WO2022010112A1 - Method for controlling refrigerator having peltier element, and refrigerator using same - Google Patents

Method for controlling refrigerator having peltier element, and refrigerator using same Download PDF

Info

Publication number
WO2022010112A1
WO2022010112A1 PCT/KR2021/007203 KR2021007203W WO2022010112A1 WO 2022010112 A1 WO2022010112 A1 WO 2022010112A1 KR 2021007203 W KR2021007203 W KR 2021007203W WO 2022010112 A1 WO2022010112 A1 WO 2022010112A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
refrigerator
target
internal temperature
cooling
Prior art date
Application number
PCT/KR2021/007203
Other languages
French (fr)
Korean (ko)
Inventor
조성호
박영민
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Publication of WO2022010112A1 publication Critical patent/WO2022010112A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D15/00Devices not covered by group F25D11/00 or F25D13/00, e.g. non-self-contained movable devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • F25D29/005Mounting of control devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/12Sensors measuring the inside temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0028Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cooling heat generating elements, e.g. for cooling electronic components or electric devices
    • F28D2021/0029Heat sinks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/56Heat recovery units

Definitions

  • the present disclosure relates to a refrigerator using a Peltier element as a cooling device, and more particularly, to a method for controlling a refrigerator having a Peltier element and a refrigerator using the same.
  • a refrigerator is a device that cools food or stores it at a low temperature to prevent spoilage or deterioration of food.
  • Such a refrigerator includes an accommodating space capable of accommodating food and a cooling device for cooling the accommodating space.
  • a cooling device may be classified into a refrigeration cycle device using a refrigeration cycle and a Peltier cooling device using a Peltier element according to a method of generating cold air.
  • the refrigeration cycle device is a method of obtaining cold air by circulating a refrigerant along a closed circuit composed of a compressor, a condenser, an expansion mechanism, and an evaporator.
  • the Peltier cooling device is a method of obtaining cold air using the Peltier effect.
  • the Peltier effect refers to a phenomenon in which when a potential difference is applied to both sides of an object, heat flows along with an electric current, so that one side is heated and the other side is cooled.
  • the refrigeration cycle device is more efficient than the Peltier cooling device, but has a disadvantage in that the noise is large when the compressor is driven.
  • the Peltier cooling device is less efficient than the refrigeration cycle device, but has the advantage of low noise. Therefore, the Peltier cooling device may be used in a cooling device of a central processing unit (CPU), a temperature control seat of a vehicle, a small refrigerator, and the like.
  • CPU central processing unit
  • the Peltier cooling device may be used in a cooling device of a central processing unit (CPU), a temperature control seat of a vehicle, a small refrigerator, and the like.
  • the Peltier cooling device When the temperature of the receiving space of the refrigerator reaches the target temperature, the Peltier cooling device turns off the power applied to the Peltier cooling device, and when the temperature of the receiving space rises above the target temperature, it is controlled to apply power again to the Peltier cooling device. .
  • the present disclosure is devised in view of the above problems, and relates to a control method of a refrigerator capable of rapidly cooling the internal temperature of a refrigerator using a Peltier element to a target temperature and maintaining the target temperature.
  • the present disclosure relates to a refrigerator using a Peltier device using the control method as described above.
  • a method of controlling a refrigerator including a Peltier device includes: measuring an internal temperature of the refrigerator with a first temperature sensor; determining whether the internal temperature of the refrigerator is higher than a first target control temperature; applying a first voltage to the Peltier device when the internal temperature of the refrigerator is higher than or equal to the first target control temperature; and applying a second voltage to the Peltier device when the internal temperature of the refrigerator is lower than the first target control temperature.
  • the cooling sink of the Peltier device The second voltage applied to the Peltier device may be controlled by PID control (Proportional Integral Derivative Control) using the cooling sink temperature and the cooling sink target temperature measured by the installed second temperature sensor.
  • the first target control temperature may be higher than the target temperature in the refrigerator by the first spare temperature.
  • the cooling sink target temperature may be corrected according to the internal temperature of the refrigerator measured by the first temperature sensor.
  • the method of correcting the target temperature of the cooling sink may include: measuring an internal temperature of the refrigerator with the first temperature sensor at regular time intervals; determining whether the currently measured interior temperature is the same as the previous interior temperature measured before the predetermined time; maintaining the cooling sink target temperature without correction when the internal temperature of the refrigerator is the same as the previous internal temperature; if the internal temperature of the refrigerator is not the same as the previous internal temperature, determining whether the internal temperature of the refrigerator is lower than the previous internal temperature; if the internal temperature of the refrigerator is lower than the previous internal temperature, determining whether the internal temperature of the refrigerator is lower than a temperature obtained by subtracting a second spare temperature from a target internal temperature of the refrigerator; raising the cooling sink target temperature by a correction temperature when the internal temperature of the refrigerator is lower than a temperature obtained by subtracting the second spare temperature from the target temperature in the refrigerator; and maintaining the cooling sink target temperature without correction when the internal temperature of the refrigerator is greater than or equal to a temperature obtained by subtracting the second spare temperature from the target internal temperature.
  • control method of a refrigerator includes determining whether the internal temperature of the refrigerator is the same as or higher than the previous internal temperature, and is higher than a temperature obtained by adding the second spare temperature to the target internal temperature of the refrigerator. step; lowering the cooling sink target temperature by the corrected temperature when the internal temperature of the refrigerator is higher than the temperature obtained by adding the second spare temperature to the target internal temperature; and maintaining the cooling sink target temperature without correction when the internal temperature of the refrigerator is less than or equal to the temperature obtained by adding the second spare temperature to the target internal temperature.
  • the predetermined time may be 10 minutes.
  • the second marginal temperature may be 0.3°C.
  • the correction temperature may be 0.3°C.
  • the cooling sink target temperature may be set as a temperature obtained by subtracting the subtracted temperature from the internal target temperature, and the subtracted temperature may be 3°C.
  • the first voltage may be a full duty voltage
  • the second voltage may be lower than the first voltage
  • a refrigerator includes: a main body including an accommodation space; a cooling device installed in the main body and supplying cold air to the accommodation space; a first temperature sensor installed in the accommodation space; and a processor for controlling the cooling device, wherein the cooling device includes: a Peltier element; a cooling sink installed on the low-temperature surface of the Peltier element; a cooling fan installed above the cooling sink and supplying air cooled by the cooling sink to the accommodating space; a second temperature sensor installed in the cooling sink; a heat sink installed on the high-temperature surface of the Peltier element; a heat dissipation fan installed under the heat sink and dissipating heat from the heat sink to the outside of the body; and a power control unit configured to control the voltage supplied to the Peltier device, wherein the processor is configured to include, when the internal temperature of the accommodating space measured by the first temperature sensor is higher than or equal to the first target control temperature, the power control unit to supply a first voltage to the Peltier element by controlling When supplying, the second voltage may
  • the processor may correct the cooling sink target temperature according to the internal temperature measured by the first temperature sensor.
  • the processor corrects the target temperature of the cooling sink
  • the internal temperature of the refrigerator is measured with the first temperature sensor at regular time intervals, and the currently measured internal temperature is the same as the previous internal temperature measured before the predetermined time. and if the internal temperature of the refrigerator is the same as the previous internal temperature, the cooling sink target temperature is maintained without correction; it is determined whether the refrigerator is low, and if the interior temperature of the refrigerator is lower than the previous interior temperature, it is determined whether the interior temperature is lower than a target interior temperature minus a second spare temperature; If it is lower than the temperature obtained by subtracting the spare temperature, the cooling sink target temperature is raised by the corrected temperature. If the inner temperature of the refrigerator is greater than or equal to the temperature obtained by subtracting the second spare temperature from the target temperature in the refrigerator, the cooling sink target temperature is corrected You can keep it without
  • the processor may be further configured to: if the internal temperature of the refrigerator is higher than or equal to the previous internal temperature, determine whether the internal temperature of the refrigerator is higher than a temperature obtained by adding the second spare temperature to the target internal temperature, wherein the internal temperature of the refrigerator is the target internal temperature If the temperature is higher than the temperature obtained by adding the second spare temperature to , the cooling sink target temperature is lowered by the corrected temperature.
  • the target temperature can be maintained without correction.
  • the internal temperature of the refrigerator using the Peltier element can be rapidly cooled to the internal target temperature. , it can be kept constant at the target temperature inside the furnace.
  • FIG. 1 is a cross-sectional view showing a refrigerator according to an embodiment of the present disclosure
  • FIG. 2 is a perspective view illustrating a cooling device used in a refrigerator according to an embodiment of the present disclosure
  • FIG. 3 is a view showing a second temperature sensor installed in the cooling sink of the cooling device according to an embodiment of the present disclosure
  • FIG. 4 is a functional block diagram of a refrigerator according to an embodiment of the present disclosure.
  • FIG. 5 is a flowchart illustrating a control method of a refrigerator according to an embodiment of the present disclosure
  • FIG. 6 is a flowchart illustrating a method of correcting a target temperature of a cooling sink in a method of controlling a refrigerator according to an embodiment of the present disclosure
  • FIG. 7 is a graph illustrating changes over time of a refrigerator temperature, a cooling sink temperature, and a cooling sink target temperature controlled by the refrigerator control method according to an embodiment of the present disclosure
  • expressions such as “have,” “may have,” “include,” or “may include” indicate the presence of a corresponding characteristic (eg, a numerical value, function, operation, or component such as a part). and does not exclude the presence of additional features.
  • a component eg, a first component
  • another component eg, a second component
  • an element may be directly connected to another element or may be connected through another element (eg, a third element).
  • a “module” or “unit” performs at least one function or operation, and may be implemented as hardware or software, or a combination of hardware and software.
  • a plurality of “modules” or a plurality of “units” are integrated into at least one module and implemented with at least one processor (not shown) except for “modules” or “units” that need to be implemented with specific hardware.
  • the term user may refer to a person who uses an electronic device or a device (eg, an artificial intelligence electronic device) using the electronic device.
  • a device eg, an artificial intelligence electronic device
  • FIG. 1 is a cross-sectional view illustrating a refrigerator according to an embodiment of the present disclosure.
  • a refrigerator 1 may include a body 10 , a cooling device 20 , and a processor 80 .
  • the refrigerator 1 shown in FIG. 1 is a wine refrigerator capable of storing a plurality of wine bottles.
  • this is only an example, and the refrigerator 1 to which the present disclosure can be applied is not limited to a wine refrigerator.
  • the body 10 is formed in a rectangular parallelepiped shape, and may include an accommodation space 11 capable of storing food.
  • a door 12 capable of opening and closing the accommodation space 11 may be installed on the front surface of the main body 10 .
  • the interior of the body 10 is formed to accommodate a plurality of wine bottles.
  • the main body 10 may be provided with a cooling passage 13 for guiding the low-temperature air cooled by the cooling device 20 to the accommodation space 11 .
  • the cooling passage 13 may be formed to communicate the cooling apparatus chamber 15 in which the cooling apparatus 20 is installed and the accommodation space 11 .
  • the air in the accommodating space 11 flows into the cooling device chamber 15 in which the cooling device 20 is installed, is cooled by the cooling device 20 , and then again passes through the cooling passage 13 to the receiving space 11 . ) can be released.
  • the outlet 13a of the cooling passage 13 may be provided on the inner surface of the main body 10 .
  • the first temperature sensor 71 may be installed in the accommodation space 11 of the main body 10 .
  • the first temperature sensor 71 may be installed on the inner surface of the main body 10 , that is, the inner surface of the main body 10 forming the accommodation space 11 .
  • the first temperature sensor 71 may be installed on the inner surface of the body 10 in which the outlet 13a of the cooling channel 13 is formed so as to be adjacent to the outlet 13a of the cooling channel 13 .
  • the first temperature sensor 71 is formed to measure the temperature of the accommodation space 11 of the main body 10 , that is, the temperature inside the refrigerator.
  • the first temperature sensor 71 may transmit the measured internal temperature data to the processor 80 . That is, the processor 80 may determine the internal temperature of the refrigerator from the signal output from the first temperature sensor 71 .
  • the cooling device 20 is installed in the main body 10 , and is formed to supply cold air to the accommodation space 11 of the main body 10 . After cooling the air in the receiving space 11 of the main body 10 by using the Peltier element 21 , the cooling device 20 is formed to discharge the cooled air into the receiving space 11 .
  • the cooling device 20 may be installed at the lower portion of the main body 10 , that is, in the cooling device chamber 15 provided below the accommodation space.
  • FIG. 2 is a perspective view illustrating a cooling device installed in a refrigerator according to an exemplary embodiment of the present disclosure.
  • the cooling device 20 may include a Peltier element 21 , a cooling sink 30 , and a heat sink 50 .
  • the Peltier element 21 may include a low temperature portion and a high temperature portion, and a temperature difference between the low temperature portion and the high temperature portion may be determined according to a voltage applied to the Peltier element 21 .
  • the Peltier element 21 may be installed such that the low temperature part faces upward and the high temperature part faces downward.
  • the circumference of the Peltier element 21 may be insulated with a heat insulating member 23 as shown in FIG. 1 .
  • the Peltier element 21 and the heat insulating member 23 divide and isolate the cooling device chamber 15 into a low temperature chamber 16 and a high temperature chamber 17 . Accordingly, the high temperature portion of the Peltier element 21 does not affect the low temperature portion of the Peltier element 21 .
  • the cooling sink 30 is installed so as to be in contact with or adjacent to the exposed surface of the low-temperature portion of the Peltier element 21, that is, the low-temperature surface. Accordingly, the cooling sink 30 is installed on the upper side of the Peltier element (21). That is, the cooling sink 30 is installed in the low temperature chamber 16 of the cooling apparatus chamber 15 .
  • the cooling sink 30 may include a cooling plate 31 and cooling fins 32 .
  • the cooling plate 31 may be installed to be in contact with the Peltier element 21 .
  • the cooling plate 31 may be in contact with the low-temperature portion of the Peltier element 21 to transfer the heat of the low-temperature portion of the Peltier element 21 to the cooling fins 32 .
  • the cooling plate 31 may be formed of a material having high thermal conductivity.
  • the cooling plate 31 may be formed in a substantially rectangular shape.
  • the cooling fins 32 may be installed to contact the cooling plate 31 .
  • the cooling fins 32 may be formed to protrude from one surface of the cooling plate 31 .
  • the cooling fins 32 may be located above the cooling plate 31 . At least a part of the cooling fins 32 may be located in the low-temperature chamber 16 in the cooling device chamber 15 , and heat exchange with the air in the low-temperature chamber 16 to cool the air.
  • a plurality of cooling fins 32 may be formed to increase the heat exchange area with air.
  • the cooling fins 32 are formed in a rectangular shape and are vertically spaced apart from the upper surface of the cooling plate 31 at regular intervals. Accordingly, the air introduced into the low temperature chamber 16 by the cooling fan 40 may exchange heat while flowing between the plurality of cooling fins 32 .
  • the air supplied to the cooling sink 30 may be guided by the plurality of cooling fins 32 and introduced into the cooling passage 13 .
  • the heat sink 50 is installed so as to be in contact with or adjacent to the exposed surface of the high-temperature portion of the Peltier element 21, that is, the high-temperature surface. Accordingly, the heat sink 50 is installed on the lower side of the Peltier element (21). Accordingly, the cooling sink 30 is installed closer to the accommodation space 11 of the body 10 than the heat sink 50 .
  • the cooling device 20 may include a cooling fan 40 circulating air in the accommodation space 11 and a heat dissipation fan 60 circulating external air.
  • the cooling fan 40 is installed above the cooling sink 30 , and is formed to circulate the air in the accommodation space 11 through the cooling sink 30 . That is, the cooling fan 40 is installed above the cooling sink 30 in the low temperature chamber 16 .
  • the air in the accommodation space 11 is sucked into the low temperature chamber 16 of the cooling device chamber 15 by the cooling fan 40 , passes through the cooling sink 30 , and then again along the cooling passage 13 . It may be discharged into the accommodation space 11 . Accordingly, the cooling fan 40 circulates air in the accommodation space 11 of the main body 10 to lower the temperature of the accommodation space 11 .
  • An inlet 41 communicating with the accommodating space 11 is provided on the upper portion of the cooling fan 40 , that is, on the upper surface of the cooling device chamber 15 . Accordingly, when the cooling fan 40 operates, the air in the accommodation space 11 may be introduced into the low temperature chamber 16 of the cooling device chamber 15 through the inlet 41 .
  • the cooling fan 40 is formed to supply the air of the accommodation space 11 to the cooling sink 30 . Accordingly, when the cooling fan 40 operates, the air in the accommodation space 11 flows into the low temperature chamber 16 and is supplied to the plurality of cooling fins 32 of the cooling sink 30 .
  • the air introduced by the cooling fan 40 exchanges heat with the plurality of cooling fins 32 while moving along the plurality of cooling fins 32 to lower the temperature and flow into the cooling passage 13 .
  • the cold air introduced into the cooling passage 13 is discharged to the receiving space 11 of the main body 10 through the outlet 13a.
  • a second temperature sensor 72 may be installed in the cooling sink 30 .
  • FIG 3 is a diagram illustrating a second temperature sensor installed in a cooling sink of a cooling device according to an embodiment of the present disclosure.
  • the second temperature sensor 72 may be installed on top of the plurality of cooling fins 32 .
  • the second temperature sensor 72 is formed to measure the temperature of the cooling sink 30 .
  • the second temperature sensor 72 may transmit the measured temperature data of the cooling sink 30 to the PID control unit 82 . That is, the PID control unit 82 may determine the temperature of the cooling sink 30 from the signal output from the second temperature sensor 72 .
  • the heat sink 50 is installed so as to be in contact with or adjacent to the exposed surface of the high-temperature portion of the Peltier element 21, that is, the high-temperature surface. Accordingly, the heat sink 50 is installed on the lower side of the Peltier element (21). That is, the heat sink 50 is installed in the high temperature chamber 17 of the cooling device chamber 15 .
  • a heat dissipation block 55 is installed between the heat dissipation sink 50 and the Peltier element 21 .
  • One end of the heat dissipation block 55 is in contact with the high-temperature surface of the Peltier element 21 , and the other end is installed to contact the heat dissipation sink 50 .
  • the heat sink 50 may be installed to directly contact the high temperature surface of the Peltier element 21 .
  • the heat sink 50 may include a heat sink 51 and a heat radiation fin 52 .
  • the heat sink 51 may be installed to be in contact with the Peltier element 21 .
  • the heat sink 51 may be in contact with the high temperature portion of the Peltier element 21 to transfer the heat of the high temperature portion of the Peltier element 21 to the heat radiation fins 52 .
  • the heat sink 51 may be formed of a material having high thermal conductivity.
  • the heat sink 51 may be formed in a substantially rectangular shape.
  • the heat dissipation fins 52 may be installed to contact the heat dissipation plate 51 .
  • the heat dissipation fin 52 may be formed to protrude from one surface of the heat dissipation plate 51 .
  • the heat dissipation fin 52 may be located under the heat dissipation plate 51 . At least a portion of the heat dissipation fins 52 may be located in the high temperature chamber 17 in the cooling device chamber 15 , and heat exchange with external air introduced into the high temperature chamber 17 to cool the heat dissipation fins 52 .
  • a plurality of heat dissipation fins 52 may be formed in order to increase a heat exchange area with external air.
  • the heat dissipation fins 52 are formed in a rectangular shape and are vertically spaced apart from the bottom surface of the heat dissipation plate 51 at regular intervals. Accordingly, the external air introduced by the heat dissipation fan 60 may exchange heat with the plurality of heat dissipation fins 52 while flowing between the plurality of heat dissipation fins 52 .
  • the external air supplied to the heat sink 50 may be guided by the plurality of heat radiation fins 52 to be discharged to the outside of the high temperature chamber 17 .
  • the heat dissipation fan 60 is installed under the heat sink 50 , and is formed to circulate air outside the refrigerator 1 through the heat sink 50 . That is, the heat dissipation fan 60 is installed below the heat sink 50 in the high temperature chamber 17 of the cooling device chamber 15 .
  • the heat dissipation fan 60 may lower the temperature of the heat dissipation sink 50 by sucking the outside air. That is, the heat dissipation fan 60 may lower the temperature of the high temperature portion of the Peltier element 21 by using external air.
  • An inlet 17a and an outlet 17b communicating with the outside are provided on one side of the heat dissipation fan 60 , that is, a side surface of the high temperature chamber 17 of the cooling device chamber 15 .
  • the heat dissipation fan 60 is formed to supply external air to the heat sink 50 . Accordingly, when the heat dissipation fan 60 operates, external air flows into the high temperature chamber 17 and is supplied to the plurality of heat dissipation fins 52 of the heat dissipation sink 50 .
  • the external air introduced into the high temperature chamber 17 by the heat dissipation fan 60 exchanges heat with the plurality of heat dissipation fins 52 while moving along the plurality of heat dissipation fins 52 to lower the temperature of the plurality of heat dissipation fins 52 .
  • Air heated by heat exchange with the plurality of heat dissipation fins 52 is discharged to the outside of the high temperature chamber 17 through the outlet 17b.
  • the heat dissipation fan 60 may radiate heat from the heat sink 50 , that is, the high temperature portion of the Peltier element 21 , to the outside of the cooling device chamber 15 , that is, to the outside of the main body 10 .
  • FIG. 4 is a functional block diagram of a refrigerator according to an embodiment of the present disclosure.
  • the refrigerator 1 includes a processor 80 , a power control unit 81 , a PID control unit 82 , a Peltier element 21 , a first temperature sensor 71 , A second temperature sensor 72 may be included.
  • the processor 80 is configured to control the cooling device 20 .
  • the processor 80 may control the cooling device 20 to lower the temperature of the accommodating space 11 of the refrigerator 1 to a target temperature inside the refrigerator 1 and keep it constant.
  • the processor 80 may be implemented as a digital signal processor (DSP), a microprocessor, or a time controller (TCON) for processing a digital signal.
  • DSP digital signal processor
  • TCON time controller
  • the processor 80 is not limited thereto.
  • CPU central processing unit
  • MCU micro controller unit
  • MPU micro processing unit
  • AP application processor
  • GPU graphics-processing unit
  • CP communication processor
  • ARM processor At least one of a communication processor (CP) and an ARM processor may be included, or may be defined by a corresponding term.
  • processor 80 may be implemented as a system on chip (SoC), large scale integration (LSI), or a field programmable gate array (FPGA) having a built-in processing algorithm.
  • SoC system on chip
  • LSI large scale integration
  • FPGA field programmable gate array
  • processor 80 may perform various functions by executing computer executable instructions stored in the memory 83 .
  • the processor 80 may control the power control unit 81 to adjust the voltage of the power supplied to the Peltier element 21 .
  • the processor 80 may control the voltage supplied to the Peltier element 21 by controlling the power control unit 81 based on the internal temperature input from the first temperature sensor 71 .
  • the processor Reference numeral 80 controls the power control unit 81 to supply a first voltage V1, for example, a full duty voltage to the Peltier element 21 . That is, when the internal temperature T1 is equal to or higher than the first target control temperature, the processor may control the power control unit to apply a full-duty voltage to the Peltier device.
  • the processor 80 may supply the second voltage V2 to the Peltier element 21 .
  • the processor 80 may control the second voltage V2 through the PID control unit 82 to be PID controlled (Proportional Integral Derivative Control) according to the temperature of the cooling sink 30 .
  • the power control unit 81 is formed to control the voltage of the power supplied to the Peltier element (21).
  • the power control unit 81 may adjust the voltage supplied to the Peltier element 21 according to a signal from the processor 80 .
  • the power control unit 81 may adjust the voltage supplied to the Peltier element 21 according to the signal of the PID control unit 82 .
  • the PID control unit 82 controls the power supply control unit 81 using the temperature T2 of the cooling sink 30 measured by the second temperature sensor 72 to PID control the voltage of the power supplied to the Peltier element 21 . can be adjusted
  • the PID control unit 82 is formed to control the voltage applied to the Peltier element 21 using the following equation.
  • the proportional term (P) acts as a control proportional to the magnitude of the error value in the current state.
  • the integral term (I) acts to eliminate the steady-state error.
  • the derivative term (D) acts to reduce overshoot and improve stability by braking the sudden change in the output value.
  • control parameters Kp, Ki, and Kd of the proportional term, the integral term, and the differential term can be tuned through an experimental method.
  • the PID control unit 82 is illustrated as being formed separately from the processor 80 , but as another example, the PID control unit 82 may be formed integrally with the processor 80 . In other words, the processor 80 may be formed to perform PID control.
  • the processor 80 controls the power controller 81 to control the Peltier element 21) may be supplied with a second voltage V2.
  • the processor 80 may PID control the second voltage V2 using the PID controller 82 and the second temperature sensor 72 .
  • the processor 80 uses the temperature T2 and the target cooling sink temperature Ts of the cooling sink 30 measured by the PID control unit 82 with the second temperature sensor 72 to the Peltier element 21 ), the second voltage V2 applied to it may be controlled by PID control.
  • the processor 80 controls the power control unit 81 to control the power supply control unit 81 when the internal temperature T1 of the accommodating space 11 measured by the first temperature sensor 71 is higher than or equal to the first target control temperature Tt1.
  • a first voltage is supplied to the Peltier element 21, and when the internal temperature T1 is lower than the first target control temperature Tt1, the power control unit 81 is controlled to supply the second voltage to the Peltier element 21.
  • the processor 80 converts the second voltage to PID control using the temperature T2 of the cooling sink 30 measured by the second temperature sensor 72 and the target temperature Ts of the cooling sink. can be controlled
  • the processor 80 may correct the cooling sink target temperature Ts for PID control according to the internal temperature T1 measured by the first temperature sensor 71 .
  • the processor 80 when correcting the cooling sink target temperature Ts, the processor 80 measures the internal temperature T1 of the refrigerator with the first temperature sensor 71 at regular time intervals, and the currently measured internal temperature T1 It is determined whether is the same as the previous internal temperature Tc measured before a predetermined time, and if the internal temperature T1 is the same as the previous internal temperature Tc, the cooling sink target temperature may be maintained without correction.
  • the processor 80 determines whether the inside temperature T1 is lower than the previous inside temperature Tc, and the inside temperature T1 is the previous inside temperature ( Tc), it may be determined whether the internal temperature T1 is lower than a temperature obtained by subtracting the second spare temperature c from the target internal temperature Tt.
  • the processor 80 increases the cooling sink target temperature Ts by the correction temperature d, and increases the internal temperature of the refrigerator If T1 is greater than or equal to the temperature obtained by subtracting the second spare temperature c from the target internal temperature Tt, the cooling sink target temperature Ts may be maintained without correction.
  • the processor 80 determines whether the internal temperature T1 is higher than the target internal temperature Tt plus the second spare temperature c. can
  • the processor 80 lowers the cooling sink target temperature Ts by the correction temperature d, and the internal temperature ( When T1) is less than or equal to the temperature obtained by adding the second spare temperature c to the internal target temperature Tt, the cooling sink target temperature Ts may be maintained without correction.
  • the memory 83 may store data, programs, etc. necessary for the processor to control the cooling device.
  • the memory may store the internal target temperature Tt, the cooling sink target temperature Ts, and the like.
  • the memory 83 may be implemented as an internal memory such as a ROM (eg, electrically erasable programmable read-only memory (EEPROM)) included in the processor 80 , a RAM, or the like. Alternatively, it may be implemented as a memory separate from the processor 80 .
  • ROM read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • the power supply unit 84 is formed to apply power to the Peltier element 21 through the power control unit 81 .
  • the power supply unit 84 is formed to supply power to the cooling fan 40 and the heat dissipation fan 60 .
  • the cooling fan 40 and the heat dissipation fan 60 may be controlled on/off by the processor 80 .
  • FIG. 5 is a flowchart illustrating a method for controlling a refrigerator according to an embodiment of the present disclosure.
  • the method for controlling a refrigerator includes the steps of measuring the internal temperature T1 of the refrigerator 1 with a first temperature sensor 71 ( S10 ), and the internal temperature T1 of the refrigerator 1 . is higher than the first target control temperature Tt1 ( S11 ), and when the internal temperature T1 is higher than or equal to the first target control temperature Tt1 ( T1 ⁇ Tt1 ), the first In the step of supplying the voltage V1 ( S13 ), and when the internal temperature T1 is lower than the first target control temperature Tt1 ( T1 ⁇ Tt1 ), the second voltage V2 is supplied to the Peltier element 21 . It may include a step (S14) of doing.
  • the processor 80 first measures the internal temperature T1 of the refrigerator 1 using the first temperature sensor 71 installed in the accommodation space 11 of the main body 10 ( S10 ). Specifically, the processor 80 recognizes the internal temperature T1 of the refrigerator 1 from the signal output from the first temperature sensor 71 .
  • the processor 80 determines whether the measured internal temperature T1 is higher than the first target control temperature Tt1 ( S11 ).
  • the first target control temperature Tt1 may be stored in the memory 83 .
  • the first spare temperature a may be 0.7°C.
  • the target internal temperature Tt refers to the temperature of the accommodation space 11 of the refrigerator body 10 that the processor 80 wants to maintain. That is, the processor 80 may control the cooling device 20 so that the temperature of the accommodating space 11 of the refrigerator 1 maintains the target internal temperature Tt.
  • the processor 80 supplies the first voltage V1 to the Peltier element 21 ( S13 ).
  • the processor 80 controls the power control unit 81 to control the Peltier device.
  • the first voltage is supplied to (21). That is, when the internal temperature T1 is equal to or higher than the first target control temperature Tt1 , the power control unit 81 supplies the first voltage to the Peltier element 21 .
  • the first voltage may be a full-duty voltage that can be applied by the power supply unit 84 . Then, the internal temperature T1 of the refrigerator 1 may drop below the first target control temperature Tt1 within a short time.
  • the processor 80 supplies the second voltage V2 to the Peltier element 21 ( S14 ).
  • the processor 80 controls the PID controller 82 to power
  • the controller 81 supplies the second voltage to the Peltier element 21 . That is, when the internal temperature T1 is lower than the first target control temperature, the power control unit 81 supplies the second voltage to the Peltier element 21 .
  • the second voltage V2 may be lower than the first voltage V1 .
  • the second voltage V2 may be PID-controlled by the PID control unit 82 .
  • the PID control unit 82 uses the cooling sink temperature (T2) and the cooling sink target temperature (Ts) measured by the second temperature sensor 72 installed in the cooling sink 30 of the Peltier element 21 to control the The two voltages V2 can be controlled by PID control.
  • the PID control unit 82 determines whether the time to correct the cooling sink target temperature Ts has elapsed (S15).
  • the PID control unit 82 uses the second temperature sensor 72 to control the temperature of the cooling sink 30 of the Peltier element 21, that is, the cooling sink temperature ( T2) is measured (S16).
  • the second temperature sensor 72 is installed at the upper end of the cooling sink 30 located on the upper side of the Peltier element 21 , it is possible to measure the temperature of the cooling sink 30 . Specifically, the PID control unit 82 recognizes the temperature of the cooling sink 30 from the signal output from the second temperature sensor 72 .
  • the PID controller 82 calculates the difference between the cooling sink temperature T2 and the cooling sink target temperature Ts (S17).
  • the PID control unit 82 controls the second voltage V2 supplied to the Peltier element 21 by using the difference between the cooling sink temperature T2 and the cooling sink target temperature Ts to PID control the cooling sink 30 .
  • the temperature T2 reaches the cooling sink target temperature Ts to maintain the cooling sink target temperature Ts.
  • the cooling sink target temperature Ts refers to the temperature of the cooling sink 30 to be reached by controlling the Peltier element 21 .
  • the cooling sink target temperature Ts is set to be lower than the internal target temperature Tt.
  • the subtracted temperature b may be appropriately determined according to the cooling passage 13 of the main body 10 , the configuration of the cooling device 20 , and the like.
  • the subtracted temperature b may be 3°C.
  • the cooling sink target temperature Ts may be set to be 3°C lower than the internal target temperature Tt.
  • the cooling sink target temperature Ts may be stored in the memory 83 together with the internal target temperature Tt. Accordingly, the PID control unit 82 calculates the difference between the cooling sink target temperature Ts read from the memory 83 and the cooling sink temperature T2 measured by the second temperature sensor 72 and inputs it to the Peltier element 21 . It is possible to PID control the applied voltage.
  • the PID control unit 82 causes the processor 80 to correct the cooling sink target temperature Ts (S20).
  • a method for the processor 80 to correct the cooling sink target temperature Ts will be described in detail with reference to FIG. 6 .
  • FIG. 6 is a flowchart illustrating a method of correcting a target temperature of a cooling sink in a method of controlling a refrigerator according to an exemplary embodiment of the present disclosure.
  • the processor 80 measures the internal temperature T1 of the refrigerator with the first temperature sensor 71 at a predetermined time interval ⁇ t ( S21 ).
  • the processor 80 may measure the temperature of the accommodating space 11 of the main body 10 , that is, the internal temperature T1 of the main body 10 through the first temperature sensor 71 at 10-minute intervals.
  • the processor 80 stores the first measured internal temperature T1 in the memory 83 as the previous internal temperature Tc. That is, the previous internal temperature Tc refers to the internal temperature T1 measured before a predetermined time ⁇ t.
  • the processor 80 measures the internal temperature T1 of the refrigerator with the first temperature sensor 71 .
  • the processor 80 determines whether the currently measured internal temperature T1 is the same as the internal temperature Tc measured before a predetermined time ⁇ t, that is, the previous internal temperature Tc stored in the memory 83 ( S22 ). ).
  • the processor 80 maintains the cooling sink target temperature Ts without correcting it (S23).
  • the processor 80 determines whether the measured internal temperature T1 is lower than the previous internal temperature Tc (S24).
  • the processor 80 determines whether the measured internal temperature T1 is lower than the second target control temperature Tt2 ( S25).
  • the second spare temperature c may be 0.3°C.
  • the processor 80 performs a correction to increase the cooling sink target temperature Ts by a predetermined temperature ( S26).
  • the processor 80 stores the data in the memory 83 .
  • a correction is performed to increase the stored cooling sink target temperature Ts by a predetermined temperature, that is, the correction temperature d, and the stored cooling sink target temperature Ts is stored in the memory 83 again. That is, the corrected cooling sink target temperature Ts is set higher than the cooling sink target temperature Ts before the correction by the correction temperature d.
  • the correction temperature d may be appropriately determined according to the performance of the cooling device 20 .
  • the correction temperature d may be set to 0.3°C.
  • the correction temperature (d) may be set to be the same as the second spare temperature (c).
  • the processor 80 controls the memory 83
  • the cooling sink target temperature (Ts) stored in the is maintained as it is without correction (S27).
  • the processor 80 determines whether the measured internal temperature T1 is higher than the third target control temperature Tt3 ( S28 ).
  • the processor 80 sets the cooling sink target temperature Ts. A correction is performed to lower the temperature by a certain amount (S29).
  • the processor 80 sends the data to the memory 83.
  • a correction is performed by lowering the stored cooling sink target temperature Ts by a predetermined temperature, that is, the correction temperature d, and the stored cooling sink target temperature Ts is stored in the memory 83 again. That is, the corrected cooling sink target temperature Ts is set lower than the cooling sink target temperature Ts before the correction by the correction temperature d.
  • the processor 80 controls the cooling stored in the memory 83 .
  • the sink target temperature Ts is not corrected and is maintained as it is (S27).
  • the processor 80 determines that the measured internal temperature T1 is less than or equal to the temperature obtained by adding the second spare temperature c to the internal target temperature Tt, that is, the third target control temperature Tt3, the processor 80 The cooling sink target temperature Ts stored in the memory 83 is maintained without being updated.
  • FIG. 7 is a graph illustrating changes over time of a refrigerator interior temperature, a cooling sink temperature, and a cooling sink target temperature controlled by the refrigerator control method according to an exemplary embodiment of the present disclosure.
  • the X-axis represents time (t) (minutes), and the Y-axis represents temperature (T) (°C).
  • the upper graph in FIG. 7 shows the change with time of the internal temperature T1 of the accommodating space 11 of the main body 10 measured by the first temperature sensor 71 .
  • the line 1 indicates the internal temperature T1 of the storage space 11 measured by the first temperature sensor 71
  • the line 2 indicates the target internal temperature Tt of the storage space 11 .
  • the lower graph in FIG. 7 shows the change with time of the temperature T2 of the cooling sink 30 of the cooling device 20 measured by the second temperature sensor 72 .
  • Line 3 represents the temperature T2 of the cooling sink 30 measured by the second temperature sensor 72
  • line 4 represents the target cooling sink temperature Ts.
  • the first voltage is applied to the Peltier element 21 until the internal temperature T1 reaches the first target control temperature Tt1 .
  • the first voltage may be a full-duty voltage that the power control unit 82 may apply.
  • the processor 80 stores the internal temperature T1 of P1 as the previous internal temperature Tc in the memory 83 .
  • the processor 80 After reaching the first target control temperature Tt1 , after a predetermined time ⁇ t, for example, 10 minutes have elapsed, at P2 , the processor 80 measures the internal temperature T1 of the refrigerator with the first temperature sensor 71 . and compare it with the previous internal temperature (Tc) (the internal temperature of P1).
  • the internal temperature T1 of the refrigerator at P2 is lower than the previous internal temperature Tc, but is higher than the temperature obtained by subtracting the second spare temperature c from the target internal temperature Tt, that is, higher than the second target control temperature Tt2.
  • the cooling sink target temperature Ts of the cooling sink 30 is maintained without correction.
  • the processor 80 updates the previous internal temperature Tc stored in the memory 83 to the internal temperature T1 of P2.
  • the processor 80 measures the internal temperature T1 with the first temperature sensor 71 and compares it with the previous internal temperature Tc (the internal temperature of P2).
  • the processor Reference numeral 80 corrects the cooling sink target temperature Ts of the cooling sink 30 .
  • the cooling sink target temperature Ts stored in the memory 83 is updated as a temperature obtained by subtracting the correction temperature d from the existing cooling sink target temperature Ts. Then, the cooling sink target temperature Ts from P3 is lower than the cooling sink target temperature Ts between P1 and P3 by the correction temperature.
  • the processor 80 updates the previous internal temperature Tc stored in the memory 83 to the internal temperature T1 of P3.
  • the processor 80 measures the internal temperature T1 with the first temperature sensor 71 and compares it with the previous internal temperature Tc (the internal temperature of P3).
  • the internal temperature T1 of the refrigerator at P4 is lower than the previous internal temperature Tc, but is higher than the temperature obtained by subtracting the second spare temperature c from the target internal temperature Tt, that is, higher than the second target control temperature Tt2.
  • the cooling sink target temperature Ts of the cooling sink 30 is maintained without correction.
  • the processor 80 updates the previous internal temperature Tc stored in the memory 83 to the internal temperature T1 of P4.
  • the processor 80 measures the internal temperature T1 with the first temperature sensor 71 and compares it with the previous internal temperature Tc (the internal temperature of P4).
  • the processor Reference numeral 80 corrects the cooling sink target temperature Ts of the cooling sink 30 .
  • the cooling sink target temperature Ts stored in the memory 83 is updated to a temperature obtained by adding the correction temperature d to the existing cooling sink target temperature Ts. Then, the cooling sink target temperature Ts from P5 is higher than the cooling sink target temperature Ts between P3-P5 by the correction temperature.
  • the processor 80 updates the previous internal temperature Tc stored in the memory 83 to the internal temperature T1 of P5.
  • the processor 80 measures the internal temperature T1 with the first temperature sensor 71 and compares it with the previous internal temperature Tc (the internal temperature of P5).
  • the processor 80 Since the internal temperature T1 of the refrigerator at P6 is lower than the previous internal temperature Tc and is lower than the temperature obtained by subtracting the second spare temperature c from the target internal temperature Tt, the processor 80 operates the cooling sink 30 . Correct the cooling sink target temperature (Ts).
  • the cooling sink target temperature Ts stored in the memory 83 is updated to a temperature obtained by adding the correction temperature d to the existing cooling sink target temperature Ts. Then, the cooling sink target temperature Ts from P6 is higher than the cooling sink target temperature Ts between P5 and P6 by the correction temperature d.
  • the processor 80 updates the previous internal temperature Tc stored in the memory 83 to the internal temperature T1 of P6.
  • the processor 80 measures the internal temperature T1 with the first temperature sensor 71 and compares it with the previous internal temperature Tc (the internal temperature of P6).
  • the processor 80 Since the internal temperature T1 of the refrigerator at P7 is higher than the previous internal temperature Tc and is higher than the temperature obtained by subtracting the second spare temperature c from the target internal temperature Tt, the processor 80 operates the cooling sink 30 .
  • the cooling sink target temperature (Ts) is left uncorrected.
  • the processor 80 updates the previous internal temperature Tc stored in the memory 83 to the internal temperature T1 of P7.
  • the internal temperature of the refrigerator is rapidly cooled to the internal target temperature and is constantly maintained at the internal target temperature.
  • various embodiments of the present disclosure described above may be performed through an embedded server provided in the electronic device (refrigerator) or an external server of the electronic device (refrigerator).
  • the various embodiments described above may be implemented as software including instructions stored in a machine-readable storage medium (eg, a computer).
  • the device is a device capable of calling a stored command from a storage medium and operating according to the called command, and may include an electronic device (refrigerator) according to the disclosed embodiments.
  • the processor may perform a function corresponding to the instruction by using other components directly or under the control of the processor.
  • Instructions may include code generated or executed by a compiler or interpreter.
  • the device-readable storage medium may be provided in the form of a non-transitory storage medium.
  • 'non-transitory' means that the storage medium does not include a signal and is tangible, and does not distinguish that data is semi-permanently or temporarily stored in the storage medium.
  • the method according to the various embodiments described above may be included in a computer program product and provided.
  • Computer program products may be traded between sellers and buyers as commodities.
  • the computer program product may be distributed in the form of a machine-readable storage medium (eg, compact disc read only memory (CD-ROM)) or online through an application store (eg, Play StoreTM).
  • an application store eg, Play StoreTM
  • at least a portion of the computer program product may be temporarily stored or temporarily generated in a storage medium such as a memory of a server of a manufacturer, a server of an application store, or a relay server.
  • each of the components may be composed of a single or a plurality of entities, and some sub-components of the aforementioned sub-components may be omitted, or other sub-components may be omitted. Components may be further included in various embodiments.
  • some components eg, a module or a program
  • operations performed by a module, program, or other component may be sequentially, parallel, repetitively or heuristically executed, or at least some operations may be executed in a different order, omitted, or other operations may be added.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

A method for controlling a refrigerator including a Peltier element comprises the steps of: measuring the internal temperature of a refrigerator by using a first temperature sensor; determining whether the internal temperature is greater than a first target control temperature; applying a first voltage to a Peltier element if the internal temperature is greater than or equal to the first target control temperature; and applying a second voltage to the Peltier element if the internal temperature is less than the first target control temperature, wherein, in the step of applying a second voltage to a Peltier element, the second voltage applied to the Peltier element is controlled with PID control by using a cooling sink target temperature and a cooling sink temperature measured with a second temperature sensor provided in a cooling sink of the Peltier element.

