WO2022012411A1 - 信号传输方法、装置、节点和存储介质 - Google Patents

信号传输方法、装置、节点和存储介质 Download PDF

Info

Publication number
WO2022012411A1
WO2022012411A1 PCT/CN2021/105265 CN2021105265W WO2022012411A1 WO 2022012411 A1 WO2022012411 A1 WO 2022012411A1 CN 2021105265 W CN2021105265 W CN 2021105265W WO 2022012411 A1 WO2022012411 A1 WO 2022012411A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
communication node
synchronization signal
response message
access response
Prior art date
Application number
PCT/CN2021/105265
Other languages
English (en)
French (fr)
Inventor
夏树强
谢峰
陈艺戬
戴博
郁光辉
胡留军
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to KR1020237005042A priority Critical patent/KR20230041734A/ko
Priority to US18/016,642 priority patent/US20230300892A1/en
Priority to EP21842875.3A priority patent/EP4184842A1/en
Priority to CA3186102A priority patent/CA3186102A1/en
Publication of WO2022012411A1 publication Critical patent/WO2022012411A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • H04B7/06968Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping using quasi-colocation [QCL] between signals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of wireless communication technologies, for example, to a signal transmission method, apparatus, node, and storage medium.
  • the cell splitting technology in the cellular network is considered to be an effective way to improve the capacity of the wireless system.
  • the cellular network is becoming more and more heterogeneous and dense, which will cause serious inter-cell interference and frequent switching of user equipment (UE) during the movement process, which reduces system capacity and user experience.
  • UE user equipment
  • the system capacity when the traditional cellular cells are densely networked is limited. With the reduction of the cell radius, the system capacity has an inflection point.
  • the solution to the above problem is to distribute multiple Access Points (APs) with one or more antennas in a large area in a cell-free system, and transmit data through the fronthaul link. It is transmitted to the Central Processing Unit (CPU), and the same time-frequency resources are used to provide services for multiple UEs.
  • the UE in the connected state has a cell centered on itself, and the cell also moves during the movement of the UE, which can minimize the impact of problems such as inter-cell interference and frequent handovers on the UE. .
  • RRC Radio Resource Control
  • the disadvantage of the above solutions is that the cellular system and the cell-free system are designed based on two different design concepts.
  • the former is centered on the base station, and the latter is centered on the UE.
  • a UE accesses a cell-free system, it still faces serious inter-cell interference and needs to perform frequent cell selection/cell reselection.
  • the present application proposes a signal transmission method, device, node and storage medium, which aims to enable an access node to choose to access a wireless system in a more scientific manner, so as to avoid cell interference and frequent cell selection as much as possible.
  • the embodiment of the present application provides a signal transmission method, and the method includes:
  • the first communication node determines multiple access points in the coverage area; the first communication node controls the multiple access points to send multiple synchronization signals and multiple master information blocks (Master Information Block, MIB); wherein, multiple synchronization signals
  • MIB Master Information Block
  • the signals form one or more synchronizing signal groups.
  • the embodiment of the present application also provides a signal transmission method, the method includes:
  • the second communication node receives multiple synchronization signals and multiple MIBs; wherein the multiple synchronization signals constitute one or more synchronization signal groups; the second communication node detects the multiple synchronization signals and the multiple MIBs; The detection result determines the access synchronization signal group, and acquires the MIB associated with the access synchronization signal group index.
  • the embodiment of the present application also provides a signal transmission method, the method includes:
  • the first communication node sends system information, where the system information includes configuration information of at least one physical random access channel (Physical Random Access Channel, PRACH), one PRACH is associated with one or more synchronization signal groups, and the synchronization signal group includes multiple synchronization signals ; the first communication node receives the random access preamble sent by the second communication node according to the system information; the first communication node sends a response message within a preset time window for the random access preamble.
  • PRACH Physical Random Access Channel
  • the embodiment of the present application also provides a signal transmission method, the method includes:
  • the second communication node receives system information, where the system information includes configuration information of at least one PRACH, and one PRACH is associated with one or more synchronization signal groups; the second communication node determines a target in at least one PRACH according to the signal parameters of the synchronization signals in the synchronization signal group PRACH; the second communication node sends a random access preamble on the target PRACH.
  • the embodiment of the present application also provides a signal transmission method, the method includes:
  • the first communication node After receiving the random access preamble sent by the second communication node on the preconfigured PRACH, the first communication node sends a first random access response message within a preset time window; the first communication node sends the first random access response message according to the first communication node a second random access response message; wherein the first random access response message carries a third Quasi co-location (QCL) relationship of the second random access response message.
  • QCL Quasi co-location
  • the embodiment of the present application also provides a signal transmission method, the method includes:
  • the second communication node sends the random access preamble on the preconfigured PRACH; the second communication node receives the first random access response message sent by the first communication node for the random access preamble within the preset time window;
  • the access response message carries the third QCL relationship of the second random access response message; the second communication node receives the second random access response message according to the first random access response message.
  • the embodiment of the present application also provides a signal transmission method, the method includes:
  • the first communication node determines the working state of the second communication node; when the working state is the connected state, the first communication node configures service node topology information for the second communication node.
  • the embodiment of the present application also provides a signal transmission method, the method includes:
  • the second communication node obtains the service node topology information configured by the first communication node; when the second communication node determines that it is working in the disconnected state, the second communication node determines the service node topology information according to the service node topology information and the current location of the second communication node.
  • Embodiments of the present application also provide a signal transmission device, the device comprising:
  • a determination module for determining multiple access points in the coverage area; a control module for controlling multiple access points to send multiple synchronization signals and multiple MIBs; wherein the multiple synchronization signals constitute one or more synchronization signals Group.
  • Embodiments of the present application also provide a signal transmission device, the device comprising:
  • a receiving module for receiving multiple synchronization signals and multiple MIBs; wherein, multiple synchronization signals form one or more synchronization signal groups; a detection module for detecting multiple synchronization signals and multiple MIBs; a determination module, It is used to determine the synchronization signal group to be accessed according to the detection result; the acquiring module is used to acquire the MIB associated with the index of the synchronization signal group to be accessed.
  • Embodiments of the present application also provide a signal transmission device, the device comprising:
  • a sending module for sending system information, where the system information includes configuration information of at least one PRACH, one PRACH is associated with one or more synchronization signal groups, and the synchronization signal group includes multiple synchronization signals;
  • a receiving module is used for receiving the second communication node The random access preamble sent according to the system information; the sending module is further configured to send a response message within a preset time window for the random access preamble.
  • Embodiments of the present application also provide a signal transmission device, the device comprising:
  • a receiving module configured to receive system information, where the system information includes configuration information of at least one PRACH, and one PRACH is associated with one or more synchronization signal groups; a determining module is configured to identify the at least one PRACH in the at least one PRACH according to the signal parameters of the synchronization signals in the synchronization signal group Determine the target PRACH; the sending module is used for sending the random access preamble on the target PRACH.
  • Embodiments of the present application also provide a signal transmission device, the device comprising:
  • a receiving module configured to send a first random access response message within a preset time window after receiving the random access preamble sent by the second communication node on the preconfigured PRACH; the sending module is configured to send a first random access response message according to the first random access response The message sends a second random access response message; wherein, the first random access response message carries the third QCL relationship of the second random access response message.
  • Embodiments of the present application also provide a signal transmission device, the device comprising:
  • a sending module configured to send a random access preamble on a preconfigured PRACH
  • a receiving module configured to receive, within a preset time window, a first random access response message sent by the first communication node for the random access preamble; wherein the first random access response message is A random access response message carries the third QCL relationship of the second random access response message; the receiving module is further configured to receive the second random access response message according to the first random access response message.
  • Embodiments of the present application also provide a signal transmission device, the device comprising:
  • the determining module is used to determine the working state of the second communication node; the configuration module is used to configure the service node topology information for the second communication node when the working state is the connected state.
  • Embodiments of the present application also provide a signal transmission device, the device comprising:
  • the obtaining module is used to obtain the service node topology information configured by the first communication node; the determining module is used to determine that the device is in the service node network according to the service node topology information and the current location of the device when the device works in a disconnected state The relative position; the determining module is also used to determine the detection method of the synchronization signal according to the relative position.
  • An embodiment of the present application also provides a communication node, the node includes: a memory, a processor, a program stored in the memory and running on the processor, and a data bus for realizing connection and communication between the processor and the memory , when the program is executed by the processor, the aforementioned signal transmission method executed by the first communication node is implemented.
  • An embodiment of the present application also provides a communication node, the node includes: a memory, a processor, a program stored in the memory and running on the processor, and a data bus for realizing connection and communication between the processor and the memory , when the program is executed by the processor, the signal transmission method performed by the second communication node is implemented.
  • the embodiments of the present application further provide a readable and writable storage medium for computer storage, the storage medium stores one or more programs, and the one or more programs can be executed by one or more processors, so as to realize the foregoing first The signal transmission method performed by the communication node.
  • Embodiments of the present application further provide a readable and writable storage medium for computer storage, where the storage medium stores one or more programs, and the one or more programs can be executed by one or more processors to implement the aforementioned second The signal transmission method performed by the communication node.
  • Embodiments of the present application provide a signal transmission method, device, node, and storage medium.
  • the method includes a first communication node determining multiple access points in a coverage area, and controlling the multiple access points to send multiple synchronization signals and A plurality of MIBs, wherein a plurality of synchronization signals constitute one or more synchronization signal groups.
  • the first communication node controls the transmission of one or more synchronization signal groups, so that the receiving end can use the strength of the synchronization signals in the synchronization signal group as a reference for accessing the wireless system, making the access selection more scientific and avoiding cell interference as much as possible , frequent selection of cells, etc.
  • FIG. 1 is a flowchart of a signal transmission method provided by an embodiment of the present application
  • FIG. 2 is a flowchart of a signal transmission method provided by an embodiment of the present application.
  • FIG. 3 is a flowchart of a signal transmission method provided by an embodiment of the present application.
  • FIG. 5 is a flowchart of a signal transmission method provided by an embodiment of the present application.
  • FIG. 6 is a flowchart of a signal transmission method provided by an embodiment of the present application.
  • FIG. 7 is a flowchart of a signal transmission method provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a signal transmission apparatus provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a signal transmission apparatus provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a signal transmission apparatus provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a signal transmission apparatus provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a signal transmission apparatus provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a signal transmission apparatus provided by an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a signal transmission apparatus provided by an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of a signal transmission apparatus provided by an embodiment of the present application.
  • 17 is a schematic structural diagram of a communication node provided by an embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of a communication node provided by an embodiment of the present application.
  • words such as “optionally” or “exemplarily” are used to represent examples, illustrations, or illustrations. Any embodiment or design described in the embodiments of the present application as “optionally” or “exemplarily” should not be construed as preferred or advantageous over other embodiments or designs. Rather, the use of words such as “optionally” or “exemplarily” is intended to present the related concepts in a specific manner.
  • FIG. 1 is a flowchart of a signal transmission method provided by an embodiment of the present application. The method may be applied to a first communication node. As shown in FIG. 1 , the method may include the following steps:
  • the first communication node determines multiple access points in a coverage area.
  • the first communication node in this embodiment of the present application may be a device having a processor in a wireless communication system (for example, a cell-free system). Since the first communication node has a certain coverage area, the first communication node Multiple access points can be identified within its coverage area.
  • a wireless communication system for example, a cell-free system
  • the first communication node controls multiple access points to send multiple synchronization signals and multiple MIBs.
  • step S101 after the first communication node determines multiple access points within its coverage area, the processor (Central Processing Unit, CPU) of the first communication node can control the multiple access points to send multiple synchronization signals and multiple access points. MIBs.
  • CPU Central Processing Unit
  • the transmitted synchronization signals constitute one or more synchronization signal groups, each synchronization signal corresponds to a synchronization signal index, a synchronization signal index corresponds to a synchronization signal group index and an MIB associated with the synchronization signal group index.
  • An embodiment of the present application provides a signal transmission method, the method includes a first communication node determining multiple access points in a coverage area, and controlling the multiple access points to send multiple synchronization signals and multiple MIBs, wherein multiple The synchronization signals constitute one or more synchronization signal groups.
  • the first communication node controls the transmission of one or more synchronization signal groups, so that the receiving end can use the strength of the synchronization signals in the synchronization signal group as a reference for accessing the wireless system, making the access selection more scientific and avoiding cell interference as much as possible , frequent selection of cells, etc.
  • the two synchronization signals correspond to different scrambling codes for scrambling the associated MIB.
  • the MIB The information carried is generally not the same.
  • the MIBs used for scrambling the associated MIB corresponding to the at least two synchronization signal group indexes respectively scrambling codes are the same.
  • the information carried by the MIBs respectively associated with the synchronization signal group indices corresponding to the at least two synchronization signals is the same.
  • the manner of obtaining the above-mentioned synchronization signal group index g may adopt any one of the following two manners:
  • L in formula (1) and formula (2) is a preset positive integer greater than 1.
  • the at least two synchronization signals satisfy the first QCL relationship.
  • the first QCL relationship is that at least one of Doppler shift, Doppler spread, average delay, delay spread, and spatial reception parameters of the transmission channels of at least two synchronization signals is the same.
  • the above synchronization signal may consist of two synchronization signals, eg, a first synchronization signal and a second synchronization signal.
  • the number of first synchronization signals is M
  • the number of second synchronization signals is N
  • both M and N are positive integers greater than 1
  • the above-mentioned multiple synchronization signals can be composed of M first synchronization signals and N a second synchronization signal.
  • the synchronization signal consists of the first synchronization signal with index i and the second synchronization signal with index j
  • the index s of the synchronization signal can be:
  • the number of available synchronization signals is at most M*N.
  • the value of the foregoing L may be a multiple of M or N.
  • FIG. 2 is a flowchart of a signal transmission method provided by an embodiment of the present application. The method can be applied to a second communication node. As shown in FIG. 2 , the method includes:
  • the second communication node receives multiple synchronization signals and multiple MIBs.
  • the second communication node may be a user equipment in a wireless communication system (for example, a cell-free system), and multiple synchronization signals received by the second communication node may constitute one or more synchronization signal groups, that is, the first synchronization signal group.
  • Two communication nodes may receive one or more sets of synchronization signals.
  • each synchronization signal in the plurality of synchronization signals received by the second communication node may correspond to a synchronization signal index, and a synchronization signal index corresponds to a synchronization signal group index and a MIB associated with the synchronization signal group index.
  • the second communication node detects multiple synchronization signals and multiple MIBs.
  • the second communication node determines the synchronization signal group to be accessed according to the detection result, and acquires the MIB associated with the synchronization signal group index of the synchronization signal group to be accessed.
  • the second communication node may first detect the received synchronization signal, and in the case that the synchronization signal group index corresponding to at least two synchronization signals in the plurality of synchronization signals is the same, the second communication node The communication node defaults that the above at least two synchronization signals satisfy the first quasi-co-site QCL relationship.
  • the first QCL relationship may be that at least one of Doppler shift, Doppler spread, average delay, delay spread, and spatial reception parameters of the transmission channels of the at least two synchronization signals is the same.
