JP2001289550A - Thermoelectric module type electric refrigerator - Google Patents

Thermoelectric module type electric refrigerator

Info

Publication number
JP2001289550A
JP2001289550A JP2000100308A JP2000100308A JP2001289550A JP 2001289550 A JP2001289550 A JP 2001289550A JP 2000100308 A JP2000100308 A JP 2000100308A JP 2000100308 A JP2000100308 A JP 2000100308A JP 2001289550 A JP2001289550 A JP 2001289550A
Authority
JP
Japan
Prior art keywords
temperature
cooler
heat
thermoelectric
thermoelectric member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000100308A
Other languages
Japanese (ja)
Inventor
Susumu Hatano
進 波多野
Moriyuki Yoshida
守志 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP2000100308A priority Critical patent/JP2001289550A/en
Publication of JP2001289550A publication Critical patent/JP2001289550A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an increased life for a thermoelectric member by decreasing a coefficient of thermal expansion and a coefficient of heat shrinkage of the thermoelectric member before and after defrosting, regarding a thermoelectric module type electric refrigerator. SOLUTION: In the thermoelectric module type electric refrigerator constituted that a heat transfer route is formed between a cooler to heat-exchange with chamber air and the heat absorbing surface of a Peltier element 25, when a cooler temperature detected by a cooler temperature sensor 41 exceeds a given temperature 0 deg.C, a reference voltage, at which a computing control part 42a performs ordinary chamber cooling, is fed to the Peltier element 25. Since constitution is such that when the cooler temperature detected by the cooler temperature sensor 41 is below the given temperature 0 deg.C, the computing control part 42a feeds a voltage for defrosting lower than a reference voltage to the Peltier element 25, an increased life is provided for the Peltier element 25.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ペルチェ素子等の
熱電部材を使用して庫内を冷却する熱電モジュール式電
気冷蔵庫に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoelectric module type electric refrigerator for cooling the inside of a refrigerator using a thermoelectric member such as a Peltier element.

【0002】[0002]

【従来の技術】従来の熱電モジュール式電気冷蔵庫とし
ては、特開平5−312454号公報に開示されている
ものがある。この従来の熱電モジュール式電気冷蔵庫
は、ペルチェ素子からなる熱電部材の放熱面と吸熱面の
それぞれに熱交換部を熱結合させて熱電交換ブロックを
形成している。
2. Description of the Related Art A conventional thermoelectric module type electric refrigerator is disclosed in Japanese Patent Application Laid-Open No. Hei 5-31454. In this conventional thermoelectric module type electric refrigerator, a heat exchange portion is thermally coupled to each of a heat dissipation surface and a heat absorption surface of a thermoelectric member composed of a Peltier element to form a thermoelectric exchange block.

【0003】そして、目的物を冷却する場合は、熱電部
材の吸熱面に熱結合された熱交換部での冷却によって目
的物を冷却し、目的物を暖める場合は、熱電部材の放熱
面に熱結合された熱交換部での放熱によって目的物を暖
める。そして、熱電部材の吸熱面に熱結合された熱交換
部の除霜時には、熱電部材への電源供給を停止する。
When the object is cooled, the object is cooled by cooling in a heat exchange part thermally coupled to the heat-absorbing surface of the thermoelectric member, and when the object is heated, the heat radiation surface of the thermoelectric member is heated. The target object is warmed by heat radiation in the combined heat exchange unit. Then, when defrosting the heat exchange unit thermally coupled to the heat absorbing surface of the thermoelectric member, power supply to the thermoelectric member is stopped.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来の熱電モジュール式電気冷蔵庫は、除霜動作毎にペル
チェ素子からなる熱電部材への供給電源をON、OFF
するため、熱電部材が除霜の前後の温度変化により熱膨
張と収縮を繰り返し、寿命が短くなるという欠点があっ
た。
However, in the conventional thermoelectric module type electric refrigerator, the power supply to the thermoelectric member composed of the Peltier element is turned on and off every time the defrosting operation is performed.
Therefore, there is a disadvantage that the thermoelectric member repeatedly undergoes thermal expansion and contraction due to temperature changes before and after defrosting, thereby shortening the service life.

【0005】本発明は、上記従来技術の課題に鑑み、ペ
ルチェ素子等からなる熱電部材の寿命を伸ばすことを目
的としている。
The present invention has been made in consideration of the above-described problems of the related art, and has as its object to extend the life of a thermoelectric member including a Peltier element or the like.

【0006】[0006]

【課題を解決するための手段】本発明の請求項1に記載
の熱電モジュール式電気冷蔵庫の発明は、所定電圧が印
加されると相対向する2平面に温度差が生じる熱電部材
と、庫内空気と熱交換して得た熱を前記熱電部材の前記
2平面のうちの相対的に温度が低くなる吸熱面に伝達す
るための冷却器と、前記熱電部材の前記2平面のうちの
相対的に温度が高くなる放熱面の熱が伝達されてその熱
を庫外空気に放熱する放熱器と、前記冷却器の温度を検
出する冷却器温度検出手段と、前記冷却器温度検出手段
が検出した冷却器温度が所定温度を超えているときに通
常の庫内冷却を行うための基準電圧を前記熱電部材に供
給し、前記冷却器温度検出手段が検出した冷却器温度が
前記所定温度以下のときに前記基準電圧より低い除霜用
電圧を前記熱電部材に供給する演算制御部とからなるも
のであり、冷却器温度が除霜を必要とする所定温度以下
のときに通常の庫内冷却を行うための基準電圧より低い
除霜用電圧を熱電部材に供給するため、除霜の前後の熱
電部材の温度変化の幅は、熱電部材への電源供給を停止
して除霜する従来方式に比べて小さくなり、温度変化に
よる熱電部材の膨張率と収縮率を小さくすることができ
るため、熱電部材の寿命を伸ばすことができるという作
用を有する。
According to a first aspect of the present invention, there is provided a thermoelectric module type electric refrigerator, comprising: a thermoelectric member having a temperature difference between two opposing planes when a predetermined voltage is applied; A cooler for transferring heat obtained by heat exchange with air to a heat-absorbing surface of the two planes of the thermoelectric member, the temperature of which is relatively low; and a relative cooler of the two planes of the thermoelectric member. The heat of the heat radiating surface whose temperature rises is transmitted to the radiator for radiating the heat to the outside air, the cooler temperature detecting means for detecting the temperature of the cooler, and the cooler temperature detecting means for detecting the temperature of the cooler. When the cooler temperature is higher than a predetermined temperature, a reference voltage for performing normal cooling in the refrigerator is supplied to the thermoelectric member, and when the cooler temperature detected by the cooler temperature detecting means is equal to or lower than the predetermined temperature. The defrosting voltage lower than the reference voltage to the thermoelectric unit. A defrosting voltage lower than a reference voltage for performing normal internal cooling when the cooler temperature is equal to or lower than a predetermined temperature that requires defrosting, to the thermoelectric member. Therefore, the width of the temperature change of the thermoelectric member before and after defrosting is smaller than in the conventional method of defrosting by stopping power supply to the thermoelectric member, and the expansion rate and shrinkage rate of the thermoelectric member due to the temperature change Has the effect that the life of the thermoelectric member can be extended.

【0007】本発明の請求項2に記載の熱電モジュール
式電気冷蔵庫の発明は、所定電圧が印加されると相対向
する2平面に温度差が生じる熱電部材と、庫内空気と熱
交換して得た熱を前記熱電部材の前記2平面のうちの相
対的に温度が低くなる吸熱面に伝達するための冷却器
と、前記熱電部材の前記2平面のうちの相対的に温度が
高くなる放熱面の熱が伝達されてその熱を庫外空気に放
熱する放熱器と、前記放熱器に庫外空気を送風する放熱
用ファンと、前記冷却器の温度を検出する冷却器温度検
出手段と、前記冷却器温度検出手段が検出した冷却器温
度が所定温度を超えているときに通常の庫内冷却を行う
ための基準電圧を前記熱電部材に供給すると共に前記放
熱用ファンを基準回転数で回転させ、前記冷却器温度検
出手段が検出した冷却器温度が前記所定温度以下のとき
に前記基準電圧より低い除霜用電圧を前記熱電部材に供
給すると共に前記放熱用ファンを停止もしくは基準回転
数よりも低い回転数で回転させる演算制御部とからなる
ものであり、冷却器温度が除霜を必要とする所定温度以
下のときに通常の庫内冷却を行うための基準電圧より低
い除霜用電圧を熱電部材に供給するため、除霜の前後の
熱電部材の温度変化の幅は、熱電部材への電源供給を停
止して除霜する従来方式に比べて小さくなり、温度変化
による熱電部材の膨張率と収縮率を小さくすることがで
きるため、熱電部材の寿命を伸ばすことができるという
作用を有する。
According to a second aspect of the present invention, there is provided a thermoelectric module-type electric refrigerator, in which heat exchange occurs between a thermoelectric member having a temperature difference between two opposing planes when a predetermined voltage is applied, and air in the refrigerator. A cooler for transmitting the obtained heat to a heat absorbing surface of the thermoelectric member where the temperature is relatively low among the two planes, and a heat radiator having a relatively high temperature of the two planes of the thermoelectric member A radiator to which the heat of the surface is transmitted and radiates the heat to the outside air, a radiating fan for blowing the outside air to the radiator, and a cooler temperature detecting means for detecting a temperature of the cooler, When the cooler temperature detected by the cooler temperature detecting means exceeds a predetermined temperature, a reference voltage for performing normal internal cooling is supplied to the thermoelectric member, and the radiating fan is rotated at a reference speed. And the cooling detected by the cooler temperature detecting means. An arithmetic control unit that supplies a defrosting voltage lower than the reference voltage to the thermoelectric member when the container temperature is equal to or lower than the predetermined temperature and that stops the heat radiation fan or rotates at a rotation speed lower than the reference rotation speed. In order to supply a defrosting voltage to the thermoelectric member that is lower than a reference voltage for performing normal internal cooling when the cooler temperature is equal to or lower than a predetermined temperature that requires defrosting, before and after defrosting. The width of the temperature change of the thermoelectric member is smaller than the conventional method of defrosting by stopping the power supply to the thermoelectric member, and the expansion rate and the contraction rate of the thermoelectric member due to the temperature change can be reduced, This has the effect of extending the life of the thermoelectric member.

【0008】また、除霜用電圧を熱電部材に供給してい
るとき(除霜時)に放熱用ファンを停止もしくは基準回
転数よりも低い回転数で回転させるため、放熱器の放熱
能力が低下して電熱部材の放熱面側の温度が上昇し、そ
の結果、電熱部材の吸熱面側の温度も放熱面側の温度に
対して相対的に上昇し、電熱部材の吸熱面側の熱量を利
用して冷却器の除霜を短時間で終了させることができ、
除霜時間を短縮するという作用を有する。
In addition, when the defrosting voltage is supplied to the thermoelectric member (during defrosting), the radiator fan is stopped or rotated at a lower rotational speed than the reference rotational speed, so that the radiator has a reduced heat radiating capability. As a result, the temperature of the heat-dissipating surface side of the electric heating member rises, and as a result, the temperature of the heat-absorbing surface side of the electric heating member also rises relatively to the temperature of the heat-dissipating surface side, and uses the amount of heat on the heat-absorbing surface side of the electric heating member. To finish the defrost of the cooler in a short time,
It has the effect of shortening the defrosting time.

