JP3751710B2 - Thermoelectric modular electric refrigerator - Google Patents

Thermoelectric modular electric refrigerator Download PDF

Info

Publication number
JP3751710B2
JP3751710B2 JP10600097A JP10600097A JP3751710B2 JP 3751710 B2 JP3751710 B2 JP 3751710B2 JP 10600097 A JP10600097 A JP 10600097A JP 10600097 A JP10600097 A JP 10600097A JP 3751710 B2 JP3751710 B2 JP 3751710B2
Authority
JP
Japan
Prior art keywords
heat
thermoelectric
refrigerator
heat exchanger
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10600097A
Other languages
Japanese (ja)
Other versions
JPH10300304A (en
Inventor
宏昭 北川
宗万 前田
勝之 桑島
敏和 荒川
成臣 徳永
治 中川
Original Assignee
松下冷機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松下冷機株式会社 filed Critical 松下冷機株式会社
Priority to JP10600097A priority Critical patent/JP3751710B2/en
Priority to PCT/JP1998/001884 priority patent/WO1998048226A1/en
Publication of JPH10300304A publication Critical patent/JPH10300304A/en
Application granted granted Critical
Publication of JP3751710B2 publication Critical patent/JP3751710B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/14Collecting or removing condensed and defrost water; Drip trays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/08Refrigerator tables

