WO2022011514A1 - 一种发电机控制方法、装置、电子设备及存储介质 - Google Patents

一种发电机控制方法、装置、电子设备及存储介质 Download PDF

Info

Publication number
WO2022011514A1
WO2022011514A1 PCT/CN2020/101709 CN2020101709W WO2022011514A1 WO 2022011514 A1 WO2022011514 A1 WO 2022011514A1 CN 2020101709 W CN2020101709 W CN 2020101709W WO 2022011514 A1 WO2022011514 A1 WO 2022011514A1
Authority
WO
WIPO (PCT)
Prior art keywords
generator
voltage
engine
controller
electrical network
Prior art date
Application number
PCT/CN2020/101709
Other languages
English (en)
French (fr)
Inventor
陈剑峰
Original Assignee
威睿电动汽车技术(宁波)有限公司
浙江吉利控股集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 威睿电动汽车技术(宁波)有限公司, 浙江吉利控股集团有限公司 filed Critical 威睿电动汽车技术(宁波)有限公司
Priority to CN202080101213.7A priority Critical patent/CN115768670A/zh
Priority to PCT/CN2020/101709 priority patent/WO2022011514A1/zh
Publication of WO2022011514A1 publication Critical patent/WO2022011514A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/50Control strategies for responding to system failures, e.g. for fault diagnosis, failsafe operation or limp mode