【0009】本発明の請求項3に記載の熱電モジュール
式電気冷蔵庫の発明は、所定電圧が印加されると相対向
する2平面に温度差が生じる熱電部材と、庫内空気と熱
交換して得た熱を前記熱電部材の前記2平面のうちの相
対的に温度が低くなる吸熱面に伝達するための冷却器
と、前記熱電部材の前記2平面のうちの相対的に温度が
高くなる放熱面に熱結合された熱交換部と、庫外空気と
熱交換する放熱器と、前記熱交換部、前記放熱器と共
に、環状の放熱系の循環経路を形成し、前記循環経路内
に充填した液体を循環させる回転式の循環ポンプと、前
記放熱器に庫外空気を送風する放熱用ファンと、前記冷
却器の温度を検出する冷却器温度検出手段と、前記冷却
器温度検出手段が検出した冷却器温度が所定温度を超え
ているときに通常の庫内冷却を行うための基準電圧を前
記熱電部材に供給すると共に前記放熱用ファンを基準回
転数で回転させ、さらに前記循環ポンプを基準回転数で
駆動し、前記冷却器温度検出手段が検出した冷却器温度
が所定温度以下のときに前記基準電圧より低い除霜用電
圧を前記熱電部材に供給すると共に前記放熱用ファンを
停止もしくは基準回転数よりも低い回転数で回転させ、
さらに前記循環ポンプを停止もしくは基準回転数よりも
低い回転数で駆動する演算制御部とからなるものであ
り、冷却器温度が除霜を必要とする所定温度以下のとき
に通常の庫内冷却を行うための基準電圧より低い除霜用
電圧を熱電部材に供給するため、除霜の前後の熱電部材
の温度変化の幅は、熱電部材への電源供給を停止して除
霜する従来方式合に比べて小さくなり、温度変化による
熱電部材の膨張率と収縮率を小さくすることができるた
め、熱電部材の寿命を伸ばすことができるという作用を
有する。
According to a third aspect of the present invention, there is provided a thermoelectric module-type electric refrigerator which exchanges heat with a thermoelectric member having a temperature difference between two opposing planes when a predetermined voltage is applied, and with air in the refrigerator. A cooler for transmitting the obtained heat to a heat absorbing surface of the thermoelectric member where the temperature is relatively low among the two planes, and a heat radiator having a relatively high temperature of the two planes of the thermoelectric member A heat exchange part thermally coupled to the surface, a radiator for exchanging heat with the outside air, and the heat exchange part, together with the radiator, form a circulation path of an annular heat radiation system, and are filled in the circulation path. A rotary circulating pump that circulates the liquid, a radiating fan that blows air outside the refrigerator to the radiator, a cooler temperature detector that detects the temperature of the cooler, and a cooler temperature detector that detects the temperature of the cooler. When the cooler temperature exceeds the specified temperature, A reference voltage for cooling is supplied to the thermoelectric member, the radiating fan is rotated at a reference rotation speed, the circulating pump is driven at a reference rotation speed, and the cooler detected by the cooler temperature detecting means is provided. Supplying a defrosting voltage lower than the reference voltage to the thermoelectric member when the temperature is equal to or lower than a predetermined temperature and stopping the heat dissipation fan or rotating the fan at a rotation speed lower than the reference rotation speed,
And an arithmetic control unit that stops the circulation pump or drives the circulation pump at a rotation speed lower than the reference rotation speed, and performs normal internal cooling when the cooler temperature is equal to or lower than a predetermined temperature that requires defrosting. To supply a defrosting voltage lower than the reference voltage for performing the defrosting to the thermoelectric member, the width of the temperature change of the thermoelectric member before and after defrosting, the power supply to the thermoelectric member is stopped and the conventional method of defrosting As a result, the expansion rate and the contraction rate of the thermoelectric member due to the temperature change can be reduced, so that the service life of the thermoelectric member can be extended.

【0010】また、除霜用電圧を熱電部材に供給してい
るとき(除霜時)に、放熱用ファンを停止もしくは基準
回転数よりも低い回転数で回転させると共に、熱電部材
の放熱面に熱結合された熱交換部と放熱器とを流れる液
体を循環させる循環ポンプを停止もしくは基準回転数よ
りも低い回転数で駆動するため、放熱用ファンのみ停止
もしくは放熱用ファンのみ回転数を低くした場合より
も、放熱器の放熱能力がさらに低下して電熱部材の放熱
面側の温度がさらに上昇し、その結果、電熱部材の吸熱
面側の温度も放熱面側の温度に対して相対的に上昇し、
電熱部材の吸熱面側の熱量を利用して放熱用ファンのみ
停止もしくは放熱用ファンのみ回転数を低くした場合よ
りも、冷却器の除霜をさらに短時間で終了させることが
でき、除霜時間をさらに短縮するという作用を有する。
When the defrosting voltage is being supplied to the thermoelectric member (during defrosting), the radiating fan is stopped or rotated at a lower rotational speed than the reference rotational speed, and the radiating surface of the thermoelectric member is rotated. To stop the circulating pump that circulates the liquid flowing through the heat-coupled heat exchange unit and the radiator, or to drive at a rotation speed lower than the reference rotation speed, only the heat dissipation fan was stopped or the rotation speed of only the heat dissipation fan was reduced. As compared with the case, the heat radiation capability of the radiator is further reduced, and the temperature of the heat radiating surface side of the electric heating member further increases. As a result, the temperature of the heat absorbing surface side of the electric heating member is relatively relative to the temperature of the heat radiating surface side. Rise,
The defrosting of the cooler can be completed in a shorter time than the case where only the heat radiation fan is stopped or the rotation speed of only the heat radiation fan is reduced by using the heat amount on the heat absorbing surface side of the electric heating member, and the defrosting time Is further reduced.

【0011】本発明の請求項4に記載の発明は、請求項
1から3のいずれか一項に記載の熱電モジュール式電気
冷蔵庫の発明において、除霜用電圧を熱電部材に供給し
ているときに、冷却器温度検知手段により冷却器温度が
所定温度を超えたことを演算制御部が検知すると、演算
制御部が冷却器の除霜動作を解除して通常の庫内冷却動
作に戻すものであり、請求項1から3の発明の作用に加
えて、除霜動作中に、冷却器温度が除霜開始の基準とな
る所定温度を超えると、冷却器の除霜動作を解除して通
常の庫内冷却動作に戻るため、冷却器の除霜が完了する
と速やかに通常の庫内冷却動作に戻るという作用を有す
る。
According to a fourth aspect of the present invention, in the invention of the thermoelectric module type electric refrigerator according to any one of the first to third aspects, when the defrosting voltage is supplied to the thermoelectric member. When the arithmetic and control unit detects that the cooler temperature has exceeded a predetermined temperature by the cooler temperature detecting means, the arithmetic and control unit cancels the defrosting operation of the cooler and returns to the normal inside cooling operation. In addition, in addition to the effects of the inventions of claims 1 to 3, when the cooler temperature exceeds a predetermined temperature serving as a reference for starting defrosting during the defrosting operation, the defrosting operation of the cooler is released and the normal operation is performed. Since the operation returns to the in-compartment cooling operation, there is an effect that the operation returns to the normal in-compartment cooling operation as soon as the defrost of the cooler is completed.

【0012】[0012]

【発明の実施の形態】以下、本発明の熱電モジュール式
電気冷蔵庫の実施の形態について図面を参照しながら説
明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an embodiment of a thermoelectric module type electric refrigerator of the present invention will be described with reference to the drawings.

【0013】(実施の形態1)図1は、本発明の熱電モ
ジュール式電気冷蔵庫の実施の形態1による熱電モジュ
ール式電気冷蔵庫の縦断面図である。図2は、同実施の
形態による熱電モジュール式電気冷蔵庫の冷凍サイクル
を示す概略構成図である。図3は、同実施の形態による
熱電モジュール式電気冷蔵庫の冷凍サイクルの放熱系の
構成を示す斜視図である。図4は、同実施の形態による
熱電モジュール式電気冷蔵庫の冷凍サイクルの吸熱系の
構成を示す斜視図である。図5は、同実施の形態による
熱電モジュール式電気冷蔵庫の制御を示すブロック図で
ある。
(Embodiment 1) FIG. 1 is a longitudinal sectional view of a thermoelectric module type electric refrigerator according to Embodiment 1 of the present invention. FIG. 2 is a schematic configuration diagram showing a refrigeration cycle of the thermoelectric modular electric refrigerator according to the embodiment. FIG. 3 is a perspective view showing a configuration of a heat radiation system of a refrigeration cycle of the thermoelectric module type electric refrigerator according to the embodiment. FIG. 4 is a perspective view showing a configuration of a heat absorption system of a refrigeration cycle of the thermoelectric module type electric refrigerator according to the embodiment. FIG. 5 is a block diagram showing control of the thermoelectric modular electric refrigerator according to the embodiment.

【0014】本実施の形態の熱電モジュール式電気冷蔵
庫の筐体は、図1に示すように、背面に開口部を有する
冷蔵庫本体1と、この冷蔵庫本体1の前面開口部2を開
閉するように軸3で枢支された前扉4とで構成されてい
る。
As shown in FIG. 1, the housing of the thermoelectric module type electric refrigerator according to the present embodiment is configured such that a refrigerator main body 1 having an opening at the back and a front opening 2 of the refrigerator main body 1 are opened and closed. And a front door 4 pivotally supported by a shaft 3.

【0015】冷蔵庫本体1の背面の開口部を閉塞する背
面板5の内側には、この背面板5とは間隔をおいて冷蔵
庫本体1に取り付けられた隔壁6と、冷蔵庫本体1の内
部に取付けられた庫内形成体7との間には断熱材が充填
されて断熱壁8を構成している。前扉4も内部に断熱材
を充填されて断熱壁を構成し、断熱壁8とで庫内の外回
りを覆った庫内室17を開閉できるように形成する。
Inside the back plate 5 for closing the opening at the back of the refrigerator body 1, a partition wall 6 attached to the refrigerator body 1 at a distance from the back plate 5, and attached to the inside of the refrigerator body 1 A heat insulating material is filled between the formed inside-wall forming body 7 and the heat insulating wall 8. The front door 4 is also filled with a heat insulating material to form a heat insulating wall, and the heat insulating wall 8 is formed so as to be able to open and close the interior chamber 17 that covers the outer periphery of the interior of the warehouse.

【0016】また、背面板5と隔壁6との間に形成され
る庫外室9内には、モジュール化したペルチェ素子25
からなる熱電部材の放熱面側に第1の熱交換部26a、
吸熱面側に第2の熱交換部26bをそれぞれ熱結合した
熱電熱交換ブロック11の第1の熱交換部26aに連な
る放熱系Aを内蔵して筐体外への放熱を行い、庫内室1
7には熱電熱交換ブロック11の第2の熱交換部26b
に連なる吸熱系Bを配置して庫内室17内からの吸熱を
図り冷却する。なお、放熱系Aと吸熱系Bとは断熱壁8
に遮られて互いに熱影響し合わない。
A modularized Peltier device 25 is provided in the outside chamber 9 formed between the back plate 5 and the partition 6.
A first heat exchange portion 26a on the heat dissipation surface side of the thermoelectric member made of
A heat radiation system A connected to the first heat exchange portion 26a of the thermoelectric heat exchange block 11 in which the second heat exchange portions 26b are thermally coupled to the heat absorption surface side is provided to radiate heat to the outside of the housing, and
7 has a second heat exchange portion 26b of the thermoelectric heat exchange block 11.
A heat absorbing system B connected to the inside is arranged to absorb heat from the inside of the storage chamber 17 and cool it. The heat dissipating system A and the heat absorbing system B are connected to the heat insulating wall 8.
And do not affect each other.

【0017】なお、第1の熱交換部26aおよび第2の
熱交換部26bは、既に知られた迷路状の熱交換通路が
多数並列に形成されたいわゆるマニホールド構造を有し
たものとするのが熱効率の上で好適である。
The first heat exchange section 26a and the second heat exchange section 26b have a so-called manifold structure in which a number of known labyrinth heat exchange passages are formed in parallel. It is suitable in terms of thermal efficiency.

【0018】熱電熱交換ブロック11のペルチェ素子2
5は、所定電圧が印加されると相対向する2平面(放熱
面と吸熱面)に温度差が生じ、放熱面で放熱しながら吸
熱面で吸熱し、この吸熱特性は放熱特性に依存する。
Peltier element 2 of thermoelectric heat exchange block 11
In 5, when a predetermined voltage is applied, a temperature difference occurs between two opposing planes (a heat radiating surface and a heat absorbing surface), and heat is absorbed by the heat absorbing surface while radiating heat on the heat radiating surface, and the heat absorbing characteristics depend on the heat radiating characteristics.

【0019】放熱系Aは、第1の循環ポンプ14aと放
熱器10と熱電熱交換ブロック11の第1の熱交換部2
6aとを、図2、図3に示すように管路32a,32
b,32cで接続して第1の循環経路をなし、その内部
に液体を充填して形成されている。
The heat radiating system A includes a first circulating pump 14a, a radiator 10, and a first heat exchange section 2 of a thermoelectric heat exchange block 11.
6a are connected to conduits 32a, 32 as shown in FIGS.
b and 32c to form a first circulation path, which is formed by filling a liquid therein.

【0020】第1の循環ポンプ14aによって第1の循
環路を循環される液体は、第1の熱交換部26aにてペ
ルチェ素子25の放熱面で放熱される熱を受け取り、こ
れを放熱器10にて外部空気A1に移行させて放熱空気
A2として、ペルチェ素子25の放熱面での放熱効率を
高める。
The liquid circulated in the first circulation path by the first circulation pump 14a receives the heat radiated on the heat radiating surface of the Peltier element 25 in the first heat exchange section 26a, and transfers it to the radiator 10 Then, the heat is transferred to the external air A1 and is used as the radiated air A2, so that the radiating efficiency of the radiating surface of the Peltier element 25 is improved.