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Removal Of Water From Condensation And Defrosting (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ペルチェ素子等の熱電部材を使用して庫内を冷却する熱電モジュール式電気冷蔵庫に関するものである。
【0002】
【従来の技術】
冷凍システムにペルチェ素子を使用した技術は、特表平6−504361号公報に開示されている。この技術は、ペルチェ素子の放熱面と冷却面のそれぞれに、熱交換水を循環させる循環経路を熱結合した熱電熱交換ブロックを形成し、ペルチェ素子の冷却面に熱結合された循環経路に介装した熱交換器での冷却によって目的物を冷却し、あるいはペルチェ素子の放熱面に熱結合された循環経路に介装した熱交換器での放熱によって目的物を温める。
【0003】
【発明が解決しようとする課題】
しかし、上記従来の技術を利用して冷蔵庫を実現するためには、熱効率のさらなる向上が必要であるがこれを満足するものはまだ提供されていない。
【0004】
本発明の目的は、熱電熱交換ブロックおよび吸熱系配管部分に発生する結露水を、熱電熱交換ブロックを庫内に設けることにより低減してさらなる熱効率の向上が図れる熱電モジュール式電気冷蔵庫を提供することにある。
【0005】
本発明の次の目的は、前記庫内に設けられた熱電熱交換ブロックおよび放熱系配管の庫内に及ぼす熱影響を低減して、さらなる熱効率の向上が図れる熱電モジュール式電気冷蔵庫を提供することにある。
【0006】
【課題を解決するための手段】
上記のような目的を達成するために、請求項1の発明の熱電モシュール式電気冷蔵庫は、熱電部材の放熱面に熱結合した第1の熱交換部と前記の熱電部材の冷却面に熱結合した第2の熱交換部とを形成した熱電熱交換ブロックを備え、第1の循環ポンプと放熱用熱交換器と前記熱電熱交換ブロックの第1の熱交換部とで第1の循環経路をなして、その内部に液体を充填して放熱系を形成し、第2の循環ポンプと冷却用熱交換器と前記熱電熱交換ブロックの第2の熱交換部とで第2の循環経路をなして、その内部に液体を充填して吸熱系を形成し、吸熱系の冷却用熱交換器と冷蔵庫本体の庫内空気との熱交換で冷蔵庫本体の庫内を冷却するとともに、前記熱電熱交換ブロックを冷蔵庫本体の庫外と断熱壁で仕切られた庫内に設けるとともに、第1の熱交換部を庫内側断熱壁に形成した凹部に嵌合することを特徴とするものである。
【0007】
このような構成では、熱電熱交換ブロックが冷蔵庫本体の庫内にあって、吸熱系の全てが庫内側に位置し庫外の温かい空気と接触しないので、吸熱系にて生じる結露水を低減することができ、その分熱効率が上がるとともに、放熱系による庫内空気への熱影響をさらに低減することができ、熱効率がさらに向上する。
【0008】
請求項2の発明は、請求項1の発明において、さらに、熱電熱交換ブロックの第1の熱交換部での第1の循環経路の入口部および出口部の配管を、熱電熱交換ブロックの断熱壁との対面部から断熱壁を通じて冷蔵庫本体の庫外に引き出したものであり、熱電熱交換ブロックが庫内に設けられても、これの放熱側である第1の熱交換部は断熱壁と対面して覆われ庫内空気と接触しないし、第1の循環経路は前記対面部から断熱壁を通じ庫外に引き出されて庫内に露出せず、第1の熱交換部からの出入り口配管部分ですら庫内空気と接触しないので、それらが庫内空気に及ぼす熱影響を低減することができ、その分熱効率が上がる。
【0010】
請求項の発明は、請求項1または2の発明において、さらに、放熱用熱交換器の近傍で、かつこれと熱交換する外部空気を放熱用熱交換器に向け取り入れる取入経路に、冷却用熱交換器からのドレン水を導き蒸発させる蒸発皿を設けたものであり、放熱用熱交換器と熱交換するために取り入れられる外部空気は、その取入経路に位置した蒸発皿に導かれ溜まっている冷却用熱交換器からのドレン水が、放熱用熱交換器の近傍で高い雰囲気温度にさらされて蒸発しているのを随伴させ、かつ蒸発していないドレン水を蒸発させながら随伴して、放熱用熱交換器との熱交換に及ぶので、放熱用熱交換器の放熱効率を高め、熱効率を向上することができる。
【0011】
【発明の実施の形態】
以下、本発明の代表的な一実施の形態について添付の図面を参照しながら説明する。
【0012】
本実施の形態は図1、図3に示すように、熱電部材の一例であるモジュール化したペルチェ素子25の放熱面に熱結合した第1の熱交換部26aと前記のペルチェ素子25の冷却面に熱結合した第2の熱交換部26bとを形成して一体化した熱電熱交換ブロック11を利用した冷凍サイクル方式の熱電モジュール式電気冷蔵庫である。
【0013】
本実施の形態の冷蔵庫の筐体は、図1、図2に示すように冷蔵庫本体1と、この冷蔵庫本体1の前面開口部2を開閉するように軸3で枢支された前扉4とで構成されている。冷蔵庫本体1の背面の開口部を閉塞する背面板5の内側にこの背面板5とは間隔をおいて冷蔵庫本体1に取り付けられた隔壁6と、冷蔵庫本体1の内部に取付けられた庫内形成体7との間には断熱材が充填されて断熱壁8を構成している。前記前扉4も内部に断熱材を充填されて断熱壁を構成し、断熱壁8とで庫内の外回りを覆った庫内室17を開閉できるように形成する。
【0015】
熱電熱交換ブロック11のペルチェ素子25は通電されることによって、放熱面で放熱しながら冷却面で吸熱し、この吸熱特性は放熱特性に依存する。放熱系Aは、第1の循環ポンプ14aと放熱用熱交換器10と前記熱電熱交換ブロック11の第1の熱交換部26aとを図3、図4に示すように管路32aから32cで接続して第1の循環経路をなし、その内部に液体を充填して形成されている。
【0016】
第1の循環ポンプ14aによって第1の循環路を循環される液体は、第1の熱交換部26aにてペルチェ素子25の放熱面で放熱される熱を受け取り、これを放熱用熱交換器10にて外部空気A1に移行させて放熱空気A2として、ペルチェ素子25の放熱面での放熱効率を高める。
【0017】
また、吸熱系Bは、第2の循環ポンプ14bと冷却用熱交換器20と前記熱電熱交換ブロック11の第2の熱交換部26bとを図3、図5に示すように管路32dから32fで接続して第2の循環経路をなし、その内部に液体を充填して形成されている。第2の循環ポンプ14bによって第2の循環路を循環される液体は、第2の熱交換部26bにてペルチェ素子25の冷却面での吸熱により熱を奪われて冷却され、冷却用熱交換器20にて庫内空気B1の熱を奪って冷却し、冷却空気B2とする。
【0018】
放熱系Aは冷蔵庫の筐体外への放熱を図るのに、放熱用熱交換器10を庫外室9内の下部に設置し、その上に設けた放熱用ファン13aによって庫外室9の底部を形成する下部グリル板15の吸込口15aを通じて外部空気A1を吸引し、これを放熱用熱交換器10に接触させて熱交換した後、庫外室9の天面を形成するグリル板16の放出口16aから放熱空気A2として冷蔵庫の筐体外に放出するように構成している。また、吸熱系Bは庫内を冷却するのに、庫内室17の冷蔵領域と隔壁18によって仕切られ、これにより形成された仕切り室19内の下部に冷却用熱交換器20を設け、仕切り室19の上部に設置した冷却用ファン13bによって隔壁18の下部に設けた吸込口21から吸い込んだ庫内空気B1を冷却用熱交換器20と接触させて熱交換した後、隔壁18の上部に設けた吐出口22から冷却空気B2として庫内に吐出し、これが庫内室17を下部に移行しながら冷蔵物を冷却するように構成している。
【0019】
これら、放熱系Aによる放熱のための具体的構成、および吸熱系Bによる冷却のための具体的構成は、本実施の形態に限られることはなく、種々に設計できるのは勿論である。
【0020】
本実施の形態では特に、前記熱電熱交換ブロック11は図1、図6に示すように冷蔵庫本体1の庫外室9と断熱壁8で仕切られた庫内室17に設けられている。これにより、熱電熱交換ブロック11が冷蔵庫本体1の庫内室17にあって、これの吸熱系Bの全てが庫内室17側に位置し庫外室9の温かい空気と接触しないので、吸熱系Bにて生じる結露水を低減することができ、その分熱効率が上がる。このような特長を発揮する点では他の構成は必須とならない。
【0021】
また、そのような熱電熱交換ブロック11の配置に関連して、熱電熱交換ブロック11の第1の熱交換部26aでの第1の循環経路の入口部27aおよび出口部27bの配管は、熱電熱交換ブロック11の断熱壁8との対面部11aから断熱壁8を通じて冷蔵庫本体1の庫外室9に引き出されている。これにより、熱電熱交換ブロック11が庫内室17に設けられても、これの放熱側である第1の熱交換部26aは断熱壁8と対面して覆われ庫内空気と接触せず、相互の熱交換も防止されるし、第1の循環経路は前記対面部11aから断熱壁8を通じて庫外室9に引き出されていることにより、その第1の熱交換部26aからの出入り口配管27a、27bの部分ですら庫内空気と接触せず、相互の熱交換も防止されるので、第1の熱交換部26aおよびこれから引き出される放熱系Aの配管が庫内空気に及ぼす熱影響を低減することができ、その分熱効率が上がる。
【0022】
さらに、熱電熱交換ブロック11の第1の熱交換部26aは、断熱壁8に形成した凹部8aに嵌め合わされて、側周まわりをも断熱壁8で覆われている。これによって、第1の熱交換部26aの側周部まわりが庫内空気と接触し、また熱交換することをもよく防止され、放熱系Aによる庫内空気への熱影響をさらに低減することができ、熱効率がさらに向上し好適である。
【0023】
また、放熱用熱交換器10の近傍で、かつこれと熱交換する外部空気を放熱用熱交換器10に向け取り入れる取入経路23に、冷却用熱交換器20からのドレン水24を導き蒸発させる蒸発皿28が設けられている。これにより、放熱用熱交換器10と熱交換するために取り入れられる外部空気A1は、その取入経路23に位置した蒸発皿28に導かれている冷却用熱交換器20からのドレン水24が、放熱用熱交換器10の近傍で高い雰囲気温度にさらされて蒸発しているのを随伴させ、かつ蒸発していないドレン水24を蒸発させながら随伴して、放熱用熱交換器10との熱交換に及ぶので、放熱用熱交換器10の放熱効率を随伴しているドレン水の気化熱分だけ高め、熱効率を向上することができる。
【0024】
蒸発皿28は冷却用熱交換器20からのドレン水24を仕切り室19の底部から下方に延びたドレン口29を通じて導かれ、冷蔵庫本体1の低位部に設けられるのが好適であるし、冷蔵庫本体1の容積効率に影響がなく、洗浄等のメンテナンスを行うために着脱しやすい外部にあるのが好適であるので、本実施の形態では蒸発皿28を冷蔵庫本体1の底部下の後部に設けてある。これに対応して前記放熱用熱交換器10は庫外室9の最下部にあって、蒸発皿28の直ぐ上に位置するようにされ、蒸発皿28に導かれるドレン水24に熱を与えやすく蒸発させやすい。これによってドレン水24の蒸発に伴う放熱用熱交換器10との熱交換をさらに促進できその分熱効率が向上する。
【0025】
また、放熱用ファン13aは図4に示すように左右に2つ設けられているのに対応して、蒸発皿28はそれら放熱用ファン13a、13aの間に対向する位置に設けられ、その両側の吸込口15aから吸い込まれる外気A1が、蒸発皿28の両側から放熱用熱交換器10の部分に向け流れることによって、蒸発皿28内のドレン水24を両側から効率よく蒸発させやすくしている。
【0026】
なお、第1の循環ポンプ14aは図1、図3、図4に示すように、放熱系Aの第1の循環路の最上位置にあり、かつその上に空気溜り部37aが接続されているし、第2の循環ポンプ14bは図1、図3、図5に示すように、吸熱系Bの第2の循環路の最上位置にあり、かつその上に空気溜り部37bが接続されている。これによって、放熱系Aおよび吸熱系Bの第1、第2の各循環路の液体中に万一空気が混入しても、これが第1、第2の各循環ポンプ14a、14bを通じて、最上位置にある空気溜り部37a、37bにまで上昇して溜る。従って、混入空気が第1の循環路、第2の循環路を循環したり、あるいは第1の循環ポンプ14aおよび第2の循環ポンプ14b内に溜まってこれの機能低下を来したりして、第1の熱交換部26a、第2の熱交換部26b、放熱用熱交換器10、および冷却用熱交換器20での熱交換率が低下するようなことを防止することができ、これによっても熱効率が向上する。
