JPH04126973A - Electronic refrigerator - Google Patents

Electronic refrigerator

Info

Publication number
JPH04126973A
JPH04126973A JP2248131A JP24813190A JPH04126973A JP H04126973 A JPH04126973 A JP H04126973A JP 2248131 A JP2248131 A JP 2248131A JP 24813190 A JP24813190 A JP 24813190A JP H04126973 A JPH04126973 A JP H04126973A
Authority
JP
Japan
Prior art keywords
heat
refrigerator
heat exchange
thermo
thermoelectric element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2248131A
Other languages
Japanese (ja)
Inventor
Noriaki Sakamoto
則秋 阪本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2248131A priority Critical patent/JPH04126973A/en
Publication of JPH04126973A publication Critical patent/JPH04126973A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PURPOSE:To improve a cooling efficiency in a refrigerator by a method method wherein some thermo-siphons having heat exchanging medium enclosed therein are disposed at a thermal absorption side and a thermal radiation side of a thermo-electrical element, an inside part of the refrigerator is cooled by the thermo-siphons at the heat absorption side and the heat is radiated by the thermo-siphon at the heat radiation side, CONSTITUTION:A thermo-electrical element 8 is buried at a thermal insulating wall 5 at a rear surface of a main body 1 of a refrigerator. Both ends of pipes 9b and 10b are connected to both upper and lower ends of heat exchanging parts 9a and 10a of the thermo-electrical element 8. Heat exchanging medium in the heat exchanging parts 9c and 10a at a high temperature side constituting the thermo-siphons 9 and 10 may absorb heat and be gasified to reduce its density. The heat exchanging medium ascends in the thermo-siphons 9 and 10, reaches the heat exchanging parts 9a and 10c and radiates heat and again the medium is liquified, the medium descends in the thermo-siphons 9 and 10 and reaches the heat exchanging parts 9c and 10a after absorbing heat at the heat exchanging part 9c in the refrigerator. The absorbed heat is transported to a heat absorbing surface 8a of the thermo-electrical element 8. The heat absorbed in the thermo-electrical element 8 is transmitted from the heat radiating surface 8b to the heat exchanging medium in the thermo-siphons 10 outside the refrigerator and then the heat is radiated from the heat exchanging part 10c out of the refrigerator.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、熱電素子を冷熱源とした電子冷蔵庫に関する
Detailed Description of the Invention [Object of the Invention] (Industrial Application Field) The present invention relates to an electronic refrigerator using a thermoelectric element as a cooling source.

(従来の技術) 従来の電子冷蔵庫は、例えば実開平1−109771号
公報に示されているように、冷蔵庫本体の背面断熱壁に
熱電素子を埋め込むように設け、この熱電素子の吸熱面
を庫内側に、放熱面を庫外側に向けると共に、熱電素子
の吸熱面と放熱面に、それぞれアルミ製熱交換体を接触
させた構成となっている。この場合、熱雷素子は、電流
を流すとペルチェ効果により吸熱面から熱を吸収してそ
の熱を放熱面から放出する現象を発生し、それによって
庫内の熱を庫内側のアルミ製熱交換体を通して熱電素子
の吸熱面から吸収して庫内を冷却する一方、熱電素子内
に吸収した熱は、その放熱面から庫外側のアルミ製熱交
換体を通して庫外に放散される。
(Prior Art) In a conventional electronic refrigerator, as shown in, for example, Japanese Utility Model Application Publication No. 1-109771, a thermoelectric element is embedded in the back insulating wall of the refrigerator body, and the heat absorption surface of the thermoelectric element is used as a heat absorbing surface of the refrigerator. On the inside, the heat radiating surface faces the outside of the refrigerator, and aluminum heat exchangers are brought into contact with the heat absorbing surface and the heat radiating surface of the thermoelectric element, respectively. In this case, when a current is applied to the thermal lightning element, the Peltier effect causes a phenomenon in which heat is absorbed from the heat-absorbing surface and released from the heat-radiating surface, thereby transferring the heat inside the refrigerator to the aluminum heat exchanger inside the refrigerator. The inside of the refrigerator is cooled by absorption through the body from the heat absorption surface of the thermoelectric element, while the heat absorbed in the thermoelectric element is radiated outside the refrigerator from the heat radiating surface through the aluminum heat exchanger on the outside of the refrigerator.

(発明が解決しようとする課題) ところで、庫内の冷却効率を良くするには、庫内の空気
−庫内側アルミ製熱交換体−熱電素子→庫外側アルミ製
熱交換体→外気への熱伝達を効率良く行わせる必要があ
るが、前記従来構成では、アルミ製熱交換体を通しての
熱伝達に限界があり、どうしても冷却効率が低く抑えら
れてしまう。このため、現在、実用化されている電子冷
蔵庫は、庫内容積の小さな小型冷蔵庫に限られ、大型の
電子冷蔵庫の実用化が困難であった。
(Problem to be solved by the invention) By the way, in order to improve the cooling efficiency inside the refrigerator, the air inside the refrigerator - the aluminum heat exchanger inside the refrigerator - the thermoelectric element → the aluminum heat exchanger outside the refrigerator → the heat to the outside air. It is necessary to efficiently transfer heat, but in the conventional configuration, there is a limit to heat transfer through the aluminum heat exchanger, and the cooling efficiency is inevitably kept low. For this reason, electronic refrigerators currently in practical use are limited to small refrigerators with small internal volumes, and it has been difficult to put large electronic refrigerators into practical use.

本発明は、この様な事情を考慮してなされたもので、従
ってその目的は、庫内の冷却効率を大幅に向上できて、
庫内容積の拡大も可能な電子冷蔵庫を提供することにあ
る。
The present invention was made in consideration of these circumstances, and its purpose is to significantly improve the cooling efficiency inside the refrigerator.
To provide an electronic refrigerator whose internal volume can be expanded.

