WO2022012903A1 - Verbindungselement, verfahren zum herstellen eines verbindungselements, anordnung umfassend ein verbindungselement und zwei damit verbundene bauteile sowie verfahren zum verbinden zweier bauteile mit einem verbindungselement - Google Patents

Verbindungselement, verfahren zum herstellen eines verbindungselements, anordnung umfassend ein verbindungselement und zwei damit verbundene bauteile sowie verfahren zum verbinden zweier bauteile mit einem verbindungselement Download PDF

Info

Publication number
WO2022012903A1
WO2022012903A1 PCT/EP2021/067495 EP2021067495W WO2022012903A1 WO 2022012903 A1 WO2022012903 A1 WO 2022012903A1 EP 2021067495 W EP2021067495 W EP 2021067495W WO 2022012903 A1 WO2022012903 A1 WO 2022012903A1
Authority
WO
WIPO (PCT)
Prior art keywords
connecting element
nanowires
component
contact surface
layer
Prior art date
Application number
PCT/EP2021/067495
Other languages
English (en)
French (fr)
Inventor
Olav Birlem
Original Assignee
Nanowired Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanowired Gmbh filed Critical Nanowired Gmbh
Publication of WO2022012903A1 publication Critical patent/WO2022012903A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/006Nanostructures, e.g. using aluminium anodic oxidation templates [AAO]
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/274Manufacturing methods by blanket deposition of the material of the layer connector
    • H01L2224/2746Plating
    • H01L2224/27462Electroplating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/2747Manufacturing methods using a lift-off mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/279Methods of manufacturing layer connectors involving a specific sequence of method steps
    • H01L2224/27901Methods of manufacturing layer connectors involving a specific sequence of method steps with repetition of the same manufacturing step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/279Methods of manufacturing layer connectors involving a specific sequence of method steps
    • H01L2224/27901Methods of manufacturing layer connectors involving a specific sequence of method steps with repetition of the same manufacturing step
    • H01L2224/27902Multiple masking steps
    • H01L2224/27903Multiple masking steps using different masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29005Structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/2901Shape
    • H01L2224/29012Shape in top view
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/2901Shape
    • H01L2224/29012Shape in top view
    • H01L2224/29014Shape in top view being circular or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29075Plural core members
    • H01L2224/29076Plural core members being mutually engaged together, e.g. through inserts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29075Plural core members
    • H01L2224/29078Plural core members being disposed next to each other, e.g. side-to-side arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29075Plural core members
    • H01L2224/2908Plural core members being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29139Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29144Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29155Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29186Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/3201Structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/32227Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the layer connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83191Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83193Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed on both the semiconductor or solid-state body and another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/83201Compression bonding
    • H01L2224/83203Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83897Mechanical interlocking, e.g. anchoring, hook and loop-type fastening or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83897Mechanical interlocking, e.g. anchoring, hook and loop-type fastening or the like
    • H01L2224/83898Press-fitting, i.e. pushing the parts together and fastening by friction, e.g. by compression of one part against the other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83905Combinations of bonding methods provided for in at least two different groups from H01L2224/838 - H01L2224/83904
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3736Metallic materials