Definitions

  • the present application relates to the technical field of automobiles, and in particular, to a generator control method, device, electronic device and storage medium.
  • the gasoline-electric hybrid vehicle has the function of supplying power to the vehicle through a high-voltage battery to maintain the operation of the vehicle.
  • the high-voltage battery can supply power to the load of the high-voltage electrical network, and the high-voltage battery can also charge the low-voltage battery in the low-voltage electrical network through the DCDC controller.
  • the embodiments of the present application provide a generator control method, device, electronic device, and storage medium, which solve the problems that the vehicle functional system fails and the vehicle cannot continue to run safely after the high-voltage battery is abnormally disconnected.
  • an embodiment of the present application provides a generator control method, the control method is applied to a generator control system disposed in a vehicle, and the generator control system is respectively connected to a high-voltage electrical network and a low-voltage electrical network of the vehicle; the high-voltage electrical network Including a high-voltage battery and a high-voltage battery controller; the generator control system includes a generator, an engine and an engine controller, and the engine is connected to the generator; the method includes:
  • the generator is controlled to enter the working mode corresponding to the control signal, so that the generator can supply power to the low-voltage electrical network and the high-voltage electrical network to maintain the operation of the vehicle;
  • the control signal is determined by the engine controller according to the fault signal sent by the high-voltage battery controller and the obtained engine state; the trigger signal is generated by the high-voltage battery controller within a preset time after the high-voltage battery fails.
  • an embodiment of the present application provides a generator control device, the control device is applied to a generator control system disposed in a vehicle, and the generator control system is respectively connected to a high-voltage electrical network and a low-voltage electrical network of the vehicle;
  • the network includes the high-voltage battery and the high-voltage battery controller;
  • the generator control system includes the generator, the engine and the engine controller, and the engine and the generator are connected;
  • the device includes:
  • the control module is used to control the generator to enter the working mode corresponding to the control signal if the control signal from the engine controller and the trigger signal from the high-voltage battery controller are received, so that the generator supplies power to the low-voltage electrical network and the high-voltage electrical network , to keep the vehicle running;
  • the control signal is determined by the engine controller according to the fault signal sent by the high-voltage battery controller and the obtained engine state; the trigger signal is generated by the high-voltage battery controller within a preset time after the high-voltage battery fails.
  • an embodiment of the present application provides an electronic device, characterized in that the electronic device includes a processor and a memory, the memory stores at least one instruction or at least a piece of program, and the at least one instruction or at least a piece of program is loaded by the processor And execute the above generator control method.
  • an embodiment of the present application provides a computer storage medium, where at least one instruction or at least one program is stored in the storage medium, and at least one instruction or at least one program is loaded and executed by a processor to implement the above generator control method.
  • the generator control method, device, electronic device, and storage medium provided by the embodiments of the present application have the following beneficial effects:
  • the generator is controlled to enter the working mode corresponding to the control signal, so that the generator can supply power to the low-voltage electrical network and the high-voltage electrical network to maintain the operation of the vehicle;
  • the control signal is determined by the engine controller according to the fault signal sent by the high-voltage battery controller and the obtained engine state; the trigger signal is generated by the high-voltage battery controller within a preset time after the high-voltage battery fails. In this way, after the failure of the high-voltage battery, the operation of the vehicle functional system can be maintained, and the vehicle can continue to operate safely.
  • FIG. 1 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a generator control method provided by an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of multi-terminal data interaction in a generator control method provided by an embodiment of the present application
  • FIG. 4 is a control logic diagram of a generator provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a generator control device provided by an embodiment of the present application.
  • FIG. 6 is a hardware structural block diagram of a server of a generator control method provided by an embodiment of the present application.
  • FIG. 1 is a schematic diagram of an application scenario provided by an embodiment of the present application, including a generator control system disposed in a vehicle.
  • the generator control system includes a generator 101, a generator control device 102, an engine 103 and a
  • the engine controller 104, the engine 103 are connected to the generator 101;
  • the generator control system is respectively connected to the high-voltage electrical network and the low-voltage electrical network of the vehicle;
  • the high-voltage electrical network includes a high-voltage battery 105, a high-voltage battery controller 106, a high-voltage load and a drive motor;
  • the high-voltage battery 105 and the high-voltage battery controller 106 are connected to the high-voltage electrical network and the low-voltage electrical network through relays to maintain the operation of each device;
  • the high-voltage battery controller 106 When the high-voltage battery 105 fails, the high-voltage battery controller 106 will send a fault signal to the engine controller 104; the engine controller 104 The current engine state is obtained according to the received fault signal; the engine state includes an open state and an unopened state; the engine controller 104 sends a control signal to the generator control device 102 according to the obtained engine state, and the high-voltage battery controller 106 will be in the high-voltage battery at the same time.
  • the high-voltage battery controller 106 is wirelessly connected to the engine controller 104.
  • the high-voltage battery controller 106 can send a fault signal to the engine controller 104 through a wireless network.
  • the generator control device 102 is wirelessly connected to the engine controller 104, and the engine controller 104 sends a control signal to the generator control device 102 through a wireless network according to the acquired engine state.
  • the vehicle is a gasoline-electric hybrid model.
  • generator 101 bit ISG generator.
  • the generator can be used to maintain the high-voltage power supply of the entire vehicle, thereby maintaining the vehicle to continue to operate safely.
  • FIG. 2 is a schematic flowchart of a generator control method provided by an embodiment of the present application.
  • This specification provides the method operation steps such as the embodiment or the flowchart, but More or fewer operating steps may be included based on routine or non-creative work.
  • the sequence of steps enumerated in the embodiments is only one of the execution sequences of many steps, and does not represent the only execution sequence.
  • an actual system or server product is executed, it can be executed sequentially or in parallel (for example, in a parallel processor or multi-threaded processing environment) according to the embodiments or the methods shown in the accompanying drawings.
  • the method may include:
  • control the generator If the control signal from the engine controller and the trigger signal from the high-voltage battery controller are received, control the generator to enter a working mode corresponding to the control signal, so that the generator can supply power to the low-voltage electrical network and the high-voltage electrical network to maintain the vehicle
  • the control signal is determined by the engine controller according to the fault signal sent by the high-voltage battery controller and the obtained engine state; the trigger signal is generated by the high-voltage battery controller within a preset time after the high-voltage battery fails.
  • the control method is applied to a generator control system installed in a vehicle, and the generator control system is respectively connected to a high-voltage electrical network and a low-voltage electrical network of the vehicle;
  • the high-voltage electrical network includes a high-voltage battery and a high-voltage battery controller;
  • the engine control system includes a generator, an engine and an engine controller, and the engine is connected with the generator.
  • FIG. 1 when the high-voltage battery 105 is working normally, the operation of the high-voltage electrical network and the low-voltage electrical network is maintained according to the conventional high-voltage power flow shown by the dotted line.
  • the generator control method the high-voltage power flow of the present application shown by the solid line can continue to maintain the operation of the high-voltage electrical network and the vehicle functional systems in the low-voltage electrical network, thereby maintaining the safe operation of the vehicle.
  • FIG. 3 is a schematic flowchart of multi-terminal data interaction in a generator control method provided by an embodiment of the present application. The method may include:
  • the vehicle includes a generator control system, and the generator control system is respectively connected to the high-voltage electrical network and the low-voltage electrical network of the vehicle;
  • the high-voltage electrical network includes a high-voltage battery and a high-voltage battery controller;
  • the generator control system includes a generator, The engine, the engine controller and the generator control device, the engine is connected with the generator, and the generator control device is respectively connected with the engine controller and the generator.
  • the high-voltage battery controller determines that the high-voltage battery is faulty and cannot continue to supply power to the high-voltage electrical network and low-voltage electrical network of the vehicle, and cannot maintain the operation of the high-voltage components and the entire vehicle, then Send a fault signal to the engine.
  • S303 The engine controller obtains the engine state according to the fault signal.
  • the engine controller obtains the current engine state after receiving the fault signal of the high-voltage battery controller.