[発明の構成コ (課題を解決するための手段) 本発明の電子冷蔵庫は、熱電素子を冷熱源とし、たもの
において、前記熱電素子の吸熱側と放熱側に、それぞれ
熱交換媒体を封入したサーモサイホンを熱交換可能に配
設し、吸熱側のサーモサイホンにより庫内を冷却する一
方、放熱側のサーモサイホンにより前記熱電素子の熱を
庫外に放散するようにしたものである。
[Structure of the Invention (Means for Solving the Problem) The electronic refrigerator of the present invention uses a thermoelectric element as a cold heat source, and a heat exchange medium is sealed on the heat absorption side and the heat radiation side of the thermoelectric element, respectively. Thermosiphons are arranged to enable heat exchange, and the thermosiphon on the heat absorption side cools the inside of the refrigerator, while the thermosiphon on the heat radiation side radiates the heat of the thermoelectric element to the outside of the refrigerator.

この場合、吸熱側のサーモサイホンの庫内側熱交換部の
中心位置を熱電素子の吸熱面の中心位置より低くし、放
熱側のサーモサイホンの庫外側熱交換部の中心位置を前
記熱電素子の放熱面の中心位置より高くしても良い。
In this case, the center position of the inside heat exchange part of the thermosiphon on the heat absorption side is set lower than the center position of the heat absorption surface of the thermoelectric element, and the center position of the outside heat exchange part of the thermosiphon on the heat radiation side is set lower than the center position of the heat exchange part of the heat absorption side of the thermoelectric element. It may be set higher than the center position of the surface.

更に、吸熱側及び放熱側の両サーモサイホンの熱電素子
側熱交換部の内壁を凹凸状に形成しても良い。
Furthermore, the inner walls of the thermoelectric element-side heat exchange portions of both the heat-absorbing and heat-radiating thermosiphons may be formed into an uneven shape.

また、吸熱側のサーモサイホンの庫内側熱交換部を冷蔵
庫本体の断熱壁の内側板の裏面に添わせるように配置し
て、前記内側板を冷却面としても良い。
Moreover, the inside heat exchange part of the thermosyphon on the heat absorption side may be arranged so as to be attached to the back surface of the inner plate of the heat insulating wall of the refrigerator main body, and the inner plate may be used as the cooling surface.

(作用) 熱電素子に通電すると、ペルチェ効果により吸熱面から
熱を吸収してその熱を放熱面から放出する現象を発生し
、それによって両側のサーモサイホン内の熱交換媒体を
相変化させて重力を利用して自然循環させる。これによ
り、吸熱側(庫内側)のサーモサイホンは、庫内側熱交
換部において庫内の熱を吸収して庫内を冷却し、庫内か
ら吸収した熱を熱交換媒体の循環作用により熱電素子の
吸熱面へ輸送する。そして、熱電素子内に吸収された熱
は、その放熱面から放熱側(庫外側)のサーモサイホン
内の熱交換媒体に伝達され、この熱交換媒体の循環作用
によりサーモサイホンの庫外側熱交換部から庫外に放散
される。この様に、熱交換媒体の循環作用により庫内か
ら庫外への熱の移動を促進させることができるため、庫
内を効率良く冷却することが可能となる。
(Function) When a thermoelectric element is energized, it absorbs heat from the heat absorption surface due to the Peltier effect and releases the heat from the heat radiation surface, causing a phase change in the heat exchange medium in the thermosiphons on both sides, which causes the gravity Use this to create natural circulation. As a result, the thermosyphon on the heat absorption side (inside the refrigerator) absorbs the heat inside the refrigerator in the refrigerator side heat exchange section to cool the refrigerator interior, and the heat absorbed from the refrigerator is transferred to the thermoelectric element by the circulation action of the heat exchange medium transport to the endothermic surface of The heat absorbed in the thermoelectric element is transferred from its heat radiation surface to the heat exchange medium in the thermosiphon on the heat radiation side (outside the refrigerator), and due to the circulation of this heat exchange medium, the heat exchanger on the outside of the thermosiphon is released outside the warehouse. In this way, the circulation of the heat exchange medium can promote the transfer of heat from the inside of the refrigerator to the outside of the refrigerator, making it possible to efficiently cool the interior of the refrigerator.

ところで、サーモサイホンによる熱輸送の原理は、高温
側の熱交換部内の熱交換媒体が外部から熱を吸収して気
化することにより、密度が小さくなった熱交換媒体がサ
ーモサイホン内を上昇して低温側の熱交換部に至り、こ
こで放熱して再び液化することにより、密度が大きくな
った熱交換媒体が、重力によりサーモサイホン内を下降
して高温側の熱交換部へ至るという循環を繰り返して熱
輸送を行うものであり、熱交換媒体の循環を相変化と重
力を利用して自然に行わせるところに特徴がある。
By the way, the principle of heat transport using a thermosiphon is that the heat exchange medium in the heat exchange section on the high temperature side absorbs heat from the outside and evaporates, so that the heat exchange medium with reduced density rises inside the thermosiphon. The heat exchange medium reaches the heat exchange section on the low temperature side, where it radiates heat and liquefies again, and the heat exchange medium, which has increased in density, descends inside the thermosiphon due to gravity and reaches the heat exchange section on the high temperature side, creating a cycle. It transports heat repeatedly, and is unique in that it uses phase change and gravity to naturally circulate the heat exchange medium.

従って、吸熱側のサーモサイホンの庫内側熱交換部の中
心位置を熱雷素子の吸熱面の中心位置より低くし、放熱
側のサーモサイホンの庫外側熱交換部の中心位置を前記
熱電素子の放熱面の中心位置より高くすれば、両サーモ
サイホンの高温側の熱交換部(熱交換媒体の密度が気化
により小さくなる部分)の中心位置が低温側の熱交換部
(熱交換媒体の密度が液化により大きくなる部分)の中
心位置より低くなるので、重力を利用した熱交換媒体の
自然循環が促進されて、熱輸送効率が高まる。
Therefore, the center position of the inside heat exchange part of the thermosiphon on the heat absorption side is set lower than the center position of the heat absorption surface of the thermoelectric element, and the center position of the outside heat exchange part of the thermosiphon on the heat radiation side is set lower than the center position of the heat exchange part of the heat radiation side of the thermoelectric element. If the height is higher than the center position of the surface, the center position of the heat exchange part on the high temperature side of both thermosiphons (the part where the density of the heat exchange medium decreases due to vaporization) will be the center position of the heat exchange part on the low temperature side (the part where the density of the heat exchange medium becomes liquefied). Since the center position is lower than the center position of the larger part), natural circulation of the heat exchange medium using gravity is promoted, increasing heat transport efficiency.