  • the second communication node selects the best synchronization signal group as the synchronization signal group to be finally accessed according to the detection result, and acquires the MIB associated with the synchronization signal group index of the synchronization signal group. After the second communication node obtains the MIB, it can obtain the resources of the wireless system according to the indication of the MIB, and initiate random access.
  • the basis for determining the best synchronization signal group by the second communication node may be the reference signal received power (Reference Signal Receiving Power, RSRP) or the reference signal received quality (Reference Signal Received) after the synchronization signals in the synchronization signal group are combined.
  • RSRP Reference Signal Receiving Power
  • RSRQ Reference Signal Received
  • An embodiment of the present application provides a signal transmission method.
  • a second communication node receives multiple synchronization signals and multiple MIBs, wherein the multiple synchronization signals form one or more synchronization signal groups, and the second communication node transmits multiple synchronization signals to the multiple synchronization signals.
  • Perform detection with multiple MIBs and the second communication node determines the synchronization signal group to be accessed according to the detection result, and acquires the MIB associated with the synchronization signal group index of the synchronization signal group to be accessed.
  • the second communication node may use the related parameters of the plurality of synchronization signals of the synchronization signal group as a reference for accessing the wireless system.
  • each synchronization signal corresponds to a physical cell, and each cell has its own MIB.
  • the selection method of the second communication node is more scientific.
  • the MIBs of each cell are independent. Even if the information contained in each MIB is the same, the second communication node cannot combine them. Except the MIB of the target cell, other MIBs exist as interference.
  • the second communication node can combine and receive the MIBs in a synchronization signal group, thereby further improving the receiving performance of the MIBs.
  • the scrambling codes used for scrambling the associated MIB corresponding to the at least two synchronization signal group indexes are the same.
  • the information carried by the MIBs respectively associated with the synchronization signal group indices corresponding to the at least two synchronization signals is also the same.
  • FIG. 3 is a flowchart of a signal transmission method provided by an embodiment of the present application. The method can be applied to a first communication node. As shown in FIG. 3 , the method includes:
  • the first communication node sends system information.
  • the first communication node may be a device having a processor in a wireless communication system (for example, a cell-free system), and the system information sent by the first communication node may include configuration information of at least one PRACH.
  • the configuration information may include a PRACH preamble format, a PRACH time-frequency location, a PRACH-related synchronization signal set, and the like.
  • one PRACH may be associated with one or more synchronization signal groups, and the synchronization signal group may include multiple synchronization signals.
  • the sets of synchronization signal groups associated with each set of PRACH may be different. For example, assuming that two sets of PRACH resources are configured in the system information, the first set of PRACH resources may be associated with synchronization signal group 1, and the second set of PRACH resources may be associated with synchronization signal group 1 and synchronization signal group 2.
  • the first communication node receives the random access preamble sent by the second communication node according to the system information.
  • the random access preamble in this step may be sent by the second communication node on the PRACH resource preconfigured by the first communication node.
  • the first communication node sends a response message within a preset time window for the random access preamble.
  • the first communication node may send a response message for the preamble within a preset time window.
  • An embodiment of the present application provides a signal transmission method.
  • a first communication node sends system information, where the system information includes configuration information of at least one PRACH, one PRACH is associated with one or more synchronization signal groups, and the synchronization signal group includes multiple synchronization signal groups.
  • the first communication node receives the random access preamble sent by the second communication node according to the system information, and sends a response message within a preset time window for the random access preamble. Since one PRACH is associated with one or more synchronization signal groups, compared with the traditional method in which only one synchronization signal or cell is associated with one PRACH, the first communication node can send the response message according to the random access preamble sent by the second communication node. Refer to multiple synchronization signals associated with PRACH for better performance.
  • the physical downlink control channel (Physical Downlink Control Channel, PDCCH) indicating the response message and the synchronization signal in the synchronization signal group associated with the demodulation reference signal corresponding to the PDCCH and the PRACH satisfy the second quasi-co-site QCL relation.
  • the second QCL relationship may be Doppler shift, Doppler spread, average delay, and delay of the transmission channel of the synchronization signal in the synchronization signal group associated with the transmission channel for transmitting the PDCCH and the demodulation reference signal and the PRACH
  • At least one of the extended and spatial reception parameters has an associated relationship.
  • the above-mentioned association relationship may include the following possible situations:
  • the first case one or more of the Doppler shift, Doppler spread, average delay, delay spread, and spatial reception parameters of the wireless channel experienced by the transmission of the PDCCH and its corresponding demodulation reference signal are equal to The sum of the above parameters of the channel experienced by the aforementioned synchronization signal.
  • the second case one or more of the Doppler shift, Doppler spread, average delay, delay spread, and spatial reception parameters of the wireless channel experienced by the PDCCH and its corresponding demodulation reference signal are equal to A weighted combination of the above parameters of the channel experienced by the aforementioned synchronization signal.
  • FIG. 4 is a flowchart of a signal transmission method provided by an embodiment of the present application. The method can be applied to a second communication node. As shown in FIG. 4 , the method includes:
  • the second communication node receives system information.
  • the second communication node may be a user equipment in a wireless communication system (for example, a cell-free system), and the system information it receives may include configuration information of at least one PRACH, where one PRACH is associated with one or more synchronization signal groups,
  • the synchronization signal group may include a plurality of synchronization signals.
  • the second communication node determines a target PRACH in at least one PRACH according to the signal parameters of the synchronization signals in the synchronization signal group.
  • the second communication node After receiving the system information, the second communication node can obtain the PRACH configuration information according to the system information. If multiple sets of PRACH resources are configured in the system information, and the synchronization signal sets associated with each set of PRACH resources are different, the second communication node can One set of PRACH resources is selected as the target PRACH according to the received synchronization signal detection situation, service quality of service (Quality of Service, QoS) requirements, and the like.
  • QoS Quality of Service
  • the PRACH resource is the target PRACH.
  • the second communication node sends a random access preamble on the target PRACH.
  • the above-mentioned second communication node may send a preset random access preamble on the target PRACH.
  • An embodiment of the present application provides a signal transmission method.
  • a second communication node receives system information, where the system information includes configuration information of at least one PRACH, and one PRACH is associated with one or more synchronization signal groups; the second communication node according to the synchronization signal group The signal parameters of the mid-synchronization signal determine the target PRACH in at least one PRACH, and send a random access preamble on the target PRACH.
  • the second communication node can select an appropriate PRACH resource based on the actual situation of the service, so as to better meet the user-centered requirement in the cellular network.
  • the manner in which the second communication node determines the target PRACH in the above step S402 may include:
  • the second communication node selects the PRACH resource according to the received synchronization signal quality (eg, RSRP, RSRQ, etc.).
  • the received synchronization signal quality eg, RSRP, RSRQ, etc.
  • the second communication node can select the first set of PRACH resources, otherwise, the second communication node selects the second set of PRACH resources.
  • the second communication node selects the PRACH resource according to the QoS requirement of the service. For example, the higher the transmission rate required by the service of the second communication node, the greater the number of synchronization signals or synchronization signal groups associated with the PRACH resource selected by the second communication node.
  • the second communication node when the second communication node sends the preset random access preamble on the selected target PRACH resource, its initial transmit power may be based on multiple synchronization signals associated with the selected PRACH resource
  • the received power is determined.
  • the initial transmit power can be determined in the following possible ways:
  • Mode 1 The system information indicates the transmission power of multiple synchronization signals associated with the PRACH resource, and the second communication node can estimate the path loss of each synchronization signal from the transmitter to itself according to the power of the received synchronization signals, and then according to the power of the received synchronization signals.
  • the maximum or minimum path loss determines the initial transmit power of the random access preamble.
  • the system information indicates the transmission power of multiple synchronization signals associated with the PRACH resource.
  • the second communication node can estimate the path loss of each synchronization signal from the transmitter to itself according to the power of the received synchronization signals, and calculates the path loss according to the received synchronization signal power. The average value of multiple path losses determines the initial transmit power of the random access preamble.
  • Mode 3 The system information indicates the transmission power of multiple synchronization signals associated with the PRACH resource, and the second communication node can estimate the path loss of each synchronization signal from the transmitter to itself according to the power of the received synchronization signals, and determine the path loss of each synchronization signal.
  • the path loss of the synchronization signal whose received power is greater than a certain threshold is counted, and the second communication node determines the initial transmit power of the random access preamble according to the average value of the counted path losses.
  • the second communication node may further receive, within a preset time window, a response message sent by the first communication node for the random access preamble.
  • the second communication node may indicate by default that the PDCCH of the response message and the demodulation reference signal corresponding to the PDCCH and the synchronization signal in the synchronization signal group associated with the PRACH satisfy the second quasi-co-site QCL relationship.
  • the second QCL relationship may be Doppler shift, Doppler spread, average delay, and delay of the transmission channel of the synchronization signal in the synchronization signal group associated with the transmission channel for transmitting the PDCCH and the demodulation reference signal and the PRACH At least one of the extended and spatial reception parameters has an associated relationship.
  • the second communication node After determining that the PDCCH of the response information and the corresponding demodulation reference signal and the synchronization signal associated with the PRACH resource satisfy the second QCL relationship, the second communication node can use the relationship and the received demodulation reference signal to perform channel estimation, and then perform channel estimation on the PDCCH. and its indication information.
  • FIG. 5 is a flowchart of a signal transmission method provided by an embodiment of the present application. The method can be applied to a first communication node. As shown in FIG. 5 , the method includes:
  • the first communication node After receiving the random access preamble sent by the second communication node on the preconfigured PRACH, the first communication node sends a first random access response message within a preset time window.
  • the first communication node may be a device with a processor in a wireless communication system (for example, a cell-free system), and the first random access response message sent by the first communication node may carry one of the following information:
  • the first communication node sends a second random access response message according to the first random access response message.
  • the first random access response message carries the third quasi-co-site QCL relationship of the second random access response message.
  • the third QCL relationship of the second random access response message may include: a third QCL relationship between the second random access response message and the demodulation reference signal corresponding to the second random access response message, and/or, The third QCL relationship between the PDCCH corresponding to the second random access response message and the demodulation reference signal corresponding to the PDCCH.
  • the second random access response information carries at least timing advance (timing advance) information, and may also carry uplink grant information.
  • the first communication node after receiving the random access preamble sent by the second communication node on the preconfigured PRACH, the first communication node sends a first random access response message within a preset time window, and sends a first random access response message according to the first random access preamble.
  • the incoming response message sends a second random access response message; wherein, the first random access response message carries the third quasi-co-site QCL relationship of the second random access response message.
  • the first communication node is not limited by the restriction that only the second communication node can select a cell to send a random access response, thereby greatly improving the performance of the second communication node to randomly access the wireless network. Simple, low signaling overhead and other advantages.
  • the above-mentioned third QCL relationship may be the transmission of the second random access response message and the transmission channel of the demodulation reference signal corresponding to the second random access response message and the transmission of the synchronization signal initially selected by the second communication node
  • At least one of Doppler shift, Doppler spread, average delay, delay spread, and spatial reception parameters of the channel is the same, and/or the PDCCH corresponding to the transmission of the second random access response message and the solution corresponding to the PDCCH are transmitted.
  • the transmission channel of the tuning reference signal is the same as at least one of Doppler shift, Doppler spread, average delay, delay spread, and spatial reception parameters of the transmission channel of the synchronization signal initially selected by the second communication node.
  • the PDCCH may indicate information such as a time offset position, coding and modulation format of a physical downlink shared channel (Physical Downlink Shared Channel, PDSCH) corresponding to the second random access response information.
  • a physical downlink shared channel Physical Downlink Shared Channel, PDSCH
  • the third QCL relationship of the second random access response message may be indicated by means of explicit signaling, or it may be indicated whether the third QCL relationship of the second random access response message needs to be updated.
  • the transmission channel of the second random access response message and its corresponding demodulation reference signal and the transmission channel of the synchronization signal initially selected by the second communication node satisfy the above-mentioned third QCL relationship, and/or the transmission channel of the second random access
  • the PDCCH corresponding to the response message and the transmission channel of the demodulation reference signal corresponding to the PDCCH and the transmission channel of the synchronization signal initially selected by the second communication node satisfy the above-mentioned third QCL relationship. If the third QCL relationship indicating the second random access response message needs to be updated, one or more of the synchronization signal and the third QCL related information may be updated according to the instruction.
  • FIG. 6 is a flowchart of a signal transmission method provided by an embodiment of the present application. The method can be applied to a second communication node. As shown in FIG. 6 , the method includes:
  • the second communication node sends a random access preamble on a preconfigured PRACH.
  • the second communication node may be a user equipment in a wireless communication system (eg, a cell-free system), and the second communication node may send a preset random access preamble on the PRACH resource selected by the second communication node.
  • a wireless communication system eg, a cell-free system
  • the second communication node receives, within a preset time window, the first random access response message sent by the first communication node for the random access preamble.
  • the second communication node may detect the first random access response message within a preset time window, and the detected first random access response message carries the third QCL relationship of the second random access response message.
  • the third QCL relationship of the second random access response message may be indicated by explicit signaling, or it may be indicated whether the third QCL relationship of the second random access response message needs to be updated.
  • the second communication node receives the second random access response message according to the first random access response message.
  • the second communication node may update one or more of the synchronization signal and the third QCL related information according to the instruction.
  • the first random access response message received by the second communication node carries the third QCL relationship of the second random access response message, this can improve the random access of the second communication node to the wireless network.
  • the performance of the system provides convenience, and at the same time, it has the advantages of simple implementation and low signaling overhead.
  • the third QCL relationship of the second random access response message may include: a third QCL relationship between the second random access response message and the demodulation reference signal corresponding to the second random access response message, and /or, a third QCL relationship between the PDCCH corresponding to the second random access response message and the demodulation reference signal corresponding to the PDCCH.
  • the third QCL relationship may be the transmission channel for transmitting the second random access response message and the demodulation reference signal corresponding to the second random access response message and the transmission channel for the synchronization signal initially selected by the second communication node at least one of the Doppler offset, Doppler spread, average delay, delay spread, and spatial reception parameters of the 2nd random access response message is the same, and/or, the PDCCH corresponding to the transmission of the second random access response message and the demodulation corresponding to the PDCCH
  • the transmission channel of the reference signal is the same as at least one of Doppler shift, Doppler spread, average delay, delay spread, and spatial reception parameters of the transmission channel of the synchronization signal initially selected by the second communication node.
  • FIG. 7 is a flowchart of a signal transmission method provided by an embodiment of the present application. The method can be applied to a first communication node. As shown in FIG. 7 , the method includes:
  • the first communication node determines the working state of the second communication node.
  • the first communication node may be a device with a processor in a wireless communication system (for example, a cell-free system), the second communication node may be a user equipment in a wireless communication system (for example, a cell-free system), and the second communication node
  • the working state can be connected state, idle state and so on.
  • the first communication node configures the service node topology information for the second communication node.
  • the first communication node When the first communication node determines that the second communication node is working in a connected state, that is, there is service transmission, the first communication node configures service node topology information for the second communication node.
