−107826号公報JP 2004-107826 A

欧州における耐切創性の評価方法は前述した英国規格のEN388が一般的であり、欧州各国において繊維製品の耐切創性はEN388評価法における耐切創性のレベルで述べる必要があるが、従来の溶融異方性芳香族ポリエステル繊維は本測定方法での耐切創性がlevel1〜level2と十分な性能が得られていなかった。   The evaluation method for cut resistance in Europe is generally the above-mentioned British standard EN388. In Europe, it is necessary to describe the cut resistance of textile products at the level of cut resistance in the EN388 evaluation method. The anisotropic aromatic polyester fiber was not able to obtain sufficient performance with level 1 to level 2 in cut resistance in this measurement method.

本発明者等はEN388評価法における耐切創性能を上げるべく鋭意検討した結果、当該評価方法でlevel3以上と耐切創性能に優れる溶融異方性芳香族ポリエステル繊維を見出し、本発明に到達した。   As a result of intensive studies to improve the cut resistance performance in the EN388 evaluation method, the present inventors have found a fused anisotropic aromatic polyester fiber having a level 3 or higher and an excellent cut resistance performance, and have reached the present invention.

すなわち本発明は溶融異方性芳香族ポリエステル繊維に対して無機微粒子を繊維中に0.1〜10wt%均一に分散させ、好ましくは上記無機微粒子の平均粒子径を0.01〜10μmとすることにより耐切創性を向上させ、かかる課題を解決するものである。   That is, in the present invention, inorganic fine particles are uniformly dispersed in the fiber with respect to the melt-anisotropic aromatic polyester fiber, and the average particle diameter of the inorganic fine particles is preferably 0.01 to 10 μm. This improves the cut resistance and solves this problem.

本発明によれば、従来の無機微粒子を繊維表面に塗布した溶融異方性芳香族ポリエステル繊維に比べて耐切創性に優れるので、特に防刃性を必要とする防護材に用いることができる。   According to the present invention, it has excellent cut resistance as compared with the conventional melt anisotropic aromatic polyester fiber in which inorganic fine particles are applied to the fiber surface, and therefore, it can be used for a protective material particularly requiring blade-proof property.

本発明にいう溶融異方性とは溶融相において光学的異方性(液晶性)を示すことである。例えば試料をホットステージにのせ、窒素雰囲気下で昇温加熱し、試料の透過性を観察することで認定できる。本発明で用いるポリマーとしての溶融異方性芳香族ポリエステルとしては下記化1に示す反復構成単位の組み合わせからなるものが挙げられる。   The melt anisotropy referred to in the present invention is to show optical anisotropy (liquid crystallinity) in the melt phase. For example, it can be recognized by placing the sample on a hot stage, heating and heating in a nitrogen atmosphere, and observing the permeability of the sample. Examples of the melt-anisotropic aromatic polyester as a polymer used in the present invention include those composed of a combination of repeating structural units represented by the following chemical formula (1).

Figure 2014065995
Figure 2014065995

特に好ましくは下記化2に示す反復構成単位の組み合わせからなるポリマーが好ましい。さらに好ましいのは(A)及び(B)の反復構成単位からなる部分が65%以上であるポリマーであり、特に(B)の成分が4〜45重量%である芳香族ポリエステルが好ましい。   Particularly preferred is a polymer composed of a combination of repeating structural units shown in Chemical Formula 2 below. More preferred is a polymer in which the portion comprising the repeating structural units (A) and (B) is 65% or more, and an aromatic polyester in which the component (B) is 4 to 45% by weight is particularly preferred.