【0021】また、吸熱系Bは、第2の循環ポンプ14
bと冷却器20と熱電熱交換ブロック11の第2の熱交
換部26bとを、図2、図4に示すように管路32d,
32e,32fで接続して第2の循環経路をなし、その
内部に液体を充填して形成されている。
The heat absorption system B is connected to the second circulation pump 14
b, the cooler 20, and the second heat exchange part 26b of the thermoelectric heat exchange block 11, as shown in FIGS.
A second circulation path is formed by being connected by 32e and 32f, and is formed by filling a liquid therein.

【0022】第2の循環ポンプ14bによって第2の循
環路を循環される液体は、第2の熱交換部26bにてペ
ルチェ素子25の吸熱面での吸熱により熱を奪われて冷
却され、冷却器20にて庫内空気B1の熱を奪って冷却
し、冷却空気B2とする。
The liquid circulated in the second circulating path by the second circulating pump 14b is deprived of heat by the heat absorption surface of the Peltier element 25 in the second heat exchange section 26b, and is cooled. The heat of the inside air B1 is taken out by the vessel 20 and cooled to obtain cooling air B2.

【0023】放熱系Aは冷蔵庫の筐体外への放熱を図る
のに、放熱器10を庫外室9内の下部に設置し、その上
に設けた放熱用ファン13aによって庫外室9の底部を
形成する下部グリル板15の吸込口15aを通じて外部
空気A1を吸引し、これを放熱器10に接触させて熱交
換した後、庫外室9の天面を形成するグリル板16の放
出口16aから放熱空気A2として冷蔵庫の筐体外に放
出するように構成している。
In the heat radiation system A, a heat radiator 10 is installed in a lower portion of the outside room 9 to radiate heat to the outside of the housing of the refrigerator, and a bottom of the outside room 9 is radiated by a radiating fan 13a provided thereon. After the external air A1 is sucked through the suction port 15a of the lower grill plate 15 forming the above, the heat is exchanged by contacting the external air A1 with the radiator 10, and then the discharge port 16a of the grill plate 16 forming the top surface of the outside chamber 9 is formed. From the outside of the refrigerator as radiated air A2.

【0024】また、吸熱系Bは庫内を冷却するのに、庫
内室17の冷蔵領域と隔壁18によって仕切られ、これ
により形成された仕切り室19内の下部に冷却器20を
設け、仕切り室19の上部に設置した冷却用ファン13
bによって隔壁18の下部に設けた吸込口21から吸い
込んだ庫内空気B1を冷却器20と接触させて熱交換し
た後、隔壁18の上部に設けた吐出口22から冷却空気
B2として庫内に吐出し、これが庫内室17を下部に移
行しながら冷蔵物を冷却するように構成している。
In order to cool the inside of the refrigerator, the heat absorption system B is partitioned by a refrigeration region of the refrigerator compartment 17 and a partition wall 18. A cooler 20 is provided in a lower part of a partition chamber 19 formed by the partition. Cooling fan 13 installed in the upper part of the chamber 19
b, the inside air B1 sucked from the suction port 21 provided at the lower part of the partition wall 18 is brought into contact with the cooler 20 to exchange heat, and then, as cooling air B2 from the discharge port 22 provided at the upper part of the partition wall 18 into the chamber. It discharges, and this is configured to cool the refrigerated material while moving down the interior chamber 17 to the lower part.

【0025】本実施の形態では特に、熱電熱交換ブロッ
ク11は、図1に示すように冷蔵庫本体1の庫外室9と
断熱壁8で仕切られた庫内室17に設けられている。こ
れにより、熱電熱交換ブロック11が冷蔵庫本体1の庫
内室17にあって、これの吸熱系Bの全てが庫内室17
側に位置し庫外室9の温かい空気と接触しないので、吸
熱系Bにて生じる結露水を低減することができ、その分
熱効率が上がる。
In this embodiment, in particular, the thermoelectric heat exchange block 11 is provided in a refrigerator compartment 1 and a refrigerator compartment 17 separated from the refrigerator compartment 9 by a heat insulating wall 8 as shown in FIG. As a result, the thermoelectric heat exchange block 11 is in the refrigerator compartment 1 of the refrigerator main body 1, and all of the heat absorbing system B is in the refrigerator compartment 17.
Since it is located on the side and does not come into contact with the warm air in the outside chamber 9, the dew condensation water generated in the heat absorbing system B can be reduced, and the heat efficiency increases accordingly.

【0026】また、そのような熱電熱交換ブロック11
の配置に関連して、熱電熱交換ブロック11の第1の熱
交換部26aでの第1の循環経路の入口部27aおよび
出口部27bの配管は、熱電熱交換ブロック11の断熱
壁8との対面部11aから断熱壁8を通じて冷蔵庫本体
1の庫外室9に引き出されている。
Also, such a thermoelectric heat exchange block 11
In relation to the arrangement of the thermoelectric heat exchange block 11, the piping of the inlet 27 a and the outlet 27 b of the first circulation path in the first heat exchange section 26 a of the thermoelectric heat exchange block 11 It is drawn out from the facing part 11a to the outside room 9 of the refrigerator main body 1 through the heat insulating wall 8.

【0027】これにより、熱電熱交換ブロック11が庫
内室17に設けられても、これの放熱側である第1の熱
交換部26aは断熱壁8と対面して覆われ庫内空気と接
触せず、相互の熱交換も防止され、第1の循環経路は対
面部11aから断熱壁8を通じて庫外室9に引き出され
ていることにより、その第1の熱交換部26aからの出
入り口配管27a,27bの部分ですら庫内空気と接触
せず、相互の熱交換も防止されるので、第1の熱交換部
26aおよびこれから引き出される放熱系Aの配管が庫
内空気に及ぼす熱影響を低減することができ、その分熱
効率が上がる。
Thus, even if the thermoelectric heat exchange block 11 is provided in the interior chamber 17, the first heat exchange portion 26a on the heat radiation side thereof is covered with the heat insulating wall 8 and is in contact with the interior air. The first circulation path is drawn out from the facing part 11a to the outside chamber 9 through the heat insulating wall 8, so that the entrance / exit pipe 27a from the first heat exchange part 26a is not drawn. , 27b do not come into contact with the air in the refrigerator, and the mutual heat exchange is also prevented, so that the heat influence on the air in the refrigerator by the first heat exchange part 26a and the piping of the heat radiation system A drawn therefrom is reduced. Can increase the heat efficiency.

【0028】さらに、熱電熱交換ブロック11の第1の
熱交換部26aは、断熱壁8に形成した凹部8aに嵌め
合わされて、側周まわりをも断熱壁8で覆われている。
これによって、第1の熱交換部26aの側周部まわりが
庫内空気と接触し、また熱交換することをもよく防止さ
れ、放熱系Aによる庫内空気への熱影響をさらに低減す
ることができ、熱効率がさらに向上し好適である。
Further, the first heat exchanging portion 26a of the thermoelectric heat exchanging block 11 is fitted into the concave portion 8a formed in the heat insulating wall 8, and the side circumference is also covered with the heat insulating wall 8.
Thereby, the periphery of the first heat exchanging portion 26a is prevented from coming into contact with the air inside the refrigerator and exchanging heat, and the thermal effect of the heat radiation system A on the air inside the refrigerator is further reduced. This is preferable because the thermal efficiency is further improved.

【0029】また、放熱器10の近傍で、かつこれと熱
交換する外部空気を放熱器10に向け取り入れる取入経
路23に、冷却器20からのドレン水24を導き蒸発さ
せる蒸発皿28が設けられている。これにより、放熱器
10と熱交換するために取り入れられる外部空気A1
は、その取入経路23に位置した蒸発皿28に導かれて
いる冷却器20からのドレン水24が、放熱器10の近
傍で高い雰囲気温度にさらされて蒸発しているのを随伴
させ、かつ蒸発していないドレン水24を蒸発させなが
ら随伴して、放熱器10との熱交換に及ぶので、放熱器
10の放熱効率を随伴しているドレン水の気化熱分だけ
高め、熱効率を向上することができる。
An evaporating dish 28 for guiding and evaporating drain water 24 from the cooler 20 is provided in the vicinity of the radiator 10 and in an intake path 23 for taking external air for heat exchange with the radiator 10 toward the radiator 10. Have been. Thereby, the external air A1 taken in for heat exchange with the radiator 10
Is accompanied by the fact that the drain water 24 from the cooler 20 guided to the evaporating dish 28 located in the intake path 23 is exposed to a high ambient temperature near the radiator 10 and evaporates. In addition, since the non-evaporated drain water 24 evaporates and accompanies heat exchange with the radiator 10, the heat radiation efficiency of the radiator 10 is increased by the amount of vaporized heat of the associated drain water, thereby improving the thermal efficiency. can do.

【0030】蒸発皿28は冷却器20からのドレン水2
4を仕切り室19の底部から下方に延びたドレン口29
を通じて導かれ、冷蔵庫本体1の低位部に設けられるの
が好適であり、冷蔵庫本体1の容積効率に影響がなく、
洗浄等のメンテナンスを行うために着脱しやすい外部に
あるのが好適であるので、本実施の形態では蒸発皿28
を冷蔵庫本体1の底部下の後部に設けてある。
The evaporating dish 28 is provided with the drain water 2 from the cooler 20.
4 is a drain port 29 extending downward from the bottom of the partition chamber 19.
Is preferably provided in the lower part of the refrigerator main body 1 without affecting the volumetric efficiency of the refrigerator main body 1,
In order to perform maintenance such as cleaning, it is preferable that the evaporating dish is located outside the housing, which is easily detachable.
Is provided at the rear part below the bottom of the refrigerator main body 1.

【0031】これに対応して、放熱器10は庫外室9の
最下部にあって、蒸発皿28の直ぐ上に位置するように
され、蒸発皿28に導かれるドレン水24に熱を与えや
すく蒸発させやすい。これによってドレン水24の蒸発
に伴う放熱器10との熱交換をさらに促進できその分熱
効率が向上する。
Correspondingly, the radiator 10 is located at the lowermost part of the outside chamber 9 and is located immediately above the evaporating dish 28, and gives heat to the drain water 24 guided to the evaporating dish 28. Easy to evaporate. Thereby, heat exchange with the radiator 10 accompanying the evaporation of the drain water 24 can be further promoted, and the heat efficiency is improved accordingly.

【0032】また、放熱用ファン13aは、図3に示す
ように左右に2つ設けられているのに対応して、蒸発皿
28はそれら放熱用ファン13a、13aの間に対向す
る位置に設けられ、その両側の吸込口15aから吸い込
まれる外気A1が、蒸発皿28の両側から放熱器10の
部分に向け流れることによって、蒸発皿28内のドレン
水24を両側から効率よく蒸発させやすくしている。
In addition, as shown in FIG. 3, the evaporating tray 28 is provided at a position facing between the radiating fans 13a, 13a. The outside air A1 sucked from the suction ports 15a on both sides thereof flows from both sides of the evaporating dish 28 toward the radiator 10, thereby making it easy to efficiently evaporate the drain water 24 in the evaporating dish 28 from both sides. I have.

【0033】なお、第1の循環ポンプ14aは、図1、
図2、図3に示すように、放熱系Aの第1の循環路の最
上位置にあり、かつその上に空気溜り部37aが接続さ
れている。また、第2の循環ポンプ14bは、図1、図
2、図4に示すように、吸熱系Bの第2の循環路の最上
位置にあり、かつその上に空気溜り部37bが接続され
ている。
Incidentally, the first circulating pump 14a is the same as that shown in FIG.
As shown in FIG. 2 and FIG. 3, the first circulation path of the heat radiation system A is located at the uppermost position, and the air reservoir 37a is connected thereon. The second circulating pump 14b is located at the uppermost position of the second circulating path of the heat absorbing system B as shown in FIGS. 1, 2, and 4, and the air reservoir 37b is connected thereto. I have.

【0034】これによって、放熱系Aおよび吸熱系Bの
第1、第2の各循環路の液体中に万一空気が混入して
も、これが第1、第2の各循環ポンプ14a,14bを
通じて、最上位置にある空気溜り部37a,37bにま
で上昇して溜る。
Thus, even if air is mixed into the liquid in the first and second circulation paths of the heat radiation system A and the heat absorption system B, it is transmitted through the first and second circulation pumps 14a and 14b. , And rises to the air reservoirs 37a and 37b at the uppermost position.