【0027】
第1の循環路の第1の循環ポンプ14aよりも低い途中位置、および第2の循環路の第2の循環ポンプ14bよりも低い途中位置には、T字管33aおよび33bがそれらの2つの接続口にて接続され、各T字管33aおよび33bの残りの接続口は液体の充填口に用い、充填後キャップ34a、34bにより塞ぐ。液体注入時は第1、第2の各循環路の最上部である空気溜り部37a、37bを開放して空気の逃がし口とするのが好適であり、液体の注入と同時に第1、第2の各循環路からの空気の追い出しができる。
【0028】
なお、本実施の形態の熱電熱交換ブロック11は、図6に示すように合成樹脂製のカバー41を施して設けてあり、これによってもまわりに熱影響したり、熱影響を受けたりすることが防止され、熱効率の向上に寄与する。
【0029】
【発明の効果】
請求項1の発明によれば、熱電熱交換ブロックが庫内側にあって吸熱系が温かい庫外空気に触れず、吸熱系にて生じる結露水を低減することができ、その分熱効率が上がるとともに、放熱系による庫内空気への熱影響をさらに低減することができ、熱効率がさらに向上する。
【0030】
請求項2の発明によれば、請求項1の発明に加え、さらに、熱電熱交換ブロックが庫内にあっても、これの放熱側である第1の熱交換部が断熱壁と対面して覆われ庫内空気と接触せず、これの庫内空気に及ぼす熱影響を低減することができ、その分熱効率が上がる。
【0032】
請求項の発明によれば、請求項1または2の発明に加え、さらに、冷却用熱交換器からのドレン水が蒸発して吸込み外気に随伴して放熱用熱交換器との熱交換に及ぶので、放熱用熱交換器の放熱効率を高め、熱効率を向上することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態の熱電モジュール式電気冷蔵庫の全体構成を示す断面図である。
【図2】図1の冷蔵庫の外観斜視図である。
【図3】図1の冷蔵庫の冷凍サイクルの模式図である。
【図4】図3の冷凍サイクルの放熱系の構成を示す斜視図である。
【図5】図3の冷凍サイクルの吸熱系の構成例を示す斜視図である。
【図6】図1の冷蔵後の熱電熱交換ブロックの設置状態を示す断面図である。
【符号の説明】
1 冷蔵庫本体
2 開口
4 前扉
8 断熱壁
8a 凹部
9 庫外室
10 放熱用熱交換器
13a 放熱用ファン
13b 冷却用ファン
14a 第1の循環ポンプ
14b 第2の循環ポンプ
17 庫内室
19 仕切り室
20 冷却用熱交換器
25 ペルチェ素子
26a 第1の熱交換部
26b 第2の熱交換部
27a 入口部
27b 出口部
28 蒸発皿
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thermoelectric module type electric refrigerator that cools the interior using a thermoelectric member such as a Peltier element.
[0002]
[Prior art]
A technique using a Peltier element in a refrigeration system is disclosed in Japanese Patent Publication No. 6-504361. In this technology, a thermoelectric heat exchange block is formed on each of the heat dissipation surface and the cooling surface of the Peltier element, which is thermally coupled to the circulation path for circulating the heat exchange water, and is connected to the circulation path thermally coupled to the cooling surface of the Peltier element. The target object is cooled by cooling with the mounted heat exchanger, or the target object is warmed by heat dissipation with a heat exchanger interposed in a circulation path thermally coupled to the heat dissipation surface of the Peltier element.
[0003]
[Problems to be solved by the invention]
However, in order to realize a refrigerator using the above-described conventional technology, further improvement in thermal efficiency is required, but a product satisfying this has not been provided.
[0004]
An object of the present invention is to provide a thermoelectric module type electric refrigerator capable of reducing the condensation water generated in the thermoelectric heat exchange block and the endothermic piping part by providing the thermoelectric heat exchange block in the cabinet and further improving the thermal efficiency. There is.
[0005]
The next object of the present invention is to provide a thermoelectric module type electric refrigerator capable of reducing the thermal effect on the inside of the thermoelectric heat exchange block and the heat radiating system piping provided in the inside and further improving the thermal efficiency. It is in.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the thermoelectric electric refrigerator of the invention of claim 1 is thermally coupled to the first heat exchanging portion thermally coupled to the heat radiation surface of the thermoelectric member and the cooling surface of the thermoelectric member. A thermoelectric heat exchanging block formed with the second heat exchanging portion, and the first circulation path is constituted by the first circulation pump, the heat radiating heat exchanger, and the first heat exchanging portion of the thermoelectric heat exchanging block. Then, the inside is filled with a liquid to form a heat dissipation system, and the second circulation pump, the cooling heat exchanger, and the second heat exchange part of the thermoelectric heat exchange block form a second circulation path. The inside of the refrigerator body is filled with a liquid to form an endothermic system, the inside of the refrigerator body is cooled by heat exchange between the cooling heat exchanger of the endothermic system and the inside air of the refrigerator body, and the thermoelectric heat exchange Rutotomoni provided blocks in the refrigerator partitioned by the refrigerator outside and the heat insulating wall of the refrigerator body, the It is characterized in fitting the heat exchanging portion in the recess formed in the refrigerator inside insulating wall.
[0007]
In such a configuration, since the thermoelectric heat exchange block is in the refrigerator main body, and all of the endothermic system is located on the inside of the refrigerator and does not contact the warm air outside the refrigerator, the dew condensation water generated in the endothermic system is reduced. As a result, the heat efficiency can be increased by that amount , and the influence of heat on the internal air by the heat dissipation system can be further reduced, and the heat efficiency is further improved.
[0008]
