WO2022011442A1 - Sistema autonomo de drenagem de fluidos contaminantes de tanques de armazenamento de fluidos orgânicos - Google Patents

Sistema autonomo de drenagem de fluidos contaminantes de tanques de armazenamento de fluidos orgânicos Download PDF

Info

Publication number
WO2022011442A1
WO2022011442A1 PCT/BR2021/050298 BR2021050298W WO2022011442A1 WO 2022011442 A1 WO2022011442 A1 WO 2022011442A1 BR 2021050298 W BR2021050298 W BR 2021050298W WO 2022011442 A1 WO2022011442 A1 WO 2022011442A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
vii
fluids
iii
organic
Prior art date
Application number
PCT/BR2021/050298
Other languages
English (en)
French (fr)
Inventor
Demócritos CASTRO
Iuri PEPE
Original Assignee
Castro Democritos
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Castro Democritos filed Critical Castro Democritos
Publication of WO2022011442A1 publication Critical patent/WO2022011442A1/pt

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/12Auxiliary equipment particularly adapted for use with liquid-separating apparatus, e.g. control circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/0208Separation of non-miscible liquids by sedimentation
    • B01D17/0214Separation of non-miscible liquids by sedimentation with removal of one of the phases
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G33/00Dewatering or demulsification of hydrocarbon oils
    • C10G33/08Controlling or regulating
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning

Definitions

  • the present invention describes an autonomous system applied to the operations of draining contaminating fluids present in storage tanks of organic fluids, capable of allowing an autonomous and continuous operation, with high efficiency of separation between the contaminating fluids and the fluids stored organic products, with a significant reduction in product loss when compared to the drainage operation commonly done manually, with the consequent elimination of human exposure to products harmful to health and reduction of the environmental impacts of the operation, and minimization of the levels of contaminating fluids in the tanks and lines to reduce exposure of organic fluids and equipment to these contaminants.
  • the invention PI9605709-2 describes a system for quantifying the fraction of water present at the bottom of the storage tank through a gravimetric sensor positioned inside the tank, at the end of the disposal line.
  • This sensor is capable of activating an internal valve when the amount of water detected inside the tank reaches the value set in the internal valve calibration.
  • the system also requires the installation of another water level sensor on the side of the tank to trigger the pressure equalization line that allows the internal valve to operate.
  • the authors suggest the installation of one more sensor in the disposal line to avoid the inadvertent passage of organic fluid through the system.
  • the invention PI9803624-6 and the invention US5918622 propose the use of a gravimetric sensor capable of acting directly on a valve in a similar way to the invention PI9605709-2. However, these last two suggest installing this system outside the tank, directly in the disposal line.
  • the invention US20120017998A1 proposes a micro-controlled system capable of acting on the discharge valve from the quantification of the water content in the discharge line determined through a non-intrusive sensor for measuring the fluid sound velocity. An analysis of these proposed systems reveals that, although they are able to interrupt the discharge when a fluid with low water content passes, none of them is able to act autonomously.
  • the identified water content is sent to a microprocessor system that, depending on this content, directs the fluid flow to the drain or to the return line to the storage tank.
  • the authors also argue that the high speed in the disposal lines guarantees the cleanliness of the measuring system by avoiding the accumulation of debris due to shear effects.
  • the invention US20140216998A1 presents a system similar to that described in the invention US5139653.
  • the system described uses a pump to recirculate the fluid present at the bottom of the storage tank and includes a system for measuring the water content present in the recirculating fluid.
  • the recirculation system can be aligned to different positions at the bottom of the storage tank, favoring cleaning and reducing the accumulation of debris and sludge.
  • the activation of the circulation system is carried out by a timer.
  • the water content measured in the recirculating fluid is sent to a micro-controlled system which, depending on this water content, opens a discharge valve and directs the fluid to the drain.
  • disposal efficiency is closely associated with the separation between phases within the tank. If the contaminating fluid is removed at high rates, a mixing vortex will form between the phases still inside the tank, preventing efficient drainage of the contaminating fluid. Also, the closer the interface the point of drainage, that is, the smaller the amount of contaminating fluid to be drained, the greater the impact of vortices, even if of small extension. Therefore, the optimal drainage rate depends on the amount of contaminating fluid present in the tank. Finally, the measurement system will require periodic calibration to ensure accurate measurements, requiring intervention and reducing system autonomy time. The system described, therefore, is not able to achieve an optimal drainage condition.
  • Figure 1 shows an example of an autonomous system for draining contaminating fluids from storage tanks for organic fluids.
  • Figure 2 presents two configuration examples of the bidirectional circulation system (2a, 2b), with the arrangement of pumps, control valves and piping.
  • Figure 3 shows an example of cleaning system configuration (x), with the arrangement of the cleaning solution reservoir, pump, control valves and piping.
  • an autonomous contaminating fluid drainage system is presented (iii) separated by gravity from the organic fluid (ii) contained in a storage tank (i), installed downstream of the manual drainage valve (iv) of this tank.
  • Contaminant fluids (iii) are immiscible or of low miscibility (less than 10% v/v) in stored organic fluids (ii) and tend to separate by gravity in storage tanks (i) after batch closing production of organic fluids (ii).
  • These contaminating fluids (iii) arrive at the tank together with the organic fluids (ii) because they are mixed with the organic fluids (ii) or, under high temperature conditions, solubilized in these organic fluids (ii).
  • These contaminants can also originate external to the process, entering the storage tanks (i) through leaks in these equipment or in the pipes crossed by the fluids (ii, iii).
  • the most common contaminating fluid (iii) found in storage tanks (i) is water, which is immiscible or has low solubility in a series of organic fluids (ii) of mineral, vegetable, animal or synthetic origin, such as such as fuels, lubricating oils, solvents, vegetable oils, among others.
  • organic fluids (ii) of mineral, vegetable, animal or synthetic origin such as such as fuels, lubricating oils, solvents, vegetable oils, among others.
  • Other types of contaminating fluids (iii) separated in storage tanks (i) due to immiscibility or low solubility are, for example, low molecular weight alcohols and brines.
  • the autonomous system has special application in industrial processes that demand the storage of large volumes of organic fluids (ii) in storage tanks (i), from a few thousand liters to several tens of millions of liters of capacity.
  • the storage of these organic fluids (ii) requires frequent drainage operations of contaminating fluids (iii) that can be present in expressive volumes, not rarely reaching the order of thousands of liters in storage tanks (i) with large storage capacities, consequently requiring a long time to complete the draining operation.
  • the operation of the system is based on the disposal of contaminating fluid by opening the control valves (v, vi), by activating these valves by the control system (ix), which acts upon the response of the contaminating fluid contents ( iii) and the organic fluid (ii) in the liquid being drained, obtained by the detection and quantification sensors present in the measurement system (vii).
  • the system allows the disposal of the contaminating fluid (iii) through the drain line (xiii) until the fluid concentration organic (ii) reaches a pre-defined value in the discharge fluid, and at that moment the control system (ix) acts to close the control valve (vi), interrupting the drainage.
  • the autonomous system includes control valves for regulating the drainage flow (v, vi), which feature the possibility of automatic activation by the control system (ix).
  • These valves are preferably of the solenoid type, with full opening or closing when activated, but they can still be progressive control valves, if the system so demands.
  • the diameter of these valves is designed to suit the characteristics of the drain valve outlet (iv) and to ensure a drain flow slow enough not to induce vortexing during operation.
  • valve (v) installed before the measurement system (vii) is designed to work in a normally closed mode, ensuring double insulation of the storage tank (i) at all times.
  • This valve (v) also has the function of isolating the fluid contained in the drain pipe of the tank (i) when it is necessary to activate the cleaning system (x) of the sensors contained in the measurement system (vii), in order to avoid contamination of the stored fluid and ensure efficient cleaning of the sensors.
  • valve (vi) installed after the measurement system (vii) determines the opening or closing of the drainage system, allowing or not the passage of liquid to the drain line (xiii).
  • This valve is actuated by the command of the control system (ix), depending on the response of the measurement system (vii).
  • the dimensions of this valve, as well as the frequency and time of its opening during operation, define the drainage flow, which is directly related to the elimination of the possibility of vortex formation during operation.
  • the measurement system (vii) aims to carry out the physical and/or physical-chemical characterization of the fluid being drained (ii, iii), with the main function of detecting and quantifying the contaminating fluid (iii) and the fluid organic (ii) in the liquid being drained.
  • the system has sensors for detection and quantification of contaminant fluid (iii) in organic fluid (ii), as well as for detection and quantification of organic fluid (ii) in contaminating fluid (iii), in order to ensure the effectiveness of the response of the control system (ix) in the control valve (vi) actuation and compliance with the pre-defined characteristics for disposal.
  • the detection and quantification of fluids can be performed by intrusive and non-intrusive instruments, using different principles, chosen from spectroscopic, spectrometric, acoustic, rheological, gravimetric and conductivity measurements and /or electrical impedances, provided they are adequate to guarantee the required disposal specification.
  • This flexibility in the measurement principle allows the adaptation of this autonomous system to the operation of draining a series of organic fluids (ii) with different characteristics, thus allowing the search for alternatives that guarantee a reduction in the cost of the measurement system (vii) and consequently of the autonomous system.
  • the measurement system (vii) is also designed to contain instruments capable of performing other auxiliary measurements of the control system (ix), such as the pressure and temperature of the fluids (ii, iii) contained in the storage tank ( i), the ambient temperature and the discharge flow of the fluids through the drain line (xiii).
  • the pressure measurement aims to supply the control system (ix) with information about the loading and unloading operations of the storage tanks (i), which are relevant for the correct operation of the system.
  • the discharge flow measurement is important so that the autonomous system can learn about the volume of contaminating fluid generated during the normal operation of the storage tank (i), to continuously perform the adjustment of the optimal discharge flow along of the operation, in order to guarantee an autonomous and continuous disposal, as well as to eliminate the formation of vortices during the operation.
  • the measurements of ambient temperature and of the discharge fluid allow evaluating information regarding the characteristics of the fluids being discarded (fluid concentrations and discharge volume) and allows the system to make adjustments in the operation based on this information.
  • the control system (ix) is designed to receive data from the measurement system (vii), among these data the content of contaminating fluid (iii) and organic fluid (ii) present in the fluid being discarded, as well as the discharge flow to the drain (xiii) and the ambient and fluid temperatures being discharged, process this data and act on the various control valves (v, vi, xvi) and pumps (xv).
  • the control system (ix) contains embedded algorithms that allow it to be adapted by Artificial Intelligence (AI) and Machine Learning (ML) techniques and algorithms to the particular characteristics of the storage tank (i), of the stored organic fluid (ii) ) and the contaminating fluid (iii) to be discarded, allowing a continuous improvement of the discharge flow.
  • AI Artificial Intelligence
  • ML Machine Learning
  • the autonomous system is designed to carry out the disposal of contaminating fluid (iii) until the concentration of the organic liquid (ii) reaches the defined value for closing the control valve (vi) and interrupting the disposal.
  • the piping upstream of the manual drain valve (iv) as well as the piping line between the manual drain valve (iv) and the control valve (vi) are filled with a mixture containing the contaminating fluid (iii ) and organic fluid in a concentration higher than that required for disposal.
  • the circulation system (viii) has the main function of guaranteeing the renewal of the fluid contained in these piping lines, in order to guarantee that the measurement system (vii) can detect a new portion of the contaminating fluid (iii) decanted at the bottom of the tank storage (i) that is in specified conditions for disposal. Without the circulation system (viii), the measurement system (vii) does not send the correct signal about the fluid quality so that the control system (ix) can act on the control valve (vi) and proceed with the disposal, preventing its autonomous action.
  • the circulation system (viii) has the complementary function of circulating the organic fluid (ii) free of contaminating fluid (iii) through the measurement system piping line (vii), in order to allow the periodic internal calibration of the sensors , without the need for intervention in the autonomous system for this purpose.
  • the circulation system (viii) is designed to connect to a point of the storage tank (xiv) located in a position physically superior to the region normally occupied by the contaminating fluid (iii).
  • the circulation system (viii) is designed to be able to displace the fluids (ii, iii) between the storage tank (i) and the measurement system (vii), allowing flow in both directions.
  • This system can be composed of a pump (xv) and a set of control valves (xvi) mounted on a maneuver tree (manifold), as illustrated in the diagram exemplified in Fig. 2a, so that the control system (ix ) operate on the pre-defined opening and closing for each of the control valves (xvi) depending on the required operation of draining the piping lines of the drainage system or internal calibration of the measurement system (vii).
  • the circulation system (viii) can be designed with two pumps (xv) and a set of control valves (xvi) mounted in another arrangement of the maneuver tree (manifold), as illustrated in the diagram exemplified in Fig. 2b , allowing the sizing of pumps (xv) with different dimensions depending on the different flow demands between the operations required for the correct functioning of the autonomous system.
  • the installation of the cleaning system (x) is necessary to ensure the correct operation of the measurement system (vii), being designed to eliminate waste accumulated around the sensors installed in the measurement system (vii).
  • the cleaning operation can be carried out with a defined frequency or depending on the identification of a reduction in the intensity of the signals generated by the sensors of the automation system.
  • the cleaning system (x) is used to promote the mechanical and chemical cleaning of the measurement system (vii), through the circulation of cleaning solutions such as solvents, surfactants, abrasives, strippers, acids or alkalis, which are chosen according to the type of organic fluid (ii) stored and the characteristic of the residue formed by this fluid, which can be deposited in the region of the sensors of the measurement system (vii).
  • cleaning solutions such as solvents, surfactants, abrasives, strippers, acids or alkalis, which are chosen according to the type of organic fluid (ii) stored and the characteristic of the residue formed by this fluid, which can be deposited in the region of the sensors of the measurement system (vii).
  • the circulation of the cleaning solution (xvii) occurs independently, using the circulation pump (xviii) of the cleaning system (x) and control valves (xix), which are keep them inoperative during the normal operation of the autonomous system and which are activated by the control system (ix) depending on the need for the cleaning operation.
  • the cleaning system (x) can be equipped with equipment that promotes vibration action in the set of sensors of the measurement system (vii), such as an ultrasound system, installed around the sensors, in order to assist in the cleaning promoted by the cleaning solution (xvii) and promoting the conditioning of the sensor surfaces.
  • equipment that promotes vibration action in the set of sensors of the measurement system (vii) such as an ultrasound system, installed around the sensors, in order to assist in the cleaning promoted by the cleaning solution (xvii) and promoting the conditioning of the sensor surfaces.
  • the autonomous storage tank drainage system (i) provides for the assembly of an independent drain line (xi) and a manual drain valve (xii), designed to be coupled downstream of the drain valve (iv) of storage tanks (i) in parallel to the autonomous system, in order to allow manual operation (by-pass) in case of intervention of the autonomous system for maintenance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Software Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Organic Chemistry (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

Sistema autônomo desenvolvido para realizar a drenagem de fluidos contaminantes(iii) contidos em tanques de armazenamento(i) de fluidos orgânicos(ii) de origem mineral, vegetal, animal ou sintética, compostos por correntes intermediárias ou produtos acabados oriundos de processos industriais, sendo esse sistema autônomo caracterizado por ser constituído por válvulas de controle(v,vi) para regulação do fluxo da drenagem, por sistema de medição(vii) capaz de realizar a caracterização física e/ou físico-química do fluido sendo drenado, por sistema de circulação bidirecional(viii) para deslocamento de fluido entre o sistema de medição(vii) e o tanque de armazenamento(i), por sistema de controle(ix) capaz de receber dados obtidos pelo sistema de medição(vii) e atuar nas válvulas de controle(v,vi) e no sistema de circulação bidirecional(viii) para a realização da operação, por sistema de limpeza(x) capaz de eliminar resíduos presentes no sistema de medição, e por sistema para operação manual(xi,xii) projetado para ser acoplado à jusante da válvula de drenagem(iv) de tanques de armazenamento(i) e em paralelo ao sistema autônomo para o caso de intervenção, sendo esse sistema autônomo capaz de reduzir a formação de vórtices dentro dos tanques de armazenamento(i) e aumentar a eficácia da separação entre os fluidos, evitando a perda de produtos e reduzindo os impactos ambientais e a exposição de operadores aos vapores nocivos à saúde durante as operações de drenagem dos tanques.

Description

SISTEMA AUTONOMO DE DRENAGEM DE FLUIDOS CONTAMINANTES DE TANQUES DE ARMAZENAMENTO DE FLUIDOS ORGÂNICOS
Campo da invenção
[001] A presente invenção descreve um sistema autónomo aplicado às operações de drenagem de fluidos contam inantes presentes em tanques de armazenamento de fluidos orgânicos, capaz de permitir uma operação autónoma e contínua, com alta eficiência de separação entre os fluidos contam inantes e os fluidos orgânicos armazenados, com redução significativa de perda de produtos quando comparado com a operação de drenagem comumente feita de forma manual, com consequente eliminação da exposição humana a produtos nocivos à saúde e redução dos impactos ambientais da operação, e minimização dos níveis dos fluidos contaminantes nos tanques e nas linhas, de modo a reduzir a exposição dos fluidos orgânicos e dos equipamentos a esses contaminantes.
Fundamentos da invenção
[002] O ingresso de fluidos contaminantes em tanques de armazenamento de fluidos orgânicos é condição inerente às características dos processos produtivos industriais de vários fluidos orgânicos e o acúmulo desses contaminantes gera impactos dos mais diversos. Reduz o volume útil do tanque, acentua o processo de corrosão das chapas do fundo do tanque, gera o acúmulo de resíduos sólidos (borras), altera as propriedades do fluido armazenado por contaminação direta ou por degradação do fluido orgânico ocasionado por ação microbiológica, dentre outros. Faz parte, portanto, da rotina operacional de qualquer tanque de armazenamento de processos produtivos industriais de fluidos orgânicos o descarte dos fluidos contaminantes que nele se acumulam.
[003] A operação de drenagem desses fluidos contaminantes dos tanques de armazenamento de fluidos orgânicos é realizada manualmente, com um operador abrindo a válvula de descarte do tanque e monitorando visualmente o fluido sendo descartado. Ao observar a saída do que lhe parece o fluido orgânico armazenado, de forma visual ou através do olfato, o operador fecha a válvula de descarte manualmente. Essa operação é pouco eficaz, levando à significativa perda de produto pela drenagem junto com o fluido de descarte, bem como aumento não só dos riscos de exposição do operador aos produtos frequentemente perigosos, mas também de potenciais impactos ambientais.
[004] No intuito de se reduzir os impactos indesejáveis gerados pela operação de drenagem manual supramencionada, sistemas capazes de automatizar tal processo foram propostos. Os sistemas utilizados atualmente para automatizar o descarte de fluidos contam inantes de tanques de armazenamento de fluidos orgânicos são específicos para o descarte de água de tanques de óleos minerais, como petróleo, diesel e gasolina. Esses sistemas são baseados na identificação e quantificação de água e óleo através de diferentes sensores e na atuação em uma válvula de controle para descarte da água quando um limite de concentração de água pré-estabelecido é atingido.
[005] A invenção PI9605709-2 descreve um sistema de quantificação da fração de água presente no fundo do tanque de armazenamento através de um sensor gravimétrico posicionado dentro do tanque, na extremidade da linha de descarte. Esse sensor é capaz de acionar uma válvula interna quando a quantidade de água detectada no interior do tanque atinge o valor ajustado na calibração da válvula interna. O sistema exige também a instalação de um outro sensor de nível de água no costado do tanque para acionar a linha de equalização de pressão que permite a operação da válvula interna. Por fim, os autores sugerem a instalação de mais um sensor na linha de descarte para evitar a passagem inadvertida de fluido orgânico pelo sistema. A invenção PI9803624-6 e a invenção US5918622 propõem a utilização de um sensor gravimétrico capaz de atuar diretamente em uma válvula de forma semelhante à invenção PI9605709-2. No entanto, essas duas últimas sugerem a instalação desse sistema fora do tanque, diretamente na linha de descarte. A invenção US20120017998A1 propõe um sistema micro controlado capaz de atuar na válvula de descarte a partir da quantificação do teor de água na linha de descarte determinado através de um sensor não intrusivo de medição da velocidade do som do fluido. Uma análise desses sistemas propostos revela que, embora eles consigam interromper o descarte quando da passagem de um fluido com baixo teor de água, nenhum deles é capaz de atuar de forma autónoma. A operação desses sistemas deixaria a linha de descarte cheia de água com altos teores de fluido orgânico ou até mesmo um fluido constituído predominantemente pelo fluido orgânico, impedindo que um novo descarte possa ser reiniciado sem a intervenção de um operador. Todo esse conteúdo deverá ser descartado pelo operador na reabertura do sistema de drenagem, sendo impossível o retorno desse material retido na linha de descarte para o tanque de armazenamento de forma autónoma, tornando inevitável o descarte desse fluido orgânico. Além disso, esses sistemas não são capazes de evitar a formação de vórtices de drenagem dentro do tanque, gerando misturas entre o fluido orgânico e a água, impactando a eficiência do processo de descarte da água.
[006] Na invenção US5139653, os autores reconhecem a limitação dos sistemas descritos acima em evitar o descarte do fluido orgânico que fica retido na linha de descarte após a interrupção automática da drenagem do tanque de armazenamento, e propõem um sistema de recirculação para o retorno ao tanque do fluido rico em fluido orgânico retido na linha de drenagem após o fechamento da válvula. O sistema descrito na invenção conta com uma bomba para aumentar a vazão do fluido no sistema de descarte em relação ao fluxo puramente gravitacional e garantir uma vazão contínua na linha, garantindo também o completo preenchimento da linha. O fluido é bombeado através do sistema de medição capaz de quantificar o teor de água nesse fluido. O teor de água identificado é enviado a um sistema micro processado que, em função desse teor, direciona o fluxo de fluido para o dreno ou para a linha de retorno para o tanque de armazenamento. Os autores argumentam ainda que a alta velocidade nas linhas de descarte garante a limpeza do sistema de medição por evitar o acúmulo de detritos por efeitos do cisalhamento. A invenção US20140216998A1 apresenta um sistema similar ao descrito na invenção US5139653. O sistema descrito utiliza uma bomba para recircular o fluido presente no fundo do tanque de armazenamento e inclui um sistema de medição do teor de água presente no fluido em recirculação. O sistema de recirculação pode ser alinhado para diferentes posições no fundo do tanque de armazenamento, favorecendo a limpeza e reduzindo o acúmulo de detritos e borras. O acionamento do sistema de circulação é realizado por um temporizador. O teor de água medido no fluido em recirculação é enviado a um sistema micro controlado que, em função desse teor de água, abre uma válvula de descarte e direciona o fluido para o dreno. No entanto, a eficiência do descarte está intimamente associada à separação entre as fases dentro do tanque. Se o fluido contam inante for removido em altas vazões, formar-se-á um vórtice de mistura entre as fases ainda dentro do tanque, impedindo uma drenagem eficiente do fluido contam inante. Além disso, quanto mais próxima a interface estiver do ponto de drenagem, ou seja, quanto menor for a quantidade de fluido contaminante a ser drenado, maior será o impacto de vórtices, mesmo que de pequena extensão. Portanto, a vazão ótima de drenagem depende da quantidade de fluido contaminante presente no tanque. Por fim, o sistema de medição exigirá calibração periódica para garantir medidas precisas, necessitando de intervenção e reduzindo o tempo de autonomia do sistema. O sistema descrito, portanto, não é capaz de atingir uma condição de drenagem ótima.
Breve descrição dos desenhos
[007] As figuras descritas abaixo apresentam a visão esquemática de um exemplo de configuração do sistema autónomo de drenagem de tanques de armazenamento da presente invenção, abrangendo os equipamentos, os sistemas auxiliares e as linhas e tubulações que compõem a invenção, bem como as interconexões entre essas partes. Entende-se que essa configuração do sistema autónomo pode ser utilizada de acordo com quadro reivindicatório da presente invenção, mas não se limitando a essa configuração.
A Figura 1 apresenta um exemplo de configuração do sistema autónomo de drenagem de fluidos contam inantes de tanques de armazenamento de fluidos orgânicos.
A Figura 2 apresenta dois exemplos de configuração do sistema de circulação bidirecional (2a, 2b), com a disposição das bombas, válvulas de controle e tubulação.
A Figura 3 apresenta um exemplo de configuração do sistema de limpeza (x), com a disposição do reservatório de solução de limpeza, da bomba, das válvulas de controle e da tubulação.
Descrição da invenção
[008] De modo geral, é apresentado um sistema autónomo de drenagem de fluido contaminante (iii) separado por gravidade do fluido orgânico (ii) contido em tanque de armazenamento (i), instalado à jusante da válvula de drenagem manual (iv) deste tanque. [009] Os fluidos contaminantes (iii) são imiscíveis ou de baixa miscibilidade (menor que 10% v/v) nos fluidos orgânicos armazenados (ii) e tendem a se separar por gravidade nos tanques de armazenamento (i) após o fechamento dos lotes de produção dos fluidos orgânicos (ii). Esses fluidos contaminantes (iii) chegam ao tanque juntamente com os fluidos orgânicos (ii) por estarem misturados aos fluidos orgânicos (ii) ou, em condições de temperatura elevada, solubilizados nesses fluidos orgânicos (ii). Esses contaminantes podem ainda ter origem externa ao processo, ingressando nos tanques de armazenamento (i) por vazamentos nesses equipamentos ou nas tubulações atravessadas pelos fluidos (ii, iii).
[0010] O fluido contaminante (iii) mais comum encontrado em tanques de armazenamento (i) é a água, que é imiscível ou que possui baixa solubilidade em uma série fluidos orgânicos (ii) de origem mineral, vegetal, animal ou sintética, tais como combustíveis, óleos lubrificantes, solventes, óleos vegetais, entre outros. Outros tipos de fluidos contaminantes (iii) separados nos tanques de armazenamento (i) por razão de imiscibilidade ou baixa solubilidade, são, por exemplo, álcoois de baixo peso molecular e salmouras.
[0011] O sistema autónomo tem especial aplicação em processos industriais que demandam o armazenamento de grandes volumes de fluidos orgânicos (ii) em tanques de armazenamento (i), da ordem de alguns milhares de litros até várias dezenas de milhões de litros de capacidade de armazenamento de fluido orgânico (ii). O armazenamento desses fluidos orgânicos (ii) demanda frequentes operações de drenagem de fluidos contaminantes (iii) que podem estar presentes em volumes expressivos, não raramente podendo atingir a ordem de milhares de litros em tanques de armazenamento (i) com grandes capacidades de estocagem, consequentemente exigindo grande intervalo de tempo para completar a operação de drenagem.
[0012] O funcionamento do sistema se baseia no descarte de fluido contaminante pela abertura das válvulas de controle (v, vi), mediante o acionamento dessas válvulas pelo sistema de controle (ix), que atua mediante a resposta dos teores do fluido contaminante (iii) e do fluido orgânico (ii) no líquido sendo drenado, obtidos pelos sensores de detecção e quantificação presentes no sistema de medição (vii). O sistema permite o descarte do fluido contaminante (iii) pela linha de dreno (xiii) até que a concentração do fluido orgânico (ii) atinja um valor pré-definido no fluido de descarte, e nesse momento o sistema de controle (ix) atua no fechamento da válvula de controle (vi), interrompendo a drenagem.
[0013] Tomando como referência a Fig. 1 , o sistema autónomo inclui válvulas de controle para regulação do fluxo da drenagem (v, vi), que possuem como características a possibilidade de acionamento automático pelo sistema de controle (ix). Essas válvulas são preferencialmente do tipo solenoide, de abertura ou fechamento total quando acionadas, mas podem ainda ser válvulas de controle progressivo, se o sistema assim demandar. O diâmetro dessas válvulas é projetado para se adequar às características da saída da válvula de drenagem (iv) e para garantir uma vazão de drenagem lenta o suficiente para não induzir a formação de vórtices durante a operação.
[0014] A válvula (v) instalada antes do sistema de medição (vii) é projetada para trabalhar de modo normalmente fechado, garantindo um duplo isolamento do tanque de armazenamento (i) a todo o momento. Essa válvula (v) tem ainda a função de isolar o fluido contido na tubulação de drenagem do tanque (i) quando se faz necessário acionar o sistema de limpeza (x) dos sensores contidos no sistema de medição (vii), de modo a evitar contaminação do fluido armazenado e garantir a eficiência da limpeza dos sensores.
[0015] A válvula (vi) instalada após o sistema de medição (vii) determina a abertura ou fechamento do sistema de drenagem, permitindo ou não a passagem de líquido para a linha de dreno (xiii). Essa válvula é atuada pelo comando do sistema de controle (ix), em função da resposta do sistema de medição (vii). As dimensões dessa válvula, bem como a frequência e tempo de sua abertura durante a operação, definem a vazão de drenagem, que está diretamente relacionada à eliminação da possibilidade de formação de vórtices durante a operação.
[0016] O sistema de medição (vii) visa à realização da caracterização física e/ou físico- química do fluido sendo drenado (ii, iii), tendo como principal função a detecção e a quantificação do fluido contaminante (iii) e do fluido orgânico (ii) no líquido sendo drenado. O sistema possui sensores para detecção e quantificação de fluido contaminante (iii) em fluido orgânico (ii), assim como para detecção e quantificação de fluido orgânico (ii) em fluido contam inante (iii), de modo a garantir a eficácia da resposta do sistema do sistema de controle (ix) na atuação da válvula de controle (vi) e o atendimento das características pré-definidas para o descarte.
[0017] Ainda sobre o sistema de medição (vii), a detecção e quantificação dos fluidos pode ser realizada por instrumentos intrusivos e não-intrusivos, utilizando princípios diversos, escolhidos dentre medidas espectroscópicas, espectrométricas, acústicas, reológicas, gravimétricas e de condutividade e/ou impedância elétricas, desde que sejam adequados para garantir a especificação do descarte requerido. Essa flexibilidade no princípio de medição permite a adequação desse sistema autónomo à operação de drenagem de uma série de fluidos orgânicos (ii) com características distintas, permitindo assim a busca de alternativas que garantam redução do custo do sistema de medição (vii) e consequentemente do sistema autónomo.
[0018] O sistema de medição (vii) também é projetado para conter instrumentos capazes de realizar outras medidas auxiliares do sistema de controle (ix), tais como a pressão e a temperatura dos fluidos (ii, iii) contidos no tanque de armazenamento (i), a temperatura ambiente e a vazão de descarte dos fluidos pela linha de dreno (xiii).
[0019] A medida de pressão visa a alimentar o sistema de controle (ix) com informações sobre as operações de carga e descarga dos tanques de armazenamento (i), que são relevantes para a correta operação do sistema.
[0020] A medida de vazão de descarte é importante para que o sistema autónomo possa aprender sobre o volume de fluido contam inante gerado durante a operação normal do tanque de armazenamento (i), para continuamente realizar o ajuste da vazão ótima de descarte ao longo da operação, de modo a garantir um descarte autónomo e contínuo, bem como eliminar a formação de vórtices durante a operação.
[0021] As medidas de temperatura ambiente e do fluido de descarte permite avaliar informações relativas às características dos fluidos sendo descartados (concentrações dos fluidos e volume de descarte) e possibilita que o sistema possa fazer ajustes na operação com base nessas informações. [0022] O sistema de controle (ix) é projetado para receber dados do sistema de medição (vii), dentre esses dados o teor de fluido contaminante (iii) e do fluido orgânico (ii) presente no fluido sendo descartado, assim como a vazão de descarte para o dreno (xiii) e as temperaturas ambiente e do fluido sendo descartado, processar esses dados e atuar nas diversas válvulas de controle (v, vi, xvi) e bombas (xv). O sistema de controle (ix) contém algoritmos embarcados que o permitem adaptar-se por técnicas e algoritmos de Inteligência Artificial (AI) e Aprendizado de Máquina (ML) às características particulares do tanque de armazenamento (i), do fluido orgânico armazenado (ii) e do fluido contaminante (iii) a ser descartado, permitindo uma melhoria contínua da vazão de descarte.
[0023] O correto funcionamento do sistema autónomo demanda a instalação de um sistema de circulação bidirecional (viii), que permite deslocamento de fluido entre o sistema de medição (vii) e o tanque de armazenamento (i).
[0024] O sistema autónomo é projetado para realizar o descarte de fluido contaminante (iii) até que a concentração do líquido orgânico (ii) atinja o valor definido para o fechamento da válvula de controle (vi) e interrupção do descarte. Nesse momento, a tubulação à montante de válvula de drenagem manual (iv), bem como a linha de tubulação entre a válvula de drenagem manual (iv) e a válvula de controle (vi) ficam preenchidas com uma mistura contendo o fluido contaminante (iii) e o fluido orgânico em concentração superior à requerida para o descarte. O sistema de circulação (viii) tem como função principal garantir a renovação do fluido contido nessas linhas de tubulação, em vista a garantir que o sistema de medição (vii) possa detectar uma nova porção do fluido contaminante (iii) decantada no fundo do tanque de armazenamento (i) que esteja em condições especificadas para o descarte. Sem o sistema de circulação (viii), o sistema de medição (vii) não envia o sinal correto sobre a qualidade do fluido para que o sistema de controle (ix) possa atuar na válvula de controle (vi) e prosseguir com o descarte, impedindo sua atuação autónoma.
[0025] O sistema de circulação (viii) tem como função complementar circular o fluido orgânico (ii) isento de fluido contaminante (iii) pela linha de tubulação do sistema de medição (vii), de modo a permitir a calibração interna periódica dos sensores, sem necessidade de intervenção no sistema autónomo para tal fim. Para a correta operação, o sistema de circulação (viii) é projetado para se conectar a um ponto do tanque de armazenamento (xiv) localizado em posição fisicamente superior à região normalmente ocupada pelo o fluido contaminante (iii).
[0026] Tomando como referência a Fig. 2, o sistema de circulação (viii) é projetado para ser capaz de deslocar os fluidos (ii, iii) entre o tanque de armazenamento (i) e o sistema de medição (vii), permitindo fluxo em ambas as direções. Esse sistema pode ser composto por uma bomba (xv) e um conjunto de válvulas de controle (xvi) montadas em uma árvore de manobra ( manifold ), conforme ilustrado no esquema exemplificado na Fig. 2a, de modo que o sistema de controle (ix) atue na abertura e fechamento pré-definido para cada uma das válvulas de controle (xvi) em função da operação requerida de esgotamento das linhas de tubulação do sistema de drenagem ou calibração interna do sistema de medição (vii). Alternativamente, o sistema de circulação (viii) pode ser projetado com duas bombas (xv) e um conjunto de válvulas de controle (xvi) montadas em um outro arranjo da árvore de manobra {manifold), conforme ilustrado no esquema exemplificado na Fig. 2b, permitindo o dimensionamento das bombas (xv) com diferentes dimensões em função das diferentes demandas de vazão entre as operações requeridas para ao correto funcionamento do sistema autónomo.
[0027] A instalação do sistema de limpeza (x) é necessária para garantir a correta operação do sistema de medição (vii), sendo projetado para eliminar os resíduos acumulados em torno dos sensores instalados no sistema de medição (vii). A operação de limpeza pode ser realizada com uma periodicidade definida ou em função da identificação de redução da intensidade dos sinais gerados pelos sensores do sistema de automação.
[0028] O sistema de limpeza (x) é utilizado para promover a limpeza mecânica e química do sistema de medição (vii), por meio da circulação de soluções de limpeza tais como solventes, tensoativos, abrasivos, decapantes, ácidos ou álcalis, que são escolhidos em função do tipo de fluido orgânico (ii) armazenado e da característica de resíduo formado por esse fluido, que pode ser depositado na região dos sensores do sistema de medição (vii). [0029] Tomando como referência a Fig. 3, a circulação da solução de limpeza (xvii) ocorre de forma independente, utilizando bomba de circulação (xviii) própria do sistema de limpeza (x) e válvulas de controle (xix), que se mantém inoperantes durante a operação normal do sistema autónomo e que são acionadas pelo sistema de controle (ix) em função da necessidade da operação de limpeza.
[0030] A circulação da solução de limpeza (xvii) ocorre de forma contida no sistema de medição (vii), de modo a não haver descarte da solução de limpeza no dreno (xiii) tampouco qualquer contato da solução de limpeza com os fluidos do tanque de armazenamento (i).
[0031] O sistema de limpeza (x) pode ser equipado com equipamentos que promovam ação de vibração no conjunto de sensores do sistema de medição (vii), como por exemplo sistema de ultrassom, instalado ao redor dos sensores, com objetivo de auxiliar na limpeza promovida pela solução de limpeza (xvii) e promover o condicionamento das superfícies dos sensores.
[0032] O sistema autónomo de drenagem de tanques de armazenamento (i) prevê a montagem de uma linha de drenagem (xi) e uma válvula de drenagem manual (xii) independentes, projetadas para serem acopladas à jusante da válvula de drenagem (iv) de tanques de armazenamento (i) em paralelo ao sistema autónomo, com o objetivo de permitir a realização de operação manual ( by-pass ) em caso de intervenção do sistema autónomo para manutenção.

Claims

REIVINDICAÇÕES
1. SISTEMA AUTÓNOMO DE DRENAGEM DE FLUIDOS CONTAMINANTES DE TANQUES DE ARMAZENAMENTO DE FLUIDOS ORGÂNICOS, caracterizado por ser constituído por válvulas de controle para regulação do fluxo da drenagem (v, vi), por sistema de medição (vii) capaz de realizar a caracterização física e/ou físico-química do fluido sendo drenado (ii, iii), por sistema de circulação bidirecional (viii) para deslocamento de fluido entre o sistema de medição (vii) e o tanque de armazenamento (i), por sistema de controle (ix) capaz de receber dados obtidos pelo sistema de medição (vii) e atuar nas válvulas de controle (v, vi) e no sistema de circulação bidirecional (viii), por sistema de limpeza (x) capaz de eliminar resíduos presentes no sistema de medição (vii), e por linha de drenagem (xi) e válvula de drenagem manual (xii) independentes, para realização de operação manual ( by-pass ) em caso de intervenção do sistema autónomo, projetado para ser acoplado à jusante da válvula de drenagem (iv) de tanques de armazenamento (i) em paralelo ao sistema autónomo.
2. SISTEMA AUTÓNOMO de acordo com a reivindicação 1 , caracterizado por ser utilizado para a drenagem de fluidos contaminantes (iii) de tanques de armazenamento de fluidos orgânicos (ii) de origem mineral, vegetal, animal ou sintética, tais como hidrocarbonetos contendo entre 1 e 50 átomos de carbono e suas misturas, dentre esses gás natural, etano, eteno, propano, propeno, butano, isobutano, buteno, isobuteno, gás liquefeito de petróleo (GLP), nafta, gasolina, diesel, querosene, óleos lubrificantes, parafinas, óleos naftênicos, óleos isolantes, n-parafinas, isoparafinas, correntes hidrogenadas, correntes aromáticas, corrente de reforma catalítica, correntes de alquilação, petróleo, pirolisado de xisto, correntes intermediárias e produtos acabados derivados de processos petroquímicos e de refino de petróleo, óleo de soja, óleo de algodão, óleo de girassol, óleo de mamona, óleo de amendoim, óleo de milho, óleo de canola, óleo de coco, óleo de dendê, óleo de carnaúba e suas misturas, gorduras bovina, suína e de frango e suas misturas, ésteres contendo entre 4 e 50 átomos de carbono e suas misturas, dentre esses etanoato de etila, ésteres metílicos, etílicos, propílicos, isopropílicos, butílicos, isobutílicos e terc-butílicos derivados dos óleos e gorduras do escopo dessa reivindicação, e biodiesel.
3. SISTEMA AUTÓNOMO de acordo com a reivindicações 1 e 2, caracterizado por ser utilizado para a drenagem de fluidos contaminantes (iii) presentes nos tanques de armazenamento (i) de fluidos orgânicos (ii), que sejam imiscíveis ou de baixa miscibilidade (menor que 10% v/v) nos fluidos orgânicos armazenados (ii), compreendendo dentre esses contaminantes (iii) água, álcoois contendo de 1 a 5 átomos de carbono, salmouras e suas misturas.
4. SISTEMA AUTÓNOMO de acordo com as reivindicações 1 e 3, caracterizado por ser equipado com sistema de medição (vii) contendo instrumentos intrusivos e não- intrusivos para detecção e quantificação da fração de fluido contam inante (iii) presente em mistura com os fluidos orgânicos armazenados (ii) no tanque de armazenamento (i), instrumentos esses utilizando princípios diversos, escolhidos dentre medidas espectroscópicas, espectrométricas, acústicas, reológicas, gravimétricas e de condutividade e/ou impedância elétricas.
5. SISTEMA AUTÓNOMO de acordo com as reivindicações 1 e 4, caracterizado por ser equipado com sistema de medição (vii) contendo instrumentos capazes de medir a pressão e a temperatura dos fluidos (ii, iii) contidos no tanque de armazenamento (i), a temperatura ambiente e a vazão de descarte dos fluidos pela linha de dreno (xiii).
6. SISTEMA AUTÓNOMO de acordo com as reivindicações 1 a 5, caracterizado por ser equipado com sistema de circulação bidirecional (viii, fig. 2) capaz de deslocar os fluidos (ii, iii) entre o tanque de armazenamento (i) e o sistema de medição (vii), composto por uma ou mais bombas (xv), conjunto de válvulas de controle (xvi) montadas em uma árvore de manobra ( manifold ), acionados pelo sistema de controle (ix).
7. SISTEMA AUTÓNOMO de acordo com as reivindicações 1 a 6, caracterizado por ser equipado com sistema de controle (ix) capaz de receber dados do sistema de medição (vii), dentre esses dados o teor de fluido contaminante (iii) e do fluido orgânico (ii) presente no fluido sendo descartado e a vazão de descarte para o dreno (xiii), processar esses dados e atuar nas diversas válvulas de controle (v, vi, xvi) e bombas (xv), contendo algoritmos embarcados que o permitam adaptar-se por técnicas e algoritmos de Inteligência Artificial {AI) e Aprendizado de Máquina (ML) às características particulares do tanque de armazenamento (i), do fluido orgânico armazenado (ii) e do fluido contam inante (iii) a ser descartado.
8. SISTEMA AUTÓNOMO de acordo com as reivindicações 1 a 7, caracterizado por ser equipado com sistema de limpeza mecânica e química (x) do sistema de medição (vii) independente do sistema de circulação bidirecional (viii, fig. 2), capaz de circular soluções de limpeza e condicionamento de superfícies podendo conter solventes, tensoativos, abrasivos, decapantes, ácidos ou álcalis de forma contida, impedindo o descarte da solução de limpeza no dreno (xiii) e qualquer contato da solução de limpeza com os fluidos do tanque de armazenamento (i), além de ser capaz de promover ação de vibração no conjunto de sensores do sistema de medição (vii).
PCT/BR2021/050298 2020-07-16 2021-07-13 Sistema autonomo de drenagem de fluidos contaminantes de tanques de armazenamento de fluidos orgânicos WO2022011442A1 (pt)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BR102020014524-0A BR102020014524A2 (pt) 2020-07-16 2020-07-16 Sistema autônomo de drenagem de fluidos contaminantes de tanques de armazenamento de fluidos orgânicos
BRBR1020200145240 2020-07-16

Publications (1)

Publication Number Publication Date
WO2022011442A1 true WO2022011442A1 (pt) 2022-01-20

Family

ID=79555878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2021/050298 WO2022011442A1 (pt) 2020-07-16 2021-07-13 Sistema autonomo de drenagem de fluidos contaminantes de tanques de armazenamento de fluidos orgânicos

Country Status (2)

Country Link
BR (1) BR102020014524A2 (pt)
WO (1) WO2022011442A1 (pt)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2236960A (en) * 1989-10-19 1991-04-24 Ludlam Sysco Limited Water drainage system
US20120017998A1 (en) * 2010-07-22 2012-01-26 Saudi Arabian Oil Company Sound-Velocity Dewatering System
US20140206998A1 (en) * 2013-01-23 2014-07-24 Canon Kabushiki Kaisha Object information acquiring apparatus and control method for same
WO2019206749A1 (en) * 2018-04-24 2019-10-31 Petroleos Del Norte, S.A. System and method for draining a hydrocarbon storage tank
CN110406827A (zh) * 2019-08-05 2019-11-05 盐城宇通流体设备有限公司 一种储罐上部脱水机构及其控制系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2236960A (en) * 1989-10-19 1991-04-24 Ludlam Sysco Limited Water drainage system
US20120017998A1 (en) * 2010-07-22 2012-01-26 Saudi Arabian Oil Company Sound-Velocity Dewatering System
US20140206998A1 (en) * 2013-01-23 2014-07-24 Canon Kabushiki Kaisha Object information acquiring apparatus and control method for same
WO2019206749A1 (en) * 2018-04-24 2019-10-31 Petroleos Del Norte, S.A. System and method for draining a hydrocarbon storage tank
CN110406827A (zh) * 2019-08-05 2019-11-05 盐城宇通流体设备有限公司 一种储罐上部脱水机构及其控制系统

Also Published As

Publication number Publication date
BR102020014524A2 (pt) 2022-01-25

Similar Documents

Publication Publication Date Title
US3565252A (en) Oil water separation system for tankers
US7883627B1 (en) Automated fuel polishing system and methods
US5612490A (en) Method and apparatus for measuring phases in emulsions
US20120192480A1 (en) Automated fuel polishing system and methods
EA199900412A1 (ru) Система дренажа резервуаров для хранения жидкости
BRPI0717899A2 (pt) '' método de monitoramento da eficácia de um produto químico na remoção de depósitos da superfície interna de um encanamento, método de determinação da taxa de corrosão de uma superfície interna de um encanamento e sonda de remoção de depósitos ''
CN108704336B (zh) 一种密闭式油罐脱水系统及其脱水方法
WO2022011442A1 (pt) Sistema autonomo de drenagem de fluidos contaminantes de tanques de armazenamento de fluidos orgânicos
JP2019064728A (ja) 油タンク水切りシステム
CN201513620U (zh) 一种自动排液阀
US2885118A (en) Metering tank and control system for metering liquids
CN104507851A (zh) 用于储油箱的放水系统
CN208340183U (zh) 一种新型智能自动切水装置
US2753885A (en) Liquid level indicator
CN102659213A (zh) 基于特种液位测量仪去除废水中浮油及沉砂的方法及装置
CN208188026U (zh) 一种连续采样检测的自动切水装置
CN108626578A (zh) 无回流口的储罐虹吸口自动脱水回流系统及方法
CN111765022B (zh) 一种船用燃油系统监测与处置装置
CN208553232U (zh) 一种密闭式油罐脱水系统
US2995139A (en) Automatic custody transfer system
RU171318U1 (ru) Устройство для дренирования подтоварной воды из резервуара
US3763706A (en) Method and apparatus for determining a fluid contaminant
CN106635133A (zh) 一种脱水器装置
CN110422816A (zh) 一种油水分离橇装式加油站
RU2797480C1 (ru) Передвижная установка для промывки трубопоршневых поверочных установок

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21842994

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21842994

Country of ref document: EP

Kind code of ref document: A1