JPH06221738A - Electronic refrigerating and heating plant - Google Patents

Electronic refrigerating and heating plant

Info

Publication number
JPH06221738A
JPH06221738A JP911193A JP911193A JPH06221738A JP H06221738 A JPH06221738 A JP H06221738A JP 911193 A JP911193 A JP 911193A JP 911193 A JP911193 A JP 911193A JP H06221738 A JPH06221738 A JP H06221738A
Authority
JP
Japan
Prior art keywords
heat
radiator
working fluid
outside
thermoelectric element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP911193A
Other languages
Japanese (ja)
Inventor
Seiichi Kamiu
清一 神生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP911193A priority Critical patent/JPH06221738A/en
Publication of JPH06221738A publication Critical patent/JPH06221738A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/02Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
    • F25B2321/025Removal of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/02Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
    • F25B2321/025Removal of heat
    • F25B2321/0251Removal of heat by a gas

Abstract

PURPOSE:To improve heat transmission between an element mounting plate of a radiator and an operative fluid inside the radiator and to enable the radiator to resist against inside pressure due to the operative fluid. CONSTITUTION:An electronic refrigerating and heating plant is provided with a thermionic element 5 to make a heat pump operation corresponding to power supply conditions between the inside and the outside of the plant, and also a heat pipe type radiator 7 to radiate heat of the thermionic element 5 to the outside of the plant. In the radiator 7, an operative fluid passage is shaped in a grid in a radiating part 7e and enlarged in a flat plane in a heat absorbing part 7f which contacts with the thermionic element 5. Further an element mounting plate 7c is connected to one side surface of the heat absorbing part 'If and a reinforcing plate 7g is connected to the other side surface and the thermionic element 5 is mounted on the element mounting plate 7c.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体熱電素子への通電
により、冷却又は加温を行う冷温蔵庫に関するもので、
その用途は自動車用、家庭用等に広く適用可能である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cold storage for cooling or heating by energizing a semiconductor thermoelectric element.
Its application is widely applicable to automobiles, households and the like.

【0002】[0002]