【0035】従って、混入空気が第1の循環路、第2の
循環路を循環したり、あるいは第1の循環ポンプ14a
または第2の循環ポンプ14b内に溜まってこれの機能
低下をきしたりして、第1の熱交換部26a、第2の熱
交換部26b、放熱器10、および冷却器20での熱交
換率が低下するようなことを防止することができ、これ
によっても熱効率が向上する。
Therefore, the mixed air circulates in the first circulation path and the second circulation path or the first circulation pump 14a
Alternatively, the heat exchange between the first heat exchange unit 26a, the second heat exchange unit 26b, the radiator 10, and the cooler 20 is performed by accumulating in the second circulation pump 14b to reduce the function thereof. It is possible to prevent the rate from decreasing, which also improves the thermal efficiency.

【0036】第1の循環路の第1の循環ポンプ14aよ
りも低い途中位置、および第2の循環路の第2の循環ポ
ンプ14bよりも低い途中位置には、T字管33a,3
3bがそれらの2つの接続口にて接続され、各T字管3
3a,33bの残りの接続口は液体の充填口に用い、充
填後キャップ34a,34bにより塞ぐ。液体注入時は
第1、第2の各循環路の最上部である空気溜り部37
a,37bを開放して空気の逃がし口とするのが好適で
あり、液体の注入と同時に第1、第2の各循環路からの
空気の追い出しができる。
The T-shaped pipes 33a, 3a are located at intermediate positions of the first circulation path lower than the first circulation pump 14a and intermediate positions of the second circulation path lower than the second circulation pump 14b.
3b are connected at their two connections and each T-tube 3
The remaining connection ports of 3a and 33b are used as liquid filling ports, and are closed with caps 34a and 34b after filling. At the time of liquid injection, the air reservoir 37 at the top of each of the first and second circulation paths
Preferably, a and 37b are opened to serve as air outlets, so that air can be expelled from the first and second circulation paths simultaneously with the injection of liquid.

【0037】なお、本実施の形態の熱電熱交換ブロック
11は、合成樹脂製のカバーを施して設けてあり、これ
によってもまわりに熱影響したり、熱影響を受けたりす
ることが防止され、熱効率の向上に寄与する。
The thermoelectric heat exchange block 11 according to the present embodiment is provided with a cover made of a synthetic resin, thereby preventing the surroundings from being affected by heat or being affected by heat. Contributes to improvement of thermal efficiency.

【0038】図1、図5において、41は冷却器温度検
出手段としての冷却器温度センサであり、冷却器20に
取り付けられ冷却器20温度を検出する。図5におい
て、42aは演算制御部であり、冷却器温度センサ41
とタイマ43からの出力をもとにペルチェ素子25への
供給電源の電圧を制御する。
1 and 5, reference numeral 41 denotes a cooler temperature sensor as a cooler temperature detecting means, which is attached to the cooler 20 and detects the temperature of the cooler 20. In FIG. 5, reference numeral 42a denotes an arithmetic control unit, which is a cooler temperature sensor 41.
And the output of the timer 43 to control the voltage of the power supply to the Peltier element 25.

【0039】以上のように構成された本実施の形態の熱
電モジュール式電気冷蔵庫について以下その動作を図6
をもとに説明する。図6は本実施の形態による熱電モジ
ュール式電気冷蔵庫の制御を示すフローチャートであ
る。
The operation of the thermoelectric module type electric refrigerator of the present embodiment configured as described above will now be described with reference to FIG.
It is explained based on. FIG. 6 is a flowchart showing control of the thermoelectric modular electric refrigerator according to the present embodiment.

【0040】冷却運転が開始されると、演算制御部42
aは、ペルチェ素子25に基準電圧(Vo)を供給し、
放熱用ファン13aを基準回転数で回転させ、第1の循
環ポンプ14aを基準回転数で駆動する(STEP
1)。冷却運転開始から所定時間経過すると(STEP
2をYes側に分岐して)、演算制御部42aは、冷却
器温度センサ41により冷却器20の温度を検出する
(STEP3)。
When the cooling operation is started, the arithmetic and control unit 42
a supplies a reference voltage (Vo) to the Peltier element 25,
The heat radiating fan 13a is rotated at the reference rotation speed, and the first circulation pump 14a is driven at the reference rotation speed (STEP).
1). When a predetermined time has elapsed since the start of the cooling operation (STEP
2 is branched to the Yes side), and the arithmetic control unit 42a detects the temperature of the cooler 20 by the cooler temperature sensor 41 (STEP 3).

【0041】そのとき、冷却器温度センサ41が検出し
た冷却器20の温度が0℃を超えていれば、STEP4
をNo側に分岐してSTEP5へ進む。STEP5に進
んだ後、前回の温度検出から所定時間経過すれば、ST
EP3に戻り、再び、冷却器温度センサ41により冷却
器20の温度を検出する。そのとき、冷却器温度センサ
41が検出した冷却器20の温度が0℃以下であれば
(STEP4をYes側に分岐して)、冷却器20には
霜が付いていることが推測されるため、演算制御部42
aは、ペルチェ素子25に基準電圧(Vo)より低い除
霜用電圧(V1)、例えば1Vを供給する(STEP
6)。
At this time, if the temperature of the cooler 20 detected by the cooler temperature sensor 41 exceeds 0 ° C.,
Branch to the No side and proceed to STEP5. After a predetermined time has elapsed from the previous temperature detection after proceeding to STEP 5, ST
Returning to EP3, the temperature of the cooler 20 is detected by the cooler temperature sensor 41 again. At that time, if the temperature of the cooler 20 detected by the cooler temperature sensor 41 is 0 ° C. or less (branch to YES in STEP 4), it is estimated that the cooler 20 has frost. , Arithmetic control unit 42
a supplies a defrosting voltage (V1) lower than the reference voltage (Vo), for example, 1 V, to the Peltier element 25 (STEP).
6).

【0042】そして、除霜運転開始から所定時間経過す
れば(STEP7をYes側に分岐して)、冷却器温度
センサ41により冷却器20の温度を検出する(STE
P8)。そのとき、冷却器温度センサ41が検出した冷
却器20の温度が0℃以下であれば、STEP9をNo
側に分岐してSTEP10へ進む。STEP10に進ん
だ後、前回の温度検出から所定時間経過すれば、STE
P8に戻り、再び、冷却器温度センサ41により冷却器
20の温度を検出する。そのとき、冷却器温度センサ4
1が検出した冷却器20の温度が0℃を超えていれば
(STEP9をYes側に分岐してSTEP1に戻
り)、演算制御部42aは、ペルチェ素子25に基準電
圧(Vo)を供給して通常の庫内冷却動作に戻す。
When a predetermined time has elapsed from the start of the defrosting operation (STEP 7 is branched to Yes), the temperature of the cooler 20 is detected by the cooler temperature sensor 41 (STE).
P8). At that time, if the temperature of the cooler 20 detected by the cooler temperature sensor 41 is 0 ° C. or less, the determination in STEP 9 is No.
Branch to and go to STEP10. After a predetermined time has elapsed from the previous temperature detection after proceeding to STEP 10, the STE
Returning to P8, the temperature of the cooler 20 is detected again by the cooler temperature sensor 41. At that time, the cooler temperature sensor 4
If the temperature of the cooler 20 detected by 1 exceeds 0 ° C (STEP 9 branches to Yes side and returns to STEP 1), the arithmetic control unit 42a supplies the reference voltage (Vo) to the Peltier element 25. Return to normal internal cooling operation.

【0043】なお、ペルチェ素子25への供給電源の電
圧を低下する割合は、基準電圧の2%から60%の範囲
で行うものであり、基準電圧に対し、2%から10%に
低下した時、冷却器20の除霜完了時間がより短縮でき
る。
The rate at which the voltage of the power supply supplied to the Peltier element 25 is reduced is in the range of 2% to 60% of the reference voltage, and when the voltage drops from 2% to 10% with respect to the reference voltage. In addition, the defrosting completion time of the cooler 20 can be further reduced.

【0044】以上のように本実施の形態による熱電モジ
ュール式電気冷蔵庫は、所定電圧が印加されると相対向
する2平面に温度差が生じる熱電部材としてのペルチェ
素子25と、庫内空気と熱交換して得た熱を吸熱系Bの
第2の循環路内を循環する液体と第2の熱交換部26b
を介してペルチェ素子25の前記2平面のうちの相対的
に温度が低くなる吸熱面に伝達するための冷却器20
と、ペルチェ素子25の前記2平面のうちの相対的に温
度が高くなる放熱面の熱が第1の熱交換部26aと放熱
系Aの第1の循環路内を循環する液体を介して伝達され
てその熱を庫外空気に放熱する放熱器10と、冷却器2
0の温度を検出する冷却器温度検出手段としての冷却器
温度センサ41と、冷却器温度センサ41が検出した冷
却器温度が所定温度(0℃)を超えているときに通常の
庫内冷却を行うための基準電圧(Vo)をペルチェ素子
25に供給し、冷却器温度センサ41が検出した冷却器
温度が所定温度(0℃)以下のときに基準電圧(Vo)
より低い除霜用電圧(V1)をペルチェ素子25に供給
する演算制御部42aとから構成されるものであり、冷
却器温度が除霜を必要とする所定温度(0℃)以下のと
きに通常の庫内冷却を行うための基準電圧(Vo)より
低い除霜用電圧(V1)をペルチェ素子(熱電部材)2
5に供給するため、除霜の前後のペルチェ素子(熱電部
材)25の温度変化の幅は、ペルチェ素子(熱電部材)
25への電源供給を停止して除霜する従来方式に比べて
小さくなり、温度変化によるペルチェ素子(熱電部材)
25の膨張率と収縮率を小さくすることができるため、
ペルチェ素子(熱電部材)25の寿命を伸ばすことがで
きる。
As described above, the thermoelectric module-type electric refrigerator according to the present embodiment has a Peltier element 25 as a thermoelectric member in which a temperature difference is generated between two opposing planes when a predetermined voltage is applied, the inside air and the heat inside the refrigerator. The liquid obtained by exchanging the heat obtained by the exchange with the liquid circulating in the second circulation path of the endothermic system B and the second heat exchange section 26b
Cooler 20 for transmitting to the heat absorbing surface of the two planes of the Peltier element 25 whose temperature is relatively low via the
And the heat of the heat radiation surface of the two planes of the Peltier element 25 whose temperature becomes relatively high is transmitted through the first heat exchange part 26a and the liquid circulating in the first circulation path of the heat radiation system A. A radiator 10 for dissipating the heat to the outside air;
A cooler temperature sensor 41 as cooler temperature detecting means for detecting a temperature of 0, and a normal internal cooling when the cooler temperature detected by the cooler temperature sensor 41 exceeds a predetermined temperature (0 ° C.). A reference voltage (Vo) is supplied to the Peltier element 25, and when the cooler temperature detected by the cooler temperature sensor 41 is equal to or lower than a predetermined temperature (0 ° C.), the reference voltage (Vo) is used.
And an arithmetic control unit 42a for supplying a lower defrosting voltage (V1) to the Peltier element 25. When the cooler temperature is equal to or lower than a predetermined temperature (0 ° C.) at which defrosting is required. The defrosting voltage (V1) lower than the reference voltage (Vo) for cooling the inside of the refrigerator is applied to the Peltier element (thermoelectric member) 2.
5, the width of the temperature change of the Peltier element (thermoelectric member) 25 before and after defrosting is determined by the Peltier element (thermoelectric member).
Peltier element (thermoelectric member) due to temperature change, compared to the conventional method of defrosting by stopping power supply to 25
Since the expansion rate and the contraction rate of 25 can be reduced,
The life of the Peltier element (thermoelectric member) 25 can be extended.

【0045】また、演算制御部42aが除霜用電圧(V
1)をペルチェ素子(熱電部材)25に供給していると
きに、冷却器温度センサ41により冷却器温度が所定温
度(0℃)を超えたことを演算制御部42aが検知する
と、演算制御部42aが冷却器20の除霜動作を解除し
て通常の庫内冷却動作に戻すため、冷却器20の除霜が
完了すると速やかに通常の庫内冷却動作に戻り、冷蔵庫
庫内温度の上昇を抑制することができる。
Further, the arithmetic and control unit 42a supplies the defrosting voltage (V
When the operation control unit 42a detects that the cooler temperature has exceeded a predetermined temperature (0 ° C.) by the cooler temperature sensor 41 while supplying 1) to the Peltier element (thermoelectric member) 25, the operation control unit 42a releases the defrosting operation of the cooler 20 and returns to the normal cooling operation inside the refrigerator, so that when the defrosting of the cooler 20 is completed, the operation returns to the normal cooling operation in the refrigerator immediately, and the rise in the refrigerator refrigerator temperature is reduced. Can be suppressed.