Description

펠티어 소자를 구비한 냉장고의 제어방법 및 이를 사용하는 냉장고Control method of refrigerator having Peltier element and refrigerator using same
본 개시는 냉각장치로 펠티어 소자를 사용하는 냉장고에 관한 것으로서, 더욱 상세하게는 펠티어 소자를 구비한 냉장고의 제어방법 및 이를 사용하는 냉장고에 관한 것이다. The present disclosure relates to a refrigerator using a Peltier element as a cooling device, and more particularly, to a method for controlling a refrigerator having a Peltier element and a refrigerator using the same.
냉장고는 식품을 냉각 시키거나 저온에서 보관하여 식품의 부패나 변질을 방지하는 장치이다.A refrigerator is a device that cools food or stores it at a low temperature to prevent spoilage or deterioration of food.
이러한 냉장고는 식품을 수용할 수 있는 수용 공간과 수용 공간을 냉각하는 냉각 장치를 포함한다.Such a refrigerator includes an accommodating space capable of accommodating food and a cooling device for cooling the accommodating space.
일반적으로 냉각 장치는 냉기를 발생시키는 방식에 따라 냉동사이클을 이용한 냉동사이클 장치와 펠티어 소자를 이용한 펠티어 냉각 장치로 분류될 수 있다.In general, a cooling device may be classified into a refrigeration cycle device using a refrigeration cycle and a Peltier cooling device using a Peltier element according to a method of generating cold air.
냉동사이클 장치는 압축기, 응축기, 팽창기구, 및 증발기로 구성되는 폐회로를 따라 냉매를 순환시켜 냉기를 얻는 방식이다.The refrigeration cycle device is a method of obtaining cold air by circulating a refrigerant along a closed circuit composed of a compressor, a condenser, an expansion mechanism, and an evaporator.
펠티어 냉각장치는 펠티어(peltier) 효과를 이용하여 냉기를 얻는 방식이다. 펠티어 효과란 어떤 물체의 양쪽에 전위차를 걸어 주면 전류와 함께 열이 흘러서 한쪽은 가열되고 다른 쪽은 냉각되는 현상을 말한다.The Peltier cooling device is a method of obtaining cold air using the Peltier effect. The Peltier effect refers to a phenomenon in which when a potential difference is applied to both sides of an object, heat flows along with an electric current, so that one side is heated and the other side is cooled.
냉동사이클 장치는 펠티어 냉각장치에 비해 효율이 높으나, 압축기를 구동할 때 소음이 큰 단점이 있다.The refrigeration cycle device is more efficient than the Peltier cooling device, but has a disadvantage in that the noise is large when the compressor is driven.
반면에, 펠티어 냉각장치는 냉동사이클 장치에 비해 효율은 낮으나, 소음이 적은 장점이 있다. 따라서, 펠티어 냉각장치는 중앙처리장치(CPU)의 냉각장치, 차량의 온도조절시트, 소형 냉장고 등에 사용될 수 있다.On the other hand, the Peltier cooling device is less efficient than the refrigeration cycle device, but has the advantage of low noise. Therefore, the Peltier cooling device may be used in a cooling device of a central processing unit (CPU), a temperature control seat of a vehicle, a small refrigerator, and the like.
펠티어 냉각장치는 냉장고의 수용 공간의 온도가 목표 온도에 도달하면, 펠티어 냉각장치에 인가되는 전원을 오프하고, 수용 공간의 온도가 목표 온도 이상으로 올라가면, 펠티어 냉각장치에 다시 전원을 인가하도록 제어된다.When the temperature of the receiving space of the refrigerator reaches the target temperature, the Peltier cooling device turns off the power applied to the Peltier cooling device, and when the temperature of the receiving space rises above the target temperature, it is controlled to apply power again to the Peltier cooling device. .
그러나, 상기와 같은 방법으로 펠티어 냉각장치를 제어하면, 펠티어 냉각장치를 빈번하게 온/오프하여야 하므로 냉장고의 수용 공간의 온도를 목표 온도로 일정하게 유지하는 것이 용이하지 않다는 문제점이 있다.However, if the Peltier cooling device is controlled in the same way as described above, there is a problem in that it is not easy to constantly maintain the temperature of the accommodation space of the refrigerator at the target temperature because the Peltier cooling device must be turned on/off frequently.
본 개시는 상기와 같은 문제점을 감안하여 창안한 것으로서, 펠티어 소자를 사용하는 냉장고의 고내 온도를 목표 온도로 빠르게 냉각 시키고 목표 온도를 유지시킬 수 있는 냉장고의 제어방법과 관련된다.The present disclosure is devised in view of the above problems, and relates to a control method of a refrigerator capable of rapidly cooling the internal temperature of a refrigerator using a Peltier element to a target temperature and maintaining the target temperature.
또한, 본 개시는 상기와 같은 제어방법을 사용하는 펠티어 소자를 사용하는 냉장고와 관련된다.In addition, the present disclosure relates to a refrigerator using a Peltier device using the control method as described above.
본 개시의 일 실시예에 따르는 펠티어 소자를 포함하는 냉장고를 제어하는 방법은, 제1온도 센서로 냉장고의 고내 온도를 측정하는 단계; 상기 고내 온도가 제1목표 제어 온도보다 높은지 판단하는 단계; 상기 고내 온도가 상기 제1목표 제어 온도보다 높거나 같으면, 상기 펠티어 소자에 제1전압을 인가하는 단계; 및 상기 고내 온도가 상기 제1목표 제어 온도보다 낮으면, 상기 펠티어 소자에 제2전압을 인가하는 단계;를 포함하며, 상기 펠티어 소자에 제2전압을 인가하는 단계에서는 상기 펠티어 소자의 냉각 싱크에 설치된 제2온도 센서로 측정한 냉각 싱크 온도와 냉각 싱크 목표 온도를 이용하여 상기 펠티어 소자에 인가되는 상기 제2전압을 PID 제어(Proportional Integral Derivative control)로 제어할 수 있다. According to an embodiment of the present disclosure, a method of controlling a refrigerator including a Peltier device includes: measuring an internal temperature of the refrigerator with a first temperature sensor; determining whether the internal temperature of the refrigerator is higher than a first target control temperature; applying a first voltage to the Peltier device when the internal temperature of the refrigerator is higher than or equal to the first target control temperature; and applying a second voltage to the Peltier device when the internal temperature of the refrigerator is lower than the first target control temperature. In the step of applying the second voltage to the Peltier device, the cooling sink of the Peltier device The second voltage applied to the Peltier device may be controlled by PID control (Proportional Integral Derivative Control) using the cooling sink temperature and the cooling sink target temperature measured by the installed second temperature sensor.
이때, 제1목표 제어 온도는 고내 목표 온도보다 제1여유 온도만큼 높을 수 있다.In this case, the first target control temperature may be higher than the target temperature in the refrigerator by the first spare temperature.
또한, 상기 냉각 싱크 목표 온도는 상기 제1온도 센서로 측정한 고내 온도에 따라 보정될 수 있다. In addition, the cooling sink target temperature may be corrected according to the internal temperature of the refrigerator measured by the first temperature sensor.
또한, 상기 냉각 싱크 목표 온도의 보정 방법은, 일정 시간 간격으로 상기 제1온도 센서로 고내 온도를 측정하는 단계; 현재 측정한 고내 온도가 상기 일정 시간 전에 측정된 이전 고내 온도와 동일한지 판단하는 단계; 상기 고내 온도가 상기 이전 고내 온도와 동일하면, 상기 냉각 싱크 목표 온도를 보정하지 않고 유지하는 단계; 상기 고내 온도가 상기 이전 고내 온도와 동일하지 않으면, 상기 고내 온도가 상기 이전 고내 온도보다 낮은지 판단하는 단계; 상기 고내 온도가 상기 이전 고내 온도보다 낮으면, 상기 고내 온도가 고내 목표 온도에서 제2여유 온도를 뺀 온도보다 낮은지 판단하는 단계; 상기 고내 온도가 상기 고내 목표 온도에서 상기 제2여유 온도를 뺀 온도보다 낮으면, 상기 냉각 싱크 목표 온도를 보정 온도만큼 올리는 단계; 및 상기 고내 온도가 상기 고내 목표 온도에서 상기 제2여유 온도를 뺀 온도보다 크거나 동일하면, 상기 냉각 싱크 목표 온도를 보정하지 않고 유지하는 단계;를 포함할 수 있다. The method of correcting the target temperature of the cooling sink may include: measuring an internal temperature of the refrigerator with the first temperature sensor at regular time intervals; determining whether the currently measured interior temperature is the same as the previous interior temperature measured before the predetermined time; maintaining the cooling sink target temperature without correction when the internal temperature of the refrigerator is the same as the previous internal temperature; if the internal temperature of the refrigerator is not the same as the previous internal temperature, determining whether the internal temperature of the refrigerator is lower than the previous internal temperature; if the internal temperature of the refrigerator is lower than the previous internal temperature, determining whether the internal temperature of the refrigerator is lower than a temperature obtained by subtracting a second spare temperature from a target internal temperature of the refrigerator; raising the cooling sink target temperature by a correction temperature when the internal temperature of the refrigerator is lower than a temperature obtained by subtracting the second spare temperature from the target temperature in the refrigerator; and maintaining the cooling sink target temperature without correction when the internal temperature of the refrigerator is greater than or equal to a temperature obtained by subtracting the second spare temperature from the target internal temperature.
또한, 본 개시의 일 실시예에 의한 냉장고의 제어방법은, 상기 고내 온도가 상기 이전 고내 온도와 동일하거나 높으면, 상기 고내 온도가 상기 고내 목표 온도에 상기 제2여유 온도를 더한 온도보다 높은지 판단하는 단계; 상기 고내 온도가 상기 고내 목표 온도에 상기 제2여유 온도를 더한 온도보다 높으면, 상기 냉각 싱크 목표 온도를 상기 보정 온도만큼 내리는 단계; 및 상기 고내 온도가 상기 고내 목표 온도에 상기 제2여유 온도를 더한 온도보다 작거나 동일하면, 상기 냉각 싱크 목표 온도를 보정하지 않고 유지하는 단계;를 더 포함할 수 있다. In addition, the control method of a refrigerator according to an embodiment of the present disclosure includes determining whether the internal temperature of the refrigerator is the same as or higher than the previous internal temperature, and is higher than a temperature obtained by adding the second spare temperature to the target internal temperature of the refrigerator. step; lowering the cooling sink target temperature by the corrected temperature when the internal temperature of the refrigerator is higher than the temperature obtained by adding the second spare temperature to the target internal temperature; and maintaining the cooling sink target temperature without correction when the internal temperature of the refrigerator is less than or equal to the temperature obtained by adding the second spare temperature to the target internal temperature.
또한, 상기 일정 시간은 10분일 수 있다. Also, the predetermined time may be 10 minutes.
도한, 상기 제2여유 온도는 0.3℃일 수 있다. Also, the second marginal temperature may be 0.3°C.
또한, 상기 보정 온도는 0.3℃일 수 있다. Also, the correction temperature may be 0.3°C.
또한, 상기 냉각 싱크 목표 온도는 고내 목표 온도에서 차감 온도를 뺀 온도로 설정될 수 있고, 상기 차감 온도는 3℃일 수 있다. In addition, the cooling sink target temperature may be set as a temperature obtained by subtracting the subtracted temperature from the internal target temperature, and the subtracted temperature may be 3°C.
또한, 상기 제1전압은 풀 듀티 전압이고, 상기 제2전압은 상기 제1전압보다 낮을 수 있다. Also, the first voltage may be a full duty voltage, and the second voltage may be lower than the first voltage.
본 개시의 다른 측면에 따르는 냉장고는, 수용 공간을 포함하는 본체; 상기 본체에 설치되며, 상기 수용 공간으로 찬 공기를 공급하는 냉각 장치; 상기 수용 공간에 설치되는 제1온도 센서; 및 상기 냉각 장치를 제어하는 프로세서;를 포함하며, 상기 냉각 장치는, 펠티어 소자; 상기 펠티어 소자의 저온면에 설치되는 냉각 싱크; 상기 냉각 싱크의 상측에 설치되며, 상기 냉각 싱크에 의해 냉각된 공기를 상기 수용 공간으로 공급하는 냉각 팬; 상기 냉각 싱크에 설치되는 제2온도 센서; 상기 펠티어 소자의 고온면에 설치되는 방열 싱크; 상기 방열 싱크의 하측에 설치되며, 상기 방열 싱크의 열을 상기 본체 외부로 방출하는 방열 팬; 및 상기 펠티어 소자에 공급되는 전압을 제어하는 전원 제어부;를 포함하며, 상기 프로세서는, 상기 제1온도 센서로 측정한 상기 수용 공간의 고내 온도가 제1목표 제어 온도보다 높거나 같으면, 상기 전원 제어부를 제어하여 상기 펠티어 소자에 제1전압을 공급하고, 상기 고내 온도가 상기 제1목표 제어 온도보다 낮으면, 상기 전원 제어부를 제어하여 상기 펠티어 소자에 제2전압을 공급하며, 상기 제2전압을 공급할 때, 상기 제2온도 센서로 측정한 상기 냉각 싱크의 온도와 냉각 싱크 목표 온도를 이용하여 상기 제2전압을 PID 제어(Proportional Integral Derivative control)로 제어할 수 있다.A refrigerator according to another aspect of the present disclosure includes: a main body including an accommodation space; a cooling device installed in the main body and supplying cold air to the accommodation space; a first temperature sensor installed in the accommodation space; and a processor for controlling the cooling device, wherein the cooling device includes: a Peltier element; a cooling sink installed on the low-temperature surface of the Peltier element; a cooling fan installed above the cooling sink and supplying air cooled by the cooling sink to the accommodating space; a second temperature sensor installed in the cooling sink; a heat sink installed on the high-temperature surface of the Peltier element; a heat dissipation fan installed under the heat sink and dissipating heat from the heat sink to the outside of the body; and a power control unit configured to control the voltage supplied to the Peltier device, wherein the processor is configured to include, when the internal temperature of the accommodating space measured by the first temperature sensor is higher than or equal to the first target control temperature, the power control unit to supply a first voltage to the Peltier element by controlling When supplying, the second voltage may be controlled by PID control (Proportional Integral Derivative Control) using the temperature of the cooling sink measured by the second temperature sensor and the target temperature of the cooling sink.
이때, 상기 프로세서는 상기 제1온도 센서로 측정한 상기 고내 온도에 따라 상기 냉각 싱크 목표 온도를 보정할 수 있다. In this case, the processor may correct the cooling sink target temperature according to the internal temperature measured by the first temperature sensor.
또한, 상기 프로세서가 상기 냉각 싱크 목표 온도를 보정할 때, 일정 시간 간격으로 상기 제1온도 센서로 상기 고내 온도를 측정하고, 현재 측정한 상기 고내 온도가 상기 일정 시간 전에 측정한 이전 고내 온도와 동일한지 판단하고, 상기 고내 온도가 상기 이전 고내 온도와 동일하면, 상기 냉각 싱크 목표 온도를 보정하지 않고 유지하며, 상기 고내 온도가 상기 이전 고내 온도와 동일하지 않으면, 상기 고내 온도가 상기 이전 고내 온도보다 낮은지 판단하고, 상기 고내 온도가 상기 이전 고내 온도보다 낮으면, 상기 고내 온도가 고내 목표 온도에서 제2여유 온도를 뺀 온도보다 낮은지 판단하고, 상기 고내 온도가 상기 고내 목표 온도에서 상기 제2여유 온도를 뺀 온도보다 낮으면, 상기 냉각 싱크 목표 온도를 보정 온도만큼 올리며, 상기 고내 온도가 상기 고내 목표 온도에서 상기 제2여유 온도를 뺀 온도보다 크거나 동일하면, 상기 냉각 싱크 목표 온도를 보정하지 않고 유지할 수 있다. Also, when the processor corrects the target temperature of the cooling sink, the internal temperature of the refrigerator is measured with the first temperature sensor at regular time intervals, and the currently measured internal temperature is the same as the previous internal temperature measured before the predetermined time. and if the internal temperature of the refrigerator is the same as the previous internal temperature, the cooling sink target temperature is maintained without correction; it is determined whether the refrigerator is low, and if the interior temperature of the refrigerator is lower than the previous interior temperature, it is determined whether the interior temperature is lower than a target interior temperature minus a second spare temperature; If it is lower than the temperature obtained by subtracting the spare temperature, the cooling sink target temperature is raised by the corrected temperature. If the inner temperature of the refrigerator is greater than or equal to the temperature obtained by subtracting the second spare temperature from the target temperature in the refrigerator, the cooling sink target temperature is corrected You can keep it without
또한, 상기 프로세서는, 상기 고내 온도가 상기 이전 고내 온도보다 높거나 동일하면, 상기 고내 온도가 상기 고내 목표 온도에 상기 제2여유 온도를 더한 온도보다 높은지 판단하고, 상기 고내 온도가 상기 고내 목표 온도에 상기 제2여유 온도를 더한 온도보다 높으면, 상기 냉각 싱크 목표 온도를 상기 보정 온도만큼 내리며, 상기 고내 온도가 상기 고내 목표 온도에 상기 제2여유 온도를 더한 온도보다 작거나 동일하면, 상기 냉각 싱크 목표 온도를 보정하지 않고 유지할 수 있다. The processor may be further configured to: if the internal temperature of the refrigerator is higher than or equal to the previous internal temperature, determine whether the internal temperature of the refrigerator is higher than a temperature obtained by adding the second spare temperature to the target internal temperature, wherein the internal temperature of the refrigerator is the target internal temperature If the temperature is higher than the temperature obtained by adding the second spare temperature to , the cooling sink target temperature is lowered by the corrected temperature. The target temperature can be maintained without correction.
상술한 바와 같은 본 개시의 일 실시예에 의한 냉장고의 제어방법에 의하면, 냉각 싱크 목표 온도를 고내 온도에 따라 보정하므로, 펠티어 소자를 사용하는 냉장고의 고내 온도를 고내 목표 온도까지 빠르게 냉각시킬 수 있으며, 고내 목표 온도로 일정하게 유지시킬 수 있다. According to the control method of the refrigerator according to an embodiment of the present disclosure as described above, since the target temperature of the cooling sink is corrected according to the internal temperature, the internal temperature of the refrigerator using the Peltier element can be rapidly cooled to the internal target temperature. , it can be kept constant at the target temperature inside the furnace.
도 1은 본 개시의 일 실시예에 의한 냉장고를 나타내는 단면도;1 is a cross-sectional view showing a refrigerator according to an embodiment of the present disclosure;
도 2는 본 개시의 일 실시예에 의한 냉장고에 사용되는 냉각장치를 나타내는 사시도;2 is a perspective view illustrating a cooling device used in a refrigerator according to an embodiment of the present disclosure;
도 3은 본 개시의 일 실시예에 의한 냉각장치의 냉각 싱크에 설치된 제2온도 센서를 나타내는 도면;3 is a view showing a second temperature sensor installed in the cooling sink of the cooling device according to an embodiment of the present disclosure;
도 4는 본 개시의 일 실시예에 의한 냉장고의 기능 블록도;4 is a functional block diagram of a refrigerator according to an embodiment of the present disclosure;
도 5는 본 개시의 일 실시예에 의한 냉장고의 제어방법을 설명하기 위한 순서도;5 is a flowchart illustrating a control method of a refrigerator according to an embodiment of the present disclosure;
도 6은 본 개시의 일 실시예에 의한 냉장고의 제어방법의 냉각 싱크 목표 온도의 보정방법을 설명하기 위한 순서도;6 is a flowchart illustrating a method of correcting a target temperature of a cooling sink in a method of controlling a refrigerator according to an embodiment of the present disclosure;
도 7은 본 개시의 일 실시예에 의한 냉장고의 제어방법에 의해 제어되는 냉장고의 고내 온도, 냉각 싱크 온도, 및 냉각 싱크 목표 온도의 시간에 따른 변화를 나타내는 그래프;이다.7 is a graph illustrating changes over time of a refrigerator temperature, a cooling sink temperature, and a cooling sink target temperature controlled by the refrigerator control method according to an embodiment of the present disclosure;
이하에서 설명되는 실시예는 본 개시의 이해를 돕기 위하여 예시적으로 나타낸 것이며, 본 개시는 여기서 설명되는 실시예들과 다르게 다양하게 변형되어 실시될 수 있음이 이해되어야 할 것이다. 다만, 이하에서 본 개시를 설명함에 있어서, 관련된 공지 기능 혹은 구성요소에 대한 구체적인 설명이 본 개시의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명 및 구체적인 도시를 생략한다. 또한, 첨부된 도면은 개시의 이해를 돕기 위하여 실제 축척대로 도시된 것이 아니라 일부 구성요소의 치수가 과장되게 도시될 수 있다.It should be understood that the embodiments described below are illustratively shown to help the understanding of the present disclosure, and the present disclosure may be implemented with various modifications different from the embodiments described herein. However, in the following description of the present disclosure, if it is determined that a detailed description of a related well-known function or component may unnecessarily obscure the gist of the present disclosure, the detailed description and specific illustration thereof will be omitted. In addition, the accompanying drawings are not drawn to scale in order to help understanding of the disclosure, but dimensions of some components may be exaggerated.
본 명세서에서, "가진다," "가질 수 있다," "포함한다," 또는 "포함할 수 있다" 등의 표현은 해당 특징(예: 수치, 기능, 동작, 또는 부품 등의 구성요소)의 존재를 가리키며, 추가적인 특징의 존재를 배제하지 않는다.In this specification, expressions such as “have,” “may have,” “include,” or “may include” indicate the presence of a corresponding characteristic (eg, a numerical value, function, operation, or component such as a part). and does not exclude the presence of additional features.
