JPH1068569A - Cold/hot storeroom - Google Patents

Cold/hot storeroom

Info

Publication number
JPH1068569A
JPH1068569A JP22567796A JP22567796A JPH1068569A JP H1068569 A JPH1068569 A JP H1068569A JP 22567796 A JP22567796 A JP 22567796A JP 22567796 A JP22567796 A JP 22567796A JP H1068569 A JPH1068569 A JP H1068569A
Authority
JP
Japan
Prior art keywords
heat
storage case
tubes
expansion
wall surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP22567796A
Other languages
Japanese (ja)
Inventor
Mamoru Hosoe
守 細江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP22567796A priority Critical patent/JPH1068569A/en
Publication of JPH1068569A publication Critical patent/JPH1068569A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To efficiently and uniformly cool the entire part of a storage case and suppress the amount of leakage of cooling energy from the wall surface of the storage case. SOLUTION: Either the heat absorbing part or the heat radiating part of a Peltier element 21 is attached to the heat source attaching part 24a of the wall surface of a storage case 1. The wall surface of the storage case 1 is formed with a panel member 25 having two swelling pipes 30a and 30b. One swelling pipes 30a is filled with a refrigerant thermally connected to a heat source and the other swelling pipes 30b is made vacuum and one swelling pipes 30a is thermally insulated by the other swelling pipes 30b.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、冷却、加熱可能
な冷温蔵庫に関し、詳しくは熱源付近の蓄熱エネルギー
を効率良く取り出して冷温蔵庫内の冷却能力を高めるた
めの技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cool and heat storage that can be cooled and heated, and more particularly to a technique for efficiently extracting heat stored near a heat source to increase the cooling capacity of the cold and heat storage.

【0002】[0002]

【従来の技術】従来より、冷凍サイクル原理に基づく冷
却装置では、金属製の容器に冷媒導入通路を設け、この
冷媒導入通路内にフロン等の冷媒を外部からコンプレッ
サーの圧力で導入することにより、容器内に収納された
被冷却物を冷却するものが知られている。しかしなが
ら、このような冷凍サイクル原理を利用した冷却装置に
あっては、冷却能力は充分に有しているものの、本体の
重量が重く、携帯性に適していないばかりか、騒音、振
動もあり、さらには冷媒としてフロンを使用しているの
で、コンプレッサとの連結部分の破損等が原因で冷媒が
外部に容易に漏れ易くなり、しかも環境に対する悪影響
も考慮しなければならなかった。
2. Description of the Related Art Conventionally, in a cooling device based on the refrigeration cycle principle, a refrigerant introduction passage is provided in a metal container, and a refrigerant such as chlorofluorocarbon is externally introduced into the refrigerant introduction passage by the pressure of a compressor. 2. Description of the Related Art A device for cooling an object to be cooled stored in a container is known. However, in a cooling device utilizing such a refrigeration cycle principle, although having sufficient cooling capacity, the main body is heavy and not only not suitable for portability, but also has noise and vibration, Further, since chlorofluorocarbon is used as the refrigerant, the refrigerant is easily leaked to the outside due to breakage of a connection portion with the compressor, and adverse effects on the environment have to be considered.

【0003】そこで、最近ではペルチェ原理を利用した
電子冷温蔵庫が一般に市販されている。そのペルチェ原
理は、異種金属が接合されたペルチェ素子に電流が供給
されるとそれぞれの接合部において、放熱部と吸熱部と
を生成するものであり、ペルチェ素子に熱結合された容
器を冷却(又は加温)することができるので、冷凍サイ
クルを利用した場合に必要となるコンプレッサーが不要
となり、しかも小型、軽量で尚且つ騒音、振動を伴わな
い冷・温効果が実現できるので、携帯用の商品等に実用
化されている。
[0003] In recent years, electronic refrigerators utilizing the Peltier principle have been generally marketed. According to the Peltier principle, when a current is supplied to a Peltier element to which different kinds of metals are joined, a heat radiating section and a heat absorbing section are generated at each joint, and a container thermally coupled to the Peltier element is cooled ( Or heating), which eliminates the need for a compressor that is required when a refrigeration cycle is used. In addition, it is compact and lightweight, and can achieve cooling and heating effects without noise and vibration. It has been put to practical use in products and the like.

【0004】[0004]

【発明が解決しようとする課題】ところが、上記のよう
なペルチェ原理を利用した電子冷温蔵庫にあっては、一
般に熱源(ペルチェ素子)から金属製の容器に蓄熱エネ
ルギーが伝導する時に、熱抵抗が発生するので充分な冷
却能力が得られなかった。特に吸熱時にあっては容器の
熱伝導にほとんど頼っているため、容器材質の熱伝導の
差などに起因して、容器は局部的に冷却され、容器全体
の冷却能力が低下するという問題があった。さらに、ペ
ルチェ素子が取付けられた部分を含む容器壁面からの熱
漏洩量も大きく、内部の有効内容積(実際に被冷却物を
入れることができるスペース)が大きい冷温蔵庫におい
ては、6面壁体の断熱材の厚みが厚くなり、このため容
積効率(外形の大きさに対する有効容積の割合)が悪く
なり、携帯性を持たせる点で重要な課題となっていた。
However, in an electronic cold storage using the Peltier principle as described above, in general, when heat storage energy is transmitted from a heat source (Peltier element) to a metal container, thermal resistance is reduced. As a result, sufficient cooling capacity could not be obtained. In particular, at the time of heat absorption, most of the heat conduction depends on the heat conduction of the container.Therefore, there is a problem that the container is locally cooled and the cooling capacity of the entire container is reduced due to a difference in heat conduction between the container materials. Was. Furthermore, in a refrigerator having a large internal effective volume (a space where a substance to be cooled can be actually contained), a large amount of heat leaks from the container wall including the portion where the Peltier element is mounted. The thickness of the heat insulating material is increased, so that the volumetric efficiency (the ratio of the effective volume to the size of the outer shape) is deteriorated, which has been an important issue in terms of providing portability.

