WO2022011801A1 - 一种三重冗余中提高电流输出可靠性的电路方法 - Google Patents

一种三重冗余中提高电流输出可靠性的电路方法 Download PDF

Info

Publication number
WO2022011801A1
WO2022011801A1 PCT/CN2020/112255 CN2020112255W WO2022011801A1 WO 2022011801 A1 WO2022011801 A1 WO 2022011801A1 CN 2020112255 W CN2020112255 W CN 2020112255W WO 2022011801 A1 WO2022011801 A1 WO 2022011801A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
control
channel
current output
switch
Prior art date
Application number
PCT/CN2020/112255
Other languages
English (en)
French (fr)
Inventor
查汀
丁永鑫
刘星星
Original Assignee
南京科远智慧科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京科远智慧科技集团股份有限公司 filed Critical 南京科远智慧科技集团股份有限公司
Publication of WO2022011801A1 publication Critical patent/WO2022011801A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/048Monitoring; Safety
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/21Pc I-O input output
    • G05B2219/21024Analog output
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/24Pc safety
    • G05B2219/24182Redundancy

Definitions

  • the invention belongs to the technical field of automatic control, and is applied to the application field of functional safety protection, more specifically to the current reliability output in the functional safety application field, and specifically to a circuit method for improving the reliability of current output in triple redundancy.
  • the output of current is generally dominated by single-channel output, while in the field of functional safety applications, in order to improve the reliability of products, multiple design schemes are generally used.
  • the traditional method is to control the opening or closing of the control loop of each branch in turn through software control. This method relies on the control logic of the software. If the software works abnormally, there is still a risk of the current being output at the same time.
  • Figure 1 shows the traditional triple current output scheme.
  • Current output branch channel 1 is a triplet 1-unit current output loop, branch channel control 1 is a 1-unit output enable/disable switch selection;
  • current output branch channel 2 is a triplet 2-unit current output loop , the branch channel control 2 is the output enable/disable switch selection of 2 units;
  • the current output branch channel 3 is the triple current output loop of 3 units, and the branch channel control 3 is the output enable/disable switch of 3 units choose.
  • one of them is selected as the output through the configuration software or the triple embedded logic, and the outputs of the other two are prohibited, and are finally aggregated into the current total output loop for external output.
  • This method relies on the final output result of the software, and when the software fails, the final current output may have outputs from multiple loops.
  • the purpose of the present invention is to provide a circuit method for improving the reliability of current output in triple redundancy, select corresponding current output loops through inputs under different logics, and ensure that after one of the three redundant loops is gated , and at the same time lock other loops or the total loop to ensure the reliability of the final output current from the hardware, even if the software fails in the configuration, it can also ensure the safety of the final output.
  • a circuit method for improving the reliability of current output in triple redundancy characterized in that: after the current output is tripled, there is only one output at most, and each independent current output branch channel has a branch channel control enable power signal, the final trunk has a trunk switch, and the trunk switch is controlled by the trunk control logic.
  • the trunk control logic has a limited relationship of gating at most one channel for the control logic of the branch channel, thereby ensuring the final output. There is no multi-channel superposition of current; the details are as follows:
  • Tributary channel output enable 1 a switch signal used to control tributary channel 1 to allow or disable output;
  • Tributary channel output enable 2 a switch signal used to control tributary channel 2 to allow or disable output;
  • Tributary channel output enable 3 a switch signal used to control tributary channel 3 to allow or disable output;
  • Branch channel control 1 Accept the current output enable command of one of the triplet units
  • Branch channel control 2 Accept the current output enable command of 2 units of the triplet
  • Branch channel control 3 Accept the current output enable command of 3 units of the triplet
  • Main circuit switch used to control the final current output, when there is a current output command that does not conform to the logical judgment, the main circuit switch cuts off the total output circuit to ensure the final external safety and reliability; when there is an allowable current output command , the main circuit switch closes the switch of the output circuit to ensure normal external control;
  • the tripled current output loops are controlled by mutually independent current output branch channels; each mutually independent current output branch channel includes a current output branch channel and a branch channel output enable; the main circuit control logic is a kind of The logic of choosing two from three, the selected logic comes from the tributary channel output enable 1, tributary channel output enable 2 and tributary channel output enable 3; tributary channel control 1, tributary channel control 2. There is no coupling relationship between branch channel control 3, which is controlled by the control loop of its own unit.
  • the three current output branch channel signals are controlled by the respective units of the triplet, wherein:
  • the current output branch channel 3 and the branch channel output enable 3 are controlled by the output control of the triplet third unit;
  • the main circuit control logic is the common logic input control of the three units in a triplet, so as to realize the control of the main circuit switch and the optimization of the execution of the three branches.
  • the total current output is equal to the current of one of the gated branch channels that the configuration requires to output.