According to a second aspect of the present invention, in the first aspect of the invention, the piping of the inlet and outlet portions of the first circulation path in the first heat exchange section of the thermoelectric heat exchange block is further insulated from the thermoelectric heat exchange block. Even if a thermoelectric heat exchange block is provided in the cabinet, the first heat exchange portion on the heat dissipation side is a thermal insulation wall and is drawn out of the refrigerator main body through the thermal insulation wall from the facing portion with the wall. The first circulation path is drawn from the facing part through the heat insulating wall to the outside and not exposed to the inside, and is not exposed to the inside, and is the entrance / exit piping part from the first heat exchange part. Even if it does not come into contact with the internal air, it is possible to reduce the thermal effect that they have on the internal air, thereby increasing the heat efficiency.
[0010]
According to a third aspect of the present invention, in the first or second aspect of the present invention, cooling is further provided in the vicinity of the heat-dissipating heat exchanger and in an intake path for taking in external air to exchange heat with the heat-dissipating heat exchanger The evaporating dish is installed to evaporate the drain water from the heat exchanger, and the external air taken in for heat exchange with the heat exchanger for heat dissipation is led to the evaporating dish located in the intake path. Accompanied by the fact that the drain water from the cooling heat exchanger that has accumulated is exposed to high ambient temperature in the vicinity of the heat-dissipating heat exchanger and evaporated, and the drain water that has not evaporated is evaporated And since it extends to heat exchange with the heat exchanger for heat radiation, the heat radiation efficiency of the heat exchanger for heat radiation can be improved and the heat efficiency can be improved.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a typical embodiment of the present invention will be described with reference to the accompanying drawings.
[0012]
In the present embodiment, as shown in FIGS. 1 and 3, a first heat exchanging portion 26 a thermally coupled to a heat radiation surface of a modularized Peltier element 25, which is an example of a thermoelectric member, and a cooling surface of the Peltier element 25. This is a thermoelectric module type electric refrigerator of the refrigeration cycle type using the thermoelectric heat exchanging block 11 which is integrated with the second heat exchanging portion 26b which is thermally coupled to.
[0013]
As shown in FIGS. 1 and 2, the housing of the refrigerator of the present embodiment includes a refrigerator main body 1, and a front door 4 pivotally supported by a shaft 3 so as to open and close the front opening 2 of the refrigerator main body 1. It consists of A partition wall 6 attached to the refrigerator main body 1 at an interval from the back plate 5 inside the back plate 5 that closes the opening on the back side of the refrigerator main body 1, and an interior formation attached to the inside of the refrigerator main body 1. A heat insulating material is filled between the body 7 and the heat insulating wall 8. The front door 4 is also filled with a heat insulating material to form a heat insulating wall, and is formed so as to be able to open and close the internal chamber 17 that covers the outside of the internal space with the heat insulating wall 8.
[0015]
When the Peltier element 25 of the thermoelectric heat exchange block 11 is energized, it absorbs heat at the cooling surface while dissipating heat at the heat dissipation surface, and this heat absorption characteristic depends on the heat dissipation characteristic. The heat dissipating system A includes a first circulation pump 14a, a heat dissipating heat exchanger 10, and a first heat exchanging portion 26a of the thermoelectric heat exchanging block 11 through pipes 32a to 32c as shown in FIGS. It is connected to form a first circulation path and filled with a liquid.
[0016]
The liquid circulated through the first circulation path by the first circulation pump 14a receives heat radiated on the heat radiating surface of the Peltier element 25 in the first heat exchanging portion 26a, and this is received by the heat exchanger 10 for radiating heat. The heat radiation efficiency at the heat radiation surface of the Peltier element 25 is increased as the heat radiation air A2 by shifting to the external air A1.
[0017]
Further, the endothermic system B includes the second circulation pump 14b, the cooling heat exchanger 20, and the second heat exchanging portion 26b of the thermoelectric heat exchanging block 11 from a pipe line 32d as shown in FIGS. The second circulation path is connected by 32f, and the inside is filled with liquid. The liquid circulated through the second circulation path by the second circulation pump 14b is cooled by the heat absorption by the heat absorption at the cooling surface of the Peltier element 25 in the second heat exchange unit 26b, and heat exchange for cooling. The container 20 takes the heat of the internal air B1 and cools it to obtain the cooling air B2.
[0018]