【従来の技術】従来周知のこの種の冷温蔵庫を図5〜図
8に略示する。図示の冷温蔵庫は上面が開口する本体2
と該本体2の前記開口を塞ぐ蓋3とにより構成される断
熱箱体1からなる。この断熱箱体1により形成される庫
内側空間1aに被冷却(加温)物を収容して冷却(加
温)するようになっている。この断熱箱体1の断熱壁2
aの外側には庫外側空間1bが設けられている。この庫
外側空間1bは吸入口10b・吹出口10aを有する囲
い板10によって仕切られて大気と連通している。半導
体熱電素子5は断熱壁2aの開口部に設置された熱伝導
ブロック6に接して設けられている。この半導体熱電素
子5は庫内側空間1aに面する庫内側集熱板5aおよび
庫外側空間1bに面する庫外側集熱板5bを有する。こ
の半導体熱電素子5は例えばBi2Te3−Bi2Se3合金、Sb2T
e3−Bi2Te3合金のごとき半導体からなるもので、その通
電方向により庫内側集熱板5aが吸熱(放熱)作用を行
う時は、庫外側集熱板5bが放熱(吸熱)作用を行うも
のである。上記両集熱板5a,5bは電気絶縁材の中で
なるべく伝熱性の良い、例えばアルミナセラミック等の
材料にて形成されている。本体2の内壁に相当する槽壁
4はアルミニウム板など板厚が1.0〜2.0mm程度
の良熱伝導体により形成し、インサート成形等で本体2
に固着している。そしてこの槽壁4は冷却(加温)板を
兼用している。一方この槽壁4および該槽壁4に囲まれ
る庫内側空間1aを低温(高温)に冷却(加温)するた
めに、槽壁4は熱伝導ブロック6に密着し、前記半導体
熱電素子5の庫内側集熱板5aが例えばアルミニウムの
如き金属製の熱伝導ブロック6に密着し、庫外側集熱板
5bが放熱器7に密着している。熱伝導ブロック6を介
して半導体熱電素子5の庫内側集熱板5aと槽壁4との
間で熱伝導が行われる一方、庫外側集熱板5bと放熱器
7との間で熱伝導が行われる。熱伝達を良くするため
に、熱伝導ブロック6と放熱器7とをビスで締め付けて
その間に半導体熱電素子5をサンドイッチ止めする一
方、熱伝導ブロック6も槽壁4に対し、ビスで締め付け
て一体的に止着している。さらにこの放熱器7はファン
8による強制送風を利用しており、半導体熱電素子5の
庫外側集熱板5bに隣接した吸熱部7fと、放熱フィン
7bに隣接した放熱部7eとを有する。この放熱器7は
板厚1.6mm程度の圧延・圧着加工によるロールボン
ド式ヒートパイプである。更にこのヒートパイプの吸熱
部7fには放熱フィン7bを設けず、放熱部7eのみに
放熱フィン7bを設けた構成で、吸熱部7fと放熱部7
eとの間の作動流体通路を格子状に設け、各々の部分で
温度の均一化を計った構造とし、放熱部7eには放熱用
フィン7bを熱伝導が良好なロウ材等で接合している。
同様に吸熱部7fには素子取付プレート7cが接合され
ている。素子取付プレート7cの裏面と本体2の間に
は、熱伝導ブロック6を囲むようにパッキン9が装着さ
れ、冷却時の熱伝導ブロック6や半導体熱電素子5部で
の結露による性能低下や半導体熱電素子5の防水性を確
保している。尚格子状通路を構成するロールボンド法と
は、一方の板に圧着防止剤で回路をプリントした後、板
を重ね合わせて圧延、圧着する。その後、高圧空気で回
路を膨管する製造方法である。よってここで言う板厚
1.6mmとはロールボンド法による2板の板材の圧着
された最終板厚を指す。
2. Description of the Related Art A conventional cold storage cabinet of this type is shown in FIGS. The cold storage shown is a main body 2 with an open top.
And a lid 3 for closing the opening of the main body 2. An object to be cooled (heated) is accommodated in the inside space 1a formed by the heat insulating box 1 to cool (heat) it. Insulation wall 2 of this insulation box 1
An outside space 1b is provided outside a. The outside space 1b is partitioned by an enclosure plate 10 having an inlet 10b and an outlet 10a, and communicates with the atmosphere. The semiconductor thermoelectric element 5 is provided in contact with the heat conduction block 6 installed in the opening of the heat insulating wall 2a. This semiconductor thermoelectric element 5 has an inside heat collecting plate 5a facing the inside space 1a and an outside heat collecting plate 5b facing the outside space 1b. This semiconductor thermoelectric element 5 is made of, for example, Bi 2 Te 3 —Bi 2 Se 3 alloy, Sb 2 T.
It is made of a semiconductor such as e 3 -Bi 2 Te 3 alloy, and when the inner heat collecting plate 5a absorbs heat (radiates heat) depending on the direction of current flow, the outer heat collecting plate 5b releases heat (absorbs). It is something to do. Both of the heat collecting plates 5a and 5b are formed of a material having the highest heat conductivity in the electric insulating material, such as alumina ceramics. The tank wall 4 corresponding to the inner wall of the main body 2 is formed of a good heat conductor having a plate thickness of about 1.0 to 2.0 mm, such as an aluminum plate, and the main body 2 is formed by insert molding or the like.
Is stuck to. The tank wall 4 also serves as a cooling (heating) plate. On the other hand, in order to cool (heat) the tank wall 4 and the inside space 1a surrounded by the tank wall 4 to a low temperature (high temperature), the tank wall 4 is closely attached to the heat conduction block 6 and the semiconductor thermoelectric element 5 The inside heat collecting plate 5a is in close contact with the heat conducting block 6 made of metal such as aluminum, and the outside heat collecting plate 5b is in close contact with the radiator 7. Heat is conducted between the inside-side heat collecting plate 5a of the semiconductor thermoelectric element 5 and the tank wall 4 via the heat conduction block 6, while heat conduction between the outside-side heat collecting plate 5b and the radiator 7. Done. In order to improve heat transfer, the heat conduction block 6 and the radiator 7 are fastened with screws to sandwich the semiconductor thermoelectric element 5 therebetween, while the heat conduction block 6 is also fastened with screws to the tank wall 4 to be integrated. It is fixed to the target. Further, the radiator 7 uses forced air blowing by the fan 8 and has a heat absorbing portion 7f adjacent to the outer heat collecting plate 5b of the semiconductor thermoelectric element 5 and a heat radiating portion 7e adjacent to the heat radiating fin 7b. The radiator 7 is a roll-bond type heat pipe having a plate thickness of about 1.6 mm, which is formed by rolling and pressure bonding. Further, the heat absorbing portion 7f of the heat pipe is not provided with the heat radiating fins 7b, and only the heat radiating portion 7e is provided with the heat radiating fins 7b.
The working fluid passages between e and e are provided in a grid pattern so that the temperature of each part is made uniform, and the fins 7b for heat radiation are joined to the heat radiation part 7e with a brazing material having good heat conduction. There is.
Similarly, the element mounting plate 7c is joined to the heat absorbing portion 7f. A packing 9 is attached between the back surface of the element mounting plate 7c and the main body 2 so as to surround the heat conduction block 6, and performance deterioration or semiconductor thermoelectricity due to dew condensation on the heat conduction block 6 or the semiconductor thermoelectric element 5 portion during cooling. The element 5 is waterproof. The roll-bonding method for forming the grid-like passages is that a circuit is printed on one plate with a pressure-preventing agent, and then the plates are stacked and rolled and pressure-bonded. After that, it is a manufacturing method in which the circuit is expanded with high-pressure air. Therefore, the plate thickness of 1.6 mm mentioned here refers to the final plate thickness obtained by pressure bonding two plate materials by the roll bonding method.