【0046】(実施の形態2)次に、本発明の熱電モジ
ュール式電気冷蔵庫の実施の形態2について図面を参照
しながら説明するが、実施の形態1と同一構成について
は同一の符号を付してその詳細な説明は省略する。
(Embodiment 2) Next, Embodiment 2 of the thermoelectric module type electric refrigerator of the present invention will be described with reference to the drawings. A detailed description of the lever is omitted.

【0047】図7は本発明による熱電モジュール式電気
冷蔵庫の実施の形態2の制御を示すブロック図である。
FIG. 7 is a block diagram showing control of the second embodiment of the thermoelectric module type electric refrigerator according to the present invention.

【0048】図7において、42bは演算制御部であ
り、冷却器温度センサ41とタイマ43からの出力をも
とにペルチェ素子25への供給電源の電圧を制御すると
共に、放熱用ファン13aの回転数を制御する。
In FIG. 7, reference numeral 42b denotes an arithmetic control unit which controls the voltage of the power supply to the Peltier element 25 based on the outputs from the cooler temperature sensor 41 and the timer 43, and rotates the radiation fan 13a. Control the number.

【0049】本実施の形態の熱電モジュール式電気冷蔵
庫は、実施の形態1の熱電モジュール式電気冷蔵庫にお
ける演算制御部42aを演算制御部42bに置き換えた
ものであり、その他の構成は、図1から図4に示された
実施の形態1の熱電モジュール式電気冷蔵庫の構成と同
一である。
The thermoelectric modular electric refrigerator according to the present embodiment is obtained by replacing the arithmetic control unit 42a in the thermoelectric modular electric refrigerator according to the first embodiment with an arithmetic control unit 42b. The configuration is the same as the configuration of the thermoelectric modular electric refrigerator according to the first embodiment shown in FIG.

【0050】以上のように構成された本実施の形態の熱
電モジュール式電気冷蔵庫について以下その動作を図8
をもとに説明する。図8は本実施の形態による熱電モジ
ュール式電気冷蔵庫の制御を示すフローチャートであ
る。
The operation of the thermoelectric module type electric refrigerator of the present embodiment configured as described above will now be described with reference to FIG.
It is explained based on. FIG. 8 is a flowchart showing control of the thermoelectric modular electric refrigerator according to the present embodiment.

【0051】冷却運転が開始されると、演算制御部42
bは、ペルチェ素子25に基準電圧(Vo)を供給し、
放熱用ファン13aを基準回転数で回転させ、第1の循
環ポンプ14aを基準回転数で駆動する(STEP
1)。冷却運転開始から所定時間経過すると(STEP
2をYes側に分岐して)、演算制御部42bは、冷却
器温度センサ41により冷却器20の温度を検出する
(STEP3)。
When the cooling operation is started, the arithmetic and control unit 42
b supplies a reference voltage (Vo) to the Peltier element 25,
The heat radiating fan 13a is rotated at the reference rotation speed, and the first circulation pump 14a is driven at the reference rotation speed (STEP).
1). When a predetermined time has elapsed since the start of the cooling operation (STEP
2 is branched to the Yes side), and the arithmetic control unit 42b detects the temperature of the cooler 20 by the cooler temperature sensor 41 (STEP 3).

【0052】そのとき、冷却器温度センサ41が検出し
た冷却器20の温度が0℃を超えていれば、STEP4
をNo側に分岐してSTEP5へ進む。STEP5に進
んだ後、前回の温度検出から所定時間経過すれば、ST
EP3に戻り、再び、冷却器温度センサ41により冷却
器20の温度を検出する。そのとき、冷却器温度センサ
41が検出した冷却器20の温度が0℃以下であれば
(STEP4をYes側に分岐して)、冷却器20には
霜が付いていることが推測されるため、演算制御部42
bは、ペルチェ素子25に基準電圧(Vo)より低い除
霜用電圧(V1)、例えば1Vを供給すると共に、放熱
用ファン13aを基準回転数より低い回転数で回転、ま
たは停止する(STEP6)。
At this time, if the temperature of the cooler 20 detected by the cooler temperature sensor 41 exceeds 0 ° C.,
Branch to the No side and proceed to STEP5. After a predetermined time has elapsed from the previous temperature detection after proceeding to STEP 5, ST
Returning to EP3, the temperature of the cooler 20 is detected by the cooler temperature sensor 41 again. At that time, if the temperature of the cooler 20 detected by the cooler temperature sensor 41 is 0 ° C. or less (branch to YES in STEP 4), it is estimated that the cooler 20 has frost. , Arithmetic control unit 42
b supplies a defrosting voltage (V1) lower than the reference voltage (Vo), for example, 1 V, to the Peltier element 25, and rotates or stops the heat radiation fan 13a at a lower rotation speed than the reference rotation speed (STEP 6). .

【0053】そして、除霜運転開始から所定時間経過す
れば(STEP7をYes側に分岐して)、冷却器温度
センサ41により冷却器20の温度を検出する(STE
P8)。そのとき、冷却器温度センサ41が検出した冷
却器20の温度が0℃以下であれば、STEP9をNo
側に分岐してSTEP10へ進む。STEP10に進ん
だ後、前回の温度検出から所定時間経過すれば、STE
P8に戻り、再び、冷却器温度センサ41により冷却器
20の温度を検出する。そのとき、冷却器温度センサ4
1が検出した冷却器20の温度が0℃を超えていれば
(STEP9をYes側に分岐してSTEP1に戻
り)、演算制御部42bは、ペルチェ素子25に基準電
圧(Vo)を供給すると共に、放熱用ファン13aを基
準回転数で回転させて通常の庫内冷却動作に戻す。
When a predetermined time has elapsed from the start of the defrosting operation (step 7 is branched to Yes), the temperature of the cooler 20 is detected by the cooler temperature sensor 41 (STE).
P8). At that time, if the temperature of the cooler 20 detected by the cooler temperature sensor 41 is 0 ° C. or less, the determination in STEP 9 is No.
Branch to and go to STEP10. After a predetermined time has elapsed from the previous temperature detection after proceeding to STEP 10, the STE
Returning to P8, the temperature of the cooler 20 is detected again by the cooler temperature sensor 41. At that time, the cooler temperature sensor 4
If the temperature of the cooler 20 detected by 1 exceeds 0 ° C (STEP 9 branches to Yes side and returns to STEP 1), the arithmetic control unit 42b supplies the reference voltage (Vo) to the Peltier element 25 and Then, the heat radiating fan 13a is rotated at the reference rotation speed to return to the normal internal cooling operation.

【0054】なお、ペルチェ素子25への供給電源の電
圧を低下する割合は、基準電圧の2%から60%の範囲
で行うものであり、基準電圧に対し、2%から10%に
低下した時、冷却器20の除霜完了時間がより短縮でき
る。
The rate at which the voltage of the power supply supplied to the Peltier element 25 is reduced is in the range of 2% to 60% of the reference voltage, and when the voltage drops from 2% to 10% of the reference voltage. In addition, the defrosting completion time of the cooler 20 can be further reduced.

【0055】以上のように本実施の形態による熱電モジ
ュール式電気冷蔵庫は、所定電圧が印加されると相対向
する2平面に温度差が生じる熱電部材としてのペルチェ
素子25と、庫内空気と熱交換して得た熱を吸熱系Bの
第2の循環路内を循環する液体と第2の熱交換部26b
を介してペルチェ素子25の前記2平面のうちの相対的
に温度が低くなる吸熱面に伝達するための冷却器20
と、ペルチェ素子25の前記2平面のうちの相対的に温
度が高くなる放熱面の熱が第1の熱交換部26aと放熱
系Aの第1の循環路内を循環する液体を介して伝達され
てその熱を庫外空気に放熱する放熱器10と、放熱器1
0に庫外空気を送風する放熱用ファン13aと、冷却器
20の温度を検出する冷却器温度検出手段としての冷却
器温度センサ41と、冷却器温度センサ41が検出した
冷却器温度が所定温度(0℃)を超えているときに通常
の庫内冷却を行うための基準電圧(Vo)をペルチェ素
子25に供給すると共に放熱用ファン13aを基準回転
数で回転させ、冷却器温度センサ41が検出した冷却器
温度が所定温度(0℃)以下のときに基準電圧(Vo)
より低い除霜用電圧(V1)をペルチェ素子25に供給
すると共に放熱用ファン13aを停止もしくは基準回転
数よりも低い回転数で回転させる演算制御部42bとか
ら構成されるものであり、冷却器温度が除霜を必要とす
る所定温度(0℃)以下のときに通常の庫内冷却を行う
ための基準電圧(Vo)より低い除霜用電圧(V1)を
ペルチェ素子(熱電部材)25に供給するため、除霜の
前後のペルチェ素子(熱電部材)25の温度変化の幅
は、ペルチェ素子(熱電部材)25への電源供給を停止
して除霜する従来方式に比べて小さくなり、温度変化に
よるペルチェ素子(熱電部材)25の膨張率と収縮率を
小さくすることができるため、ペルチェ素子(熱電部
材)25の寿命を伸ばすことができる。
As described above, the thermoelectric module type electric refrigerator according to the present embodiment has a Peltier element 25 as a thermoelectric member in which a temperature difference is generated between two opposing planes when a predetermined voltage is applied; The liquid obtained by exchanging the heat obtained by the exchange with the liquid circulating in the second circulation path of the endothermic system B and the second heat exchange section 26b
Cooler 20 for transmitting to the heat absorbing surface of the two planes of the Peltier element 25 whose temperature is relatively low via the
And the heat of the heat radiation surface of the two planes of the Peltier element 25 whose temperature becomes relatively high is transmitted through the first heat exchange part 26a and the liquid circulating in the first circulation path of the heat radiation system A. A radiator 10 for dissipating the heat to the outside air;
0, a radiating fan 13a for blowing air outside the refrigerator, a cooler temperature sensor 41 as a cooler temperature detecting means for detecting the temperature of the cooler 20, and a cooler temperature detected by the cooler temperature sensor 41 is a predetermined temperature. When the temperature exceeds (0 ° C.), a reference voltage (Vo) for performing normal internal cooling is supplied to the Peltier element 25, and the radiating fan 13a is rotated at the reference rotation speed. When the detected cooler temperature is lower than a predetermined temperature (0 ° C.), the reference voltage (Vo)
An operation control unit 42b for supplying a lower defrosting voltage (V1) to the Peltier device 25 and stopping or rotating the heat radiation fan 13a at a rotation speed lower than the reference rotation speed. When the temperature is equal to or lower than a predetermined temperature (0 ° C.) at which defrosting is required, a defrosting voltage (V1) lower than a reference voltage (Vo) for performing normal internal cooling is applied to the Peltier element (thermoelectric member) 25. Therefore, the width of the temperature change of the Peltier element (thermoelectric member) 25 before and after defrosting is smaller than that of the conventional method in which the power supply to the Peltier element (thermoelectric member) 25 is stopped to perform defrosting. Since the expansion rate and the contraction rate of the Peltier element (thermoelectric member) 25 due to the change can be reduced, the life of the Peltier element (thermoelectric member) 25 can be extended.

【0056】また、除霜用電圧(V1)をペルチェ素子
(熱電部材)25に供給しているとき(除霜時)に放熱
用ファン13aを停止もしくは基準回転数よりも低い回
転数で回転させるため、放熱器10の放熱能力が低下し
てペルチェ素子(熱電部材)25の放熱面側の温度が上
昇し、その結果、ペルチェ素子(熱電部材)25の吸熱
面側の温度も放熱面側の温度に対して相対的に上昇し、
ペルチェ素子(熱電部材)25の吸熱面側の熱量を利用
して冷却器20の除霜を短時間で終了させることがで
き、除霜時間を短縮して冷却器除霜時の冷蔵庫庫内温度
の上昇を抑制することができる。
When the defrosting voltage (V1) is being supplied to the Peltier element (thermoelectric member) 25 (during defrosting), the heat radiation fan 13a is stopped or rotated at a rotation speed lower than the reference rotation speed. Therefore, the heat radiation capability of the radiator 10 decreases, and the temperature on the heat radiation surface side of the Peltier element (thermoelectric member) 25 rises. As a result, the temperature on the heat absorption surface side of the Peltier element (thermoelectric member) 25 also decreases. Rises relatively to temperature,
The amount of heat on the heat absorbing surface side of the Peltier element (thermoelectric member) 25 can be used to end the defrosting of the cooler 20 in a short time, and the defrosting time can be shortened to reduce the refrigerator internal temperature during the defrosting of the cooler. Can be suppressed.