  • the topology information may include the geographic location of each service node in the wireless communication system, the azimuth relationship of each service node, and the like.
  • a plurality of synchronization signal indexes/cell indexes and the relative relationship of these synchronization signal indexes/cell indexes in geographic orientation may be provided in the configured topology information.
  • the direction and distance of the cell index B relative to the cell index A are indicated.
  • the absolute location information of each service node can be provided in the configured topology information.
  • the embodiment of the present application provides a signal transmission method.
  • the first communication node determines that the working state of the second communication node is the connected state
  • the first communication node configures service node topology information for the second communication node. Since a higher transmission rate can be provided in the decellularized system, the service data of the second communication node can be quickly transmitted. Therefore, configuring the service node topology information for the second communication node in the connected state can make the second communication node idle.
  • the state or the deactivated state is detected according to the topology information, thereby reducing the power consumption of the second communication node.
  • FIG. 8 is a flowchart of a signal transmission method provided by an embodiment of the present application. The method can be applied to a second communication node. As shown in FIG. 8 , the method includes:
  • the second communication node acquires the service node topology information configured by the first communication node.
  • the above-mentioned second communication node may be a user equipment in a wireless communication system (for example, a cell-free system), and the configured service node topology information may include the geographic location of each service node in the wireless communication system, and the azimuth of each service node. interrelationships, etc.
  • the second communication node determines the relative position of the second communication node in the service node network according to the service node topology information and the current location of the second communication node.
  • the second communication node can determine whether it is in the network with the service node topology information and combined with its current location in the network. The relative position of each service node.
  • the second communication node determines a detection method for the synchronization signal according to the relative position.
  • the second communication node After the second communication node obtains its own phase position, it can estimate the possibility of moving out of the network according to its own speed, and then determine a subsequent detection method for the synchronization signal.
  • the application for stopping the detection of the synchronization signal may be reduced; on the contrary, if the probability of moving out of the network is high, the received synchronization signal may be detected and prepared to initiate Random access to request update of service node topology information.
  • the second communication node may satisfy the above-mentioned reception quality judgment Random access is initiated when the condition (that is, the received quality of the synchronization signal is greater than the received quality of the synchronization signal configured in the service node topology information) is greater than a certain number. In this way, the power consumption of the second communication node can be further reduced.
  • the reception quality RSRP or RSRQ
  • the embodiment of the present application provides a signal transmission method.
  • the second communication node obtains the service node topology information configured by the first communication node.
  • the second communication node determines that it is working in a disconnected state
  • the node topology information and the current location of the second communication node determine the relative position of the second communication node in the service node network, and determine the detection method for the synchronization signal according to the relative position. In this way, the detection method for the synchronization signal is determined according to the actual situation of the user, which can effectively reduce the power consumption of the second communication node.
  • FIG. 9 is a signal transmission apparatus provided by an embodiment of the present application.
  • the apparatus may include a determination module 901 and a control module 902; wherein the determination module 901 is used to determine multiple accesses within a coverage area
  • the control module 902 is used to control multiple access points to send multiple synchronization signals and multiple MIBs; wherein, multiple synchronization signals form one or more synchronization signal groups, each synchronization signal corresponds to a synchronization signal index, and a synchronization signal
  • the sync signal index corresponds to a sync signal group index and the MIB associated with the sync signal group index.
  • the scrambling codes used for scrambling the associated MIB corresponding to the at least two synchronization signal group indices are the same.
  • the information carried by the MIBs respectively associated with the synchronization signal group indices corresponding to the at least two synchronization signals is the same.
  • the at least two synchronization signals satisfy the first quasi-co-site QCL relationship; wherein, the first QCL relationship is at least two synchronization signals At least one of Doppler shift, Doppler spread, average delay, delay spread, and spatial reception parameters of the signal transmission channel is the same.
  • the signal transmission apparatus provided in this embodiment is used to implement the signal transmission method of the embodiment shown in FIG. 1 , and its implementation principle and technical effect are similar, and details are not described herein again.
  • FIG. 10 is a signal transmission apparatus provided by an embodiment of the present application.
  • the apparatus may include a receiving module 1001, a detection module 1002, a determination module 1003, and an acquisition module 1004; wherein the receiving module 1001 is used for receiving a plurality of synchronization signals and a plurality of MIBs; wherein, the plurality of synchronization signals constitute one or more synchronization signal groups; the detection module 1002 is used to detect the plurality of synchronization signals and the plurality of MIBs; the determination module 1003 is used to detect As a result, the accessed synchronization signal group is determined; the acquiring module 1004 is configured to acquire the MIB associated with the synchronization signal group index of the accessed synchronization signal group.
  • Each synchronization signal in the plurality of synchronization signals corresponds to a synchronization signal index
  • a synchronization signal index corresponds to a synchronization signal group index and a MIB associated with the synchronization signal group index.
  • the at least two synchronization signals satisfy the first quasi-co-site QCL relationship; wherein, the first QCL relationship is the at least two synchronization signals At least one of Doppler shift, Doppler spread, average delay, delay spread, and spatial reception parameters of the transmission channel is the same.
  • the signal transmission apparatus provided in this embodiment is used to implement the signal transmission method of the embodiment shown in FIG. 2 , and its implementation principle and technical effect are similar, and details are not repeated here.
  • FIG. 11 is a signal transmission apparatus provided by an embodiment of the present application.
  • the apparatus may include a sending module 1101 and a receiving module 1102; wherein the sending module 1101 is used for sending system information, and the system information includes at least one The configuration information of PRACH, one PRACH is associated with one or more synchronization signal groups, and the synchronization signal group includes multiple synchronization signals; the receiving module 1102 is used for receiving the random access preamble sent by the second communication node according to the system information; the sending module 1101 , and is also used to send a response message within a preset time window for the random access preamble.
  • the PDCCH indicating the above response message and the PDCCH corresponding to the PDCCH and the synchronization signal in the synchronization signal group associated with the PRACH satisfy the second quasi-co-site QCL relationship.
  • the second QCL relationship is the Doppler shift, Doppler spread, average delay, delay spread, space of the transmission channel of the synchronization signal in the synchronization signal group associated with the transmission channel for transmitting the PDCCH and the demodulation reference signal and the PRACH. At least one of the received parameters has an associated relationship.
  • the signal transmission apparatus provided in this embodiment is used to implement the signal transmission method of the embodiment shown in FIG. 3 , and the implementation principle and technical effect thereof are similar, and are not repeated here.
  • FIG. 12 is a signal transmission device provided by an embodiment of the present application.
  • the device may include a receiving module 1201, a determining module 1202, and a sending module 1203; wherein the receiving module 1201 is used to receive system information, and the system The information includes configuration information of at least one PRACH, and one PRACH is associated with one or more synchronization signal groups; the determining module 1202 is used to determine the target PRACH in at least one PRACH according to the signal parameters of the synchronization signals in the synchronization signal group; the sending module 1203 is used for for sending the random access preamble on the target PRACH.
  • the receiving module 1201 is further configured to receive, within a preset time window, a response message sent by the first communication node for the random access preamble; wherein the PDCCH indicating the response message and the demodulation reference signal corresponding to the PDCCH and the PRACH
  • the synchronization signals in the associated synchronization signal group satisfy the second QCL relationship, and the second QCL relationship is the Doppler shift of the transmission channel of the synchronization signal in the synchronization signal group associated with the PRACH and the transmission channel for transmitting the PDCCH and the demodulation reference signal.
  • at least one of Doppler spread, average delay, delay spread, and spatial reception parameters has an associated relationship.
  • the signal transmission apparatus provided in this embodiment is used to implement the signal transmission method of the embodiment shown in FIG. 4 , and the implementation principle and technical effect thereof are similar, which will not be repeated here.
  • FIG. 13 is a signal transmission apparatus provided by an embodiment of the present application.
  • the apparatus may include a receiving module 1301 and a sending module 1302; wherein the receiving module 1301 is configured to receive a second signal on a preconfigured PRACH After the random access preamble sent by the communication node, send a first random access response message within a preset time window; the sending module 1302 is configured to send a second random access response message according to the first random access response message; A random access response message carries the third QCL relationship of the second random access response message.
  • the third QCL relationship of the second random access response message includes: the third QCL relationship between the second random access response message and the demodulation reference signal corresponding to the second random access response message, and/ Or, the third QCL relationship between the PDCCH corresponding to the second random access response message and the demodulation reference signal corresponding to the PDCCH.
  • the third QCL relationship is the difference between the transmission channel for transmitting the second random access response message and the demodulation reference signal corresponding to the second random access response message and the transmission channel for the synchronization signal initially selected by the second communication node.
  • At least one of Doppler shift, Doppler spread, average delay, delay spread, and spatial reception parameters is the same, and/or the PDCCH corresponding to the transmission of the second random access response message and the demodulation reference corresponding to the PDCCH
  • the transmission channel of the signal is the same as at least one of Doppler shift, Doppler spread, average delay, delay spread, and spatial reception parameters of the transmission channel of the synchronization signal initially selected by the second communication node.
  • the signal transmission apparatus provided in this embodiment is used to implement the signal transmission method of the embodiment shown in FIG. 5 , and the implementation principle and technical effect thereof are similar, and are not repeated here.
  • FIG. 14 is a signal transmission apparatus provided by an embodiment of the present application.
  • the apparatus may include a sending module 1401 and a receiving module 1402; wherein, the sending module 1401 is configured to send random access on a preconfigured PRACH
  • the receiving module 1402 is configured to receive, within a preset time window, the first random access response message sent by the first communication node for the random access preamble; wherein the first random access response message carries the second random access response The third QCL relationship of the response message; the receiving module 1402 is further configured to receive a second random access response message according to the first random access response message.
  • the third QCL relationship of the second random access response message includes: the third QCL relationship between the second random access response message and the demodulation reference signal corresponding to the second random access response message, and/ Or, the third QCL relationship between the PDCCH corresponding to the second random access response message and the demodulation reference signal corresponding to the PDCCH.
  • the third QCL relationship is the difference between the transmission channel for transmitting the second random access response message and the demodulation reference signal corresponding to the second random access response message and the transmission channel for the synchronization signal initially selected by the second communication node.
  • At least one of Doppler shift, Doppler spread, average delay, delay spread, and spatial reception parameters is the same, and/or the PDCCH corresponding to the transmission of the second random access response message and the demodulation reference corresponding to the PDCCH
  • the transmission channel of the signal is the same as at least one of Doppler shift, Doppler spread, average delay, delay spread, and spatial reception parameters of the transmission channel of the synchronization signal initially selected by the second communication node.
  • the signal transmission apparatus provided in this embodiment is used to implement the signal transmission method of the embodiment shown in FIG. 6 , and its implementation principle and technical effect are similar, and details are not repeated here.
  • FIG. 15 is a signal transmission apparatus provided by an embodiment of the present application.
  • the apparatus may include a determination module 1501 and a configuration module 1502; wherein, the determination module 1501 is used to determine the working state of the second communication node;
  • the configuration module 1502 is configured to configure the service node topology information for the second communication node when the working state is the connected state.
  • the service node topology information includes: the geographical position of each service node, and the mutual relationship of each service node in orientation.
  • the signal transmission apparatus provided in this embodiment is used to implement the signal transmission method of the embodiment shown in FIG. 7 , and the implementation principle and technical effect thereof are similar, which will not be repeated here.
  • FIG. 16 is a signal transmission apparatus provided by an embodiment of the present application.
  • the apparatus may include an acquisition module 1601 and a determination module 1602; wherein the acquisition module 1601 is used to acquire the service node configured by the first communication node topology information; the determining module 1602 is used to determine the relative position of the device in the service node network according to the service node topology information and the current location of the device when the device works in a disconnected state; the determining module 1602 is also used to determine the relative position according to the relative position Determines how the synchronization signal is detected.
  • the service node topology information includes: the geographical position of each service node, and the mutual relationship of each service node in orientation.
  • the signal transmission apparatus provided in this embodiment is used to implement the signal transmission method of the embodiment shown in FIG. 8 , and the implementation principle and technical effect thereof are similar, which will not be repeated here.
  • FIG. 17 is a schematic structural diagram of a communication node provided by an embodiment.
  • the communication node includes a processor 1701 and a memory 1702; the number of processors 1701 in the communication node may be one or more, as shown in FIG. 17
  • a processor 1701 is taken as an example in FIG. 17 ; the processor 1701 and the memory 1702 in the communication node may be connected by a bus or in other ways, and the connection by a bus is taken as an example in FIG. 17 .
  • the memory 1702 can be used to store software programs, computer-executable programs and modules, such as program instructions/modules corresponding to the signal transmission methods in the embodiments of FIGS. 1 , 3 , 5 and 7 of the present application.
  • the processor 1701 implements the above-mentioned signal transmission method by running the software programs, instructions and modules stored in the memory 1702 .
  • the memory 1702 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application program required for at least one function; the storage data area may store data created according to the use of the set-top box, and the like. Additionally, memory 1702 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • FIG. 18 is a schematic structural diagram of a communication node provided by an embodiment.
  • the communication node includes a processor 1801 and a memory 1802; the number of processors 1801 in the communication node may be one or more, as shown in FIG. 18
  • a processor 1801 is taken as an example in FIG. 18 ; the processor 1801 and the memory 1802 in the communication node may be connected by a bus or in other ways, and the connection by a bus is taken as an example in FIG. 18 .
  • the memory 1802 can be used to store software programs, computer-executable programs, and modules, such as program instructions/modules corresponding to the signal transmission methods in the embodiments of FIGS. 2 , 4 , 6 , and 8 of the present application.
  • the processor 1801 implements the above-mentioned signal transmission method by running the software programs, instructions and modules stored in the memory 1802 .
  • the memory 1802 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application program required for at least one function; the storage data area may store data created according to the use of the set-top box, and the like. Additionally, memory 1802 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • the embodiments of the present application also provide a readable and writable storage medium for computer storage, where the storage medium stores one or more programs, and the one or more programs can be executed by one or more processors to execute FIG. 1 , 3, 5, and 7, the signal transmission methods in the embodiments.
  • the embodiments of the present application further provide a readable and writable storage medium for computer storage, where the storage medium stores one or more programs, and the one or more programs can be executed by one or more processors to execute FIG. 2 , the signal transmission method in the embodiments 4, 6, and 8.
  • the functional modules/units in the communication node may be implemented as software, firmware, hardware and suitable combinations thereof.
  • the division between functional modules/units mentioned in the above description does not necessarily correspond to the division of physical components; for example, one physical component may have multiple functions, or one function or step may be composed of multiple Physical components execute cooperatively.
  • Some or all of the physical components may be implemented as software executed by a processor, such as a central processing unit, digital signal processor or microprocessor, or as hardware, or as an integrated circuit, such as an application specific integrated circuit.
  • Such software may be distributed on computer-readable media, which may include computer storage media (or non-transitory media) and communication media (or transitory media).
  • computer storage media includes volatile and nonvolatile, removable and non-removable implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data medium.
  • Computer storage media include but are not limited to random access memory (Random Access Memory, RAM), read-only memory (Read-Only Memory, ROM), electrically erasable programmable read-only memory (Electrically Erasable Programmable ROM, EEPROM), flash memory or other memory technology, Compact Disk-ROM (CD-ROM), Digital Video Disc (DVD) or other optical disk storage, magnetic cartridge, magnetic tape, magnetic disk storage or other magnetic storage device, or Any other medium that can be used to store desired information and can be accessed by a computer.
  • communication media typically contain computer-readable instructions, data structures, program modules, or other modulated data signals such as carrier waves or other transport mechanisms data, and may include any information delivery medium.