【0003】次に動作について説明する。冷蔵(温蔵)
のスイッチをONにすると半導体熱電素子5のヒートポ
ンプ作用(ヒートポンプ作用と自己発熱)により、庫内
側集熱板5aから熱伝導ブロック6へ、次いで槽壁4の
順に冷却(加温)され、庫内温度を低下(上昇)させ
る。それと同時に放熱器7の吸熱部7fは庫外側集熱板
5bにより庫内側からの熱移動量と半導体熱電素子5の
発熱量(吸熱量)で加熱(冷却)される。かくして、冷
蔵運転中、放熱器7の通路部に封入されている作動流体
7aがこの吸熱部7fで蒸発気化し、放熱部7eに熱を
運ぶように働く。この熱はこの放熱部7eに形成された
フィン7bから、ファン8による強制送風で、大気中に
放熱され、作動流体7aは凝縮液化し、重力又はウイッ
クの毛細管力により、吸熱部7fに戻り、再度熱の運搬
を行うと言ったサイクルを繰返す。また、放熱器7を構
成する板材(約1.6mm)そのものを通しての伝熱に
より放熱部7e及び吸熱部7f表面からの直接放熱も小
量ではあるが行われる。これらにより、半導体熱電素子
5の能力設定値である規定温度差まで庫内温度は戸外温
度より低下し、冷蔵状態を維持する。なお、温蔵庫とし
て使用する場合には放熱器7は庫外側集熱板5bにより
庫内側への熱移動量で冷却され、放熱器7内部の作動流
体が作動しないため、大気からの熱はファン8により強
制送風でフィン7bへ伝えられ、放熱器7の板材(約
1.6mm)を通じて庫外側集熱板5bへ伝達され、庫
外側から集熱され、熱伝導ブロック6に装着された図示
しないサーマル・スイッチにより、設定温度になるよう
に通電・非通電を繰り返し、温蔵状態を維持する。
Next, the operation will be described. Cold storage (hot storage)
When the switch is turned ON, the heat pump action (heat pump action and self-heating) of the semiconductor thermoelectric element 5 cools (heats) the inside heat collecting plate 5a from the inside heat collecting plate 5a to the heat conducting block 6 in that order (warming), Decrease (increase) temperature. At the same time, the heat absorbing portion 7f of the radiator 7 is heated (cooled) by the heat transfer amount from the inside of the storage and the heat generation amount (heat absorption amount) of the semiconductor thermoelectric element 5 by the heat storage plate 5b outside the storage. Thus, during the refrigerating operation, the working fluid 7a enclosed in the passage portion of the radiator 7 is vaporized and vaporized by the heat absorbing portion 7f and serves to carry the heat to the heat radiating portion 7e. This heat is radiated to the atmosphere from the fins 7b formed in the heat radiating portion 7e by forced blowing by the fan 8, the working fluid 7a is condensed and liquefied, and returns to the heat absorbing portion 7f by gravity or the capillary force of the wick, Repeat the cycle of carrying heat again. In addition, direct heat radiation from the surfaces of the heat radiating portion 7e and the heat absorbing portion 7f is also performed by a small amount due to heat transfer through the plate material (about 1.6 mm) itself constituting the radiator 7. As a result, the temperature inside the refrigerator is lower than the outdoor temperature up to the specified temperature difference which is the capacity setting value of the semiconductor thermoelectric element 5, and the refrigerated state is maintained. When used as a warm storage, the radiator 7 is cooled by the amount of heat transferred to the inside by the outside heat collecting plate 5b, and the working fluid inside the radiator 7 does not operate, so heat from the atmosphere does not flow. The fan 8 forcibly blows air to the fins 7b, transmits the heat to the outside heat collecting plate 5b through the plate material (about 1.6 mm) of the radiator 7, collects heat from the outside, and is attached to the heat conduction block 6. Do not use the thermal switch to keep energizing / de-energizing to keep the temperature at the set temperature.