Figure 2014065995
Figure 2014065995

溶融異方性芳香族ポリエステルの融点(MP)は260〜380℃、特に270〜350℃が好ましい。ここでいう融点とは示差走査熱量(DSC):例えばMettler社製、TA3000で観察される主吸熱ピークのピーク温度である。(JIS K7121)。具体的にはDSC(例えばMettler社製、TA3000)装置にサンプルを10〜20mgをとりアルミ製パンへ封入した後、キャリアーガスとして窒素を100cc/分流し、20℃/分で昇温したときの吸熱ピークを測定する。ポリマーの種類により上記1st Runで明確な吸熱ピークが現れない場合は、50℃/分の昇温速度で予想される流れ温度よりも50℃高い温度まで昇温し、その温度で3分間完全に溶融した後、80℃/分の速度で50℃まで冷却し、しかる後に20℃/分の昇温速度で吸熱ピークを測定するとよい。   The melting point (MP) of the melt anisotropic aromatic polyester is preferably 260 to 380 ° C, particularly preferably 270 to 350 ° C. The melting point here is a differential scanning calorific value (DSC): a peak temperature of a main endothermic peak observed with, for example, TA3000 manufactured by Mettler. (JIS K7121). Specifically, after taking 10-20 mg of sample in a DSC (eg, Mettler, TA3000) sample and sealing it in an aluminum pan, nitrogen was flowed at 100 cc / min as a carrier gas and the temperature was raised at 20 ° C./min. Measure the endothermic peak. If a clear endothermic peak does not appear in the above 1st Run depending on the type of polymer, the temperature is raised to 50 ° C higher than the expected flow temperature at a heating rate of 50 ° C / min. After melting, it is preferably cooled to 50 ° C. at a rate of 80 ° C./min, and then the endothermic peak is measured at a temperature increase rate of 20 ° C./min.

また本発明の溶融異方性芳香族ポリエステルには本発明の効果を損なわない範囲で、ポリエチレンテレフタレ−ト、変性ポリエチレンテレフタレ−ト、ポリオレフィン、ポリカ−ボネ−ト、ポリアクリレ−ト、ポリアミド、ポリフェニレンサルファイド、ポリエステルエ−テルケトン、フッ素樹脂熱可塑性ポリマ−を添加しても良い。またカ−ボンブラック、染料や顔料等の着色剤、酸化防止剤、紫外線吸収剤、光安定剤等の各種添加剤を含んでいても良い。   In addition, the melt anisotropic aromatic polyester of the present invention includes polyethylene terephthalate, modified polyethylene terephthalate, polyolefin, polycarbonate, polyacrylate, polyamide, within the range not impairing the effects of the present invention. Polyphenylene sulfide, polyester ether ketone, or fluororesin thermoplastic polymer may be added. Various additives such as carbon black, colorants such as dyes and pigments, antioxidants, ultraviolet absorbers, and light stabilizers may also be included.

次に溶融異方性芳香族ポリエステル繊維の紡糸方法について述べる。本発明の溶融異方性芳香族ポリエステル繊維は特に繊維中に無機微粒子を0.1〜10wt%含有していることを特徴としているがその製造方法は特に限定されるものではない。繊維中に無機微粒子を均一に添加する方法としては事前に上記熱可塑性ポリマーに無機微粒子をコンパウンドしたマスターバッチポリマーを作成したものを本溶融異方性芳香族ポリマーと押出機にてブレンドして紡糸してもよいし、無機微粒子を押出機内に直接添加してブレンドして紡糸してもよい。   Next, a spinning method of melt anisotropic aromatic polyester fiber will be described. The melt anisotropic aromatic polyester fiber of the present invention is characterized in that it contains 0.1 to 10 wt% of inorganic fine particles in the fiber, but its production method is not particularly limited. As a method of uniformly adding inorganic fine particles into the fiber, a master batch polymer prepared by compounding inorganic fine particles with the above thermoplastic polymer in advance is blended with the melt anisotropic aromatic polymer in an extruder and spun. Alternatively, inorganic fine particles may be directly added into the extruder and blended and spun.

紡糸原糸は熱処理することにより強度、弾性率をさらに向上させることが可能である。熱処理は(Mp−80℃)〜Mpの温度条件で行うのが好ましい。本発明の溶融異方性芳香族ポリエステル繊維の融点は熱処理温度を上げるに従い上昇するので熱処理方法としては段階的に温度を上昇させながら熱処理するのが好ましい。熱処理雰囲気としては窒素、アルゴン等の不活性ガスや空気等の活性ガス、あるいはそれらを組み合わせた雰囲気等が好適に用いられる。また上記熱処理を減圧条件下で行っても何等差し支えない。   The spinning yarn can be further improved in strength and elastic modulus by heat treatment. The heat treatment is preferably performed under a temperature condition of (Mp-80 ° C.) to Mp. Since the melting point of the melt-anisotropic aromatic polyester fiber of the present invention increases as the heat treatment temperature is raised, the heat treatment is preferably carried out while raising the temperature stepwise. As the heat treatment atmosphere, an inert gas such as nitrogen or argon, an active gas such as air, or a combination thereof is preferably used. Moreover, there is no problem even if the heat treatment is performed under reduced pressure.