  • the engine state includes an off state and an on state; the engine takes different control measures according to different states.
  • the engine controller sends a torque request signal to the generator control device, and the generator control device outputs the corresponding torque value to the engine controller based on the torque request signal, so as to Start the engine.
  • the engine controller sends a control signal to the generator control device, so that the generator control device controls the generator to enter the working mode corresponding to the control signal.
  • the high-voltage battery controller sends a trigger signal to the generator control device.
  • the high-voltage battery controller sends a trigger signal to the generator control device within a preset time after the high-voltage battery fails, in order to shorten the control process.
  • the preset time is 5 seconds.
  • the generator control device controls the generator to enter a working mode corresponding to the control signal according to the received control signal and the trigger signal, so that the generator supplies power to the low-voltage electrical network and the high-voltage electrical network to maintain the operation of the vehicle.
  • the high-voltage battery controller sends a trigger signal to the generator control device within a preset time after the high-voltage battery fails, and the generator control device controls the generator to enter the corresponding control signal according to the received control signal and trigger signal. operating mode, so that the generator supplies power to the low-voltage electrical network and the high-voltage electrical network to maintain the operation of the vehicle. In this way, after the high-voltage battery fails, the generator can be used to maintain the high-voltage power supply of the entire vehicle, thereby maintaining the safe operation of the vehicle.
  • the generator control device controls the generator to enter the corresponding working mode. Specifically, by closing the loop between the set power generation voltage and the actual power generation voltage, the power generation can be stabilized at different engine speeds, thereby keeping the vehicle running continuously and safely. .
  • the principle is shown in formula (1):
  • Tm is the power generation load torque
  • is the generator speed
  • U is the power generation voltage
  • I is the power generation current
  • the goal is to keep U unchanged, and I will vary according to the power demand of the load, thus resulting in a change in the power generation load torque at the same speed.
  • suitable closed-loop control parameters need to be set, and the closed-loop parameters need to be obtained based on actual vehicle debugging.
  • an optional embodiment of controlling the generator to enter the working mode corresponding to the control signal includes: performing proportional-integral adjustment based on the obtained reference power generation voltage and the actual power generation voltage to obtain the power generation load torque; and determining the reference power according to the power generation load torque Generating current: Based on the obtained actual generating current and reference generating current, space vector pulse width modulation is performed to generate the control voltage of each phase of the generator.
  • FIG. 4 is a control logic diagram of a generator provided by an embodiment of the present application
  • U_ref is the obtained reference power generation voltage
  • U_act is the actual power generation voltage
  • the difference between the two is used for proportional integration (PI) adjustment to obtain the power generation load torque
  • the reference power generation current Id_ref is determined according to the load torque look-up table, and then Iq_ref can be calculated by the formula
  • Id_ref and Iq_ref are subjected to space vector pulse width modulation (SVPWM) to maintain the power generation voltage stability.
  • SVPWM space vector pulse width modulation
  • the low-voltage electrical network includes a low-voltage battery, a low-voltage load, and a controller of a vehicle functional system; the high-voltage electrical network also includes a high-voltage load and a drive motor.
  • the generator driven by the engine can generate electricity.
  • the voltage will not drop to 0V instantaneously, so that high voltage can be continuously supplied, other high-voltage components can be prevented from reporting faults, and the vehicle can continue to operate safely.
  • the embodiment of the present application also provides a generator control device, the control device is applied to a generator control system arranged in a vehicle, and the generator control system is respectively connected to a high-voltage electrical network and a low-voltage electrical network of the vehicle; the high-voltage electrical network includes a high-voltage electrical network.
  • the generator control system includes a generator, an engine, and an engine controller, and the engine is connected to the generator;
  • FIG. 5 is a schematic structural diagram of a generator control device provided in an embodiment of the present application, as shown in FIG. 5 . shown, the device includes:
  • the control module 501 is configured to control the generator to enter a working mode corresponding to the control signal if the control signal from the engine controller and the trigger signal from the high-voltage battery controller are received, so that the generator can connect to the low-voltage electrical network and the high-voltage electrical network. Power supply to maintain vehicle operation;
  • the control signal is determined by the engine controller according to the fault signal sent by the high-voltage battery controller and the obtained engine state; the trigger signal is generated by the high-voltage battery controller within a preset time after the high-voltage battery fails.
  • the device further includes:
  • the control module 501 is specifically configured to perform proportional-integral adjustment based on the obtained reference power generation voltage and the actual power generation voltage to obtain the power generation load torque; determine the reference power generation current according to the power generation load torque; perform a space vector pulse based on the obtained actual power generation current and the reference power generation current. Wide modulation to generate the control voltage for each phase of the generator.
  • the engine state includes a non-starting state
  • the device further includes:
  • a receiving module for receiving a torque request signal from the engine controller; the torque request signal is generated by the engine controller according to the non-starting state;
  • the output module is used for outputting the corresponding torque value to the engine controller based on the torque request signal to start the engine.
  • the low-voltage electrical network includes a low-voltage battery, a low-voltage load, and a controller of a vehicle functional system; the high-voltage electrical network further includes a high-voltage load and a drive motor.
  • the high pressure load includes an air conditioner compressor.
  • the controller of the vehicle function system includes any one or all of the controller of the electronic power steering system and the controller of the automatic braking system.
  • the generator is an ISG generator. Further, the ISG generator is a permanent magnet synchronous motor.
  • Fig. 6 is a hardware structural block diagram of a server of a generator control method provided by an embodiment of the present application. As shown in FIG.
  • the server 600 may vary greatly due to different configurations or performance, and may include one or more central processing units (Central Processing Units, CPU) 610 (the processor 610 may include, but is not limited to, a microprocessor A processor NCU or a programmable logic device FPGA, etc.), a memory 630 for storing data, and one or more storage media 620 (eg, one or more mass storage devices) for storing application programs 623 or data 622.
  • the memory 630 and the storage medium 620 may be short-term storage or persistent storage.
  • the program stored in the storage medium 620 may include one or more modules, and each module may include a series of instructions to operate on the server.
  • Server 600 may also include one or more power supplies 660, one or more wired or wireless network interfaces 650, one or more input and output interfaces 640, and/or, one or more operating systems 621, such as Windows, Mac OS, Unix, Linux, FreeBSD, etc.
  • Input-output interface 640 may be used to receive or transmit data via a network.
  • the specific example of the above-mentioned network may include a wireless network provided by the communication provider of the server 600 .
  • the I/O interface 640 includes a network adapter (Network Interface Controller, NIC), which can be connected to other network devices through the base station so as to communicate with the Internet.
  • the input-output interface 640 may be a radio frequency (Radio Frequency, RF) module, which is used to communicate with the Internet in a wireless manner.
  • RF Radio Frequency
  • server 600 may also include more or fewer components than shown in FIG. 6 , or have a different configuration than that shown in FIG. 6 .
  • Embodiments of the present application further provide a storage medium, where the storage medium can be set in a server to store at least one instruction, at least one program, and a code set for implementing a generator control method in the method embodiment or an instruction set, the at least one instruction, the at least one piece of program, the code set or the instruction set is loaded and executed by the processor to implement the above generator control method.
  • the above-mentioned storage medium may be located in at least one network server among multiple network servers of a computer network.
  • the above-mentioned storage medium may include but is not limited to: U disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), mobile hard disk, magnetic Various media that can store program codes, such as discs or optical discs.
  • a generator control method, device, electronic device or storage medium provided in this application that if a control signal from an engine and a trigger signal from a high-voltage battery are received in this application, the generator is controlled to enter the control system.
  • the working mode corresponding to the signal, so that the generator supplies power to the low-voltage electrical network and the high-voltage electrical network to maintain the operation of the vehicle;
  • the control signal is determined by the engine according to the fault signal sent by the high-voltage battery and the obtained engine state;
  • the trigger signal is the high-voltage battery. Generated within a preset time after a fault occurs. In this way, after the failure of the high-voltage battery, the operation of the vehicle functional system can be maintained, and the vehicle can continue to operate safely.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