Abstract

本文公开一种信号传输方法、装置、节点和存储介质。该信号传输方法包括第一通信节点确定第一通信节点覆盖区域内的多个接入点;第一通信节点控制多个接入点发送多个同步信号和多个MIB,其中,多个同步信号构成至少一个同步信号组。

Description

信号传输方法、装置、节点和存储介质 技术领域
本申请涉及无线通信技术领域,例如涉及一种信号传输方法、装置、节点和存储介质。
背景技术
蜂窝网络中的小区分裂技术被认为是有效提高无线系统容量的方式,但是随着各种微小区、小小区、家庭基站以及中继节点在内的各种低功率网络节点在传统蜂窝网络中的部署,蜂窝网络呈现越来越异构化、密集化的趋势,这样会产生小区间干扰严重、用户设备(User Equipment,UE)在移动过程中切换频繁等降低系统容量和用户体验的问题。而且,传统蜂窝小区密集组网时的系统容量是受限的,随着小区半径的缩小,系统容量存在拐点。
上述问题的解决方案是在去蜂窝(cell-free)系统中,将多个安装有一根或多根天线的接入点(Access Point,AP)分布在一个较大区域,通过前传链路将数据传输到中央处理单元(Central Processing Unit,CPU),利用相同的时频资源为多个UE提供服务。在该系统中,处于连接态的UE都有一个以自身为中心的小区,UE在移动过程中该小区也随之移动,这样可以最大程度的降低小区间干扰、频繁切换等问题对UE的影响。但是,在cell-free系统中,是假设UE在无线资源控制(Radio Resource Control,RRC)连接已经建立后才工作在cell-free模式。那么在此之前,UE需要按照蜂窝网络的形式先与蜂窝网络中的一个小区建立RRC连接,然后再从蜂窝系统切换到cell-free系统。
上述解决方案的缺陷是蜂窝系统和cell-free系统是基于两种不同的设计理念设计的系统,前者以基站为中心,后者以UE为中心,将两种设计理念不同的系统拼凑在一起,UE接入cell-free系统时,仍然面临严重的小区间干扰、需要频繁进行小区选择/小区重选等问题。
发明内容
本申请提出一种信号传输方法、装置、节点和存储介质,旨在使接入节点以更加科学的方式选择接入无线系统,以尽量避免小区干扰、频繁选择小区等问题。
本申请实施例提供了一种信号传输方法,该方法包括:
第一通信节点确定覆盖区域内的多个接入点;第一通信节点控制多个接入点发送多个同步信号和多个主系统信息块(Master Information Block,MIB);其中,多个同步信号构成一个或多个同步信号组。
本申请实施例还提供了一种信号传输方法,该方法包括:
第二通信节点接收多个同步信号和多个MIB;其中,多个同步信号构成一个或多个同步信号组;第二通信节点对多个同步信号和多个MIB进行检测;第二通信节点根据检测结果确定接入的同步信号组,并获取与接入的同步信号组索引关联的MIB。
本申请实施例还提供了一种信号传输方法,该方法包括:
第一通信节点发送系统信息,系统信息包括至少一个物理随机接入信道(Physical Random Access Channel,PRACH)的配置信息,一个PRACH关联一个或多个同步信号组,同步信号组中包括多个同步信号;第一通信节点接收第二通信节点根据系统信息发送的随机接入前导;第一通信节点针对随机接入前导在预设时间窗口发送响应消息。
本申请实施例还提供了一种信号传输方法,该方法包括:
第二通信节点接收系统信息,系统信息包括至少一个PRACH的配置信息,一个PRACH关联一个或多个同步信号组;第二通信节点根据同步信号组中同步信号的信号参数在至少一个PRACH中确定目标PRACH;第二通信节点在目标PRACH上发送随机接入前导。
本申请实施例还提供了一种信号传输方法,该方法包括:
第一通信节点在预配置的PRACH上接收第二通信节点发送的随机接入前导后,在预设时间窗口发送第一随机接入响应消息;第一通信节点根据第一随机接入响应消息发送第二随机接入响应消息;其中,第一随机接入响应消息携带第二随机接入响应消息的第三准共站址(Quasi co-location,QCL)关系。
本申请实施例还提供了一种信号传输方法,该方法包括:
第二通信节点在预配置的PRACH上发送随机接入前导;第二通信节点在预设时间窗口接收第一通信节点针对随机接入前导发送的第一随机接入响应消息;其中,第一随机接入响应消息中携带第二随机接入响应消息的第三QCL关系;第二通信节点根据第一随机接入响应消息接收第二随机接入响应消息。
本申请实施例还提供了一种信号传输方法,该方法包括:
第一通信节点确定第二通信节点的工作状态;在工作状态为连接态的情况下,第一通信节点为第二通信节点配置服务节点拓扑信息。
本申请实施例还提供了一种信号传输方法,该方法包括:
第二通信节点获取第一通信节点配置的服务节点拓扑信息;在第二通信节点确定自身工作在非连接态的情况下,第二通信节点根据服务节点拓扑信息和第二通信节点的当前定位确定第二通信节点在服务节点网络中的相对位置;第二通信节点根据相对位置确定对同步信号的检测方式。
本申请实施例还提供了一种信号传输装置,该装置包括:
确定模块,用于确定覆盖区域内的多个接入点;控制模块,用于控制多个接入点发送多个同步信号和多个MIB;其中,多个同步信号构成一个或多个同步信号组。
本申请实施例还提供了一种信号传输装置,该装置包括:
接收模块,用于接收多个同步信号和多个MIB;其中,多个同步信号构成一个或多个同步信号组;检测模块,用于对多个同步信号和多个MIB进行检测;确定模块,用于根据检测结果确定接入的同步信号组;获取模块,用于获取与接入的同步信号组索引关联的MIB。
本申请实施例还提供了一种信号传输装置,该装置包括:
发送模块,用于发送系统信息,系统信息包括至少一个PRACH的配置信息,一个PRACH关联一个或多个同步信号组,同步信号组中包括多个同步信号;接收模块,用于接收第二通信节点根据系统信息发送的随机接入前导;发送模块,还用于针对随机接入前导在预设时间窗口发送响应消息。
本申请实施例还提供了一种信号传输装置,该装置包括:
接收模块,用于接收系统信息,系统信息包括至少一个PRACH的配置信息,一个PRACH关联一个或多个同步信号组;确定模块,用于根据同步信号组中同步信号的信号参数在至少一个PRACH中确定目标PRACH;发送模块,用于在目标PRACH上发送随机接入前导。
本申请实施例还提供了一种信号传输装置,该装置包括:
接收模块,用于在预配置的PRACH上接收第二通信节点发送的随机接入前导后,在预设时间窗口发送第一随机接入响应消息;发送模块,用于根据第一随机接入响应消息发送第二随机接入响应消息;其中,第一随机接入响应消息携带第二随机接入响应消息的第三QCL关系。
本申请实施例还提供了一种信号传输装置,该装置包括:
发送模块,用于在预配置的PRACH上发送随机接入前导;接收模块,用于在预设时间窗口接收第一通信节点针对随机接入前导发送的第一随机接入响应 消息;其中,第一随机接入响应消息中携带第二随机接入响应消息的第三QCL关系;接收模块,还用于根据第一随机接入响应消息接收第二随机接入响应消息。
本申请实施例还提供了一种信号传输装置,该装置包括:
确定模块,用于确定第二通信节点的工作状态;配置模块,用于在工作状态为连接态的情况下,为第二通信节点配置服务节点拓扑信息。
本申请实施例还提供了一种信号传输装置,该装置包括:
获取模块,用于获取第一通信节点配置的服务节点拓扑信息;确定模块,用于在装置工作在非连接态的情况下,根据服务节点拓扑信息和装置的当前定位确定装置在服务节点网络中的相对位置;确定模块,还用于根据相对位置确定对同步信号的检测方式。
本申请实施例还提供了一种通信节点,该节点包括:存储器、处理器,存储在存储器上并可在处理器上运行的程序以及用于实现处理器和存储器之间的连接通信的数据总线,当程序被处理器执行时,实现前述第一通信节点执行的信号传输方法。
本申请实施例还提供了一种通信节点,该节点包括:存储器、处理器,存储在存储器上并可在处理器上运行的程序以及用于实现处理器和存储器之间的连接通信的数据总线,当程序被处理器执行时,实现前述第二通信节点执行的信号传输方法。
本申请实施例还提供了一种可读写存储介质,用于计算机存储,存储介质存储有一个或者多个程序,一个或者多个程序可被一个或者多个处理器执行,以实现前述第一通信节点执行的信号传输方法。
本申请实施例还提供了一种可读写存储介质,用于计算机存储,存储介质存储有一个或者多个程序,一个或者多个程序可被一个或者多个处理器执行,以实现前述第二通信节点执行的信号传输方法。
本申请实施例提供了一种信号传输方法、装置、节点和存储介质,该方法包括第一通信节点确定覆盖区域内的多个接入点,并控制多个接入点发送多个同步信号和多个MIB,其中,多个同步信号构成一个或多个同步信号组。这样,第一通信节点控制一个或多个同步信号组的发送,可以使接收端将同步信号组中同步信号的强度作为接入无线系统的参考,使得接入选择更加科学,以尽量避免小区干扰、频繁选择小区等问题。
附图说明
图1是本申请实施例提供的一种信号传输方法的流程图;
图2是本申请实施例提供的一种信号传输方法的流程图;
图3是本申请实施例提供的一种信号传输方法的流程图;
图4是本申请实施例提供的一种信号传输方法的流程图;
图5是本申请实施例提供的一种信号传输方法的流程图;
图6是本申请实施例提供的一种信号传输方法的流程图;
图7是本申请实施例提供的一种信号传输方法的流程图;
图8是本申请实施例提供的一种信号传输方法的流程图;
图9是本申请实施例提供的一种信号传输装置的结构示意图;
图10是本申请实施例提供的一种信号传输装置的结构示意图;
图11是本申请实施例提供的一种信号传输装置的结构示意图;
图12是本申请实施例提供的一种信号传输装置的结构示意图;
图13是本申请实施例提供的一种信号传输装置的结构示意图;
图14是本申请实施例提供的一种信号传输装置的结构示意图;
图15是本申请实施例提供的一种信号传输装置的结构示意图;
图16是本申请实施例提供的一种信号传输装置的结构示意图;
图17是本申请实施例提供的一种通信节点的结构示意图;
图18是本申请实施例提供的一种通信节点的结构示意图。
具体实施方式
下文中将结合附图对本申请的实施例进行说明。
另外,在本申请实施例中,“可选地”或者“示例性地”等词用于表示作例子、例证或说明。本申请实施例中被描述为“可选地”或者“示例性地”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“可选地”或者“示例性地”等词旨在以具体方式呈现相关概念。
图1为本申请实施例提供的一种信号传输方法的流程图,该方法可以应用于第一通信节点,如图1所示,该方法可以包括以下步骤:
S101、第一通信节点确定覆盖区域内的多个接入点。
示例性地,本申请实施例中的第一通信节点可以为无线通信系统(例如, cell-free系统)中具有处理器的设备,由于第一通信节点有一定的覆盖区域,那么第一通信节点可以在其覆盖范围内确定多个接入点。
S102、第一通信节点控制多个接入点发送多个同步信号和多个MIB。
通过步骤S101,第一通信节点确定其覆盖区域内的多个接入点之后,第一通信节点的处理器(Central Processing Unit,CPU)可以控制该多个接入点发送多个同步信号和多个MIB。
发送的多个同步信号构成一个或多个同步信号组,每个同步信号对应一个同步信号索引,一个同步信号索引对应一个同步信号组索引以及与同步信号组索引关联的MIB。
本申请实施例提供了一种信号传输方法,该方法包括第一通信节点确定覆盖区域内的多个接入点,并控制多个接入点发送多个同步信号和多个MIB,其中,多个同步信号构成一个或多个同步信号组。这样,第一通信节点控制一个或多个同步信号组的发送,可以使接收端将同步信号组中同步信号的强度作为接入无线系统的参考,使得接入选择更加科学,以尽量避免小区干扰、频繁选择小区等问题。
在一种示例中,在上述多个同步信号中有两个同步信号的同步信号组索引不同的情况下,这两个同步信号对应不同的用于加扰关联MIB的扰码,此时,MIB携带的信息一般也不相同。
在另一种示例中,在多个同步信号中有至少两个同步信号对应的至少两个同步信号组索引相同的情况下,至少两个同步信号组索引分别对应的用于加扰关联的MIB的扰码相同。在至少两个同步信号的发送时刻相同的情况下,该至少两个同步信号对应的同步信号组索引分别关联的MIB携带的信息相同。
示例性地,在上述同步信号索引s确定的情况下,获取上述同步信号组索引g的方式可以采用以下两种方式中的任意一种:
Figure PCTCN2021105265-appb-000001
或者,g=s%L       (2)
其中,公式(1)和公式(2)中的L为预设的大于1的正整数。
在一种示例中,在至少两个同步信号对应的同步信号组索引相同的情况下,默认至少两个同步信号满足第一QCL关系。其中,第一QCL关系为至少两个同步信号的传输信道的多普勒偏移、多普勒扩展、平均时延、时延扩展、空间 接收参数中的至少一个相同。
在一种示例中,上述同步信号可以由两个同步信号组成,例如,由第一同步信号和第二同步信号组成。其中,假设第一同步信号的数目为M个,第二同步信号的数目为N个,M和N均为大于1的正整数,那么上述多个同步信号可以由M个第一同步信号和N个第二同步信号组成。假设同步信号由索引为i的第一同步信号和索引为j的第二同步信号组成,那么同步信号的索引s可以为:
s=iN+j       (3)
或者,s=i+jN         (4)
即,可用的同步信号数目最多有M*N个。可选地,前述L的取值可以取M或N的倍数。
图2为本申请实施例提供的一种信号传输方法的流程图,该方法可以应用于第二通信节点,如图2所示,该方法包括:
S201、第二通信节点接收多个同步信号和多个MIB。
示例性地,上述第二通信节点可以为无线通信系统(例如,cell-free系统)中的用户设备,第二通信节点接收到的多个同步信号可以构成一个或多个同步信号组,即第二通信节点可以接收一组或多组同步信号组。
可选地,第二通信节点接收到的多个同步信号中的每个同步信号可以对应一个同步信号索引,一个同步信号索引对应一个同步信号组索引以及与同步信号组索引关联的MIB。
S202、第二通信节点对多个同步信号和多个MIB进行检测。
S203、第二通信节点根据检测结果确定接入的同步信号组,并获取与接入的同步信号组的同步信号组索引关联的MIB。
第二通信节点在接入无线通信系统时,可以先对接收到的同步信号进行检测,并在上述多个同步信号中有至少两个同步信号对应的同步信号组索引相同的情况下,第二通信节点默认上述至少两个同步信号满足第一准共站址QCL关系。例如,第一QCL关系可以为至少两个同步信号的传输信道的多普勒偏移、多普勒扩展、平均时延、时延扩展、空间接收参数中的至少一个相同。