本発明における重要な点は溶融異方性芳香族ポリエステルの繊維中に無機微粒子を均一に含有していることであるが、最も重要なのは無機微粒子の添加量である。耐切創性の向上にはできるだけ多く無機微粒子を添加したいところではあるが、添加量が多すぎると紡糸安定性が悪くなり、かつ繊維の引張強度等の物性が大幅に低下することになる。耐切創性と紡糸安定性および繊維物性がバランスする点で無機微粒子の添加量は0.1〜10wt%の範囲が好ましく、さらに好ましいのは1〜5wt%の範囲である。   The important point in the present invention is that the inorganic anisotropic fine particles are uniformly contained in the fiber of the melt anisotropic aromatic polyester, but the most important is the amount of the inorganic fine particles added. Although it is desirable to add as much inorganic fine particles as possible to improve the cut resistance, if the amount added is too large, the spinning stability will deteriorate, and the physical properties such as the tensile strength of the fiber will be greatly reduced. The amount of inorganic fine particles added is preferably in the range of 0.1 to 10 wt%, and more preferably in the range of 1 to 5 wt% in terms of balancing cut resistance, spinning stability, and fiber properties.

また繊維中へ無機微粒子を均一に添加するためには無機微粒子の粒子径も重要である。溶融異方性芳香族ポリエステル繊維の単糸繊度は2〜10dtexが一般的であるが、これは繊維直径でいうと15〜30μm程度になる。紡糸工程の安定性および繊維物性を考慮すると無機微粒子の粒子径はできるだけ小さいものが好ましいが、あまり小さすぎると粒子が凝集し易くなり、逆に繊維中に均一に添加することが難しくなる。また製造コストも高くなることからも粒子径は0.01〜10μmの範囲が好ましい。さらに好ましいのは0.1〜1μmの範囲である。   In order to uniformly add inorganic fine particles into the fiber, the particle size of the inorganic fine particles is also important. The single yarn fineness of the melt anisotropic aromatic polyester fiber is generally 2 to 10 dtex, which is about 15 to 30 μm in terms of fiber diameter. Considering the stability of the spinning process and the physical properties of the fiber, the particle size of the inorganic fine particles is preferably as small as possible. However, if the particle size is too small, the particles are likely to aggregate, and conversely, it is difficult to uniformly add them into the fiber. In addition, the particle diameter is preferably in the range of 0.01 to 10 μm because the production cost increases. More preferred is a range of 0.1 to 1 μm.

無機微粒子を添加することでEN388評価法による耐切創性が向上する理由であるが、冒頭述べたように耐切創性の優位差はその評価方法により大きく影響をうける。通常溶融異方性芳香族ポリエステル繊維は無機微粒子など第3成分を添加すればするほど引張強度は低くなる。従ってカッターナイフの刃を水平から10度の角度で固定し、糸長30cmのヤーンを刃にまわして引張試験を行い、ヤーンが切断したときの強力を測定する方法などでは耐切創性評価と言えど繊維軸方向に引張応力が働いているので強度が低い繊維では不利になる。しかしEN388評価法においては一定目付けの織物上に円形状の刃を転がして切るために繊維に対しては長さ方向の引張応力が働いておらず、また織物はアルミ箔を貼った台上に固定されているため、織物には刃の圧縮力が働くのみである。従って繊維の引張強度が低下したとしても、繊維中に硬い無機粒子が多く入っているほうが繊維への刃の侵入を邪魔することになり、切断し難くなるものと推定する。   This is the reason why the cut resistance according to the EN388 evaluation method is improved by adding inorganic fine particles, but as described at the beginning, the superior difference in cut resistance is greatly influenced by the evaluation method. Usually, the melt anisotropic aromatic polyester fiber has a lower tensile strength as the third component such as inorganic fine particles is added. Therefore, it can be said that cutting resistance evaluation is a method of fixing the cutter knife blade at an angle of 10 degrees from the horizontal, turning a yarn with a length of 30 cm around the blade, performing a tensile test, and measuring the strength when the yarn is cut. However, since tensile stress acts in the fiber axis direction, it is disadvantageous for fibers with low strength. However, in the EN388 evaluation method, since a circular blade is rolled on a fabric with a constant basis weight, no tensile stress is applied to the fiber in the length direction, and the fabric is placed on a table with aluminum foil. Since it is fixed, only the compressive force of the blade acts on the fabric. Therefore, even if the tensile strength of the fiber is lowered, it is presumed that if the fiber contains a lot of hard inorganic particles, the penetration of the blade into the fiber will be hindered and it will be difficult to cut.

本発明に用いられる無機微粒子は特に限定されるものではなく、シリカ、タルクなど化学的に安定なもので、ポリマー中で凝集し難く、かつなるべく粒子径の揃っているものであれば用いることができる。   The inorganic fine particles used in the present invention are not particularly limited, and may be used as long as they are chemically stable such as silica and talc, hardly aggregate in the polymer, and have the same particle size as possible. it can.

本発明で得られる繊維は、高強度・高弾性かつ耐切創性に優れ、その利用分野は一般産業資材、衣料などにおいて広く用いられる。具体的には防刃手袋、前掛け等各種防護衣等、また産業資材用途としては、歯付きベルト補強用途などにも適している。   The fiber obtained by the present invention has high strength, high elasticity and excellent cut resistance, and its application field is widely used in general industrial materials, clothing and the like. Specifically, it is suitable for various protective clothing such as blade-proof gloves and aprons, and for industrial material applications such as toothed belt reinforcement applications.

以下本発明を実施例により更に具体的に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.

[実施例1]
ポリマーとして、前述化2で示した構成単位(A)と(B)が73/27(mol%)である溶融異方性芳香族ポリエステル(融点;281℃)をベースポリマーとした。これを二軸押出機にて平均粒子径0.5μのシリカ微粒子を添加量が30wt%となるようにブレンドしてマスターバッチポリマーを作成した。本マスターバッチポリマーとベースポリマーをシリカ添加量が5wt%になるように混ぜてブレンドポリマーを作成した。このブレンドポリマーを二軸押出機を使い、孔径0.1mmφ、孔数300Hノズルで1700dtex/300fのヤーンを紡糸した。得られた紡糸原糸を窒素雰囲気下260℃で20時間熱処理を行った。このシリカ添加溶融異方性芳香族ポリエステル繊維で目付け500g/mの織物を作成し、EN388法による耐切創性の評価を行い、得られた結果を表1に示した。
[Example 1]
As the polymer, a melt anisotropic aromatic polyester (melting point: 281 ° C.) in which the structural units (A) and (B) shown in Chemical Formula 2 were 73/27 (mol%) was used as the base polymer. This was blended with a twin screw extruder so that silica fine particles having an average particle diameter of 0.5 μm were added in an amount of 30 wt% to prepare a master batch polymer. The masterbatch polymer and the base polymer were mixed so that the amount of silica added was 5 wt% to prepare a blend polymer. This blend polymer was spun into a yarn of 1700 dtex / 300 f with a nozzle diameter of 0.1 mmφ and a hole number of 300 H using a twin screw extruder. The obtained spinning yarn was heat-treated at 260 ° C. for 20 hours in a nitrogen atmosphere. A woven fabric having a basis weight of 500 g / m 2 was prepared from this silica-added melt-anisotropic aromatic polyester fiber, and cut resistance was evaluated by EN388 method. The results obtained are shown in Table 1.

[実施例2]
ベースポリマーとシリカ添加マスターバッチポリマーを添加量が0.05wt%となるように混ぜて原糸を得た以外は実施例1と同様にして織物を作成し、耐切創性の評価を行った。得られた結果を表1に示した。
[Example 2]
A woven fabric was prepared in the same manner as in Example 1 except that a base yarn was obtained by mixing a base polymer and a silica-added masterbatch polymer so that the addition amount was 0.05 wt%, and cut resistance was evaluated. The obtained results are shown in Table 1.

[実施例3]
ベースポリマーとシリカ添加マスターバッチポリマーを添加量が0.5wt%となるように混ぜて原糸を得た以外は実施例1と同様にして織物を作成し、耐切創性の評価を行った。得られた結果を表1に示した。
[Example 3]
A woven fabric was prepared in the same manner as in Example 1 except that a base yarn was obtained by mixing a base polymer and a silica-added masterbatch polymer so that the addition amount was 0.5 wt%, and cut resistance was evaluated. The results obtained are shown in Table 1.

[比較例1]
ベースポリマーとシリカ添加マスターバッチポリマーを添加量が15wt%となるように混ぜて紡糸しようとしたが、ノズル圧力が上昇して糸切れが発生したために求める原糸がえられなかった。
[Comparative Example 1]
The base polymer and the silica-added masterbatch polymer were mixed so that the addition amount was 15 wt%, and an attempt was made to spin. However, the nozzle pressure increased and yarn breakage occurred, so the desired yarn was not obtained.

[比較例2]
シリカ添加マスターバッチを混ぜず、ベースポリマーのみで紡糸した以外は実施例1と同様にして織物を作成して、耐切創性の評価を行った。得られた結果を表1に示す。
[Comparative Example 2]
A woven fabric was prepared in the same manner as in Example 1 except that the silica-added masterbatch was not mixed and spinning was performed using only the base polymer, and cut resistance was evaluated. The obtained results are shown in Table 1.

[比較例3]
シリカ添加マスターバッチを混ぜず、ベースポリマーのみで紡糸、熱処理をした繊維にマスターバッチに用いた平均粒子径0.5μのシリカ微粒子を繊維に対して5wt%の比率で表面塗布したもの作成し、実施例1と同様の目付けで織物を作成。耐切創性の評価を行い、得られた結果を表1に示す。
[Comparative Example 3]
A silica-added masterbatch is not mixed, and a fiber that has been spun and heat-treated only with a base polymer is prepared by applying silica fine particles with an average particle diameter of 0.5 μ used in the masterbatch at a ratio of 5 wt% to the fiber, Fabric is made with the same basis weight as in Example 1. The cut resistance was evaluated and the results obtained are shown in Table 1.

Figure 2014065995
Figure 2014065995

本発明で得られる繊維は、高強度・高弾性かつ耐切創性に優れるので、その利用分野は一般産業資材、衣料などにおいて広く用いられる。具体的には防刃手袋、前掛け等各種防護衣等、また産業資材用途としては、歯付きベルト補強用途などにも適している。   Since the fiber obtained by the present invention has high strength, high elasticity, and excellent cut resistance, its application field is widely used in general industrial materials, clothing and the like. Specifically, it is suitable for various protective clothing such as blade-proof gloves and aprons, and for industrial material applications such as toothed belt reinforcement applications.

本発明の耐切創性評価方法(BS EN388:1994の中の6.2に記載のBlade Cut Resistance法)を示す概略図。Schematic which shows the cut-resistant evaluation method (Blade Cut Resistance method of 6.2 in BS EN388: 1994) of this invention.

Claims (3)

無機微粒子が繊維中に0.1〜10wt%添加されている溶融異方性芳香族ポリエステル繊維。   A melt anisotropic aromatic polyester fiber in which 0.1 to 10 wt% of inorganic fine particles are added to the fiber. 無機微粒子の平均粒子径が0.01〜10μmであることを特徴とする請求項1の溶融異方性芳香族ポリエステル繊維。   The melt anisotropic aromatic polyester fiber according to claim 1, wherein the inorganic fine particles have an average particle diameter of 0.01 to 10 μm. ヨーロッパ規格であるEN388による耐切創性評価において耐切創性のレベルが3以上であることを特徴とする溶融異方性芳香族ポリエステル繊維。   A melt anisotropic aromatic polyester fiber having a cut resistance level of 3 or more in a cut resistance evaluation according to EN 388 which is a European standard.
JP2012213926A 2012-09-27 2012-09-27 Molten anisotropic aromatic polyester fiber excellent in cut resistance Pending JP2014065995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012213926A JP2014065995A (en) 2012-09-27 2012-09-27 Molten anisotropic aromatic polyester fiber excellent in cut resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012213926A JP2014065995A (en) 2012-09-27 2012-09-27 Molten anisotropic aromatic polyester fiber excellent in cut resistance

Publications (1)

Publication Number Publication Date
JP2014065995A true JP2014065995A (en) 2014-04-17

Family

ID=50742647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012213926A Pending JP2014065995A (en) 2012-09-27 2012-09-27 Molten anisotropic aromatic polyester fiber excellent in cut resistance

Country Status (1)