一种发电机控制方法、装置、电子设备及存储介质(620),控制方法应用于设置于车辆内的发电机控制系统,发电机控制系统分别与车辆的高压电气网络和低压电气网络连接;高压电气网络包括高压电池(105)和高压电池控制器(106);发电机控制系统包括发电机(101)、发动机(103)和发动机控制器(104),发动机(103)与发电机(101)连接;若接收到来自发动机控制器(104)的控制信号和来自高压电池控制器(106)的触发信号,则控制发电机(101)进入控制信号对应的工作模式,以使发电机(101)向低压电气网络和高压电气网络供电,维持车辆运行。如此,在高压电池(105)发生故障后,可以继续维持车辆功能系统运行,维持车辆继续安全运行。

Description

一种发电机控制方法、装置、电子设备及存储介质 技术领域
本申请涉及汽车技术领域,特别涉及一种发电机控制方法、装置、电子设备及存储介质。
背景技术
油电混动汽车具备通过高压电池给车辆供电,以维持车辆运行的功能。同时,高压电池可以给高压电气网络的负载供电,也可以通过DCDC控制器,实现高压电池给低压电气网络中的低压蓄电池充电。
然而,在车辆运行中,高压电池若检测到故障,则会立即停止向车辆输送电能,同时断开与高压网络、DCDC控制器的连接,此时车辆将会进入故障模式,限制车辆运行,影响行车安全和驾驶体验。
现有技术中,在高压断连后,有通过立即启动发动机来维持车辆运行的方法。然而,由于高压电池与DCDC控制器断开,导致低压电气网络蓄电池馈电,如此,低压电气网络上的控制器将无法工作,从而使相应的车辆功能系统失效,这会影响整车安全运行。
发明内容
本申请实施例提供了一种发电机控制方法、装置、电子设备及存储介质,解决了在高压电池异常断连后,车辆功能系统失效和车辆无法继续安全运行的问题。
一方面,本申请实施例提供了一种发电机控制方法,控制方法应用于设置于车辆内的发电机控制系统,发电机控制系统分别与车辆的高压电气网络和低压电气网络连接;高压电气网络包括高压电池和高压电池控制器;发电机控制系统包括发电机、发动机和发动机控制器,发动机与发电机连接;方法包括:
若接收到来自发动机控制器的控制信号和来自高压电池控制器的触发信号,则控制发电机进入控制信号对应的工作模式,以使发电机向低压电气网络和高压电气网络供电,维持车辆运行;
其中,控制信号是发动机控制器根据高压电池控制器发送的故障信号和获取的发动机状态确定的;触发信号是高压电池控制器在高压电池发生故障后的预设时间内产生的。
另一方面,本申请实施例提供了一种发电机控制装置,控制装置应用于设置于车辆内的发电机控制系统,发电机控制系统分别与车辆的高压电气网络和低压电气网络连接;高压电气网络包括高压电池和高压电池控制器;发电机控制系统包括发电机、发动机和发动机控制器,发动机与发电机连接;装置包括:
控制模块,用于若接收到来自发动机控制器的控制信号和来自高压电池控制器的触发信号,则控制发电机进入控制信号对应的工作模式,以使发电机向低压电气网络和高压电气网络供电,维持车辆运行;
其中,控制信号是发动机控制器根据高压电池控制器发送的故障信号和获取的发动机状态确定的;触发信号是高压电池控制器在高压电池发生故障后的预设时间内产生的。
另一方面,本申请实施例提供了一种电子设备,其特征在于,电子设备包括处理器和存储器,存储器中存储有至少一条指令或至少一段程序,至少一条指令或至少一段程序由处理器加载并执行上述的发电机控制方法。
另一方面,本申请实施例提供了一种计算机存储介质,存储介质中存储有至少一条指令或至少一段程序,至少一条指令或至少一段程序由处理器加载并执行以实现如上述的发电机控制方法。
本申请实施例提供的一种发电机控制方法、装置、电子设备及存储介质具有如下有益效果:
若接收到来自发动机控制器的控制信号和来自高压电池控制器的触发信号,则控制发电机进入控制信号对应的工作模式,以使发电机向低压电气网络和高压电气网络供电,维持车辆运行;其中,控制信号是发动机控制器根据高压电池控制器发送的故障信号和获取的发动机状态确定的;触发信 号是高压电池控制器在高压电池发生故障后的预设时间内产生的。如此,在高压电池发生故障后,可以继续维持车辆功能系统运行,维持车辆继续安全运行。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种应用场景的示意图;
图2是本申请实施例提供的一种发电机控制方法的流程示意图;
图3是本申请实施例提供的一种发电机控制方法中多端数据交互的流程示意图;
图4是本申请实施例提供的一种发电机的控制逻辑图;
图5是本申请实施例提供的一种发电机控制装置的结构示意图;
图6是本申请实施例提供的一种发电机控制方法的服务器的硬件结构框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的 包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或服务器不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
请参阅图1,图1是本申请实施例提供的一种应用场景的示意图,包括设置于车辆内的发电机控制系统,发电机控制系统包括发电机101、发电机控制装置102、发动机103和发动机控制器104,发动机103与发电机101连接;发电机控制系统分别与车辆的高压电气网络和低压电气网络连接;高压电气网络包括高压电池105及高压电池控制器106、高压负载和驱动电机;高压电池105及高压电池控制器106通过继电器与高压电气网络、低压电气网络连接,用于维持各器件的运行;
如图1中实线箭头所示,表示本申请提供的发动机控制方法下高压功率流,当高压电池105发生故障时,高压电池控制器106会向发动机控制器104发送故障信号;发动机控制器104根据接收到的故障信号获取当前发动机状态;发动机状态包括开启状态和未开启状态;发动机控制器104根据获取的发动机状态向发电机控制装置102发送控制信号,同时高压电池控制器106会在高压电池105发生故障后的预设时间内向发电机控制装置102发送触发信号;当发电机控制装置102接收到来自发动机控制器104的控制信号和来自高压电池控制器106的触发信号时,则控制发电机101进入控制信号对应的工作模式,以使发电机101向低压电气网络和高压电气网络供电,维持车辆运行。