In order to dissipate heat to the outside of the refrigerator housing, the heat dissipating system A is provided with the heat dissipating heat exchanger 10 in the lower part of the external chamber 9 and the bottom of the external chamber 9 by the heat dissipating fan 13a provided thereon. After the outside air A1 is sucked through the suction port 15a of the lower grill plate 15 that forms the heat, and is brought into contact with the heat exchanger 10 for heat dissipation to exchange heat, the grill plate 16 that forms the top surface of the outer chamber 9 The radiant air A2 is discharged from the discharge port 16a to the outside of the refrigerator casing. Further, the heat absorption system B is partitioned by the refrigeration region of the chamber 17 and the partition wall 18 to cool the interior of the chamber 17, and a cooling heat exchanger 20 is provided at the lower part of the partition chamber 19 formed thereby, The inside air B1 sucked from the suction port 21 provided in the lower part of the partition wall 18 by the cooling fan 13b installed in the upper part of the chamber 19 is brought into contact with the cooling heat exchanger 20 for heat exchange, It discharges in the store | warehouse | chamber as cooling air B2 from the provided discharge port 22, This is comprised so that a refrigeration thing may be cooled, moving the chamber interior 17 to the lower part.
[0019]
Of course, the specific configuration for heat dissipation by the heat dissipation system A and the specific configuration for cooling by the endothermic system B are not limited to the present embodiment, and can be variously designed.
[0020]
In the present embodiment, in particular, the thermoelectric heat exchange block 11 is provided in an inner chamber 17 partitioned by an outer chamber 9 and a heat insulating wall 8 of the refrigerator body 1 as shown in FIGS. Thereby, since the thermoelectric heat exchange block 11 is in the inner chamber 17 of the refrigerator body 1 and all of the endothermic system B is located on the inner chamber 17 side and does not come into contact with the warm air in the outer chamber 9, Condensed water generated in the system B can be reduced, and the heat efficiency is increased accordingly. Other configurations are not essential in terms of exhibiting such features.
[0021]
Further, in connection with such arrangement of the thermoelectric heat exchange block 11, the piping of the inlet portion 27a and the outlet portion 27b of the first circulation path in the first heat exchange portion 26a of the thermoelectric heat exchange block 11 is heated. The electric heat exchange block 11 is drawn from the facing portion 11 a of the electric heat exchanging block 11 to the heat insulating wall 8 through the heat insulating wall 8 to the outside chamber 9 of the refrigerator main body 1. Thereby, even if the thermoelectric heat exchanging block 11 is provided in the interior chamber 17, the first heat exchanging portion 26a which is the heat radiating side of the thermoelectric heat exchange block 11 is covered with the heat insulating wall 8 and does not contact the interior air, Mutual heat exchange is also prevented, and the first circulation path is drawn from the facing portion 11a to the outside chamber 9 through the heat insulating wall 8, whereby the entrance / exit pipe 27a from the first heat exchange portion 26a is drawn. , 27b does not come into contact with the air inside the cabinet, and mutual heat exchange is also prevented, so the heat effect of the first heat exchanging portion 26a and the piping of the heat radiation system A drawn from this on the inside air is reduced. Can increase the heat efficiency.
[0022]
Further, the first heat exchanging portion 26 a of the thermoelectric heat exchanging block 11 is fitted into the concave portion 8 a formed in the heat insulating wall 8, and the side periphery is also covered with the heat insulating wall 8. As a result, the periphery of the first heat exchanging portion 26a around the side periphery is in contact with the inside air, and heat exchange is well prevented, and the heat influence of the heat dissipation system A on the inside air is further reduced. This is preferable because the thermal efficiency is further improved.
[0023]
In addition, the drain water 24 from the cooling heat exchanger 20 is led and evaporated in the vicinity of the heat-dissipating heat exchanger 10 and into the intake path 23 for taking in external air to exchange heat with the heat-dissipating heat exchanger 10. An evaporating dish 28 is provided. Thereby, the drain air 24 from the cooling heat exchanger 20 led to the evaporating dish 28 located in the intake path 23 is taken from the external air A1 taken in to exchange heat with the heat dissipation heat exchanger 10. In the vicinity of the heat-dissipating heat exchanger 10, it is accompanied by evaporating by being exposed to a high ambient temperature, and accompanied by evaporating the drained water 24 that has not evaporated. Since the heat exchange extends, the heat radiation efficiency of the heat exchanger 10 for heat radiation can be increased by the heat of vaporization of the drain water associated therewith, and the heat efficiency can be improved.
[0024]
The evaporating dish 28 is preferably provided in the lower part of the refrigerator main body 1 through which the drain water 24 from the cooling heat exchanger 20 is guided through a drain port 29 extending downward from the bottom of the partition chamber 19. Since the volume efficiency of the main body 1 is not affected and it is preferable that the outside is easy to attach and detach for maintenance such as cleaning, the evaporating dish 28 is provided at the rear below the bottom of the refrigerator main body 1 in the present embodiment. It is. Correspondingly, the heat-dissipating heat exchanger 10 is located at the lowermost part of the outer chamber 9 and is located immediately above the evaporating dish 28 and applies heat to the drain water 24 guided to the evaporating dish 28. Easy to evaporate. Thereby, heat exchange with the heat exchanger 10 for heat dissipation accompanying evaporation of the drain water 24 can be further promoted, and the heat efficiency is improved accordingly.