【0005】本発明は、上記従来の課題に鑑みてなされ
たもので、その目的とするところは、熱源付近の蓄熱エ
ネルギーの流通スムーズ化による有効活用を促して、収
納ケース内全体を効率的且つ均一に冷却でき、且つ、収
納ケースの壁面からの冷却エネルギーの漏洩量を抑える
ことができ、これにより冷却性能の向上を図ることがで
きる冷温蔵庫を提供するにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and has as its object to promote efficient utilization of heat storage energy in the vicinity of a heat source by smoothing the flow of the heat storage energy so that the entire inside of the storage case can be efficiently and efficiently. An object of the present invention is to provide a cold and hot storage that can uniformly cool and suppress a leakage amount of cooling energy from a wall surface of a storage case, thereby improving a cooling performance.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明に係る冷温蔵庫は、収納ケース24の壁面に
熱源が取付けられ、収納ケース24の壁面を2系統の膨
管30a,30bを有するパネル体25で構成し、一方
の膨管30a内に熱源に熱的に結合される冷媒を充填す
ると共に、他方の膨管30b内を真空にして一方の膨管
30aを他方の膨管30bにて断熱して成ることを特徴
としており、このように、熱源に熱結合された冷媒入り
の一方の膨管30aと、真空断熱用の他方の膨管30b
とを併存することによって、冷媒による熱伝達が良好と
なり、且つ真空断熱により収納ケース24の外側への熱
エネルギーの漏洩を減少させることができる。
In order to solve the above-mentioned problems, in a refrigerator according to the present invention, a heat source is mounted on the wall surface of a storage case 24, and the wall surface of the storage case 24 is formed by two systems of expansion tubes 30a, 30b, the one expansion tube 30a is filled with a refrigerant that is thermally coupled to a heat source, and the other expansion tube 30b is evacuated to make one expansion tube 30a the other expansion tube. It is characterized in that it is insulated by a tube 30b. Thus, one expansion tube 30a containing a refrigerant thermally coupled to a heat source and the other expansion tube 30b for vacuum insulation are provided.
The heat transfer by the refrigerant is improved, and the leakage of thermal energy to the outside of the storage case 24 can be reduced by vacuum insulation.

【0007】また上記2系統の膨管30a,30bを交
互に配置するのが好ましく、この場合、膨管30a,3
0b間隔が広くなり、一方の膨管30a間での熱干渉を
軽減できると共に、収納ケース24の外側への熱漏洩を
より有効に軽減できる。また上記膨管30a,30bを
櫛歯状に形成するのが好ましく、この場合、収納ケース
24の壁面全体に膨管30a,30bをはりめぐらせ
て、膨管30a,30bによる熱伝達がより効率良く行
なえるようにすることができる。
It is preferable to alternately arrange the two systems of the inflatable tubes 30a, 30b.
The interval between 0b is widened, so that heat interference between the one expansion tube 30a can be reduced, and heat leakage to the outside of the storage case 24 can be reduced more effectively. In addition, it is preferable that the expansion tubes 30a and 30b are formed in a comb-teeth shape. In this case, the expansion tubes 30a and 30b are wrapped around the entire wall surface of the storage case 24, and the heat transfer by the expansion tubes 30a and 30b is more efficient. You can do well.

【0008】また上記冷媒を充填した一方の膨管30a
をパネル体25の高さ方向に傾斜させるのが好ましく、
この場合、収納ケース24の熱源取付け部24a側が上
方とならないように一方の膨管30aを傾斜させること
で、この膨管30a,30b内に封入された冷媒の蒸気
熱又は凝縮熱の授受が一層スムーズに行なわれるように
なり、熱移動の一層の活発化を図ることができる。
[0008] One of the expansion tubes 30a filled with the above-mentioned refrigerant.
Is preferably inclined in the height direction of the panel body 25,
In this case, by inclining one of the expansion tubes 30a so that the heat source mounting portion 24a side of the storage case 24 does not face upward, the transfer of vapor heat or condensation heat of the refrigerant sealed in the expansion tubes 30a and 30b is further enhanced. The heat transfer is performed smoothly, and the heat transfer can be further activated.

【0009】また上記二系統の膨管30a,30bを有
するパネル体25を折り曲げて収納ケース24の壁面を
構成して成るのが好ましく、この場合、2系統の膨管3
0a,30bが形成されたパネル体25を折り曲げて収
納ケース24の壁面として用いることによって、熱輸送
用経路と真空断熱部とを構成する各膨管30a,30b
が壁面のほぼ全体に配置できるようになる。
Preferably, the panel body 25 having the two systems of the inflatable tubes 30a and 30b is bent to form the wall surface of the storage case 24. In this case, the two systems of the inflatable tubes 3a and 30b are used.
Each of the expansion tubes 30a, 30b forming a heat transport path and a vacuum heat insulating part is formed by bending the panel body 25 having the first and second panels 0a, 30b formed thereon and using the panel body 25 as a wall surface of the storage case 24.
Can be arranged on almost the entire wall surface.

【0010】また上記熱源がペルチェ素子21であるの
が好ましく、この場合、小型、軽量且つ騒音、振動のな
い冷温蔵庫が得られる。
Preferably, the heat source is a Peltier element 21. In this case, a small-sized, lightweight, noise-free and vibration-free refrigerator is obtained.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施形態の一例を
説明する。図3(a)は本実施形態の冷温蔵庫Aの外観
を示している。本体1及び及び開閉蓋2は、ロック3に
より容易に開閉できると共に、開閉蓋2には持ち運びに
便利なようにハンドル4が配設されている。本体1の一
側面適所には図4に示すように、電子冷却ユニット20
を装着するための凹部15が形成されており、本体1と
この本体1に収納される収納ケース24との間には、凹
部15を除いて、水発泡ウレタン等の断熱材41(図
1)が充填されている。尚図3中の6,7は外部から空
気が循環する通風口、8はパネル板である。また、冷温
蔵庫Aは、蓄電池で駆動するようにしてもよく、この場
合、電源コード13a,13bを接続したときは、冷温
蔵庫への電源供給と共に蓄電池の充電を行なうようにす
ればよい。本体1の凹部15の前面には操作を行なう表
示パネル5が装着される。この表示パネル5は、図3
(b)に示すように、冷蔵、温蔵の各動作モードを表示
するLED9、冷蔵、温蔵、停止の各動作を切り換える
動作スイッチ10、冷却能力を切り換える能力切換スイ
ッチ11、交流或いは直流の電源モードによって切り換
える電源モードスイッチ12、交流用の電源コード13
a或いは直流用の電源コード13b等の電源コード13
を接続するソケット14等を備えている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below. FIG. 3A shows the external appearance of the refrigerator A of the present embodiment. The main body 1 and the opening / closing lid 2 can be easily opened / closed by a lock 3, and the opening / closing lid 2 is provided with a handle 4 for convenient carrying. As shown in FIG. 4, an electronic cooling unit 20 is provided at an appropriate position on one side of the main body 1.
A concave portion 15 for mounting is formed, and a heat insulating material 41 such as urethane foam (FIG. 1) is provided between the main body 1 and the storage case 24 stored in the main body 1 except for the concave portion 15. Is filled. In addition, 6 and 7 in FIG. 3 are ventilation holes through which air circulates from outside, and 8 is a panel plate. The refrigerator A may be driven by a storage battery. In this case, when the power cords 13a and 13b are connected, the storage battery may be charged together with power supply to the refrigerator. . A display panel 5 for performing an operation is mounted on the front surface of the concave portion 15 of the main body 1. This display panel 5 is shown in FIG.
As shown in (b), an LED 9 for displaying each operation mode of refrigeration and warming, an operation switch 10 for switching each operation of refrigeration, warming and stopping, a capability switching switch 11 for switching cooling ability, an AC or DC power supply Power supply mode switch 12 that switches according to the mode, AC power cord 13
a or power cord 13 such as DC power cord 13b
Are provided.