可选的,高压电池控制器106与发动机控制器104无线连接,当高压电池105发生故障时,高压电池控制器106可以通过无线网络向发动机控制器104发送故障信号。
可选的,发电机控制装置102与发动机控制器104无线连接,发动机控制器104根据获取的发动机状态通过无线网络向发电机控制装置102发送控制信号。
可选的,车辆为油电混动车型。
可选的,发电机101位ISG发电机。
本申请实施例中,在高压电池105异常断连后,能够依靠发电机维持 整车高压供电,从而维持车辆继续安全运行。
以下介绍本申请一种发电机控制方法的具体实施例,图2是本申请实施例提供的一种发电机控制方法的流程示意图,本说明书提供了如实施例或流程图的方法操作步骤,但基于常规或者无创造性的劳动可以包括更多或者更少的操作步骤。实施例中列举的步骤顺序仅仅为众多步骤执行顺序中的一种方式,不代表唯一的执行顺序。在实际中的系统或服务器产品执行时,可以按照实施例或者附图所示的方法顺序执行或者并行执行(例如并行处理器或者多线程处理的环境)。具体的如图2所示,该方法可以包括:
S201:若接收到来自发动机控制器的控制信号和来自高压电池控制器的触发信号,则控制发电机进入控制信号对应的工作模式,以使发电机向低压电气网络和高压电气网络供电,维持车辆运行;其中,控制信号是发动机控制器根据高压电池控制器发送的故障信号和获取的发动机状态确定的;触发信号是高压电池控制器在高压电池发生故障后的预设时间内产生的。
本申请实施例中,控制方法应用于设置于车辆内的发电机控制系统,发电机控制系统分别与车辆的高压电气网络和低压电气网络连接;高压电气网络包括高压电池和高压电池控制器;发电机控制系统包括发电机、发动机和发动机控制器,发动机与发电机连接。如图1所示,在高压电池105正常工作时,按照虚线所示的常规高压功率流维持高压电气网络以及低压电气网络的运行,当高压电池105发生故障时,通过本申请实施例提供的一种发电机控制方法,按照实线所示的本申请高压功率流可以继续维持高压电气网络以及低压电气网络中车辆功能系统运行,从而维持车辆继续安全运行。
由于发电机控制方法涉及到发电机控制系统中多个模块之间的数据交互,下面从发电机控制系统中不同模块的角度对本申请实施例提供的一种发电机控制方法进行说明。请参阅图3,图3是本申请实施例提供的一种发电机控制方法中多端数据交互的流程示意图,该方法可以包括:
S301:若高压电池控制器确定高压电池发生故障,则向发动机控制器发送故障信号。
本申请实施例中,车辆包括发电机控制系统,发电机控制系统分别与车 辆的高压电气网络和低压电气网络连接;高压电气网络包括高压电池和高压电池控制器;发电机控制系统包括发电机、发动机、发动机控制器和发电机控制装置,发动机与发电机连接,发电机控制装置分别与发动机控制器、发电机连接。当车辆在基于高压电池的驱动模式下运行时,若高压电池控制器确定高压电池发生故障,无法继续向车辆的高压电气网络和低压电气网络继续供电,无法维持高压元件和整车的运行,则向发动机发送故障信号。
S303:发动机控制器根据故障信号获取发动机状态。
本申请实施例中,发动机控制器在接收到高压电池控制器的故障信号后,获取当前的发动机状态,发动机状态包括未开启状态和开启状态;发动机根据不同的状态采取不同的控制措施。
一种可选的实施方式中,若发动机状态为未开启状态,则发动机控制器向发电机控制装置发动扭矩请求信号,发电机控制装置基于扭矩请求信号向发动机控制器输出对应的扭矩值,以启动发动机。
S305:发动机控制器向发电机控制装置发送控制信号。
本申请实施例中,若发动机状态为开启状态,或在发电机成功启动发动机之后,发动机控制器向发电机控制装置发送控制信号,以使发电机控制装置控制发电机进入控制信号对应的工作模式。
S307:高压电池控制器向发电机控制装置发送触发信号。
本申请实施例中,高压电池控制器在高压电池发生故障后的预设时间内向发电机控制装置发送触发信号,目的是为了缩短控制过程。
一种可选的实施方式中,预设时间为5秒。
S309:发电机控制装置根据接收到的控制信号和触发信号,控制发电机进入控制信号对应的工作模式,以使发电机向低压电气网络和高压电气网络供电,维持车辆运行。
本申请实施例中,高压电池控制器在高压电池发生故障后的预设时间内向发电机控制装置发送触发信号,发电机控制装置根据接收到的控制信号和触发信号,控制发电机进入控制信号对应的工作模式,以使发电机向低压电气网络和高压电气网络供电,维持车辆运行。如此,在高压电池发生故障后,能够依靠发电机维持整车高压供电,从而维持车辆继续安全运行。
本申请实施例中,发电机控制装置控制发电机进入对应的工作模式具体为,通过设定的发电电压与实际发电电压做闭环,可以在不同发动机转速,稳定发电功率,从而保持车辆持续安全运行。其原理如公式(1)所示:
Figure PCTCN2020101709-appb-000001
其中,Tm表示发电负载扭矩;ω表示发电机转速;U表示发电电压;I表示发电电流;
Figure PCTCN2020101709-appb-000002
表示功率因数。
目标是维持U不变,I会根据负载的功率需求变化,因此会导致同一转速下发电负载扭矩的变动。为保持发电电压的稳定,需要设定适合的闭环控制参数,该闭环参数需要基于实车调试得出。
因此,一种可选的控制发电机进入控制信号对应的工作模式的实施方式中,包括:基于获取的参考发电电压和实际发电电压进行比例积分调节,得到发电负载扭矩;根据发电负载扭矩确定参考发电电流;基于获取的实际发电电流和参考发电电流进行空间矢量脉宽调制,生成发电机的各相控制电压。
具体的,如图4所示,图4是本申请实施例提供的一种发电机的控制逻辑图,U_ref为获取的参考发电电压,U_act为实际发电电压,两者做差值进行比例积分(PI)调节得出发电负载扭矩;其次,根据负载扭矩查表确定参考发电电流Id_ref,之后可由公式推算Iq_ref;其次,将Id_ref和Iq_ref进行空间矢量脉宽调制(SVPWM),以维持发电电压稳定。
一种可选的实施方式中,如图1所示,低压电气网络包括低压蓄电池、低压负载和车辆功能系统的控制器;高压电气网络还包括高压负载和驱动电机。
综上,本申请实施例提供的一种发电机控制方法,当高压电池异常断连或发生故障,可以由发动机拖动的发电机进行发电,在切换过程中,由于有母线电容的存在,可以保持在切换的瞬间不会出现电压瞬间掉为0V,从而能持续供给高压,避免其他高压元件报故障,并维持车辆继续安全运行。
本申请实施例还提供了一种发电机控制装置,控制装置应用于设置于车辆内的发电机控制系统,发电机控制系统分别与车辆的高压电气网络和低压电气网络连接;高压电气网络包括高压电池和高压电池控制器;发电机 控制系统包括发电机、发动机和发动机控制器,发动机与发电机连接;图5是本申请实施例提供的一种发电机控制装置的结构示意图,如图5所示,该装置包括:
控制模块501,用于若接收到来自发动机控制器的控制信号和来自高压电池控制器的触发信号,则控制发电机进入控制信号对应的工作模式,以使发电机向低压电气网络和高压电气网络供电,维持车辆运行;
其中,控制信号是发动机控制器根据高压电池控制器发送的故障信号和获取的发动机状态确定的;触发信号是高压电池控制器在高压电池发生故障后的预设时间内产生的。
一种可选的实施方式中,该装置还包括:
控制模块501具体用于,基于获取的参考发电电压和实际发电电压进行比例积分调节,得到发电负载扭矩;根据发电负载扭矩确定参考发电电流;基于获取的实际发电电流和参考发电电流进行空间矢量脉宽调制,生成发电机的各相控制电压。
一种可选的实施方式中,发动机状态包括未启动状态,该装置还包括:
接收模块,用于接收来自发动机控制器的扭矩请求信号;扭矩请求信号是发动机控制器根据未启动状态生成的;
输出模块,用于基于扭矩请求信号向发动机控制器输出对应的扭矩值,以启动发动机。
一种可选的实施方式中,低压电气网络包括低压蓄电池、低压负载和车辆功能系统的控制器;高压电气网络还包括高压负载和驱动电机。
进一步地,高压负载包括空调压缩机。
一种可选的实施方式中,车辆功能系统的控制器包括电子助力转向系统的控制器和自动刹车制动系统的控制器中的任一个或全部。
一种可选的实施方式中,发电机为ISG发电机。进一步地,ISG发电机为永磁同步电机。
本申请实施例中的装置与方法实施例基于同样地申请构思。
本申请实施例所提供的方法实施例可以在计算机终端、服务器或者类似的运算装置中执行。以运行在服务器上为例,图6是本申请实施例提供 的一种发电机控制方法的服务器的硬件结构框图。如图6所示,该服务器600可因配置或性能不同而产生比较大的差异,可以包括一个或一个以上中央处理器(Central Processing Units,CPU)610(处理器610可以包括但不限于微处理器NCU或可编程逻辑器件FPGA等的处理装置)、用于存储数据的存储器630,一个或一个以上存储应用程序623或数据622的存储介质620(例如一个或一个以上海量存储设备)。其中,存储器630和存储介质620可以是短暂存储或持久存储。存储在存储介质620的程序可以包括一个或一个以上模块,每个模块可以包括对服务器中的一系列指令操作。更进一步地,中央处理器610可以设置为与存储介质620通信,在服务器600上执行存储介质620中的一系列指令操作。服务器600还可以包括一个或一个以上电源660,一个或一个以上有线或无线网络接口650,一个或一个以上输入输出接口640,和/或,一个或一个以上操作系统621,例如Windows,Mac OS,Unix,Linux,FreeBSD等等。
输入输出接口640可以用于经由一个网络接收或者发送数据。上述的网络具体实例可包括服务器600的通信供应商提供的无线网络。在一个实例中,输入输出接口640包括一个网络适配器(Network Interface Controller,NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,输入输出接口640可以为射频(Radio Frequency,RF)模块,其用于通过无线方式与互联网进行通讯。
本领域普通技术人员可以理解,图6所示的结构仅为示意,其并不对上述电子装置的结构造成限定。例如,服务器600还可包括比图6中所示更多或者更少的组件,或者具有与图6所示不同的配置。
本申请的实施例还提供了一种存储介质,所述存储介质可设置于服务器之中以保存用于实现方法实施例中一种发电机控制方法相关的至少一条指令、至少一段程序、代码集或指令集,该至少一条指令、该至少一段程序、该代码集或指令集由该处理器加载并执行以实现上述发电机控制方法。
可选地,在本实施例中,上述存储介质可以位于计算机网络的多个网络服务器中的至少一个网络服务器。可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机 存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
由上述本申请提供的一种发电机控制方法、装置、电子设备或存储介质的实施例可见,本申请中若接收到来自发动机的控制信号和来自高压电池的触发信号,则控制发电机进入控制信号对应的工作模式,以使发电机向低压电气网络和高压电气网络供电,维持车辆运行;其中,控制信号是发动机根据高压电池发送的故障信号和获取的发动机状态确定的;触发信号是高压电池在发生故障后的预设时间内产生的。如此,在高压电池发生故障后,可以继续维持车辆功能系统运行,维持车辆继续安全运行。
需要说明的是:上述本申请实施例先后顺序仅仅为了描述,不代表实施例的优劣。且上述对本说明书特定实施例进行了描述。其它实施例在所附权利要求书的范围内。在一些情况下,在权利要求书中记载的动作或步骤可以按照不同于实施例中的顺序来执行并且仍然可以实现期望的结果。另外,在附图中描绘的过程不一定要求示出的特定顺序或者连续顺序才能实现期望的结果。在某些实施方式中,多任务处理和并行处理也是可以的或者可能是有利的。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于设备实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本申请的较佳实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (14)