更に、吸熱側及び放熱側の両ザーモサイホンの熱雷素子
側熱交換部の内壁を凹凸状に形成すれば、熱電素子側熱
交換部の内壁と熱交換媒体との接触面積(熱交換面積)
が拡大されて、両者間の熱伝達効率が高まる。
Furthermore, if the inner walls of the heat exchange parts on the thermoelectric element side of both the thermosiphons on the heat absorption side and the heat radiation side are formed in an uneven shape, the contact area (heat exchange area) between the inner wall of the heat exchange parts on the thermoelectric element side and the heat exchange medium can be increased.
is expanded, increasing the heat transfer efficiency between the two.

また、吸熱側のサーモサイホンの庫内側熱交換部を冷蔵
庫本体の断熱壁の内側板の裏面に添わせるように配置し
て、前記内側板を冷却面とすれば、庫内にサーモサイホ
ンを露出させずに済み、庫内の外観を良くできると共に
、庫内の有効容積を拡大できる。
In addition, if the heat exchange part inside the refrigerator of the thermosiphon on the heat absorption side is placed along the back side of the inner plate of the heat insulating wall of the refrigerator body, and the inner plate is used as the cooling surface, the thermosiphon is exposed inside the refrigerator. This makes it possible to improve the appearance of the inside of the refrigerator and expand the effective volume of the inside of the refrigerator.

(実施例) 以下、本発明の第1実施例を第1図及び第2図に基づい
て説明する。
(Example) Hereinafter, a first example of the present invention will be described based on FIGS. 1 and 2.

冷蔵庫本体1は、外箱2と内箱3との間に断熱材4を充
填した断熱壁5から構成され、この断熱壁5で囲まれた
庫内空間を冷却室6としている。
The refrigerator main body 1 is composed of a heat insulating wall 5 filled with a heat insulating material 4 between an outer box 2 and an inner box 3, and an internal space surrounded by the heat insulating wall 5 is defined as a cooling chamber 6.

この冷却室6の前面は扉7によって開閉される。The front side of this cooling chamber 6 is opened and closed by a door 7.

一方、冷蔵庫本体1背面の断熱壁5には熱電素子8が埋
設され、この熱電素子8の吸熱面8aが庫内側に、放熱
面8bが庫外側に向けられている。
On the other hand, a thermoelectric element 8 is embedded in the heat insulating wall 5 on the back side of the refrigerator main body 1, and the heat absorption surface 8a of the thermoelectric element 8 is directed toward the inside of the refrigerator, and the heat radiation surface 8b is directed toward the outside of the refrigerator.

そして、熱電素子8の吸熱側と放熱側に、それぞれ熱交
換媒体を封入した閉ループ形のサーモサイホン9,10
が配置されている。これら各サーモサイホン9,10は
、熱電素子8側の熱交換部98.10gが熱電素子8よ
り大きな箱形に形成され(第2図参照)、熱電素子8の
吸熱面8aと放熱面8bに密着されている。そして、熱
電素子8側の熱交換部9a、10aの上下両端にパイプ
9b、1.Obの両端を連結することにより、閉ループ
形のサーモサイホン9.10が構成されており、吸熱側
のサーモサイホン9は冷却室6内(庫内)に露出され、
その庫内側の熱交換部9cには、多数のフィン11が設
けられている。一方、放熱側のサーモサイホン10は庫
外に突出され、その庫外側の熱交換部10cにも、多数
のフィン12が設けられている。
Closed-loop thermosiphons 9 and 10 each have a heat exchange medium sealed on the heat absorption side and the heat radiation side of the thermoelectric element 8.
is located. In each of these thermosiphons 9, 10, a heat exchange part 98.10g on the thermoelectric element 8 side is formed in a box shape larger than the thermoelectric element 8 (see Fig. 2), and the heat exchange part 98.10g on the thermoelectric element 8 side is formed in a box shape larger than the thermoelectric element 8 (see Fig. Closely attached. Pipes 9b, 1. A closed-loop thermosiphon 9.10 is configured by connecting both ends of Ob, and the thermosiphon 9 on the heat absorption side is exposed inside the cooling chamber 6 (inside the warehouse).
A large number of fins 11 are provided in the heat exchange section 9c on the inside of the refrigerator. On the other hand, the thermosiphon 10 on the heat radiation side is projected outside the refrigerator, and a large number of fins 12 are also provided on the heat exchange section 10c outside the refrigerator.

この場合、両サーモサイホン9,10は、重力を利用し
た熱交換媒体の自然循環を促進させるために、吸熱側(
庫内側)のサーモサイホン9の庫内側熱交換部9Cの中
心位置C1を熱電素子8の吸熱面8aの中心位置Coよ
り低くすると共に、放熱側(庫外側)のサーモサイホン
10の庫外側熱交換部10cの中心位置C2を熱電索子
8の放熱面8bの中心位置C8より高くしている。
In this case, both thermosiphons 9 and 10 are arranged on the endothermic side (
The center position C1 of the inside heat exchange part 9C of the thermosiphon 9 on the inside of the refrigerator is set lower than the center position Co of the heat absorption surface 8a of the thermoelectric element 8, and the outside heat exchanger of the thermosiphon 10 on the heat radiation side (outside the refrigerator) The center position C2 of the portion 10c is set higher than the center position C8 of the heat radiation surface 8b of the thermoelectric cable 8.