【0012】本体1の凹部15内には、図4に示すよう
に、ペルチェ素子21、スペーサ台22、放熱フィン2
3等の電子冷却ユニット20が装着されている。ペルチ
ェ素子21は、その吸熱部側にスペーサ台22、放熱部
側には放熱フィン23が夫々密着固定されている。スペ
ーサ台22は、熱伝導率の良好な材料、例えばアルミニ
ウムで形成され、スペーサ台22の一側面がペルチェ素
子21の吸熱部に伝熱グリースにて密着固定されると共
に、スペーサ台22の他側面が収納ケース24に熱結合
可能なように密着固定されている。この収納ケース24
は、熱伝導率の良好な材料、例えばアルミニウムから成
り、収納ケース24のネジ孔からスペーサ台22に締結
される固定ネジ27(図1)によって収納ケース24と
スペーサ台22とが一体に固定されている。
As shown in FIG. 4, a Peltier element 21, a spacer base 22, a radiation fin 2
An electronic cooling unit 20 such as 3 is mounted. In the Peltier device 21, a spacer base 22 is fixed to the heat absorbing portion side, and a heat radiating fin 23 is fixed to the heat radiating portion side. The spacer base 22 is formed of a material having good thermal conductivity, for example, aluminum. One side of the spacer base 22 is closely fixed to the heat absorbing portion of the Peltier element 21 with heat transfer grease. Are tightly fixed to the storage case 24 so that they can be thermally coupled. This storage case 24
Is made of a material having good thermal conductivity, for example, aluminum, and the storage case 24 and the spacer base 22 are integrally fixed by fixing screws 27 (FIG. 1) fastened to the spacer base 22 from the screw holes of the storage case 24. ing.

【0013】また、放熱フィン23は、ペルチェ素子2
1に発生する熱及びジュール熱を効率良く放散させるも
ので、熱伝導率の良好な材料で形成されており、ペルチ
ェ素子21の放熱部に伝熱グリースで密着配置されると
共に、その両端縁が断熱クッション70を介して収納ケ
ース24に固定されている。さらに、収納ケース24の
前記通風口6の内側には、放熱フィン23に送風してこ
れを冷却するためのファン29が対向配置されており、
放熱フィン23に送風された空気が通風口7から放出さ
れるようになっている。つまり、ペルチェ素子21の吸
熱部の吸熱量は供給される電流に比例し、ペルチェ素子
21の内部抵抗によるジュール熱は電流の2乗に比例す
るので、一定電流を供給するとき、最大の吸熱量が得ら
れる最大の電流値が存在する。そこで、上記ファン29
からの送風によりペルチェ素子21の放熱部に密着され
た放熱フィン23を冷却し、上記ジュール熱を放散し
て、放熱部の温度を低下させることにより、冷却が進ん
でいくものである。
The radiating fins 23 are connected to the Peltier device 2.
1, which efficiently dissipates the heat generated in the Peltier device 21 and the Joule heat, is made of a material having a good thermal conductivity, is closely attached to the heat dissipation portion of the Peltier element 21 with heat transfer grease, and has both end edges. It is fixed to the storage case 24 via the heat insulating cushion 70. Further, a fan 29 for blowing air to the cooling fins 23 and cooling the cooling fins 23 is disposed inside the ventilation opening 6 of the storage case 24 so as to face each other.
The air blown to the radiation fins 23 is discharged from the ventilation port 7. That is, the amount of heat absorbed by the heat absorbing portion of the Peltier device 21 is proportional to the supplied current, and the Joule heat due to the internal resistance of the Peltier device 21 is proportional to the square of the current. There is a maximum current value at which is obtained. Therefore, the fan 29
By cooling the radiating fins 23 that are in close contact with the radiating portion of the Peltier element 21 by blowing air from the Peltier device, the Joule heat is dissipated, and the temperature of the radiating portion is lowered, whereby cooling proceeds.

【0014】次に、収納ケース24の壁面を構成するパ
ネル体25は、四角筒状に折り曲げ加工されて、収納ケ
ース24の壁面として用いられる。このパネル体25
は、図1(c)に示すように、2枚のパネル板材25
a,25bを重ね合わせて構成され、2枚のパネル板材
25a,25bの間に密閉された空間部より成る2系統
の膨管30a,30bが形成されている。2系統の膨管
30a,30bは、パネル体25の壁面全面にわたって
密閉された経路を形成しており、一方の膨管30a内の
空間に冷媒(水などの作動流体)が封入される。この冷
媒は、その移動と蒸気熱又は凝縮熱の授受によって熱移
動を行なう。なお、冷媒の物性は、例えば蒸発、凝縮の
可逆2相変化を行ない、潜熱が大きく、流動抵抗小で封
入量(重量)等を設計することにより、非常にわずかな
温度差で大量の熱を輸送できるものが選ばれる。他方の
膨管30b内の空間は真空引きして、一方の膨管30a
を他方の膨管30bにて真空断熱され、これにより熱伝
導及び対流熱伝導が起こらず、冷却エネルギーの漏洩防
止が図られるものである。
Next, the panel body 25 constituting the wall surface of the storage case 24 is bent into a rectangular tube shape and used as the wall surface of the storage case 24. This panel body 25
The two panel plates 25 are shown in FIG.
a and 25b are overlapped with each other, and two systems of inflated tubes 30a and 30b are formed between two panel plate members 25a and 25b. The two expansion tubes 30a and 30b form a closed path over the entire wall surface of the panel body 25, and a refrigerant (a working fluid such as water) is sealed in a space inside one expansion tube 30a. This refrigerant performs heat transfer by transferring and transferring steam heat or condensation heat. The physical properties of the refrigerant, for example, undergo a reversible two-phase change of evaporation and condensation, have a large latent heat, a small flow resistance, and are designed to have a large amount of heat with a very small temperature difference. Those that can be transported are selected. The space inside the other inflation tube 30b is evacuated, and the one inflation tube 30a
Is vacuum-insulated by the other expansion tube 30b, whereby heat conduction and convection heat conduction do not occur, and leakage of cooling energy is prevented.

【0015】ここで、上記2系統の膨管30a,30b
は、図2に示すように、パネル体25の巾W1 、長さL
1 の範囲内でその全面に亘って形成されている。図2
(a)はパネル体25の展開図であり、櫛歯状の膨管3
0a,30bの配置状態の一例を示している。一方の膨
管30aは、縦に延びた直線部30c′と、直線部30
c′から横方向に延出した複数の延出部30d′とで櫛
歯状に形成されており、また他方の膨管30aも、縦に
延びた直線部30c″と、直線部30c″から横方向に
延出した複数の延出部30d″とで櫛歯状に形成されて
おり、各延出部30d′は重ならないように交互に配置
されると共に、各膨管30a,30bは夫々の系内で1
つに連通している。これにより、膨管30a,30bの
各部位の壁面より吸熱、放熱を行なって収納ケース24
内の温度を下げ、分布差を無くして冷蔵能力の向上が図
られている。図2(a)中の90は一方の膨管30aの
封止口、91は他方の膨管30bの封止口である。図2
(b)は一方の膨管30aを、横に延びた直線部30
c′と、直線部30c′から縦方向に延出した複数の延
出部30d′とで櫛歯状に形成し、また他方の膨管30
aを、横に延びた直線部30c″と、直線部30c″か
ら縦方向に延出した複数の延出部30d″とで櫛歯状に
形成した場合を示している。
Here, the two systems of inflated tubes 30a, 30b
Is a width W 1 and a length L of the panel body 25 as shown in FIG.
It is formed over the entire surface within the range of 1 . FIG.
(A) is an exploded view of the panel body 25, showing the comb-shaped inflatable tube 3.
An example of an arrangement state of 0a and 30b is shown. One inflatable tube 30a has a straight portion 30c 'extending vertically and a straight portion 30c.
A plurality of extending portions 30d 'extending laterally from c' are formed in a comb shape, and the other inflation tube 30a is also formed from a vertically extending straight portion 30c "and a straight portion 30c". A plurality of extending portions 30d "extending in the lateral direction are formed in a comb shape, and the extending portions 30d 'are alternately arranged so as not to overlap with each other, and each of the inflation tubes 30a and 30b is respectively formed. 1 in the system
In communication with one. Thereby, heat is absorbed and radiated from the wall surfaces of the respective portions of the expansion tubes 30a and 30b, and the storage case 24 is
The refrigeration capacity has been improved by lowering the temperature inside and eliminating distribution differences. In FIG. 2A, reference numeral 90 denotes a sealing port of one of the inflation tubes 30a, and reference numeral 91 denotes a sealing port of the other inflation tube 30b. FIG.
(B) shows one of the inflatable tubes 30a as a straight portion 30 extending laterally.
c 'and a plurality of extending portions 30d' extending in the vertical direction from the straight portion 30c 'to form a comb-like shape.
FIG. 5A shows a case where a is formed in a comb-like shape by a linear portion 30c ″ extending laterally and a plurality of extending portions 30d ″ extending in the vertical direction from the linear portion 30c ″.

【0016】次に、収納ケース24の製造方法の一例を
説明すると、例えばアルミニウムの薄膜を高圧下率圧延
により圧接接合して、膨管回路部分はスクリーン印刷で
プリントした圧着防止材を塗布し、任意の膨管用空間
(本実施形態では2系統の膨管用空間)を確保し、プリ
ント部分以外の部位を高圧、熱間圧延して接合する。さ
らに所定の板厚にするために冷間圧延し、硬くなった板
材を軟らかくし、高圧空気の圧力により膨管回路部分を
櫛歯状に膨出させる。このとき2系統の膨管30a,3
0bの形成工程を同様に行なう。その後、製品形状に切
断プレスすると、2系統の膨管30a,30bが夫々真
空化される。この真空引き工程までは同一であり、各系
の膨管30a,30bは夫々閉回路として封止されるも
のである。その後、一方の膨管30a内に熱輸送媒体
(冷媒)となるフロン、或いはアンモニア、水等の作動
流体を封入し、膨管30aを封止することにより、蒸発
及び凝縮熱伝導率などが極めて大きいヒートパネルを製
造できる。
Next, an example of a method of manufacturing the storage case 24 will be described. For example, a thin film of aluminum is pressure-welded by high-pressure reduction rolling, and the expansion circuit circuit portion is coated with an anti-compression material printed by screen printing. An arbitrary space for the inflatable tube (in this embodiment, two spaces for the inflatable tube) is secured, and portions other than the printed portion are joined by high pressure and hot rolling. Further, the plate is cold-rolled to a predetermined thickness, the hardened plate is softened, and the expanded circuit portion is bulged in a comb-like shape by the pressure of high-pressure air. At this time, two inflation tubes 30a, 3
0b is formed in the same manner. Then, when cutting and pressing into a product shape, the two systems of the expanded tubes 30a and 30b are each evacuated. The steps up to the evacuation step are the same, and the expansion tubes 30a and 30b of each system are sealed as closed circuits. Thereafter, a working fluid such as chlorofluorocarbon, ammonia, or water serving as a heat transport medium (refrigerant) is sealed in one of the expansion tubes 30a, and the expansion tube 30a is sealed. Can produce large heat panels.

【0017】次に動作を説明する。収納ケース24内を
冷却する場合は、ペルチェ素子21の収納ケース24に
対向する側が吸熱部となり、反対側が放熱部となるよう
に電流を供給するとスペーサ台22を介して収納ケース
24に冷蓄熱エネルギーが伝達されて収納ケース24の
熱源取付け部24aが局部的に冷却される。さらに、こ
の熱源取付け部24aから、収納ケース24の壁面を構
成するパネル体25全面にはりめぐらされた一方の膨管
30a内に蓄熱エネルギーが伝わり、一方の膨管30a
中の冷媒の凝縮熱によって収納ケース24全体が冷却さ
れる。尚、ペルチェ素子21に供給する電流の方向を逆
にすることで、吸熱部と放熱部とを切り換えることがで
きるので、収納ケース24を温蔵庫としても使用できる
ものである。
Next, the operation will be described. When cooling the inside of the storage case 24, when a current is supplied so that the side of the Peltier element 21 facing the storage case 24 becomes a heat absorbing portion and the opposite side becomes a heat radiating portion, the cold storage energy is stored in the storage case 24 via the spacer base 22. Is transmitted, and the heat source mounting portion 24a of the storage case 24 is locally cooled. Further, the heat storage energy is transmitted from the heat source mounting portion 24a to one expansion tube 30a which is spread over the entire surface of the panel body 25 constituting the wall surface of the storage case 24, and the one expansion tube 30a
The entire storage case 24 is cooled by the condensation heat of the refrigerant therein. Note that, by reversing the direction of the current supplied to the Peltier device 21, the heat absorbing portion and the heat radiating portion can be switched, so that the storage case 24 can also be used as a warm storage.

【0018】ところで、収納ケース24の壁面に本実施
形態のような膨管30a,30bが形成されていない容
器構造では、熱源取付け部24aに対向する壁面側との
温度差は数℃程度出る。これは吸熱がほとんど容器の熱
伝導に頼っており、容器材質の熱伝導度の差に主な起因
がある。これに対して本実施形態の収納ケース24にお
いては、熱源取付け部24aの局部蓄熱エネルギーの流
通活性化を図る熱輸送用経路を構成する膨管30a,3
0bが壁面のほぼ全体にはりめぐらされている。つま
り、この収納ケース24は、蒸発及び凝縮熱の伝達率が
きわめて高いパネル体25を折り曲げ加工して四周囲い
ヒートパネル枠体として構成され、一方の膨管30aに
封入される冷媒は蒸発、凝縮の可逆2相変化する潜熱が
大きく、流動抵抗が小さいものを用い、さらに冷媒の封
入量を適宜設定することで、非常にわずかな温度差で大
量の熱を輸送できるようになる。従って、熱源付近の蓄
熱エネルギーが一方の膨管30a内の冷媒に伝わり易く
なり、収納ケース24の壁面のほぼ全面にわたって形成
された一方の膨管30a(循環経路)内では冷媒の移動
と熱源からの蒸気熱又は凝縮熱の授受によって熱移動が
行なわれる。さらに、真空断熱用の他方の膨管30bの
存在によって、収納ケース24表面より放散する熱量を
抑制でき、この結果、熱源取付け部24aとこれに対向
する壁面との温度差がほとんど無くなり、収納ケース2
4内の中央部位での温度も低下し、収納ケース24内全
体での冷却がよりスムーズに進行することとなる。この
結果、収納ケース24内の温度をより効率良く、且つよ
り均一に低下させることができるようになり、冷却能力
の大幅な向上を図ることができる。さらに熱交換用パネ
ル体25として消費電力の省電力化、及び電子冷却ユニ
ット20の吸熱力助成と併せて省エネルギー化が図られ
る。
By the way, in the container structure in which the expansion tubes 30a and 30b are not formed on the wall surface of the storage case 24 as in the present embodiment, the temperature difference between the wall surface side facing the heat source mounting portion 24a is about several degrees. This is mainly because the heat absorption depends on the heat conduction of the container, and is mainly caused by the difference in the thermal conductivity of the container material. On the other hand, in the storage case 24 of the present embodiment, the expansion tubes 30a, 3 constituting the heat transport path for activating the flow of the local heat storage energy of the heat source mounting portion 24a.
Ob is wound around almost the entire wall surface. That is, this storage case 24 is formed as a heat panel frame around four by bending a panel body 25 having a very high rate of transmission of heat of evaporation and condensation, and the refrigerant sealed in one expansion tube 30a is evaporated and condensed. A large amount of heat can be transported with a very slight temperature difference by using a material having a large latent heat that changes reversibly in two phases and a small flow resistance and appropriately setting the amount of charged refrigerant. Therefore, the stored heat energy near the heat source is easily transmitted to the refrigerant in the one expansion tube 30a, and the movement of the refrigerant and the heat source in the one expansion tube 30a (circulation path) formed over almost the entire wall surface of the storage case 24. Heat transfer is performed by the transfer of steam heat or condensation heat. Further, the presence of the other expansion tube 30b for vacuum insulation can suppress the amount of heat dissipated from the surface of the storage case 24. As a result, the temperature difference between the heat source mounting portion 24a and the wall surface facing the heat source mounting portion 24a is almost eliminated, and the storage case 2
The temperature at the central portion of the inside of the storage case 4 also decreases, and the cooling in the entire storage case 24 proceeds more smoothly. As a result, the temperature in the storage case 24 can be reduced more efficiently and more uniformly, and the cooling capacity can be significantly improved. Further, the heat exchange panel body 25 achieves energy saving together with power saving of the power consumption and promotion of heat absorption of the electronic cooling unit 20.

【0019】このように、熱源に熱結合された冷媒入り
の一方の膨管30aに、真空断熱用の他方の膨管30b
を併存したことによって、エネルギーロスの低減を図り
ながら、収納ケース24内を効率良く且つ均一に冷却
(又は加温)できる。言い換えれば、一方の膨管30a
内の熱移動によって収納ケース24内の冷却性能が向上
し、壁面部位の温度差の均一化が図られ、さらに他方の
膨管30b内の真空断熱によって、収納ケース24の内
壁面から冷温蔵庫表面へ断熱材41を通して放熱される
熱漏洩量をできるだけ少なく抑えることができ、そのう
え真空断熱用の他方の膨管30bは冷媒を封入した一方
の膨管30aと交互に配置されているので、膨管30
a,30b間隔が広くなり、一方の膨管30a間での熱
干渉を軽減できると共に、収納ケース24の外側への熱
漏洩をより有効に軽減でき、ペルチェ素子21による吸
熱エネルギーロスを最小限にでき、最大限の冷却能力を
発揮させることが可能となる。
As described above, one expansion tube 30a containing the refrigerant thermally coupled to the heat source is connected to the other expansion tube 30b for vacuum insulation.
Can efficiently and uniformly cool (or heat) the inside of the storage case 24 while reducing energy loss. In other words, one inflation tube 30a
The cooling performance in the storage case 24 is improved by the heat transfer in the inside, the temperature difference in the wall surface portion is made uniform, and the vacuum insulation in the other expansion tube 30b allows the cold storage from the inner wall surface of the storage case 24. The amount of heat leakage radiated to the surface through the heat insulating material 41 can be suppressed as small as possible. In addition, since the other expansion tube 30b for vacuum heat insulation is arranged alternately with the one expansion tube 30a in which the refrigerant is sealed, the expansion amount is reduced. Tube 30
The interval between the expansion tubes 30a and 30b is widened, so that heat interference between one of the expansion tubes 30a can be reduced, heat leakage to the outside of the storage case 24 can be more effectively reduced, and heat absorption energy loss due to the Peltier element 21 can be minimized. It is possible to exhibit the maximum cooling capacity.

【0020】しかも、図2(a)に示すように、冷媒を
充填した一方の膨管30aの延出部30cはパネル体2
5の高さ方向に傾斜しており、パネル体25を折り曲げ
て収納ケース24の壁面とした時に、収納ケース24の
熱源取付け部24a側が上方とならないように傾斜させ
ることで、この膨管30a内に封入された冷媒の蒸気熱
又は凝縮熱の授受が一層スムーズに行なわれるようにな
り、熱移動の一層の活発化を図ることができる。
Further, as shown in FIG. 2A, the extension portion 30c of the one expansion tube 30a filled with the refrigerant is connected to the panel body 2
5, and when the panel body 25 is bent to form the wall surface of the storage case 24, the storage case 24 is tilted so that the heat source mounting portion 24a side does not face upward. The transfer of the vapor heat or the condensation heat of the refrigerant sealed in the container is performed more smoothly, and the heat transfer can be further activated.

【0021】ちなみに、真空利用による断熱の応用例と
して、魔法瓶があるが、電子冷温蔵庫の場合は、壁面形
状が略直方形状であり、壁面内部の真空度を上げすぎる
と、大気圧で壁が破壊してしまう。そこで本実施形態で
は、冷媒が封入された一方の膨管30a(冷媒回路)
と、真空断熱部である他方の膨管30bとを交互に形成
して、真空度を保持するための強度が確保された壁面構
造としているので、収納ケース24の壁面の強度を保持
しながら、一方の膨管30aによる冷却効果と、他方の
膨管30bによる真空断熱効果とを長期間にわたって保
持できるものである。
By the way, there is a thermos as an application example of heat insulation by utilizing a vacuum, but in the case of an electronic refrigerator, the wall shape is a substantially rectangular shape. Will be destroyed. Therefore, in the present embodiment, one expansion tube 30a (refrigerant circuit) in which the refrigerant is sealed.
And the other expansion tube 30b, which is a vacuum heat insulating portion, are alternately formed to have a wall structure in which the strength for maintaining the degree of vacuum is secured, so that the strength of the wall surface of the storage case 24 is maintained. The cooling effect of the one expansion tube 30a and the vacuum heat insulating effect of the other expansion tube 30b can be maintained for a long period of time.

【0022】例えばアルミ絞りのような金属ケースの場
合、ペルチェ素子21の吸熱部に冷熱が滞留し、熱源取
付け部24aと対向する壁面との温度差約5〜6℃発生
し、しかも庫内温度(例えば中央)は、本実施形態の収
納ケース24の使用時と比較して、6〜8℃の差(周囲
温度30℃、容積が10リットルの場合)がつく。図5
及び図6(拡大図)は周囲温度30℃より冷却し、庫内
温度4℃(3時間経過後)の時に電源をオフとし、放冷
して庫内中央温度の推移をみた場合の実験結果を示して
いる。図5及び図6中のL1 は本実施形態の真空膨管付
きケース、L2は通常のアルミ絞りケースの特性を示
す。このグラフから明らかなようにアルミ絞りケースと
真空膨管付きケースとでは175分経過時にアルミ絞り
ケースは30℃の周囲温に達するが、真空膨管付きケー
スでは29.45℃の庫内温状態となる。従って、放熱
カーブの交差時点dより一方が周囲温度に達する時の温
度差0.55℃あり、熱漏洩は約18%、冷温蔵庫面よ
り放熱が低下する効果があることが判った。
For example, in the case of a metal case such as an aluminum aperture, cold heat stays in the heat absorbing portion of the Peltier element 21, and a temperature difference of about 5 to 6 ° C. occurs between the heat source mounting portion 24a and the wall facing the heat source. At the center (for example, at the center), a difference of 6 to 8 ° C. (when the ambient temperature is 30 ° C. and the volume is 10 liters) is obtained as compared with the case where the storage case 24 of this embodiment is used. FIG.
And Fig. 6 (enlarged view) shows the experimental results when the temperature was cooled from the ambient temperature of 30 ° C, the power was turned off when the internal temperature was 4 ° C (after 3 hours), and the temperature was allowed to cool to see the transition of the internal temperature of the internal temperature. Is shown. 5 and L 1 in FIG. 6 is a vacuum膨管case with the present embodiment, L 2 denotes a characteristic of a conventional aluminum diaphragm casing. As is clear from this graph, the aluminum drawn case reaches an ambient temperature of 30 ° C. after 175 minutes has elapsed in the case of the aluminum drawn case and the case with the vacuum expansion tube, but the inside temperature condition of 29.45 ° C. in the case with the vacuum expansion tube. Becomes Therefore, it was found that there is a temperature difference of 0.55 ° C. when one reaches the ambient temperature from the intersection point d of the heat radiation curve, the heat leakage is about 18%, and the heat radiation is lower than that of the cold and hot storage surface.

【0023】また、熱源としてペルチェ素子21を用い
たことにより、従来の冷凍サイクルを利用した場合に必
要となるコンプレッサーが不要になり、小型、軽量且つ
騒音、振動のない冷温蔵庫の開発が可能となった。尚、
上記実施形態では、パネル体25を構成する2枚のパネ
ル板材25a,25bのうち、片方のパネル板材25
a,25bを膨出させて膨管30a,30bを形成した
が、これに限定されず、両方のパネル板材25a,25
bを夫々膨出させて膨管30a,30bを形成してもよ
いものであり、この場合、2枚のパネル板材25a,2
5bを同じように加工できて、コスト的にも安価で済む
ようになり、しかも膨管30a,30bの断面積の増加
(パネル内容積増加)により作動流体(封入量)を増や
すことができると共に、真空断熱面積も増加し、この結
果、パネル体25の温度制御巾が広がり、実用化範囲も
広がるという利点がある。
Further, the use of the Peltier element 21 as a heat source eliminates the need for a compressor required when a conventional refrigeration cycle is used, thereby enabling the development of a small, lightweight, noise-free, vibration-free refrigerator. It became. still,
In the above embodiment, of the two panel plate members 25a and 25b constituting the panel body 25, one of the panel plate members 25a and 25b is used.
The expansion pipes 30a and 30b are formed by expanding the expansion pipes 30a and 30b. However, the present invention is not limited thereto.
b may be expanded to form expanded tubes 30a, 30b. In this case, two panel plate members 25a, 2b are formed.
5b can be processed in the same manner, and the cost can be reduced. Further, the working fluid (filled amount) can be increased by increasing the cross-sectional area of the inflatable tubes 30a, 30b (increasing the volume in the panel). In addition, the vacuum insulation area increases, and as a result, there is an advantage that the temperature control width of the panel body 25 is widened and the range of practical use is widened.

【0024】[0024]

【発明の効果】以上説明したように、本発明のうち請求
項1記載の発明は、収納ケースの壁面に熱源が取付けら
れ、収納ケースの壁面を2系統の膨管を有するパネル体
で構成し、一方の膨管内に熱源に熱的に結合される冷媒
を充填すると共に、他方の膨管内を真空にして一方の膨
管を他方の膨管にて断熱して成るものであり、熱源に熱
結合された冷媒入りの一方の膨管と、真空断熱用の他方
の膨管とを併存させたことによって、冷媒による熱伝達
が良好となり、且つ真空断熱により収納ケースの外側へ
の熱エネルギーの漏洩を減少させることができるので、
熱効率を向上させることができると同時に、収納ケース
の壁面の厚みを薄くして軽量化を図ることができるもの
である。
As described above, according to the first aspect of the present invention, the heat source is mounted on the wall surface of the storage case, and the wall surface of the storage case is constituted by a panel body having two types of inflated tubes. One of the expansion tubes is filled with a refrigerant that is thermally coupled to a heat source, and the other expansion tube is evacuated so that one expansion tube is insulated by the other expansion tube. The combined use of one of the expansion tubes containing the refrigerant and the other expansion tube for vacuum insulation improves heat transfer by the refrigerant, and leaks heat energy to the outside of the storage case due to vacuum insulation. Can be reduced,
The thermal efficiency can be improved, and at the same time, the thickness of the wall surface of the storage case can be reduced to reduce the weight.

【0025】また請求項2記載の発明は、請求項1記載
の効果に加えて、2系統の膨管を交互に配置したから、
膨管間隔が広くなり、一方の膨管間での熱干渉を軽減で
きると共に、収納ケースの外側への熱漏洩をより有効に
軽減でき、熱効率を一層向上させることができる。また
請求項3記載の発明は、請求項1記載の効果に加えて、
2系統の膨管を櫛歯状に形成したから、収納ケースの壁
面全体に膨管をはりめぐらせることができ、膨管による
熱伝達がより効率良く行なわれる。
According to the second aspect of the present invention, in addition to the effect of the first aspect, two systems of inflatable tubes are alternately arranged.
The distance between the inflatable tubes is increased, so that heat interference between the inflatable tubes can be reduced, and heat leakage to the outside of the storage case can be more effectively reduced, and the thermal efficiency can be further improved. The invention according to claim 3 has the effect of claim 1,
Since the two systems of the inflatable tubes are formed in a comb-teeth shape, the inflatable tubes can be wrapped around the entire wall surface of the storage case, and the heat transfer by the inflated tubes is performed more efficiently.

【0026】また請求項4記載の発明は、請求項1記載
の効果に加えて、冷媒を充填した一方の膨管をパネル体
の高さ方向に傾斜させて成るから、収納ケースの熱源取
付け部側が上方とならないように一方の膨管を傾斜させ
ることで、この膨管内に封入された冷媒の蒸気熱又は凝
縮熱の授受が一層スムーズに行なわれるようになり、熱
移動の一層の活発化を図ることができる。
According to a fourth aspect of the present invention, in addition to the effect of the first aspect, one of the expansion tubes filled with the refrigerant is inclined in the height direction of the panel body. By inclining one of the expansion tubes so that the side does not become upward, the transfer of vapor heat or condensation heat of the refrigerant sealed in the expansion tubes can be performed more smoothly, and the heat transfer can be further activated. Can be planned.

【0027】また請求項5記載の発明は、請求項1記載
の効果に加えて、二系統の膨管を有するパネル体を折り
曲げて収納ケースの壁面を構成して成るから、この折り
曲げられたパネル体を収納ケースの壁面として用いるこ
とによって、熱輸送用経路と真空断熱部とを構成する二
系統の膨管が収納ケースの壁面のほぼ全体にはりめぐら
されるようになり、収納ケース内の熱効率を一層向上さ
せることができる。
According to a fifth aspect of the present invention, in addition to the effect of the first aspect, the panel body having the two types of inflated tubes is bent to form the wall surface of the storage case. By using the body as the wall surface of the storage case, the two systems of inflatable tubes that constitute the heat transfer path and the vacuum heat insulating portion are routed around almost the entire wall surface of the storage case, and the thermal efficiency in the storage case is reduced. It can be further improved.

【0028】また請求項6記載の発明は、請求項1記載
の効果に加えて、熱源がペルチェ素子であるから、従来
の冷凍サイクルを利用した場合に必要となるコンプレッ
サーが不要になり、小型、軽量且つ騒音、振動のない冷
温蔵庫の開発が可能となる。
According to the sixth aspect of the present invention, in addition to the effect of the first aspect, since the heat source is a Peltier element, a compressor which is required when a conventional refrigeration cycle is used becomes unnecessary, and the size and the size are reduced. It is possible to develop a refrigerator that is lightweight and free of noise and vibration.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は本実施形態の一例を示す断面図、
(b)は収納ケースの壁面を構成するパネル体の斜視
図、(c)は膨管の形状を説明する断面図である。
FIG. 1A is a cross-sectional view illustrating an example of the present embodiment,
(B) is a perspective view of a panel body constituting a wall surface of the storage case, and (c) is a cross-sectional view illustrating a shape of an inflatable tube.

【図2】(a)はパネル体の展開図の一例を示し、
(b)は他例を示している。
FIG. 2A shows an example of a development view of a panel body,
(B) shows another example.