[0025]
Further, as shown in FIG. 4, two heat dissipating fans 13a are provided on the left and right, and the evaporating dish 28 is provided at a position facing the heat dissipating fans 13a, 13a. The outside air A1 sucked in from the suction port 15a flows from both sides of the evaporating dish 28 toward the heat exchanger 10 for heat radiation, thereby making it possible to efficiently evaporate the drain water 24 in the evaporating dish 28 from both sides. .
[0026]
As shown in FIGS. 1, 3, and 4, the first circulation pump 14a is located at the uppermost position of the first circulation path of the heat dissipation system A, and an air reservoir 37a is connected thereto. As shown in FIGS. 1, 3, and 5, the second circulation pump 14b is at the uppermost position of the second circulation path of the endothermic system B, and an air reservoir 37b is connected thereon. . As a result, even if air is mixed into the liquid in each of the first and second circulation paths of the heat dissipation system A and the heat absorption system B, the air passes through the first and second circulation pumps 14a and 14b. The air pools 37a and 37b are raised and collected. Therefore, the mixed air circulates in the first circulation path and the second circulation path, or accumulates in the first circulation pump 14a and the second circulation pump 14b, resulting in a decrease in the function thereof. It can prevent that the heat exchange rate in the 1st heat exchange part 26a, the 2nd heat exchange part 26b, the heat exchanger 10 for heat radiation, and the heat exchanger 20 for cooling falls, and thereby Also improves thermal efficiency.
[0027]
The T-shaped pipes 33a and 33b are disposed in the middle position lower than the first circulation pump 14a in the first circulation path and in the middle position lower than the second circulation pump 14b in the second circulation path. The remaining connection ports of the T-shaped tubes 33a and 33b are used as liquid filling ports and are closed by caps 34a and 34b after filling. At the time of liquid injection, it is preferable to open the air reservoirs 37a and 37b, which are the uppermost portions of the first and second circulation paths, to serve as air escape ports. The air can be expelled from each circuit.
[0028]
The thermoelectric heat exchanging block 11 of the present embodiment is provided with a synthetic resin cover 41 as shown in FIG. 6, which also affects the surroundings and is affected by the heat. Is prevented and contributes to improvement of thermal efficiency.
[0029]
【The invention's effect】
According to the present invention, without touching the warm compartment outside air heat absorption based thermoelectric heat exchanger block is in the refrigerator inside, it is possible to reduce the dew condensation water generated at the heat absorption system, with correspondingly thermal efficiency is improved Moreover, the thermal influence on the air in the warehouse by the heat dissipation system can be further reduced, and the thermal efficiency is further improved.
[0030]
According to the invention of claim 2, in addition to the invention of claim 1, even if the thermoelectric heat exchange block is in the cabinet, the first heat exchange part on the heat radiating side faces the heat insulating wall. It is not in contact with the air in the warehouse, and the thermal effect on the air in the warehouse can be reduced, and the heat efficiency is increased accordingly.
[0032]
According to the invention of claim 3 , in addition to the invention of claim 1 or 2, the drain water from the cooling heat exchanger evaporates and accompanies the suction outside air for heat exchange with the heat dissipation heat exchanger. Therefore, the heat dissipation efficiency of the heat exchanger for heat dissipation can be increased and the heat efficiency can be improved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an overall configuration of a thermoelectric module type electric refrigerator according to an embodiment of the present invention.
FIG. 2 is an external perspective view of the refrigerator of FIG.
3 is a schematic diagram of a refrigeration cycle of the refrigerator of FIG. 1. FIG.
4 is a perspective view showing a configuration of a heat dissipation system of the refrigeration cycle of FIG. 3. FIG.
5 is a perspective view showing a configuration example of an endothermic system of the refrigeration cycle in FIG. 3. FIG.
6 is a cross-sectional view showing an installed state of the thermoelectric heat exchange block after refrigeration in FIG. 1;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Refrigerator main body 2 Opening 4 Front door 8 Heat insulation wall 8a Recess 9 Outer chamber 10 Heat-dissipation heat exchanger 13a Heat-dissipation fan 13b Cooling fan 14a First circulation pump 14b Second circulation pump 17 Inner chamber 19 Partition chamber 20 Heat exchanger 25 for cooling Peltier element 26a 1st heat exchange part 26b 2nd heat exchange part 27a Inlet part 27b Outlet part 28 Evaporating dish