Definitions

  • FASTENING ELEMENT METHOD FOR MANUFACTURING A CONNECTING ELEMENT, ARRANGEMENT COMPRISING A FASTENING ELEMENT AND TWO COMPONENTS CONNECTED THERETO, AND METHOD FOR CONNECTING TWO COMPONENTS WITH A FASTENING ELEMENT
  • the invention relates to a connecting element, a method for producing a connecting element, an arrangement comprising a connecting element and two components connected thereto, and a method for connecting two components with a connecting element.
  • the invention particularly relates to the technical field of electronic devices.
  • nanowires can only be grown reliably up to a length of around 100 m ⁇ ti. If the distance between the contact surfaces varies on a larger scale, a connection with nanowires cannot be reliably formed.It is an object of the present invention, based on the prior art described, to present a method with which two components can be reliably connected to one another, even if the contact surfaces of the components hurry are uneven.
  • a suitable connecting element, a method for its production and an arrangement with such a connecting element and two components connected to it are to be presented.
  • a connecting element which comprises a plurality of sections which are arranged one after the other along an axis of the connecting element.
  • the sections each have a large number of nanowires. Adjacent ones of the sections abut one another within a respective intermediate layer. The nanowires of the two respective sections adjacent to an intermediate layer are held on the corresponding intermediate layer.
  • Two components can be connected to one another with the connecting element, in particular two electronic components.
  • the components preferably each have a contact surface.
  • the contact surfaces of the components can be connected to one another with the connecting element. This creates a mechanically stable and electrically and/or thermally conductive connection between the components.
  • the connecting element described can be used for a wide variety of applications. In this way, two electrical conductors can be electrically connected to one another as components via the connecting element.
  • Two thermal conductors can also be thermally conductively connected to one another as components via the connecting element.
  • magnets can be connected as structural parts to a basic component via one or more of the connecting elements.
  • Semiconductor chips can be connected to one another as components via the connecting element.
  • a sensor can be attached as a component via the connec tion element to a base component.
  • connection can be formed in that the connecting element is produced on the contact surface of a first of the components.
  • a nanowire connection can be formed between the contact surface of the second component and the connecting element.
  • the connecting element has a multiplicity of nanowires, in particular on the side opposite the first component on. These can be brought into contact with the contact surface of the second component.
  • the nanowires can connect to the contact surface of the second component in particular by heating and/or pressing on. It is also possible to provide a further multiplicity of nanowires on the contact area of the second component.
  • connection between the nanowires of the connecting element and the second component can be formed. Due to the particularly large contact area between the nanowires, no heating is required, particularly in this case. However, the connection can also be reinforced in this case by heating and/or pressing on.
  • a further connecting element can also be provided on the contact surface of the second component. In that case, the connection can be formed between nanowires of the two connection elements. It is also conceivable that the connecting element is first produced on a separate substrate and then transferred to the contact surface of the first component.
  • the connecting element can be connected to the first component in the same way as to the second component.
  • the connecting element preferably also has a multiplicity of nanowires on the side facing the first component.
  • the connecting element is divided into sections along its axis. This enables the nanowires to bridge a distance between the contact surfaces that is many times the length of a single nanowire. Since the nanowires are flexible, unevenness in the contact surfaces that are longer than the length of a single nanowire can be compensated for.
  • the connecting element preferably has 2 to 20 sections, in particular 5 to 10.
  • the connecting element can be connected to the two components via the two outer sections.
  • the nanowires of these two sections can form a nanowire connection with one of the two components, optionally indirectly via a further connection element or an intermediate element.
  • the connecting element can adapt to the contact surfaces.
  • the axis of the connecting element is the decisive orientation for the connection between the components.
  • the sections are sequentially arranged along the axis of the connector. This means that the connector is fully divided into the sections when viewed along the axis of the connector.
  • Each part of the fastener belongs to exactly one of the sections.
  • the sections abut each other without a gap. Interfaces between the sections are preferably formed perpendicular to the axis of the connecting element.
  • a nanowire is understood here to mean any material body that has a wire-like shape and a size in the range from a few nanometers to a few micrometers.
  • a nanowire can have a circular, oval or polygonal base surface, for example.
  • a nanowire can have a hexagonal base area. All nanowires are preferably formed from the same material.It is particularly preferred for the nanowires to be formed entirely from an electrically conductive material.
  • the nanowires are formed from an electrically and/or thermally conductive material.
  • the use of copper, silver, nickel and gold is particularly preferred here.
  • the contact surfaces are also preferably formed from an electrically and/or thermally conductive material, in particular with copper, silver, nickel or gold.
  • the contact surfaces and the nanowires are particularly preferably formed from the same material. This makes the connection particularly stable.
  • the nanowires of the individual sections are preferably each oriented along the axis of the connecting element.
  • the nanowires since nanowires are not exactly straight in practice, it is also preferable for the nanowires to have an angle of less than less than 30° to the axis of the fastener.
  • its orientation In the case of a curved nanowire, its orientation can be determined by approximation.
  • the orientation of the nanowires refers to the state before two components are connected to each other via the connecting element. In the case of uneven contact surfaces, the sections of the connecting element can be compressed so that the unevenness is evened out. This can change the orientation of the nanowires.
  • the extension of the sections along the axis of the connecting element is in any case significantly influenced by the length of the nanowires before a connection is formed between two components via the connecting element.
  • the nanowires preferably have a length in the range from 100 nm [nanometers] to 100 m ⁇ ti [micrometers], in particular in the range from 10 to 80 m ⁇ ti.
  • the nanowires preferably have a diameter in the range from 10 nm to 10 mh%, in particular in the range from 30 nm to 2 m ⁇ ti.
  • the term diameter refers to a circular base area, with a base area deviating from this, a comparable definition of a diameter is to be used. It is particularly preferred that all nanowires used have the same length and the same diameter.
  • Adjacent ones of the sections abut one another within a respective intermediate layer.
  • the interface between two adjacent sections thus runs through the intermediate layer.
  • the interface between the two sections is preferably located centrally within the intermediate layer.
  • Adjacent intermediate layers are spaced from each other.
  • the nanowires are arranged between the intermediate layers.
  • the intermediate layers allow the nanowires of the individual sections to be arranged along the axis.
  • the connection element can have an extent along the axis of the connection element which is a multiple of the length of a single nanowire.
  • the connecting element can be produced by growing the nanowires in sections onto the intermediate layers.
  • the interlayers stabilize the connector and prevent the nanowires from breaking.
  • the intermediate layers are preferably arranged perpendicularly to the axis of the connecting element, at least before a connection between two components is formed via the connecting element.
  • the intermediate layers are preferably arranged parallel to one another. In practice, however, this can be difficult to implement. It is therefore also preferred that the intermediate layers each enclose an angle of 70 to 90° with the axis of the connecting element. Within this range of angles, the intermediate layers can be at an angle to one another. If an intermediate layer is not flat, a level should be used as an approximation for this intermediate layer.
  • the nanowires of the two respective sections adjoining an intermediate layer are held on this intermediate layer. Apart from the two outer sections along the axis of the connecting element, all sections participate in two intermediate layers. In these sections, the nanowires are held with one of their ends on the first of these intermediate layers and with their other end on the other intermediate layer. The adjacent intermediate layers are therefore connected to one another via the nanowires. A distance between the adjacent intermediate layers along the axis of the connecting element preferably corresponds to the length of the nanowires arranged between these intermediate layers.
  • the distance between the adjacent intermediate layers along the axis of the connecting element corresponds to 90 to 100 percent of the length of the nanowires arranged between these intermediate layers.
  • the two outer sections along the axis of the connecting element each participate in only one intermediate layer.
  • the nanowires of these sections are therefore only held at this one intermediate layer.
  • the connections to the two components can be formed via these nanowires.
  • the two ends of the connecting element are formed by nanowires, ie not by a closed layer.
  • the connector can be fabricated by growing the nanowires section by section.
  • the nanowires for the first section can be grown on the contact surface of the first component, for example.
  • the nanowires can be grown in such a way that the nanowires are held at one of their ends on the respective intermediate layer.
  • Nanowires can be grown by placing a porous film on a surface to be waxed. If the pores are filled, a final layer can be obtained on the surface of the film by continuing the galvanic growth. The nanowires can be connected to one another at their ends by this terminating layer. A film can be placed on the final layer and the nanowires of the following section can be grown on the final layer. The final layer can therefore already represent the intermediate layer. In practice, however, the film often does not lie tightly against the top layer. Gaps between the foil and the final layer can fill up with the deposited material during the growth process before the pores fill up and the growth of the nanowires begins to that extent.
  • the intermediate layer can be considered to be divided in two along the axis of the connecting element.
  • the parts of the intermediate layer can merge into one another in such a way that they cannot be distinguished from one another, for example in a section analysis.
  • the connecting element extends along the axis of the connecting element between 20 and 10000 m ⁇ ti [micrometers], in particular between 100 and 600 m ⁇ ti.
  • Nanowires can only be grown reliably with lengths of up to 100 m ⁇ ti [microns]. Preferably even only nanowires with a length of up to used up to 50 m ⁇ h.
  • the connecting element described can be made significantly longer. This means that correspondingly larger bumps on contact surfaces can be compensated for.
  • the intermediate layers each have an extension along the axis of the connecting element in the range from 0.2 to 40 m ⁇ ti [micrometers], in particular in the range from 1 to 10 m ⁇ ti.
  • the expansion of the intermediate layers is preferably made up of the expansion of the respective final layer and the material that is added during the growth of the nanowires of the following section.
  • the final layer of an intermediate layer preferably has the same extent along the axis of the connecting element as the layer of material thus added. However, any other distribution is also possible.
  • the final layer can extend along the axis of the connecting element over 10 to 90% of the intermediate layer. This can vary locally, so that unevenness in the final layer can be leveled out.
  • the intermediate layers of all sections have the same extent along the axis of the connecting element.
  • a method for producing a connection element which comprises a plurality of sections which are arranged in succession along an axis of the connection element.
  • the sections are produced one after the other by the following steps: a) providing an initial layer, b) placing a film on the initial layer, the film having a large number of pores, c) depositing material on the initial layer and in the pores, so that the nanowires are formed in the pores from the material, d) except in the last section, producing a final layer on a film surface spaced apart from the starting layer along the axis of the connecting element, starting with the second section in step a), the final layer of the respectively preceding section is used as the starting layer.
  • connection element described is applicable and transferrable to the process, and vice versa. Ren the described connecting element is preferably produced with the procedural described.
  • the components are preferably electronic components.
  • the Kon contact surfaces can be designed as electrical contacts.
  • a large number of individual connections between the components can be formed with the described connecting element, via which the electrical contacts of the components are connected to one another in pairs.
  • the connecting element can also be used to thermally conductively connect an electronic component as the first component to a heat sink as the second component, so that heat can be released from the electrical component to the heat sink via the connecting element.
  • a single connection between the components is formed via the connecting element. This can be formed over the entire surface.
  • a first mechanical component as the first component can also be mechanically connected to a second mechanical component as the second component with the connec tion element.
  • a single connection between the components is formed via the connecting element. This can be formed over the entire surface.
  • the contact areas can be of any size. Experiments have yielded satisfactory results, particularly from 0.3 miti. It is therefore preferred that the contact surfaces extend at least 0.3 m ⁇ ti in each direction of their surface.
  • the sections are basically all generated in the same way through steps a) to d). However, the special features described below arise for the two outer sections of the connecting element along the axis of the connecting element, i.e. for the section created first (hereinafter “first section”) and for the section produced last (“last section”).
  • first section the section created first
  • last section the section produced last
  • step a) a starting layer is provided. Any layer on which nanowires can be grown can be considered a starting layer.
  • the starting layer is preferably formed from the material of the nanowires.
  • the starting layer can be provided insofar as a component with a contact area or a separate substrate is provided.
  • the respective starting layer is provided in step a) to the extent that the final layer of the respective preceding section is used as the starting layer.
  • the finishing layer of a first section is therefore the starting layer of a second section. Together with material that may be added during the growth of the nanowires of the second section, this layer forms the intermediate layer between the first section and the second section.
  • step b) the film is placed on the starting layer.
  • the film In the case of the first section, this can be done by placing the film on the contact surface of the first component or on the separate substrate.
  • the film is preferably formed from a polymer.
  • the pores are preferably oriented along the axis of the connecting element when the film is laid on the base layer. The pores are preferably formed continuously. This means that the pores reach from the side of the film with which the film is placed on the starting layer to an opposite side of the film.
  • the nanowires are grown, in particular galvanically.
  • the material from which the nanowires are to be grown is deposited on the starting layer and in the pores.
  • the material can only separate through the pores of the film in such a way that the nanowires grow in the pores. If the film is not close to the starting layer, the material can also separate between the starting layer and the film. In this case, a space between the starting layer and the film is first filled with the material before the material is also deposited in the pores. In this way, the nanowires can grow together on their side facing the starting layer.
  • the material deposited over the entire surface in this way is part of the respective intermediate layer. Is possible. that the nanowires only grow together in a few places and not over the entire surface of the starting layer.
  • the material on the surface of the film can grow together to form a closed layer.
  • a closed layer refers to the surface of the film on the side opposite the base layer.
  • Such a closed layer is referred to herein as the final layer of a section.
  • This is generated in step d).
  • no final layer is created for the last section.
  • the growth of a capping layer can be prevented by stopping the galvanic growth before the material starts to coalesce on the surface of the foil. Also included is that an initially grown final layer is removed again.
  • Step d) is carried out for all sections except for the last section.
  • the nanowires of the last section can therefore be brought into contact with a contact surface of a second component in order to form a nanowire connection with this.
  • the foils are not part of the fastener.
  • the foils are only needed temporarily during production. Therefore, the foils are preferably removed. In principle, this can be done at any time.
  • the nanowires of the previous sections are still protected by the respective foil while the nanowires for the following section are grown. This can prevent the nanowires from being damaged when manufacturing the connector.
  • the connecting element comprising a plurality of sections which are arranged along an axis of the connecting element one after the other, the sections each having a plurality of nanowires, with adjacent ones of the sections within a respective intermediate layer adjoin each other, and wherein the nanowires of the two respective sections adjacent to an intermediate layer are held to the corresponding intermediate layer.
  • the connecting element of the arrangement is preferably designed like the connecting element described.
  • the connecting element of the arrangement is preferably manufactured by the method described.
  • the contact surfaces of the two components are preferably aligned parallel to one another.
  • the contact surfaces of the two components are each aligned perpendicular to the axis of the connecting element.
  • contact surfaces that are at an angle to one another can also be connected to one another.
  • the contact surfaces of the two components can enclose an angle in the range of up to 45° with one another.
  • a method for connecting a first component to a second component includes:
  • step B Merging a contact surface of the second component with the connecting element provided in step A), so that the nanowires of the last generated section of the connecting element part with the contact surface of the second component, with nanowires on the contact surface of the second component and/or with egg nem further connecting element come into contact on the contact surface of the second component.
  • the advantages and features of the described connecting element, the described method for producing a connecting element and the described arrangement can be applied and transferred to the method for connecting a first component to a second component, and vice versa.
  • the connecting element used to connect the two components is preferably designed like the described connecting element.
  • the connecting element used to connect the two components is preferably produced in step A) using the described method for producing a connecting element.
  • the arrangement described is preferably obtained with the method for connecting a first component to a second component.
  • the connecting element is provided on the contact surface of the first component. This can be done by producing the connecting element on the contact surface of the first component. Alternatively, it is conceivable that the connection tion element is produced on a separate substrate and then transferred to the contact surface of the first component. The foils are preferably removed before the connecting element is transferred to the contact surface of the first component. If the connecting element is produced on a separate substrate, the substrate can be used as the starting layer of the first section and to this extent can be provided in step a) of the first section.
  • step B) the connecting element is connected to the contact surface of the second component. This can be done by placing the second component on the connecting element with the contact surface in front.
  • step B) the second component is preferably pressed onto the connecting element with a pressure in the range from 1 to 200 MPa.
  • the contact surface of the second component is preferably heated to at least 90.degree. C., in particular to at least 150.degree. C., in step B).
  • the contact surface of the second component is preferably heated to a maximum of 300° C. in step B), in particular to a maximum of 240° C.
  • the contact surface of the second component is particularly preferably heated to a temperature in the range from 90° C. to 300° C., in particular in the range from 150° C. to 240° C., in step B). These temperatures are considerably lower than the temperatures that occur with known connection methods such as soldering.
  • the second component, the connecting element and/or the first component can also be heated together with the contact surface of the second component.
  • the two components with the connecting element are preferably heated together. What was said for the contact surface of the second component applies to the temperature to be used.
  • the minimum temperature described is reached once, at least briefly. It is not necessary to maintain the temperature. However, it is preferred that the temperature to which heating is carried out in accordance with step B) is maintained for at least five seconds, preferably at least 30 seconds. This ensures that the connection is formed as desired. Maintaining the temperature for a longer period of time is basically not harmful.
  • a multiplicity of nanowires is preferably also provided on the contact surface of the second component. In this case, the nanowires of the section of the connecting element produced last come into contact with the nanowires on the contact surface of the second component. In this case in particular, heating and/or pressing on is not required, but is nevertheless preferred. The statements made above regarding temperature and pressure apply.
  • step B) the components are then brought together in such a way that the two connecting elements connect to one another.
  • the nanowires of the section of the connecting element produced last from step A) come into contact with nanowires of the further connecting element.
  • the further connecting element is preferably provided analogously to step A) on the second component, that is to say it is produced on it or transferred to it.
  • the connection between the connecting elements preferably takes place between the nanowires of the sections of the two connecting elements that were produced last. Particular large bumps can be compensated by the design with two connecting elements between the construction. This is more difficult with a single correspondingly large connecting element, because in practice the length of the nanowires is limited and only a limited number of sections can be lined up to form a connecting element.
  • an adhesive is provided on the contact surface of the first component and/or on the contact surface of the second component.
  • the adhesive can mechanically stabilize the connection between the components.
  • the adhesive can stabilize the nanowires of the connecting element.
  • the adhesive can be applied to a contact surface alone or in addition to nanowires or to a connecting element. All of the following combinations are conceivable:
  • the connecting element can be located on the contact surface of the first component, with or without adhesive.
  • the contact surface of the second component can be free, have nanowires without adhesive, have a connecting element without adhesive, have the adhesive alone, the Have adhesive in addition to a further connecting element or have the adhesive material in addition to nanowires.
  • the present embodiment includes all combinations in which at least one of the contact surfaces has the adhesive.
  • the connecting element described can also be used to indirectly connect two components to one another.
  • An intermediate element can thus be provided which has a connecting element designed as described on at least one surface.
  • the intermediate element is preferably a foil.
  • the intermediate element is preferably designed to be electrically conductive, so that an electrically conductive connection can be formed.
  • the intermediate element is designed to be electrically insulating.
  • the intermediate element preferably has a connecting element designed as described on two opposite sides. The intermediate element can be placed between two components to be connected. The components are connected in particular via the respective connecting element to the intermediate element and to this extent to one another.
  • the contact surface of the first component and the contact surface of the second component can each be free, have an adhesive, have nanowires, have a connecting element, have an adhesive in addition to nanowires or have an adhesive in addition to a connecting element. If a connecting element is only provided on the side of the intermediate element facing the first component and if the contact surface of the second component is free, the intermediate element can be connected directly to the second component, for example by an adhesive effect. If the intermediate element has a connecting element on two opposite sides, the connecting elements can be made of the same material on both sides. However, it is also preferred that the connecting elements are formed from different materials on the two sides.
  • a nanowire connection is particularly stable when it is formed between a contact surface and nanowires made from the same material and/or between nanowires made from the same material.
  • contact surfaces made of different materials can be connected to one another particularly well.
  • Fig. 2 a lateral sectional representation of an arrangement comprising the connecting element from FIG. 1f and two components connected to one another via it.
  • the connecting element 1 can thus be used to connect the contact surface 7 of the first component 6 in a mechanically stable and electrically and/or thermally conductive manner to a contact surface 7 of a second component 13 shown in FIG.
  • the connecting element 1 is built up along an axis x.
  • the axis x is perpendicular to the contact surface 7 of the first component 6.
  • the contact surface 7 of the first component 6 serves as the starting layer 8.
  • the starting layer 8 is provided in that the first component 6 with the contact surface 7 is provided.
  • a film 9 is placed on the contact surface 7 and, to that extent, on the starting layer 8.
  • FIG. 1b With the film 9, a first section 2 of the connec tion element 1 is generated.
  • the film 9 has a large number of pores 10 .
  • Nanowires 3 can be grown on the starting layer 8 in the pores 10 by galvanic growth. This is indicated in FIG. 1b by the fact that the pores 10 are shown in the lower region with a solid line. The nanowires 3 have already grown in this area. Above it is indicated by dots that the pores 10 are still free. It is also indicated that the nanowires 3 have grown together in the lower area because the foil 9 does not lie tightly on the starting layer 8 .
  • Section 2 includes the nanowires 3 and the capping layer 12.
  • the foil 9 is not part of section 2 and is removed at the end of the process.
  • FIG. 1d shows that a further section 2 is produced.
  • the final layer 12 of the first section 2 shown in FIG. 1 c serves as a starting layer 8 for this further section 2 .
  • the respective starting layer 8 is provided for this second section 2 .
  • a film 9 is then placed on this new starting layer 8 and the nanowires 3 are grown analogously to the previous section 2 .
  • further material is deposited on the starting layer 8 .
  • a final layer 12 is then formed on top of the film 9 . In this way, a plurality of sections 2 arranged successively along the axis x of the connecting element 1 can be obtained.
  • Fig. 1e shows three completely created sections 2.
  • the top section 2 has no top layer 12. This can be achieved by stopping the galvanic growth in time. As a result, the ends of the nanowires 3 of the uppermost section 2 are free and can (as shown in FIG. 2 ) be brought into contact with the contact surface 7 of the second component 13 .
  • the connecting element 1 which is shown together with the first component 6 in FIG. 1f. From this it can be seen that adjacent sections 2 adjoin one another within a respective intermediate layer 4 .
  • the intermediate layers 4 are each composed of a final layer 12 and the material deposited over the surface. In that regard, the intermediate layers 4 are each formed in two parts along the axis x of the connecting element 1 . The boundary between two adjacent sections 2 lies within the respective intermediate layer 4.
  • the nanowires 3 are held on the intermediate layers 4 belonging to the respective sections 2.
  • Fig. 2 shows an arrangement 5 comprising the first component 6 and the connecting element 1 from Fig. 1f.
  • a contact surface 7 of a second component 13 is connected to the contact surface 7 of the first component 6 via the connecting element 1 . It can be seen that the contact surfaces 7 of the two components 6 , 13 are aligned parallel to one another and in each case transversely to the axis x of the connecting element 1 . The two contact surfaces 7 are spaced apart along the axis x of the connecting element 1 from one another.
  • the two components 6, 13 may have been connected to one another by bringing the contact surface 7 of the second component 13 together with the connecting element 1, so that the nanowires 3 of the uppermost section 2 of the connecting element 1 are connected to the contact surface 7 of the second component 13 have come into contact.
  • nanowires could also have been provided on the contact surface 7 of the second component 13 .
  • the nanowires 3 of the uppermost section 2 could have come into contact with these nanowires and/or with the contact surface 7 of the second component 13 .
  • Another connecting element could also have been provided on the contact surface of the second component 13 . In that case, the nanowires 3 of the uppermost section 2 could have come into contact with nanowires of the further connecting element.
  • an extension d of the intermediate layers 4 along the x-axis of the connecting element 1 is shown, as an example for only one of the two intermediate layers 4.
  • the extension d for both intermediate layers 4 is in the range from 0.2 to 40 m ⁇ ti.

Abstract

Ein Verbindungselement (1) umfasst eine Mehrzahl von Abschnitten (2), die entlang einer Achse (x) des Verbindungselements (1) aufeinander folgend angeordnet sind, wobei die Abschnitte (2) jeweils eine Vielzahl von Nanodrähten (3) aufweisen, wobei benachbarte der Abschnitte (2) innerhalb einer jeweiligen Zwischenschicht (4) aneinandergrenzen, wobei die Nanodrähte (3) der beiden jeweiligen an eine Zwischenschicht (4) angrenzenden Abschnitte (2) an der entsprechenden Zwischenschicht (4) gehalten sind. Ein Verfahren zum Herstellen des Verbindungselements (1) umfasst folgende Schritte, durch die jeweils die Abschnitte (2) nacheinander erzeugt werden: a) Bereitstellen einer Ausgangsschicht (8), b) Auflegen einer Folie (9) auf die Ausgangsschicht (8), wobei die Folie (9) eine Vielzahl von Poren (10) aufweist, c) Abscheiden (insbesondere galvanisches Wachstum) von Material auf die Ausgangsschicht (8) und in die Poren (10), so dass die Nanodrähte (3) in den Poren (10) aus dem Material gebildet werden, d) außer bei dem letzten Abschnitt (2) Erzeugen einer von der Ausgangsschicht (8) entlang der Achse (x) des Verbindungselements (1) beabstandeten Abschlussschicht (12) an einer Folienoberfläche (11), wobei ab dem zweiten Abschnitt (2) in Schritt a) die Abschlussschicht (12) des jeweils vorhergehenden Abschnitts (2) als die Ausgangsschicht (8) verwendet wird. Alle Folien (9) können gemeinsam entfernt werden, nachdem der letzte Abschnitt (2) erzeugt worden ist. Eine Anordnung (5) umfasst zwei Bauteile (6, 13) mit einer jeweiligen Kontaktfläche (7) (insbesondere zwei elektronische Bauteile, zwei elektrische Leiter, zwei thermische Leiter, Magnet und Grundbauteil bei der Herstellung eines Elektromotors, Halbleiterchips, Sensor und Grundbauteil), wobei die Kontaktflächen (7) der beiden Bauteile (6, 13) entlang der Achse (x) des Verbindungselements (1) voneinander beabstandet sind, sowie das Verbindungselement (1), durch welches die Kontaktflächen (7) der beiden Bauteile (6, 13) miteinander verbunden sind. Ein Verfahren zum Verbinden des ersten Bauteils (6) mit dem zweiten Bauteil (13) umfasst: A) Bereitstellen des Verbindungselements (1) auf der Kontaktfläche (7) des ersten Bauteils (6), und B) Zusammenführen einer Kontaktfläche (7) des zweiten Bauteils (13) mit dem in Schritt A) bereitgestellten Verbindungselement (1), so dass die Nanodrähte (3) des zuletzt erzeugten Abschnitts (2) des Verbindungselements (1) mit der Kontaktfläche (7) des zweiten Bauteils (13), mit Nanodrähten (3) auf der Kontaktfläche (7) des zweiten Bauteils (13) und/oder mit einem weiteren Verbindungselement auf der Kontaktfläche des zweiten Bauteils (13) in Kontakt gelangen. Insbesondere durch Erwärmen und/oder Anpressen können sich die Nanodrähte (3) mit der Kontaktfläche (7) des zweiten Bauteils (13) verbinden. Vorzugsweise wird auch auf der Kontaktfläche (7) des zweiten Bauteils (13) eine Vielzahl von Nanodrähten (3) bereitgestellt, in diesem Fall kommen die Nanodrähte (3) des zuletzt erzeugten Abschnitts (2) des Verbindungselements (1) mit den Nanodrähten (3) auf der Kontaktfläche (7) des zweiten Bauteils (13) in Kontakt, wobei ein Erwärmen und/oder Anpressen nicht erforderlich, aber dennoch bevorzugt ist. Das Verbindungselement (1) kann auf der Kontaktfläche (7) des ersten Bauteils (6) bereitgestellt werden, indem das Verbindungselement (1) auf der Kontaktfläche (7) des ersten Bauteils (6) hergestellt wird oder das Verbindungselement (1) auf einem gesonderten Substrat hergestellt und anschließend auf die Kontaktfläche (7) des ersten Bauteils (6) transferiert wird. In Schritt B) kann ein Klebstoff auf der Kontaktfläche (7) des ersten Bauteils (6) und/oder auf der Kontaktfläche (7) des zweiten Bauteils (13) bereitgestellt werden, der die Nanodrähte (3) und/oder die Verbindung zwischen den Bauteilen (6, 13) mechanisch stabilisieren kann. Das Verbindungselement (1) kann auch dazu genutzt werden, zwei Bauteile (6, 13) indirekt miteinander zu verbinden; so kann ein Zwischenelement (z.B. eine Folie) bereitgestellt werden, welches auf mindestens einer Oberfläche ein wie beschrieben ausgebildetes Verbindungselement (1) aufweist, wobei das Zwischenelement elektrisch leitend oder elektrisch isolierend ausgebildet ist. Mit dem beschriebenen Verbindungselement (1) können Unebenheiten der Kontaktflächen (7) der Bauteile (6, 13) trotz begrenzter Länge der Nanodrähte (3) besonders gut ausgeglichen werden.

Description

VERBINDUNGSELEMENT, VERFAHREN ZUM HERSTELLEN EINES VERBINDUNGSELEMENTS, ANORDNUNG UMFASSEND EIN VERBINDUNGSELEMENT UND ZWEI DAMIT VERBUNDENE BAUTEILE SOWIE VERFAHREN ZUM VERBINDEN ZWEIER BAUTEILE MIT EINEM VERBINDUNGSELEMENT
Die Erfindung betrifft ein Verbindungselement, ein Verfahren zum Herstellen eines Verbindungselements, eine Anordnung umfassend ein Verbindungselement und zwei damit verbundene Bauteile sowie ein Verfahren zum Verbinden zweier Bauteile mit einem Verbindungselement. Die Erfindung betrifft insbesondere das technische Ge biet elektronischer Geräte.
Bei der Herstellung elektronischer Geräte sind regelmäßig einzelne Bauteile elektrisch leitend miteinanderzu verbinden. Dafür sind verschiedene Verfahren bekannt. Bei- spielsweise können die Kontakte der Bauteile miteinander verlötet oder mittels Silber sintern verbunden werden. Die dabei entstehenden Temperaturen können die Bautei le aber beschädigen. Eine innovative Alternative zu derartigen herkömmlichen Verfah ren ist die Verbindung von elektronischen Bauteilen mittels Nanodrähten. Diese kann bei vergleichsweise niedrigen Temperaturen einfach ausgebildet werden. Dabei wer- den Nanodrähte als ein „Rasen" auf den Kontaktflächen der zu verbindenden Bauteile bereitgestellt. Werden die Kontaktflächen zusammengeführt, so werden die Nano drähte mit sehr großer Berührungsfläche miteinander verwoben oder verwirkt und bilden so eine mechanisch stabile sowie elektrisch und thermisch leitende Verbin dung. Bekannte Verfahren zur Nanodraht-Verbindung von Bauteilen erfordern aller- dings besonders ebene Kontaktflächen. Zwar können Unebenheiten der Kontaktflä chen durch die Nanodrähte ausgeglichen werden. Allerdings können Nanodrähte nur bis rund 100 mΐti Länge zuverlässig gewachsen werden. Variiert der Abstand zwischen den Kontaktflächen auf einer größeren Skala, kann eine Verbindung mit Nanodrähten nicht zuverlässig ausgebildet werden. Aufgabe der vorliegenden Erfindung ist es, ausgehend vom beschriebenen Stand der Technik ein Verfahren vorzustellen, mit dem zwei Bauteile zuverlässig miteinander verbunden werden können, auch wenn die Kontaktflächen der Bauteile uneben sind. Zudem sollen ein dafür geeignetes Verbindungselement, ein Verfahren für dessen Herstellung sowie eine Anordnung mit einem solchen Verbindungselement und zwei damit verbundenen Bauteilen vorgestellt werden. Diese Aufgaben werden gelöst mit den Gegenständen der unabhängigen Ansprüche. Weitere vorteilhafte Ausgestaltungen sind in den abhängigen Ansprüchen angege ben. Die in den Ansprüchen und in der Beschreibung dargestellten Merkmale sind in beliebiger, technologisch sinnvoller Weise miteinander kombinierbar.
Erfindungsgemäß wird ein Verbindungselement vorgestellt, welches eine Mehrzahl von Abschnitten umfasst, die entlang einer Achse des Verbindungselements aufei nander folgend angeordnet sind. Die Abschnitte weisen jeweils eine Vielzahl von Na- nodrähten auf. Benachbarte der Abschnitte grenzen innerhalb einer jeweiligen Zwi schenschicht aneinander. Die Nanodrähte der beiden jeweiligen an eine Zwischen schicht angrenzenden Abschnitte sind an der entsprechenden Zwischenschicht ge halten.
Mit dem Verbindungselement können zwei Bauteile miteinander verbunden werden, insbesondere zwei elektronische Bauteile. Die Bauteile weisen vorzugsweise jeweils eine Kontaktfläche auf. Mit dem Verbindungselement können die Kontaktflächen der Bauteile miteinander verbunden werden. Dadurch entsteht zwischen den Bauteilen eine mechanisch stabile sowie elektrisch und/oder thermisch leitende Verbindung. So kann das beschriebene Verbindungselement für verschiedenste Anwendungen ein gesetztwerden. So können zwei elektrische Leiter als Bauteile überdas Verbindungs element elektrisch leitend miteinander verbunden werden. Auch können zwei thermi sche Leiter als Bauteile überdas Verbindungselement thermisch leitend miteinander verbunden werden. Bei der Herstellung eines Elektromotors können Magnete als Bau teile über ein oder mehrere der Verbindungselemente mit einem Grundbauteil ver bunden werden. Halbleiterchips können als Bauteile über das Verbindungselement miteinander verbunden werden. Ein Sensor kann als ein Bauteil über das Verbin dungselement an einem Grundbauteil befestigt werden.
Die Verbindung kann dadurch ausgebildet werden, dass das Verbindungselement auf der Kontaktfläche eines ersten der Bauteile hergestellt wird. Zwischen der Kontaktflä che des zweiten Bauteils und dem Verbindungselement kann eine Nanodraht- Verbindung ausgebildet werden. Dazu weist das Verbindungselement insbesondere an der dem ersten Bauteil gegenüberliegenden Seite eine Vielzahl von Nanodrähten auf. Diese können mit der Kontaktfläche des zweiten Bauteils in Kontakt gebracht wer den. Insbesondere durch Erwärmen und/oder Anpressen können sich die Nanodrähte mit der Kontaktfläche des zweiten Bauteils verbinden. Es ist auch möglich, eine weitere Vielzahl von Nanodrähten auf der Kontaktfläche des zweiten Bauteils bereitzustellen.
In dem Fall kann die Verbindung zwischen den Nanodrähten des Verbindungsele ments und des zweiten Bauteils ausgebildet werden. Aufgrund der besonders großen Berührungsfläche zwischen den Nanodrähten ist insbesondere in dem Fall keine Er wärmung erforderlich. Durch Erwärmen und/oder Anpressen kann die Verbindung aber auch in dem Fall verstärkt werden. Auch kann auf der Kontaktfläche des zweiten Bauteils ein weiteres Verbindungselement bereitgestellt werden. In dem Fall kann die Verbindung zwischen Nanodrähten der beiden Verbindungselemente ausgebildet werden. Denkbar ist auch, dass das Verbindungselement zunächst auf einem geson derten Substrat hergestellt und anschließend auf die Kontaktfläche des ersten Bauteils transferiert wird. Mit dem ersten Bauteil kann das Verbindungselement auf die gleiche Weise verbunden werden wie mit dem zweiten Bauteil. Das Verbindungselement weist dazu auch an der dem ersten Bauteil zugewandten Seite vorzugsweise eine Vielzahl von Nanodrähten auf.
Mit dem beschriebenen Verbindungselement können Unebenheiten der Kontaktflä chen der Bauteile trotz begrenzter Länge der Nanodrähte besonders gut ausgeglichen werden. Dazu ist das Verbindungselement entlang seiner Achse in Abschnitte unter teilt. Das ermöglicht, dass mit den Nanodrähten eine Distanz zwischen den Kontaktflä chen überbrückt wird, die ein Vielfaches der Länge eines einzelnen Nanodrahts be trägt. Da die Nanodrähte flexibel sind, können so Unebenheiten der Kontaktflächen ausgeglichen werden, die größer als die Länge eines einzelnen Nanodrahts sind. Vor zugsweise hat das Verbindungselement 2 bis 20 Abschnitte, insbesondere 5 bis 10. Über die beiden äußeren Abschnitte kann das Verbindungselement an die beiden Bauteile angebunden werden. Die Nanodrähte dieser beiden Abschnitte können eine Nanodraht-Verbindung mit jeweils einem der beiden Bauteile eingehen, gegebenen falls mittelbar über ein weiteres Verbindungselement oder ein Zwischenelement. So fern mehr als zwei Abschnitte vorgesehen sind, gibt es neben den beiden äußeren Abschnitten auch mindestens einen Abschnitt, der mit keinem der Bauteile in Kontakt gelangt. Diese Abschnitte dienen zusammen mit den beiden äußeren Abschnitten als Puffer zum Ausgleich von Unebenheiten der Kontaktflächen. So können die Nanodräh- te eines Abschnitts gestaucht werden, weshalb das Verbindungselement insgesamt flexibel ist. Dadurch kann sich das Verbindungselement den Kontaktflächen anpassen.
Die Achse des Verbindungselements ist die für die Verbindung zwischen den Bautei len maßgebliche Orientierung. Die Abschnitte sind entlang der Achse des Verbin dungselements aufeinander folgend angeordnet. Das bedeutet, dass das Verbin dungselement bei Betrachtung entlang der Achse des Verbindungselements vollstän dig auf die Abschnitte aufgeteilt ist. Jeder Teil des Verbindungselements gehört zu genau einem der Abschnitte. Die Abschnitte liegen ohne Abstand aneinander an. Grenzflächen zwischen den Abschnitten sind vorzugsweise senkrecht zur Achse des Verbindungselements ausgebildet.
Jeder Abschnitt weist eine Vielzahl von Nanodrähten auf. Unter einem Nanodraht (engl, „nanowire") wird hier jeder materielle Körper verstanden, der eine drahtähnliche Form und eine Größe im Bereich von wenigen Nanometern bis zu wenigen Mikrome tern hat. Ein Nanodraht kann z.B. eine kreisförmige, ovale oder mehreckige Grundflä che aufweisen. Insbesondere kann ein Nanodraht eine hexagonale Grundfläche auf weisen. Vorzugsweise sind alle Nanodrähte aus dem gleichen Material gebildet. Be sonders bevorzugt ist es, dass die Nanodrähte vollständig aus einem elektrisch leiten den Material gebildet sind.
Für eine elektrisch und/oder thermisch besonders gut leitfähige Verbindung ist es be vorzugt, dass die Nanodrähte aus einem elektrisch und/oder thermisch leitfähigen Ma terial gebildet sind. Besonders bevorzugt ist hier die Verwendung von Kupfer, Silber, Nickel und Gold. Auch die Kontaktflächen sind vorzugsweise aus einem elektrisch und/oder thermisch leitfähigen Material gebildet, insbesondere mit Kupfer, Silber, Ni ckel oder Gold. Besonders bevorzugt sind die Kontaktflächen und die Nanodrähte aus dem gleichen Material gebildet. Dadurch ist die Verbindung besonders stabil.
Die Nanodrähte der einzelnen Abschnitte sind vorzugsweise jeweils entlang der Achse des Verbindungselements orientiert. Da Nanodrähte in der Praxis aber nicht genau gerade sind, ist auch bevorzugt, dass die Nanodrähte im Mittel einen Winkel von we- niger als 30° mit der Achse des Verbindungselements einschließen. Bei einem ge krümmten Nanodraht ist dessen Orientierung durch Näherung zu bestimmen. Die Ori entierung der Nanodrähte bezieht sich auf den Zustand, bevor zwei Bauteile über das Verbindungselement miteinander verbunden sind. Im Falle von unebenen Kontaktflä chen können die Abschnitte des Verbindungselements gestaucht werden, so dass die Unebenheiten ausgeglichen werden. Dadurch kann sich die Orientierung der Nano drähte verändern. Die Ausdehnung der Abschnitte entlang der Achse des Verbin dungselements wird jedenfalls vor Ausbilden einer Verbindung zweier Bauteile über das Verbindungselement wesentlich durch die Länge der Nanodrähte beeinflusst. Bevorzugt weisen die Nanodrähte eine Länge im Bereich von 100 nm [Nanometer] bis 100 mΐti [Mikrometer], insbesondere im Bereich von 10 bis 80 mΐti auf. Weiterhin weisen die Nanodrähte bevorzugt einen Durchmesser im Bereich von 10 nm bis 10 mh% insbe sondere im Bereich von 30 nm bis 2 mΐti auf. Dabei bezieht sich der Begriff Durchmes ser auf eine kreisförmige Grundfläche, wobei bei einer davon abweichenden Grundflä che eine vergleichbare Definition eines Durchmessers heranzuziehen ist. Es ist beson ders bevorzugt, dass alle verwendeten Nanodrähte die gleiche Länge und den glei chen Durchmesser aufweisen.
Benachbarte der Abschnitte grenzen innerhalb einer jeweiligen Zwischenschicht an einander. Die Grenzfläche zwischen zwei benachbarten Abschnitten verläuft also durch die Zwischenschicht. Bei Betrachtung entlang der Achse des Verbindungsele ments ist die Grenzfläche zwischen den beiden Abschnitten vorzugsweise mittig in nerhalb der Zwischenschicht angeordnet. Benachbarte Zwischenschichten sind von einander beabstandet. Zwischen den Zwischenschichten sind die Nanodrähte ange ordnet. Durch die Zwischenschichten können die Nanodrähte der einzelnen Abschnit te entlang der Achse angeordnet werden. Dadurch kann das Verbindungselement entlang der Achse des Verbindungselements eine Ausdehnung haben, die ein Vielfa ches der Länge eines einzelnen Nanodrahts beträgt. Das Verbindungselement kann hergestellt werden, indem die Nanodrähte abschnittsweise auf die Zwischenschichten gewachsen werden. Die Zwischenschichten stabilisieren das Verbindungselement und verhindern, dass die Nanodrähte brechen. Die Zwischenschichten sind vorzugsweise senkrecht zur Achse des Verbindungsele ments angeordnet, jedenfalls bevor eine Verbindung zweier Bauteile über das Verbin dungselement ausgebildet ist. Die Zwischenschichten sind vorzugsweise parallel zu einander angeordnet. In der Praxis kann dies aber schwierig umzusetzen sein. Daher ist auch bevorzugt, dass die Zwischenschichten jeweils einen Winkel von 70 bis 90° mit der Achse des Verbindungselements einschließen. Im Rahmen dieses Winkelbe reichs können die Zwischenschichten schräg zueinanderstehen. Sofern eine Zwi schenschicht nicht eben ausgebildet ist, ist eine Ebene als Näherung für diese Zwi schenschicht heranzuziehen.
Die Nanodrähte der beiden jeweiligen an eine Zwischenschicht angrenzenden Ab schnitte sind an dieser Zwischenschicht gehalten. Abgesehen von den beiden entlang der Achse des Verbindungselements äußeren Abschnitten sind alle Abschnitte an zwei Zwischenschichten beteiligt. Bei diesen Abschnitten sind die Nanodrähte mit einem ihrer Enden an der ersten dieser Zwischenschichten gehalten und mit ihrem anderen Ende an der anderen Zwischenschicht. Über die Nanodrähte sind die benachbarten Zwischenschichten also miteinander verbunden. Dabei entspricht ein Abstand der benachbarten Zwischenschichten entlang der Achse des Verbindungselements vor zugsweise der Länge der zwischen diesen Zwischenschichten angeordneten Nano drähte. Da die Nanodrähte in der Praxis oft nicht exakt entlang der Achse des Verbin dungselements verlaufen, ist es bevorzugt, dass der Abstand der benachbarten Zwi schenschichten entlang der Achse des Verbindungselements 90 bis 100 Prozent der Länge der zwischen diesen Zwischenschichten angeordneten Nanodrähten entspre chen.
Die beiden entlang der Achse des Verbindungselements äußeren Abschnitten sind jeweils an nur einer Zwischenschicht beteiligt. Die Nanodrähte dieser Abschnitte sind daher nur an dieser einen Zwischenschicht gehalten. Über diese Nanodrähte können die Verbindungen zu den beiden Bauteilen ausgebildet werden. Dazu ist es bevorzugt, dass bei Betrachtung entlang der Achse des Verbindungselements die beiden Enden des Verbindungselements durch Nanodrähte gebildet sind, also nicht durch eine ge schlossene Schicht. Das Verbindungselement kann hergestellt werden, indem die Nanodrähte abschnitts weise gewachsen werden. Dazu können die Nanodrähte für den ersten Abschnitt bei spielsweise auf der Kontaktfläche des ersten Bauteils gewachsen werden. Bei allen folgenden Abschnitten können die Nanodrähte so gewachsen werden, dass die Na nodrähte an einem ihrer Enden an der jeweiligen Zwischenschicht gehalten sind. Na nodrähte können gewachsen werden, indem eine Folie mit Poren auf eine zu bewach sende Oberfläche aufgelegt wird. Sind die Poren gefüllt, kann durch Fortsetzen des galvanischen Wachsens eine Abschlussschicht auf der Oberfläche der Folie erhalten werden. Durch diese Abschlussschicht können die Nanodrähte an ihren Enden mitei nanderverbunden sein. Auf die Abschlussschicht kann eine Folie aufgelegt werden und die Nanodrähte des folgenden Abschnittes können auf die Abschlussschicht ge wachsen werden. Die Abschlussschicht kann daher bereits die Zwischenschicht dar stellen. In der Praxis liegt die Folie aber oft nicht dicht an der Abschlussschicht an. Zwi schenräume zwischen der Folie und der Abschlussschicht können sich beim Wachs tumsprozess mit dem abgeschiedenen Material füllen, bevor sich die Poren füllen und das Wachstum der Nanodrähte insoweit beginnt. Im Ergebnis kann sich so beim Wachstum der Nanodrähte des folgenden Abschnitts weiteres Material flächig auf der Abschlussschicht ablagern. Die Abschlussschicht zusammen mit dem so hinzuge kommenen Material bildet dann die jeweilige Zwischenschicht. Insoweit kann die Zwi schenschicht als entlang der Achse des Verbindungselements zweigeteilt aufgefasst werden. Die Teile der Zwischenschicht können allerdings derart ineinander überge hen, dass diese beispielsweise bei einer Schliffanalyse nicht voneinander unterschie den werden können. Insbesondere ist es nicht erforderlich, dass eine Grenzfläche zwi schen den Teilen einer jeweiligen Zwischenschicht genau senkrecht auf der Achse des Verbindungselements ausgerichtet ist.
In einer weiteren bevorzugten Ausführungsform hat das Verbindungselement entlang der Achse des Verbindungselements eine Ausdehnung zwischen 20 und 10000 mΐti [Mikrometer], insbesondere zwischen 100 und 600 mΐti.
Nanodrähte können nur mit Längen von bis zu 100 mΐti [Mikrometer] zuverlässig ge wachsen werden. Vorzugsweise werden sogar nur Nanodrähte mit einer Länge von bis zu 50 mΐh verwendet. Das beschriebene Verbindungselement kann deutlich länger ausgebildet sein. Damit können entsprechend größere Unebenheiten auf Kontaktflä chen ausgeglichen werden.
In einerweiteren bevorzugten Ausführungsform des Verbindungselements haben die Zwischenschichten entlang der Achse des Verbindungselements jeweils eine Aus dehnung im Bereich von 0,2 bis 40 mΐti [Mikrometer], insbesondere im Bereich von 1 bis 10 mΐti.
Die Ausdehnung der Zwischenschichten setzt sich vorzugsweise zusammen aus der Ausdehnung der jeweiligen Abschlussschicht und dem Material, das beim Wachstum der Nanodrähte des folgenden Abschnitts hinzukommt. Die Abschlussschicht einer Zwischenschicht hat entlang der Achse des Verbindungselements vorzugsweise die gleiche Ausdehnung wie die Schicht des so hinzugekommenen Materials. Möglich ist aber auch jede beliebige andere Verteilung. Insbesondere kann sich die Abschluss schicht entlang der Achse des Verbindungselements über 10 bis 90 % der Zwischen schicht erstrecken. Dies kann lokal unterschiedlich sein, so dass Unebenheiten der Abschlussschicht ausgeglichen werden. Vorzugsweise haben die Zwischenschichten aller Abschnitte die gleiche Ausdehnung entlang der Achse des Verbindungsele ments.
Als ein weiterer Aspekt der Erfindung wird ein Verfahren zum Herstellen eines Verbin dungselements vorgestellt, welches eine Mehrzahl von Abschnitten umfasst, die ent lang einer Achse des Verbindungselements aufeinander folgend angeordnet sind. Die Abschnitte werden nacheinander jeweils durch folgende Schritte erzeugt: a) Bereitstellen einer Ausgangsschicht, b) Auflegen einer Folie auf die Ausgangsschicht, wobei die Folie eine Vielzahl von Poren aufweist, c) Abscheiden von Material auf die Ausgangsschicht und in die Poren, so dass die Nanodrähte in den Poren aus dem Material gebildet werden, d) außer bei dem letzten Abschnitt Erzeugen einer von der Ausgangsschicht entlang der Achse des Verbindungselements beabstandeten Abschlussschicht an einer Folienoberfläche, wobei ab dem zweiten Abschnitt in Schritt a) die Abschlussschicht des jeweils vorher gehenden Abschnitts als die Ausgangsschicht verwendet wird.
Die Vorteile und Merkmale des beschriebenen Verbindungselements sind auf das Ver fahren anwendbar und übertragbar, und umgekehrt. Mit dem beschriebenen Verfah ren wird vorzugsweise das beschriebene Verbindungselement hergestellt.
Bei den Bauteilen handelt es sich vorzugsweise um elektronische Bauteile. Die Kon taktflächen können als elektrische Kontakte ausgebildet sein. Insbesondere in dem Fall kann mit dem beschriebenen Verbindungselement eine Vielzahl von einzelnen Verbindungen zwischen den Bauteilen ausgebildet werden, über welche die elektri schen Kontakte der Bauteile jeweils paarweise miteinander verbunden sind. Insoweit ist es nicht erforderlich, dass das Verbindungselement zusammenhängend ausgebil det ist. Auch kann mit dem Verbindungselement ein elektronisches Bauteil als erstes Bauteil mit einem Kühlkörper als zweitem Bauteil thermisch leitend verbunden werden, so dass Wärme aus dem elektrischen Bauteil über das Verbindungselement an den Kühlkörper abgegeben werden kann. Insbesondere in dem Fall ist es bevorzugt, dass über das Verbindungselement eine einzige Verbindung zwischen den Bauteilen aus gebildet wird. Diese kann vollflächig ausgebildet sein. Auch kann mit dem Verbin dungselement ein erstes mechanisches Bauteil als erstes Bauteil mit einem zweiten mechanischen Bauteil als zweitem Bauteil mechanisch verbunden werden. Insbeson dere in dem Fall ist es bevorzugt, dass über das Verbindungselement eine einzige Ver bindung zwischen den Bauteilen ausgebildet wird. Diese kann vollflächig ausgebildet sein. Allgemein können die Kontaktflächen eine beliebige Größe haben. Insbesondere ab 0,3 miti haben Versuche zufriedenstellende Ergebnisse ergeben. Es ist daher bevor zugt, dass die Kontaktflächen in jeder Richtung ihrer Oberfläche mindestens 0,3 mΐti ausgedehnt sind.
Die Abschnitte werden grundsätzlich alle auf die gleiche Weise durch die Schritte a) bis d) erzeugt. Allerdings ergeben sich die nachfolgend beschriebenen Besonderhei ten für die beiden entlang der Achse des Verbindungselements äußeren Abschnitte des Verbindungselements, also für den zuerst erzeugten Abschnitt (im Folgenden „ers ter Abschnitt") und für den zuletzt erzeugten Abschnitt („letzter Abschnitt"). In Schritt a) wird eine Ausgangsschicht bereitgestellt. Als Ausgangsschicht kann jede Schicht angesehen werden, auf die Nanodrähte gewachsen werden können. Vor zugsweise ist die Ausgangsschicht aus dem Material der Nanodrähte gebildet. Bei dem ersten Abschnitt kann die Ausgangsschicht insofern bereitgestellt werden, als dass ein Bauteil mit einer Kontaktfläche oder ein gesondertes Substrat bereitgestellt wird. Bei den übrigen Abschnitten, also ab dem zweiten Abschnitt, wird die jeweilige Ausgangsschicht in Schritt a) insoweit bereitgestellt, als dass die Abschlussschicht des jeweils vorhergehenden Abschnitts als Ausgangsschicht verwendet wird. Die Ab schlussschicht eines ersten Abschnitts ist also die Ausgangsschicht eines zweiten Ab schnitts. Zusammen mit Material, dass beim Wachstum der Nanodrähte des zweiten Abschnitts möglicherweise hinzukommt, bildet diese Schicht die Zwischenschicht zwischen dem ersten Abschnitt und dem zweiten Abschnitt.
In Schritt b) wird die Folie auf die Ausgangsschicht aufgelegt. Beim ersten Abschnitt kann dies dadurch erfolgen, dass die Folie auf die Kontaktfläche des ersten Bauteils oder auf das gesonderte Substrat aufgelegt wird. Die Folie ist vorzugsweise aus einem Polymer gebildet. Die Poren sind vorzugsweise entlang der Achse des Verbindungs elements orientiert, wenn die Folie auf die Ausgangsschicht aufgelegt ist. Die Poren sind vorzugsweise durchgehend ausgebildet. Das bedeutet, dass die Poren von der Seite der Folie, mit der die Folie auf die Ausgangsschicht aufgelegt wird, bis zu einer gegenüberliegenden Seite der Folie reichen.
In Schritt c) werden die Nanodrähte gewachsen, insbesondere galvanisch. Dazu wird das Material, aus dem die Nanodrähte zu wachsen ist, auf die Ausgangsschicht und in die Poren abgeschieden. Durch die Poren der Folie kann sich das Material nur so ab scheiden, dass die Nanodrähte in den Poren wachsen. Liegt die Folie nicht dicht an der Ausgangsschicht an, kann sich das Material auch zwischen der Ausgangsschicht und der Folie abscheiden. In dem Fall wird also zunächst ein Zwischenraum zwischen der Ausgangsschicht und der Folie mit dem Material gefüllt, bevor sich das Material auch in den Poren abscheidet. So können die Nanodrähte an ihren der Ausgangs schicht zugewandten Seite zusammenwachsen. Das so flächig auf der Abschluss schicht abgeschiedene Material ist Teil der jeweiligen Zwischenschicht. Möglich ist. dass die Nanodrähte nur an einigen Stellen und nicht über die gesamte Oberfläche der Ausgangsschicht zusammenwachsen.
Sind die Poren vollständig mit dem abgeschiedenen Material gefüllt, kann das Material auf der Oberfläche der Folie zu einer geschlossenen Schicht zusammenwachsen. Das bezieht sich auf die Oberfläche der Folie an der Seite, die der Ausgangsschicht gegen überliegt. Eine derart geschlossene Schicht wird hier als die Abschlussschicht eines Abschnitts bezeichnet. Diese wird in Schritt d) erzeugt. Allerdings wird für den letzten Abschnitt keine Abschlussschicht erzeugt. Das Wachstum einer Abschlussschicht kann dadurch verhindert werden, dass das galvanische Wachstum gestoppt wird, be- vor das Material beginnt auf der Oberfläche der Folie zusammenzuwachsen. Mit um fasst ist auch, dass eine zunächst gewachsene Abschlussschicht wieder entfernt wird.
Schritt d) wird mit Ausnahme des letzten Abschnitts für alle Abschnitte durchgeführt. Die Nanodrähte des letzten Abschnitts können daher mit einer Kontaktfläche eines zweiten Bauteils in Kontakt gebracht werden, um mit diesem eine Nanodraht- Verbindung auszubilden.
Die Folien sind nicht Teil des Verbindungselements. Die Folien werden nur temporär bei der Herstellung benötigt. Daher werden die Folien vorzugsweise entfernt. Dies kann grundsätzlich zu einem beliebigen Zeitpunkt erfolgen.
Bevorzugt ist aber die Ausführungsform des Verfahrens, bei der alle Folien gemeinsam entfernt werden, nachdem der letzte Abschnitt erzeugt worden ist.
In dieser Ausführungsform sind die Nanodrähte der vorhergehenden Abschnitte noch durch die jeweilige Folie geschützt, während die Nanodrähte für den folgenden Ab schnitt gewachsen werden. Das kann verhindern, dass die Nanodrähte bei der Herstel lung des Verbindungselements beschädigt werden. Als ein weiterer Aspekt der Erfindung wird eine Anordnung vorgestellt, die umfasst:
zwei Bauteile mit einer jeweiligen Kontaktfläche, wobei die Kontaktflächen der bei den Bauteile entlang der Achse des Verbindungselements voneinander beab- standet sind,
ein Verbindungselement, durch welches die Kontaktflächen der beiden Bauteile miteinander verbunden sind, wobei das Verbindungselement eine Mehrzahl von Abschnitten umfasst, die entlang einer Achse des Verbindungselements aufeinan der folgend angeordnet sind, wobei die Abschnitte jeweils eine Vielzahl von Nano- drähten aufweisen, wobei benachbarte der Abschnitte innerhalb einer jeweiligen Zwischenschicht aneinandergrenzen, und wobei die Nanodrähte der beiden jewei ligen an eine Zwischenschicht angrenzenden Abschnitte an der entsprechenden Zwischenschicht gehalten sind.
Die Vorteile und Merkmale des beschriebenen Verbindungselements und des be schriebenen Verfahrens sind auf die Anordnung anwendbar und übertragbar, und umgekehrt. Das Verbindungselement der Anordnung ist vorzugsweise wie das be schriebene Verbindungselement ausgebildet. Das Verbindungselement der Anord nung wird vorzugsweise durch das beschriebene Verfahren hergestellt.
Vorzugsweise sind die Kontaktflächen der beiden Bauteile parallel zueinander ausge richtet. Vorzugsweise sind die Kontaktflächen der beiden Bauteile jeweils senkrecht zu der Achse des Verbindungselements ausgerichtet. Allerdings können aufgrund der Flexibilität der Nanodrähte auch schräg zueinanderstehende Kontaktflächen mitei nanderverbunden sein. Beispielsweise können die Kontaktflächen der beiden Bauteile einen Winkel im Bereich von bis zu 45° miteinander einschließen.
Als ein weiterer Aspekt der Erfindung wird ein Verfahren zum Verbinden eines ersten Bauteils mit einem zweiten Bauteil vorgestellt. Das Verfahren umfasst:
A) Bereitstellen eines Verbindungselements auf einer Kontaktfläche des ersten Bau teils, wobei das Verbindungselement eine Mehrzahl von Abschnitten umfasst, die entlang einer Achse des Verbindungselements aufeinander folgend angeordnet sind, wobei die Abschnitte nacheinander jeweils durch folgende Schritte erzeugt werden: a) Bereitstellen einer Ausgangsschicht, b) Auflegen einer Folie auf die Ausgangsschicht, wobei die Folie eine Vielzahl von Poren aufweist, c) Abscheiden von Material auf die Ausgangsschicht und in die Poren, so dass die Nanodrähte in den Poren aus dem Material gebildet werden, d) außer bei dem letzten Abschnitt Erzeugen einer von der Ausgangsschicht ent lang der Achse des Verbindungselements beabstandeten Abschlussschicht an einer Folienoberfläche, wobei ab dem zweiten Abschnitt in Schritt a) die Abschlussschicht des jeweils vorhergehenden Abschnitts als die Ausgangsschicht verwendet wird, und
B) Zusammenführen einer Kontaktfläche des zweiten Bauteils mit dem in Schritt A) bereitgestellten Verbindungselement, so dass die Nanodrähte des zuletzt erzeug ten Abschnitts des Verbindungselements mit der Kontaktfläche des zweiten Bau teils, mit Nanodrähten auf der Kontaktfläche des zweiten Bauteils und/oder mit ei nem weiteren Verbindungselement auf der Kontaktfläche des zweiten Bauteils in Kontakt gelangen.
Die Vorteile und Merkmale des beschriebenen Verbindungselements, des beschrie benen Verfahrens zum Herstellen eines Verbindungselements und der beschriebenen Anordnung sind auf das Verfahren zum Verbinden eines ersten Bauteils mit einem zweiten Bauteil anwendbar und übertragbar, und umgekehrt. Das zum Verbinden der beiden Bauteile verwendete Verbindungselement ist vorzugsweise wie das beschrie bene Verbindungselement ausgebildet. Das zum Verbinden der beiden Bauteile ver wendete Verbindungselement wird in Schritt A) vorzugsweise anhand des beschrie benen Verfahrens zum Herstellen eines Verbindungselements hergestellt. Mit dem Verfahren zum Verbinden eines ersten Bauteils mit einem zweiten Bauteil wird vor zugsweise die beschriebene Anordnung erhalten.
In Schritt A) wird das Verbindungselement auf der Kontaktfläche des ersten Bauteils bereitgestellt. Das kann dadurch erfolgen, dass das Verbindungselement auf der Kon taktfläche des ersten Bauteils hergestellt wird. Alternativ ist denkbar, dass das Verbin- dungselement auf einem gesonderten Substrat hergestellt und anschließend auf die Kontaktfläche des ersten Bauteils transferiert wird. Das Entfernen der Folien erfolgt dabei vorzugsweise bevor das Verbindungselement auf die Kontaktfläche des ersten Bauteils transferiert wird. Wird das Verbindungselement auf einem gesonderten Sub strat hergestellt, kann das Substrat als Ausgangsschicht des ersten Abschnitts ver wendet werden und insoweit in Schritt a) des ersten Abschnitts bereitgestellt werden.
In Schritt B) wird das Verbindungselement mit der Kontaktfläche des zweiten Bauteils verbunden. Das kann dadurch erfolgen, dass das zweite Bauteil mit der Kontaktfläche voran auf das Verbindungselement gelegt wird. Vorzugsweise wird das zweite Bauteil in Schritt B) mit einem Druck im Bereich von 1 bis 200 MPa auf das Verbindungsele ment gedrückt. Vorzugsweise wird die Kontaktfläche des zweiten Bauteils in Schritt B) auf mindestens 90 °C erwärmt, insbesondere auf mindestens 150 °C. Vorzugsweise wird die Kontaktfläche des zweiten Bauteils in Schritt B) auf höchstens 300 °C erwärmt, insbesondere auf höchstens 240 °C. Besonders bevorzugt wird die Kontaktfläche des zweiten Bauteils in Schritt B) auf eine Temperatur im Bereich von 90 °C bis 300 °C, ins besondere im Bereich von 150 °C bis 240 °C erwärmt. Diese Temperaturen sind erheb lich niedriger als die Temperaturen, die bei bekannten Verbindungsverfahren wie dem Löten auftreten.
Zusammen mit der Kontaktfläche des zweiten Bauteils können auch andere Teile des zweiten Bauteils, das Verbindungselement und/oder das erste Bauteil erwärmt wer den. Aus praktischen Gründen werden die beiden Bauteile mit dem Verbindungsele ment vorzugsweise zusammen erwärmt. Für die zu verwendende Temperatur gilt da bei das für die Kontaktfläche des zweiten Bauteils Gesagte.
Für das Ausbilden der Verbindung kann es ausreichen, dass die beschriebene Min desttemperatur einmalig zumindest kurzzeitig erreicht wird. Ein Halten der Temperatur ist nicht erforderlich. Es ist aber bevorzugt, dass die Temperatur, auf die gemäß Schritt B) erwärmt wird, für mindestens fünf Sekunden, vorzugsweise mindestens 30 Sekun den gehalten wird. Damit kann sichergegangen werden, dass die Verbindung wie ge wünscht ausgebildet wird. Ein längeres Halten der Temperatur ist grundsätzlich nicht schädlich. Vorzugsweise wird auch auf der Kontaktfläche des zweiten Bauteils eine Vielzahl von Nanodrähten bereitgestellt. In dem Fall kommen die Nanodrähte des zuletzt erzeugten Abschnitts des Verbindungselements mit den Nanodrähten auf der Kontaktfläche des zweiten Bauteils in Kontakt. Ein Erwärmen und/oder Anpressen ist insbesondere in dem Fall nicht erforderlich, aber dennoch bevorzugt. Es gilt das zuvor Gesagte zu Temperatur und Druck.