基于上述默认的情况,第二通信节点根据检测结果选择最佳的同步信号组作为最终要接入的同步信号组,并获取该同步信号组的同步信号组索引关联的MIB。第二通信节点获取MIB后,可以根据MIB的指示获得无线系统的资源,并发起随机接入。
示例性地,上述第二通信节点确定最佳同步信号组的依据可以为该同步信 号组内同步信号合并后的参考信号接收功率(Reference Signal Receiving Power,RSRP)或参考信号接收质量(Reference Signal Received Quality,RSRQ)最强。
本申请实施例提供了一种信号传输方法,第二通信节点接收多个同步信号和多个MIB,其中,多个同步信号构成一个或多个同步信号组,第二通信节点对多个同步信号和多个MIB进行检测,第二通信节点根据检测结果确定接入的同步信号组,并获取与接入的同步信号组的同步信号组索引关联的MIB。这样,第二通信节点可以基于同步信号组的多个同步信号的相关参数作为接入无线系统的参考。相比于传统蜂窝系统中,每个同步信号对应一个物理小区,每个小区都有各自的MIB,第二通信节点进行初始接入时,只能选择最强同步信号对应的小区而言,本申请实施例提供的方案中,第二通信节点的选择方法更加科学。在传统蜂窝系统中,每个小区的MIB是独立的,即使各MIB包含的信息相同,第二通信节点也无法对它们进行合并,除了目标小区的MIB外,其它MIB都是作为干扰存在,而在本申请实施例提供的方案中,第二通信节点可以对一个同步信号组内的MIB进行合并接收,从而使MIB的接收性能进一步提高。
在一种示例中,在上述至少两个同步信号对应的至少两个同步信号组索引相同的情况下,该至少两个同步信号组索引分别对应的用于加扰关联的MIB的扰码相同。在至少两个同步信号的发送时刻相同的情况下,该至少两个同步信号对应的同步信号组索引分别关联的MIB携带的信息也相同。
图3为本申请实施例提供的一种信号传输方法的流程图,该方法可以应用于第一通信节点,如图3所示,该方法包括:
S301、第一通信节点发送系统信息。
本申请实施例中,第一通信节点可以为无线通信系统(例如,cell-free系统)中具有处理器的设备,其发送的系统信息可以包括至少一个PRACH的配置信息。例如,该配置信息可以包括PRACH的前导格式、PRACH的时频位置、PRACH关联同步信号集合等。
在本申请实施例中,一个PRACH可以关联一个或多个同步信号组,该同步信号组中可以包括多个同步信号。
示例性地,如果系统信息中配置了多套PRACH资源的配置信息,那么对于不同的PRACH资源,每套PRACH关联的同步信号组集合可以不同。例如,假设系统信息中配置两套PRACH资源,第一套PRACH资源可以关联同步信号组1,第二套PRACH资源可以关联同步信号组1和同步信号组2。
S302、第一通信节点接收第二通信节点根据系统信息发送的随机接入前导。
本步骤中的随机接入前导可以是第二通信节点在第一通信节点预配置的 PRACH资源上发送的。
S303、第一通信节点针对随机接入前导在预设时间窗口发送响应消息。
第一通信节点在预先配置的PRACH资源上检测到第二通信节点发送的随机接入前导后,可以在预设时间窗口上发送针对该前导的响应消息。
本申请实施例提供了一种信号传输方法,第一通信节点发送系统信息,该系统信息包括至少一个PRACH的配置信息,一个PRACH关联一个或多个同步信号组,同步信号组中包括多个同步信号;第一通信节点接收第二通信节点根据系统信息发送的随机接入前导,并针对随机接入前导在预设时间窗口发送响应消息。由于一个PRACH关联一个或多个同步信号组,与一个PRACH只关联一个同步信号或小区的传统方式相比,第一通信节点根据第二通信节点发送的随机接入前导,在发送响应消息时可以参考PRACH关联的多个同步信号,以实现更好的性能。
在一种示例中,指示上述响应消息的物理下行控制信道(Physical Downlink Control Channel,PDCCH)以及PDCCH对应的解调参考信号与PRACH关联的同步信号组中的同步信号满足第二准共站址QCL关系。其中,第二QCL关系可以为传输PDCCH及解调参考信号的传输信道与PRACH关联的同步信号组中的同步信号的传输信道的多普勒偏移、多普勒扩展、平均时延、时延扩展、空间接收参数中的至少一个存在关联关系。
示例性地,上述关联关系可以包括以下几种可能的情况:
第一种情况:传输PDCCH及其对应的解调参考信号所经历的无线信道的多普勒偏移、多普勒扩展、平均时延、时延扩展、空间接收参数中的一个或多个等于前述同步信号所经历信道的上述参数的和。
第二种情况:传输PDCCH及其对应的解调参考信号所经历的无线信道的多普勒偏移、多普勒扩展、平均时延、时延扩展、空间接收参数中的一个或多个等于前述同步信号所经历信道的上述参数的加权合并。
图4为本申请实施例提供的一种信号传输方法的流程图,该方法可以应用于第二通信节点,如图4所示,该方法包括:
S401、第二通信节点接收系统信息。
第二通信节点可以为无线通信系统(例如,cell-free系统)中的用户设备,其接收到的系统信息可以包括至少一个PRACH的配置信息,其中,一个PRACH关联一个或多个同步信号组,该同步信号组中可以包括多个同步信号。
S402、第二通信节点根据同步信号组中同步信号的信号参数在至少一个 PRACH中确定目标PRACH。
第二通信节点接收到系统信息后,可以根据该系统信息获取PRACH的配置信息,若系统信息中配置有多套PRACH资源,并且每套PRACH资源关联的同步信号集合不同,那么第二通信节点可以根据接收的同步信号检测情况、业务服务质量(Quality of Service,QoS)需求等选择其中一套PRACH资源作为目标PRACH。
在系统信息中仅配置有一套PRACH资源的情况下,该PRACH资源即为目标PRACH。
S403、第二通信节点在目标PRACH上发送随机接入前导。
示例性地,上述第二通信节点可以在目标PRACH上发送预设的随机接入前导。
本申请实施例提供了一种信号传输方法,第二通信节点接收系统信息,该系统信息包括至少一个PRACH的配置信息,一个PRACH关联一个或多个同步信号组;第二通信节点根据同步信号组中同步信号的信号参数在至少一个PRACH中确定目标PRACH,并在目标PRACH上发送随机接入前导。相比于相关技术,本申请实施例中,第二通信节点可以综合业务的实际情况选择合适的PRACH资源,从而更好地满足去蜂窝网络中以用户为中心的需求。
在一种示例中,上述步骤S402中第二通信节点确定目标PRACH的方式可以包括:
第二通信节点根据接收的同步信号质量(如,RSRP、RSRQ等)选择PRACH资源。同步信号质量越差,第二通信节点选择的PRACH资源关联的同步信号或同步信号组数目越多。比如,假设系统信息中配置了两套PRACH资源,第一套PRACH资源关联同步信号组1,第二套PRACH资源关联同步信号组1和同步信号组2,当接收的同步信号质量大于预设门限时,第二通信节点可以选择第一套PRACH资源,否则,第二通信节点选择第二套PRACH资源。
或者,第二通信节点根据业务的QoS需求选择PRACH资源。比如,第二通信节点的业务需要的传输速率越高,第二通信节点选择的PRACH资源关联的同步信号或同步信号组数目越多。
在一种示例中,在上述步骤S403中,第二通信节点在选择的目标PRACH资源上发送预设的随机接入前导时,其初始发送功率可以根据选择的PRACH资源所关联的多个同步信号的接收功率确定。示例性地,可以通过如下可能的方式确定初始发送功率:
方式1:系统信息中指示了PRACH资源所关联的多个同步信号的发送功率, 第二通信节点根据接收的同步信号的功率可以估计出每个同步信号从发射端到自身的路损,进而根据最大或最小的路损确定随机接入前导的初始发送功率。
方式2:系统信息中指示了PRACH资源所关联的多个同步信号的发送功率,第二通信节点根据接收的同步信号的功率可以估计出每个同步信号从发射端到自身的路损,并根据多个路损的平均值确定随机接入前导的初始发送功率。
方式3:系统信息中指示了PRACH资源所关联的多个同步信号的发送功率,第二通信节点根据接收的同步信号的功率可以估计出每个同步信号从发射端到自身的路损,并对接收功率大于一定门限的同步信号的路损进行统计,第二通信节点根据统计的这些路损的平均值确定随机接入前导的初始发送功率。
在一种示例中,在上述步骤S403之后,第二通信节点还可以在预设时间窗口接收第一通信节点针对随机接入前导发送的响应消息。
可选地,第二通信节点可以默认指示上述响应消息的PDCCH以及PDCCH对应的解调参考信号与PRACH关联的同步信号组中的同步信号满足第二准共站址QCL关系。其中,第二QCL关系可以为传输PDCCH及解调参考信号的传输信道与PRACH关联的同步信号组中的同步信号的传输信道的多普勒偏移、多普勒扩展、平均时延、时延扩展、空间接收参数中的至少一个存在关联关系。
在确定上述响应信息的PDCCH及对应的解调参考信号与PRACH资源关联的同步信号满足第二QCL关系后,第二通信节点可以利用该关系和接收的解调参考信号进行信道估计,进而对PDCCH及其指示信息进行检测。
图5为本申请实施例提供的一种信号传输方法的流程图,该方法可以应用于第一通信节点,如图5所示,该方法包括:
S501、第一通信节点在预配置的PRACH上接收第二通信节点发送的随机接入前导后,在预设时间窗口发送第一随机接入响应消息。
可选地,第一通信节点可以为无线通信系统(例如,cell-free系统)中具有处理器的设备,其发送的第一随机接入响应消息可以携带如下信息之一:
前述检测到的随机接入前导索引信息;第二随机接入响应信息的时频位置信息;指示第二随机接入响应信息的PDCCH的时频位置、搜索空间信息等。
S502、第一通信节点根据第一随机接入响应消息发送第二随机接入响应消息。其中,第一随机接入响应消息携带第二随机接入响应消息的第三准共站址QCL关系。
示例性地,第二随机接入响应消息的第三QCL关系可以包括:第二随机接入响应消息与第二随机接入响应消息对应的解调参考信号的第三QCL关系,和 /或,第二随机接入响应消息对应的PDCCH与PDCCH对应的解调参考信号的第三QCL关系。
可选地,第二随机接入响应信息中至少携带时间提前(timing advance)信息,也可以携带上行授权信息。
在本申请实施例中,第一通信节点在预配置的PRACH上接收第二通信节点发送的随机接入前导后,在预设时间窗口发送第一随机接入响应消息,并根据第一随机接入响应消息发送第二随机接入响应消息;其中,第一随机接入响应消息携带第二随机接入响应消息的第三准共站址QCL关系。这样第一通信节点不用受限于只能由第二通信节点选择小区发送随机接入响应的限制,从而为大幅提高第二通信节点随机接入无线网络的性能提供了方便,同时,还具有实现简单,信令开销小等优点。
在一种示例中,上述第三QCL关系可以为传输第二随机接入响应消息与第二随机接入响应消息对应的解调参考信号的传输信道与第二通信节点初始选择的同步信号的传输信道的多普勒偏移、多普勒扩展、平均时延、时延扩展、空间接收参数中的至少一个相同,和/或,传输第二随机接入响应消息对应的PDCCH与PDCCH对应的解调参考信号的传输信道与第二通信节点初始选择的同步信号的传输信道的多普勒偏移、多普勒扩展、平均时延、时延扩展、空间接收参数中的至少一个相同。
可选地,该PDCCH可以指示第二随机接入响应信息对应的物理下行共享信道(Physical Downlink Shared Channel,PDSCH)的时偏位置、编码调制格式等信息。
在一种示例中,可以通过显示信令的方式指示第二随机接入响应消息的第三QCL关系,或者,指示第二随机接入响应消息的第三QCL关系是否需要更新。例如,假设第二随机接入响应消息与其对应的解调参考信号的传输信道与第二通信节点初始选择的同步信号的传输信道满足上述第三QCL关系,和/或,传输第二随机接入响应消息对应的PDCCH与PDCCH对应的解调参考信号的传输信道与第二通信节点初始选择的同步信号的传输信道满足上述第三QCL关系。若指示第二随机接入响应消息的第三QCL关系需要更新,则可以根据指示对同步信号与第三QCL相关信息中的一个或多个进行更新。
图6为本申请实施例提供的一种信号传输方法的流程图,该方法可以应用于第二通信节点,如图6所示,该方法包括:
S601、第二通信节点在预配置的PRACH上发送随机接入前导。
第二通信节点可以为无线通信系统(例如,cell-free系统)中的用户设备, 第二通信节点可以在其选择的PRACH资源上发送预设的随机接入前导。
S602、第二通信节点在预设时间窗口接收第一通信节点针对随机接入前导发送的第一随机接入响应消息。
第二通信节点可以在预设的时间窗口对第一随机接入响应消息进行检测,检测到的该第一随机接入响应消息中携带第二随机接入响应消息的第三QCL关系。
可选地,可以通过显示信令的方式指示上述第二随机接入响应消息的第三QCL关系,或者,指示第二随机接入响应消息的第三QCL关系是否需要更新。
S603、第二通信节点根据第一随机接入响应消息接收第二随机接入响应消息。
示例性地,在指示上述第二随机接入响应消息的第三QCL关系需要更新的情况下,第二通信节点可以根据指示对同步信号与第三QCL相关信息中的一个或多个进行更新。
在本申请实施例中,由于第二通信节点接收到的第一随机接入响应消息中携带第二随机接入响应消息的第三QCL关系,这样可以为提高第二通信节点随机接入无线网络的性能提供方便,同时兼具实现简单、信令开销小的优点。
在一种示例中,上述第二随机接入响应消息的第三QCL关系可以包括:第二随机接入响应消息与第二随机接入响应消息对应的解调参考信号的第三QCL关系,和/或,第二随机接入响应消息对应的PDCCH与PDCCH对应的解调参考信号的第三QCL关系。
在一种示例中,第三QCL关系可以为传输第二随机接入响应消息与第二随机接入响应消息对应的解调参考信号的传输信道与第二通信节点初始选择的同步信号的传输信道的多普勒偏移、多普勒扩展、平均时延、时延扩展、空间接收参数中的至少一个相同,和/或,传输第二随机接入响应消息对应的PDCCH与PDCCH对应的解调参考信号的传输信道与第二通信节点初始选择的同步信号的传输信道的多普勒偏移、多普勒扩展、平均时延、时延扩展、空间接收参数中的至少一个相同。
图7为本申请实施例提供的一种信号传输方法的流程图,该方法可以应用于第一通信节点,如图7所示,该方法包括:
S701、第一通信节点确定第二通信节点的工作状态。
第一通信节点可以为无线通信系统(例如,cell-free系统)中具有处理器的设备,第二通信节点可以为无线通信系统(例如,cell-free系统)中的用户设备, 第二通信节点的工作状态可以为连接态、空闲态等。
S702、在工作状态为连接态的情况下,第一通信节点为第二通信节点配置服务节点拓扑信息。
在第一通信节点确定第二通信节点工作在连接态,即有业务传输的情况下,第一通信节点为第二通信节点配置服务节点拓扑信息。