Country Link
JP (1) JP2014065995A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181309A1 (en) * 2017-03-29 2018-10-04 東洋紡株式会社 Polyethylene fiber and product using same
JP2018185152A (en) * 2017-04-24 2018-11-22 栗田煙草苗育布製造株式会社 Cut-resistance measurement device
WO2019186696A1 (en) * 2018-03-27 2019-10-03 東洋紡株式会社 Polyethylene fiber, and product using same
WO2024128110A1 (en) * 2022-12-14 2024-06-20 株式会社クラレ Fused anisotropic aromatic polyester fiber and method for manufacturing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10168648A (en) * 1996-11-19 1998-06-23 Hoechst Celanese Corp Cutting resistant fiber containing filler
JP2001519450A (en) * 1997-10-08 2001-10-23 ヘキスト・セラニーズ・コーポレイション Cut-resistant polymer sheets and articles formed therefrom
JP2008520850A (en) * 2004-11-23 2008-06-19 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー High cut-resistant yarn and protective article manufactured therefrom

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10168648A (en) * 1996-11-19 1998-06-23 Hoechst Celanese Corp Cutting resistant fiber containing filler
JP2001519450A (en) * 1997-10-08 2001-10-23 ヘキスト・セラニーズ・コーポレイション Cut-resistant polymer sheets and articles formed therefrom
JP2008520850A (en) * 2004-11-23 2008-06-19 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー High cut-resistant yarn and protective article manufactured therefrom

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181309A1 (en) * 2017-03-29 2018-10-04 東洋紡株式会社 Polyethylene fiber and product using same
JPWO2018181309A1 (en) * 2017-03-29 2020-02-20 東洋紡株式会社 Polyethylene fiber and products using it
JP6996555B2 (en) 2017-03-29 2022-01-17 東洋紡株式会社 Polyethylene fiber and products using it
JP2018185152A (en) * 2017-04-24 2018-11-22 栗田煙草苗育布製造株式会社 Cut-resistance measurement device
WO2019186696A1 (en) * 2018-03-27 2019-10-03 東洋紡株式会社 Polyethylene fiber, and product using same
JPWO2019186696A1 (en) * 2018-03-27 2021-04-22 東洋紡株式会社 Polyethylene fiber and products using it
JP7070667B2 (en) 2018-03-27 2022-05-18 東洋紡株式会社 Polyethylene fiber and products using it
WO2024128110A1 (en) * 2022-12-14 2024-06-20 株式会社クラレ Fused anisotropic aromatic polyester fiber and method for manufacturing same

Similar Documents

Publication Publication Date Title
KR101311105B1 (en) Highly-moldable, highly-functional polyethylene fiber
Zhang et al. Achieving all-polylactide fibers with significantly enhanced heat resistance and tensile strength via in situ formation of nanofibrilized stereocomplex polylactide
CN109629028A (en) A kind of graphene ultra-high molecular weight polyethylene composite fibre and preparation method thereof
CN1320177A (en) High strength polyethylene fiber and its use
JP2014065995A (en) Molten anisotropic aromatic polyester fiber excellent in cut resistance
JP2007186830A (en) Polyester fiber
JP6192835B2 (en) Polytetrafluoroethylene (PTFE) fiber with improved wear and method for producing the same
JP2018048438A (en) Polyolefin fiber
US20190177494A1 (en) Ultra-high molecular weight polyethylene powder and ultra-high molecular weight polyethylene fiber
JP7268683B2 (en) Polyethylene fiber and products using it
JP6087533B2 (en) Heat resistant organic fiber
CN104988588B (en) A kind of production method of modified high-strength polyester industrial yarn
CN104641026A (en) Stretchable polyacetal fiber
JP2017179684A (en) Polyethylene fiber having excellent cut resistance, and product using the same
JP6996555B2 (en) Polyethylene fiber and products using it
JP4337233B2 (en) High-strength polyethylene fiber and method for producing the same
JP2004524455A (en) Polypropylene fine monofilament, its production method and its use
JP6874468B2 (en) Polyethylene fiber and products using it
WO2022014391A1 (en) Polyethylene fiber and product containing said fiber
KR101792035B1 (en) Polyethylene fiber having improved cut resistance, manufacturing method thereof and articles comprising the polyethylene fiber
JP2021014645A (en) Method of producing liquid crystal polyester fiber
KR101726320B1 (en) Manufacturing method of gel for UHMWPE fabric
EP3626868A1 (en) Liquid crystalline polyester fiber and method for producing same
JP6870822B2 (en) Multifilament yarn made of high specific gravity fiber
JP2017193806A (en) Polypropylene fiber and manufacturing method of the polypropylene fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160726

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170509