A 또는/및 B 중 적어도 하나라는 표현은 "A" 또는 "B" 또는 "A 및 B" 중 어느 하나를 나타내는 것으로 이해되어야 한다.The expression "at least one of A and/or B" is to be understood as indicating either "A" or "B" or "A and B".
본 명세서에서 사용된 "제1," "제2," "첫째," 또는 "둘째,"등의 표현들은 다양한 구성요소들을, 순서 및/또는 중요도에 상관없이 수식할 수 있고, 한 구성요소를 다른 구성요소와 구분하기 위해 사용될 뿐 해당 구성요소들을 한정하지 않는다.As used herein, expressions such as "first," "second," "first," or "second," can modify various elements, regardless of order and/or importance, and refer to one element. It is used only to distinguish it from other components, and does not limit the components.
어떤 구성요소(예: 제1 구성요소)가 다른 구성요소(예: 제2 구성요소)에 "(기능적으로 또는 통신적으로) 연결되어((operatively or communicatively) coupled with/to)" 있다거나 "접속되어(connected to)" 있다고 언급된 때에는, 어떤 구성요소가 다른 구성요소에 직접적으로 연결되거나, 다른 구성요소(예: 제3 구성요소)를 통하여 연결될 수 있다고 이해되어야 할 것이다.A component (eg, a first component) is "coupled with/to (operatively or communicatively)" to another component (eg, a second component); When referring to "connected to", it should be understood that an element may be directly connected to another element or may be connected through another element (eg, a third element).
단수의 표현은 문맥상 명백하게 상이하게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "구성되다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The singular expression includes the plural expression unless the context clearly dictates otherwise. In the present application, terms such as "comprises" or "consisting of" are intended to designate that the features, numbers, steps, operations, components, parts, or combinations thereof described in the specification exist, and are intended to indicate that one or more other It should be understood that this does not preclude the possibility of addition or presence of features or numbers, steps, operations, components, parts, or combinations thereof.
본 개시에서 "모듈" 혹은 "부"는 적어도 하나의 기능이나 동작을 수행하며, 하드웨어 또는 소프트웨어로 구현되거나 하드웨어와 소프트웨어의 결합으로 구현될 수 있다. 또한, 복수의 "모듈" 혹은 복수의 "부"는 특정한 하드웨어로 구현될 필요가 있는 "모듈" 혹은 "부"를 제외하고는 적어도 하나의 모듈로 일체화되어 적어도 하나의 프로세서(미도시)로 구현될 수 있다.In the present disclosure, a “module” or “unit” performs at least one function or operation, and may be implemented as hardware or software, or a combination of hardware and software. In addition, a plurality of “modules” or a plurality of “units” are integrated into at least one module and implemented with at least one processor (not shown) except for “modules” or “units” that need to be implemented with specific hardware. can be
본 명세서에서, 사용자라는 용어는 전자 장치를 사용하는 사람 또는 전자 장치를 사용하는 장치(예: 인공지능 전자 장치)를 지칭할 수 있다.In this specification, the term user may refer to a person who uses an electronic device or a device (eg, an artificial intelligence electronic device) using the electronic device.
이하, 첨부된 도면을 참조하여 본 개시의 일 실시예에 의한 냉장고를 상세하게 설명한다.Hereinafter, a refrigerator according to an embodiment of the present disclosure will be described in detail with reference to the accompanying drawings.
도 1은 본 개시의 일 실시예에 의한 냉장고를 나타내는 단면도이다.1 is a cross-sectional view illustrating a refrigerator according to an embodiment of the present disclosure.
도 1을 참조하면, 본 개시의 일 실시예에 의한 냉장고(1)는 본체(10), 냉각장치(20), 프로세서(80)를 포함할 수 있다. Referring to FIG. 1 , a refrigerator 1 according to an embodiment of the present disclosure may include a body 10 , a cooling device 20 , and a processor 80 .
도 1에 도시된 냉장고(1)는 복수의 와인 병을 저장할 수 있는 와인 냉장고이다. 그러나, 이는 일 예일 뿐이며, 본 개시가 적용될 수 있는 냉장고(1)가 와인 냉장고로 한정되는 것은 아니다.The refrigerator 1 shown in FIG. 1 is a wine refrigerator capable of storing a plurality of wine bottles. However, this is only an example, and the refrigerator 1 to which the present disclosure can be applied is not limited to a wine refrigerator.
본체(10)는 직육면체 형상으로 형성되며, 식품을 저장할 수 있는 수용 공간(11)을 포함할 수 있다. 본체(10)의 전면에는 수용 공간(11)을 개폐할 수 있는 도어(12)가 설치될 수 있다. 본체(10)의 내부는 복수의 와인 병을 수용할 수 있도록 형성된다.The body 10 is formed in a rectangular parallelepiped shape, and may include an accommodation space 11 capable of storing food. A door 12 capable of opening and closing the accommodation space 11 may be installed on the front surface of the main body 10 . The interior of the body 10 is formed to accommodate a plurality of wine bottles.
본체(10)에는 냉각 장치(20)에 의해 냉각된 저온의 공기를 수용 공간(11)으로 안내하는 냉각 유로(13)가 마련될 수 있다. 냉각 유로(13)는 냉각 장치(20)가 설치되는 냉각 장치실(15)과 수용 공간(11)을 연통시키도록 형성될 수 있다.The main body 10 may be provided with a cooling passage 13 for guiding the low-temperature air cooled by the cooling device 20 to the accommodation space 11 . The cooling passage 13 may be formed to communicate the cooling apparatus chamber 15 in which the cooling apparatus 20 is installed and the accommodation space 11 .
따라서, 수용 공간(11)의 공기는 냉각 장치(20)가 설치된 냉각 장치실(15)로 유입되어, 냉각 장치(20)에 의해 냉각된 후, 냉각 유로(13)를 통해 다시 수용 공간(11)으로 배출될 수 있다. 냉각 유로(13)의 배출구(13a)는 본체(10)의 내면 상부에 마련될 수 있다. Accordingly, the air in the accommodating space 11 flows into the cooling device chamber 15 in which the cooling device 20 is installed, is cooled by the cooling device 20 , and then again passes through the cooling passage 13 to the receiving space 11 . ) can be released. The outlet 13a of the cooling passage 13 may be provided on the inner surface of the main body 10 .
제1온도 센서(71)는 본체(10)의 수용 공간(11)에 설치될 수 있다. 예를 들면, 제1온도 센서(71)는 본체(10)의 내면, 즉 수용 공간(11)을 형성하는 본체(10)의 내면에 설치될 수 있다. The first temperature sensor 71 may be installed in the accommodation space 11 of the main body 10 . For example, the first temperature sensor 71 may be installed on the inner surface of the main body 10 , that is, the inner surface of the main body 10 forming the accommodation space 11 .
제1온도 센서(71)는 냉각 유로(13)의 배출구(13a)에 인접하도록 냉각 유로(13)의 배출구(13a)가 형성된 본체(10)의 내면에 설치될 수 있다. The first temperature sensor 71 may be installed on the inner surface of the body 10 in which the outlet 13a of the cooling channel 13 is formed so as to be adjacent to the outlet 13a of the cooling channel 13 .
제1온도 센서(71)는 본체(10)의 수용 공간(11)의 온도, 즉 고내 온도를 측정할 수 있도록 형성된다. 제1온도 센서(71)는 측정한 고내 온도의 데이터를 프로세서(80)로 전송할 수 있다. 즉, 프로세서(80)는 제1온도 센서(71)에서 출력된 신호로부터 고내 온도를 판단할 수 있다. The first temperature sensor 71 is formed to measure the temperature of the accommodation space 11 of the main body 10 , that is, the temperature inside the refrigerator. The first temperature sensor 71 may transmit the measured internal temperature data to the processor 80 . That is, the processor 80 may determine the internal temperature of the refrigerator from the signal output from the first temperature sensor 71 .
냉각 장치(20)는 본체(10)에 설치되며, 본체(10)의 수용 공간(11)으로 찬 공기를 공급할 수 있도록 형성된다. 냉각 장치(20)는 펠티어 소자(21)를 사용하여 본체(10)의 수용 공간(11)의 공기를 냉각시킨 후, 차가워진 공기를 수용 공간(11)으로 배출할 수 있도록 형성된다. The cooling device 20 is installed in the main body 10 , and is formed to supply cold air to the accommodation space 11 of the main body 10 . After cooling the air in the receiving space 11 of the main body 10 by using the Peltier element 21 , the cooling device 20 is formed to discharge the cooled air into the receiving space 11 .
냉각 장치(20)는 본체(10)의 하부, 즉 수용 공간의 아래에 마련된 냉각 장치실(15)에 설치될 수 있다.The cooling device 20 may be installed at the lower portion of the main body 10 , that is, in the cooling device chamber 15 provided below the accommodation space.
도 2는 본 개시의 일 실시예에 의한 냉장고에 설치되는 냉각 장치를 나타내는 사시도이다. 2 is a perspective view illustrating a cooling device installed in a refrigerator according to an exemplary embodiment of the present disclosure.
도 1 및 도 2를 참조하면, 냉각 장치(20)는 펠티어 소자(21), 냉각 싱크(30), 방열 싱크(50)를 포함할 수 있다. 1 and 2 , the cooling device 20 may include a Peltier element 21 , a cooling sink 30 , and a heat sink 50 .
펠티어 소자(21)는 저온부와 고온부를 포함할 수 있으며, 펠티어 소자(21)에인가되는 전압에 따라 저온부와 고온부 사이의 온도차가 결정될 수 있다. The Peltier element 21 may include a low temperature portion and a high temperature portion, and a temperature difference between the low temperature portion and the high temperature portion may be determined according to a voltage applied to the Peltier element 21 .
펠티어 소자(21)는 저온부가 상부를 향하고, 고온부가 하부를 향하도록 설치될 수 있다. The Peltier element 21 may be installed such that the low temperature part faces upward and the high temperature part faces downward.
펠티어 소자(21)의 둘레는 도 1에 도시된 바와 같이 단열부재(23)로 절연될 수 있다. 펠티어 소자(21)와 단열부재(23)는 냉각 장치실(15)을 저온실(16)과 고온실(17)로 구획하고 격리한다. 따라서, 펠티어 소자(21)의 고온부가 펠티어 소자(21)의 저온부에 영향을 끼치지 않는다. The circumference of the Peltier element 21 may be insulated with a heat insulating member 23 as shown in FIG. 1 . The Peltier element 21 and the heat insulating member 23 divide and isolate the cooling device chamber 15 into a low temperature chamber 16 and a high temperature chamber 17 . Accordingly, the high temperature portion of the Peltier element 21 does not affect the low temperature portion of the Peltier element 21 .
냉각 싱크(30)는 펠티어 소자(21)의 저온부의 노출된 면, 즉 저온면에 접촉하거나 인접하도록 설치된다. 따라서, 냉각 싱크(30)는 펠티어 소자(21)의 상측에 설치된다. 즉, 냉각 싱크(30)는 냉각 장치실(15)의 저온실(16)에 설치된다. The cooling sink 30 is installed so as to be in contact with or adjacent to the exposed surface of the low-temperature portion of the Peltier element 21, that is, the low-temperature surface. Accordingly, the cooling sink 30 is installed on the upper side of the Peltier element (21). That is, the cooling sink 30 is installed in the low temperature chamber 16 of the cooling apparatus chamber 15 .
냉각 싱크(30)는 냉각판(31)과 냉각핀(32)을 포함할 수 있다. The cooling sink 30 may include a cooling plate 31 and cooling fins 32 .
냉각판(31)은 펠티어 소자(21)와 접하도록 설치될 수 있다. 냉각판(31)은 펠티어 소자(21)의 저온부와 접촉하여 펠티어 소자(21)의 저온부의 열을 냉각핀(32)으로 전달할 수 있다. 냉각판(31)은 열전도가 높은 재질로 형성될 수 있다. 냉각판(31)은 대략 직사각형 형상으로 형성될 수 있다.The cooling plate 31 may be installed to be in contact with the Peltier element 21 . The cooling plate 31 may be in contact with the low-temperature portion of the Peltier element 21 to transfer the heat of the low-temperature portion of the Peltier element 21 to the cooling fins 32 . The cooling plate 31 may be formed of a material having high thermal conductivity. The cooling plate 31 may be formed in a substantially rectangular shape.
냉각핀(32)은 냉각판(31)과 접촉하도록 설치될 수 있다. 냉각핀(32)은 냉각판(31)의 일면에서 돌출되도록 형성될 수 있다. The cooling fins 32 may be installed to contact the cooling plate 31 . The cooling fins 32 may be formed to protrude from one surface of the cooling plate 31 .
냉각핀(32)은 냉각판(31)의 상부에 위치할 수 있다. 냉각핀(32)은 적어도 일부가 냉각 장치실(15) 내의 저온실(16)에 위치할 수 있고, 저온실(16) 내의 공기와 열교환하여 공기를 냉각시킬 수 있다.The cooling fins 32 may be located above the cooling plate 31 . At least a part of the cooling fins 32 may be located in the low-temperature chamber 16 in the cooling device chamber 15 , and heat exchange with the air in the low-temperature chamber 16 to cool the air.
냉각핀(32)은 공기와의 열교환 면적을 늘리기 위해 복수 개로 형성될 수 있다. 냉각핀(32)은 직사각형 형상으로 형성되며, 냉각판(31)의 상면에 수직하게 일정 간격으로 이격되어 설치된다. 따라서, 냉각 팬(40)에 의해 저온실(16)로 유입된 공기는 복수의 냉각핀(32) 사이로 흐르면서 열교환을 할 수 있다. A plurality of cooling fins 32 may be formed to increase the heat exchange area with air. The cooling fins 32 are formed in a rectangular shape and are vertically spaced apart from the upper surface of the cooling plate 31 at regular intervals. Accordingly, the air introduced into the low temperature chamber 16 by the cooling fan 40 may exchange heat while flowing between the plurality of cooling fins 32 .
냉각 싱크(30)로 공급된 공기는 복수의 냉각핀(32)에 의해 안내되어 냉각 유로(13)로 유입될 수 있다. The air supplied to the cooling sink 30 may be guided by the plurality of cooling fins 32 and introduced into the cooling passage 13 .
방열 싱크(50)는 펠티어 소자(21)의 고온부의 노출된 면, 즉 고온면에 접촉하거나 인접하도록 설치된다. 따라서, 방열 싱크(50)는 펠티어 소자(21)의 하측에 설치된다. 따라서, 냉각 싱크(30)는 방열 싱크(50)보다 본체(10)의 수용 공간(11)에 더 가깝게 설치된다. The heat sink 50 is installed so as to be in contact with or adjacent to the exposed surface of the high-temperature portion of the Peltier element 21, that is, the high-temperature surface. Accordingly, the heat sink 50 is installed on the lower side of the Peltier element (21). Accordingly, the cooling sink 30 is installed closer to the accommodation space 11 of the body 10 than the heat sink 50 .
도 1 및 도 2를 참조하면, 냉각 장치(20)는 수용 공간(11)의 공기를 순환시키는 냉각 팬(40)과 외부 공기를 순환시키는 방열 팬(60)을 포함할 수 있다.1 and 2 , the cooling device 20 may include a cooling fan 40 circulating air in the accommodation space 11 and a heat dissipation fan 60 circulating external air.
냉각 팬(40)은 냉각 싱크(30)의 상측에 설치되며, 수용 공간(11)의 공기를 냉각 싱크(30)를 통해 순환시킬 수 있도록 형성된다. 즉, 냉각 팬(40)은 저온실(16)에 냉각 싱크(30)의 상측에 설치된다. The cooling fan 40 is installed above the cooling sink 30 , and is formed to circulate the air in the accommodation space 11 through the cooling sink 30 . That is, the cooling fan 40 is installed above the cooling sink 30 in the low temperature chamber 16 .
따라서, 수용 공간(11)의 공기는 냉각 팬(40)에 의해 냉각 장치실(15)의 저온실(16)로 흡입되어, 냉각 싱크(30)를 통과한 후, 냉각 유로(13)를 따라 다시 수용 공간(11)으로 배출될 수 있다. 따라서, 냉각 팬(40)은 본체(10)의 수용 공간(11)의 공기를 순환시켜 수용 공간(11)의 온도를 낮출 수 있다. Accordingly, the air in the accommodation space 11 is sucked into the low temperature chamber 16 of the cooling device chamber 15 by the cooling fan 40 , passes through the cooling sink 30 , and then again along the cooling passage 13 . It may be discharged into the accommodation space 11 . Accordingly, the cooling fan 40 circulates air in the accommodation space 11 of the main body 10 to lower the temperature of the accommodation space 11 .
냉각 팬(40)의 상부, 즉 냉각 장치실(15)의 상면에는 수용 공간(11)과 연통되는 유입구(41)가 마련된다. 따라서, 냉각 팬(40)이 작동하면, 수용 공간(11)의 공기는 유입구(41)를 통해 냉각 장치실(15)의 저온실(16)로 유입될 수 있다. An inlet 41 communicating with the accommodating space 11 is provided on the upper portion of the cooling fan 40 , that is, on the upper surface of the cooling device chamber 15 . Accordingly, when the cooling fan 40 operates, the air in the accommodation space 11 may be introduced into the low temperature chamber 16 of the cooling device chamber 15 through the inlet 41 .
냉각 팬(40)은 수용 공간(11)의 공기를 냉각 싱크(30)로 공급할 수 있도록 형성된다. 따라서, 냉각 팬(40)이 작동하면, 수용 공간(11)의 공기는 저온실(16)로 유입되어 냉각 싱크(30)의 복수의 냉각 핀(32)으로 공급된다. The cooling fan 40 is formed to supply the air of the accommodation space 11 to the cooling sink 30 . Accordingly, when the cooling fan 40 operates, the air in the accommodation space 11 flows into the low temperature chamber 16 and is supplied to the plurality of cooling fins 32 of the cooling sink 30 .
냉각 팬(40)에 의해 유입된 공기는 복수의 냉각 핀(32)을 따라 이동하면서 복수의 냉각 핀(32)과 열교환을 하여 온도가 낮아지고, 냉각 유로(13)로 유입된다. 냉각 유로(13)로 유입된 차가운 공기는 배출구(13a)를 통해 본체(10)의 수용 공간(11)으로 배출된다. The air introduced by the cooling fan 40 exchanges heat with the plurality of cooling fins 32 while moving along the plurality of cooling fins 32 to lower the temperature and flow into the cooling passage 13 . The cold air introduced into the cooling passage 13 is discharged to the receiving space 11 of the main body 10 through the outlet 13a.
냉각 싱크(30)에는 제2온도 센서(72)가 설치될 수 있다. A second temperature sensor 72 may be installed in the cooling sink 30 .
도 3은 본 개시의 일 실시예에 의한 냉각장치의 냉각 싱크에 설치된 제2온도 센서를 나타내는 도면이다. 3 is a diagram illustrating a second temperature sensor installed in a cooling sink of a cooling device according to an embodiment of the present disclosure.
도 3을 참조하면, 제2온도 센서(72)는 복수의 냉각핀(32)의 상단에 설치될 수 있다. 제2온도 센서(72)는 냉각 싱크(30)의 온도를 측정할 수 있도록 형성된다.Referring to FIG. 3 , the second temperature sensor 72 may be installed on top of the plurality of cooling fins 32 . The second temperature sensor 72 is formed to measure the temperature of the cooling sink 30 .
제2온도 센서(72)는 측정한 냉각 싱크(30)의 온도 데이터를 PID 제어부(82)로 전송할 수 있다. 즉, PID 제어부(82)는 제2온도 센서(72)에서 출력된 신호로부터 냉각 싱크(30)의 온도를 판단할 수 있다. The second temperature sensor 72 may transmit the measured temperature data of the cooling sink 30 to the PID control unit 82 . That is, the PID control unit 82 may determine the temperature of the cooling sink 30 from the signal output from the second temperature sensor 72 .
방열 싱크(50)는 펠티어 소자(21)의 고온부의 노출된 면, 즉 고온면에 접촉하거나 인접하도록 설치된다. 따라서, 방열 싱크(50)는 펠티어 소자(21)의 하측에 설치된다. 즉, 방열 싱크(50)는 냉각 장치실(15)의 고온실(17)에 설치된다. The heat sink 50 is installed so as to be in contact with or adjacent to the exposed surface of the high-temperature portion of the Peltier element 21, that is, the high-temperature surface. Accordingly, the heat sink 50 is installed on the lower side of the Peltier element (21). That is, the heat sink 50 is installed in the high temperature chamber 17 of the cooling device chamber 15 .
본 실시예의 경우에는 방열 싱크(50)와 펠티어 소자(21) 사이에는 방열 블록(55)이 설치된다. 방열 블록(55)의 일단은 펠티어 소자(21)의 고온면과 접촉하고, 타단은 방열 싱크(50)와 접촉하도록 설치된다. 그러나, 이는 일 예일 뿐이며, 다른 예로서, 방열 싱크(50)는 펠티어 소자(21)의 고온면에 직접 접촉하도록 설치될 수 있다. In the present embodiment, a heat dissipation block 55 is installed between the heat dissipation sink 50 and the Peltier element 21 . One end of the heat dissipation block 55 is in contact with the high-temperature surface of the Peltier element 21 , and the other end is installed to contact the heat dissipation sink 50 . However, this is only an example, and as another example, the heat sink 50 may be installed to directly contact the high temperature surface of the Peltier element 21 .
방열 싱크(50)는 방열판(51)과 방열핀(52)을 포함할 수 있다. The heat sink 50 may include a heat sink 51 and a heat radiation fin 52 .
방열판(51)은 펠티어 소자(21)와 접하도록 설치될 수 있다. 방열판(51)은 펠티어 소자(21)의 고온부와 접촉하여 펠티어 소자(21)의 고온부의 열을 방열핀(52)으로 전달할 수 있다. 방열판(51)은 열전도가 높은 재질로 형성될 수 있다. 방열판(51)은 대략 직사각형 형상으로 형성될 수 있다.The heat sink 51 may be installed to be in contact with the Peltier element 21 . The heat sink 51 may be in contact with the high temperature portion of the Peltier element 21 to transfer the heat of the high temperature portion of the Peltier element 21 to the heat radiation fins 52 . The heat sink 51 may be formed of a material having high thermal conductivity. The heat sink 51 may be formed in a substantially rectangular shape.
방열핀(52)은 방열판(51)과 접촉하도록 설치될 수 있다. 방열핀(52)은 방열판(51)의 일면에서 돌출되도록 형성될 수 있다. The heat dissipation fins 52 may be installed to contact the heat dissipation plate 51 . The heat dissipation fin 52 may be formed to protrude from one surface of the heat dissipation plate 51 .
방열핀(52)은 방열판(51)의 하부에 위치할 수 있다. 방열핀(52)은 적어도 일부가 냉각 장치실(15) 내의 고온실(17)에 위치할 수 있고, 고온실(17) 내로 유입된 외부 공기와 열교환하여 방열핀(52)을 냉각시킬 수 있다.The heat dissipation fin 52 may be located under the heat dissipation plate 51 . At least a portion of the heat dissipation fins 52 may be located in the high temperature chamber 17 in the cooling device chamber 15 , and heat exchange with external air introduced into the high temperature chamber 17 to cool the heat dissipation fins 52 .