示例性地,该拓扑信息可以包括无线通信系统内各服务节点在地理上的位置、各服务节点在方位上的相互关系等。
例如,可以在配置的拓扑信息中提供多个同步信号索引/小区索引及这些同步信号索引/小区索引在地理方位上的相对关系。比如,指示小区索引B相对小区索引A的方向、距离等。或者,可以在配置的拓扑信息中提供每个服务节点的绝对位置信息。
本申请实施例提供了一种信号传输方法,在第一通信节点确定第二通信节点的工作状态为连接态的情况下,第一通信节点为第二通信节点配置服务节点拓扑信息。由于去蜂窝系统中可以提供较高的传输速率,第二通信节点的业务数据可以很快的传输完成,那么在连接态为第二通信节点配置服务节点拓扑信息,可以使第二通信节点在空闲态或去激活态根据拓扑信息进行检测,从而降低第二通信节点的功耗。
图8为本申请实施例提供的一种信号传输方法的流程图,该方法可以应用于第二通信节点,如图8所示,该方法包括:
S801、第二通信节点获取第一通信节点配置的服务节点拓扑信息。
上述第二通信节点可以为无线通信系统(例如,cell-free系统)中的用户设备,配置的服务节点拓扑信息可以包括无线通信系统内各服务节点在地理上的位置、各服务节点在方位上的相互关系等。
S802、在第二通信节点确定自身工作在非连接态的情况下,第二通信节点根据服务节点拓扑信息和第二通信节点的当前定位确定第二通信节点在服务节点网络中的相对位置。
示例性地,在第二通信节点传输业务数据完成后,即处于非连接态的情况下,第二通信节点可以根据服务节点拓扑信息,结合自身当前在网络中的定位,判断自己在网络中与各服务节点之间的相对位置。
S803、第二通信节点根据相对位置确定对同步信号的检测方式。
第二通信节点获取自身的相位位置后,可以根据自身的速度预估移动出网络的可能性,进而确定后续对同步信号的检测方式。
例如,若第二通信节点移动出网络的可能性较低,则可以减少申请停止同步信号的检测;相反,若移动出网络的可能性较高,则可以对接收的同步信号进行检测并准备发起随机接入以请求对服务节点拓扑信息进行更新。
在一种示例中,若第二通信节点检测到一同步信号的接收质量(RSRP或RSRQ)大于服务节点拓扑信息中配置的同步信号的接收质量,那么第二通信节点可以在满足上述接收质量判断条件(即同步信号的接收质量大于服务节点拓扑信息中配置的同步信号的接收质量)的同步信号大于一定数目的情况下,发起随机接入。这样可以使第二通信节点的功耗进一步降低。
在去蜂窝网络中,由于站点部署密集,通常有多个站点同时为一个第二通信节点服务,那么单个接入点对第二通信节点的性能不会产生太大影响。
本申请实施例提供了一种信号传输方法,第二通信节点获取第一通信节点配置的服务节点拓扑信息,在第二通信节点确定自身工作在非连接态的情况下,第二通信节点根据服务节点拓扑信息和第二通信节点的当前定位确定第二通信节点在服务节点网络中的相对位置,根据相对位置确定对同步信号的检测方式。这样根据自身的实际情况确定对同步信号的检测方式,可以有效降低第二通信节点的功耗。
图9为本申请实施例提供的一种信号传输装置,如图9所示,该装置可以包括确定模块901、控制模块902;其中,确定模块901,用于确定覆盖区域内的多个接入点;控制模块902,用于控制多个接入点发送多个同步信号和多个MIB;其中,多个同步信号构成一个或多个同步信号组,每个同步信号对应一个同步信号索引,一个同步信号索引对应一个同步信号组索引以及与同步信号组索引关联的MIB。
在一种示例中,在至少两个同步信号对应的至少两个同步信号组索引相同的情况下,至少两个同步信号组索引分别对应的用于加扰关联的MIB的扰码相同。在至少两个同步信号的发送时刻相同的情况下,至少两个同步信号对应的同步信号组索引分别关联的MIB携带的信息相同。
在一种示例中,在至少两个同步信号对应的同步信号组索引相同的情况下,默认至少两个同步信号满足第一准共站址QCL关系;其中,第一QCL关系为至少两个同步信号的传输信道的多普勒偏移、多普勒扩展、平均时延、时延扩展、空间接收参数中的至少一个相同。
本实施例提供的信号传输装置用于实现图1所示实施例的信号传输方法,其实现原理和技术效果类似,此处不再赘述。
图10为本申请实施例提供的一种信号传输装置,如图10所示,该装置可 以包括接收模块1001、检测模块1002、确定模块1003、获取模块1004;其中,接收模块1001,用于接收多个同步信号和多个MIB;其中,多个同步信号构成一个或多个同步信号组;检测模块1002,用于对多个同步信号和多个MIB进行检测;确定模块1003,用于根据检测结果确定接入的同步信号组;获取模块1004,用于获取与接入的同步信号组的同步信号组索引关联的MIB。
多个同步信号中的每个同步信号对应一个同步信号索引,一个同步信号索引对应一个同步信号组索引以及与同步信号组索引关联的MIB。
在一种示例,在至少两个同步信号对应的至少两个同步信号组索引相同的情况下,至少两个同步信号组索引分别对应的用于加扰关联的MIB的扰码相同。在至少两个同步信号的发送时刻相同的情况下,至少两个同步信号对应的同步信号组索引分别关联的MIB携带的信息相同。
在一种示例,在至少两个同步信号对应的同步信号组索引相同的情况下,默认至少两个同步信号满足第一准共站址QCL关系;其中,第一QCL关系为至少两个同步信号的传输信道的多普勒偏移、多普勒扩展、平均时延、时延扩展、空间接收参数中的至少一个相同。
本实施例提供的信号传输装置用于实现图2所示实施例的信号传输方法,其实现原理和技术效果类似,此处不再赘述。
图11为本申请实施例提供的一种信号传输装置,如图11所示,该装置可以包括发送模块1101、接收模块1102;其中,发送模块1101,用于发送系统信息,系统信息包括至少一个PRACH的配置信息,一个PRACH关联一个或多个同步信号组,同步信号组中包括多个同步信号;接收模块1102,用于接收第二通信节点根据系统信息发送的随机接入前导;发送模块1101,还用于针对随机接入前导在预设时间窗口发送响应消息。
在一种示例中,指示上述响应消息的PDCCH以及PDCCH对应的解调参考信号与PRACH关联的同步信号组中的同步信号满足第二准共站址QCL关系。
第二QCL关系为传输PDCCH及解调参考信号的传输信道与PRACH关联的同步信号组中的同步信号的传输信道的多普勒偏移、多普勒扩展、平均时延、时延扩展、空间接收参数中的至少一个存在关联关系。
本实施例提供的信号传输装置用于实现图3所示实施例的信号传输方法,其实现原理和技术效果类似,此处不再赘述。
图12为本申请实施例提供的一种信号传输装置,如图12所示,该装置可以包括接收模块1201、确定模块1202、发送模块1203;其中,接收模块1201,用于接收系统信息,系统信息包括至少一个PRACH的配置信息,一个PRACH 关联一个或多个同步信号组;确定模块1202,用于根据同步信号组中同步信号的信号参数在至少一个PRACH中确定目标PRACH;发送模块1203,用于在目标PRACH上发送随机接入前导。
在一种示例中,接收模块1201,还用于在预设时间窗口接收第一通信节点针对随机接入前导发送的响应消息;其中,指示响应消息的PDCCH以及PDCCH对应的解调参考信号与PRACH关联的同步信号组中的同步信号满足第二QCL关系,第二QCL关系为传输PDCCH及解调参考信号的传输信道与PRACH关联的同步信号组中的同步信号的传输信道的多普勒偏移、多普勒扩展、平均时延、时延扩展、空间接收参数中的至少一个存在关联关系。
本实施例提供的信号传输装置用于实现图4所示实施例的信号传输方法,其实现原理和技术效果类似,此处不再赘述。
图13为本申请实施例提供的一种信号传输装置,如图13所示,该装置可以包括接收模块1301、发送模块1302;其中,接收模块1301,用于在预配置的PRACH上接收第二通信节点发送的随机接入前导后,在预设时间窗口发送第一随机接入响应消息;发送模块1302,用于根据第一随机接入响应消息发送第二随机接入响应消息;其中,第一随机接入响应消息携带第二随机接入响应消息的第三QCL关系。
在一种示例中,第二随机接入响应消息的第三QCL关系,包括:第二随机接入响应消息与第二随机接入响应消息对应的解调参考信号的第三QCL关系,和/或,第二随机接入响应消息对应的PDCCH与PDCCH对应的解调参考信号的第三QCL关系。
在一种示例中,第三QCL关系为传输第二随机接入响应消息与第二随机接入响应消息对应的解调参考信号的传输信道与第二通信节点初始选择的同步信号的传输信道的多普勒偏移、多普勒扩展、平均时延、时延扩展、空间接收参数中的至少一个相同,和/或,传输第二随机接入响应消息对应的PDCCH与PDCCH对应的解调参考信号的传输信道与第二通信节点初始选择的同步信号的传输信道的多普勒偏移、多普勒扩展、平均时延、时延扩展、空间接收参数中的至少一个相同。
本实施例提供的信号传输装置用于实现图5所示实施例的信号传输方法,其实现原理和技术效果类似,此处不再赘述。
图14为本申请实施例提供的一种信号传输装置,如图14所示,该装置可以包括发送模块1401、接收模块1402;其中,发送模块1401,用于在预配置的PRACH上发送随机接入前导;接收模块1402,用于在预设时间窗口接收第一通 信节点针对随机接入前导发送的第一随机接入响应消息;其中,第一随机接入响应消息中携带第二随机接入响应消息的第三QCL关系;接收模块1402,还用于根据第一随机接入响应消息接收第二随机接入响应消息。
在一种示例中,第二随机接入响应消息的第三QCL关系,包括:第二随机接入响应消息与第二随机接入响应消息对应的解调参考信号的第三QCL关系,和/或,第二随机接入响应消息对应的PDCCH与PDCCH对应的解调参考信号的第三QCL关系。
在一种示例中,第三QCL关系为传输第二随机接入响应消息与第二随机接入响应消息对应的解调参考信号的传输信道与第二通信节点初始选择的同步信号的传输信道的多普勒偏移、多普勒扩展、平均时延、时延扩展、空间接收参数中的至少一个相同,和/或,传输第二随机接入响应消息对应的PDCCH与PDCCH对应的解调参考信号的传输信道与第二通信节点初始选择的同步信号的传输信道的多普勒偏移、多普勒扩展、平均时延、时延扩展、空间接收参数中的至少一个相同。
本实施例提供的信号传输装置用于实现图6所示实施例的信号传输方法,其实现原理和技术效果类似,此处不再赘述。
图15为本申请实施例提供的一种信号传输装置,如图15所示,该装置可以包括确定模块1501、配置模块1502;其中,确定模块1501,用于确定第二通信节点的工作状态;配置模块1502,用于在工作状态为连接态的情况下,为第二通信节点配置服务节点拓扑信息。
服务节点拓扑信息包括:各服务节点在地理上的位置、各服务节点在方位上的相互关系。
本实施例提供的信号传输装置用于实现图7所示实施例的信号传输方法,其实现原理和技术效果类似,此处不再赘述。
图16为本申请实施例提供的一种信号传输装置,如图16所示,该装置可以包括获取模块1601、确定模块1602;其中,获取模块1601,用于获取第一通信节点配置的服务节点拓扑信息;确定模块1602,用于在装置工作在非连接态的情况下,根据服务节点拓扑信息和装置当前定位确定装置在服务节点网络中的相对位置;确定模块1602,还用于根据相对位置确定对同步信号的检测方式。
服务节点拓扑信息包括:各服务节点在地理上的位置、各服务节点在方位上的相互关系。
本实施例提供的信号传输装置用于实现图8所示实施例的信号传输方法,其实现原理和技术效果类似,此处不再赘述。
图17为一实施例提供的一种通信节点的结构示意图,如图17所示,该通信节点包括处理器1701和存储器1702;通信节点中处理器1701的数量可以是一个或多个,图17中以一个处理器1701为例;通信节点中的处理器1701和存储器1702可以通过总线或其他方式连接,图17中以通过总线连接为例。
存储器1702作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序以及模块,如本申请图1、3、5、7实施例中的信号传输方法对应的程序指令/模块。处理器1701通过运行存储在存储器1702中的软件程序、指令以及模块实现上述的信号传输方法。
存储器1702可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据机顶盒的使用所创建的数据等。此外,存储器1702可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
图18为一实施例提供的一种通信节点的结构示意图,如图18所示,该通信节点包括处理器1801和存储器1802;通信节点中处理器1801的数量可以是一个或多个,图18中以一个处理器1801为例;通信节点中的处理器1801和存储器1802可以通过总线或其他方式连接,图18中以通过总线连接为例。
存储器1802作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序以及模块,如本申请图2、4、6、8实施例中的信号传输方法对应的程序指令/模块。处理器1801通过运行存储在存储器1802中的软件程序、指令以及模块实现上述的信号传输方法。
存储器1802可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据机顶盒的使用所创建的数据等。此外,存储器1802可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
本申请实施例还提供了一种可读写存储介质,用于计算机存储,该存储介质存储有一个或者多个程序,一个或者多个程序可被一个或者多个处理器执行,以执行图1、3、5、7实施例中的信号传输方法。
本申请实施例还提供了一种可读写存储介质,用于计算机存储,该存储介质存储有一个或者多个程序,一个或者多个程序可被一个或者多个处理器执行,以执行图2、4、6、8实施例中的信号传输方法。
上文中所公开方法中的全部或一些步骤、通信节点中的功能模块/单元可以 被实施为软件、固件、硬件及其适当的组合。
在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由多个物理组件合作执行。一些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于随机存取存储器(Random Access Memory,RAM)、只读存储器(Read-Only Memory,ROM)、带电可擦可编程只读存储器((Electrically Erasable Programmable ROM,EEPROM)、闪存或其他存储器技术、光盘只读存储器(Compact Disk-ROM,CD-ROM)、数字多功能盘(Digital Video Disc,DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。