  • the triple current output application is generally the current output control signal sent to the unit by three independent control units, which are called current output branch channel 1, current output branch channel 2, and current output branch channel in the present invention. 3.
  • the priority of the three triple units is equal, and there is no distinction between high and low. Therefore, before actual use, it is necessary to configure which channel is the final output circuit.
  • This part is also the circuit designed in the triple application at present.
  • the present invention adds a logic switch to the final trunk circuit.
  • the control logic of the logic switch also comes from the configuration of which channel is selected as the output. Signal. More specifically, the main circuit control logic adopts a three-out-of-two application logic, and through the logic design in the present invention, the reliability of the current output is finally improved.
  • the final external output of the tripled current output loop is kept at most so that only one channel loop is allowed to output to the outside, which completely avoids the unreliable output caused by software failure. Greatly improves the availability and safety of current output in triplet applications.
  • FIG. 1 is a schematic diagram of the current output under the traditional triple redundancy.
  • FIG. 2 is a schematic block diagram for improving the reliability of current output provided by the present invention.
  • FIG. 3 is a schematic diagram of a specific application circuit that can embody the idea of the present invention.
  • a logic optimization scheme proposed by the present invention adds two parts, the main circuit control logic and the main circuit switch, on the basis of the original traditional current output.
  • the main circuit switch part is set on the loop after the three currents are summed up. Whether the opening of the switch is affected by the main circuit control logic, and the final output result of the main circuit control logic depends on the branches of the three current output branch channels. Simultaneous configuration of channel output enable 1, tributary channel output enable 2, and tributary channel output enable 3.
  • a circuit method for improving the reliability of current output in triple redundancy After the current output is tripled, there is only one output at most, and each independent current output branch channel has a branch channel control enable signal.
  • the main circuit has a main circuit switch, and the main circuit switch is controlled by the main circuit control logic.
  • the main circuit control logic has a limited relationship to the control logic of the branch channel that the control logic of the branch channel can be gated at most, so as to ensure that the final output current does not exist too much.
  • Road stacking as follows:
  • Tributary channel output enable 1 a switch signal used to control tributary channel 1 to allow or disable output;
  • Tributary channel output enable 2 a switch signal used to control tributary channel 2 to allow or disable output;
  • Tributary channel output enable 3 a switch signal used to control tributary channel 3 to allow or disable output;
  • Branch channel control 1 Accept the current output enable command of one of the triplet units
  • Branch channel control 2 Accept the current output enable command of 2 units of the triplet
  • Branch channel control 3 Accept the current output enable command of 3 units of the triplet
  • Main circuit switch used to control the final current output, when there is a current output command that does not conform to the logical judgment, the main circuit switch cuts off the total output circuit to ensure the final external safety and reliability; when there is an allowable current output command , the main circuit switch closes the switch of the output circuit to ensure normal external control;
  • the tripled current output loops are controlled by mutually independent current output branch channels; each mutually independent current output branch channel includes a current output branch channel and a branch channel output enable; the main circuit control logic is a kind of The logic of choosing two from three, the selected logic comes from the tributary channel output enable 1, tributary channel output enable 2 and tributary channel output enable 3; tributary channel control 1, tributary channel control 2. There is no coupling relationship between branch channel control 3, which is controlled by the control loop of its own unit.
  • example 1 is the channel enabling output
  • 0 is the branch prohibiting output
  • unit control logic 2 unit control logic 3 unit control logic Three out of two logic 1 1 1 1 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
  • the mains control logic When more than 2 current output branch channels are gated, the mains control logic will cut off the mains switch; when no more than 2 current output branch channels are gated, the mains control logic will not cut off the mains road switch.
  • the enable/disable of the trunk switch of the trunk control logic is logically opposite to that of the tributary channel control 1 or the tributary channel control 2 or the tributary channel control 3; the tributary channel control 1, the tributary channel control 2 and the tributary channel control
  • the logic of enabling/disabling the channel for channel control 3 is the same.
  • Trunk control logic
  • the logic used to control the closing and opening of mains switches Receive control signals from the outputs of all tripled units (tributary channel output enable 1, tributary channel output enable 2, tributary channel output enable 3) to implement the logic of taking two out of three.
  • tributary channel output enable 1 When tributary channel output enable 1 is selected as output, tributary channel output enable 2 disables output, and tributary channel output enable 3 disables output:
  • the main circuit control logic implements a three-out-of-two logic, and votes out the result of 0 according to the three input channel states of 1, 0, and 0. Since the controller logic of the main circuit switch is opposite, the output of the main circuit switch is the allowable output, and the system finally The output is the output of channel 1 of the current output branch channel.
  • tributary channel output enable 2 When tributary channel output enable 2 is selected as output, tributary channel output enable 1 disables output, and tributary channel output enable 3 disables output:
  • the main circuit control logic implements a three-out-of-two logic, and votes out the result of 0 according to the three input channel states of 0, 1, and 0. Since the controller logic of the main circuit switch is opposite, the output of the main circuit switch is the allowable output, and the system finally The output is the output of channel 2 of the current output branch channel.
  • tributary channel output enable 3 When tributary channel output enable 3 is selected as output, tributary channel output enable 1 disables output, and tributary channel output enable 2 disables output:
  • the main circuit control logic implements a three-out-of-two logic, and votes out the result of 0 according to the input status of the three channels: 0, 0, and 1. Since the controller logic of the main circuit switch is opposite, the output of the main circuit switch is the allowable output, and the system finally The output is the output of channel 3 of the current output branch channel.
  • tributary channel output enable 1 When tributary channel output enable 1 is selected as output, tributary channel output enable 2 is selected as output, and tributary channel output enable 3 is disabled for output:
  • the main circuit control logic implements a three-out-of-two logic, and votes out the result of 1 according to the three input channel states of 1, 1, and 0. Since the controller logic of the main circuit switch is opposite, the output of the main circuit switch is prohibited output, and the system finally The output is no current output.
  • tributary channel output enable 1 When tributary channel output enable 1 is selected as output, tributary channel output enable 2 is disabled for output, and tributary channel output enable 3 is selected as output:
  • the main circuit control logic implements a three-out-of-two logic, and votes out the result of 1 according to the input status of the three channels 1, 0, and 1. Since the controller logic of the main circuit switch is opposite, the output of the main circuit switch is prohibited output, and the system finally The output is no current output.
  • tributary channel output enable 1 When tributary channel output enable 1 is disabled output, tributary channel output enable 2 is selected as output, and tributary channel output enable 3 is selected as output:
  • the main circuit control logic implements a three-out-of-two logic, and votes out the result of 1 according to the three input channel states of 0, 1, and 1. Since the controller logic of the main circuit switch is opposite, the output of the main circuit switch is prohibited output, and the system finally The output is no current output.
  • tributary channel output enable 1 When tributary channel output enable 1 is selected as output, tributary channel output enable 2 is selected as output, and tributary channel output enable 3 is selected as output:
  • the main circuit control logic implements a three-out-of-two logic, and votes out the result of 1 according to the input state of the three channels 1, 1, and 1. Since the controller logic of the main circuit switch is opposite, the output of the main circuit switch is prohibited output, and the system finally The output is no current output.
  • tributary channel output enable 1 When tributary channel output enable 1 is output prohibited, tributary channel output enable 2 is output prohibited, and tributary channel output enable 3 is output prohibited:
  • the main circuit control logic implements a three-out-of-two logic, and votes out a result of 1 according to the three channel states of the input 0, 0, and 0. Since the controller logic of the main circuit switch is the opposite, although the output of the main circuit switch is the allowable output at this moment, But the output of each branch is prohibited, so the overall external output is still no current output.
  • FIG. 3 The way shown in FIG. 3 is a specific application circuit based on the idea of the present invention.
  • the branch channel control of each triplet current output branch channel uses an optocoupler switch, the output loop is connected to the output end of the optocoupler, one end of the control end is connected to a fixed resistor and power supply, and the other end is connected to the output control of the unit. pin, in the case of this figure, when the control pin outputs a low level, the optocoupler is turned on, and the output of this unit is turned on, otherwise the unit is disconnected.
  • the power supply and current-limiting resistor are selected according to the actual optocoupler control parameters.
  • the optocoupler requires a conduction current of 3mA
  • the current-limiting resistor is selected as 5100 ohms, and the low level given by the control terminal finally reaches the light.
  • the coupling pin should be the reference ground plane of the 15V power supply.
  • the output end of the optocoupler U4 is connected to the main circuit circuit.
  • pin 2 of U4 is grounded, and pin 1 of U4 is connected to one end of the main circuit control logic.
  • the other end of the main circuit control logic is connected with a current limiting resistor and a power supply, and the size of the power supply and the current limiting resistor is consistent with the current output branch channel.
  • the trunk control logic is connected as shown in the figure, the branch channel control 1 signal is connected to switch S1, the branch channel controller 2 signal is connected to switch S2, the branch channel control 3 signal is connected to switch S3, the branch channel control 1 and
  • the logical AND signal of branch channel control 2 is connected to switch S4. Switches S1 and S2 are connected in parallel, S3 and S4 are connected in parallel, and the two groups are connected in parallel and then connected in series.
  • the two-out-of-three option for the main road control logic is only a typical embodiment, and the specific embodiments described in the present invention cannot be used to limit the protection scope of this scheme, as long as the implementation of the alternative-out-of-three scheme is within the scope of this scheme .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Use Of Switch Circuits For Exchanges And Methods Of Control Of Multiplex Exchanges (AREA)
  • Safety Devices In Control Systems (AREA)