更に、熱交換媒体と熱電素子8との間の熱伝達効率を向
上させるために、熱電素子8側の熱交換部9a、10a
の内壁を凹凸状に形成して、その熱交換部9a、10a
の内壁と熱交換媒体との接触面積(熱交換面積)を拡大
している。
Furthermore, in order to improve the heat transfer efficiency between the heat exchange medium and the thermoelectric element 8, heat exchange parts 9a and 10a on the thermoelectric element 8 side are provided.
The inner walls of the heat exchange parts 9a and 10a are formed into an uneven shape.
The contact area (heat exchange area) between the inner wall of the heat exchange medium and the heat exchange medium is expanded.

この実施例では、サーモサイホン9.10を構成するパ
イプ9b、10bは、冷蔵庫等で一般に使用されている
内径3〜10IIII11程度の細い冷媒管を使用して
低コスト化を図っている。この場合でも、サーモサイホ
ン9,10を閉ループ形に構成しているので、たとえパ
イプ9b、10bか細くでも熱交換媒体の循環(熱輸送
)がスムーズに行われる。
In this embodiment, the pipes 9b and 10b constituting the thermosiphon 9.10 are thin refrigerant pipes with an inner diameter of about 3 to 10III11, which are commonly used in refrigerators, etc., to reduce costs. Even in this case, since the thermosiphons 9 and 10 are configured in a closed loop configuration, the circulation of the heat exchange medium (heat transport) is performed smoothly even if the pipes 9b and 10b are thin.

次に、上記構成の作用について説明する。Next, the operation of the above configuration will be explained.

熱電素子8に通電して冷却を開始すると、ベルチェ効果
により熱電素子8の吸熱面8aから熱を吸収してその熱
を放熱面8bから放出する現象を発生し、それによって
両側のサーモサイホン9゜10内の熱交換媒体を相変化
と重力の作用により自然循環させて熱輸送する。このサ
ーモサイホン9.10による熱輸送の原理は、高温側の
熱交換部9c、10a内の熱交換媒体が外部から熱を吸
収して気化することにより、密度が小さくなった熱交換
媒体がサーモサイホン9.10内を上昇して低温側の熱
交換部9a、10cに至り、ここで放熱して再び液化す
ることにより、密度が大きくなった熱交換媒体が、重力
によりサーモサイホン9.10内を下降して高温側の熱
交換部9c、10aへ至るという循環を繰り返して熱輸
送を行うものである。従って、吸熱側(庫内側)のサー
モサイホン9は、庫内側熱交換部9cにおいて庫内の熱
を吸収して庫内を冷却し、庫内から吸収した熱を熱交換
媒体の循環作用により熱電素子8の吸熱面8aへ輸送す
る。そして、熱電索子8内に吸収された熱は、その放熱
面8bから放熱側(庫外側)のサーモサイホン10内の
熱交換媒体に伝達され、この熱交換媒体の循環作用によ
りサーモサイホン10の庫外側熱交換部10cから庫外
に放散される。この様に、相変化と重力を利用した熱交
換媒体の循環作用により庫内から庫外への熱の輸送を促
進させることができるため、従来構造のものに比して1
0〜100倍程度の熱輸送能力をもたせることができて
、庫内を効率良く冷却することが可能となり、庫内の冷
却効率を大幅に向上できて、庫内容積の拡大も可能とな
る。
When the thermoelectric element 8 is energized to start cooling, a phenomenon occurs in which heat is absorbed from the heat absorbing surface 8a of the thermoelectric element 8 and released from the heat dissipating surface 8b due to the Bertier effect, thereby causing the thermosiphons 9 on both sides to The heat exchange medium in the chamber 10 is naturally circulated by phase change and the action of gravity to transport heat. The principle of heat transport by this thermosiphon 9.10 is that the heat exchange medium in the heat exchange parts 9c and 10a on the high temperature side absorbs heat from the outside and evaporates, so that the heat exchange medium with a reduced density becomes thermostatic. The heat exchange medium rises inside the siphon 9.10 and reaches the heat exchange parts 9a and 10c on the low-temperature side, where it radiates heat and liquefies again, so that the heat exchange medium, which has increased in density, is moved inside the thermosiphon 9.10 by gravity. The heat is transported by repeating the cycle of descending from the heat source to the heat exchange parts 9c and 10a on the high temperature side. Therefore, the thermosiphon 9 on the heat absorption side (inside the refrigerator) cools the interior of the refrigerator by absorbing the heat inside the refrigerator in the inside heat exchange part 9c, and converts the heat absorbed from the inside of the refrigerator into a thermoelectric converter by circulating the heat exchange medium. It is transported to the heat absorption surface 8a of the element 8. The heat absorbed in the thermoelectric cord 8 is transferred from the heat radiation surface 8b to the heat exchange medium in the thermosiphon 10 on the heat radiation side (outside the refrigerator), and due to the circulation of this heat exchange medium, the heat exchange medium in the thermosiphon 10 is heated. It is radiated to the outside of the refrigerator from the outside heat exchange section 10c. In this way, it is possible to promote the transport of heat from the inside of the refrigerator to the outside of the refrigerator by the circulation of the heat exchange medium using phase change and gravity.
It is possible to have a heat transport capacity of about 0 to 100 times, which makes it possible to efficiently cool the interior of the refrigerator, greatly improve the cooling efficiency of the interior of the refrigerator, and expand the internal volume of the refrigerator.

ところで、サーモサイホンによる熱輸送は、前述したよ
うに、重力を利用して熱交換媒体を自然循環させて行う
ものであるから、熱輸送効率(熱交換媒体の循環効率)
を高めるには、重力を如何にして有効に利用するかが重
要になる。
By the way, as mentioned above, heat transport by a thermosiphon is carried out by naturally circulating the heat exchange medium using gravity, so the heat transport efficiency (circulation efficiency of the heat exchange medium)
In order to increase this, it is important to use gravity effectively.

この点、前記実施例では、吸熱側(庫内側)のサーモサ
イホン9の庫内側熱交換部9Cの中心位置C1を熱電素
子8の吸熱面8aの中心位置C6より低くすると共に、
放熱側(庫外側)のサーモサイホン10の庫外側熱交換
部10cの中心位置C2を熱電索子8の放熱面8bの中
心位置C6より高くしているので、両サーモサイホン9
,10の高温側の熱交換部9c、10a (熱交換媒体
の密度が気化により小さくなる部分)の中心位置が低温
側の熱交換部9a、10c (熱交換媒体の密度が液化
により大きくなる部分)の中心位置より低くなるので、
重力を有効に利用して熱交換媒体の自然循環を促進させ
ることができ、熱輸送効率を向上できて、冷却効率向上
に寄り、できる。
In this regard, in the embodiment, the center position C1 of the inside heat exchange part 9C of the thermosiphon 9 on the heat absorption side (inside the refrigerator) is set lower than the center position C6 of the heat absorption surface 8a of the thermoelectric element 8.
Since the center position C2 of the outside heat exchange part 10c of the thermosiphon 10 on the heat radiation side (outside the refrigerator) is set higher than the center position C6 of the heat radiation surface 8b of the thermoelectric cord 8, both thermosiphons 9
. ) is lower than the center position of
Gravity can be effectively used to promote natural circulation of the heat exchange medium, improving heat transport efficiency and improving cooling efficiency.

しかも、両側のサーモサイホン9,1oの熱電素子8側
の熱交換部9a、10aの内壁を凹凸状に形成している
ので、その熱交換部9a、10aの内壁と熱交換媒体と
の接触面積(熱交換面積)を拡大できて、両者間の熱伝
達効率を向上でき、この面からも冷却効率向上に寄与で
きる。
Moreover, since the inner walls of the heat exchange parts 9a and 10a on the thermoelectric element 8 side of the thermosiphons 9 and 1o on both sides are formed in an uneven shape, the contact area between the inner walls of the heat exchange parts 9a and 10a and the heat exchange medium (Heat exchange area) can be expanded, and heat transfer efficiency between the two can be improved, and this aspect can also contribute to improving cooling efficiency.

更に、サーモサイホン9,1oの熱電素子8側の熱交換
部9a、10aを、熱電素子8より大きな箱形に形成し
ているので、熱交換部9a、10aを熱電素子8の吸熱
面8aと放熱面8b全体に完全に密着させることができ
て、熱交換部9a。
Furthermore, since the heat exchange parts 9a and 10a on the thermoelectric element 8 side of the thermosiphons 9 and 1o are formed into a box shape larger than the thermoelectric element 8, the heat exchange parts 9a and 10a are connected to the heat absorption surface 8a of the thermoelectric element 8. The heat exchange portion 9a can be completely brought into close contact with the entire heat radiation surface 8b.

10aと熱電素子8との間の熱伝達効率を向上できる。Heat transfer efficiency between the thermoelectric element 10a and the thermoelectric element 8 can be improved.

また、サーモサイホン9,10を閉ループ形に構成して
いるので、たとえパイプ9b、10.bが細くても熱交
換媒体の循環(熱輸送)をスムーズに行わせることがで
きて、十分な熱輸送効率を確保できる。この場合、サー
モサイホン9,10を構成するパイプ9b、10bは、
冷蔵庫等で一般に使用されている内径3〜]、 O++
un程度の細い冷媒管を使用することができるので、低
コスト化を図ることができるという利点もある。
Further, since the thermosiphons 9 and 10 are configured in a closed loop type, even if the pipes 9b, 10. Even if b is thin, circulation of the heat exchange medium (heat transport) can be performed smoothly, and sufficient heat transport efficiency can be ensured. In this case, the pipes 9b and 10b constituting the thermosiphons 9 and 10 are
Inner diameter 3~], O++ commonly used in refrigerators, etc.
Since it is possible to use a refrigerant pipe as thin as 100 nm, there is also the advantage that costs can be reduced.

一方、第3図乃至第5図は本発明の第2実施例を示した
もので、この第2実施例では、吸熱側(庫内側)のサー
モサイホン13の庫内側熱交換部13cを、庫内(冷却
室6内)に露出させずに、断熱壁5の金属製の内側板1
4の裏面に添わせて蛇行状に配置し、その内側板14を
冷却面としたもので、いわゆるパイプオンシート形冷却
器と同様の構成となっている。そして、庫内側熱交換部
13cと内側板]4との熱伝達性(密着性)を良くする
ために、庫内側熱交換部13cは内側板14に接着され
ている。この場合、内側板14は、冷却室6の背面と上
面を構成しており、冷却室6の左右側面と底面は、第1
実施例と同じく内箱15により構成されている。また、
冷却室6の上面(内側板14)は、扉7側に向けて斜め
上向きとなるように傾斜されている。この理由の1つは
、庫内側熱交換部13c内で気化して密度が小さくなっ
た熱交換媒体の上向きの流れをできるだけ妨げないよう
にするためである。もう1つの理由は、外気条件や負荷
条件の如何によって、冷却面である内側板14の下面に
水滴が結露することがあるため、その水滴が食品に落下
することなく背面側に流れ落ちるように配慮したもので
ある。
On the other hand, FIGS. 3 to 5 show a second embodiment of the present invention. In this second embodiment, the inside heat exchange part 13c of the thermosiphon 13 on the heat absorption side (inside the refrigerator) is The metal inner plate 1 of the heat insulating wall 5 is
The inner plate 14 is arranged in a meandering manner along the back surface of the cooling device 4, and its inner plate 14 serves as a cooling surface, and has a structure similar to that of a so-called pipe-on-sheet type cooler. In order to improve heat transfer (adhesion) between the inside heat exchange part 13c and the inside plate 4, the inside heat exchange part 13c is bonded to the inside plate 14. In this case, the inner plate 14 constitutes the back surface and top surface of the cooling chamber 6, and the left and right side surfaces and bottom surface of the cooling chamber 6 constitute the first
It is composed of an inner box 15 as in the embodiment. Also,
The upper surface (inside plate 14) of the cooling chamber 6 is inclined diagonally upward toward the door 7 side. One of the reasons for this is to prevent as much as possible the upward flow of the heat exchange medium whose density has been reduced by vaporization within the inside heat exchange section 13c. Another reason is that depending on outside air conditions and load conditions, water droplets may condense on the lower surface of the inner plate 14, which is the cooling surface, so care must be taken to ensure that the water droplets flow down to the back side without falling onto the food. This is what I did.

一方、放熱側(庫外側)のサーモサイホン16の庫外側
熱交換部16cは、第5図に示すように、蛇行状に屈曲
されて、空気との接触面積(熱交換面積)が拡大されて
いる。この庫外側熱交換部16cには、第1実施例と同
じく、多数のフィン17が設けられて放熱性が高められ
ている。その他、前述した第1実施例と同一部分には同
一符号を付して説明を省略する。
On the other hand, the outside heat exchange part 16c of the thermosiphon 16 on the heat radiation side (outside the refrigerator) is bent in a meandering manner to enlarge the contact area (heat exchange area) with the air, as shown in FIG. There is. Similar to the first embodiment, the outer side heat exchange section 16c is provided with a large number of fins 17 to enhance heat dissipation. Other parts that are the same as those in the first embodiment described above are given the same reference numerals and their explanations will be omitted.

斯かる第2実施例では、吸熱側(庫内側)のサーモサイ
ホン13の庫内側熱交換部13cを断熱壁5の内側板1
4の裏面に添わせるように配置したので、冷却室6内に
サーモサイホン13を露出させずに済み、冷却室6内の
外観を良くできると共に、冷却室6の有効容積を拡大で
きる利点がある。
In the second embodiment, the inside heat exchange part 13c of the thermosiphon 13 on the heat absorption side (inside the refrigerator) is connected to the inside plate 1 of the heat insulating wall 5.
Since the thermosiphon 13 is arranged along the back surface of the cooling chamber 6, there is no need to expose the thermosiphon 13 inside the cooling chamber 6, which has the advantage of improving the appearance of the inside of the cooling chamber 6 and expanding the effective volume of the cooling chamber 6. .

尚、上記各実施例では、サーモサイホン9,10.13
.16の熱電素子8側の熱交換部9a。
In addition, in each of the above embodiments, the thermosiphon 9, 10.13
.. 16 thermoelectric element 8 side heat exchange part 9a.

10aの内壁を凹凸状にするために、それを矩形波状に
形成したが、三角波状に形成したり、或は内壁をメツシ
ュの粗いサンダーなどで表面処理して無数の微小凹凸を
形成したり、更には内壁に多数の突起(形状や配列は色
々考えられる)を形成するようにしても良い。
In order to make the inner wall of 10a uneven, it was formed into a rectangular wave shape, but it could also be formed into a triangular wave shape, or the inner wall could be surface treated with a coarse mesh sander to form countless minute unevenness. Furthermore, a large number of protrusions (various shapes and arrangements are possible) may be formed on the inner wall.

その他、本発明は、放熱側(庫外側)のサーモサイホン
10.16の庫外側熱交換部10c、16cを強制冷却
する電動ファンを設ける構成としても良い等、種々の変
形が可能である。
In addition, the present invention can be modified in various ways, such as a configuration in which an electric fan for forcibly cooling the outside heat exchange parts 10c and 16c of the thermosiphon 10.16 on the heat radiation side (outside the refrigerator) is provided.

[発明の効果] 本発明は以上の説明から明らかなように、熱電素子の吸
熱側と放熱側に、それぞれ熱交換媒体を封入したサーモ
サイホンを熱交換可能に配設し、吸熱側のサーモサイホ
ンにより庫内を冷却する一方、放熱側のサーモサイホン
により前記熱電素子の熱を庫外に放散するようにしたの
で、相変化と重力を利用した熱交換媒体の循環作用によ
り庫内から庫外への熱の移動を促進させることができて
、庫内の冷却効率を大幅に向上でき、庫内容積の拡大も
可能になる。
[Effects of the Invention] As is clear from the above description, the present invention includes thermosiphons each containing a heat exchange medium installed on the heat absorption side and the heat radiation side of a thermoelectric element so as to be able to exchange heat. While cooling the inside of the refrigerator, the thermosiphon on the heat dissipation side dissipates the heat of the thermoelectric element to the outside of the refrigerator, so that the heat exchange medium is circulated from the inside of the refrigerator to the outside of the refrigerator using phase change and gravity. It is possible to promote the transfer of heat, greatly improving the cooling efficiency inside the refrigerator, and making it possible to expand the internal volume of the refrigerator.

この場合、吸熱側のサーモサイホンの庫内側熱交換部の
中心位置を熱雷素子の吸熱面の中心位置より低くシ、放
熱側のサーモサイホンの庫外側熱交換部の中心位置を前
記熱電素子の放熱面の中心位置より高くすれば、両サー
モサイホンの高温側の熱交換部(熱交換媒体の密度が気
化により小さくなる部分)の中心位置が低温側の熱交換
部(熱交換媒体の密度が液化により大きくなる部分)の
中心位置より低くなるので、重力を有効に利用して熱交
換媒体の自然循環を促進することができ、熱輸送効率を
向上できる。
In this case, the center position of the inside heat exchange part of the thermosiphon on the heat absorption side is set lower than the center position of the heat absorption surface of the thermoelectric element, and the center position of the outside heat exchange part of the thermosiphon on the heat radiation side is set lower than the center position of the heat exchange part of the heat absorption side of the thermoelectric element. If it is set higher than the center position of the heat radiation surface, the center position of the heat exchange part on the high temperature side of both thermosiphons (the part where the density of the heat exchange medium decreases due to vaporization) will be higher than the center position of the heat exchange part on the low temperature side (the part where the density of the heat exchange medium decreases due to vaporization). Since it is lower than the center position of the portion (which becomes larger due to liquefaction), it is possible to effectively utilize gravity to promote natural circulation of the heat exchange medium, and improve heat transport efficiency.

更に、吸熱側及び放熱側の両サーモサイホンの熱雷素子
側熱交換部の内壁を凹凸状に形成すれば、熱電素子側熱
交換部の内壁と熱交換媒体との接触面積(熱交換面積)
を拡大できて、両者間の熱伝達効率を向上できる。
Furthermore, if the inner walls of the heat exchange parts on the thermoelectric element side of both thermosiphons on the heat absorption side and the heat radiation side are formed in an uneven shape, the contact area (heat exchange area) between the inner wall of the heat exchange parts on the thermoelectric element side and the heat exchange medium can be increased.
can be expanded, and the heat transfer efficiency between the two can be improved.

また、吸熱側のサーモサイホンの庫内側熱交換部を冷蔵
庫本体の断熱壁の内側板の裏面に添わせるように配置し
て、前記内側板を冷却面とすれば、庫内にサーモサイホ
ンを露出させずに済み、庫内の外観を良くできると共に
、庫内の有効容積を拡大できる。
In addition, if the heat exchange part inside the refrigerator of the thermosiphon on the heat absorption side is placed along the back side of the inner plate of the heat insulating wall of the refrigerator body, and the inner plate is used as the cooling surface, the thermosiphon is exposed inside the refrigerator. This makes it possible to improve the appearance of the inside of the refrigerator and expand the effective volume of the inside of the refrigerator.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の第1実施例を示したもので
、第1図は全体の縦断側面図、第2図はサーモサイホン
の熱雷素子側熱交換部の斜視図である。そして、第3図
乃至第5図は本発明の第2実施例を示したもので、第3
図は全体の縦断側面図、第4図は吸熱側(庫内側)のサ
ーモサイホンの配置形態を示す斜視図、第5図は放熱側
(庫外側)のサーモサイホンの配置形態を示す斜視図で
ある。 図面中、1は冷蔵庫本体、2は外箱、3は内箱、4は断
熱材、5は断熱壁、6は冷却室(庫内)、8は熱電素子
、8aは吸熱面、8bは放熱面、9は吸熱側のサーモサ
イホン、10は放熱側のサー換部、10cは庫外側熱交
換部、11及び12はフィン、13は吸熱側のサーモサ
イホン、14は内側板、16は放熱側のサーモサイホン
、17はフィンである。
Figures 1 and 2 show a first embodiment of the present invention, with Figure 1 being a longitudinal sectional side view of the whole, and Figure 2 being a perspective view of the heat exchanger on the thermosiphon side. . 3 to 5 show the second embodiment of the present invention, and the third embodiment shows the second embodiment of the present invention.
The figure is a longitudinal side view of the whole, Figure 4 is a perspective view showing the arrangement of thermosiphons on the heat absorption side (inside the refrigerator), and Figure 5 is a perspective view showing the arrangement of thermosiphons on the heat radiation side (outside the refrigerator). be. In the drawing, 1 is the refrigerator body, 2 is the outer box, 3 is the inner box, 4 is the insulation material, 5 is the insulation wall, 6 is the cooling chamber (inside the refrigerator), 8 is the thermoelectric element, 8a is the heat absorption surface, 8b is the heat radiation 9 is the thermosiphon on the heat absorption side, 10 is the heat exchanger on the heat radiation side, 10c is the outside heat exchanger, 11 and 12 are fins, 13 is the thermosiphon on the heat absorption side, 14 is the inner plate, 16 is the heat radiation side 17 is a fin.

Claims (1)

【特許請求の範囲】 1、熱電素子を冷熱源とした電子冷蔵庫において、前記
熱電素子の吸熱側と放熱側に、それぞれ熱交換媒体を封
入したサーモサイホンを熱交換可能に配設し、吸熱側の
サーモサイホンにより庫内を冷却する一方、放熱側のサ
ーモサイホンにより前記熱電素子の熱を庫外に放散する
ようにしたことを特徴とする電子冷蔵庫。 2、吸熱側のサーモサイホンの庫内側熱交換部の中心位
置を熱電素子の吸熱面の中心位置より低くし、放熱側の
サーモサイホンの庫外側熱交換部の中心位置を前記熱電
素子の放熱面の中心位置より高くしたことを特徴とする
請求項1記載の電子冷蔵庫。 3、吸熱側及び放熱側の両サーモサイホンの熱電素子側
熱交換部の内壁を凹凸状に形成したことを特徴とする請
求項1又は2記載の電子冷蔵庫。 4、吸熱側のサーモサイホンの庫内側熱交換部を冷蔵庫
本体の断熱壁の内側板の裏面に添わせるように配置して
、前記内側板を冷却面としたことを特徴とする請求項1
乃至3のいずれかに記載の電子冷蔵庫。
[Scope of Claims] 1. In an electronic refrigerator using a thermoelectric element as a cold heat source, thermosiphons each containing a heat exchange medium are disposed on the heat absorption side and the heat radiation side of the thermoelectric element to enable heat exchange, and the heat absorption side An electronic refrigerator characterized in that the inside of the refrigerator is cooled by a thermosiphon, and the heat of the thermoelectric element is radiated outside the refrigerator by a thermosiphon on the heat radiation side. 2. The center position of the inside heat exchange part of the thermosiphon on the heat absorption side is lower than the center position of the heat absorption surface of the thermoelectric element, and the center position of the outside heat exchange part of the thermosiphon on the heat radiation side is set lower than the center position of the heat exchange part of the outside side of the thermoelectric element. 2. The electronic refrigerator according to claim 1, wherein the electronic refrigerator is located higher than the center position of the electronic refrigerator. 3. The electronic refrigerator according to claim 1 or 2, characterized in that the inner walls of the thermoelectric element side heat exchange portions of both the thermosiphons on the heat absorption side and the heat radiation side are formed in an uneven shape. 4. Claim 1, characterized in that the inside heat exchange part of the thermosiphon on the heat absorption side is arranged so as to be aligned with the back surface of the inner plate of the heat insulating wall of the refrigerator main body, and the inner plate is used as the cooling surface.
4. The electronic refrigerator according to any one of 3 to 3.
JP2248131A 1990-09-18 1990-09-18 Electronic refrigerator Pending JPH04126973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2248131A JPH04126973A (en) 1990-09-18 1990-09-18 Electronic refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2248131A JPH04126973A (en) 1990-09-18 1990-09-18 Electronic refrigerator