Claims (3)

熱電部材の放熱面に熱結合した第1の熱交換部と前記の熱電部材の冷却面に熱結合した第2の熱交換部とを形成した熱電熱交換ブロックを備え、第1の循環ポンプと放熱用熱交換器と前記熱電熱交換ブロックの第1の熱交換部とで第1の循環経路をなして、その内部に液体を充填して放熱系を形成し、第2の循環ポンプと冷却用熱交換器と前記熱電熱交換ブロックの第2の熱交換部とで第2の循環経路をなして、その内部に液体を充填して吸熱系を形成し、吸熱系の冷却用熱交換器と冷蔵庫本体の庫内空気との熱交換で冷蔵庫本体の庫内を冷却するとともに、前記熱電熱交換ブロックを冷蔵庫本体の庫外と断熱壁で仕切られた庫内に設けるとともに、第1の熱交換部を庫内側断熱壁に形成した凹部に嵌合することを特徴とする熱電モジュール式電気冷蔵庫。A thermoelectric heat exchange block formed with a first heat exchange part thermally coupled to the heat radiation surface of the thermoelectric member and a second heat exchange part thermally coupled to the cooling surface of the thermoelectric member; A heat radiating heat exchanger and the first heat exchanging part of the thermoelectric heat exchanging block form a first circulation path, and the inside is filled with a liquid to form a heat radiating system. A heat exchanger for cooling and a heat exchanger for cooling the endothermic system by forming a second endless circulation path between the heat exchanger for heat and the second heat exchanging portion of the thermoelectric heat exchanging block, and filling the liquid therein and the refrigerator body by heat exchange with the air inside the refrigerator body to cool the inside of the refrigerator, Rutotomoni provided the heat electric heating exchanger blocks inside the refrigerator partitioned by the refrigerator outside and the heat insulating wall of the refrigerator body, the first thermoelectric module, characterized in that fitted into the concave portion forming the heat exchanging section to the compartment inner side heat insulating wall Electric refrigerators. 前記熱電熱交換ブロックの第1の熱交換部での第1の循環経路の入口部および出口部の配管を、熱電熱交換ブロックの断熱壁との対面部から断熱壁を通じて冷蔵庫本体の庫外に引き出した請求項1に記載の熱電モジュール式電気冷蔵庫。  The piping of the inlet part and the outlet part of the first circulation path in the first heat exchange part of the thermoelectric heat exchange block is passed from the facing part to the heat insulation wall of the thermoelectric heat exchange block to the outside of the refrigerator main body through the heat insulation wall. The thermoelectric modular electric refrigerator according to claim 1, which is drawn out. 放熱用熱交換器の近傍で、かつこれと熱交換する外部空気を放熱用熱交換器に向けて取り入れる取入経路に、冷却用熱交換器からのドレン水を導き蒸発させる蒸発皿を設けた請求項1または2に記載の熱電モジュール式電気冷蔵庫。In the vicinity of the heat-dissipating heat exchanger and an intake path for taking in external air to exchange heat with the heat-dissipating heat exchanger, an evaporating dish for introducing drain water from the cooling heat exchanger and evaporating it was installed. The thermoelectric module type electric refrigerator according to claim 1 or 2 .
JP10600097A 1997-04-23 1997-04-23 Thermoelectric modular electric refrigerator Expired - Fee Related JP3751710B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP10600097A JP3751710B2 (en) 1997-04-23 1997-04-23 Thermoelectric modular electric refrigerator
PCT/JP1998/001884 WO1998048226A1 (en) 1997-04-23 1998-04-22 Thermoelectric module type electric refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10600097A JP3751710B2 (en) 1997-04-23 1997-04-23 Thermoelectric modular electric refrigerator