【0057】また、演算制御部42bが除霜用電圧(V
1)をペルチェ素子(熱電部材)25に供給し、放熱用
ファン13aを基準回転数より低い回転数で回転、また
は停止させているときに、冷却器温度センサ41により
冷却器温度が所定温度(0℃)を超えたことを演算制御
部42bが検知すると、演算制御部42bが冷却器20
の除霜動作を解除して通常の庫内冷却動作に戻すため、
冷却器20の除霜が完了すると速やかに通常の庫内冷却
動作に戻り、冷蔵庫庫内温度の上昇を抑制することがで
きる。
Further, the arithmetic and control unit 42b outputs the defrosting voltage (V
1) is supplied to the Peltier element (thermoelectric member) 25, and when the radiating fan 13a is rotated or stopped at a lower rotational speed than the reference rotational speed, the cooler temperature sensor 41 reduces the cooler temperature to a predetermined temperature ( 0 ° C.), the operation control unit 42b detects
In order to release the defrosting operation of and return to normal cooling operation in the refrigerator,
When the defrosting of the cooler 20 is completed, the operation immediately returns to the normal cooling operation in the refrigerator, and the rise in the refrigerator refrigerator temperature can be suppressed.

【0058】(実施の形態3)次に、本発明の熱電モジ
ュール式電気冷蔵庫の実施の形態3について図面を参照
しながら説明するが、実施の形態1または実施の形態2
と同一構成については同一の符号を付してその詳細な説
明は省略する。
(Embodiment 3) Next, Embodiment 3 of the thermoelectric module type electric refrigerator of the present invention will be described with reference to the drawings. Embodiment 1 or Embodiment 2
The same components as those described above are denoted by the same reference numerals, and detailed description thereof is omitted.

【0059】図9は本発明による熱電モジュール式電気
冷蔵庫の実施の形態2の制御を示すブロック図である。
FIG. 9 is a block diagram showing control of the second embodiment of the thermoelectric module type electric refrigerator according to the present invention.

【0060】図9において、42cは演算制御部であ
り、冷却器温度センサ41とタイマ43からの出力をも
とにペルチェ素子25への供給電源の電圧を制御すると
共に、放熱用ファン13aの回転数と第1の循環ポンプ
14aの回転数を制御する。
In FIG. 9, reference numeral 42c denotes an arithmetic control unit which controls the voltage of the power supply to the Peltier element 25 based on the outputs from the cooler temperature sensor 41 and the timer 43, and rotates the heat radiation fan 13a. And the number of revolutions of the first circulation pump 14a.

【0061】本実施の形態の熱電モジュール式電気冷蔵
庫は、実施の形態1の熱電モジュール式電気冷蔵庫にお
ける演算制御部42aを演算制御部42cに置き換えた
ものであり、その他の構成は、図1から図4に示された
実施の形態1の熱電モジュール式電気冷蔵庫の構成と同
一である。
The thermoelectric modular electric refrigerator according to the present embodiment is obtained by replacing the arithmetic control unit 42a in the thermoelectric modular electric refrigerator according to the first embodiment with an arithmetic control unit 42c. The configuration is the same as the configuration of the thermoelectric modular electric refrigerator according to the first embodiment shown in FIG.

【0062】以上のように構成された本実施の形態の熱
電モジュール式電気冷蔵庫について以下その動作を図1
0をもとに説明する。図10は本実施の形態による熱電
モジュール式電気冷蔵庫の制御を示すフローチャートで
ある。
The operation of the thermoelectric module type electric refrigerator of the present embodiment configured as described above will now be described with reference to FIG.
Explanation will be made based on 0. FIG. 10 is a flowchart showing control of the thermoelectric modular electric refrigerator according to the present embodiment.

【0063】冷却運転が開始されると、演算制御部42
cは、ペルチェ素子25に基準電圧(Vo)を供給し、
放熱用ファン13aを基準回転数で回転させ、第1の循
環ポンプ14aを基準回転数で駆動する(STEP
1)。冷却運転開始から所定時間経過すると(STEP
2をYes側に分岐して)、演算制御部42cは、冷却
器温度センサ41により冷却器20の温度を検出する
(STEP3)。
When the cooling operation is started, the arithmetic and control unit 42
c supplies a reference voltage (Vo) to the Peltier element 25,
The heat radiating fan 13a is rotated at the reference rotation speed, and the first circulation pump 14a is driven at the reference rotation speed (STEP).
1). When a predetermined time has elapsed since the start of the cooling operation (STEP
2 is branched to the Yes side), and the arithmetic control unit 42c detects the temperature of the cooler 20 by the cooler temperature sensor 41 (STEP 3).

【0064】そのとき、冷却器温度センサ41が検出し
た冷却器20の温度が0℃を超えていれば、STEP4
をNo側に分岐してSTEP5へ進む。STEP5に進
んだ後、前回の温度検出から所定時間経過すれば、ST
EP3に戻り、再び、冷却器温度センサ41により冷却
器20の温度を検出する。そのとき、冷却器温度センサ
41が検出した冷却器20の温度が0℃以下であれば
(STEP4をYes側に分岐して)、冷却器20には
霜が付いていることが推測されるため、演算制御部42
cは、ペルチェ素子25に基準電圧(Vo)より低い除
霜用電圧(V1)、例えば1Vを供給すると共に、放熱
用ファン13aを基準回転数より低い回転数で回転、ま
たは停止し、さらに、第1の循環ポンプ14aを基準回
転数より低い回転数で駆動、または停止する(STEP
6)。
At that time, if the temperature of the cooler 20 detected by the cooler temperature sensor 41 exceeds 0 ° C.,
Branch to the No side and proceed to STEP5. After a predetermined time has elapsed from the previous temperature detection after proceeding to STEP 5, ST
Returning to EP3, the temperature of the cooler 20 is detected by the cooler temperature sensor 41 again. At that time, if the temperature of the cooler 20 detected by the cooler temperature sensor 41 is 0 ° C. or less (branch to YES in STEP 4), it is estimated that the cooler 20 has frost. , Arithmetic control unit 42
c supplies a defrosting voltage (V1) lower than the reference voltage (Vo), for example, 1 V, to the Peltier element 25, and rotates or stops the heat radiation fan 13a at a lower rotation speed than the reference rotation speed. The first circulation pump 14a is driven or stopped at a rotation speed lower than the reference rotation speed (STEP
6).

【0065】そして、除霜運転開始から所定時間経過す
れば(STEP7をYes側に分岐して)、冷却器温度
センサ41により冷却器20の温度を検出する(STE
P8)。そのとき、冷却器温度センサ41が検出した冷
却器20の温度が0℃以下であれば、STEP9をNo
側に分岐してSTEP10へ進む。STEP10に進ん
だ後、前回の温度検出から所定時間経過すれば、STE
P8に戻り、再び、冷却器温度センサ41により冷却器
20の温度を検出する。そのとき、冷却器温度センサ4
1が検出した冷却器20の温度が0℃を超えていれば
(STEP9をYes側に分岐してSTEP1に戻
り)、演算制御部42cは、ペルチェ素子25に基準電
圧(Vo)を供給すると共に、放熱用ファン13aを基
準回転数で回転させ、さらに、第1の循環ポンプ14a
を基準回転数で駆動させて通常の庫内冷却動作に戻す。
When a predetermined time has elapsed from the start of the defrosting operation (step 7 is branched to Yes), the temperature of the cooler 20 is detected by the cooler temperature sensor 41 (STE).
P8). At that time, if the temperature of the cooler 20 detected by the cooler temperature sensor 41 is 0 ° C. or less, the determination in STEP 9 is No.
Branch to and go to STEP10. After a predetermined time has elapsed from the previous temperature detection after proceeding to STEP 10, the STE
Returning to P8, the temperature of the cooler 20 is detected again by the cooler temperature sensor 41. At that time, the cooler temperature sensor 4
If the temperature of the cooler 20 detected by 1 exceeds 0 ° C. (step 9 branches to Yes and returns to step 1), the arithmetic control unit 42c supplies the reference voltage (Vo) to the Peltier element 25 and The heat radiating fan 13a is rotated at the reference rotational speed, and the first circulating pump 14a is further rotated.
Is driven at the reference rotation speed to return to the normal cooling operation in the refrigerator.

【0066】図11に本実施の形態による冷却器20の
除霜時間と冷却器20の温度変化を示す。図11から明
らかなように、放熱用ファン13aと第1の循環ポンプ
14aの回転数を通常の庫内冷却時の回転数のままで維
持してペルチェ素子(熱電部材)25への電源供給を停
止して除霜する従来方式に比べ、ペルチェ素子25への
供給電源の電圧を基準電圧(Vo)より低い除霜用電圧
(V1)に下げると共に、放熱用ファン13aと第1の
循環ポンプ14aの回転数を低下または停止させた方
が、冷却器20の除霜完了時間を短縮(tb1からta1へ
短縮)できる。
FIG. 11 shows the defrosting time of the cooler 20 and the temperature change of the cooler 20 according to the present embodiment. As is clear from FIG. 11, the power supply to the Peltier element (thermoelectric member) 25 is performed while maintaining the rotation speed of the heat dissipation fan 13a and the first circulation pump 14a at the normal rotation speed during cooling in the refrigerator. Compared to the conventional method of stopping and defrosting, the voltage of the power supply to the Peltier element 25 is reduced to a defrosting voltage (V1) lower than the reference voltage (Vo), and the heat dissipation fan 13a and the first circulation pump 14a By reducing or stopping the number of rotations, the defrosting completion time of the cooler 20 can be reduced (from tb1 to ta1).

【0067】なお、ペルチェ素子25への供給電源の電
圧を低下する割合は、基準電圧の2%から60%の範囲
で行うものであり、基準電圧に対し、2%から10%に
低下した時、冷却器20の除霜完了時間がより短縮でき
る。
The rate at which the voltage of the power supply supplied to the Peltier element 25 is reduced is in the range of 2% to 60% of the reference voltage, and when the voltage drops from 2% to 10% of the reference voltage. In addition, the defrosting completion time of the cooler 20 can be further reduced.

【0068】以上のように本実施の形態による熱電モジ
ュール式電気冷蔵庫は、所定電圧が印加されると相対向
する2平面に温度差が生じる熱電部材としてのペルチェ
素子25と、庫内空気と熱交換して得た熱を吸熱系Bの
第2の循環路内を循環する液体と第2の熱交換部26b
を介してペルチェ素子25の前記2平面のうちの相対的
に温度が低くなる吸熱面に伝達するための冷却器20
と、ペルチェ素子25の前記2平面のうちの相対的に温
度が高くなる放熱面に熱結合された第1の熱交換部26
aと、庫外空気と熱交換する放熱器10と、第1の熱交
換部26a、放熱器10と共に、環状の放熱系Aの第1
の循環経路を形成し、第1の循環経路内に充填した液体
を循環させる回転式の第1の循環ポンプ14aと、放熱
器10に庫外空気を送風する放熱用ファン13aと、冷
却器20の温度を検出する冷却器温度検出手段としての
冷却器温度センサ41と、冷却器温度センサ41が検出
した冷却器温度が所定温度(0℃)を超えているときに
通常の庫内冷却を行うための基準電圧(Vo)をペルチ
ェ素子25に供給すると共に放熱用ファン13aを基準
回転数で回転させ、さらに第1の循環ポンプ14aを基
準回転数で駆動し、冷却器温度センサ41が検出した冷
却器温度が所定温度(0℃)以下のときに基準電圧(V
o)より低い除霜用電圧(V1)をペルチェ素子25に
供給すると共に放熱用ファン13aを停止もしくは基準
回転数よりも低い回転数で回転させ、さらに第1の循環
ポンプ14aを停止もしくは基準回転数よりも低い回転
数で駆動する演算制御部42cとから構成されるもので
あり、冷却器温度が除霜を必要とする所定温度(0℃)
以下のときに通常の庫内冷却を行うための基準電圧(V
o)より低い除霜用電圧(V1)をペルチェ素子(熱電
部材)25に供給するため、除霜の前後のペルチェ素子
(熱電部材)25の温度変化の幅は、ペルチェ素子(熱
電部材)25への電源供給を停止して除霜する従来方式
に比べて小さくなり、温度変化によるペルチェ素子(熱
電部材)25の膨張率と収縮率を小さくすることができ
るため、ペルチェ素子(熱電部材)25の寿命を伸ばす
ことができる。
As described above, the thermoelectric module type electric refrigerator according to the present embodiment has a Peltier element 25 as a thermoelectric member in which a temperature difference is generated between two opposing planes when a predetermined voltage is applied, the inside air and the heat inside the refrigerator. The liquid obtained by exchanging the heat obtained by the exchange with the liquid circulating in the second circulation path of the endothermic system B and the second heat exchange section 26b
Cooler 20 for transmitting to the heat absorbing surface of the two planes of the Peltier element 25 whose temperature is relatively low via the
And a first heat exchange portion 26 thermally coupled to a heat radiation surface of the two planes of the Peltier element 25 whose temperature is relatively high.
a, the radiator 10 for exchanging heat with the outside air, the first heat exchange section 26a, and the radiator 10 together with the first radiator A of the annular radiator system A.
A first circulation pump 14a that circulates the liquid filled in the first circulation path, a radiator fan 13a that blows outside air to the radiator 10, and a cooler 20. A cooler temperature sensor 41 serving as a cooler temperature detecting means for detecting the temperature of the cooler, and normal internal cooling is performed when the cooler temperature detected by the cooler temperature sensor 41 exceeds a predetermined temperature (0 ° C.). Voltage (Vo) is supplied to the Peltier element 25, the radiating fan 13a is rotated at the reference rotation speed, and the first circulation pump 14a is driven at the reference rotation speed. When the cooler temperature is lower than a predetermined temperature (0 ° C.), the reference voltage (V
o) Supplying a lower defrosting voltage (V1) to the Peltier device 25, stopping the heat radiation fan 13a or rotating the fan at a lower rotation speed than the reference rotation speed, and further stopping or rotating the first circulation pump 14a at the reference rotation speed. And a calculation control unit 42c driven at a lower rotation speed than the number of rotations, and the cooler temperature is a predetermined temperature (0 ° C.) at which defrosting is required.
In the following cases, the reference voltage (V
o) Since a lower defrosting voltage (V1) is supplied to the Peltier element (thermoelectric member) 25, the range of the temperature change of the Peltier element (thermoelectric member) 25 before and after defrosting is limited to the Peltier element (thermoelectric member) 25. The power supply to the Peltier device (thermoelectric member) 25 is reduced as compared with the conventional method in which power supply to the Peltier device (thermoelectric member) 25 is reduced because the expansion rate and the contraction rate of the Peltier element (thermoelectric member) 25 due to a temperature change can be reduced. Can extend the life of the device.