방열핀(52)은 외부 공기와의 열교환 면적을 늘리기 위해 복수 개로 형성될 수 있다. 방열핀(52)은 직사각형 형상으로 형성되며, 방열판(51)의 하면에 수직하게 일정 간격으로 이격되어 설치된다. 따라서, 방열 팬(60)에 의해 유입된 외부 공기는 복수의 방열핀(52) 사이로 흐르면서 복수의 방열핀(52)과 열교환을 할 수 있다. A plurality of heat dissipation fins 52 may be formed in order to increase a heat exchange area with external air. The heat dissipation fins 52 are formed in a rectangular shape and are vertically spaced apart from the bottom surface of the heat dissipation plate 51 at regular intervals. Accordingly, the external air introduced by the heat dissipation fan 60 may exchange heat with the plurality of heat dissipation fins 52 while flowing between the plurality of heat dissipation fins 52 .
방열 싱크(50)로 공급된 외부 공기는 복수의 방열핀(52)에 의해 안내되어 고온실(17)의 외부로 배출될 수 있다. The external air supplied to the heat sink 50 may be guided by the plurality of heat radiation fins 52 to be discharged to the outside of the high temperature chamber 17 .
방열 팬(60)은 방열 싱크(50)의 아래에 설치되며, 냉장고(1) 외부의 공기를 방열 싱크(50)를 통해 순환시킬 수 있도록 형성된다. 즉, 방열 팬(60)은 냉각 장치실(15)의 고온실(17)에 방열 싱크(50)의 하측에 설치된다. The heat dissipation fan 60 is installed under the heat sink 50 , and is formed to circulate air outside the refrigerator 1 through the heat sink 50 . That is, the heat dissipation fan 60 is installed below the heat sink 50 in the high temperature chamber 17 of the cooling device chamber 15 .
따라서, 외부 공기는 방열 팬(60)에 의해 고온실(17)로 흡입되어, 방열 싱크(50)를 통과한 후, 다시 냉장고(1) 외부로 배출될 수 있다. 따라서, 방열 팬(60)은 외부 공기를 흡입하여 방열 싱크(50)의 온도를 낮출 수 있다. 즉, 방열 팬(60)은 외부 공기를 이용하여 펠티어 소자(21)의 고온부의 온도를 낮출 수 있다. Accordingly, external air may be sucked into the high temperature chamber 17 by the heat dissipation fan 60 , pass through the heat dissipation sink 50 , and then be discharged to the outside of the refrigerator 1 again. Accordingly, the heat dissipation fan 60 may lower the temperature of the heat dissipation sink 50 by sucking the outside air. That is, the heat dissipation fan 60 may lower the temperature of the high temperature portion of the Peltier element 21 by using external air.
방열 팬(60)의 일측, 즉 냉각 장치실(15)의 고온실(17)의 측면에는 외부와 연통되는 유입구(17a)와 배출구(17b)가 마련된다. An inlet 17a and an outlet 17b communicating with the outside are provided on one side of the heat dissipation fan 60 , that is, a side surface of the high temperature chamber 17 of the cooling device chamber 15 .
방열 팬(60)이 작동하면 외부 공기는 유입구(17a)를 통해 고온실(17)로 유입되고, 방열 싱크(50)를 통과한 후, 배출구(17b)를 통해 고온실(17)의 외부로 배출된다. 따라서, 방열 팬(60)이 작동하면, 고온실(17)의 방열 싱크(50)가 외부 공기에 의해 냉각될 수 있다. When the heat dissipation fan 60 operates, outside air flows into the high temperature chamber 17 through the inlet 17a, passes through the heat sink 50, and then out of the high temperature room 17 through the outlet 17b. is emitted Accordingly, when the heat dissipation fan 60 operates, the heat sink 50 of the high temperature chamber 17 can be cooled by the outside air.
방열 팬(60)은 외부 공기를 방열 싱크(50)로 공급할 수 있도록 형성된다. 따라서, 방열 팬(60)이 작동하면, 외부 공기가 고온실(17)로 유입되어 방열 싱크(50)의 복수의 방열핀(52)으로 공급된다. The heat dissipation fan 60 is formed to supply external air to the heat sink 50 . Accordingly, when the heat dissipation fan 60 operates, external air flows into the high temperature chamber 17 and is supplied to the plurality of heat dissipation fins 52 of the heat dissipation sink 50 .
방열 팬(60)에 의해 고온실(17)로 유입된 외부 공기는 복수의 방열핀(52)을 따라 이동하면서 복수의 방열핀(52)과 열교환을 하여 복수의 방열핀(52)의 온도가 낮춘다. 복수의 방열핀(52)과의 열교환으로 뜨거워진 공기는 배출구(17b)를 통해 고온실(17)의 외부로 배출된다. 따라서, 방열 팬(60)은 방열 싱크(50), 즉 펠티어 소자(21)의 고온부의 열을 냉각 장치실(15)의 외부, 즉 본체(10)의 외부로 방출할 수 있다. The external air introduced into the high temperature chamber 17 by the heat dissipation fan 60 exchanges heat with the plurality of heat dissipation fins 52 while moving along the plurality of heat dissipation fins 52 to lower the temperature of the plurality of heat dissipation fins 52 . Air heated by heat exchange with the plurality of heat dissipation fins 52 is discharged to the outside of the high temperature chamber 17 through the outlet 17b. Accordingly, the heat dissipation fan 60 may radiate heat from the heat sink 50 , that is, the high temperature portion of the Peltier element 21 , to the outside of the cooling device chamber 15 , that is, to the outside of the main body 10 .
도 4는 본 개시의 일 실시예에 의한 냉장고의 기능 블록도이다.4 is a functional block diagram of a refrigerator according to an embodiment of the present disclosure.
도 4를 참조하면, 본 개시의 일 실시예에 의한 냉장고(1)는 프로세서(80), 전원 제어부(81), PID 제어부(82), 펠티어 소자(21), 제1온도 센서(71), 제2온도 센서(72)를 포함할 수 있다.Referring to FIG. 4 , the refrigerator 1 according to an embodiment of the present disclosure includes a processor 80 , a power control unit 81 , a PID control unit 82 , a Peltier element 21 , a first temperature sensor 71 , A second temperature sensor 72 may be included.
프로세서(80)는 냉각 장치(20)를 제어할 수 있도록 형성된다. 예를 들면, 프로세서(80)는 냉각 장치(20)를 제어하여 냉장고(1)의 수용 공간(11)의 온도를 고내 목표 온도로 낮추고 일정하게 유지할 수 있다. The processor 80 is configured to control the cooling device 20 . For example, the processor 80 may control the cooling device 20 to lower the temperature of the accommodating space 11 of the refrigerator 1 to a target temperature inside the refrigerator 1 and keep it constant.
프로세서(80)는 디지털 신호를 처리하는 디지털 시그널 프로세서(digital signal processor(DSP), 마이크로 프로세서(microprocessor), TCON(Time controller)으로 구현될 수 있다. 그러나, 프로세서(80)는 이에 한정되는 것은 아니며, 중앙처리장치(central processing unit(CPU)), MCU(Micro Controller Unit), MPU(micro processing unit), 컨트롤러(controller), 어플리케이션 프로세서(application processor(AP)), GPU(graphics-processing unit) 또는 커뮤니케이션 프로세서(communication processor(CP)), ARM 프로세서 중 적어도 하나를 포함하거나, 해당 용어로 정의될 수 있다. The processor 80 may be implemented as a digital signal processor (DSP), a microprocessor, or a time controller (TCON) for processing a digital signal. However, the processor 80 is not limited thereto. , central processing unit (CPU), micro controller unit (MCU), micro processing unit (MPU), controller, application processor (AP), graphics-processing unit (GPU), or At least one of a communication processor (CP) and an ARM processor may be included, or may be defined by a corresponding term.
또한, 프로세서(80)는 프로세싱 알고리즘이 내장된 SoC(System on Chip), LSI(large scale integration)로 구현될 수도 있고, FPGA(Field Programmable gate array) 형태로 구현될 수도 있다. In addition, the processor 80 may be implemented as a system on chip (SoC), large scale integration (LSI), or a field programmable gate array (FPGA) having a built-in processing algorithm.
또한, 프로세서(80)는 메모리(83)에 저장된 컴퓨터 실행가능 명령어(computer executable instructions)를 실행함으로써 다양한 기능을 수행할 수 있다.In addition, the processor 80 may perform various functions by executing computer executable instructions stored in the memory 83 .
프로세서(80)는 전원 제어부(81)를 제어하여 펠티어 소자(21)로 공급되는 전원의 전압을 조절할 수 있다. 프로세서(80)는 제1온도 센서(71)로부터 입력되는 고내 온도를 기준으로 전원 제어부(81)를 제어함으로써 펠티어 소자(21)로 공급되는 전압을 조절할 수 있다.The processor 80 may control the power control unit 81 to adjust the voltage of the power supplied to the Peltier element 21 . The processor 80 may control the voltage supplied to the Peltier element 21 by controlling the power control unit 81 based on the internal temperature input from the first temperature sensor 71 .
예를 들면, 제1온도 센서(71)로부터 측정한 본체(10)의 수용 공간(11)의 온도, 즉 고내 온도(T1)가 제1목표 제어 온도(Tt+a) 이상이면, 프로세서(80)는 전원 제어부(81)를 제어하여 펠티어 소자(21)에 제1전압(V1), 예를 들면, 풀 듀티(full duty)의 전압을 공급하도록 한다. 즉, 고내 온도(T1)가 제1목표 제어 온도와 동일하거나 높으면, 프로세서는 펠티어 소자에 풀 듀티의 전압이 인가되도록 전원 제어부를 제어할 수 있다. For example, if the temperature of the accommodating space 11 of the main body 10 measured by the first temperature sensor 71 , that is, the internal temperature T 1 , is equal to or greater than the first target control temperature T t +a, the processor Reference numeral 80 controls the power control unit 81 to supply a first voltage V1, for example, a full duty voltage to the Peltier element 21 . That is, when the internal temperature T1 is equal to or higher than the first target control temperature, the processor may control the power control unit to apply a full-duty voltage to the Peltier device.
제1온도 센서로 측정한 고내 온도(T1)가 제1목표 제어 온도(Tt+a)보다 작으면, 프로세서(80)는 펠티어 소자(21)에 제2전압(V2)을 공급할 수 있다. 이때, 프로세서(80)는 PID 제어부(82)를 통해 제2전압(V2)이 냉각 싱크(30)의 온도에 따라 PID 제어(Proportional Integral Derivative control)되도록 제어할 수 있다. When the internal temperature T1 measured by the first temperature sensor is less than the first target control temperature T t +a , the processor 80 may supply the second voltage V2 to the Peltier element 21 . In this case, the processor 80 may control the second voltage V2 through the PID control unit 82 to be PID controlled (Proportional Integral Derivative Control) according to the temperature of the cooling sink 30 .
전원 제어부(81)는 펠티어 소자(21)로 공급되는 전원의 전압을 제어할 수 있도록 형성된다. 전원 제어부(81)는 프로세서(80)로부터의 신호에 따라 펠티어 소자(21)로 공급되는 전압을 조절할 수 있다. 또한, 전원 제어부(81)는 PID 제어부(82)의 신호에 따라 펠티어 소자(21)로 공급되는 전압을 조절할 수 있다. The power control unit 81 is formed to control the voltage of the power supplied to the Peltier element (21). The power control unit 81 may adjust the voltage supplied to the Peltier element 21 according to a signal from the processor 80 . In addition, the power control unit 81 may adjust the voltage supplied to the Peltier element 21 according to the signal of the PID control unit 82 .
PID 제어부(82)는 제2온도 센서(72)로 측정한 냉각 싱크(30)의 온도(T2)를 이용하여 전원 제어부(81)를 PID 제어함으로써 펠티어 소자(21)로 공급되는 전원의 전압을 조절할 수 있다. The PID control unit 82 controls the power supply control unit 81 using the temperature T2 of the cooling sink 30 measured by the second temperature sensor 72 to PID control the voltage of the power supplied to the Peltier element 21 . can be adjusted
PID 제어부(82)는 다음 식을 이용하여 펠티어 소자(21)로 인가되는 전압을 조절할 수 있도록 형성된다.The PID control unit 82 is formed to control the voltage applied to the Peltier element 21 using the following equation.
Figure PCTKR2021007203-appb-img-000001
Figure PCTKR2021007203-appb-img-000001
상기 수식에서 비례항(P)은 현재 상태에서 오차값의 크기에 비례하는 제어 작용을 한다.In the above equation, the proportional term (P) acts as a control proportional to the magnitude of the error value in the current state.
적분항(I)은 정상 상태 오차를 없애는 작용을 한다. The integral term (I) acts to eliminate the steady-state error.
미분항(D)은 출력값의 급격한 변화에 제동을 걸어 오버슛을 줄이고 안정성을 향상시키는 작용을 한다. The derivative term (D) acts to reduce overshoot and improve stability by braking the sudden change in the output value.
상기 수식에서 비례항, 적분항, 및 미분항의 제어 파라미터 Kp, Ki, Kd는 실험적 방법을 통해 튜닝(tunning)할 수 있다. In the above equation, the control parameters Kp, Ki, and Kd of the proportional term, the integral term, and the differential term can be tuned through an experimental method.
도 4에서는 PID 제어부(82)가 프로세서(80)와 별도로 형성된 것으로 도시하였으나, 다른 예로서, PID 제어부(82)는 프로세서(80)와 일체로 형성될 수도 있다. 다시 말하면, 프로세서(80)가 PID 제어를 수행할 수 있도록 형성될 수 있다. In FIG. 4 , the PID control unit 82 is illustrated as being formed separately from the processor 80 , but as another example, the PID control unit 82 may be formed integrally with the processor 80 . In other words, the processor 80 may be formed to perform PID control.
프로세서(80)는 제1온도 센서(71)로 측정한 수용 공간(11)의 고내 온도(T1)가 제1목표 제어 온도(Tt1)보다 낮으면, 전원 제어부(81)를 제어하여 펠티어 소자(21)에 제2전압(V2)을 공급할 수 있다. When the internal temperature T1 of the accommodating space 11 measured by the first temperature sensor 71 is lower than the first target control temperature Tt1, the processor 80 controls the power controller 81 to control the Peltier element 21) may be supplied with a second voltage V2.
펠티어 소자(21)에 제2전압(V2)을 공급할 때, 프로세서(80)는 PID 제어부(82)와 제2온도 센서(72)를 이용하여 제2전압(V2)을 PID 제어할 수 있다. 예를 들면, 프로세서(80)는 PID 제어부(82)가 제2온도 센서(72)로 측정하는 냉각 싱크(30)의 온도(T2)와 냉각 싱크 목표 온도(Ts)를 이용하여 펠티어 소자(21)에 인가되는 제2전압(V2)을 PID 제어로 제어하도록 할 수 있다. When supplying the second voltage V2 to the Peltier element 21 , the processor 80 may PID control the second voltage V2 using the PID controller 82 and the second temperature sensor 72 . For example, the processor 80 uses the temperature T2 and the target cooling sink temperature Ts of the cooling sink 30 measured by the PID control unit 82 with the second temperature sensor 72 to the Peltier element 21 ), the second voltage V2 applied to it may be controlled by PID control.
따라서, 프로세서(80)는 제1온도 센서(71)로 측정한 수용 공간(11)의 고내 온도(T1)가 제1목표 제어 온도(Tt1)보다 높거나 같으면, 전원 제어부(81)를 제어하여 펠티어 소자(21)에 제1전압을 공급하고, 고내 온도(T1)가 제1목표 제어 온도(Tt1)보다 낮으면, 전원 제어부(81)를 제어하여 펠티어 소자(21)에 제2전압을 공급할 수 있다. 제2전압을 공급할 때, 프로세서(80)는 제2온도 센서(72)로 측정한 냉각 싱크(30)의 온도(T2)와 냉각 싱크 목표 온도(Ts)를 이용하여 제2전압을 PID 제어로 제어할 수 있다.Accordingly, the processor 80 controls the power control unit 81 to control the power supply control unit 81 when the internal temperature T1 of the accommodating space 11 measured by the first temperature sensor 71 is higher than or equal to the first target control temperature Tt1. A first voltage is supplied to the Peltier element 21, and when the internal temperature T1 is lower than the first target control temperature Tt1, the power control unit 81 is controlled to supply the second voltage to the Peltier element 21. can When supplying the second voltage, the processor 80 converts the second voltage to PID control using the temperature T2 of the cooling sink 30 measured by the second temperature sensor 72 and the target temperature Ts of the cooling sink. can be controlled
또한, 프로세서(80)는 제1온도 센서(71)로 측정한 고내 온도(T1)에 따라 PID 제어를 위한 냉각 싱크 목표 온도(Ts)를 보정할 수 있다. Also, the processor 80 may correct the cooling sink target temperature Ts for PID control according to the internal temperature T1 measured by the first temperature sensor 71 .
예를 들면, 냉각 싱크 목표 온도(Ts)를 보정할 때, 프로세서(80)는 일정 시간 간격으로 제1온도 센서(71)로 고내 온도(T1)를 측정하고, 현재 측정한 고내 온도(T1)가 일정 시간 전에 측정한 이전 고내 온도(Tc)와 동일한지 판단하고, 고내 온도(T1)가 이전 고내 온도(Tc)와 동일하면, 냉각 싱크 목표 온도를 보정하지 않고 유지할 수 있다. For example, when correcting the cooling sink target temperature Ts, the processor 80 measures the internal temperature T1 of the refrigerator with the first temperature sensor 71 at regular time intervals, and the currently measured internal temperature T1 It is determined whether is the same as the previous internal temperature Tc measured before a predetermined time, and if the internal temperature T1 is the same as the previous internal temperature Tc, the cooling sink target temperature may be maintained without correction.
고내 온도(T1)가 이전 고내 온도(Tc)와 동일하지 않으면, 프로세서(80)는 고내 온도(T1)가 이전 고내 온도(Tc)보다 낮은지 판단하고, 고내 온도(T1)가 이전 고내 온도(Tc)보다 낮으면, 고내 온도(T1)가 고내 목표 온도(Tt)에서 제2여유 온도(c)를 뺀 온도보다 낮은지 판단할 수 있다. If the inside temperature T1 is not the same as the previous inside temperature Tc, the processor 80 determines whether the inside temperature T1 is lower than the previous inside temperature Tc, and the inside temperature T1 is the previous inside temperature ( Tc), it may be determined whether the internal temperature T1 is lower than a temperature obtained by subtracting the second spare temperature c from the target internal temperature Tt.
고내 온도(T1)가 고내 목표 온도(Tt)에서 제2여유 온도(c)를 뺀 온도보다 낮으면, 프로세서(80)는 냉각 싱크 목표 온도(Ts)를 보정 온도(d)만큼 올리고, 고내 온도(T1)가 고내 목표 온도(Tt)에서 제2여유 온도(c)를 뺀 온도보다 크거나 동일하면, 냉각 싱크 목표 온도(Ts)를 보정하지 않고 유지할 수 있다. When the internal temperature T1 is lower than the temperature obtained by subtracting the second spare temperature c from the internal target temperature Tt, the processor 80 increases the cooling sink target temperature Ts by the correction temperature d, and increases the internal temperature of the refrigerator If T1 is greater than or equal to the temperature obtained by subtracting the second spare temperature c from the target internal temperature Tt, the cooling sink target temperature Ts may be maintained without correction.
고내 온도(T1)가 이전 고내 온도(Tc)보다 높거나 동일하면, 프로세서(80)는 고내 온도(T1)가 고내 목표 온도(Tt)에 제2여유 온도(c)를 더한 온도보다 높은지 판단할 수 있다. If the internal temperature T1 is higher than or equal to the previous internal temperature Tc, the processor 80 determines whether the internal temperature T1 is higher than the target internal temperature Tt plus the second spare temperature c. can
고내 온도(T1)가 고내 목표 온도(Tt)에 제2여유 온도(c)를 더한 온도보다 높으면, 프로세서(80)는 냉각 싱크 목표 온도(Ts)를 보정 온도(d)만큼 내리며, 고내 온도(T1)가 고내 목표 온도(Tt)에 제2여유 온도(c)를 더한 온도보다 작거나 동일하면, 냉각 싱크 목표 온도(Ts)를 보정하지 않고 유지할 수 있다. If the internal temperature T1 is higher than the temperature obtained by adding the second spare temperature c to the internal target temperature Tt, the processor 80 lowers the cooling sink target temperature Ts by the correction temperature d, and the internal temperature ( When T1) is less than or equal to the temperature obtained by adding the second spare temperature c to the internal target temperature Tt, the cooling sink target temperature Ts may be maintained without correction.
메모리(83)는 프로세서가 냉각 장치를 제어하기 위해 필요한 데이터, 프로그램 등을 저장할 수 있다. 예를 들면, 메모리는 고내 목표 온도(Tt), 냉각 싱크 목표 온도(Ts) 등을 저장할 수 있다.The memory 83 may store data, programs, etc. necessary for the processor to control the cooling device. For example, the memory may store the internal target temperature Tt, the cooling sink target temperature Ts, and the like.
메모리(83)는 프로세서(80)에 포함된 롬(ROM)(예를 들어, EEPROM(electrically erasable programmable read-only memory)), 램(RAM) 등과 같은 내부 메모리로 구현될 수 있다. 또는, 프로세서(80)와 별도의 메모리로 구현될 수도 있다. The memory 83 may be implemented as an internal memory such as a ROM (eg, electrically erasable programmable read-only memory (EEPROM)) included in the processor 80 , a RAM, or the like. Alternatively, it may be implemented as a memory separate from the processor 80 .
전원부(84)는 전원 제어부(81)를 통해 펠티어 소자(21)에 전원을 인가할 수 있도록 형성된다. 또한, 전원부(84)는 냉각 팬(40)과 방열 팬(60)에 전원을 공급할 수 있도록 형성된다. The power supply unit 84 is formed to apply power to the Peltier element 21 through the power control unit 81 . In addition, the power supply unit 84 is formed to supply power to the cooling fan 40 and the heat dissipation fan 60 .
냉각 팬(40)과 방열 팬(60)은 프로세서(80)에 의해 온/오프 제어될 수 있다.The cooling fan 40 and the heat dissipation fan 60 may be controlled on/off by the processor 80 .
이하, 도 5를 참조하여, 본 개시의 일 실시예에 의한 냉장고(1)의 제어방법에 대해 상세하게 설명한다.Hereinafter, a method of controlling the refrigerator 1 according to an embodiment of the present disclosure will be described in detail with reference to FIG. 5 .