Publications (1)

Publication Number Publication Date
JPH04126973A true JPH04126973A (en) 1992-04-27

Family

ID=17173692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2248131A Pending JPH04126973A (en) 1990-09-18 1990-09-18 Electronic refrigerator

Country Status (1)

Country Link
JP (1) JPH04126973A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05312454A (en) * 1992-05-08 1993-11-22 Toshiba Corp Electronic refrigerator
JPH08170859A (en) * 1994-12-15 1996-07-02 Toshiba Corp Freezer refrigerator
JPH1089828A (en) * 1996-07-23 1998-04-10 Mando Mach Co Ltd Food storage
JPH10246531A (en) * 1997-03-03 1998-09-14 Eco Touenteii One:Kk Thermoelectric conversion device
WO1998048226A1 (en) * 1997-04-23 1998-10-29 Matsushita Refrigeration Company Thermoelectric module type electric refrigerator
US6351951B1 (en) * 1998-03-30 2002-03-05 Chen Guo Thermoelectric cooling device using heat pipe for conducting and radiating
WO2002020292A1 (en) * 2000-09-07 2002-03-14 Korea Institute Of Science And Technology High-efficiency thermoelectric cooling and heating box for food and drink storage in a vehicle
WO2003021165A1 (en) * 2001-09-03 2003-03-13 Wolfram Bohnenkamp Cooling device
KR20040005502A (en) * 2002-07-10 2004-01-16 박종후 Portable refrigerator
JP2008523874A (en) * 2004-12-15 2008-07-10 アルチュリク・アノニム・シルケチ Thermoelectric cooling / heating equipment
JP2015521272A (en) * 2012-05-07 2015-07-27 フォノニック デバイセズ、インク System and method for thermoelectric heat exchange system
WO2019172001A1 (en) * 2018-03-06 2019-09-12 Phcホールディングス株式会社 Refrigeration device
US10458683B2 (en) 2014-07-21 2019-10-29 Phononic, Inc. Systems and methods for mitigating heat rejection limitations of a thermoelectric module

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05312454A (en) * 1992-05-08 1993-11-22 Toshiba Corp Electronic refrigerator
JPH08170859A (en) * 1994-12-15 1996-07-02 Toshiba Corp Freezer refrigerator
JPH1089828A (en) * 1996-07-23 1998-04-10 Mando Mach Co Ltd Food storage
JPH10246531A (en) * 1997-03-03 1998-09-14 Eco Touenteii One:Kk Thermoelectric conversion device
WO1998048226A1 (en) * 1997-04-23 1998-10-29 Matsushita Refrigeration Company Thermoelectric module type electric refrigerator
US6351951B1 (en) * 1998-03-30 2002-03-05 Chen Guo Thermoelectric cooling device using heat pipe for conducting and radiating
WO2002020292A1 (en) * 2000-09-07 2002-03-14 Korea Institute Of Science And Technology High-efficiency thermoelectric cooling and heating box for food and drink storage in a vehicle
WO2003021165A1 (en) * 2001-09-03 2003-03-13 Wolfram Bohnenkamp Cooling device
KR20040005502A (en) * 2002-07-10 2004-01-16 박종후 Portable refrigerator
JP2008523874A (en) * 2004-12-15 2008-07-10 アルチュリク・アノニム・シルケチ Thermoelectric cooling / heating equipment
JP2015521272A (en) * 2012-05-07 2015-07-27 フォノニック デバイセズ、インク System and method for thermoelectric heat exchange system
US10012417B2 (en) 2012-05-07 2018-07-03 Phononic, Inc. Thermoelectric refrigeration system control scheme for high efficiency performance
JP6378464B1 (en) * 2012-05-07 2018-08-22 フォノニック デバイセズ、インク System and method for thermoelectric heat exchange system
JP2018159540A (en) * 2012-05-07 2018-10-11 フォノニック デバイセズ、インク System and method about thermoelectric heat exchange system
JP2018159539A (en) * 2012-05-07 2018-10-11 フォノニック デバイセズ、インク System and method about thermoelectric heat exchange system
US10458683B2 (en) 2014-07-21 2019-10-29 Phononic, Inc. Systems and methods for mitigating heat rejection limitations of a thermoelectric module
WO2019172001A1 (en) * 2018-03-06 2019-09-12 Phcホールディングス株式会社 Refrigeration device
JPWO2019172001A1 (en) * 2018-03-06 2020-10-22 Phcホールディングス株式会社 Refrigeration equipment

Similar Documents

Publication Publication Date Title
JP3017837B2 (en) Electronic equipment
US5315830A (en) Modular thermoelectric assembly
US6530420B1 (en) Heat carrier
JPH04126973A (en) Electronic refrigerator
JP2004319658A (en) Electronic cooler
JPS63318460A (en) Portable heating and cooling device
JP2004020007A (en) Electronic temperature control cabinet
JPH0821679A (en) Electronic refrigeration type drinking water cooler
JPH0338619Y2 (en)
JPH04174269A (en) Electronic refrigerator
JPH0658685A (en) Heat accumulating panel
JP2001358488A (en) Cooler for facility
JP2606344Y2 (en) Electronic cool box
JPH05312455A (en) Electronic refrigerator
CN219332196U (en) Constant temperature type cold compress bag
JP2000274908A (en) Refrigeration/heat-insulation apparatus
JPH06221738A (en) Electronic refrigerating and heating plant
JPH0777374A (en) Warming and cold storage box
JPH08303919A (en) Electronic refrigerator
JPH10111059A (en) Electronic cooling type refrigerator
JP2000035294A (en) Plate type heat pipe and cooling structure using the same
JPS62276380A (en) Electronic type refrigerator
JPH08121928A (en) Refrigerator
JPH1068569A (en) Cold/hot storeroom
JPH05264152A (en) Cooling device