【0069】また、除霜用電圧(V1)をペルチェ素子
(熱電部材)25に供給しているとき(除霜時)に放熱
用ファン13aを停止もしくは基準回転数よりも低い回
転数で回転させると共に、ペルチェ素子(熱電部材)2
5の放熱面に熱結合された第1の熱交換部26aと放熱
器10とを流れる液体を循環させる第1の循環ポンプ1
4aを停止もしくは基準回転数よりも低い回転数で駆動
するため、放熱用ファン13aのみ停止もしくは放熱用
ファン13aのみ基準回転数よりも回転数を低くした場
合よりも、放熱器10の放熱能力がさらに低下してペル
チェ素子(熱電部材)25の放熱面側の温度がさらに上
昇し、その結果、ペルチェ素子(熱電部材)25の吸熱
面側の温度も放熱面側の温度に対して相対的に上昇し、
ペルチェ素子(熱電部材)25の吸熱面側の熱量を利用
して放熱用ファン13aのみ停止もしくは放熱用ファン
13aのみ基準回転数よりも回転数を低くした場合より
も、冷却器20の除霜をさらに短時間で終了させること
ができ、除霜時間を短縮して冷却器除霜時の冷蔵庫庫内
温度の上昇を抑制することができる。
When the defrosting voltage (V1) is being supplied to the Peltier element (thermoelectric member) 25 (during defrosting), the heat radiation fan 13a is stopped or rotated at a rotation speed lower than the reference rotation speed. With Peltier element (thermoelectric member) 2
The first circulating pump 1 for circulating the liquid flowing between the first heat exchange section 26a and the radiator 10, which is thermally coupled to the heat radiating surface of the first radiator 5
4a is stopped or driven at a rotation speed lower than the reference rotation speed, so that the heat dissipation capability of the radiator 10 is higher than when only the heat dissipation fan 13a is stopped or the rotation speed of only the heat dissipation fan 13a is lower than the reference rotation speed. The temperature further decreases and the temperature on the heat dissipation surface side of the Peltier element (thermoelectric member) 25 further increases. As a result, the temperature on the heat absorption surface side of the Peltier element (thermoelectric member) 25 also becomes relatively to the temperature on the heat dissipation surface side. Rise,
The defrosting of the cooler 20 is performed as compared with the case where only the heat dissipation fan 13a is stopped or the rotation speed of only the heat dissipation fan 13a is lower than the reference rotation speed by using the heat amount on the heat absorption surface side of the Peltier element (thermoelectric member) 25. It can be completed in a shorter time, and the defrosting time can be shortened to suppress the rise in the temperature in the refrigerator when the cooler is defrosted.

【0070】また、演算制御部42cが除霜用電圧(V
1)をペルチェ素子(熱電部材)25に供給し、放熱用
ファン13aを基準回転数より低い回転数で回転、また
は停止させ、第1の循環ポンプ14aを基準回転数より
も低い回転数で駆動、または停止させているときに、冷
却器温度センサ41により冷却器温度が所定温度(0
℃)を超えたことを演算制御部42cが検知すると、演
算制御部42cが冷却器20の除霜動作を解除して通常
の庫内冷却動作に戻すため、冷却器20の除霜が完了す
ると速やかに通常の庫内冷却動作に戻り、冷蔵庫庫内温
度の上昇を抑制することができる。
Further, the arithmetic and control unit 42c outputs the defrosting voltage (V
1) is supplied to the Peltier element (thermoelectric member) 25, and the radiating fan 13a is rotated or stopped at a rotation speed lower than the reference rotation speed, and the first circulation pump 14a is driven at a rotation speed lower than the reference rotation speed. Or when stopped, the cooler temperature sensor 41 sets the cooler temperature to a predetermined temperature (0
° C) is exceeded, the arithmetic control unit 42c cancels the defrosting operation of the cooler 20 and returns to the normal internal cooling operation, so that when the defrosting of the cooler 20 is completed. The operation immediately returns to the normal cooling operation in the refrigerator, and the rise in the refrigerator refrigerator temperature can be suppressed.

【0071】[0071]

【発明の効果】以上説明したように本発明は、冷却器温
度が除霜を必要とする所定温度以下のときに通常の庫内
冷却を行うための基準電圧より低い除霜用電圧を熱電部
材に供給するため、熱電部材への電源供給を停止して除
霜する従来方式に比べて、熱電部材の寿命を伸ばすこと
ができるという効果がある。
As described above, according to the present invention, when the temperature of the cooler is lower than the predetermined temperature at which defrosting is required, the defrosting voltage lower than the reference voltage for performing normal internal cooling is set. Therefore, there is an effect that the life of the thermoelectric member can be extended as compared with the conventional method in which power supply to the thermoelectric member is stopped and defrosting is performed.

【0072】また、除霜時に、放熱用ファンを停止もし
くは基準回転数よりも低い回転数で回転させると、冷却
器の除霜を短時間で終了させることができ、除霜時間を
短縮して冷却器除霜時の冷蔵庫庫内温度の上昇を抑制す
ることができるという効果がある。
Further, when the radiating fan is stopped or rotated at a rotation speed lower than the reference rotation speed at the time of defrosting, the defrosting of the cooler can be completed in a short time, and the defrosting time can be shortened. There is an effect that it is possible to suppress a rise in the temperature in the refrigerator when the cooler is defrosted.

【0073】また、除霜時に、放熱用ファンを停止もし
くは基準回転数よりも低い回転数で回転させると共に、
熱電部材の放熱面に熱結合された熱交換部と放熱器とを
流れる液体を循環させる循環ポンプを停止もしくは基準
回転数よりも低い回転数で駆動すると、放熱用ファンの
み停止もしくは放熱用ファンの回転数のみ低くした場合
よりも、冷却器の除霜をさらに短時間で終了させること
ができ、除霜時間をさらに短縮して冷却器除霜時の冷蔵
庫庫内温度の上昇をさらに抑制することができるという
効果がある。
At the time of defrosting, the heat radiation fan is stopped or rotated at a rotation speed lower than the reference rotation speed.
When the circulation pump that circulates the liquid flowing through the heat exchange part and the radiator that is thermally coupled to the heat radiation surface of the thermoelectric member is stopped or driven at a rotation speed lower than the reference rotation speed, only the heat radiation fan stops or the heat radiation fan The defrosting of the cooler can be completed in a shorter time than when only the rotation speed is lowered, and the defrosting time is further shortened to further suppress the rise in the temperature of the refrigerator compartment during the defrosting of the cooler. There is an effect that can be.

【0074】また、除霜動作中に、冷却器温度が除霜開
始の基準となる所定温度を超えると、冷却器の除霜動作
を解除して通常の庫内冷却動作に戻すことにより、冷却
器の除霜が完了すると速やかに通常の庫内冷却動作に戻
り、冷蔵庫庫内温度の上昇を抑制することができるとい
う効果がある。
When the temperature of the cooler exceeds a predetermined temperature serving as a reference for starting defrosting during the defrosting operation, the cooling operation is released by returning the cooling operation to the normal cooling operation in the refrigerator. When the defrosting of the container is completed, the operation immediately returns to the normal cooling operation in the refrigerator, and there is an effect that the rise in the refrigerator refrigerator temperature can be suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による熱電モジュール式電気冷蔵庫の実
施の形態1の全体構成を示す縦断面図
FIG. 1 is a longitudinal sectional view showing an overall configuration of a thermoelectric module type electric refrigerator according to a first embodiment of the present invention.

【図2】同実施の形態による熱電モジュール式電気冷蔵
庫の冷凍サイクルを示す概略構成図
FIG. 2 is a schematic configuration diagram showing a refrigeration cycle of the thermoelectric modular electric refrigerator according to the embodiment.

【図3】同実施の形態による熱電モジュール式電気冷蔵
庫の冷凍サイクルの放熱系の構成を示す斜視図
FIG. 3 is a perspective view showing a configuration of a heat radiation system of a refrigeration cycle of the thermoelectric module type electric refrigerator according to the embodiment.

【図4】同実施の形態による熱電モジュール式電気冷蔵
庫の冷凍サイクルの吸熱系の構成を示す斜視図
FIG. 4 is a perspective view showing a configuration of a heat absorption system of a refrigeration cycle of the thermoelectric module type electric refrigerator according to the embodiment.

【図5】同実施の形態による熱電モジュール式電気冷蔵
庫の制御を示すブロック図
FIG. 5 is a block diagram showing control of the thermoelectric modular electric refrigerator according to the embodiment.

【図6】同実施の形態による熱電モジュール式電気冷蔵
庫の制御を示すフローチャート
FIG. 6 is a flowchart showing control of the thermoelectric modular electric refrigerator according to the embodiment.

【図7】本発明による熱電モジュール式電気冷蔵庫の実
施の形態2の制御を示すブロック図
FIG. 7 is a block diagram showing control of the thermoelectric module type electric refrigerator according to the second embodiment of the present invention.

【図8】同実施の形態による熱電モジュール式電気冷蔵
庫の制御を示すフローチャート
FIG. 8 is a flowchart showing control of the thermoelectric modular electric refrigerator according to the embodiment.

【図9】本発明による熱電モジュール式電気冷蔵庫の実
施の形態3の制御を示すブロック図
FIG. 9 is a block diagram showing control of the thermoelectric module type electric refrigerator according to the third embodiment of the present invention.

【図10】同実施の形態による熱電モジュール式電気冷
蔵庫の制御を示すフローチャート
FIG. 10 is a flowchart showing control of the thermoelectric modular electric refrigerator according to the embodiment.

【図11】同実施の形態による冷却器の除霜時間と冷却
器の温度変化を示す特性図
FIG. 11 is a characteristic diagram showing a defrosting time of the cooler and a temperature change of the cooler according to the embodiment.