Abstract

一种三重冗余中提高电流输出可靠性的电路方法,在电流输出三重化后最终最多仅有一路输出,每个独立的电流输出支路通道上均有一个支路通道控制使能信号,最终的干路有一个干路开关,干路开关受控于干路控制逻辑,干路控制逻辑对于支路通道的控制逻辑存在最多选通一路工作的限定关系,进而保证最终输出电流不存在多路叠加。本发明通过不同逻辑下的输入选择相应的电流输出回路,确保三冗余回路中一路选通后,同时将其他回路或者总回路锁定,从硬件上保证了最终输出电流的可靠,即使软件在配置中发生故障后也能保证最终输出的安全。

Description

一种三重冗余中提高电流输出可靠性的电路方法 技术领域
本发明属于自动控制技术领域,应用于功能安全保护应用领域,更具体的说是功能安全应用领域下的电流可靠性输出,具体是一种三重冗余中提高电流输出可靠性的电路方法。
背景技术
自动控制应用中,电流的输出一般为单路输出为主,而在功能安全应用领域中,为了提高产品的可靠性,一般采用多重化的设计方案。电流的多重化设计时,由于电流会存在并联输出后总回路输出叠加的问题,传统的方法是通过软件控制的方式依次控制每一个分支的控制回路的打开或者关闭。此种方法依赖于软件的控制逻辑,如果软件工作异常后,电流仍会存在同时输出出去的风险。
如图1为传统的三重化的电流输出方案。电流输出支路通道1为三重化的1单元的电流输出回路,支路通道控制1为1单元的输出使能/禁止开关选择;电流输出支路通道2为三重化的2单元的电流输出回路,支路通道控制2为2单元的输出使能/禁止开关选择;电流输出支路通道3为三重化的3单元的电流输出回路,支路通道控制3为3单元的输出使能/禁止开关选择。在使用时,通过配置软件或者三重化的嵌入式逻辑选择其中的一路作为输出,其他两路的输出禁止,最终汇总到电流总输出回路中对外输出。此种方法依赖软件的最终输出结果,而当软件发生故障时,最终的电流输出可能存在多个回路均有输出的情况。
发明内容
鉴于传统方案的不足,本发明的目的是提供一种三重冗余中提高电流输出可靠性的电路方法,通过不同逻辑下的输入选择相应的电流输出回路,确保三冗余回路中一路选通后,同时将其他回路或者总回路锁定,从硬件上保证了最终输出电流的可靠,即使软件在配置中发生故障后也能保证最终输出的安全。
本发明的目的通过以下技术方案实现:
一种三重冗余中提高电流输出可靠性的电路方法,其特征在于:在电流输出三重化后最终最多仅有一路输出,每个独立的电流输出支路通道上均有一个支路通道控制使能 信号,最终的干路有一个干路开关,干路开关受控于干路控制逻辑,该干路控制逻辑对于支路通道的控制逻辑存在最多选通一路工作的限定关系,进而保证最终输出电流不存在多路叠加;具体如下:
支路通道输出使能1:用于控制支路通道1允许输出或禁止输出的开关信号;
支路通道输出使能2:用于控制支路通道2允许输出或禁止输出的开关信号;
支路通道输出使能3:用于控制支路通道3允许输出或禁止输出的开关信号;
支路通道控制1:接受三重化的其中1单元的电流输出使能指令;
支路通道控制2:接受三重化的其中2单元的电流输出使能指令;
支路通道控制3:接受三重化的其中3单元的电流输出使能指令;
干路开关:用于控制最终的电流输出,当出现不符合逻辑判断的电流输出指令时,干路开关切断总的输出回路,以保证最终对外的安全可靠性;当出现允许的电流输出指令时,干路开关闭合输出回路的开关,保证对外的正常控制;
其中:
三重化的电流输出回路分别受控于互相独立的电流输出支路通道;每个相互独立的电流输出支路通道包括电流输出支路通道和支路通道输出使能;干路控制逻辑是一种三选二的逻辑,所选的逻辑来自于三个分支的支路通道输出使能1,支路通道输出使能2和支路通道输出使能3;支路通道控制1,支路通道控制2,支路通道控制3之间不存在耦合关系,分别受控于本身单元的控制回路。
本发明中,三个电流输出支路通道信号分别受控制于三重化的各自单元,其中:
电流输出支路通道1和支路通道输出使能1受控于三重化的第1单元的输出控制;
电流输出支路通道2和支路通道输出使能2受控于三重化的第2单元的输出控制;
电流输出支路通道3和支路通道输出使能3受控于三重化的第3单元的输出控制;
干路控制逻辑是三重化的三个单元的共同逻辑输控制,以实现对干路开关的控制和对三个分支执行的优选。
电流总输出与配置要求输出的其中1个被选通支路通道电流相等。
三重化的电流输出应用一般是由独立的三个控制单元发送给本单元的电流输出控制信号,在本发明中称为电流输出支路通道1,电流输出支路通道2,电流输出支路通道3。在三重化设计的应用中,三个三重化的单元在优先级上是等同的,不存在高低之分,因 而在实际使用前,需要配置哪一个通道为最终输出回路。这部分也是目前在三重化应用中都设计的电路,本发明在这个基础上在最终的干路回路上增加了一个逻辑开关,该逻辑开关的控制逻辑也来自于选通哪个通道作为输出的配置信号。更明确的是这个干路控制逻辑采用的是一种三取二的应用逻辑,经过本发明中的逻辑设计,最终提高电流输出可靠性。
本发明中,三重化的电流输出回路最终对外的输出最多保持为仅有1个通道回路被允许输出至外部,完全避免了由于软件故障带来的对于输出不可靠的影响。大大提高了在三重化应用下的电流输出的可用性及安全性。
附图说明
图1为传统的三重冗余下的电流输出示意图。
图2为本发明给出的提高电流输出可靠性的原理图框图。
图3为一种可以体现本发明思想的具体应用电路示意图。
具体实施方式
下面结合附图对本发明及本发明提出的实际应用电路进一步说明,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图2所示的方式,本发明提出的一种逻辑优化方案,在原先传统的电流输出基础上增加干路控制逻辑和干路开关两个部分。其中干路开关部分设置在三路电流汇总之后的回路上,该开关的打开是否受干路控制逻辑的影响,而干路控制逻辑的最终输出结果是取决于三个电流输出支路通道的支路通道输出使能1、支路通道输出使能2、支路通道输出使能3的同时配置情况。
一种三重冗余中提高电流输出可靠性的电路方法,在电流输出三重化后最终最多仅有一路输出,每个独立的电流输出支路通道上均有一个支路通道控制使能信号,最终的干路有一个干路开关,干路开关受控于干路控制逻辑,该干路控制逻辑对于支路通道的控制逻辑存在最多选通一路工作的限定关系,进而保证最终输出电流不存在多路叠加;具体如下:
支路通道输出使能1:用于控制支路通道1允许输出或禁止输出的开关信号;
支路通道输出使能2:用于控制支路通道2允许输出或禁止输出的开关信号;