  1. 一种发电机控制方法,其特征在于,所述控制方法应用于设置于车辆内的发电机控制系统,所述发电机控制系统分别与所述车辆的高压电气网络和低压电气网络连接;所述高压电气网络包括高压电池和高压电池控制器;所述发电机控制系统包括发电机、发动机和发动机控制器,所述发动机与所述发电机连接;所述方法包括:
    若接收到来自所述发动机控制器的控制信号和来自所述高压电池控制器的触发信号,则控制所述发电机进入所述控制信号对应的工作模式,以使所述发电机向所述低压电气网络和所述高压电气网络供电,维持所述车辆运行;
    其中,所述控制信号是所述发动机控制器根据所述高压电池控制器发送的故障信号和获取的发动机状态确定的;所述触发信号是所述高压电池控制器在所述高压电池发生故障后的预设时间内产生的。
  2. 根据权利要求1所述的方法,其特征在于,所述控制所述发电机进入所述控制信号对应的工作模式,包括:
    基于获取的参考发电电压和实际发电电压进行比例积分调节,得到发电负载扭矩;
    根据所述发电负载扭矩确定参考发电电流;
    基于获取的实际发电电流和所述参考发电电流进行空间矢量脉宽调制,生成所述发电机的各相控制电压。
  3. 根据权利要求1所述的方法,其特征在于,所述发动机状态包括未启动状态;
    所述若接收到来自所述发动机控制器的控制信号和来自所述高压电池控制器的触发信号之前,还包括:
    接收来自所述发动机控制器的扭矩请求信号;所述扭矩请求信号是所述发动机控制器根据所述未启动状态生成的;
    基于所述扭矩请求信号向所述发动机控制器输出对应的扭矩值,以启动所述发动机。
  4. 根据权利要求1所述的方法,其特征在于,所述低压电气网络包括低压蓄电池、低压负载和车辆功能系统的控制器;
    所述高压电气网络还包括高压负载和驱动电机。
  5. 根据权利要求1所述的方法,其特征在于,所述预设时间为5秒。
  6. 一种发电机控制装置,其特征在于,所述控制装置应用于设置于车辆内的发电机控制系统,所述发电机控制系统分别与所述车辆的高压电气网络和低压电气网络连接;所述高压电气网络包括高压电池和高压电池控制器;所述发电机控制系统包括发电机、发动机和发动机控制器,所述发动机与所述发电机连接;所述装置包括:
    控制模块,用于若接收到来自所述发动机控制器的控制信号和来自所述高压电池控制器的触发信号,则控制所述发电机进入所述控制信号对应的工作模式,以使所述发电机向所述低压电气网络和所述高压电气网络供电,维持所述车辆运行;
    其中,所述控制信号是所述发动机控制器根据所述高压电池控制器发送的故障信号和获取的发动机状态确定的;所述触发信号是所述高压电池控制器在所述高压电池发生故障后的预设时间内产生的。
  7. 根据权利要求6所述的装置,其特征在于,
    所述控制模块,还用于基于获取的参考发电电压和实际发电电压进行比例积分调节,得到发电负载扭矩;根据所述发电负载扭矩确定参考发电电流;基于获取的实际发电电流和所述参考发电电流进行空间矢量脉宽调制,生成所述发电机的各相控制电压。
  8. 根据权利要求6所述的装置,其特征在于,所述发动机状态包括未 启动状态;所述装置还包括:
    接收模块,用于接收来自所述发动机控制器的扭矩请求信号;所述扭矩请求信号是所述发动机控制器根据所述未启动状态生成的;
    输出模块,用于基于所述扭矩请求信号向所述发动机控制器输出对应的扭矩值,以启动所述发动机。
  9. 根据权利要求6所述的装置,其特征在于,所述低压电气网络包括低压蓄电池、低压负载和车辆功能系统的控制器;
    所述高压电气网络还包括高压负载和驱动电机。
  10. 根据权利要求9所述的装置,其特征在于,所述车辆功能系统的控制器包括电子助力转向系统的控制器和自动刹车制动系统的控制器中的任一个或全部;
    所述高压负载包括空调压缩机。
  11. 根据权利要求6所述的装置,其特征在于,所述发电机为ISG发电机。
  12. 根据权利要求11所述的装置,其特征在于,所述ISG发电机为永磁同步电机。
  13. 一种电子设备,其特征在于,所述电子设备包括处理器和存储器,所述存储器中存储有至少一条指令或至少一段程序,所述至少一条指令或所述至少一段程序由所述处理器加载并执行如权利要求1-5任一项所述的发电机控制方法。
  14. 一种计算机存储介质,其特征在于,所述存储介质中存储有至少一条指令或至少一段程序,所述至少一条指令或至少一段程序由处理器加载并执行以实现如权利要求1-5任一项所述的发电机控制方法。
PCT/CN2020/101709 2020-07-13 2020-07-13 一种发电机控制方法、装置、电子设备及存储介质 WO2022011514A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080101213.7A CN115768670A (zh) 2020-07-13 2020-07-13 一种发电机控制方法、装置、电子设备及存储介质
PCT/CN2020/101709 WO2022011514A1 (zh) 2020-07-13 2020-07-13 一种发电机控制方法、装置、电子设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/101709 WO2022011514A1 (zh) 2020-07-13 2020-07-13 一种发电机控制方法、装置、电子设备及存储介质

Publications (1)

Publication Number Publication Date
WO2022011514A1 true WO2022011514A1 (zh) 2022-01-20

Family

ID=79556051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/101709 WO2022011514A1 (zh) 2020-07-13 2020-07-13 一种发电机控制方法、装置、电子设备及存储介质

Country Status (2)

Country Link
CN (1) CN115768670A (zh)
WO (1) WO2022011514A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108528440A (zh) * 2018-03-27 2018-09-14 吉利汽车研究院(宁波)有限公司 一种用于混合动力车辆的高压供电控制方法
CN108656919A (zh) * 2017-03-31 2018-10-16 比亚迪股份有限公司 混合动力汽车及其动力系统和发电控制方法
CN110103949A (zh) * 2019-04-18 2019-08-09 浙江吉利控股集团有限公司 一种混动车的故障处理方法、故障处理装置及车辆
CN110962608A (zh) * 2019-12-25 2020-04-07 吉利汽车研究院(宁波)有限公司 一种混合动力汽车电压控制的方法及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108656919A (zh) * 2017-03-31 2018-10-16 比亚迪股份有限公司 混合动力汽车及其动力系统和发电控制方法
CN108528440A (zh) * 2018-03-27 2018-09-14 吉利汽车研究院(宁波)有限公司 一种用于混合动力车辆的高压供电控制方法
CN110103949A (zh) * 2019-04-18 2019-08-09 浙江吉利控股集团有限公司 一种混动车的故障处理方法、故障处理装置及车辆
CN110962608A (zh) * 2019-12-25 2020-04-07 吉利汽车研究院(宁波)有限公司 一种混合动力汽车电压控制的方法及系统

Also Published As

Publication number Publication date
CN115768670A (zh) 2023-03-07

Similar Documents

Publication Publication Date Title
TWI765084B (zh) 電動汽車高壓下電方法
US10160325B2 (en) Vehicle power control method and system for jump-start
US8353172B2 (en) Control device, method, and program of permanent-magnet type synchronous motor
EP2184212B1 (en) Fast response failure mode control methodology for a hybrid vehicle having an AC electric machine
EP2712759A2 (en) Voltage discharging device of vehicle and voltage discharging method thereof
EP3515740B1 (en) Selective response control of dc-dc converters in mild hybrid electric vehicles at high voltage failure
CN110864900B (zh) 轴承检测方法、检测系统、燃气轮机启动方法、启动系统
US20190173412A1 (en) Abnormality diagnosis apparatus
EP3524466B1 (en) Vehicle and electric power control device for vehicle
CN113410819B (zh) 电机堵转保护控制方法及装置
US11208000B2 (en) Vehicle
KR20180096088A (ko) 플러그 인 차량의 충전제어방법
WO2022011514A1 (zh) 一种发电机控制方法、装置、电子设备及存储介质
CN110758374A (zh) 一种混合动力汽车发动机曲轴停机控制方法及系统
KR101646419B1 (ko) 하이브리드 차량의 비상 운전 방법
KR101816448B1 (ko) 하이브리드 차량의 강제 방전 방법
EP2783986A2 (en) Hydraulic pump start system and method
JP2014121172A (ja) 電力変換システムの故障検知装置
CN109305053B (zh) 一种电动车驱动器及其输出扭矩监控方法和装置
CN110574285B (zh) 旋转电机控制装置和控制系统
CN110901427A (zh) 一种充电方法及充电系统
JP3182573B2 (ja) 発電装置の始動装置
CN113954818B (zh) 一种混动车跛行控制方法、装置、存储介质、模组及车辆
CN110463023B (zh) 旋转电机控制装置
US11799315B2 (en) Battery control apparatus for power supply system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20945280

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20945280

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20945280

Country of ref document: EP

Kind code of ref document: A1