【図3】(a)は同上の冷温蔵庫の外観図、(b)は表
示パネルの正面図である。
FIG. 3 (a) is an external view of the cold storage unit, and FIG. 3 (b) is a front view of a display panel.

【図4】同上の冷温蔵庫の分解斜視図である。FIG. 4 is an exploded perspective view of the cold and hot storage;

【図5】同上の収納ケースと通常のアルミ絞りケースと
の冷却特性及び放熱特性を比較するグラフである。
FIG. 5 is a graph comparing cooling characteristics and heat radiation characteristics of the above storage case and a normal aluminum drawing case.

【図6】図5の放熱特性を拡大したグラフである。FIG. 6 is a graph in which the heat radiation characteristics of FIG. 5 are enlarged.

【符号の説明】[Explanation of symbols]

21 ペルチェ素子 24 収納ケース 25 パネル体 30a 一方の膨管 30b 他方の膨管 Reference Signs List 21 Peltier element 24 Storage case 25 Panel body 30a One expanded tube 30b The other expanded tube

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 収納ケースの壁面に熱源が取付けられ、
収納ケースの壁面を2系統の膨管を有するパネル体で構
成し、一方の膨管内に熱源に熱的に結合される冷媒を充
填すると共に、他方の膨管内を真空にして一方の膨管を
他方の膨管にて断熱して成ることを特徴とする冷温蔵
庫。
1. A heat source is attached to a wall of a storage case,
The wall surface of the storage case is formed of a panel body having two systems of expanded tubes, and one of the expanded tubes is filled with a refrigerant thermally coupled to a heat source, and the other expanded tube is evacuated to form one expanded tube. A cold and hot storage, characterized by being insulated by the other expansion tube.
【請求項2】 2系統の膨管を交互に配置したことを特
徴とする請求項1記載の冷温蔵庫。
2. The refrigerator according to claim 1, wherein two expansion tubes are alternately arranged.
【請求項3】 2系統の膨管を櫛歯状に形成したことを
特徴とする請求項1記載の冷温蔵庫。
3. The refrigerator according to claim 1, wherein the two systems of expanded tubes are formed in a comb shape.
【請求項4】 冷媒を充填した一方の膨管をパネル体の
高さ方向に傾斜させて成ることを特徴とする請求項1記
載の冷温蔵庫。
4. The refrigerator according to claim 1, wherein one of the expansion tubes filled with the refrigerant is inclined in the height direction of the panel body.
【請求項5】 二系統の膨管を有するパネル体を折り曲
げて収納ケースの壁面を構成して成ることを特徴とする
請求項1記載の冷温蔵庫。
5. The refrigerator according to claim 1, wherein a wall of the storage case is formed by bending a panel body having two expansion tubes.
【請求項6】 熱源がペルチェ素子であることを特徴と
する請求項1記載の冷温蔵庫。
6. The refrigerator according to claim 1, wherein the heat source is a Peltier device.
JP22567796A 1996-08-27 1996-08-27 Cold/hot storeroom Withdrawn JPH1068569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22567796A JPH1068569A (en) 1996-08-27 1996-08-27 Cold/hot storeroom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22567796A JPH1068569A (en) 1996-08-27 1996-08-27 Cold/hot storeroom

Publications (1)

Publication Number Publication Date
JPH1068569A true JPH1068569A (en) 1998-03-10

Family

ID=16833059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22567796A Withdrawn JPH1068569A (en) 1996-08-27 1996-08-27 Cold/hot storeroom

Country Status (1)

Country Link
JP (1) JPH1068569A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004251428A (en) * 2003-02-21 2004-09-09 Toshiba Home Technology Corp Manufacturing method for heat insulator
JP2008539390A (en) * 2005-04-25 2008-11-13 ビーイー・インテレクチュアル・プロパティー・インコーポレイテッド Refrigerator-oven combination for aircraft kitchen food service system
WO2014167806A1 (en) * 2013-04-12 2014-10-16 パナソニック株式会社 Refrigerator
CN108036565A (en) * 2017-12-07 2018-05-15 上海理工大学 A kind of space flight low temperature refrigerator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004251428A (en) * 2003-02-21 2004-09-09 Toshiba Home Technology Corp Manufacturing method for heat insulator
JP2008539390A (en) * 2005-04-25 2008-11-13 ビーイー・インテレクチュアル・プロパティー・インコーポレイテッド Refrigerator-oven combination for aircraft kitchen food service system
US8701752B2 (en) 2005-04-25 2014-04-22 Be Intellectual Property, Inc. Refrigerator-oven combination for an aircraft galley food service system
US9664422B2 (en) 2005-04-25 2017-05-30 Be Intellectual Property, Inc. Refrigerator-oven combination for an aircraft galley food service system
WO2014167806A1 (en) * 2013-04-12 2014-10-16 パナソニック株式会社 Refrigerator
CN108036565A (en) * 2017-12-07 2018-05-15 上海理工大学 A kind of space flight low temperature refrigerator

Similar Documents

Publication Publication Date Title
US6003319A (en) Thermoelectric refrigerator with evaporating/condensing heat exchanger
JP2006343078A (en) Refrigerator
JP2006300511A (en) Kimchi refrigerator
JPS5915783A (en) Cooling device for compressor of refrigerator
JP2001033139A (en) Refrigerator
JPH1068569A (en) Cold/hot storeroom
JPH05264153A (en) Refrigerator
JPH11142046A (en) Heat insulation wall
US6029471A (en) Enveloping heat absorber for improved refrigerator efficiency and recovery of reject heat for water heating
JPH08121928A (en) Refrigerator
KR100336324B1 (en) Cold-hot storage fixtures
JP3343286B2 (en) Hot refrigerator
JP2003075000A (en) Heat exchanger for stirling refrigerating machine and stirling refrigerator
JPH08296941A (en) Portable electronic heating and cooling container
JPH08226734A (en) Refrigerator
KR200402138Y1 (en) low temperature store appartus with roll-bonding heatpipe
JPH08327204A (en) Low temperature box
JPH0835756A (en) Board material for inner container of refrigerator and refrigerator using the same
CN219332196U (en) Constant temperature type cold compress bag
JP2001255048A (en) Refrigerator
CN211552170U (en) Dual-purpose refrigerator for refrigerating and heating
CN211212619U (en) Electric pressure cooker and cooker body structure thereof
JPS60178278A (en) Refrigerator
JPH05264152A (en) Cooling device
JPH0854151A (en) Pulse tube refrigerating machine

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20031104