Claims (36)

  1. 一种信号传输方法,包括:
    第一通信节点确定所述第一通信节点覆盖区域内的多个接入点;
    所述第一通信节点控制所述多个接入点发送多个同步信号和多个主系统信息块MIB;
    其中,所述多个同步信号构成至少一个同步信号组。
  2. 根据权利要求1所述的方法,其中,每个同步信号对应一个同步信号索引,所述一个同步信号索引对应一个同步信号组索引以及与所述一个同步信号组索引关联的MIB。
  3. 根据权利要求2所述的方法,其中,在至少两个同步信号对应的至少两个同步信号组索引相同的情况下,所述至少两个同步信号组索引分别对应的用于加扰关联的MIB的扰码相同。
  4. 根据权利要求3所述的方法,其中,在至少两个同步信号的发送时刻相同的情况下,发送时刻相同的所述至少两个同步信号对应的至少两个同步信号组索引分别关联的MIB携带的信息相同。
  5. 根据权利要求1-4任一项所述的方法,其中,在至少两个同步信号对应的至少两个同步信号组索引相同的情况下,默认所述至少两个同步信号满足第一准共站址QCL关系;
    其中,所述第一QCL关系为所述至少两个同步信号的传输信道的多普勒偏移、多普勒扩展、平均时延、时延扩展、和空间接收参数中的至少一个相同。
  6. 一种信号传输方法,包括:
    第二通信节点接收多个同步信号和多个主系统信息块MIB;
    其中,所述多个同步信号构成至少一个同步信号组;
    所述第二通信节点对所述多个同步信号和所述多个MIB进行检测;
    所述第二通信节点根据检测结果确定接入的同步信号组,并获取与所述接入的同步信号组的同步信号组索引关联的MIB。
  7. 根据权利要求6所述的方法,其中,每个同步信号对应一个同步信号索引,所述一个同步信号索引对应一个同步信号组索引以及与所述一个同步信号组索引关联的MIB。
  8. 根据权利要求7所述的方法,其中,在至少两个同步信号对应的至少两个同步信号组索引相同的情况下,所述至少两个同步信号组索引分别对应的用于加扰关联的MIB的扰码相同。
  9. 根据权利要求8所述的方法,其中,在至少两个同步信号的发送时刻相同的情况下,发送时刻相同的所述至少两个同步信号对应的同步信号组索引分别关联的MIB携带的信息相同。
  10. 根据权利要求6-9任一项所述的方法,其中,在至少两个同步信号对应的至少两个同步信号组索引相同的情况下,默认所述至少两个同步信号满足第一准共站址QCL关系;
    其中,所述第一QCL关系为所述至少两个同步信号的传输信道的多普勒偏移、多普勒扩展、平均时延、时延扩展、和空间接收参数中的至少一个相同。
  11. 一种信号传输方法,包括:
    第一通信节点发送系统信息,所述系统信息包括至少一个物理随机接入信道PRACH的配置信息,一个PRACH关联至少一个同步信号组,所述同步信号组中包括多个同步信号;
    所述第一通信节点接收第二通信节点根据所述系统信息发送的随机接入前导;
    所述第一通信节点针对所述随机接入前导在预设时间窗口发送响应消息。
  12. 根据权利要求11所述的方法,其中,指示所述响应消息的物理下行控制信道PDCCH以及所述PDCCH对应的解调参考信号与所述PRACH关联的同步信号组中的同步信号满足第二准共站址QCL关系;
    所述第二QCL关系为传输所述PDCCH及所述解调参考信号的传输信道与所述PRACH关联的同步信号组中的同步信号的传输信道的多普勒偏移、多普勒扩展、平均时延、时延扩展、和空间接收参数中的至少一个存在关联关系。
  13. 一种信号传输方法,方法:
    第二通信节点接收系统信息,所述系统信息包括至少一个物理随机接入信道PRACH的配置信息,一个PRACH关联至少一个同步信号组;
    所述第二通信节点根据接收的同步信号组中同步信号的信号参数在所述至少一个PRACH中确定目标PRACH;
    所述第二通信节点在所述目标PRACH上发送随机接入前导。
  14. 根据权利要求13所述的方法,在所述第二通信节点在所述目标PRACH上发送随机接入前导之后,还包括:
    所述第二通信节点在预设时间窗口接收第一通信节点针对所述随机接入前导发送的响应消息;
    其中,指示所述响应消息的物理下行控制信道PDCCH以及所述PDCCH对应的解调参考信号与所述PRACH关联的同步信号组中的同步信号满足第二准共站址QCL关系;
    所述第二QCL关系为传输所述PDCCH及所述解调参考信号的传输信道与所述PRACH关联的同步信号组中的同步信号的传输信道的多普勒偏移、多普勒扩展、平均时延、时延扩展、和空间接收参数中的至少一个存在关联关系。
  15. 一种信号传输方法,包括:
    第一通信节点在预配置的物理随机接入信道PRACH上接收第二通信节点发送的随机接入前导后,在预设时间窗口发送第一随机接入响应消息;
    所述第一通信节点根据所述第一随机接入响应消息发送第二随机接入响应消息;
    其中,所述第一随机接入响应消息携带所述第二随机接入响应消息的第三准共站址QCL关系。
  16. 根据权利要求15所述的方法,其中,所述第二随机接入响应消息的第三QCL关系,包括以下至少之一:
    所述第二随机接入响应消息与所述第二随机接入响应消息对应的解调参考信号的第三QCL关系,所述第二随机接入响应消息对应的物理下行控制信道PDCCH与所述PDCCH对应的解调参考信号的第三QCL关系。
  17. 根据权利要求15或16所述的方法,其中,所述第三QCL关系为以下至少之一:传输所述第二随机接入响应消息与所述第二随机接入响应消息对应的解调参考信号的传输信道与所述第二通信节点初始选择的同步信号的传输信道的多普勒偏移、多普勒扩展、平均时延、时延扩展、和空间接收参数中的至少一个相同,传输所述第二随机接入响应消息对应的PDCCH与所述PDCCH对应的解调参考信号的传输信道与所述第二通信节点初始选择的同步信号的传输信道的多普勒偏移、多普勒扩展、平均时延、时延扩展、和空间接收参数中的至少一个相同。
  18. 一种信号传输方法,包括:
    第二通信节点在预配置的物理随机接入信道PRACH上发送随机接入前导;
    所述第二通信节点在预设时间窗口接收第一通信节点针对所述随机接入前导发送的第一随机接入响应消息;
    其中,所述第一随机接入响应消息中携带第二随机接入响应消息的第三准共站址QCL关系;
    所述第二通信节点根据所述第一随机接入响应消息接收所述第二随机接入响应消息。
  19. 根据权利要求18所述的方法,其中,所述第二随机接入响应消息的第三QCL关系,包括以下至少之一:
    所述第二随机接入响应消息与所述第二随机接入响应消息对应的解调参考信号的第三QCL关系,所述第二随机接入响应消息对应的物理下行控制信道PDCCH与所述PDCCH对应的解调参考信号的第三QCL关系。
  20. 根据权利要求18或19所述的方法,其中,所述第三QCL关系为以下至少之一:传输所述第二随机接入响应消息与所述第二随机接入响应消息对应的解调参考信号的传输信道与所述第二通信节点初始选择的同步信号的传输信道的多普勒偏移、多普勒扩展、平均时延、时延扩展、和空间接收参数中的至少一个相同,传输所述第二随机接入响应消息对应的PDCCH与所述PDCCH对应的解调参考信号的传输信道与所述第二通信节点初始选择的同步信号的传输信道的多普勒偏移、多普勒扩展、平均时延、时延扩展、和空间接收参数中的至少一个相同。
  21. 一种信号传输方法,包括:
    第一通信节点确定第二通信节点的工作状态;
    在所述工作状态为连接态的情况下,所述第一通信节点为所述第二通信节点配置服务节点拓扑信息。
  22. 根据权利要求21所述的方法,其中,所述服务节点拓扑信息包括:多个服务节点在地理上的位置、多个服务节点在方位上的相互关系。
  23. 一种信号传输方法,包括:
    第二通信节点获取第一通信节点配置的服务节点拓扑信息;
    在所述第二通信节点确定自身工作在非连接态的情况下,所述第二通信节点根据所述服务节点拓扑信息和所述第二通信节点的当前定位确定所述第二通信节点在服务节点网络中的相对位置;
    所述第二通信节点根据所述相对位置确定对同步信号的检测方式。
  24. 根据权利要求23所述的方法,其中,所述服务节点拓扑信息包括:多个服务节点在地理上的位置、多个服务节点在方位上的相互关系。
  25. 一种信号传输装置,包括:
    确定模块,设置为确定所述装置覆盖区域内的多个接入点;
    控制模块,设置为控制所述多个接入点发送多个同步信号和多个主系统信息块MIB;
    其中,所述多个同步信号构成至少一个同步信号组。
  26. 一种信号传输装置,包括:
    接收模块,设置为接收多个同步信号和多个主系统信息块MIB;
    其中,所述多个同步信号构成至少一个同步信号组;
    检测模块,设置为对所述多个同步信号和多个MIB进行检测;
    确定模块,设置为根据检测结果确定接入的同步信号组;
    获取模块,设置为获取与所述接入的同步信号组的同步信号组索引关联的MIB。
  27. 一种信号传输装置,包括:
    发送模块,设置为发送系统信息,所述系统信息包括至少一个物理随机接入信道PRACH的配置信息,一个PRACH关联至少一个同步信号组,所述同步信号组中包括多个同步信号;
    接收模块,设置为接收第二通信节点根据所述系统信息发送的随机接入前导;
    所述发送模块,还设置为针对所述随机接入前导在预设时间窗口发送响应消息。
  28. 一种信号传输装置,包括:
    接收模块,设置为接收系统信息,所述系统信息包括至少一个物理随机接入信道PRACH的配置信息,一个PRACH关联至少一个同步信号组;
    确定模块,设置为根据所述至少一个PRACH关联的同步信号组中同步信号的信号参数在所述至少一个PRACH中确定目标PRACH;
    发送模块,设置为在所述目标PRACH上发送随机接入前导。
  29. 一种信号传输装置,包括:
    接收模块,设置为在预配置的物理随机接入信道PRACH上接收第二通信节点发送的随机接入前导后,在预设时间窗口发送第一随机接入响应消息;
    发送模块,设置为根据所述第一随机接入响应消息发送第二随机接入响应消息;
    其中,所述第一随机接入响应消息携带所述第二随机接入响应消息的第三 准共站址QCL关系。
  30. 一种信号传输装置,包括:
    发送模块,设置为在预配置的物理随机接入信道PRACH上发送随机接入前导;
    接收模块,设置为在预设时间窗口接收第一通信节点针对所述随机接入前导发送的第一随机接入响应消息;
    其中,所述第一随机接入响应消息中携带第二随机接入响应消息的第三准共站址QCL关系;
    所述接收模块,还设置为根据所述第一随机接入响应消息接收所述第二随机接入响应消息。
  31. 一种信号传输装置,包括:
    确定模块,设置为确定第二通信节点的工作状态;
    配置模块,设置为在所述工作状态为连接态的情况下,为所述第二通信节点配置服务节点拓扑信息。
  32. 一种信号传输装置,包括:
    获取模块,设置为获取第一通信节点配置的服务节点拓扑信息;
    确定模块,设置为在所述装置工作在非连接态的情况下,根据所述服务节点拓扑信息和所述装置的当前定位确定所述装置在服务节点网络中的相对位置;
    所述确定模块,还设置为根据所述相对位置确定对同步信号的检测方式。
  33. 一种通信节点,包括:存储器、处理器,存储在所述存储器上并可在所述处理器上运行的程序以及设置为实现所述处理器和所述存储器之间的连接通信的数据总线,所述程序被所述处理器执行时实现如权利要求1-5任一项所述的信号传输方法,或权利要求11或12所述的信号传输方法,或权利要求15-17任一项所述的信号传输方法,或权利要求21或22所述的信号传输方法。
  34. 一种通信节点,包括:存储器、处理器,存储在所述存储器上并可在所述处理器上运行的程序以及设置为实现所述处理器和所述存储器之间的连接通信的数据总线,所述程序被所述处理器执行时实现如权利要求6-10任一项所述的信号传输方法,或权利要求13或14所述的信号传输方法,或权利要求18-20任一项所述的信号传输方法,或权利要求23或24所述的信号传输方法。
  35. 一种可读写存储介质,设置为计算机存储,其中,所述存储介质存储有至少一个程序,所述至少一个程序可被至少一个处理器执行,以实现如权利 要求1-5任一项所述的信号传输方法,或权利要求11或12所述的信号传输方法,或权利要求15-17任一项所述的信号传输方法,或权利要求21或22所述的信号传输方法。
  36. 一种可读写存储介质,设置为计算机存储,其中,所述存储介质存储有至少一个程序,所述至少一个程序可被至少一个处理器执行,以实现如权利要求6-10任一项所述的信号传输方法,或权利要求13或14所述的信号传输方法,或权利要求18-20任一项所述的信号传输方法,或权利要求23或24所述的信号传输方法。
PCT/CN2021/105265 2020-07-16 2021-07-08 信号传输方法、装置、节点和存储介质 WO2022012411A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020237005042A KR20230041734A (ko) 2020-07-16 2021-07-08 신호 전송 방법과 장치, 노드 및 저장 매체
US18/016,642 US20230300892A1 (en) 2020-07-16 2021-07-08 Signal transmission methods and apparatuses, nodes, and storage media
EP21842875.3A EP4184842A1 (en) 2020-07-16 2021-07-08 Signal transmission method and apparatus, node, and storage medium
CA3186102A CA3186102A1 (en) 2020-07-16 2021-07-08 Signal transmission method and apparatus, node, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010687624.0A CN111901865A (zh) 2020-07-16 2020-07-16 信号传输方法、装置、节点和存储介质
CN202010687624.0 2020-07-16

Publications (1)

Publication Number Publication Date
WO2022012411A1 true WO2022012411A1 (zh) 2022-01-20

Family

ID=73189374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/105265 WO2022012411A1 (zh) 2020-07-16 2021-07-08 信号传输方法、装置、节点和存储介质

Country Status (6)

Country Link
US (1) US20230300892A1 (zh)
EP (1) EP4184842A1 (zh)
KR (1) KR20230041734A (zh)
CN (1) CN111901865A (zh)
CA (1) CA3186102A1 (zh)
WO (1) WO2022012411A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111901865A (zh) * 2020-07-16 2020-11-06 中兴通讯股份有限公司 信号传输方法、装置、节点和存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108737039A (zh) * 2017-04-14 2018-11-02 华为技术有限公司 随机接入及响应方法、终端设备、网络设备
CN110149642A (zh) * 2018-02-12 2019-08-20 华为技术有限公司 一种中继节点同步信号的发送方法及装置
CN110380837A (zh) * 2018-02-24 2019-10-25 华为技术有限公司 非竞争随机接入的方法和装置
US20200146057A1 (en) * 2017-05-04 2020-05-07 Ofinno, Llc Preamble Power and CSI-RS Configuration for a Wireless Device
CN111901865A (zh) * 2020-07-16 2020-11-06 中兴通讯股份有限公司 信号传输方法、装置、节点和存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108737039A (zh) * 2017-04-14 2018-11-02 华为技术有限公司 随机接入及响应方法、终端设备、网络设备
US20200146057A1 (en) * 2017-05-04 2020-05-07 Ofinno, Llc Preamble Power and CSI-RS Configuration for a Wireless Device
CN110149642A (zh) * 2018-02-12 2019-08-20 华为技术有限公司 一种中继节点同步信号的发送方法及装置
CN110380837A (zh) * 2018-02-24 2019-10-25 华为技术有限公司 非竞争随机接入的方法和装置
CN111901865A (zh) * 2020-07-16 2020-11-06 中兴通讯股份有限公司 信号传输方法、装置、节点和存储介质

Also Published As

Publication number Publication date
US20230300892A1 (en) 2023-09-21
CN111901865A (zh) 2020-11-06
KR20230041734A (ko) 2023-03-24
CA3186102A1 (en) 2022-01-20
EP4184842A1 (en) 2023-05-24

Similar Documents

Publication Publication Date Title
JP7232948B2 (ja) 端末、ランダムアクセス方法、基地局、及び通信システム
US11337126B2 (en) Multi-RAT sidelink communications
US11483720B2 (en) Communications device and method
US11102688B2 (en) Triggering measurement reporting based on a combined beam reference signal measurement
EP3528540B1 (en) Supplemental uplink selection using configuration information
US20200236648A1 (en) Beam Paging Assistance
CN109302720B (zh) 一种选择波束的方法及设备
JP6988994B2 (ja) ランダムアクセスの電力制御装置、方法及び通信システム
RU2770652C2 (ru) Способ связи, устройство связи и система
JP2019083590A (ja) ミリメートル波基地局におけるビーム整形およびワイヤレスデバイスにおける高速アンテナサブアレイ選択のための技法
KR102041378B1 (ko) 무선통신시스템에서 셀 내 무선랜 정보를 송수신하기 위한 방법 및 장치
JP2021527976A (ja) 基地局ネットワーク共有構成
US10187862B2 (en) Method and apparatus for performing timing synchronization in wireless communication system
JP2018537923A (ja) 複数のトーンホッピング距離をもつ狭帯域prach
US20140211776A1 (en) Method and apparatus for selecting wireless local area network to be accessed by a user equipment within a cell in a mobile communication system
EP3432678B1 (en) Device and method of configuring a secondary node and reporting in dual connectivity
KR101513830B1 (ko) 무선 통신 시스템에서 단일 지점 송신기로부터 단일 지점 수신기로의 적어도 하나의 제1 전송 및 다지점 송신기로부터의 또는 다지점 수신기로의 적어도 하나의 제2 전송을 조정하기 위한 방법, 그것에 관한 네트워크 노드 및 이동국
WO2021053006A1 (en) QUALITY OF SERVICE PROFILE CHANGE FOR A MULTI-QoS PROFILE SESSION
US10986552B2 (en) Connection establishment in a 5G radio access network
WO2022012411A1 (zh) 信号传输方法、装置、节点和存储介质
US20230022834A1 (en) Communication Method and Apparatus
JP6564061B2 (ja) 通信方法及びデバイス
EP2830240B1 (en) Selection of a radio cell sector
WO2022016387A1 (en) Method and apparatus for releasing congigured grant resources
JP2017028464A (ja) 基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21842875

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3186102

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20237005042

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021842875

Country of ref document: EP

Effective date: 20230216