支路通道输出使能3:用于控制支路通道3允许输出或禁止输出的开关信号;
支路通道控制1:接受三重化的其中1单元的电流输出使能指令;
支路通道控制2:接受三重化的其中2单元的电流输出使能指令;
支路通道控制3:接受三重化的其中3单元的电流输出使能指令;
干路开关:用于控制最终的电流输出,当出现不符合逻辑判断的电流输出指令时,干路开关切断总的输出回路,以保证最终对外的安全可靠性;当出现允许的电流输出指令时,干路开关闭合输出回路的开关,保证对外的正常控制;
其中:
三重化的电流输出回路分别受控于互相独立的电流输出支路通道;每个相互独立的电流输出支路通道包括电流输出支路通道和支路通道输出使能;干路控制逻辑是一种三选二的逻辑,所选的逻辑来自于三个分支的支路通道输出使能1,支路通道输出使能2和支路通道输出使能3;支路通道控制1,支路通道控制2,支路通道控制3之间不存在耦合关系,分别受控于本身单元的控制回路。
三取二的逻辑满足以下的逻辑关系,表1中示例1为通道允许输出,0为分支禁止输出:
表1
1单元控制逻辑 2单元控制逻辑 3单元控制逻辑 三取二逻辑
1 1 1 1
1 1 0 1
1 0 1 1
0 1 1 1
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 0
当超过2个电流输出支路通道的回路被选通时,干路控制逻辑将会切断干路开关;当不超过2个电流输出支路通道被选通时,干路控制逻辑不会切断干路开关。
干路控制逻辑的干路开关的使能/禁止是与支路通道控制1或支路通道控制2或支路通道控制3逻辑上相反;支路通道控制1,支路通道控制2和支路通道控制3的使能/禁止通道的逻辑为相同。
干路控制逻辑:
用于控制干路开关的闭合和断开的逻辑。接收来自三重化的所有单元的输出的控制信号(支路通道输出使能1,支路通道输出使能2,支路通道输出使能3),实现三取二的逻辑。
下面将进一步描述本发明的工作流程,为了方便描述,定义“1”为通道使能/打开,定义“0”为通道禁止/关断。
1、当支路通道输出使能1被选择为输出,支路通道输出使能2禁止输出,支路通道输出使能3禁止输出时:
干路控制逻辑执行三取二逻辑,根据输入的1,0,0三个通道状态表决出0的结果,由于干路开关的控制器逻辑为相反,因此干路开关输出为允许输出,系统最终的输出为电流输出支路通道1通道的输出。
2、当支路通道输出使能2被选择为输出,支路通道输出使能1禁止输出,支路通道输出使能3禁止输出时:
干路控制逻辑执行三取二逻辑,根据输入的0,1,0三个通道状态表决出0的结果,由于干路开关的控制器逻辑为相反,因此干路开关输出为允许输出,系统最终的输出为电流输出支路通道2通道的输出。
3、当支路通道输出使能3被选择为输出,支路通道输出使能1禁止输出,支路通道输出使能2禁止输出时:
干路控制逻辑执行三取二逻辑,根据输入的0,0,1三个通道状态表决出0的结果,由于干路开关的控制器逻辑为相反,因此干路开关输出为允许输出,系统最终的输出为电流输出支路通道3通道的输出。
4、当支路通道输出使能1被选择为输出,支路通道输出使能2被选择为输出,支路通道输出使能3禁止输出时:
干路控制逻辑执行三取二逻辑,根据输入的1,1,0三个通道状态表决出1的结果,由于干路开关的控制器逻辑为相反,因此干路开关输出为禁止输出,系统最终的输出为 无电流输出。
5、当支路通道输出使能1被选择为输出,支路通道输出使能2禁止输出,支路通道输出使能3被选择为输出时:
干路控制逻辑执行三取二逻辑,根据输入的1,0,1三个通道状态表决出1的结果,由于干路开关的控制器逻辑为相反,因此干路开关输出为禁止输出,系统最终的输出为无电流输出。
6、当支路通道输出使能1为禁止输出,支路通道输出使能2被选择为输出,支路通道输出使能3被选择为输出时:
干路控制逻辑执行三取二逻辑,根据输入的0,1,1三个通道状态表决出1的结果,由于干路开关的控制器逻辑为相反,因此干路开关输出为禁止输出,系统最终的输出为无电流输出。
7、当支路通道输出使能1被选择为输出,支路通道输出使能2被选择为输出,支路通道输出使能3被选择为输出时:
干路控制逻辑执行三取二逻辑,根据输入的1,1,1三个通道状态表决出1的结果,由于干路开关的控制器逻辑为相反,因此干路开关输出为禁止输出,系统最终的输出为无电流输出。
8、当支路通道输出使能1为禁止输出,支路通道输出使能2为禁止输出,支路通道输出使能3为禁止输出时:
干路控制逻辑执行三取二逻辑,根据输入的0,0,0三个通道状态表决出1的结果,由于干路开关的控制器逻辑为相反,尽管此刻干路开关的输出为允许输出,但是每个分支的输出是被禁止的,因此整体对外的输出仍是无电流输出。
如图3所示的方式,是基于本发明思路的一种具体应用电路。
每个三重化的电流输出支路通道的支路通道控制使用一个光耦开关,输出回路接在光耦的输出端,控制端一端接固定的电阻和电源,另一端接在本单元的输出控制引脚,在本图中的案例中,当控制引脚输出低电平时,光耦导通,本单元的输出打开,否则本单元断开。电源和限流电阻依据实际的光耦控制参数选取,举例为:光耦要求导通电流为3mA时,电源15V时,限流电阻选取为5100欧姆,控制端给出的低电平最终到达光耦引脚处应为15V电源的参考地平面。
图3的干路开关设计中,光耦U4的输出端接在干路回路上,为了达到要求的逻辑相反的要求,U4的2脚接地,U4的1脚接干路控制逻辑的一端。干路控制逻辑的另一端接限流电阻和电源,该电源和限流电阻的大小与电流输出支路通道保持一致。干路控制逻辑如图接法,支路通道控制1信号接入到开关S1,支路通道控制器2信号接入开关S2,支路通道控制3信号接入开关S3,支路通道控制1和支路通道控制2的逻辑与后信号接入到开关S4。开关S1和S2是并接,S3和S4是并接,两组并接后再串联接在一起。
开关逻辑的真值如表2:
表2
Figure PCTCN2020112255-appb-000001
如上表所示,当干路控制逻辑为0时,说明此刻电流分支至少有2条支路通道的电源被选通,三取二的结果导致干路的电源没有被接通,因此干路开关U4没有导通。当干路控制逻辑为1时,说明此刻电流分支至少一路输出是被选通的或者是一路都没有选通,通过对逻辑的组合控制,使能最终能输出的电流至多只有1路是可以输出的。
选择光耦作为控制器件并非是唯一选择,在不涉及有其他创新点的设计上,用于能实现信号逻辑控制回路关或闭的器件都是本发明所述的方案范围之内;
干路控制逻辑的三选二只是一种典型的实施例,本发明所描述的具体实施例不能作为限定本方案的保护范围,只要是实现三选二方案均是本方案所包括的范围之内。