도 5는 본 개시의 일 실시예에 의한 냉장고의 제어방법을 설명하기 위한 순서도이다.5 is a flowchart illustrating a method for controlling a refrigerator according to an embodiment of the present disclosure.
도 5를 참조하면, 본 개시의 일 실시예에 의한 냉장고의 제어방법은 제1온도 센서(71)로 냉장고(1)의 고내 온도(T1)를 측정하는 단계(S10), 고내 온도(T1)가 제1목표 제어 온도(Tt1)보다 높은지 판단하는 단계(S11), 고내 온도(T1)가 제1목표 제어 온도(Tt1)보다 높거나 같으면(T1≥Tt1), 펠티어 소자(21)에 제1전압(V1)을 공급하는 단계(S13), 및 고내 온도(T1)가 제1목표 제어 온도(Tt1)보다 낮으면(T1<Tt1), 펠티어 소자(21)에 제2전압(V2)을 공급하는 단계(S14)를 포함할 수 있다.Referring to FIG. 5 , the method for controlling a refrigerator according to an exemplary embodiment of the present disclosure includes the steps of measuring the internal temperature T1 of the refrigerator 1 with a first temperature sensor 71 ( S10 ), and the internal temperature T1 of the refrigerator 1 . is higher than the first target control temperature Tt1 ( S11 ), and when the internal temperature T1 is higher than or equal to the first target control temperature Tt1 ( T1 ≥ Tt1 ), the first In the step of supplying the voltage V1 ( S13 ), and when the internal temperature T1 is lower than the first target control temperature Tt1 ( T1 < Tt1 ), the second voltage V2 is supplied to the Peltier element 21 . It may include a step (S14) of doing.
구체적으로, 프로세서(80)는 먼저 본체(10)의 수용 공간(11)에 설치된 제1온도 센서(71)를 이용하여 냉장고(1)의 고내 온도(T1)를 측정한다(S10). 구체적으로, 프로세서(80)는 제1온도 센서(71)에서 출력된 신호로부터 냉장고(1)의 고내 온도(T1)를 인식한다. Specifically, the processor 80 first measures the internal temperature T1 of the refrigerator 1 using the first temperature sensor 71 installed in the accommodation space 11 of the main body 10 ( S10 ). Specifically, the processor 80 recognizes the internal temperature T1 of the refrigerator 1 from the signal output from the first temperature sensor 71 .
이어서, 프로세서(80)는 측정된 고내 온도(T1)가 제1목표 제어 온도(Tt1)보다 높은지 판단한다(S11). 제1목표 제어 온도(Tt1)는 메모리(83)에 저장될 수 있다. 제1목표 제어 온도(Tt1)는 고내 목표 온도(Tt)보다 높게 설정된다. 즉, 제1목표 제어 온도(Tt1)는 고내 목표 온도(Tt)보다 제1여유 온도(a) 높게 설정될 수 있다(Tt1 = Tt + a). 예를 들면, 제1여유 온도(a)는 0.7℃ 일 수 있다. Next, the processor 80 determines whether the measured internal temperature T1 is higher than the first target control temperature Tt1 ( S11 ). The first target control temperature Tt1 may be stored in the memory 83 . The first target control temperature Tt1 is set higher than the internal target temperature Tt. That is, the first target control temperature Tt1 may be set to be higher than the target temperature Tt in the refrigerator (Tt1 = Tt + a). For example, the first spare temperature a may be 0.7°C.
고내 목표 온도(Tt)는 프로세서(80)가 유지시키고자 하는 냉장고 본체(10)의 수용 공간(11)의 온도를 말한다. 즉, 프로세서(80)는 냉각 장치(20)를 제어하여 냉장고(1)의 수용 공간(11)의 온도가 고내 목표 온도(Tt)를 유지하도록 할 수 있다. The target internal temperature Tt refers to the temperature of the accommodation space 11 of the refrigerator body 10 that the processor 80 wants to maintain. That is, the processor 80 may control the cooling device 20 so that the temperature of the accommodating space 11 of the refrigerator 1 maintains the target internal temperature Tt.
고내 온도(T1)가 제1목표 제어 온도(Tt1)보다 높거나 같은 경우에, 프로세서(80)는 펠티어 소자(21)에 제1전압(V1)을 공급한다(S13). When the internal temperature T1 is higher than or equal to the first target control temperature Tt1 , the processor 80 supplies the first voltage V1 to the Peltier element 21 ( S13 ).
구체적으로, 제1온도 센서(71)로 측정한 냉장고(1)의 고내 온도(T1)가 제1목표 제어 온도(Tt1) 이상이면, 프로세서(80)는 전원 제어부(81)를 제어하여 펠티어 소자(21)에 제1전압을 공급한다. 즉, 고내 온도(T1)가 제1목표 제어 온도(Tt1) 이상이면, 전원 제어부(81)는 펠티어 소자(21)에 제1전압을 공급한다. Specifically, when the internal temperature T1 of the refrigerator 1 measured by the first temperature sensor 71 is equal to or greater than the first target control temperature Tt1 , the processor 80 controls the power control unit 81 to control the Peltier device. The first voltage is supplied to (21). That is, when the internal temperature T1 is equal to or higher than the first target control temperature Tt1 , the power control unit 81 supplies the first voltage to the Peltier element 21 .
이때, 제1전압은 전원부(84)가 인가할 수 있는 풀 듀티의 전압일 수 있다. 그러면, 냉장고(1)의 고내 온도(T1)가 빠른 시간 내에 제1목표 제어 온도(Tt1) 아래로 떨어질 수 있다.In this case, the first voltage may be a full-duty voltage that can be applied by the power supply unit 84 . Then, the internal temperature T1 of the refrigerator 1 may drop below the first target control temperature Tt1 within a short time.
고내 온도(T1)가 제1목표 제어 온도(Tt1)보다 낮은 경우에, 프로세서(80)는 펠티어 소자(21)에 제2전압(V2)을 공급한다(S14). When the internal temperature T1 is lower than the first target control temperature Tt1 , the processor 80 supplies the second voltage V2 to the Peltier element 21 ( S14 ).
구체적으로, 제1온도 센서(71)로 측정한 냉장고(1)의 고내 온도(T1)가 제1목표 제어 온도(Tt1)보다 낮으면, 프로세서(80)는 PID 제어부(82)를 제어하여 전원 제어부(81)가 펠티어 소자(21)에 제2전압을 공급하도록 한다. 즉, 고내 온도(T1)가 제1목표 제어 온도보다 낮으면, 전원 제어부(81)는 펠티어 소자(21)에 제2전압을 공급한다. 제2전압(V2)은 제1전압(V1)보다 낮은 전압일 수 있다. Specifically, when the internal temperature T1 of the refrigerator 1 measured by the first temperature sensor 71 is lower than the first target control temperature Tt1, the processor 80 controls the PID controller 82 to power The controller 81 supplies the second voltage to the Peltier element 21 . That is, when the internal temperature T1 is lower than the first target control temperature, the power control unit 81 supplies the second voltage to the Peltier element 21 . The second voltage V2 may be lower than the first voltage V1 .
전원 제어부(81)가 펠티어 소자(21)에 제2전압(V2)을 공급할 때, 제2전압(V2)은 PID 제어부(82)에 의해 PID 제어될 수 있다.When the power control unit 81 supplies the second voltage V2 to the Peltier element 21 , the second voltage V2 may be PID-controlled by the PID control unit 82 .
구체적으로, PID 제어부(82)는 펠티어 소자(21)의 냉각 싱크(30)에 설치된 제2온도 센서(72)가 측정한 냉각 싱크 온도(T2)와 냉각 싱크 목표 온도(Ts)를 이용하여 제2전압(V2)을 PID 제어로 제어할 수 있다.Specifically, the PID control unit 82 uses the cooling sink temperature (T2) and the cooling sink target temperature (Ts) measured by the second temperature sensor 72 installed in the cooling sink 30 of the Peltier element 21 to control the The two voltages V2 can be controlled by PID control.
이를 위해, 먼저 PID 제어부(82)는 냉각 싱크 목표 온도(Ts)를 보정할 시간이 경과하였는지 판단한다(S15). To this end, first, the PID control unit 82 determines whether the time to correct the cooling sink target temperature Ts has elapsed (S15).
냉각 싱크 목표 온도(Ts)를 보정할 시간이 경과하지 않았으면, PID 제어부(82)는 제2온도 센서(72)로 펠티어 소자(21)의 냉각 싱크(30)의 온도, 즉 냉각 싱크 온도(T2)를 측정한다(S16). If the time to correct the cooling sink target temperature Ts has not elapsed, the PID control unit 82 uses the second temperature sensor 72 to control the temperature of the cooling sink 30 of the Peltier element 21, that is, the cooling sink temperature ( T2) is measured (S16).
제2온도 센서(72)는 펠티어 소자(21)의 상측에 위치한 냉각 싱크(30)의 상단에 설치되어 있으므로, 냉각 싱크(30)의 온도를 측정할 수 있다. 구체적으로, PID 제어부(82)는 제2온도 센서(72)에서 출력된 신호로부터 냉각 싱크(30)의 온도를 인식한다.Since the second temperature sensor 72 is installed at the upper end of the cooling sink 30 located on the upper side of the Peltier element 21 , it is possible to measure the temperature of the cooling sink 30 . Specifically, the PID control unit 82 recognizes the temperature of the cooling sink 30 from the signal output from the second temperature sensor 72 .
이어서, PID 제어부(82)는 냉각 싱크 온도(T2)와 냉각 싱크 목표 온도(Ts)의 차이를 계산한다(S17). Next, the PID controller 82 calculates the difference between the cooling sink temperature T2 and the cooling sink target temperature Ts (S17).
PID 제어부(82)는 냉각 싱크 온도(T2)와 냉각 싱크 목표 온도(Ts)의 차이를 이용하여 펠티어 소자(21)에 공급되는 제2전압(V2)을 PID 제어함으로써, 냉각 싱크(30)의 온도(T2)가 냉각 싱크 목표 온도(Ts)에 도달하여 냉각 싱크 목표 온도(Ts)를 유지하도록 한다. The PID control unit 82 controls the second voltage V2 supplied to the Peltier element 21 by using the difference between the cooling sink temperature T2 and the cooling sink target temperature Ts to PID control the cooling sink 30 . The temperature T2 reaches the cooling sink target temperature Ts to maintain the cooling sink target temperature Ts.
여기서, 냉각 싱크 목표 온도(Ts)는 펠티어 소자(21)를 제어하여 도달하고자 하는 냉각 싱크(30)의 온도를 말한다. 냉각 싱크 목표 온도(Ts)는 고내 목표 온도(Tt)보다 낮게 정해진다. Here, the cooling sink target temperature Ts refers to the temperature of the cooling sink 30 to be reached by controlling the Peltier element 21 . The cooling sink target temperature Ts is set to be lower than the internal target temperature Tt.
예를 들면, 냉각 싱크 목표 온도(Ts)는 고내 목표 온도(Tt)에서 차감 온도(b)를 뺀 온도로 설정할 수 있다(Ts = Tt-b). 차감 온도(b)는 본체(10)의 냉각 유로(13), 냉각 장치(20)의 구성 등에 따라 적절하게 정해질 수 있다. 예를 들면, 차감 온도(b)는 3℃일 수 있다. 이 경우, 냉각 싱크 목표 온도(Ts)는 고내 목표 온도(Tt)보다 3℃ 낮게 설정될 수 있다. For example, the cooling sink target temperature Ts may be set as a temperature obtained by subtracting the subtracted temperature b from the internal target temperature Tt (Ts = Tt-b). The subtracted temperature b may be appropriately determined according to the cooling passage 13 of the main body 10 , the configuration of the cooling device 20 , and the like. For example, the subtracted temperature b may be 3°C. In this case, the cooling sink target temperature Ts may be set to be 3°C lower than the internal target temperature Tt.
냉각 싱크 목표 온도(Ts)는 고내 목표 온도(Tt)와 함께 메모리(83)에 저장될 수 있다. 따라서, PID 제어부(82)는 메모리(83)에서 읽은 냉각 싱크 목표 온도(Ts)와 제2온도 센서(72)로 측정한 냉각 싱크 온도(T2)의 차이를 계산하여 펠티어 소자(21)에 입력되는 전압을 PID 제어 할 수 있다.The cooling sink target temperature Ts may be stored in the memory 83 together with the internal target temperature Tt. Accordingly, the PID control unit 82 calculates the difference between the cooling sink target temperature Ts read from the memory 83 and the cooling sink temperature T2 measured by the second temperature sensor 72 and inputs it to the Peltier element 21 . It is possible to PID control the applied voltage.
한편, 냉각 싱크 목표 온도(Ts)를 보정할 시간이 경과하였으면, PID 제어부(82)는 프로세서(80)가 냉각 싱크 목표 온도(Ts)를 보정하도록 한다(S20). Meanwhile, if the time to correct the cooling sink target temperature Ts has elapsed, the PID control unit 82 causes the processor 80 to correct the cooling sink target temperature Ts (S20).
프로세서(80)가 냉각 싱크 목표 온도(Ts)를 보정하는 방법에 대해 도 6을 참조하여 상세하게 설명한다.A method for the processor 80 to correct the cooling sink target temperature Ts will be described in detail with reference to FIG. 6 .
도 6은 본 개시의 일 실시예에 의한 냉장고의 제어방법의 냉각 싱크 목표 온도의 보정방법을 설명하기 위한 순서도이다.6 is a flowchart illustrating a method of correcting a target temperature of a cooling sink in a method of controlling a refrigerator according to an exemplary embodiment of the present disclosure.
도 6을 참조하면, 프로세서(80)는 일정 시간 간격(Δt)으로 제1온도 센서(71)로 고내 온도(T1)를 측정한다(S21). 예를 들면, 프로세서(80)는 10분 간격으로 제1온도 센서(71)를 통해 본체(10)의 수용 공간(11)의 온도, 즉 고내 온도(T1)를 측정할 수 있다. Referring to FIG. 6 , the processor 80 measures the internal temperature T1 of the refrigerator with the first temperature sensor 71 at a predetermined time interval Δt ( S21 ). For example, the processor 80 may measure the temperature of the accommodating space 11 of the main body 10 , that is, the internal temperature T1 of the main body 10 through the first temperature sensor 71 at 10-minute intervals.
프로세서(80)는 맨 처음 측정한 고내 온도(T1)는 이전 고내 온도(Tc)로 메모리(83)에 저장한다. 즉, 이전 고내 온도(Tc)는 일정 시간(Δt) 전에 측정한 고내 온도(T1)를 말한다. The processor 80 stores the first measured internal temperature T1 in the memory 83 as the previous internal temperature Tc. That is, the previous internal temperature Tc refers to the internal temperature T1 measured before a predetermined time Δt.
일정 시간(Δt)이 경과하면, 프로세서(80)는 제1온도 센서(71)로 고내 온도(T1)를 측정한다. When a predetermined time Δt has elapsed, the processor 80 measures the internal temperature T1 of the refrigerator with the first temperature sensor 71 .
이어서, 프로세서(80)는 현재 측정한 고내 온도(T1)가 일정 시간(Δt) 전에 측정된 고내 온도(Tc), 즉 메모리(83)에 저장된 이전 고내 온도(Tc)와 동일한지 판단한다(S22). Next, the processor 80 determines whether the currently measured internal temperature T1 is the same as the internal temperature Tc measured before a predetermined time Δt, that is, the previous internal temperature Tc stored in the memory 83 ( S22 ). ).
측정한 고내 온도(T1)가 이전 고내 온도(Tc)와 동일하면(T1=Tc), 프로세서(80)는 냉각 싱크 목표 온도(Ts)를 보정하지 않고 그대로 유지한다(S23). If the measured internal temperature T1 is the same as the previous internal temperature Tc (T1=Tc), the processor 80 maintains the cooling sink target temperature Ts without correcting it (S23).
그러나, 측정한 고내 온도(T1)가 이전 고내 온도(Tc)와 동일하지 않으면(T1≠Tc), 프로세서(80)는 측정한 고내 온도(T1)가 이전 고내 온도(Tc)보다 낮은지 판단한다(S24). However, if the measured internal temperature T1 is not the same as the previous internal temperature Tc (T1≠Tc), the processor 80 determines whether the measured internal temperature T1 is lower than the previous internal temperature Tc (S24).
측정한 고내 온도(T1)가 이전 고내 온도(Tc)보다 낮으면(T1<Tc), 프로세서(80)는 측정한 고내 온도(T1)가 제2목표 제어 온도(Tt2)보다 낮은지 판단한다(S25). If the measured internal temperature T1 is lower than the previous internal temperature Tc (T1 < Tc), the processor 80 determines whether the measured internal temperature T1 is lower than the second target control temperature Tt2 ( S25).
여기서, 제2목표 제어 온도(Tt2)는 고내 목표 온도(Tt)에서 제2여유 온도(c)를 뺀 온도를 말한다(Tt2 = Tt - c). 따라서, 프로세서(80)는 측정한 고내 온도(T1)가 고내 목표 온도(Tt)에서 제2여유 온도(c)를 뺀 온도, 즉 제2목표 제어 온도(Tt2)보다 낮은지 판단한다. 이는 측정한 고내 온도(T1)가 고내 목표 온도(Tt)보다 제2여유 온도(c) 이상으로 낮아졌는지를 판단하기 위한 것이다. 예를 들면, 제2여유 온도(c)는 0.3℃일 수 있다.Here, the second target control temperature Tt2 refers to a temperature obtained by subtracting the second spare temperature c from the internal target temperature Tt (Tt2 = Tt - c). Accordingly, the processor 80 determines whether the measured internal temperature T1 is lower than the temperature obtained by subtracting the second spare temperature c from the internal target temperature Tt, that is, the second target control temperature Tt2 . This is to determine whether the measured internal temperature T1 is lower than the target internal temperature Tt by more than the second spare temperature c. For example, the second spare temperature c may be 0.3°C.
측정한 고내 온도(T1)가 고내 목표 온도(Tt)에서 제2여유 온도(c)를 뺀 온도보다 낮으면, 프로세서(80)는 냉각 싱크 목표 온도(Ts)를 일정 온도 올리는 보정을 수행한다(S26). If the measured internal temperature T1 is lower than the temperature obtained by subtracting the second spare temperature c from the internal target temperature Tt, the processor 80 performs a correction to increase the cooling sink target temperature Ts by a predetermined temperature ( S26).
구체적으로, 측정한 고내 온도(T1)가 고내 목표 온도(Tt)에서 제2여유 온도(c)를 뺀 온도보다 낮다고 판단되면(T1 < Tt - c), 프로세서(80)는 메모리(83)에 저장된 냉각 싱크 목표 온도(Ts)를 일정 온도, 즉 보정 온도(d)만큼 올리는 보정을 하고, 이를 다시 메모리(83)에 저장한다. 즉, 보정된 냉각 싱크 목표 온도(Ts)는 보정 전의 냉각 싱크 목표 온도(Ts)보다 보정 온도(d)만큼 높게 설정된다. Specifically, when it is determined that the measured internal temperature T1 is lower than the temperature obtained by subtracting the second spare temperature c from the target internal temperature Tt (T1 < Tt - c), the processor 80 stores the data in the memory 83 . A correction is performed to increase the stored cooling sink target temperature Ts by a predetermined temperature, that is, the correction temperature d, and the stored cooling sink target temperature Ts is stored in the memory 83 again. That is, the corrected cooling sink target temperature Ts is set higher than the cooling sink target temperature Ts before the correction by the correction temperature d.
보정 온도(d)는 냉각 장치(20)의 성능에 따라 적절하게 정할 수 있다. 예를 들면, 보정 온도(d)는 0.3℃로 정할 수 있다. 보정 온도(d)는 제2여유 온도(c)와 동일하게 설정할 수도 있다. The correction temperature d may be appropriately determined according to the performance of the cooling device 20 . For example, the correction temperature d may be set to 0.3°C. The correction temperature (d) may be set to be the same as the second spare temperature (c).
측정한 고내 온도(T1)가 고내 목표 온도(Tt)에서 제2여유 온도(c)를 뺀 온도, 즉 제2목표 제어 온도(Tt2)보다 크거나 동일하면, 프로세서(80)는 메모리(83)에 저장된 냉각 싱크 목표 온도(Ts)를 보정하지 않고 그대로 유지한다(S27). If the measured internal temperature T1 is greater than or equal to the temperature obtained by subtracting the second spare temperature c from the internal target temperature Tt, that is, the second target control temperature Tt2, the processor 80 controls the memory 83 The cooling sink target temperature (Ts) stored in the is maintained as it is without correction (S27).
한편, 측정한 고내 온도(T1)가 이전 고내 온도(Tc)보다 높으면, 프로세서(80)는 측정한 고내 온도(T1)가 제3목표 제어 온도(Tt3)보다 높은지 판단한다(S28). Meanwhile, if the measured internal temperature T1 is higher than the previous internal temperature Tc, the processor 80 determines whether the measured internal temperature T1 is higher than the third target control temperature Tt3 ( S28 ).
여기서, 제3목표 제어 온도(Tt3)는 고내 목표 온도(Tt)에 제2여유 온도(c)를 더한 온도를 말한다(Tt3 = Tt + c). 따라서, 프로세서(80)는 측정한 고내 온도(T1)가 고내 목표 온도(Tt)에 제2여유 온도(c)를 더한 온도, 즉 제3목표 제어 온도(Tt3)보다 높은지 판단한다. 이는 측정한 고내 온도(T1)가 고내 목표 온도(Tt)보다 제2여유 온도(c) 이상으로 높은지를 판단하기 위한 것이다. Here, the third target control temperature Tt3 refers to a temperature obtained by adding the second spare temperature c to the internal target temperature Tt (Tt3 = Tt + c). Accordingly, the processor 80 determines whether the measured internal temperature T1 is higher than the target internal temperature Tt plus the second spare temperature c, that is, the third target control temperature Tt3 . This is to determine whether the measured internal temperature T1 is higher than the target internal temperature Tt by a second spare temperature c or more.
측정한 고내 온도(T1)가 고내 목표 온도(Tt)에 제2여유 온도(c)를 더한 온도, 즉 제3목표 제어 온도(Tt3)보다 높으면, 프로세서(80)는 냉각 싱크 목표 온도(Ts)를 일정 온도 내리는 보정을 수행한다(S29). If the measured internal temperature T1 is higher than the temperature obtained by adding the second spare temperature c to the internal target temperature Tt, that is, the third target control temperature Tt3, the processor 80 sets the cooling sink target temperature Ts. A correction is performed to lower the temperature by a certain amount (S29).
구체적으로, 측정한 고내 온도(T1)가 고내 목표 온도(Tt)에 제2여유 온도(c)를 더한 온도보다 높다고 판단되면(Tt3 > Tt + c), 프로세서(80)는 메모리(83)에 저장된 냉각 싱크 목표 온도(Ts)를 일정 온도, 즉 보정 온도(d)만큼 내리는 보정을 하고, 이를 다시 메모리(83)에 저장한다. 즉, 보정된 냉각 싱크 목표 온도(Ts)는 보정 전의 냉각 싱크 목표 온도(Ts)보다 보정 온도(d)만큼 낮게 설정된다. Specifically, if it is determined that the measured internal temperature T1 is higher than the temperature obtained by adding the second spare temperature c to the target internal temperature Tt (Tt3 > Tt + c), the processor 80 sends the data to the memory 83. A correction is performed by lowering the stored cooling sink target temperature Ts by a predetermined temperature, that is, the correction temperature d, and the stored cooling sink target temperature Ts is stored in the memory 83 again. That is, the corrected cooling sink target temperature Ts is set lower than the cooling sink target temperature Ts before the correction by the correction temperature d.
측정한 고내 온도(T1)가 고내 목표 온도(Tt)에 제2여유 온도(c)를 더한 온도보다 작거나 동일하면(Tt1 ≤ Tt + c), 프로세서(80)는 메모리(83)에 저장된 냉각 싱크 목표 온도(Ts)를 보정하지 않고 그대로 유지한다(S27). If the measured internal temperature T1 is less than or equal to the temperature obtained by adding the second spare temperature c to the target internal temperature Tt (Tt1 ≤ Tt + c), the processor 80 controls the cooling stored in the memory 83 . The sink target temperature Ts is not corrected and is maintained as it is (S27).
즉, 측정한 고내 온도(T1)가 고내 목표 온도(Tt)에 제2여유 온도(c)를 더한 온도, 즉 제3목표 제어 온도(Tt3)보다 작거나 동일하다고 판단되면, 프로세서(80)는 메모리(83)에 저장된 냉각 싱크 목표 온도(Ts)를 업데이트하지 않고 유지한다. That is, if it is determined that the measured internal temperature T1 is less than or equal to the temperature obtained by adding the second spare temperature c to the internal target temperature Tt, that is, the third target control temperature Tt3, the processor 80 The cooling sink target temperature Ts stored in the memory 83 is maintained without being updated.
이하, 도 7을 참조하여, 본 개시의 일 실시예에 의한 냉장고의 제어방법에 의해 제어되는 냉장고(1)의 고내 온도(T1)의 변화에 따라 보정되는 냉각 싱크 목표 온도(Ts)에 대해 상세하게 설명한다.Hereinafter, with reference to FIG. 7 , the cooling sink target temperature Ts corrected according to the change in the internal temperature T1 of the refrigerator 1 controlled by the refrigerator control method according to an embodiment of the present disclosure will be described in detail. explain in detail.
도 7은 본 개시의 일 실시예에 의한 냉장고의 제어방법에 의해 제어되는 냉장고의 고내 온도, 냉각 싱크 온도, 및 냉각 싱크 목표 온도의 시간에 따른 변화를 나타내는 그래프이다.7 is a graph illustrating changes over time of a refrigerator interior temperature, a cooling sink temperature, and a cooling sink target temperature controlled by the refrigerator control method according to an exemplary embodiment of the present disclosure.
도 7에서 X축은 시간(t)(분)을 나타내며, Y축은 온도(T)(℃)를 나타낸다. In FIG. 7 , the X-axis represents time (t) (minutes), and the Y-axis represents temperature (T) (°C).
도 7에서 상부 그래프는 제1온도 센서(71)로 측정한 본체(10)의 수용 공간(11)의 고내 온도(T1)의 시간에 따른 변화를 나타낸다. 선①은 제1온도 센서(71)로 측정한 수용 공간(11)의 고내 온도(T1)를 나타내고, 선②는 고내 목표 온도(Tt)를 나타낸다. The upper graph in FIG. 7 shows the change with time of the internal temperature T1 of the accommodating space 11 of the main body 10 measured by the first temperature sensor 71 . The line ① indicates the internal temperature T1 of the storage space 11 measured by the first temperature sensor 71 , and the line ② indicates the target internal temperature Tt of the storage space 11 .
또한, 도 7에서 하부 그래프는 제2온도 센서(72)로 측정한 냉각 장치(20)의 냉각 싱크(30)의 온도(T2)의 시간에 따른 변화를 나타낸다. 선③은 제2온도 센서(72)로 측정한 냉각 싱크(30)의 온도(T2)를 나타내고, 선④는 냉각 싱크 목표 온도(Ts)를 나타낸다. In addition, the lower graph in FIG. 7 shows the change with time of the temperature T2 of the cooling sink 30 of the cooling device 20 measured by the second temperature sensor 72 . Line ③ represents the temperature T2 of the cooling sink 30 measured by the second temperature sensor 72 , and line ④ represents the target cooling sink temperature Ts.
도 7을 참조하면, 고내 온도(T1)가 제1목표 제어 온도(Tt1)에 도달할 때까지는 펠티어 소자(21)에 제1전압이 인가된다. 제1전압은 전원 제어부(82)가 인가할 수 있는 풀 듀티의 전압일 수 있다. Referring to FIG. 7 , the first voltage is applied to the Peltier element 21 until the internal temperature T1 reaches the first target control temperature Tt1 . The first voltage may be a full-duty voltage that the power control unit 82 may apply.
고내 온도(T1)가 제1목표 제어 온도(Tt1)에 도달하면(P1), 펠티어 소자(21)에 입력되는 전압이 제1전압에서 제2전압으로 변경된다. 제2전압은 PID 제어부(82)에 의해 PID 제어된다. 이때, 프로세서(80)는 P1의 고내 온도(T1)를 이전 고내 온도(Tc)로 메모리(83)에 저장한다. When the internal temperature T1 reaches the first target control temperature Tt1 (P1), the voltage input to the Peltier element 21 is changed from the first voltage to the second voltage. The second voltage is PID-controlled by the PID control unit 82 . In this case, the processor 80 stores the internal temperature T1 of P1 as the previous internal temperature Tc in the memory 83 .
제1목표 제어 온도(Tt1)에 도달한 후, 일정 시간(Δt), 예를 들어, 10분이 경과한 후인 P2에서 프로세서(80)는 제1온도 센서(71)로 고내 온도(T1)를 측정하고 이를 이전 고내 온도(Tc)(P1의 고내 온도)와 비교한다. After reaching the first target control temperature Tt1 , after a predetermined time Δt, for example, 10 minutes have elapsed, at P2 , the processor 80 measures the internal temperature T1 of the refrigerator with the first temperature sensor 71 . and compare it with the previous internal temperature (Tc) (the internal temperature of P1).
P2에서의 고내 온도(T1)는 이전 고내 온도(Tc)보다 낮으나, 고내 목표 온도(Tt)에서 제2여유 온도(c)를 뺀 온도, 즉 제2목표 제어 온도(Tt2)보다는 높으므로, 프로세서(80)는 냉각 싱크(30)의 냉각 싱크 목표 온도(Ts)를 보정하지 않고 그대로 유지한다. The internal temperature T1 of the refrigerator at P2 is lower than the previous internal temperature Tc, but is higher than the temperature obtained by subtracting the second spare temperature c from the target internal temperature Tt, that is, higher than the second target control temperature Tt2. At 80, the cooling sink target temperature Ts of the cooling sink 30 is maintained without correction.
이때, 프로세서(80)는 메모리(83)에 저장된 이전 고내 온도(Tc)를 P2의 고내 온도(T1)로 업데이트한다. In this case, the processor 80 updates the previous internal temperature Tc stored in the memory 83 to the internal temperature T1 of P2.
다시 일정 시간(Δt)이 경과한 후인 P3에서 프로세서(80)는 제1온도 센서(71)로 고내 온도(T1)를 측정하고 이를 이전 고내 온도(Tc)(P2의 고내 온도)와 비교한다. At P3 after a predetermined time Δt has elapsed again, the processor 80 measures the internal temperature T1 with the first temperature sensor 71 and compares it with the previous internal temperature Tc (the internal temperature of P2).
P3에서의 고내 온도(T1)는 이전 고내 온도(Tc)보다 높고, 고내 목표 온도(Tt)에 제2여유 온도(c)를 더한 온도, 즉 제3목표 제어 온도(Tt3)보다도 높으므로, 프로세서(80)는 냉각 싱크(30)의 냉각 싱크 목표 온도(Ts)를 보정한다. Since the refrigerator internal temperature T1 at P3 is higher than the previous refrigerator internal temperature Tc, and is higher than the internal target temperature Tt plus the second spare temperature c, that is, higher than the third target control temperature Tt3, the processor Reference numeral 80 corrects the cooling sink target temperature Ts of the cooling sink 30 .
구체적으로, 메모리(83)에 저장된 냉각 싱크 목표 온도(Ts)를 기존의 냉각 싱크 목표 온도(Ts)에서 보정 온도(d)를 뺀 온도로 업데이트한다. 그러면, P3에서부터 냉각 싱크 목표 온도(Ts)가 P1-P3사이의 냉각 싱크 목표 온도(Ts)보다 보정 온도만큼 낮아진다. Specifically, the cooling sink target temperature Ts stored in the memory 83 is updated as a temperature obtained by subtracting the correction temperature d from the existing cooling sink target temperature Ts. Then, the cooling sink target temperature Ts from P3 is lower than the cooling sink target temperature Ts between P1 and P3 by the correction temperature.
또한, 프로세서(80)는 메모리(83)에 저장된 이전 고내 온도(Tc)를 P3의 고내 온도(T1)로 업데이트한다. In addition, the processor 80 updates the previous internal temperature Tc stored in the memory 83 to the internal temperature T1 of P3.
다시 일정 시간(Δt)이 경과한 후인 P4에서 프로세서(80)는 제1온도 센서(71)로 고내 온도(T1)를 측정하고 이를 이전 고내 온도(Tc)(P3의 고내 온도)와 비교한다. At P4 after a predetermined time Δt has elapsed again, the processor 80 measures the internal temperature T1 with the first temperature sensor 71 and compares it with the previous internal temperature Tc (the internal temperature of P3).
P4에서의 고내 온도(T1)는 이전 고내 온도(Tc)보다 낮으나, 고내 목표 온도(Tt)에서 제2여유 온도(c)를 뺀 온도, 즉 제2목표 제어 온도(Tt2)보다는 높으므로, 프로세서(80)는 냉각 싱크(30)의 냉각 싱크 목표 온도(Ts)를 보정하지 않고 그대로 유지한다. The internal temperature T1 of the refrigerator at P4 is lower than the previous internal temperature Tc, but is higher than the temperature obtained by subtracting the second spare temperature c from the target internal temperature Tt, that is, higher than the second target control temperature Tt2. At 80, the cooling sink target temperature Ts of the cooling sink 30 is maintained without correction.
이때, 프로세서(80)는 메모리(83)에 저장된 이전 고내 온도(Tc)를 P4의 고내 온도(T1)로 업데이트한다. In this case, the processor 80 updates the previous internal temperature Tc stored in the memory 83 to the internal temperature T1 of P4.
다시 일정 시간(Δt)이 경과한 후인 P5에서 프로세서(80)는 제1온도 센서(71)로 고내 온도(T1)를 측정하고 이를 이전 고내 온도(Tc)(P4의 고내 온도)와 비교한다. At P5 after a predetermined time Δt has elapsed again, the processor 80 measures the internal temperature T1 with the first temperature sensor 71 and compares it with the previous internal temperature Tc (the internal temperature of P4).
P5에서의 고내 온도(T1)는 이전 고내 온도(Tc)보다 낮고, 고내 목표 온도(Tt)에서 제2여유 온도(c)를 뺀 온도, 즉 제2목표 제어 온도(Tt2)보다도 낮으므로, 프로세서(80)는 냉각 싱크(30)의 냉각 싱크 목표 온도(Ts)를 보정한다. Since the internal temperature T1 in P5 is lower than the previous internal temperature Tc, and is lower than the temperature obtained by subtracting the second spare temperature c from the target internal temperature Tt, that is, lower than the second target control temperature Tt2, the processor Reference numeral 80 corrects the cooling sink target temperature Ts of the cooling sink 30 .
구체적으로, 메모리(83)에 저장된 냉각 싱크 목표 온도(Ts)를 기존의 냉각 싱크 목표 온도(Ts)에서 보정 온도(d)를 더한 온도로 업데이트한다. 그러면, P5에서부터 냉각 싱크 목표 온도(Ts)가 P3-P5사이의 냉각 싱크 목표 온도(Ts)보다 보정 온도만큼 높아진다. Specifically, the cooling sink target temperature Ts stored in the memory 83 is updated to a temperature obtained by adding the correction temperature d to the existing cooling sink target temperature Ts. Then, the cooling sink target temperature Ts from P5 is higher than the cooling sink target temperature Ts between P3-P5 by the correction temperature.
또한, 프로세서(80)는 메모리(83)에 저장된 이전 고내 온도(Tc)를 P5의 고내 온도(T1)로 업데이트한다. In addition, the processor 80 updates the previous internal temperature Tc stored in the memory 83 to the internal temperature T1 of P5.
다시 일정 시간(Δt)이 경과한 후인 P6에서 프로세서(80)는 제1온도 센서(71)로 고내 온도(T1)를 측정하고 이를 이전 고내 온도(Tc)(P5의 고내 온도)와 비교한다. At P6 after a predetermined time Δt has elapsed again, the processor 80 measures the internal temperature T1 with the first temperature sensor 71 and compares it with the previous internal temperature Tc (the internal temperature of P5).
P6에서의 고내 온도(T1)는 이전 고내 온도(Tc)보다 낮고, 고내 목표 온도(Tt)에서 제2여유 온도(c)를 뺀 온도보다도 낮으므로, 프로세서(80)는 냉각 싱크(30)의 냉각 싱크 목표 온도(Ts)를 보정한다. Since the internal temperature T1 of the refrigerator at P6 is lower than the previous internal temperature Tc and is lower than the temperature obtained by subtracting the second spare temperature c from the target internal temperature Tt, the processor 80 operates the cooling sink 30 . Correct the cooling sink target temperature (Ts).
구체적으로, 메모리(83)에 저장된 냉각 싱크 목표 온도(Ts)를 기존의 냉각 싱크 목표 온도(Ts)에서 보정 온도(d)를 더한 온도로 업데이트한다. 그러면, P6에서부터 냉각 싱크 목표 온도(Ts)가 P5-P6사이의 냉각 싱크 목표 온도(Ts)보다 보정 온도(d)만큼 높아진다. Specifically, the cooling sink target temperature Ts stored in the memory 83 is updated to a temperature obtained by adding the correction temperature d to the existing cooling sink target temperature Ts. Then, the cooling sink target temperature Ts from P6 is higher than the cooling sink target temperature Ts between P5 and P6 by the correction temperature d.
또한, 프로세서(80)는 메모리(83)에 저장된 이전 고내 온도(Tc)를 P6의 고내 온도(T1)로 업데이트한다. In addition, the processor 80 updates the previous internal temperature Tc stored in the memory 83 to the internal temperature T1 of P6.
다시 일정 시간(Δt)이 경과한 후인 P7에서 프로세서(80)는 제1온도 센서(71)로 고내 온도(T1)를 측정하고 이를 이전 고내 온도(Tc)(P6의 고내 온도)와 비교한다. At P7 after a predetermined time Δt has elapsed again, the processor 80 measures the internal temperature T1 with the first temperature sensor 71 and compares it with the previous internal temperature Tc (the internal temperature of P6).
P7에서의 고내 온도(T1)는 이전 고내 온도(Tc)보다 높고, 고내 목표 온도(Tt)에서 제2여유 온도(c)를 뺀 온도보다도 높으므로, 프로세서(80)는 냉각 싱크(30)의 냉각 싱크 목표 온도(Ts)를 보정하지 않고 그대로 유지한다. Since the internal temperature T1 of the refrigerator at P7 is higher than the previous internal temperature Tc and is higher than the temperature obtained by subtracting the second spare temperature c from the target internal temperature Tt, the processor 80 operates the cooling sink 30 . The cooling sink target temperature (Ts) is left uncorrected.
이때, 프로세서(80)는 메모리(83)에 저장된 이전 고내 온도(Tc)를 P7의 고내 온도(T1)로 업데이트한다. In this case, the processor 80 updates the previous internal temperature Tc stored in the memory 83 to the internal temperature T1 of P7.
상기에서 설명한 바와 같이, 본 개시의 일 실시예에 의한 냉장고의 제어방법에 따라 냉각 싱크 목표 온도를 고내 온도에 따라 보정하면, 냉장고의 고내 온도를 고내 목표 온도까지 빠르게 냉각시키고 고내 목표 온도로 일정하게 유지시킬 수 있다. As described above, when the target temperature of the cooling sink is corrected according to the internal temperature according to the control method of the refrigerator according to the exemplary embodiment of the present disclosure, the internal temperature of the refrigerator is rapidly cooled to the internal target temperature and is constantly maintained at the internal target temperature. can keep
한편, 상술한 본 개시의 다양한 실시예들에 따른 방법들은, 기존 전자 장치에 설치 가능한 어플리케이션 형태로 구현될 수 있다.Meanwhile, the above-described methods according to various embodiments of the present disclosure may be implemented in the form of an application that can be installed in an existing electronic device.
또한, 상술한 본 개시의 다양한 실시예들에 따른 방법들은, 기존 전자 장치(냉장고)에 대한 소프트웨어 업그레이드, 또는 하드웨어 업그레이드 만으로도 구현될 수 있다.In addition, the above-described methods according to various embodiments of the present disclosure may be implemented only by software upgrade or hardware upgrade of an existing electronic device (refrigerator).
또한, 상술한 본 개시의 다양한 실시예들은 전자 장치(냉장고)에 구비된 임베디드 서버, 또는 전자 장치(냉장고)의 외부 서버를 통해 수행되는 것도 가능하다.In addition, various embodiments of the present disclosure described above may be performed through an embedded server provided in the electronic device (refrigerator) or an external server of the electronic device (refrigerator).
한편, 본 개시의 일시예에 따르면, 이상에서 설명된 다양한 실시 예들은 기기(machine)(예: 컴퓨터)로 읽을 수 있는 저장 매체(machine-readable storage media)에 저장된 명령어를 포함하는 소프트웨어로 구현될 수 있다. 기기는, 저장 매체로부터 저장된 명령어를 호출하고, 호출된 명령어에 따라 동작이 가능한 장치로서, 개시된 실시 예들에 따른 전자 장치(냉장고)를 포함할 수 있다. 명령이 프로세서에 의해 실행될 경우, 프로세서가 직접, 또는 프로세서의 제어 하에 다른 구성요소들을 이용하여 명령에 해당하는 기능을 수행할 수 있다. 명령은 컴파일러 또는 인터프리터에 의해 생성 또는 실행되는 코드를 포함할 수 있다. 기기로 읽을 수 있는 저장매체는, 비일시적(non-transitory) 저장매체의 형태로 제공될 수 있다. 여기서, '비일시적'은 저장매체가 신호(signal)를 포함하지 않으며 실재(tangible)한다는 것을 의미할 뿐 데이터가 저장매체에 반영구적 또는 임시적으로 저장됨을 구분하지 않는다.Meanwhile, according to an exemplary embodiment of the present disclosure, the various embodiments described above may be implemented as software including instructions stored in a machine-readable storage medium (eg, a computer). can The device is a device capable of calling a stored command from a storage medium and operating according to the called command, and may include an electronic device (refrigerator) according to the disclosed embodiments. When the instruction is executed by the processor, the processor may perform a function corresponding to the instruction by using other components directly or under the control of the processor. Instructions may include code generated or executed by a compiler or interpreter. The device-readable storage medium may be provided in the form of a non-transitory storage medium. Here, 'non-transitory' means that the storage medium does not include a signal and is tangible, and does not distinguish that data is semi-permanently or temporarily stored in the storage medium.
또한, 본 개시의 일 실시 예에 따르면, 이상에서 설명된 다양한 실시 예들에 따른 방법은 컴퓨터 프로그램 제품(computer program product)에 포함되어 제공될 수 있다. 컴퓨터 프로그램 제품은 상품으로서 판매자 및 구매자 간에 거래될 수 있다. 컴퓨터 프로그램 제품은 기기로 읽을 수 있는 저장 매체(예: compact disc read only memory (CD-ROM))의 형태로, 또는 어플리케이션 스토어(예: 플레이 스토어TM)를 통해 온라인으로 배포될 수 있다. 온라인 배포의 경우에, 컴퓨터 프로그램 제품의 적어도 일부는 제조사의 서버, 어플리케이션 스토어의 서버, 또는 중계 서버의 메모리와 같은 저장 매체에 적어도 일시 저장되거나, 임시적으로 생성될 수 있다.Also, according to an embodiment of the present disclosure, the method according to the various embodiments described above may be included in a computer program product and provided. Computer program products may be traded between sellers and buyers as commodities. The computer program product may be distributed in the form of a machine-readable storage medium (eg, compact disc read only memory (CD-ROM)) or online through an application store (eg, Play Store™). In the case of online distribution, at least a portion of the computer program product may be temporarily stored or temporarily generated in a storage medium such as a memory of a server of a manufacturer, a server of an application store, or a relay server.
또한, 상술한 다양한 실시 예들에 따른 구성 요소(예: 모듈 또는 프로그램) 각각은 단수 또는 복수의 개체로 구성될 수 있으며, 전술한 해당 서브 구성 요소들 중 일부 서브 구성 요소가 생략되거나, 또는 다른 서브 구성 요소가 다양한 실시 예에 더 포함될 수 있다. 대체적으로 또는 추가적으로, 일부 구성 요소들(예: 모듈 또는 프로그램)은 하나의 개체로 통합되어, 통합되기 이전의 각각의 해당 구성 요소에 의해 수행되는 기능을 동일 또는 유사하게 수행할 수 있다. 다양한 실시 예들에 따른, 모듈, 프로그램 또는 다른 구성 요소에 의해 수행되는 동작들은 순차적, 병렬적, 반복적 또는 휴리스틱하게 실행되거나, 적어도 일부 동작이 다른 순서로 실행되거나, 생략되거나, 또는 다른 동작이 추가될 수 있다.In addition, each of the components (eg, a module or a program) according to the above-described various embodiments may be composed of a single or a plurality of entities, and some sub-components of the aforementioned sub-components may be omitted, or other sub-components may be omitted. Components may be further included in various embodiments. Alternatively or additionally, some components (eg, a module or a program) may be integrated into a single entity to perform the same or similar functions performed by each corresponding component prior to integration. According to various embodiments, operations performed by a module, program, or other component may be sequentially, parallel, repetitively or heuristically executed, or at least some operations may be executed in a different order, omitted, or other operations may be added. can
이상에서는 본 개시의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 개시는 상술한 특정의 실시 예에 한정되지 아니하며, 청구범위에서 청구하는 본 개시의 요지를 벗어남이 없이 당해 개시에 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형 실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 개시의 기술적 사상이나 전망으로부터 개별적으로 이해되어져서는 안될 것이다.In the above, preferred embodiments of the present disclosure have been illustrated and described, but the present disclosure is not limited to the specific embodiments described above, and is generally used in the technical field belonging to the present disclosure without departing from the gist of the present disclosure as claimed in the claims. Various modifications may be made by those having the knowledge of

Claims (15)

  1. 펠티어 소자를 포함하는 냉장고를 제어하는 방법에 있어서,In the method of controlling a refrigerator including a Peltier device,
    제1온도 센서로 냉장고의 고내 온도를 측정하는 단계;measuring an internal temperature of the refrigerator with a first temperature sensor;
    상기 고내 온도가 제1목표 제어 온도보다 높은지 판단하는 단계;determining whether the internal temperature of the refrigerator is higher than a first target control temperature;
    상기 고내 온도가 상기 제1목표 제어 온도보다 높거나 같으면, 상기 펠티어 소자에 제1전압을 인가하는 단; 및applying a first voltage to the Peltier device when the internal temperature of the refrigerator is higher than or equal to the first target control temperature; and
    상기 고내 온도가 상기 제1목표 제어 온도보다 낮으면, 상기 펠티어 소자에 제2전압을 인가하는 단계;를 포함하며,applying a second voltage to the Peltier device when the internal temperature of the refrigerator is lower than the first target control temperature;
    상기 펠티어 소자에 제2전압을 인가하는 단계에서는 상기 펠티어 소자의 냉각 싱크에 설치된 제2온도 센서로 측정한 냉각 싱크 온도와 냉각 싱크 목표 온도를 이용하여 상기 펠티어 소자에 인가되는 상기 제2전압을 PID 제어(Proportional Integral Derivative control)로 제어하는, 냉장고의 제어방법.In the step of applying the second voltage to the Peltier element, the second voltage applied to the Peltier element is PID using the cooling sink temperature and the cooling sink target temperature measured by a second temperature sensor installed in the cooling sink of the Peltier element. A control method of a refrigerator, which is controlled by a control (Proportional Integral Derivative control).
  2. 제 1 항에 있어서,The method of claim 1,
    제1목표 제어 온도는 고내 목표 온도보다 제1여유 온도만큼 높은, 냉장고의 제어방법.The control method of the refrigerator, wherein the first target control temperature is higher than the target temperature in the refrigerator by a first spare temperature.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 냉각 싱크 목표 온도는 상기 제1온도 센서로 측정한 상기 고내 온도에 따라 보정되는, 냉장고의 제어방법. and the cooling sink target temperature is corrected according to the internal temperature measured by the first temperature sensor.
  4. 제 3 항에 있어서,4. The method of claim 3,
    상기 냉각 싱크 목표 온도의 보정 방법은,The method of correcting the cooling sink target temperature,
    일정 시간 간격으로 상기 제1온도 센서로 상기 고내 온도를 측정하는 단계;measuring the internal temperature of the refrigerator with the first temperature sensor at regular time intervals;
    현재 측정한 고내 온도가 상기 일정 시간 전에 측정된 이전 고내 온도와 동일한지 판단하는 단계;determining whether the currently measured interior temperature is the same as the previous interior temperature measured before the predetermined time;
    상기 고내 온도가 상기 이전 고내 온도와 동일하면, 상기 냉각 싱크 목표 온도를 보정하지 않고 유지하는 단계;maintaining the cooling sink target temperature without correction when the internal temperature of the refrigerator is the same as the previous internal temperature;
    상기 고내 온도가 상기 이전 고내 온도와 동일하지 않으면, 상기 고내 온도가 상기 이전 고내 온도보다 낮은지 판단하는 단계;if the internal temperature of the refrigerator is not the same as the previous internal temperature, determining whether the internal temperature of the refrigerator is lower than the previous internal temperature;
    상기 고내 온도가 상기 이전 고내 온도보다 낮으면, 상기 고내 온도가 고내 목표 온도에서 제2여유 온도를 뺀 온도보다 낮은지 판단하는 단계;if the internal temperature of the refrigerator is lower than the previous internal temperature, determining whether the internal temperature of the refrigerator is lower than a temperature obtained by subtracting a second spare temperature from a target internal temperature of the refrigerator;
    상기 고내 온도가 상기 고내 목표 온도에서 상기 제2여유 온도를 뺀 온도보다 낮으면, 상기 냉각 싱크 목표 온도를 보정 온도만큼 올리는 단계; 및raising the cooling sink target temperature by a correction temperature when the internal temperature of the refrigerator is lower than a temperature obtained by subtracting the second spare temperature from the target temperature in the refrigerator; and
    상기 고내 온도가 상기 고내 목표 온도에서 상기 제2여유 온도를 뺀 온도보다 크거나 동일하면, 상기 냉각 싱크 목표 온도를 보정하지 않고 유지하는 단계;를 포함하는, 냉장고의 제어방법. and maintaining the cooling sink target temperature without correction when the internal temperature of the refrigerator is greater than or equal to a temperature obtained by subtracting the second spare temperature from the target internal temperature.
  5. 제 4 항에 있어서,5. The method of claim 4,
    상기 고내 온도가 상기 이전 고내 온도와 동일하거나 높으면, 상기 고내 온도가 상기 고내 목표 온도에 상기 제2여유 온도를 더한 온도보다 높은지 판단하는 단계;if the internal temperature of the refrigerator is the same as or higher than the previous internal temperature, determining whether the internal temperature of the refrigerator is higher than a temperature obtained by adding the second spare temperature to the target internal temperature;
    상기 고내 온도가 상기 고내 목표 온도에 상기 제2여유 온도를 더한 온도보다 높으면, 상기 냉각 싱크 목표 온도를 상기 보정 온도만큼 내리는 단계; 및lowering the cooling sink target temperature by the correction temperature when the internal temperature of the refrigerator is higher than a temperature obtained by adding the second spare temperature to the target internal temperature; and
    상기 고내 온도가 상기 고내 목표 온도에 상기 제2여유 온도를 더한 온도보다 작거나 동일하면, 상기 냉각 싱크 목표 온도를 보정하지 않고 유지하는 단계;를 더 포함하는, 냉장고의 제어방법.and maintaining the cooling sink target temperature without correction when the internal temperature of the refrigerator is less than or equal to the temperature obtained by adding the second spare temperature to the target temperature in the refrigerator.
  6. 제 4 항에 있어서,5. The method of claim 4,
    상기 일정 시간은 10분인, 냉장고의 제어방법.The predetermined time is 10 minutes, the control method of the refrigerator.
  7. 제 4 항에 있어서,5. The method of claim 4,
    상기 제2여유 온도는 0.3℃인, 냉장고의 제어방법.The second spare temperature is 0.3 ℃, the control method of the refrigerator.
  8. 제 4 항에 있어서,5. The method of claim 4,
    상기 보정 온도는 0.3℃인, 냉장고의 제어방법.The correction temperature is 0.3 ℃, the control method of the refrigerator.
  9. 제 1 항에 있어서,The method of claim 1,
    상기 냉각 싱크 목표 온도는 고내 목표 온도에서 차감 온도를 뺀 온도로 설정되는, 냉장고의 제어방법.The cooling sink target temperature is set to a temperature obtained by subtracting the subtracted temperature from the target temperature inside the refrigerator.
  10. 제 9 항에 있어서,10. The method of claim 9,
    상기 차감 온도는 3℃인, 냉장고의 제어방법.The subtracted temperature is 3 ℃, the control method of the refrigerator.
  11. 제 1 항에 있어서,The method of claim 1,
    상기 제1전압은 풀 듀티 전압이고,The first voltage is a full duty voltage,
    상기 제2전압은 상기 제1전압보다 낮은, 냉장고의 제어방법.and the second voltage is lower than the first voltage.
  12. 수용 공간을 포함하는 본체;a body including an accommodating space;
    상기 본체에 설치되며, 상기 수용 공간으로 찬 공기를 공급하는 냉각 장치;a cooling device installed in the main body and supplying cold air to the accommodation space;
    상기 수용 공간에 설치되는 제1온도 센서; 및a first temperature sensor installed in the accommodation space; and
    상기 냉각 장치를 제어하는 프로세서;를 포함하며,It includes; a processor for controlling the cooling device;
    상기 냉각 장치는,The cooling device is
    펠티어 소자;Peltier element;
    상기 펠티어 소자의 저온면에 설치되는 냉각 싱크;a cooling sink installed on the low-temperature surface of the Peltier element;
    상기 냉각 싱크의 상측에 설치되며, 상기 냉각 싱크에 의해 냉각된 공기를 상기 수용 공간으로 공급하는 냉각 팬;a cooling fan installed above the cooling sink and supplying air cooled by the cooling sink to the accommodation space;
    상기 냉각 싱크에 설치되는 제2온도 센서;a second temperature sensor installed in the cooling sink;
    상기 펠티어 소자의 고온면에 설치되는 방열 싱크;a heat sink installed on the high-temperature surface of the Peltier element;
    상기 방열 싱크의 하측에 설치되며, 상기 방열 싱크의 열을 상기 본체 외부로 방출하는 방열 팬; 및a heat dissipation fan installed under the heat sink and dissipating heat of the heat sink to the outside of the body; and
    상기 펠티어 소자에 공급되는 전압을 제어하는 전원 제어부;를 포함하며,Includes; power control unit for controlling the voltage supplied to the Peltier element;
    상기 프로세서는, 상기 제1온도 센서로 측정한 상기 수용 공간의 고내 온도가 제1목표 제어 온도보다 높거나 같으면, 상기 전원 제어부를 제어하여 상기 펠티어 소자에 제1전압을 공급하고, 상기 고내 온도가 상기 제1목표 제어 온도보다 낮으면, 상기 전원 제어부를 제어하여 상기 펠티어 소자에 제2전압을 공급하며, 상기 제2전압을 공급할 때, 상기 제2온도 센서로 측정한 상기 냉각 싱크의 온도와 냉각 싱크 목표 온도를 이용하여 상기 제2전압을 PID 제어(Proportional Integral Derivative control)로 제어하는, 냉장고.The processor controls the power control unit to supply a first voltage to the Peltier element when the internal temperature of the accommodating space measured by the first temperature sensor is higher than or equal to a first target control temperature, and the internal temperature of the refrigerator is When it is lower than the first target control temperature, a second voltage is supplied to the Peltier element by controlling the power control unit, and when the second voltage is supplied, the temperature and cooling of the cooling sink measured by the second temperature sensor A refrigerator for controlling the second voltage by using a sink target temperature through proportional integral derivative control (PID control).
  13. 제 12 항에 있어서,13. The method of claim 12,
    상기 프로세서는 상기 제1온도 센서로 측정한 상기 고내 온도에 따라 상기 냉각 싱크 목표 온도를 보정하는, 냉장고. and the processor corrects the cooling sink target temperature according to the internal temperature measured by the first temperature sensor.
  14. 제 13 항에 있어서,14. The method of claim 13,
    상기 프로세서가 상기 냉각 싱크 목표 온도를 보정할 때,When the processor calibrates the cooling sink target temperature,
    일정 시간 간격으로 상기 제1온도 센서로 상기 고내 온도를 측정하고, measuring the internal temperature of the refrigerator with the first temperature sensor at regular time intervals;
    현재 측정한 상기 고내 온도가 상기 일정 시간 전에 측정한 이전 고내 온도와 동일한지 판단하고,determining whether the currently measured internal temperature is the same as the previous internal temperature measured before the predetermined time;
    상기 고내 온도가 상기 이전 고내 온도와 동일하면, 상기 냉각 싱크 목표 온도를 보정하지 않고 유지하며,If the internal temperature of the refrigerator is the same as the previous internal temperature, the cooling sink target temperature is maintained without correction;
    상기 고내 온도가 상기 이전 고내 온도와 동일하지 않으면, 상기 고내 온도가 상기 이전 고내 온도보다 낮은지 판단하고,if the internal temperature of the refrigerator is not the same as the previous internal temperature, determining whether the internal temperature of the refrigerator is lower than the previous internal temperature;
    상기 고내 온도가 상기 이전 고내 온도보다 낮으면, 상기 고내 온도가 고내 목표 온도에서 제2여유 온도를 뺀 온도보다 낮은지 판단하고,if the internal temperature of the refrigerator is lower than the previous internal temperature, determining whether the internal temperature of the refrigerator is lower than a temperature obtained by subtracting a second spare temperature from a target temperature in the refrigerator;
    상기 고내 온도가 상기 고내 목표 온도에서 상기 제2여유 온도를 뺀 온도보다 낮으면, 상기 냉각 싱크 목표 온도를 보정 온도만큼 올리며,When the internal temperature of the refrigerator is lower than a temperature obtained by subtracting the second spare temperature from the target temperature in the refrigerator, the target temperature of the cooling sink is increased by a correction temperature;
    상기 고내 온도가 상기 고내 목표 온도에서 상기 제2여유 온도를 뺀 온도보다 크거나 동일하면, 상기 냉각 싱크 목표 온도를 보정하지 않고 유지하는, 냉장고. and maintaining the cooling sink target temperature without correction when the internal temperature of the refrigerator is greater than or equal to a temperature obtained by subtracting the second spare temperature from the target internal temperature.
  15. 제 14 항에 있어서,15. The method of claim 14,
    상기 프로세서는,The processor is
    상기 고내 온도가 상기 이전 고내 온도보다 높거나 동일하면, 상기 고내 온도가 상기 고내 목표 온도에 상기 제2여유 온도를 더한 온도보다 높은지 판단하고,if the internal temperature of the refrigerator is higher than or equal to the previous internal temperature, determining whether the internal temperature of the refrigerator is higher than a temperature obtained by adding the second spare temperature to the target internal temperature;
    상기 고내 온도가 상기 고내 목표 온도에 상기 제2여유 온도를 더한 온도보다 높으면, 상기 냉각 싱크 목표 온도를 상기 보정 온도만큼 내리며, when the internal temperature of the refrigerator is higher than the temperature obtained by adding the second spare temperature to the target temperature in the refrigerator, lowering the target temperature of the cooling sink by the correction temperature;
    상기 고내 온도가 상기 고내 목표 온도에 상기 제2여유 온도를 더한 온도보다 작거나 동일하면, 상기 냉각 싱크 목표 온도를 보정하지 않고 유지하는, 냉장고.and maintaining the cooling sink target temperature without correcting if the internal temperature of the refrigerator is less than or equal to a temperature obtained by adding the second spare temperature to the target internal temperature of the refrigerator.
PCT/KR2021/007203 2020-07-08 2021-06-09 Method for controlling refrigerator having peltier element, and refrigerator using same WO2022010112A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200084054A KR20220006285A (en) 2020-07-08 2020-07-08 Method of controlling refrigerator having peltier component and refrigerator using the same
KR10-2020-0084054 2020-07-08