Auch ist es möglich, ein weiteres Verbindungselement auf der Kontaktfläche des zwei ten Bauteils bereitzustellen. In Schritt B) werden die Bauteile dann so zusammenge führt, dass sich die beiden Verbindungselemente miteinander verbinden. Die Nano drähte des zuletzt erzeugten Abschnitts des Verbindungselements aus Schritt A) kommen in dem Fall mit Nanodrähten des weiteren Verbindungselements in Kontakt. Das weitere Verbindungselement wird vorzugweise analog zu Schritt A) auf dem zwei ten Bauteil bereitgestellt, also auf diesem hergestellt oder auf dieses transferiert. Die Verbindung zwischen den Verbindungselementen erfolgt vorzugsweise zwischen den Nanodrähten der jeweils zuletzt erzeugten Abschnitte der beiden Verbindungsele mente. Durch die Ausgestaltung mit zwei Verbindungselementen zwischen den Bau teilen können besonders große Unebenheiten ausgeglichen werden. Mit einem einzi gen entsprechend großen Verbindungselement ist dies schwieriger, weil in der Praxis die Länge der Nanodrähte begrenzt ist und nur eine begrenzte Anzahl von Abschnit ten zu einem Verbindungselement aneinandergereiht werden können.
In einerweiteren bevorzugten Ausführungsform des Verfahrens wird in Schritt B) ein Klebstoff auf der Kontaktfläche des ersten Bauteils und/oder auf der Kontaktfläche des zweiten Bauteils bereitgestellt. Der Klebstoff kann die Verbindung zwischen den Bau teilen mechanisch stabilisieren. Zudem kann der Klebstoff die Nanodrähte des Verbin dungselements stabilisieren. Der Klebstoff kann allein oder zusätzlich zu Nanodrähten oder zu einem Verbindungselement auf eine Kontaktfläche aufgebracht werden. So sind alle der folgenden Kombinationen denkbar: Auf der Kontaktfläche des ersten Bau teils kann sich das Verbindungselement mit und ohne Klebstoff befinden. Dabei kann die Kontaktfläche des zweiten Bauteils frei sein, Nanodrähte ohne Klebstoff aufweisen, ein Verbindungselement ohne Klebstoff aufweisen, den Klebstoff allein aufweisen, den Klebstoff zusätzlich zu einem weiteren Verbindungselement aufweisen oder den Kleb stoff zusätzlich zu Nanodrähten aufweisen. Unter die vorliegende Ausführungsform fallen alle Kombinationen, bei denen mindestens eine der Kontaktflächen den Kleb stoff aufweist.
Das beschriebene Verbindungselement kann auch dazu genutzt werden, zwei Bautei le indirekt miteinander zu verbinden. So kann ein Zwischenelement bereitgestellt wer den, welches auf mindestens einer Oberfläche ein wie beschrieben ausgebildetes Verbindungselement aufweist. Vorzugsweise ist das Zwischenelement eine Folie. Vor zugsweise ist das Zwischenelement elektrisch leitend ausgebildet, so dass eine elektrisch leitende Verbindung ausgebildet werden kann. Alternativ ist bevorzugt, dass das Zwischenelement elektrisch isolierend ausgebildet ist. Vorzugsweise weist das Zwischenelement auf zwei einander gegenüberliegenden Seiten jeweils ein wie be schrieben ausgebildetes Verbindungselement auf. Das Zwischenelement kann zwi schen zwei zu verbindende Bauteile gelegt werden. Die Bauteile insbesondere über das jeweilige Verbindungselement mit dem Zwischenelement und insoweit miteinan der verbunden werden. Es sind alle der folgenden Kombinationen denkbar: Die Kon taktfläche des ersten Bauteils und die Kontaktfläche des zweiten Bauteils können je weils frei sein, einen Klebstoff aufweisen, Nanodrähte aufweisen, ein Verbindungsele ment, einen Klebstoff zusätzlich zu Nanodrähten odereinen Klebstoff zusätzlich zu einem Verbindungselement aufweisen. Ist nur auf der dem ersten Bauteil zugewand ten Seite des Zwischenelements ein Verbindungselement vorgesehen und ist die Kon taktfläche des zweiten Bauteils frei, kann das Zwischenelement unmittelbar mit dem zweiten Bauteil verbunden werden, beispielsweise durch Klebewirkung. Weist das Zwischenelement auf zwei einander gegenüberliegenden Seiten jeweils ein Verbin dungselement auf, können die Verbindungselemente auf den beiden Seiten aus dem gleichen Material gebildet sein. Bevorzugt ist aber auch, dass die Verbindungselemen te auf den beiden Seiten aus unterschiedlichem Material gebildet sind. Eine Nano- draht-Verbindung ist dann besonders stabil, wenn sie zwischen einer Kontaktfläche und Nanodrähten aus dem gleichen Material und/oder zwischen Nanodrähten aus dem gleichen Material ausgebildet wird. Durch ein Zwischenelement mit Verbin- dungselementen aus unterschiedlichen Materialien können Kontaktflächen unter schiedlicher Materialien besonders gut miteinander verbunden werden.
Die Erfindung wird nachfolgend anhand der Figuren näher erläutert. Die Figuren zei gen ein besonders bevorzugtes Ausführungsbeispiel, auf das die Erfindung jedoch nicht begrenzt ist. Die Figuren und die darin dargestellten Größenverhältnisse sind nur schematisch. Es zeigen:
Fig. 1a bis 1 f: mehrere Stufen eines erfindungsgemäßen Verfahrens zur Herstellung eines Verbindungselements,
Fig. 2: eine seitliche Schnittdarstellung einer Anordnung umfassend das Ver bindungselement aus Fig. 1f sowie zwei darüber miteinander verbun dene Bauteile.
Fig. 1a bis 1f zeigen verschiedene Stufen eines Verfahrens zum Herstellen eines (in Fig. 1f gezeigten) Verbindungselements 1. Fig. 1a zeigt ein erstes Bauteil 6 mit einer Kontaktfläche 7. Das Verbindungselement 1 wird auf der Kontaktfläche 7 des ersten Bauteils 6 hergestellt. Damit kann das Verbindungselement 1 dazu genutzt werden, die Kontaktfläche 7 des ersten Bauteils 6 mechanisch stabil sowie elektrisch und/oder thermisch leitend mit einer Kontaktfläche 7 eines in Fig. 2 gezeigten zweiten Bau teils 13 zu verbinden. Das Verbindungselement 1 wird entlang einer Achse x aufge baut. Die Achse x steht senkrecht auf der Kontaktfläche 7 des ersten Bauteils 6. Die Kontaktfläche 7 des ersten Bauteils 6 dient als Ausgangsschicht 8. Die Ausgangs schicht 8 wird dadurch bereitgestellt, dass das erste Bauteil 6 mit der Kontaktfläche 7 bereitgestellt wird.
Wie in Fig. 1 b gezeigt, wird eine Folie 9 auf die Kontaktfläche 7 und insoweit auf die Ausgangsschicht 8 aufgelegt. Mit der Folie 9 wird ein erster Abschnitt 2 des Verbin dungselements 1 erzeugt. Die Folie 9 weist eine Vielzahl von Poren 10 auf. Durch gal vanisches Wachsen können Nanodrähte 3 auf die Ausgangsschicht 8 in die Poren 10 gewachsen werden. Das ist in Fig. 1 b dadurch angedeutet, dass die Poren 10 im unte ren Bereich mit einer durchgezogenen Linie gezeigt sind. In diesem Bereich sind die Nanodrähte 3 bereits gewachsen. Darüber ist gepunktet angedeutet, dass die Poren 10 noch frei sind. Angedeutet ist zudem, dass die Nanodrähte 3 im unteren Bereich zusammengewachsen sind, weil die Folie 9 nicht dicht auf der Ausgangsschicht 8 auf liegt.
In Fig. 1c ist gezeigt, dass die Poren 10 vollständig gefüllt sind und die Nanodrähte 3 des ersten Abschnitts 2 vollständig gewachsen sind. Nachdem die Poren 10 vollstän dig mit dem Material der Nanodrähte 3 gefüllt sind, führt der galvanische Wachstums prozess dazu, dass sich aus dem Material der Nanodrähte 3 auf einer Folienoberfläche
11 eine Abschlussschicht 12 bildet. Damit ist der erste Abschnitt 2 vollständig erzeugt. Der Abschnitt 2 umfasst die Nanodrähte 3 und die Abschlussschicht 12. Die Folie 9 ist nicht Teil des Abschnitts 2 und wird am Ende des Verfahrens entfernt.
In Fig. 1d ist gezeigt, dass ein weiterer Abschnitt 2 erzeugt wird. Die in Fig. 1c gezeigte Abschlussschicht 12 des ersten Abschnitts 2 dient als Ausgangsschicht 8 für diesen weiteren Abschnitt 2. Insofern wird für diesen zweiten Abschnitt 2 die jeweilige Aus gangsschicht 8 bereitgestellt. Anschließend wird eine Folie 9 auf diese neue Aus gangsschicht 8 aufgelegt und die Nanodrähte 3 analog zum vorhergehenden Ab schnitt 2 gewachsen. Auch dabei lagert sich weiteres Material auf der Ausgangs schicht 8 ab. Anschließend wird eine Abschlussschicht 12 auf der Oberseite der Folie 9 gebildet. Auf diese Weise kann eine Mehrzahl von Abschnitten 2 erhalten werden, die entlang der Achse x des Verbindungselements 1 aufeinander folgend angeordnet sind.
Fig. 1e zeigt drei vollständig erzeugte Abschnitte 2. Der oberste Abschnitt 2 hat keine Abschlussschicht 12. Das kann erreicht werden, indem das galvanische Wachstum rechtzeitig gestoppt wird. Dadurch sind die Enden der Nanodrähte 3 des obersten Abschnitts 2 frei und können (wie in Fig. 2 gezeigt) mit der Kontaktfläche 7 des zweiten Bauteils 13 in Kontakt gebracht werden.
Zuvor werden aber noch die Folien 9 entfernt. Das Ergebnis ist das Verbindungsele ment 1, welches zusammen mit dem ersten Bauteil 6 in Fig. 1f gezeigt ist. Daran ist zu erkennen, dass benachbarte der Abschnitte 2 innerhalb einer jeweiligen Zwischen schicht 4 aneinandergrenzen. Die Zwischenschichten 4 setzen sich jeweils aus einer Abschlussschicht 12 und dem darauf flächig abgeschiedenen Material zusammen. Insoweit sind die Zwischenschichten 4 jeweils entlang der Achse x des Verbindungs elements 1 zweigeteilt ausgebildet. Die Grenze zwischen zwei benachbarten Abschnit ten 2 liegt innerhalb der jeweiligen Zwischenschicht 4. Die Nanodrähte 3 sind an den Zwischenschichten 4 gehalten, die zu den jeweiligen Abschnitten 2 gehören.
Fig. 2 zeigt eine Anordnung 5 umfassend das erste Bauteil 6 und das Verbindungs element 1 aus Fig. 1f. Überdas Verbindungselement 1 ist eine Kontaktfläche 7 eines zweiten Bauteils 13 mit der Kontaktfläche 7 des ersten Bauteils 6 verbunden. Zu er kennen ist, dass die Kontaktflächen 7 der beiden Bauteile 6, 13 parallel zueinander und jeweils quer zur Achse x des Verbindungselements 1 ausgerichtet sind. Die bei den Kontaktflächen 7 sind entlang der Achse x des Verbindungselements 1 voneinan der beabstandet. Die beiden Bauteile 6, 13 können dadurch miteinander verbunden worden sein, dass die Kontaktfläche 7 des zweiten Bauteils 13 mit dem Verbindungs element 1 zusammengeführt wurde, so dass die Nanodrähte 3 des obersten Ab schnitts 2 des Verbindungselements 1 mit der Kontaktfläche 7 des zweiten Bauteils 13 in Kontakt gelangt sind. Alternativ hätten auch (nicht gezeigte) Nanodrähte auf der Kontaktfläche 7 des zweiten Bauteils 13 bereitgestellt werden können. In dem Fall hät ten die Nanodrähte 3 des obersten Abschnitts 2 mit diesen Nanodrähten und/oder mit der Kontaktfläche 7 des zweiten Bauteils 13 in Kontakt kommen können. Auch hätte ein weiteres (nicht gezeigtes) Verbindungselement auf der Kontaktfläche des zweiten Bauteils 13 bereitgestellt werden können. In dem Fall hätten die Nanodrähte 3 des obersten Abschnitts 2 mit Nanodrähten des weiteren Verbindungselements in Kontakt kommen können.
Eingezeichnet ist in Fig. 2 zudem eine Ausdehnung D des Verbindungselements 1 entlang der Achse x des Verbindungselements 1. Diese liegt zwischen 20 und 1000 mΐti. Zudem ist eine Ausdehnung d der Zwischenschichten 4 entlang der Achse x des Verbindungselements 1 eingezeichnet, beispielhaft nur für eine der beiden Zwi schenschichten 4. Die Ausdehnung d liegt bei beiden Zwischenschichten 4 jeweils im Bereich von 0,2 bis 40 mΐti. Bezugszeichenliste
1 Verbindungselement
2 Abschnitt 3 Nanodraht
4 Zwischenschicht
5 Anordnung
6 erstes Bauteil
7 Kontaktfläche 8 Ausgangsschicht
9 Folie
10 Pore
11 Folienoberfläche
12 Abschlussschicht 13 zweites Bauteil x Achse des Verbindungselements D Ausdehnung d Ausdehnung

Claims

Ansprüche
1. Verbindungselement (1) umfassend eine Mehrzahl von Abschnitten (2), die ent lang einer Achse (x) des Verbindungselements (1) aufeinanderfolgend angeord- net sind, wobei die Abschnitte (2) jeweils eine Vielzahl von Nanodrähten (3) auf weisen, wobei benachbarte der Abschnitte (2) innerhalb einer jeweiligen Zwi schenschicht (4) aneinandergrenzen, und wobei die Nanodrähte (3) der beiden jeweiligen an eine Zwischenschicht (4) angrenzenden Abschnitte (2) an der ent sprechenden Zwischenschicht (4) gehalten sind.
2. Verbindungselement (1) nach Anspruch 1, wobei die Zwischenschichten (4) je weils entlang der Achse (x) des Verbindungselements (1) zweigeteilt ausgebildet sind.
3. Verbindungselement (1) nach einem der vorstehenden Ansprüche, wobei das Verbindungselement (1) entlang der Achse (x) des Verbindungselements (1) eine Ausdehnung (D) zwischen 20 und 1000 mΐti hat.
4. Verbindungselement (1) nach einem der vorstehenden Ansprüche, wobei die Zwischenschichten (4) entlang der Achse (x) des Verbindungselements (1) jeweils eine Ausdehnung (d) im Bereich von 0,2 bis 40 mΐti haben.
5. Verfahren zum Herstellen eines Verbindungselements (1) umfassend eine Mehr- zahl von Abschnitten (2), die entlang einer Achse (x) des Verbindungselements (1) aufeinanderfolgend angeordnet sind, wobei die Abschnitte (2) nacheinander je weils durch folgende Schritte erzeugt werden: a) Bereitstellen einer Ausgangsschicht (8), b) Auflegen einer Folie (9) auf die Ausgangsschicht (8), wobei die Folie (9) eine Vielzahl von Poren (10) aufweist, c) Abscheiden von Material auf die Ausgangsschicht (8) und in die Poren (10), so dass die Nanodrähte in den Poren (10) aus dem Material gebildet werden. d) außer bei dem letzten Abschnitt (2) Erzeugen einer von der Ausgangsschicht (8) entlang der Achse (x) des Verbindungselements (1) beabstandeten Ab schlussschicht (12) an einer Folienoberfläche (11), wobei ab dem zweiten Abschnitt (2) in Schritt a) die Abschlussschicht (12) des je- weils vorhergehenden Abschnitts (2) als die Ausgangsschicht (8) verwendet wird.
6. Verfahren nach Anspruch 5, wobei alle Folien (9) gemeinsam entfernt werden, nachdem der letzte Abschnitt (2) erzeugt worden ist.
7. Anordnung (5), umfassend
zwei Bauteile (6, 13) mit einer jeweiligen Kontaktfläche (7), wobei die Kontakt- flächen (7) der beiden Bauteile (6, 13) entlang der Achse (x) des Verbindungs elements (1) voneinander beabstandet sind,
ein Verbindungselement (1), durch welches die Kontaktflächen (7) der beiden Bauteile (6, 13) miteinander verbunden sind, wobei das Verbindungselement (1) eine Mehrzahl von Abschnitten (2) umfasst, die entlang einer Achse (x) des Verbindungselements (1) aufeinanderfolgend angeordnet sind, wobei die Ab schnitte (2) jeweils eine Vielzahl von Nanodrähten (3) aufweisen, wobei be nachbarte der Abschnitte (2) innerhalb einer jeweiligen Zwischenschicht (4) aneinandergrenzen, und wobei die Nanodrähte (3) der beiden jeweiligen an eine Zwischenschicht (4) angrenzenden Abschnitte (2) an der entsprechenden Zwischenschicht (4) gehalten sind.
8. Anordnung (5) nach Anspruch 7, wobei das Verbindungselement (1) nach einem der Ansprüche 1 bis 4 ausgebildet ist.
9. Verfahren zum Verbinden eines ersten Bauteils (6) mit einem zweiten Bauteil (13), umfassend:
A) Bereitstellen eines Verbindungselements (1) auf einer Kontaktfläche (7) des ersten Bauteils (6), wobei das Verbindungselement (1) eine Mehrzahl von Ab schnitten (2) umfasst, die entlang einer Achse (x) des Verbindungsele ments (1) aufeinanderfolgend angeordnet sind, wobei die Abschnitte (2) nacheinander jeweils durch folgende Schritte erzeugt werden: a) Bereitstellen einer Ausgangsschicht (8), b) Auflegen einer Folie (9) auf die Ausgangsschicht (8), wobei die Folie (9) eine Vielzahl von Poren (10) aufweist, c) Abscheiden von Material auf die Ausgangsschicht (8) und in die Poren (10), so dass die Nanodrähte in den Poren (10) aus dem Material gebildet werden, d) außer bei dem letzten Abschnitt (2) Erzeugen einer von der Ausgangs schicht (8) entlang der Achse (x) des Verbindungselements (1) beabstan- deten Abschlussschicht (12) an einer Folienoberfläche (11), wobei ab dem zweiten Abschnitt (2) in Schritt a) die Abschlussschicht (12) des jeweils vorhergehenden Abschnitts (2) als die Ausgangsschicht (8) verwendet wird, und
B) Zusammenführen einer Kontaktfläche (7) des zweiten Bauteils (13) mit dem in Schritt A) bereitgestellten Verbindungselement (1), so dass die Nanodrähte (3) des zuletzt erzeugten Abschnitts (2) des Verbindungselements (1) mit der Kontaktfläche (7) des zweiten Bauteils (13), mit Nanodrähten auf der Kontakt fläche (7) des zweiten Bauteils (13) und/oder mit einem weiteren Verbin dungselement auf der Kontaktfläche des zweiten Bauteils (13) in Kontakt ge langen.
10. Verfahren nach Anspruch 9, wobei das Verbindungselement (1) in Schritt A) mit einem Verfahren nach einem der Ansprüche 5 oder 6 erzeugt wird.
PCT/EP2021/067495 2020-07-13 2021-06-25 Verbindungselement, verfahren zum herstellen eines verbindungselements, anordnung umfassend ein verbindungselement und zwei damit verbundene bauteile sowie verfahren zum verbinden zweier bauteile mit einem verbindungselement WO2022012903A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020118446.8 2020-07-13
DE102020118446.8A DE102020118446A1 (de) 2020-07-13 2020-07-13 Verbindungselement

Publications (1)

Publication Number Publication Date
WO2022012903A1 true WO2022012903A1 (de) 2022-01-20

Family

ID=76765142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/067495 WO2022012903A1 (de) 2020-07-13 2021-06-25 Verbindungselement, verfahren zum herstellen eines verbindungselements, anordnung umfassend ein verbindungselement und zwei damit verbundene bauteile sowie verfahren zum verbinden zweier bauteile mit einem verbindungselement

Country Status (3)

Country Link
DE (1) DE102020118446A1 (de)
TW (1) TW202209597A (de)
WO (1) WO2022012903A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023202931A1 (en) 2022-04-21 2023-10-26 Biotronik Se & Co. Kg Energy-reduced and automatable joining by means of nanowiring for contacting electrical and mechanical components of active and monitoring implants

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022119479A1 (de) 2022-08-03 2024-02-08 Audi Aktiengesellschaft Bauteilanordnung für eine Hochvoltbatterie und Verfahren zum Herstellen einer Bauteilanordnung

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100295023A1 (en) * 2009-04-06 2010-11-25 Purdue Research Foundation Field effect transistor fabrication from carbon nanotubes
US20100328896A1 (en) * 2009-06-30 2010-12-30 General Electric Company Article including thermal interface element and method of preparation
EP2945189A1 (de) * 2013-01-09 2015-11-18 Hitachi, Ltd. Halbleiterbauelement und verfahren zur herstellung davon
EP3012344A1 (de) * 2014-10-21 2016-04-27 Kyoto University Verfahren und vorrichtung zur herstellung von nanostrukturen und substratstruktur mit nanostrukturen
DE102017104921A1 (de) * 2017-03-08 2018-09-13 Olav Birlem Verbindung von thermischen Leitern
WO2018162681A1 (de) * 2017-03-08 2018-09-13 Technische Universität Darmstadt Anordnung und verfahren zum bereitstellen einer vielzahl von nanodrähten
WO2019096770A1 (de) * 2017-11-14 2019-05-23 Nanowired Gmbh C/O Technische Universität Darmstadt Verfahren und verbindungselement zum verbinden von zwei bauteilen sowie anordnung von zwei verbundenen bauteilen
DE102018122007A1 (de) * 2018-09-10 2020-03-12 Nanowired Gmbh Anordnung miteinander verbundener Bauelemente sowie Verfahren zur Verbindung von Bauelementen

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI255466B (en) 2004-10-08 2006-05-21 Ind Tech Res Inst Polymer-matrix conductive film and method for fabricating the same
WO2006098026A1 (ja) 2005-03-17 2006-09-21 Fujitsu Limited 接続機構、半導体パッケージ、およびその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100295023A1 (en) * 2009-04-06 2010-11-25 Purdue Research Foundation Field effect transistor fabrication from carbon nanotubes
US20100328896A1 (en) * 2009-06-30 2010-12-30 General Electric Company Article including thermal interface element and method of preparation
EP2945189A1 (de) * 2013-01-09 2015-11-18 Hitachi, Ltd. Halbleiterbauelement und verfahren zur herstellung davon
EP3012344A1 (de) * 2014-10-21 2016-04-27 Kyoto University Verfahren und vorrichtung zur herstellung von nanostrukturen und substratstruktur mit nanostrukturen
DE102017104921A1 (de) * 2017-03-08 2018-09-13 Olav Birlem Verbindung von thermischen Leitern
WO2018162681A1 (de) * 2017-03-08 2018-09-13 Technische Universität Darmstadt Anordnung und verfahren zum bereitstellen einer vielzahl von nanodrähten
WO2019096770A1 (de) * 2017-11-14 2019-05-23 Nanowired Gmbh C/O Technische Universität Darmstadt Verfahren und verbindungselement zum verbinden von zwei bauteilen sowie anordnung von zwei verbundenen bauteilen
DE102018122007A1 (de) * 2018-09-10 2020-03-12 Nanowired Gmbh Anordnung miteinander verbundener Bauelemente sowie Verfahren zur Verbindung von Bauelementen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023202931A1 (en) 2022-04-21 2023-10-26 Biotronik Se & Co. Kg Energy-reduced and automatable joining by means of nanowiring for contacting electrical and mechanical components of active and monitoring implants

Also Published As

Publication number Publication date
DE102020118446A1 (de) 2022-01-13
TW202209597A (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
DE3204231C2 (de) Laminat mit einem Metall-Faser-Verbundmaterial und dessen Verwendung
DE69233232T2 (de) Elektrischer Verbindungskörper und Herstellungsverfahren dafür
DE102014213083B4 (de) Bondstruktur mit Metallnanopartikeln und Bondverfahren unter Verwendung von Metallnanopartikeln
WO2022012903A1 (de) Verbindungselement, verfahren zum herstellen eines verbindungselements, anordnung umfassend ein verbindungselement und zwei damit verbundene bauteile sowie verfahren zum verbinden zweier bauteile mit einem verbindungselement
DE102005041058A1 (de) Verfahren zur Herstellung einer mehrschichtigen Karte
DE102006025711A1 (de) Mehrschichtsubstrat mit leitfähiger Struktur und Harzfilm und Verfahren zur Herstellung desselben
DE102018122007A1 (de) Anordnung miteinander verbundener Bauelemente sowie Verfahren zur Verbindung von Bauelementen
DE102005020453B4 (de) Halbleiterbauteil mit einer Flachleiterstruktur und Verfahren zur Herstellung einer Flachleiterstruktur und Verfahren zur Herstellung eines Halbleiterbauteils
EP3036761A2 (de) Verfahren zum diffusionslöten unter ausbildung einer diffusionszone als lötverbindung und elektronische baugruppe mit einer solchen lötverbindung
DE102013100339A1 (de) Elektronisches Bauelement und ein Verfahren zur Herstellung eines elektronischen Bauelements
DE102014222818B4 (de) Elektronik-Sandwichstruktur mit zwei mittels einer Sinterschicht zusammengesinterten Fügepartnern
DE112018005786T5 (de) Plattiertes Material und Verfahren zu dessen Herstellung
DE102015114579B4 (de) Halbleiterchip
DE102017104923A1 (de) Verbindung für einen Halbleiterchip
DE4338706A1 (de) Mehrschicht-Substrat
WO2019243322A1 (de) Diodenlaseranordnung und verfahren zum herstellen einer diodenlaseranordnung
DE10015964C2 (de) Lotband für flexible und temperaturfeste Lotverbindungen
DE102004035368A1 (de) Substrat mit Leiterbahnen und Herstellung der Leiterbahnen auf Substraten für Halbleiterbauteile
WO2018162438A2 (de) Verfahren zum herstellen von thermoelektrischen bausteinen
DE102018207127A1 (de) Verfahren zum Ankontaktieren einer metallischen Kontaktfläche in einer Leiterplatte und Leiterplatte
EP4315415A1 (de) Verbindung zweier bauteile mit einem verbindungselement
DE102009043412B4 (de) Verbindungs-Element mit dreidimensionaler Mikro-Struktur, Anordnung mit mindestens zwei der Verbindungs-Elemente und Verwendung des Verbindungs-Elements
DE102006016276B3 (de) Verfahren zum Aufbringen von Lotpartikeln auf Kontaktflächen sowie hierfür geeignete Lotpartikel und Bauteile mit Kontaktflächen
DE102017102035A1 (de) Halbleitervorrichtung, Verfahren zum Fertigen einer Halbleitervorrichtung und Verfahren zum Verstärken eines Die in einer Halbleitervorrichtung
DE102006016275A1 (de) Verfahren zum Platzieren von elektrisch kontaktierbaren Bauelementen auf einem Schaltungsträger sowie zur Durchführung dieses Verfahrens geeignetes Montagesystem

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21737395

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21737395

Country of ref document: EP

Kind code of ref document: A1