Claims (8)

  1. 一种三重冗余中提高电流输出可靠性的电路方法,其特征在于:在电流输出三重化后最终最多仅有一路输出,每个独立的电流输出支路通道上均有一个支路通道控制使能信号,最终的干路有一个干路开关,干路开关受控于干路控制逻辑,该干路控制逻辑对于支路通道的控制逻辑存在最多选通一路工作的限定关系,进而保证最终输出电流不存在多路叠加;具体如下:
    支路通道输出使能1:用于控制支路通道1允许输出或禁止输出的开关信号;
    支路通道输出使能2:用于控制支路通道2允许输出或禁止输出的开关信号;
    支路通道输出使能3:用于控制支路通道3允许输出或禁止输出的开关信号;
    支路通道控制1:接受三重化的其中1单元的电流输出使能指令;
    支路通道控制2:接受三重化的其中2单元的电流输出使能指令;
    支路通道控制3:接受三重化的其中3单元的电流输出使能指令;
    干路开关:用于控制最终的电流输出,当出现不符合逻辑判断的电流输出指令时,干路开关切断总的输出回路,以保证最终对外的安全可靠性;当出现允许的电流输出指令时,干路开关闭合输出回路的开关,保证对外的正常控制;
    其中:
    三重化的电流输出回路分别受控于互相独立的电流输出支路通道;每个相互独立的电流输出支路通道包括电流输出支路通道和支路通道输出使能;干路控制逻辑是一种三选二的逻辑,所选的逻辑来自于三个分支的支路通道输出使能1,支路通道输出使能2和支路通道输出使能3;支路通道控制1,支路通道控制2,支路通道控制3之间不存在耦合关系,分别受控于本身单元的控制回路。
  2. 根据权利要求1所述的三重冗余中提高电流输出可靠性的电路方法,其特征在于:三个电流输出支路通道信号分别受控制于三重化的各自单元,其中:
    电流输出支路通道1和支路通道输出使能1受控于三重化的第1单元的输出控制;
    电流输出支路通道2和支路通道输出使能2受控于三重化的第2单元的输出控制;
    电流输出支路通道3和支路通道输出使能3受控于三重化的第3单元的输出控制;
  3. 根据权利要求1所述的三重冗余中提高电流输出可靠性的电路方法,其特征在于:干路控制逻辑是三重化的三个单元的共同逻辑输控制,以实现对干路开关的控制和对 三个分支执行的优选。
  4. 根据权利要求1所述的三重冗余中提高电流输出可靠性的电路方法,其特征在于:电流总输出与配置要求输出的其中1个被选通支路通道电流相等。
  5. 根据权利要求1所述的三重冗余中提高电流输出可靠性的电路方法,其特征在于:三取二的逻辑满足以下的逻辑关系,表中示例1为通道允许输出,0为分支禁止输出:
    1单元控制逻辑 2单元控制逻辑 3单元控制逻辑 三取二逻辑 1 1 1 1 1 1 0 1 1 0 1 1 0 1 1 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0
  6. 根据权利要求1所述的三重冗余中提高电流输出可靠性的电路方法,其特征在于:当超过2个电流输出支路通道的回路被选通时,干路控制逻辑将会切断干路开关;当不超过2个电流输出支路通道被选通时,干路控制逻辑不会切断干路开关。
  7. 根据权利要求6所述的三重冗余中提高电流输出可靠性的电路方法,其特征在于:干路控制逻辑的干路开关的使能/禁止是与支路通道控制1或支路通道控制2或支路通道控制3逻辑上相反;支路通道控制1,支路通道控制2和支路通道控制3的使能/禁止通道的逻辑为相同。
  8. 根据权利要求1所述的三重冗余中提高电流输出可靠性的电路方法,其特征在于:具体如下:
    支路通道控制1采用光耦作为控制器件,其中光耦的输入控制侧引脚1串接限流电阻后至电源的正端,负端引脚2接来自于控制单元的支路通道输出使能1,所述光耦的输出端引脚4接本单元的电流输出引脚,输出端引脚3接干路控制的输出引脚4;
    所述支路通道控制2和支路通道控制3与支路通道控制1的接法相同;
    干路开关采用光耦作为控制器件,输入引脚1接开关S3和开关S4的右侧公共端,输入引脚2接信号参考地,输出引脚3接外部电流输出端子,输出引脚4接支路通道控制1、支路通道控制2、支路通道控制3的公共点;
    干路控制逻辑采用四个开关来实施,其中开关S1和S2是并联,S3和S4是并联,S1和S2并联的结果再与S3和S4并联的结果进行串联;S1和S2的左侧公共端通过限流电阻R1连接到电源,S3和S4的右侧公共端连接至干路开关光耦的输入1脚;
    开关S1的控制信号是支路通道输出使能1,开关S2的控制信号是支路通道输出使能2,开关S3的控制信号是支路通道输出使能3,开关S4的控制信号是支路通道输出使能1和支路通道输出使能2信号逻辑与的共同结果。
PCT/CN2020/112255 2020-07-15 2020-08-28 一种三重冗余中提高电流输出可靠性的电路方法 WO2022011801A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010677507.6A CN111679621B (zh) 2020-07-15 2020-07-15 一种三重冗余中提高电流输出可靠性的电路方法
CN202010677507.6 2020-07-15