Publications (1)

Publication Number Publication Date
WO2022010112A1 true WO2022010112A1 (en) 2022-01-13

Family

ID=79553314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/007203 WO2022010112A1 (en) 2020-07-08 2021-06-09 Method for controlling refrigerator having peltier element, and refrigerator using same

Country Status (2)

Country Link
KR (1) KR20220006285A (en)
WO (1) WO2022010112A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1182864A (en) * 1996-11-18 1998-05-27 萨墨福尼克斯株式会社 Thermoelectric refrigerator
KR100209696B1 (en) * 1997-06-30 1999-07-15 구자홍 Consuming electric power deminishing method of heat transfer module refrigerator
JP2001289550A (en) * 2000-04-03 2001-10-19 Matsushita Refrig Co Ltd Thermoelectric module type electric refrigerator
KR100425239B1 (en) * 2001-12-04 2004-04-06 하가전자 주식회사 In-room temperature control device of a cellar [refrigerator or warmer] using a thermoelectric element
KR20180105573A (en) * 2017-03-15 2018-09-28 엘지전자 주식회사 Refrigerator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1182864A (en) * 1996-11-18 1998-05-27 萨墨福尼克斯株式会社 Thermoelectric refrigerator
KR100209696B1 (en) * 1997-06-30 1999-07-15 구자홍 Consuming electric power deminishing method of heat transfer module refrigerator
JP2001289550A (en) * 2000-04-03 2001-10-19 Matsushita Refrig Co Ltd Thermoelectric module type electric refrigerator
KR100425239B1 (en) * 2001-12-04 2004-04-06 하가전자 주식회사 In-room temperature control device of a cellar [refrigerator or warmer] using a thermoelectric element
KR20180105573A (en) * 2017-03-15 2018-09-28 엘지전자 주식회사 Refrigerator

Also Published As

Publication number Publication date
KR20220006285A (en) 2022-01-17

Similar Documents

Publication Publication Date Title
WO2019190113A1 (en) Refrigerator and method for controlling same
WO2019190114A1 (en) Refrigerator and method for controlling same
WO2017039234A1 (en) Refrigerator
WO2019172532A1 (en) Refrigerator and controlling method thereof
WO2018120715A1 (en) Method and device for controlling air conditioner, and air conditioner
AU2018295869B2 (en) Refrigerator and method of controlling the same
WO2017164711A1 (en) Control method for refrigerator
WO2020011019A1 (en) Electronic expansion valve control method, air conditioner and computer readable storage medium
WO2020042689A1 (en) Air conditioner control method, air conditioner and computer-readable storage medium
WO2017164710A1 (en) Control method for refrigerator
WO2017164712A1 (en) Refrigerator and control method therefor
WO2018174432A1 (en) Refrigerator
WO2020111688A1 (en) Refrigerator and control method thereof
WO2020111680A1 (en) Refrigerator and controlling method thereof
WO2022145694A1 (en) Air conditioner and air conditioner control method
WO2022010112A1 (en) Method for controlling refrigerator having peltier element, and refrigerator using same
WO2020027596A1 (en) Method for controlling refrigerator
WO2019164115A1 (en) Refrigerator and controlling method for the same
WO2021256677A1 (en) Electronic apparatus and controlling method thereof
WO2017105047A1 (en) Refrigerator and control method therefor
WO2021256753A1 (en) Refrigerator
AU2018286352B2 (en) Refrigerator and method of controlling the same
WO2021256692A1 (en) Refrigerator and controlling method thereof
AU2018295870B2 (en) Refrigerator and method of controlling the same
WO2022270772A1 (en) Refrigerator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21838305

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21838305

Country of ref document: EP

Kind code of ref document: A1