【符号の説明】[Explanation of symbols]

10 放熱器 13a 放熱用ファン 14a 第1の循環ポンプ 20 冷却器 25 ペルチェ素子(熱電部材) 26a 第1の熱交換部 41 冷却器温度センサ(冷却器温度検出手段) 42a,42b,42c 演算制御部 Reference Signs List 10 radiator 13a radiating fan 14a first circulating pump 20 cooler 25 Peltier element (thermoelectric member) 26a first heat exchange unit 41 cooler temperature sensor (cooler temperature detecting means) 42a, 42b, 42c arithmetic control unit

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3L045 AA02 BA01 CA02 DA04 EA01 GA07 HA01 LA10 LA12 MA01 MA04 MA20 NA16 NA19 PA02 PA03 PA04 PA05  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 3L045 AA02 BA01 CA02 DA04 EA01 GA07 HA01 LA10 LA12 MA01 MA04 MA20 NA16 NA19 PA02 PA03 PA04 PA05

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 所定電圧が印加されると相対向する2平
面に温度差が生じる熱電部材と、 庫内空気と熱交換して得た熱を前記熱電部材の前記2平
面のうちの相対的に温度が低くなる吸熱面に伝達するた
めの冷却器と、 前記熱電部材の前記2平面のうちの相対的に温度が高く
なる放熱面の熱が伝達されてその熱を庫外空気に放熱す
る放熱器と、 前記冷却器の温度を検出する冷却器温度検出手段と、 前記冷却器温度検出手段が検出した冷却器温度が所定温
度を超えているときに通常の庫内冷却を行うための基準
電圧を前記熱電部材に供給し、前記冷却器温度検出手段
が検出した冷却器温度が前記所定温度以下のときに前記
基準電圧より低い除霜用電圧を前記熱電部材に供給する
演算制御部とからなる熱電モジュール式電気冷蔵庫。
1. A thermoelectric member having a temperature difference between two opposing planes when a predetermined voltage is applied, and a heat obtained by exchanging heat with air in a refrigerator, relative to the two planes of the thermoelectric member. A cooler for transmitting the heat to the heat absorbing surface having a lower temperature, and the heat of the heat radiating surface having a relatively higher temperature among the two planes of the thermoelectric member is transmitted to radiate the heat to the outside air. A radiator; a cooler temperature detecting means for detecting the temperature of the cooler; and a reference for performing normal internal cooling when the cooler temperature detected by the cooler temperature detecting means exceeds a predetermined temperature. An arithmetic control unit that supplies a voltage to the thermoelectric member, and supplies a defrosting voltage lower than the reference voltage to the thermoelectric member when the cooler temperature detected by the cooler temperature detection unit is equal to or lower than the predetermined temperature. A thermoelectric modular electric refrigerator.
【請求項2】 所定電圧が印加されると相対向する2平
面に温度差が生じる熱電部材と、 庫内空気と熱交換して得た熱を前記熱電部材の前記2平
面のうちの相対的に温度が低くなる吸熱面に伝達するた
めの冷却器と、 前記熱電部材の前記2平面のうちの相対的に温度が高く
なる放熱面の熱が伝達されてその熱を庫外空気に放熱す
る放熱器と、 前記放熱器に庫外空気を送風する放熱用ファンと、 前記冷却器の温度を検出する冷却器温度検出手段と、 前記冷却器温度検出手段が検出した冷却器温度が所定温
度を超えているときに通常の庫内冷却を行うための基準
電圧を前記熱電部材に供給すると共に前記放熱用ファン
を基準回転数で回転させ、前記冷却器温度検出手段が検
出した冷却器温度が前記所定温度以下のときに前記基準
電圧より低い除霜用電圧を前記熱電部材に供給すると共
に前記放熱用ファンを停止もしくは基準回転数よりも低
い回転数で回転させる演算制御部とからなる熱電モジュ
ール式電気冷蔵庫。
2. A thermoelectric member in which a temperature difference occurs between two opposing planes when a predetermined voltage is applied, and a heat obtained by exchanging heat with air in a refrigerator, a relative temperature of the thermoelectric member between the two planes. A cooler for transmitting the heat to the heat absorbing surface having a lower temperature, and the heat of the heat radiating surface having a relatively higher temperature among the two planes of the thermoelectric member is transmitted to radiate the heat to the outside air. A radiator; a radiator fan for blowing outside air to the radiator; a cooler temperature detecting means for detecting a temperature of the cooler; and a cooler temperature detected by the cooler temperature detecting means at a predetermined temperature. Supplying a reference voltage for performing normal internal cooling to the thermoelectric member while exceeding the temperature and rotating the radiating fan at a reference rotation speed, the cooler temperature detected by the cooler temperature detecting means is set to the When the temperature is lower than the predetermined temperature, Thermoelectric module electric refrigerator comprising a calculation control unit which rotates at a lower rotational speed than the stop or reference rotational speed of said radiating fan with the use voltage supplied to the thermoelectric element.
【請求項3】 所定電圧が印加されると相対向する2平
面に温度差が生じる熱電部材と、 庫内空気と熱交換して得た熱を前記熱電部材の前記2平
面のうちの相対的に温度が低くなる吸熱面に伝達するた
めの冷却器と、 前記熱電部材の前記2平面のうちの相対的に温度が高く
なる放熱面に熱結合された熱交換部と、 庫外空気と熱交換する放熱器と、 前記熱交換部、前記放熱器と共に、環状の放熱系の循環
経路を形成し、前記循環経路内に充填した液体を循環さ
せる回転式の循環ポンプと、 前記放熱器に庫外空気を送風する放熱用ファンと、 前記冷却器の温度を検出する冷却器温度検出手段と、 前記冷却器温度検出手段が検出した冷却器温度が所定温
度を超えているときに通常の庫内冷却を行うための基準
電圧を前記熱電部材に供給すると共に前記放熱用ファン
を基準回転数で回転させ、さらに前記循環ポンプを基準
回転数で駆動し、前記冷却器温度検出手段が検出した冷
却器温度が所定温度以下のときに前記基準電圧より低い
除霜用電圧を前記熱電部材に供給すると共に前記放熱用
ファンを停止もしくは基準回転数よりも低い回転数で回
転させ、さらに前記循環ポンプを停止もしくは基準回転
数よりも低い回転数で駆動する演算制御部とからなる熱
電モジュール式電気冷蔵庫。
3. A thermoelectric member in which a temperature difference occurs between two opposing planes when a predetermined voltage is applied, and a heat obtained by exchanging heat with air in the refrigerator, relative to the two planes of the thermoelectric member. A cooler for transmitting the heat to the heat absorbing surface having a lower temperature, a heat exchanging portion thermally coupled to a heat radiating surface having a relatively higher temperature among the two planes of the thermoelectric member; A radiator to be exchanged, a rotary circulating pump that forms a circulation path of an annular radiating system together with the heat exchange section and the radiator, and circulates a liquid filled in the circulation path; A radiating fan for blowing outside air; a cooler temperature detecting means for detecting a temperature of the cooler; and a normal inside of the refrigerator when the cooler temperature detected by the cooler temperature detecting means exceeds a predetermined temperature. When a reference voltage for cooling is supplied to the thermoelectric member, Rotating the radiating fan at a reference speed, further driving the circulating pump at the reference speed, and defrosting lower than the reference voltage when the cooler temperature detected by the cooler temperature detecting means is equal to or lower than a predetermined temperature. A control unit for supplying a supply voltage to the thermoelectric member and stopping or rotating the radiating fan at a rotation speed lower than a reference rotation speed, and further stopping or driving the circulation pump at a rotation speed lower than the reference rotation speed. And a thermoelectric modular electric refrigerator.
【請求項4】 演算制御部は、除霜用電圧を熱電部材に
供給しているときに、冷却器温度検知手段により冷却器
温度が所定温度を超えたことを検知すると、冷却器の除
霜動作を解除して通常の庫内冷却動作に戻すことを特徴
とする請求項1から3のいずれか一項に記載の熱電モジ
ュール式電気冷蔵庫。
4. The defroster of the cooler, when the cooler temperature detecting means detects that the cooler temperature has exceeded a predetermined temperature while supplying the defrosting voltage to the thermoelectric member. The thermoelectric module-type electric refrigerator according to any one of claims 1 to 3, wherein the operation is canceled to return to a normal inside-room cooling operation.
JP2000100308A 2000-04-03 2000-04-03 Thermoelectric module type electric refrigerator Pending JP2001289550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000100308A JP2001289550A (en) 2000-04-03 2000-04-03 Thermoelectric module type electric refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000100308A JP2001289550A (en) 2000-04-03 2000-04-03 Thermoelectric module type electric refrigerator

Publications (1)

Publication Number Publication Date
JP2001289550A true JP2001289550A (en) 2001-10-19

Family

ID=18614532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000100308A Pending JP2001289550A (en) 2000-04-03 2000-04-03 Thermoelectric module type electric refrigerator

Country Status (1)

Country Link
JP (1) JP2001289550A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3379174A1 (en) * 2017-03-21 2018-09-26 LG Electronics Inc. Refrigerator
KR20180106765A (en) * 2017-03-21 2018-10-01 엘지전자 주식회사 Refrigerator
CN113508274A (en) * 2019-02-28 2021-10-15 Lg电子株式会社 Control method of refrigerator
WO2022010112A1 (en) * 2020-07-08 2022-01-13 삼성전자주식회사 Method for controlling refrigerator having peltier element, and refrigerator using same
WO2022131561A1 (en) * 2020-12-14 2022-06-23 엘지전자 주식회사 Refrigerator and control method thereof
WO2022131563A1 (en) * 2020-12-14 2022-06-23 엘지전자 주식회사 Refrigerator and control method thereof
WO2022131562A1 (en) * 2020-12-14 2022-06-23 엘지전자 주식회사 Refrigerator and control method thereof
WO2022131560A1 (en) * 2020-12-14 2022-06-23 엘지전자 주식회사 Refrigerator and control method thereof

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102281711B1 (en) 2017-03-21 2021-07-27 엘지전자 주식회사 Refrigerator
CN108626933A (en) * 2017-03-21 2018-10-09 Lg电子株式会社 Refrigerator
EP3379174A1 (en) * 2017-03-21 2018-09-26 LG Electronics Inc. Refrigerator
KR20180106766A (en) * 2017-03-21 2018-10-01 엘지전자 주식회사 Refrigerator
KR102304277B1 (en) 2017-03-21 2021-09-23 엘지전자 주식회사 Refrigerator
US10731900B2 (en) 2017-03-21 2020-08-04 Lg Electronics Inc. Refrigerator
US10859294B2 (en) 2017-03-21 2020-12-08 Lg Electronics Inc. Refrigerator with thermoelectric module
CN108626933B (en) * 2017-03-21 2021-03-26 Lg电子株式会社 Refrigerator with a door
KR20180106765A (en) * 2017-03-21 2018-10-01 엘지전자 주식회사 Refrigerator
US20180274827A1 (en) * 2017-03-21 2018-09-27 Lg Electronics Inc. Refrigerator
CN113508274A (en) * 2019-02-28 2021-10-15 Lg电子株式会社 Control method of refrigerator
CN113508274B (en) * 2019-02-28 2023-09-15 Lg电子株式会社 Control method of refrigerator
WO2022010112A1 (en) * 2020-07-08 2022-01-13 삼성전자주식회사 Method for controlling refrigerator having peltier element, and refrigerator using same
WO2022131561A1 (en) * 2020-12-14 2022-06-23 엘지전자 주식회사 Refrigerator and control method thereof
WO2022131563A1 (en) * 2020-12-14 2022-06-23 엘지전자 주식회사 Refrigerator and control method thereof
WO2022131562A1 (en) * 2020-12-14 2022-06-23 엘지전자 주식회사 Refrigerator and control method thereof
WO2022131560A1 (en) * 2020-12-14 2022-06-23 엘지전자 주식회사 Refrigerator and control method thereof

Similar Documents

Publication Publication Date Title
KR20000053149A (en) Thermoelectric cooling system
US9200828B2 (en) Refrigerator
JP2001289550A (en) Thermoelectric module type electric refrigerator
JP2010133590A (en) Refrigerator-freezer
US10641537B2 (en) Ice making system for refrigerator appliance
US10156394B2 (en) Air flow and drainage system for ice maker
KR200451891Y1 (en) Electric fan
JP3789019B2 (en) Air conditioner for electric vehicles
CN102345959A (en) Refrigerator
JPH10300305A (en) Thermoelectric module type electric refrigerator
WO2002020292A1 (en) High-efficiency thermoelectric cooling and heating box for food and drink storage in a vehicle
EP3771642B1 (en) Restricted space air chiller
WO2005057104A1 (en) Refrigerator
CN113124605B (en) Refrigerator with frost reduction module and control method thereof
JPH10300306A (en) Thermoelectric module type electric refrigerator
CN113819668A (en) Refrigerating device
JP3751710B2 (en) Thermoelectric modular electric refrigerator
CN220931453U (en) Refrigerating appliance
CN219846487U (en) Dehumidifying structure for cleaning machine and cleaning machine
JP2017020753A (en) refrigerator
JPH0891045A (en) Heat pump type air-conditioner for vehicle
CN220321707U (en) Air duct assembly and refrigerator
CN220624579U (en) Cold and hot cabinet
WO2012062204A1 (en) Semiconductor cold and heat storage box
JP2004144364A (en) Refrigerator