Publications (1)

Publication Number Publication Date
WO2022011801A1 true WO2022011801A1 (zh) 2022-01-20

Family

ID=72457648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/112255 WO2022011801A1 (zh) 2020-07-15 2020-08-28 一种三重冗余中提高电流输出可靠性的电路方法

Country Status (2)

Country Link
CN (1) CN111679621B (zh)
WO (1) WO2022011801A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116885937A (zh) * 2023-09-04 2023-10-13 西安千帆翼数字能源技术有限公司 一种四相四桥臂逆变器逐波限流方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101046678A (zh) * 2007-03-09 2007-10-03 北京交通大学 三模冗余安全计算机中输出的安全关断方法及装置
CN103293949A (zh) * 2013-06-08 2013-09-11 杭州和利时自动化有限公司 开关量输出通道冗余容错控制方法及冗余开关量输出通道
CN203561843U (zh) * 2013-06-08 2014-04-23 杭州和利时自动化有限公司 一种冗余开关量输出通道
CN107145065A (zh) * 2017-05-22 2017-09-08 上海自动化仪表有限公司 基于三冗余输出控制装置
US20170357557A1 (en) * 2016-06-08 2017-12-14 Qualcomm Incorporated System and method for false pass detection in lockstep dual core or triple modular redundancy (tmr) systems
CN108494395A (zh) * 2018-03-19 2018-09-04 杭州和利时自动化有限公司 一种三重化冗余系统的do模块及其输出表决电路

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3805921A1 (de) * 1988-02-25 1989-09-07 Flachenecker Gerhard Hochfrequenz-leistungsgenerator
US7877622B2 (en) * 2007-12-13 2011-01-25 International Business Machines Corporation Selecting between high availability redundant power supply modes for powering a computer system
CN102064689B (zh) * 2010-12-30 2013-01-30 南京航空航天大学 二极管并联的自动均流技术
EP2551743B1 (en) * 2011-07-27 2014-07-16 ams AG Low-dropout regulator and method for voltage regulation
CN102510598A (zh) * 2011-09-01 2012-06-20 上海显恒光电科技股份有限公司 一种可调电流的多路led驱动控制系统及控制方法
CN103457346B (zh) * 2012-06-01 2017-06-27 研祥智能科技股份有限公司 一种电源系统及其电源冗余控制电路
US9269834B2 (en) * 2012-06-29 2016-02-23 Nxp B.V. Photovoltaic module monitoring and control
CN102769393B (zh) * 2012-07-30 2016-03-23 中煤科工集团重庆研究院有限公司 集成多路本安电源输入实现高带载能力的方法
CN102857101B (zh) * 2012-09-03 2015-03-18 无锡中星微电子有限公司 一种多输入单输出dc/dc转换器
DE102012021346A1 (de) * 2012-11-01 2014-08-28 Oerlikon Trading Ag, Trübbach Leistungsverteiler zur definierten sequenziellen Leistungsverteilung
EP3011645B1 (en) * 2013-06-18 2019-03-13 ASML Netherlands B.V. Lithographic method and system
CN103401401B (zh) * 2013-07-05 2016-07-06 西安电子科技大学 用于分离式大功率绝缘栅双极性晶体管的驱动电路
CN104377808A (zh) * 2014-11-14 2015-02-25 浪潮(北京)电子信息产业有限公司 一种通用多路供电装置
CN104796213B (zh) * 2015-03-19 2017-04-26 南京科远自动化集团股份有限公司 一种多重冗余控制器的时钟同步控制系统及方法
CN205212412U (zh) * 2015-12-22 2016-05-04 南京科远驱动技术有限公司 一种一台变频器带多台电机的保护报警系统
DE102016108933A1 (de) * 2016-05-13 2017-11-16 Dspace Digital Signal Processing And Control Engineering Gmbh Simulationsverfahren und Simulationsvorrichtung
CN106130537B (zh) * 2016-06-20 2019-09-03 北京安控科技股份有限公司 一种1oo2d功能安全数字量输出电路
CN106814604B (zh) * 2017-03-01 2020-04-10 北京航天自动控制研究所 一种三冗余无源独立电流互检断电重启系统及方法
CN107565802A (zh) * 2017-08-25 2018-01-09 北京精密机电控制设备研究所 一种用于大功率并联igbt模块的均流电路
CN110376931B (zh) * 2018-04-13 2021-05-07 沈阳中科博微科技股份有限公司 一种高诊断覆盖率的功能安全电流输出模块
CN109633247B (zh) * 2019-01-16 2024-02-27 中车青岛四方机车车辆股份有限公司 一种过流故障诊断系统、方法及列车
CN110492745B (zh) * 2019-08-15 2021-05-14 矽力杰半导体技术(杭州)有限公司 多输入单输出电路及其控制方法
CN110716423B (zh) * 2019-11-18 2021-08-31 南京科远智慧科技集团股份有限公司 一种应用于三重冗余超速保护装置的自动巡检方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101046678A (zh) * 2007-03-09 2007-10-03 北京交通大学 三模冗余安全计算机中输出的安全关断方法及装置
CN103293949A (zh) * 2013-06-08 2013-09-11 杭州和利时自动化有限公司 开关量输出通道冗余容错控制方法及冗余开关量输出通道
CN203561843U (zh) * 2013-06-08 2014-04-23 杭州和利时自动化有限公司 一种冗余开关量输出通道
US20170357557A1 (en) * 2016-06-08 2017-12-14 Qualcomm Incorporated System and method for false pass detection in lockstep dual core or triple modular redundancy (tmr) systems
CN107145065A (zh) * 2017-05-22 2017-09-08 上海自动化仪表有限公司 基于三冗余输出控制装置
CN108494395A (zh) * 2018-03-19 2018-09-04 杭州和利时自动化有限公司 一种三重化冗余系统的do模块及其输出表决电路

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116885937A (zh) * 2023-09-04 2023-10-13 西安千帆翼数字能源技术有限公司 一种四相四桥臂逆变器逐波限流方法及系统
CN116885937B (zh) * 2023-09-04 2023-12-08 西安千帆翼数字能源技术有限公司 一种三相四桥臂逆变器逐波限流方法及系统

Also Published As

Publication number Publication date
CN111679621A (zh) 2020-09-18
CN111679621B (zh) 2020-12-08

Similar Documents

Publication Publication Date Title
CN105449831B (zh) 一种主副电源自动切换系统及方法
US9625894B2 (en) Multi-channel control switchover logic
WO2022011801A1 (zh) 一种三重冗余中提高电流输出可靠性的电路方法
US20150195102A1 (en) Data transfer device system, network system, and method of changing configuration of network system
CN111510398A (zh) 用于控制平面网络中的冗余连接的控制设备和方法
WO2019206146A1 (zh) 计算机联锁系统及其切换控制方法、设备、存储介质
CN110347095A (zh) 一种应用于航空电热控制系统的三余度切换电路
CN107147388A (zh) 一种低潜通cmos三态输出电路
US20190341804A1 (en) Power source selection
CN106444514A (zh) 一种基于逻辑帧交互的高可靠双余度动力控制器
CN112182876A (zh) 一种双余度舵机通道故障切换系统及逻辑设计方法
WO2022056772A1 (zh) 一种自锁检测电路、装置及控制方法
CN212435663U (zh) 复位电路及复位系统
CN112394209A (zh) 一种带自锁保护的模拟信号余度切换系统
CN116165875A (zh) 一种车辆底盘控制器的冷备份控制系统及方法
CN111077764B (zh) 一种兼顾上电和复位的冷热备负载交叉控制方法及电路
JP3810361B2 (ja) 半導体集積回路および半導体集積回路の割込み要求出力方法
CN112230751B (zh) 一种高可靠三模冗余计算机供电电路
CN107203439A (zh) 基于PCIe的模块级冗余计算机
CN220122617U (zh) 电源防反接电路、车载域控制器及车辆
CN215376129U (zh) 电子设备及应用于电子设备的控制电路
CN103457879B (zh) 管理模块主从选举的方法、管理模块和模块化设备
CN117572799A (zh) 一种二线输入四线输出六种状态的控制电路
JPH0622020B2 (ja) 二重化情報処理システムにおける周辺バス制御装置
CN116095026A (zh) 交换机的bypass装置、方法及交换机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20945687

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20945687

Country of ref document: EP

Kind code of ref document: A1