Publications (2)

Publication Number Publication Date
JPH10300304A JPH10300304A (en) 1998-11-13
JP3751710B2 true JP3751710B2 (en) 2006-03-01

Family

ID=14422440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10600097A Expired - Fee Related JP3751710B2 (en) 1997-04-23 1997-04-23 Thermoelectric modular electric refrigerator

Country Status (2)

Country Link
JP (1) JP3751710B2 (en)
WO (1) WO1998048226A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102317213B1 (en) * 2017-03-16 2021-10-26 엘지전자 주식회사 Refrigerator
KR102309117B1 (en) 2017-03-21 2021-10-06 엘지전자 주식회사 Refrigerator

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4423342Y1 (en) * 1964-08-08 1969-10-01
JPS56101582U (en) * 1980-01-07 1981-08-10
JPH04126973A (en) * 1990-09-18 1992-04-27 Toshiba Corp Electronic refrigerator
DK0566646T3 (en) * 1991-01-15 2000-10-30 Hydrocool Pty Ltd Thermoelectric system
JPH07180948A (en) * 1993-12-21 1995-07-18 Aisin Seiki Co Ltd Water drop vaporising device for cold storage case
JPH0989413A (en) * 1995-09-28 1997-04-04 Sanyo Electric Co Ltd Cooler

Also Published As

Publication number Publication date
WO1998048226A1 (en) 1998-10-29
JPH10300304A (en) 1998-11-13

Similar Documents

Publication Publication Date Title
KR100331206B1 (en) Thermoelectric cooling system
US20020121095A1 (en) Controlled temperature compartment apparatus
US20100018224A1 (en) Stirling cooler
JP3751710B2 (en) Thermoelectric modular electric refrigerator
JP2005156105A (en) Refrigerator
CN111609651A (en) Entrance refrigerator and refrigerator
JP3454751B2 (en) Storage
JPH10300305A (en) Thermoelectric module type electric refrigerator
JP2001289550A (en) Thermoelectric module type electric refrigerator
JPH10300306A (en) Thermoelectric module type electric refrigerator
JP3789294B2 (en) refrigerator
KR102034440B1 (en) Soju freezer for camping
CN114076470A (en) Refrigerator with bottom-mounted evaporator
CN220931453U (en) Refrigerating appliance
CN220624579U (en) Cold and hot cabinet
CN219390180U (en) Refrigerating equipment for semiconductor refrigeration
CN219063862U (en) Refrigerating apparatus
CN219063863U (en) Bottom refrigeration equipment
JP2804520B2 (en) Cold storage
CN217330362U (en) Food processor
JP4229941B2 (en) refrigerator
JP3744878B2 (en) Thermoelectric modular electric refrigerator
JP3841769B2 (en) Storage
JPH1194438A (en) Refrigerator
JP2006046842A (en) Freezer-refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051208

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees