JPH04174269A - Electronic refrigerator - Google Patents

Electronic refrigerator

Info

Publication number
JPH04174269A
JPH04174269A JP29957890A JP29957890A JPH04174269A JP H04174269 A JPH04174269 A JP H04174269A JP 29957890 A JP29957890 A JP 29957890A JP 29957890 A JP29957890 A JP 29957890A JP H04174269 A JPH04174269 A JP H04174269A
Authority
JP
Japan
Prior art keywords
heat
thermosiphon
refrigerant
refrigerator
thermoelectric element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29957890A
Other languages
Japanese (ja)
Inventor
Noriaki Sakamoto
則秋 阪本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP29957890A priority Critical patent/JPH04174269A/en
Publication of JPH04174269A publication Critical patent/JPH04174269A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PURPOSE:To largely improve a cooling efficiency by disposing an indoor side thermosiphon so that its heat radiator is disposed at an uppermost side of the thermosiphon and its heat absorber is disposed at a lowermost side, and disposing an outdoor side thermosiphon so that its heat absorber is disposed at the lowermost side and its heat radiator is disposed at the uppermost side. CONSTITUTION:An indoor side thermosiphon 9 is disposed so that its heat radiator is disposed at the uppermost side of the thermosiphon 9 and its heat absorber 9c is disposed at the lowermost side. On the other hand, an outdoor side thermosiphon 10 is disposed so that its heat absorber is disposed at the lowermost side of the thermosiphon 10 and its heat radiator 10c is disposed at the uppermost side. Refrigerant tanks 9a, 10a of the thermosiphons 9, 10 are formed substantially in the same flat box shape as that of a thermoelectric element 8, and are brought into close contact with the heat absorbing surface 8a and the heat radiating surface 8b of the element 8 as the heat radiator and the heat absorber. Accordingly, heat transfer between the thermosiphons 9, 10 and the element 8 can be directly efficiently performed.

Description

【発明の詳細な説明】 [発明の目的〕 (産業上の利用分野) 本発明は、熱電素子を冷熱源とした電子冷蔵庫に関する
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to an electronic refrigerator using a thermoelectric element as a cold source.

(従来の技術) 従来の電子冷蔵庫は、例えば実開平1−109771号
公報に示されているように、冷蔵庫本体の背面断熱壁に
熱電素子を埋め込むように設け、この熱電素子の吸熱面
を庫内側に、放熱面を庫外側に向けると共に、熱電素子
の吸熱面と放熱面に、それぞれアルミ製熱交換体を接触
させた構成となっている。この場合、熱電素子は、電流
を流すとベルチェ効果により吸熱面から熱を吸収してそ
の熱を放熱面から放出する現象を発生し、それによって
庫内の熱を庫内側のアルミ製熱交換体を通して熱電素子
の吸熱面から吸収して庫内を冷却する一方、熱電素子内
に吸収した熱は、その放熱面から庫外側のアルミ製熱交
換体を通して庫外に放散される。
(Prior Art) In a conventional electronic refrigerator, as shown in, for example, Japanese Utility Model Application Publication No. 1-109771, a thermoelectric element is embedded in the back insulating wall of the refrigerator body, and the heat absorption surface of the thermoelectric element is used as a heat absorbing surface of the refrigerator. On the inside, the heat radiating surface faces the outside of the refrigerator, and aluminum heat exchangers are brought into contact with the heat absorbing surface and the heat radiating surface of the thermoelectric element, respectively. In this case, when a current is applied to the thermoelectric element, the Beltier effect causes a phenomenon in which it absorbs heat from its heat-absorbing surface and releases it from its heat-radiating surface, thereby transferring the heat inside the refrigerator to the aluminum heat exchanger inside the refrigerator. The heat absorbed by the thermoelectric element is absorbed through the heat absorption surface of the thermoelectric element to cool the inside of the refrigerator, while the heat absorbed in the thermoelectric element is radiated to the outside of the refrigerator from the heat radiation surface through the aluminum heat exchanger on the outside of the refrigerator.

(発明が解決しようとする課題) ところで、庫内の冷却効率を良くするには、庫内の空気
−庫内側アルミ製熱交換体−熱電素子−庫外側アルミ製
熱交換体−外気への熱伝達を効率良く行わせる必要があ
るが、前記従来構成では、アルミ製熱交換体を通しての
熱伝達に限界があり、どうしても冷却効率が低く抑えら
れてしまう。
(Problem to be Solved by the Invention) By the way, in order to improve the cooling efficiency inside the refrigerator, the air inside the refrigerator - the aluminum heat exchanger inside the refrigerator - the thermoelectric element - the aluminum heat exchanger outside the refrigerator - the heat to the outside air. It is necessary to efficiently transfer heat, but in the conventional configuration, there is a limit to heat transfer through the aluminum heat exchanger, and the cooling efficiency is inevitably kept low.

近年、この冷却効率の問題を改善するために、実開昭6
4−41871号公報(第10図参照)に示すように、
冷蔵庫本体31の背面に熱電素子32を設けると共に、
この熱電素子32の庫内側の吸熱面にアルミ製熱交換ブ
ロック33を密着させ、このアルミ製熱交換ブロック3
3にサーモサイホン34を密着させ、このサーモサイホ
ン34により冷却室35を冷却するように構成したもの
がある。このサーモサイホン34による熱輸送の原理は
、庫内側の吸熱部34a内の冷媒が冷却室35から熱を
吸収して気化することにより、密度が小さくなった冷媒
がサーモサイホン34内を上昇して熱電素子32側の放
熱部34bに至り、ここで放熱して再び液化することに
より、密度が大きくなった冷媒が、重力によりサーモサ
イホン34内を下降して庫内側の吸熱部34aへ至ると
いう循環を繰り返して熱輸送を行うものである。従って
、サーモサイホン34による熱輸送(即ち冷媒の循環)
を促進させるためには、冷媒の密度か小さくなる部分で
ある庫内側の一吸熱部34aの位置を、冷媒の密度が大
きくなる部分である放熱部34bの位置よりも低くする
と共に、両者の高低差(揚程)を小さくする必要がある
In recent years, in order to improve this problem of cooling efficiency,
As shown in Publication No. 4-41871 (see Figure 10),
A thermoelectric element 32 is provided on the back of the refrigerator main body 31, and
An aluminum heat exchange block 33 is brought into close contact with the heat absorption surface of the thermoelectric element 32 on the inside of the refrigerator.
There is one in which a thermosiphon 34 is brought into close contact with the cooling chamber 35, and the cooling chamber 35 is cooled by the thermosiphon 34. The principle of heat transport by the thermosiphon 34 is that the refrigerant in the heat absorption part 34a on the inside of the refrigerator absorbs heat from the cooling chamber 35 and evaporates, so that the refrigerant with reduced density rises inside the thermosiphon 34. The refrigerant reaches the heat dissipation section 34b on the thermoelectric element 32 side, where it dissipates heat and liquefies again, so that the refrigerant, whose density has increased, descends inside the thermosiphon 34 due to gravity and reaches the heat absorption section 34a on the inside of the refrigerator. Heat is transported by repeating this process. Therefore, heat transport (i.e. refrigerant circulation) by the thermosiphon 34
In order to promote this, the position of one heat absorbing part 34a on the inside of the refrigerator, which is the part where the density of the refrigerant decreases, is lower than the position of the heat radiating part 34b, which is the part where the density of the refrigerant increases, and the height of the two is adjusted. It is necessary to reduce the difference (lift head).

しかしながら、上記公報記載のものては、熱電素子32
が冷蔵庫本体31の背面に配置されていて、サーモサイ
ホン34の吸熱部34aが冷却室35の側面の上部から
下部にかけて配設されているので、吸熱部34Hの最下
部と放熱部34bとの高低差(揚程)が大きくなり過ぎ
て、冷媒の循環(熱輸送)が妨げられてしまう欠点があ
る。しかも、サーモサイホン34の放熱部34bから熱
電素子32の吸熱面への熱伝達経路中にアルミ製熱交換
ブロック33が介在されているので、そのアルミ製熱交
換ブロック33を通しての熱伝達に限界があり、これも
冷却効率を悪くする原因となる。更に、熱電素子32の
放熱側は、従来と同じくアルミ製放熱フィン36を通し
て放熱させるようになっているため、放熱を積極的に行
わせることができず、これも冷却効率を悪くする原因と
なる。
However, in the one described in the above publication, the thermoelectric element 32
is arranged on the back of the refrigerator main body 31, and the heat absorption part 34a of the thermosiphon 34 is arranged from the upper part to the lower part of the side surface of the cooling chamber 35, so that the height of the lowest part of the heat absorption part 34H and the heat radiation part 34b is different. The disadvantage is that the difference (head) becomes too large, which impedes the circulation of the refrigerant (heat transport). Moreover, since the aluminum heat exchange block 33 is interposed in the heat transfer path from the heat radiation part 34b of the thermosiphon 34 to the heat absorption surface of the thermoelectric element 32, there is a limit to the heat transfer through the aluminum heat exchange block 33. This also causes poor cooling efficiency. Furthermore, since the heat radiation side of the thermoelectric element 32 is designed to radiate heat through the aluminum radiation fins 36 as in the past, heat cannot be actively radiated, which also causes poor cooling efficiency. .

本発明は、この様な事情を考慮してなされたもので、従
ってその目的は、冷却効率を大幅に向上できる電子冷蔵
庫を提供することにある。
The present invention has been made in consideration of such circumstances, and therefore, its purpose is to provide an electronic refrigerator that can significantly improve cooling efficiency.

[発明の構成] (課題を解決するための手段) 本発明の電子冷蔵庫は、熱電素子を冷熱源としたものに
おいて、前記熱電素子を冷却室の天井部分に配置すると
共に、前記熱電素子の吸熱面と放熱面に、それ(れ冷媒
を封入したサーモサイホンの冷媒タンクを密着させ、庫
内側サーモサイホンを、放熱部になる前記冷媒タンクが
庫内側サーモサイホンの最上部で吸熱部が最下部となる
ように配置してその吸熱部により前記冷却室を冷却する
一方、庫外側サーモサイホンを、吸熱部になる前記冷媒
タンクが庫外側サーモサイホンの最下部で放熱部が最上
部となるように配置してその放熱部により前記熱電素子
の熱を庫外に放散するようにしたものである。
[Structure of the Invention] (Means for Solving the Problems) The electronic refrigerator of the present invention uses a thermoelectric element as a cold heat source, in which the thermoelectric element is disposed on the ceiling of a cooling chamber, and the thermoelectric element absorbs heat. The refrigerant tank of the thermosiphon filled with refrigerant is brought into close contact with the surface and the heat radiation surface, and the refrigerant tank, which will become the heat radiation part, is at the top of the inside thermosiphon and the heat absorption part is at the bottom. The cooling chamber is cooled by its heat absorption part, while the outside thermosiphon is arranged so that the refrigerant tank, which becomes the heat absorption part, is at the bottom of the outside thermosiphon and the heat radiation part is at the top. The heat of the thermoelectric element is then radiated to the outside of the refrigerator by the heat radiating portion.

この場合、庫内側サーモサイホンの吸熱部を、冷却室の
天井断熱壁の内側板の裏面に添わせるように配置して、
前記内側板を冷却面としても良い。
In this case, the heat absorbing part of the inside thermosyphon is arranged so as to be aligned with the back side of the inside plate of the ceiling insulation wall of the cooling room.
The inner plate may be used as a cooling surface.

また、少なくとも一方のサーモサイホンは、冷媒タンク
に出入りする冷媒の通路が複数本並列に設けられた構成
としても良い。
Furthermore, at least one of the thermosiphons may have a configuration in which a plurality of refrigerant passages in and out of the refrigerant tank are provided in parallel.

(作用) 熱電素子に通電すると、ベルチェ効果により吸熱面から
熱を吸収してその熱を放熱面から放出する現象を発生し
、それによって両側のサーモサイホン内の冷媒を相変化
させて重力を利用して自熱循環させる。これにより、庫
内側サーモサイホンは、その吸熱部において冷却室内の
熱を吸収して冷却し、冷却室内から吸収した熱を冷媒の
循環作用により熱電素子の吸熱面へ輸送する。そして、
熱電素子内に吸収された熱は、その放熱面から庫外側サ
ーモサイホン内の冷媒に伝達され、この冷媒の循環作用
により庫外側サーモサイホンの放熱部から庫外に放散さ
れる。この様に、冷媒の循環作用により冷却室から庫外
への熱の移動を促進させることができるため、冷却室を
効率良く冷却することが可能となる。
(Function) When a thermoelectric element is energized, a phenomenon occurs in which heat is absorbed from the heat absorption surface due to the Beltier effect and released from the heat radiation surface, thereby changing the phase of the refrigerant in the thermosiphons on both sides and utilizing gravity. and self-heat circulation. As a result, the inside thermosiphon absorbs and cools the heat inside the cooling chamber in its heat absorption portion, and transports the heat absorbed from the cooling chamber to the heat absorption surface of the thermoelectric element by the circulation action of the refrigerant. and,
The heat absorbed in the thermoelectric element is transferred from its heat radiation surface to the refrigerant in the outside thermosiphon, and is radiated outside the refrigerator from the heat radiating part of the outside thermosiphon due to the circulation of this refrigerant. In this way, the circulation of the refrigerant can promote the transfer of heat from the cooling chamber to the outside of the refrigerator, making it possible to efficiently cool the cooling chamber.

この場合、両側のサーモサイホンの冷媒タンクがそれぞ
れ放熱部・吸熱部として熱電素子の吸熱面・放熱面に密
着されているので、従来のアルミ製熱交換ブロックを介
在させたものと比較してサーモサイホンと熱電素子との
間の熱伝達が直接的に効率良く行われる。
In this case, the refrigerant tanks of the thermosiphons on both sides are in close contact with the heat absorption and heat radiation surfaces of the thermoelectric element as heat radiation and heat absorption parts, respectively, so the thermosiphon is Heat transfer between the siphon and the thermoelectric element takes place directly and efficiently.

しかも、熱電素子を冷却室の天井部分に配置すると共に
、庫内側サーモサイホンを、その放熱部(冷媒タンク)
が庫内側サーモサイホンの最上部て吸熱部が最下部とな
るように配置する一方、庫外側サーモサイホンを、その
吸熱部(冷媒タンク)が庫外側サーモサイホンの最下部
で放熱部か最上部となるように配置しているので、冷媒
の密度か小さくなる部分(吸熱部)の位置を、冷媒の密
度が大きくなる部分(放熱部)の位置よりも低くさせる
理想的なサーモサイホンの配置形態となり、冷媒の循環
に重力を有効に利用できると共に、両者の高低差(揚程
)を小さくすることができて、サーモサイホン内の冷媒
の循環を促進させることができる。
In addition, the thermoelectric element is placed on the ceiling of the cooling room, and the inside thermosiphon is connected to its heat dissipation section (refrigerant tank).
The inside thermosiphon is placed at the top and the heat absorption part is at the bottom, while the outside thermosiphon is placed so that its heat absorption part (refrigerant tank) is at the bottom of the outside thermosiphon and the heat radiation part is at the top. This makes it an ideal thermosiphon arrangement where the part where the density of the refrigerant decreases (the heat absorption part) is lower than the part where the density of the refrigerant increases (the heat radiation part). In addition, gravity can be effectively utilized for the circulation of the refrigerant, and the height difference (lift head) between the two can be reduced, thereby promoting the circulation of the refrigerant within the thermosiphon.

その上、庫内側サーモサイホンの吸熱部(冷却器として
機能する部分)を冷却室の天井部分に配置することがで
きるので、その冷却作用により冷却室内の冷気が天井部
分から下向きに流れて冷却室内の隅々まで効率良く冷却
できる。
In addition, the heat absorbing part (the part that functions as a cooler) of the inside thermosiphon can be placed on the ceiling of the cooling room, so the cooling effect allows the cold air in the cooling room to flow downward from the ceiling. It can efficiently cool every corner of the room.

この場合、庫内側サーモサイホンの吸熱部を、冷却室の
天井断熱壁の内側板の裏面に添わせるように配置して、
前記内側板を冷却面とすれば、冷却室内にサーモサイホ
ンを露出させずに済み、冷却室内の外観を良くできると
共に、冷却室の有効容積を更に拡大できる。
In this case, the heat absorbing part of the inside thermosyphon is arranged so as to be aligned with the back side of the inside plate of the ceiling insulation wall of the cooling room.
If the inner plate is used as a cooling surface, there is no need to expose the thermosiphon inside the cooling chamber, the appearance of the inside of the cooling chamber can be improved, and the effective volume of the cooling chamber can be further expanded.

また、少なくとも一方のサーモサイホンについては、冷
媒タンクに出入りする冷媒の通路が複数本並列に設けら
れた構成とすれば、冷媒の循環能力ひいては熱輸送能力
を更に向上できる。
Furthermore, if at least one thermosiphon is configured to have a plurality of parallel paths for refrigerant going in and out of the refrigerant tank, the refrigerant circulation ability and hence the heat transport ability can be further improved.

(実施例) 以下、本発明の第1実施例を第1図及び第2図に基づい
て説明する。
(Example) Hereinafter, a first example of the present invention will be described based on FIGS. 1 and 2.

冷蔵庫本体1は、外箱2と内箱3との間に断熱材4を充
填した断熱壁5から構成され、この断熱壁5で囲まれた
庫内空間を冷却室6としている。
The refrigerator main body 1 is composed of a heat insulating wall 5 filled with a heat insulating material 4 between an outer box 2 and an inner box 3, and an internal space surrounded by the heat insulating wall 5 is defined as a cooling chamber 6.

この冷却室6の前面は扉7によって開閉される。The front side of this cooling chamber 6 is opened and closed by a door 7.

一方、冷却室6の天井部分の断熱壁5には、熱電素子8
が埋設され、この熱電素子8の吸熱面8aが庫内側(下
側)に、放熱面8bが庫外側(上側)に向けられている
。そして、熱電素子8の吸熱側(庫内側)と放熱側(庫
外側)に、それぞれ冷媒を封入した閉ループ形のサーモ
サイホン9゜10が配置されている。これら各サーモサ
イホン9.10は、熱電素子8と熱交換するために冷媒
タンク9a、10aを備えている。これら各冷媒タンク
9a、10aは、熱電素子8と略同−若しくはそれより
大きな扁平箱形に形成され(第2図参照)、熱電素子8
の吸熱面8aと放熱面8bの全面に密着されている。そ
して、各冷媒タンク9a、10aの前後両側面にバイブ
9b、10bの両端を連結することにより、閉ループ形
のサーモサイホン9,10が構成されており、庫内側サ
ーモサイホン9の吸熱部9cは、冷却室6内の天井部分
に露出され、その吸熱部9Cには、多数のフィン11が
設けられている。一方、庫外側サーモサイホン10の放
熱部10cは庫外に突出され、その放熱部10cにも、
多数のフィン12が設けられている。
On the other hand, a thermoelectric element 8 is installed on the heat insulating wall 5 at the ceiling of the cooling room 6.
is buried, and the heat absorption surface 8a of this thermoelectric element 8 is directed toward the inside (lower side) of the refrigerator, and the heat radiation surface 8b is directed toward the outside (upper side) of the refrigerator. Closed-loop thermosiphons 9 and 10 filled with refrigerant are arranged on the heat absorption side (inside the refrigerator) and the heat radiation side (outside the refrigerator) of the thermoelectric element 8, respectively. Each of these thermosiphons 9.10 is equipped with a refrigerant tank 9a, 10a for exchanging heat with the thermoelectric element 8. Each of these refrigerant tanks 9a, 10a is formed into a flat box shape that is approximately the same as or larger than the thermoelectric element 8 (see FIG. 2).
The entire surface of the heat absorbing surface 8a and the heat dissipating surface 8b are in close contact with each other. By connecting both ends of the vibrators 9b and 10b to both the front and rear sides of each refrigerant tank 9a and 10a, closed-loop type thermosiphons 9 and 10 are constructed, and the heat absorption part 9c of the inside thermosiphon 9 is A large number of fins 11 are provided in the heat absorbing portion 9C exposed to the ceiling portion of the cooling chamber 6. On the other hand, the heat radiating part 10c of the outside thermosiphon 10 is projected outside the refrigerator, and the heat radiating part 10c also has a
A large number of fins 12 are provided.

この場合、庫内側サーモサイホン9を、その放熱部(冷
媒タンク9a)が庫内側サーモサイホン9の最上部で吸
熱部9Cが最下部となるように配置すると共に、その吸
熱部9Cを冷却室6内の天井部分に配置している。一方
、庫外側サーモサイホン10を、その吸熱部(冷媒タン
ク10a)が庫外側サーモサイホン10の最下部で放熱
部10Cが最上部となるように配置している。
In this case, the inside thermosiphon 9 is arranged so that its heat radiation part (refrigerant tank 9a) is at the top of the inside thermosiphon 9 and the heat absorption part 9C is at the bottom, and the heat absorption part 9C is placed in the cooling room 9. It is placed on the ceiling inside. On the other hand, the outside thermosiphon 10 is arranged such that its heat absorbing part (refrigerant tank 10a) is at the bottom of the outside thermosiphon 10 and the heat radiating part 10C is at the top.

この実施例では、サーモサイホン9.10を構成するパ
イプ9b、10bは、冷蔵庫等で一般に使用されている
内径3〜10IIm程度の細い冷媒管を使用して低コス
ト化を図っている。この場合でも、サーモサイホン9,
10を閉ループ形に構成しているので、たとえバイブ9
b、10bか細くても冷媒の循環(熱輸送)がスムーズ
に行われる。
In this embodiment, the pipes 9b and 10b constituting the thermosiphon 9.10 are thin refrigerant pipes with an inner diameter of about 3 to 10 IIm, which are commonly used in refrigerators, etc., to reduce costs. Even in this case, the thermosiphon 9,
10 is configured in a closed loop type, so even if the vibe 9
Even if b and 10b are thin, the circulation of the refrigerant (heat transport) is carried out smoothly.

次に、上記構成の作用について説明する。Next, the operation of the above configuration will be explained.

熱電素子8に通電して冷却を開始すると、ベルチェ効果
により熱電素子8の吸熱面8aから熱を吸収してその熱
を放熱面8bから放出する現象を発生し、それによって
両側のサーモサイホン9゜10内の冷媒を相変化と重力
の作用により自然循環させて熱輸送する。このサーモサ
イホン9.10による熱輸送の原理は、吸熱部9c、冷
媒タンク10a内の冷媒が外部から熱を吸収して気化す
ることにより、密度が小さくなった冷媒がサーモサイホ
ン9.10内を上昇して放熱部9a、冷媒タンクIOC
に至り、ここで放熱して再び液化することにより、密度
か大きくなった冷媒が、重力によりサーモサイホン9.
10内を下降して吸熱部9c、冷媒タンク10aへ至る
という循環を繰り返して熱輸送を行うものである。従っ
て、庫内側サーモサイホン9は、吸熱部9Cにおいて冷
却室6内の熱を吸収して冷却室6内を冷却し、冷却室6
内から吸収した熱を冷媒の循環作用により熱電素子8の
吸熱面8aへ輸送する。そして、熱電素子8内に吸収さ
れた熱は、その放熱面8bから庫外側サーモサイホン1
0内の冷媒に伝達され、この冷媒の循環作用により庫外
側サーモサイホン10の放熱部10cから庫外に放散さ
れる。この様に、相変化と重力を利用した冷媒の循環作
用により冷却室6内から庫外への熱の輸送を促進させる
ことができるため、従来構造(サーモサイホンを利用し
ないもの)に比して10〜100倍程度の熱輸送能力を
もたせることができて、冷却室6内を効率良く冷却する
ことが可能となる。
When the thermoelectric element 8 is energized to start cooling, a phenomenon occurs in which heat is absorbed from the heat absorbing surface 8a of the thermoelectric element 8 and released from the heat dissipating surface 8b due to the Bertier effect, thereby causing the thermosiphons 9 on both sides to Heat is transported by natural circulation of the refrigerant in the refrigerant 10 due to phase change and the action of gravity. The principle of heat transport by this thermosiphon 9.10 is that the refrigerant in the heat absorption part 9c and the refrigerant tank 10a absorbs heat from the outside and evaporates, so that the refrigerant with reduced density flows inside the thermosiphon 9.10. Rise to heat dissipation part 9a, refrigerant tank IOC
At this point, the refrigerant radiates heat and liquefies again, and the density of the refrigerant increases due to gravity.
Heat is transported by repeating a cycle of descending through the refrigerant tank 10 and reaching the heat absorbing section 9c and the refrigerant tank 10a. Therefore, the inside thermosiphon 9 absorbs the heat inside the cooling chamber 6 in the heat absorption part 9C, cools the inside of the cooling chamber 6, and cools the inside of the cooling chamber 6.
The heat absorbed from within is transported to the heat absorption surface 8a of the thermoelectric element 8 by the circulating action of the refrigerant. Then, the heat absorbed in the thermoelectric element 8 is transferred from the heat dissipation surface 8b to the outside thermosiphon 1.
The refrigerant is transmitted to the refrigerant inside the refrigerator, and is radiated to the outside of the refrigerator from the heat radiating portion 10c of the outside thermosiphon 10 due to the circulation of this refrigerant. In this way, the transport of heat from inside the cooling chamber 6 to the outside of the cooling chamber 6 can be promoted by the refrigerant circulation effect using phase change and gravity, compared to the conventional structure (one that does not use a thermosiphon). It is possible to have a heat transport capacity of about 10 to 100 times, and it becomes possible to efficiently cool the inside of the cooling chamber 6.

この場合、両側のサーモサイホン9,10の冷媒タンク
9a、10aを熱電素子8と略同−若しくはそれより大
きな扁平箱形に形成すると共に、その冷媒タンク9a、
10aをそれぞれ放熱部・吸熱部として熱電素子8の吸
熱面8a・放熱面8bに密着させているので、従来のア
ルミ製熱交換ブロックを介在させたものと比較して、サ
ーモサイホン9.10と熱電素子8との間の熱伝達を直
接的に効率良く行わせることができる。
In this case, the refrigerant tanks 9a, 10a of the thermosiphons 9, 10 on both sides are formed into a flat box shape that is approximately the same as or larger than the thermoelectric element 8, and the refrigerant tanks 9a,
10a are in close contact with the heat absorption surface 8a and the heat radiation surface 8b of the thermoelectric element 8 as a heat radiation part and a heat absorption part, respectively, so compared to the conventional aluminum heat exchange block, the thermosiphon 9.10 Heat transfer to and from the thermoelectric element 8 can be performed directly and efficiently.

ところで、サーモサイホン9.10による熱輸送は、前
述したように、重力を利用して冷媒を自然循環させて行
うものであるから、熱輸送効率(冷媒の循環効率)を高
めるには、重力を如何にして有効に利用するかが重要に
なる。
By the way, heat transport by thermosiphon 9.10 is performed by naturally circulating the refrigerant using gravity, so in order to increase the heat transport efficiency (refrigerant circulation efficiency), it is necessary to use gravity. The important thing is how to use it effectively.

この点、前記実施例では、熱電素子8を冷却室6の天井
部分に配置すると共に、庫内側サーモサイホン9を、そ
の放熱部(冷媒タンク9a)が庫内側サーモサイホン9
の最上部で吸熱部9cが最下部となるように配置する一
方、庫外側サーモサイホン10を、その吸熱部(冷媒タ
ンク10a)が庫外側サーモサイホン10の最下部で放
熱部10cが最上部となるように配置しているので、冷
媒の密度が小さくなる部分(吸熱部9c、冷媒タンク1
0a)の位置を、冷媒の密度が大きくなる部分(冷媒タ
ンク9a、放熱部10c)の位置よりも低くさせる理想
的な配置形態となり、重力を有効に利用して冷媒の自然
循環をスムーズに行わせることができる。しかも、上述
のような配置形態とすることにより、吸熱部と放熱部と
の間の高低差(揚程)を小さくすることができ、上述し
た事情と相俟ってサーモサイホン9.10内の冷媒の自
然循環を極めてスムーズに行わせることができる。
In this regard, in the embodiment described above, the thermoelectric element 8 is disposed on the ceiling of the cooling chamber 6, and the inside thermosiphon 9 has a heat dissipating part (refrigerant tank 9a).
The outside thermosiphon 10 is arranged so that its heat absorbing part (refrigerant tank 10a) is at the bottom of the outside thermosiphon 10 and the heat radiating part 10c is at the top. Because they are arranged so that the density of the refrigerant decreases (the heat absorption part 9c,
0a) is lower than the position of the parts where the refrigerant density increases (refrigerant tank 9a, heat dissipation part 10c), which is an ideal layout, and gravity is effectively used to smoothly circulate the refrigerant. can be set. Moreover, by adopting the above-mentioned arrangement form, it is possible to reduce the height difference (lift head) between the heat absorption part and the heat radiation part. natural circulation can be carried out extremely smoothly.

その上、庫内側サーモサイホン9の吸熱部9C(冷却器
として機能する部分)を冷却室6の天井部分に配置する
ことができるので、その冷却作用により冷却室6内の冷
気が天井部分から下向きに流れて冷却室6内の隅々まで
効率良く冷却できる。
Moreover, since the heat absorbing part 9C (the part that functions as a cooler) of the inside thermosiphon 9 can be placed on the ceiling of the cooling chamber 6, the cooling effect of the heat absorbing part 9C of the inside thermosyphon 9 directs the cold air inside the cooling chamber 6 downward from the ceiling. The air flows to every corner of the cooling chamber 6 efficiently.

以上の諸効果により、冷却室6内の冷却効率を大幅に向
上できて、庫内容積の拡大も可能となる。
Due to the above-mentioned effects, the cooling efficiency within the cooling chamber 6 can be significantly improved, and the internal volume can also be expanded.

尚、前記実施例では、サーモサイホン9,10を閉ルー
プ形に構成しているので、たとえパイプgb、1obか
細くても冷媒の循環(熱輸送)をスムーズに行わせるこ
とができて、十分な熱輸送効率を確保できる。この場合
、サーモサイホン9゜10を構成するパイプ9b、10
bは、冷蔵庫等で一般に使用されている内径3〜10關
程度の細い冷媒管を使用することかできるので、低コス
ト化を図ることができるという利点もある。
In the above embodiment, the thermosiphons 9 and 10 are configured in a closed loop type, so even if the pipes gb and 1ob are thin, the circulation of the refrigerant (heat transport) can be carried out smoothly, and sufficient heat can be generated. Transport efficiency can be ensured. In this case, the pipes 9b and 10 constituting the thermosiphon 9°10
In b, since it is possible to use a thin refrigerant pipe with an internal diameter of about 3 to 10 mm, which is generally used in refrigerators, etc., there is also the advantage that costs can be reduced.

一方、第3図乃至第5図は本発明の第2実施例を示した
もので、この第2実施例では、庫内側のサーモサイホン
13の吸熱部13Cを、冷却室6内に露出させずに、断
熱壁5の金属製の内側板14の裏面に添わせて蛇行状に
配置し、その内側板14を冷却面としたもので、いわゆ
るパイプオンシート形冷却器と同様の構成となっている
。そして、吸熱部13cと内側板14との熱伝達性(密
着性)を良くするために、吸熱部13cは内側板14に
接着されている。尚、冷却室6の上面(内側板14)は
、扉7側に向けて僅かに斜め上向きとなるように1°以
上傾斜されている。この理由の1つは、吸熱部13C内
で気化して密度か小さくなった冷媒の上向きの流れをで
きるだけ妨げないようにするためである。もう1つの理
由は、外気条件や負荷条件の如何によって、冷却面であ
る内側板14の下面に水滴か結露することがあるため、
その水滴が食品に落下することなく背面側に流れ落ちる
ように配慮したものである。
On the other hand, FIGS. 3 to 5 show a second embodiment of the present invention, and in this second embodiment, the heat absorption part 13C of the thermosiphon 13 inside the refrigerator is not exposed inside the cooling chamber 6. It is arranged in a meandering manner along the back surface of the metal inner plate 14 of the heat insulating wall 5, and the inner plate 14 is used as a cooling surface, and has a structure similar to that of a so-called pipe-on-sheet type cooler. There is. The heat absorbing portion 13c is bonded to the inner plate 14 in order to improve heat transfer (adhesion) between the heat absorbing portion 13c and the inner plate 14. Note that the upper surface (inside plate 14) of the cooling chamber 6 is inclined by 1° or more so as to be slightly diagonally upward toward the door 7 side. One of the reasons for this is to prevent as much as possible the upward flow of the refrigerant whose density has decreased due to vaporization within the heat absorbing portion 13C. Another reason is that depending on the outside air conditions and load conditions, water droplets or dew may form on the lower surface of the inner plate 14, which is the cooling surface.
The design is designed so that the water droplets flow down to the back side without falling onto the food.

一方、庫外側サーモサイホン16の放熱部16Cは、第
5図に示すように、蛇行状に屈曲されて、空気との接触
面積(熱交換面積)が拡大されている。この放熱部16
cには、第1実施例と同じく、多数のフィン17が設け
られて放熱性が高められている。
On the other hand, as shown in FIG. 5, the heat dissipation section 16C of the outside thermosiphon 16 is bent in a meandering manner to enlarge the contact area (heat exchange area) with the air. This heat radiation part 16
As in the first embodiment, a large number of fins 17 are provided to improve heat dissipation.

この場合、庫外側サーモサイホン16の放熱部16Cは
、冷蔵庫本体1の上部に設けられた通風ダクト18内に
配置され、この放熱部16cの後方には電動ファン19
が設けられている。冷却運転中(熱電素子8への通電中
)は、この電動ファン19が回転して、放熱部16cに
冷却風を送り、その放熱を促進させる。そして、この冷
却風の流れを良くして放熱性を高めるために、放熱部1
6Cのフィン17は、電動ファン19の送風方向(第5
図の矢印A方向)に沿って平行に配置され、そのフィン
17の配置ピッチ(間隔)は風上にいくほど小さくなっ
ている。
In this case, the heat radiation part 16C of the outside thermosiphon 16 is arranged in the ventilation duct 18 provided at the upper part of the refrigerator main body 1, and the electric fan 19 is located behind the heat radiation part 16c.
is provided. During the cooling operation (while the thermoelectric element 8 is energized), the electric fan 19 rotates to send cooling air to the heat radiation section 16c to promote heat radiation. In order to improve the flow of this cooling air and improve heat dissipation, the heat dissipation section 1
The fins 17 of 6C are arranged in the air blowing direction (fifth direction) of the electric fan 19.
The fins 17 are arranged in parallel along the arrow A direction in the figure, and the arrangement pitch (interval) of the fins 17 becomes smaller toward the windward.

その他、前述した第1実施例と同一部分には同一符号を
付して説明を省略する。
Other parts that are the same as those in the first embodiment described above are given the same reference numerals and their explanations will be omitted.

斯かる第2実施例では、庫内側サーモサイホン13の吸
熱部13cを断熱壁5の内側板14の裏面に添わせるよ
うに配置したので、冷却室6内にサーモサイホン13を
露出させずに済み、冷却室6内の外観を良くできると共
に、冷却室6の有効容積を更に拡大できる利点がある。
In the second embodiment, the heat absorbing part 13c of the inside thermosiphon 13 is arranged so as to be aligned with the back surface of the inside plate 14 of the heat insulating wall 5, so the thermosiphon 13 does not need to be exposed inside the cooling chamber 6. This has the advantage that the appearance of the inside of the cooling chamber 6 can be improved and the effective volume of the cooling chamber 6 can be further expanded.

更に、電動ファン19により庫外側サーモサイホン16
の放熱部16cを強制冷却するようにしたので、放熱性
を一層高めることができる。
Furthermore, the electric fan 19 operates the thermosiphon 16 outside the warehouse.
Since the heat dissipation portion 16c is forcedly cooled, the heat dissipation performance can be further improved.

尚、電動ファン19としては、プロペラファンに限定さ
れず、例えば横流ファンを採用しても良く(横流ファン
を採用すれば通風ダクト18を薄形化できる)、また、
その電動ファンの配置場所も放熱部16cの後方に限定
されず、前方或は側方であっても良い。
Note that the electric fan 19 is not limited to a propeller fan, and for example, a cross-flow fan may be used (if a cross-flow fan is used, the ventilation duct 18 can be made thinner);
The location of the electric fan is not limited to the rear of the heat radiating section 16c, but may be in front or on the side.

また、前記各実施例では、各サーモサイホン9゜10.
13.16は、冷媒タンク9a、10a内の冷媒を1本
のバイブ9b、10bを通して循環させるようにしたが
、少なくとも一方のサーモサイホンは、冷媒タンク9a
、10aに出入りする冷媒の通路が複数本並列に設けら
れた構成としても良い。例えば、第6図に示すように、
庫内側サーモサイホン21は、1つの冷媒タンク9aに
対して2本以上のバイブ9bを接続して、各パイプ9b
を通して冷媒を循環させるようにしても良い。
Further, in each of the above embodiments, each thermosiphon is 9° 10°.
In 13.16, the refrigerant in the refrigerant tanks 9a, 10a is circulated through one vibrator 9b, 10b, but at least one thermosiphon is connected to the refrigerant tank 9a.
, 10a may be configured such that a plurality of refrigerant passages are provided in parallel. For example, as shown in Figure 6,
The inside thermosiphon 21 connects two or more vibrators 9b to one refrigerant tank 9a, and connects each pipe 9b.
The refrigerant may be circulated through.

或は、第7図に示す庫内側サーモサイホン22のように
、冷媒タンク9aに接続されたバイブ23を分岐させて
2本の分岐通路23a、23bを並列に設け、両分枝通
路23a、23bに冷媒を分流させるようにしても良い
。尚、第6図及び第7図の庫内側サーモサイホン21.
22は、吸熱部を断熱壁5の金属製の内側板14の裏面
に添わせて蛇行状に配置し、その内側板14を冷却面と
したもので、いわゆるバイブオンシート形冷却器と同様
の構成となっている。
Alternatively, as in the inside thermosiphon 22 shown in FIG. 7, the vibrator 23 connected to the refrigerant tank 9a may be branched to provide two branch passages 23a, 23b in parallel, and both branch passages 23a, 23b may be formed. The refrigerant may be divided into two parts. In addition, the inside thermosiphon 21 of FIGS. 6 and 7.
22 has a heat absorbing part arranged in a meandering manner along the back surface of a metal inner plate 14 of the heat insulating wall 5, and the inner plate 14 is used as a cooling surface, and has a structure similar to that of a so-called vibe-on-sheet type cooler. It becomes.

一方、第8図に示すように、庫外側サーモサイホン24
についても、1つの冷媒タンク10aに対して2本以上
のパイプ10bを接続して、各バイブ10bを通して冷
媒を循環させるようにしても良い。或は、第9図に示す
庫外側サーモサイホン25のように、冷媒タンク10a
に接続されたパイプ26を分岐させて2本の分岐通路2
6a。
On the other hand, as shown in FIG.
Also, two or more pipes 10b may be connected to one refrigerant tank 10a, and the refrigerant may be circulated through each vibrator 10b. Alternatively, the refrigerant tank 10a, like the thermosiphon 25 outside the warehouse shown in FIG.
Two branch passages 2 are created by branching the pipe 26 connected to the
6a.

26bを並列に設け、両分枝通路26a、26bに冷媒
を分流させるようにしても良い。
26b may be provided in parallel to separate the refrigerant into both branch passages 26a and 26b.

以上説明した第6図乃至第9図のように、少なくとも一
方のサーモサイホン21,22.24゜25について、
冷媒タンク9a、10aに出入りする冷媒の通路を複数
本並列に設けた構成とすれば、冷媒の循環能力が更に向
上して、熱輸送能力が更に向上する利点がある。
As shown in FIGS. 6 to 9 described above, for at least one thermosiphon 21, 22.24° 25,
If a configuration is adopted in which a plurality of refrigerant passages in and out of the refrigerant tanks 9a and 10a are provided in parallel, there is an advantage that the refrigerant circulation ability is further improved and the heat transport ability is further improved.

尚、並列に設ける冷媒の通路は、2本に限定されず、3
本以上であっても良いことは言うまでもない。
Note that the number of refrigerant passages provided in parallel is not limited to two, but may be three.
Needless to say, it can be more than a book.

[発明の効果] 本発明は以上の説明から明らかなように、熱電素子を冷
却室の天井部分に配置すると共に、前記熱電素子の吸熱
面と放熱面に、それぞれ冷媒を封入したサーモサイホン
の冷媒タンクを密着させ、庫内側サーモサイホンを、放
熱部(冷媒タンク)が庫内側サーモサイホンの最上部で
吸熱部が最下部となるように配置する一方、庫外側サー
モサイホンを、吸熱部(冷媒タンク)が庫外側サーモサ
イホンの最下部で放熱部が最上部となるように配置した
構成としたので、サーモサイホンの配置形態を理想的な
ものにすることができて、サーモサイホンによる冷却室
内から庫外への熱の移動を極めて効率良く行わせること
がで、き、冷却効率を大幅に向上できて、庫内容積の拡
大も可能になる。
[Effects of the Invention] As is clear from the above description, the present invention provides a thermosyphon refrigerant in which a thermoelectric element is arranged on the ceiling of a cooling chamber, and a refrigerant is filled in the heat absorption surface and the heat radiation surface of the thermoelectric element, respectively. The tanks are placed in close contact with each other, and the inside thermosiphon is arranged so that the heat dissipation part (refrigerant tank) is at the top of the inside thermosiphon and the heat absorption part is at the bottom. ) is placed at the bottom of the outside thermosiphon and the heat dissipation part is at the top, making it possible to ideally arrange the thermosiphon and allow the thermosyphon to cool the refrigerator from inside the cooling room. By transferring heat to the outside extremely efficiently, cooling efficiency can be greatly improved and the internal volume of the refrigerator can be expanded.

この場合、庫内側サーモサイホンの吸熱部を、冷却室の
天井断熱壁の内側板の裏面に添わせるように配置して、
前記内側板を冷却面とすれば、冷却室内にサーモサイホ
ンを露出させずに済み、冷却室内の外観を良くできると
共に、冷却室の有効容積を更に拡大できる。
In this case, the heat absorbing part of the inside thermosyphon is arranged so as to be aligned with the back side of the inside plate of the ceiling insulation wall of the cooling room.
If the inner plate is used as a cooling surface, there is no need to expose the thermosiphon inside the cooling chamber, the appearance of the inside of the cooling chamber can be improved, and the effective volume of the cooling chamber can be further expanded.

また、少なくとも一方のサーモサイホンについては、冷
媒タンクに出入りする冷媒の通路が複数本並列に設けら
れた構成とすれば、冷媒の循環能力ひいては熱輸送能力
を更に向上できる。
Furthermore, if at least one thermosiphon is configured to have a plurality of parallel paths for refrigerant going in and out of the refrigerant tank, the refrigerant circulation ability and hence the heat transport ability can be further improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の第1実施例を示したもので
、第1図は全体の縦断側面図、第2図はサーモサイホン
の冷媒タンク部分の破断斜視図である。そして、第3図
乃至第5図は本発明の第2実施例を示したもので、第3
図は全体の縦断側面図、第4図は庫内側サーモサイホン
の配置形態を示す斜視図、第5図は庫外側サーモサイホ
ンの配置形態を示す斜視図である。一方、第6図及び第
7図はそれぞれ庫内側サーモサイホンの変形例を示す斜
視図、第8図及び第9図はそれぞれ庫外側サーモサイホ
ンの変形例を示す斜視図である。 そして、第10図は従来例を示す全体の縦断側面図であ
る。 図面中、1は冷蔵庫本体、2は外箱、3は内箱、4は断
熱材、5は断熱壁、6は冷却室、8は熱電素子、8aは
吸熱面、8bは放熱面、9は庫内側サーモサイホン、1
0は庫外側サーモサイホン、9a及び10aは冷媒タン
ク、9b及び9Cはパイプ、9cは吸熱部、10cは放
熱部、11及び12はフィン、13は庫内側サーモサイ
ホン、14は内側板、16は庫外側サーモサイホン、1
7はフィン、19は電動ファン、21及び22は庫内側
サーモサイホン、23はバイブ、23g及び23bは分
岐通路、24及び25は庫外側サーモサイホン、26は
バイブ、26a及び26bは分岐通路である。 代理人  弁理士 佐  藤   強 10庫外(IIIサーモサイホン 第 1 図 第 2 図 す 第 3 図 第 4 図             jP、5  図
沢 第 6 図 日C 第7図 第 8 図 第 9 図
1 and 2 show a first embodiment of the present invention, with FIG. 1 being a longitudinal sectional side view of the entire system, and FIG. 2 being a cutaway perspective view of a refrigerant tank portion of a thermosiphon. 3 to 5 show the second embodiment of the present invention, and the third embodiment shows the second embodiment of the present invention.
4 is a perspective view showing the arrangement of thermosiphons inside the refrigerator, and FIG. 5 is a perspective view showing the arrangement of thermosiphons outside the refrigerator. On the other hand, FIGS. 6 and 7 are perspective views showing modified examples of the inside thermosiphon, and FIGS. 8 and 9 are perspective views showing modified examples of the outside thermosiphon. FIG. 10 is an overall longitudinal sectional side view showing a conventional example. In the drawing, 1 is the refrigerator body, 2 is an outer box, 3 is an inner box, 4 is a heat insulator, 5 is a heat insulating wall, 6 is a cooling chamber, 8 is a thermoelectric element, 8a is a heat absorption surface, 8b is a heat radiation surface, 9 is a heat radiation surface Inside thermosiphon, 1
0 is a thermosiphon on the outside of the refrigerator, 9a and 10a are refrigerant tanks, 9b and 9C are pipes, 9c is a heat absorption part, 10c is a heat radiation part, 11 and 12 are fins, 13 is a thermosiphon on the inside of the refrigerator, 14 is an inside plate, 16 is a Outside thermosiphon, 1
7 is a fin, 19 is an electric fan, 21 and 22 are thermosiphons inside the refrigerator, 23 is a vibrator, 23g and 23b are branch passages, 24 and 25 are thermosiphons outside the refrigerator, 26 is a vibrator, and 26a and 26b are branch passages. . Agent Patent Attorney Tsuyoshi Sato 10 Outside (III Thermosiphon Figure 1 Figure 2 Figure 3 Figure 4 JP, 5 Tsuzawa Figure 6 Figure Day C Figure 7 Figure 8 Figure 9

Claims (3)

【特許請求の範囲】[Claims] 1. 熱電素子を冷熱源とした電子冷蔵庫において、前
記熱電素子を冷却室の天井部分に配置すると共に、前記
熱電素子の吸熱面と放熱面に、それぞれ冷媒を封入した
サーモサイホンの冷媒タンクを密着させ、庫内側サーモ
サイホンを、放熱部になる前記冷媒タンクが庫内側サー
モサイホンの最上部で吸熱部が最下部となるように配置
してその吸熱部により前記冷却室を冷却する一方、庫外
側サーモサイホンを、吸熱部になる前記冷媒タンクが庫
外側サーモサイホンの最下部で放熱部が最上部となるよ
うに配置してその放熱部により前記熱電素子の熱を庫外
に放散するようにしたことを特徴とする電子冷蔵庫。
1. In an electronic refrigerator using a thermoelectric element as a cold heat source, the thermoelectric element is disposed on the ceiling of the cooling chamber, and a refrigerant tank of a thermosiphon filled with refrigerant is closely attached to the heat absorption surface and the heat radiation surface of the thermoelectric element, respectively. The refrigerator inside thermosiphon is arranged so that the refrigerant tank, which becomes the heat dissipation part, is at the top of the refrigerator interior thermosiphon and the heat absorption part is at the bottom, and the cooling chamber is cooled by the heat absorption part, while the refrigerator outside thermosiphon is arranged so that the heat absorption part is at the bottom. The refrigerant tank, which becomes the heat absorption part, is arranged at the lowest part of the outside thermosiphon and the heat radiating part is at the top, so that the heat of the thermoelectric element is radiated outside the refrigerator by the heat radiating part. Features of electronic refrigerators.
2. 庫内側サーモサイホンの吸熱部を、冷却室の天井
断熱壁の内側板の裏面に添わせるように配置して、前記
内側板を冷却面としたことを特徴とする請求項1記載の
電子冷蔵庫。
2. 2. The electronic refrigerator according to claim 1, wherein the heat absorbing part of the internal thermosiphon is arranged so as to be aligned with the back surface of an inner plate of a ceiling insulation wall of the cooling chamber, and the inner plate is used as a cooling surface.
3. 少なくとも一方のサーモサイホンは、冷媒タンク
に出入りする冷媒の通路が複数本並列に設けられている
ことを特徴とする請求項1又は2記載の電子冷蔵庫。
3. 3. The electronic refrigerator according to claim 1, wherein at least one of the thermosiphons is provided with a plurality of parallel refrigerant passages in and out of the refrigerant tank.
JP29957890A 1990-11-05 1990-11-05 Electronic refrigerator Pending JPH04174269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29957890A JPH04174269A (en) 1990-11-05 1990-11-05 Electronic refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29957890A JPH04174269A (en) 1990-11-05 1990-11-05 Electronic refrigerator

Publications (1)

Publication Number Publication Date
JPH04174269A true JPH04174269A (en) 1992-06-22

Family

ID=17874452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29957890A Pending JPH04174269A (en) 1990-11-05 1990-11-05 Electronic refrigerator

Country Status (1)

Country Link
JP (1) JPH04174269A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8893513B2 (en) 2012-05-07 2014-11-25 Phononic Device, Inc. Thermoelectric heat exchanger component including protective heat spreading lid and optimal thermal interface resistance
US8991194B2 (en) 2012-05-07 2015-03-31 Phononic Devices, Inc. Parallel thermoelectric heat exchange systems
US20160018139A1 (en) * 2014-07-21 2016-01-21 Phononic Devices, Inc. Integration of thermosiphon tubing into accept heat exchanger
JP2016532073A (en) * 2013-09-16 2016-10-13 フォノニック デバイセズ、インク Improved heat transport system for refrigerators and cooling surfaces
US10458683B2 (en) 2014-07-21 2019-10-29 Phononic, Inc. Systems and methods for mitigating heat rejection limitations of a thermoelectric module
JP2022122957A (en) * 2020-01-16 2022-08-23 生活協同組合コープさっぽろ cooling system

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8893513B2 (en) 2012-05-07 2014-11-25 Phononic Device, Inc. Thermoelectric heat exchanger component including protective heat spreading lid and optimal thermal interface resistance
US8991194B2 (en) 2012-05-07 2015-03-31 Phononic Devices, Inc. Parallel thermoelectric heat exchange systems
US9103572B2 (en) 2012-05-07 2015-08-11 Phononic Devices, Inc. Physically separated hot side and cold side heat sinks in a thermoelectric refrigeration system
US9234682B2 (en) * 2012-05-07 2016-01-12 Phononic Devices, Inc. Two-phase heat exchanger mounting
CN107504713B (en) * 2012-05-07 2020-10-16 弗诺尼克设备公司 Systems and methods relating to thermoelectric heat exchange systems
US9310111B2 (en) 2012-05-07 2016-04-12 Phononic Devices, Inc. Systems and methods to mitigate heat leak back in a thermoelectric refrigeration system
US9341394B2 (en) 2012-05-07 2016-05-17 Phononic Devices, Inc. Thermoelectric heat exchange system comprising cascaded cold side heat sinks
CN107529608B (en) * 2012-05-07 2020-10-16 弗诺尼克设备公司 Systems and methods relating to thermoelectric heat exchange systems
CN107504713A (en) * 2012-05-07 2017-12-22 弗诺尼克设备公司 It is related to the system and method for thermoelectric heat exchange system
CN107529608A (en) * 2012-05-07 2018-01-02 弗诺尼克设备公司 It is related to the system and method for thermoelectric heat exchange system
US10012417B2 (en) 2012-05-07 2018-07-03 Phononic, Inc. Thermoelectric refrigeration system control scheme for high efficiency performance
US10520230B2 (en) 2013-09-16 2019-12-31 Phononic, Inc. Enhanced heat transport systems for cooling chambers and surfaces
JP2016532073A (en) * 2013-09-16 2016-10-13 フォノニック デバイセズ、インク Improved heat transport system for refrigerators and cooling surfaces
US10458683B2 (en) 2014-07-21 2019-10-29 Phononic, Inc. Systems and methods for mitigating heat rejection limitations of a thermoelectric module
US20160018139A1 (en) * 2014-07-21 2016-01-21 Phononic Devices, Inc. Integration of thermosiphon tubing into accept heat exchanger
JP2022122957A (en) * 2020-01-16 2022-08-23 生活協同組合コープさっぽろ cooling system

Similar Documents

Publication Publication Date Title
US5315830A (en) Modular thermoelectric assembly
JPH04354010A (en) Mounting structure for compact computer
US3167925A (en) Thermoelectric cooling device
CN111246712A (en) Server rack and phase-change thermoelectric composite heat dissipation system thereof
JPH04126973A (en) Electronic refrigerator
JP5621225B2 (en) Boiling cooler
JPH04174269A (en) Electronic refrigerator
JP2006202798A (en) Heat sink
JP2005210088A (en) Cooling device in closed cabinet
JP2004020007A (en) Electronic temperature control cabinet
JPH1163722A (en) Fluid cooler
JPH07243782A (en) Heat pipe type radiator
JPH0338619Y2 (en)
US4285389A (en) Thermal energy storage apparatus
JPH0658685A (en) Heat accumulating panel
CN109411847A (en) A kind of battery pack heat management device and its heat dissipation and heating means
JPH0821679A (en) Electronic refrigeration type drinking water cooler
JP2004047789A (en) Heat sink
CN218495184U (en) Air conditioner outdoor unit and air conditioner
CN217686779U (en) Radiator and air condensing units
CN220752501U (en) Active refrigeration type double-drive internal circulation heat dissipation LCD projector
CN218495607U (en) Heat exchange device and storage equipment
JP2005233526A (en) Refrigerator
CN214249879U (en) Radiator and air condensing units
JPH05312455A (en) Electronic refrigerator