【0004】[0004]

【発明が解決しようとする課題】冷蔵運転中は半導体熱
電素子5の庫内側集熱板5aが冷却面、庫外側集熱板5
bが放熱面となって半導体熱電素子5内での熱の移動は
庫内側から庫外側へと移動する。半導体熱電素子5は通
常50mm×50mm角内程度で100W程度の消費電
力を有しており、庫内側からの吸熱量も加わり120〜
130W以上の放熱を必要としている。しかしながら、
上記従来技術では、素子取付プレート7cから作動流体
7aへの熱伝達が不足し、庫外側集熱板5bの温度が十
分に低下せず、高い冷却性能が得られないといった冷蔵
時の問題点があった。
During the refrigerating operation, the inside heat collecting plate 5a of the semiconductor thermoelectric element 5 is a cooling surface, and the outside heat collecting plate 5 is inside.
The heat transfer inside the semiconductor thermoelectric element 5 is from b inside to outside of the cabinet. The semiconductor thermoelectric element 5 usually has a power consumption of about 100 W within a 50 mm × 50 mm square, and the heat absorption amount from the inside of the refrigerator is also added to 120-
It requires heat dissipation of 130 W or more. However,
In the above-mentioned conventional technique, there is a problem during refrigeration that heat transfer from the element mounting plate 7c to the working fluid 7a is insufficient, the temperature of the outside heat collecting plate 5b is not sufficiently lowered, and high cooling performance cannot be obtained. there were.

【0005】この発明は上記のような問題点を解消する
ためになされたもので、冷蔵時の庫外側集熱板5bとの
密着性を向上するために設けられた放熱器の素子取付プ
レート7cと放熱器内部の作動流体との熱伝達を向上さ
せると共に作動流体による内部圧力に放熱器を耐えるよ
うにすることを目的とする。
The present invention has been made in order to solve the above-mentioned problems, and the element mounting plate 7c of the radiator provided for improving the adhesion with the outside heat collecting plate 5b during refrigeration. It is intended to improve the heat transfer with the working fluid inside the radiator and to withstand the radiator against the internal pressure of the working fluid.

【0006】[0006]

【課題を解決するための手段】この発明に係る電子冷温
蔵庫は庫内側と庫外側との間に通電状態に応じた熱ポン
プ作用をする熱電素子とこの熱を放散させるために庫外
側にヒートパイプ式の放熱器を設けてなる電子冷温蔵庫
において、このヒートパイプ式の放熱器は熱電素子に接
する吸熱部における作動流体の通路が面状に大きくなさ
れ、放熱部における作動流体の通路が格子状になされ、
かつ該放熱部の面積は吸熱部の面積よりも大きくなって
おり、該吸熱部の一側面に素子取付プレートを接合しか
つ該吸熱部の他側面に補強プレートを接合し、該素子取
付プレートに前記熱電素子を取り付けたことを特徴とす
る。
An electronic cold storage according to the present invention has a thermoelectric element that acts as a heat pump between the inside and the outside of the refrigerator depending on the energization state, and the outside of the refrigerator to dissipate this heat. In an electronic cold storage equipped with a heat pipe type radiator, the heat pipe type radiator has a planarly enlarged passage of the working fluid in the heat absorbing portion in contact with the thermoelectric element, and the passage of the working fluid in the heat radiating portion is Made in a grid,
Further, the area of the heat radiating portion is larger than the area of the heat absorbing portion, the element mounting plate is joined to one side surface of the heat absorbing portion, and the reinforcing plate is joined to the other side surface of the heat absorbing portion, and the element mounting plate is attached to the element mounting plate. The thermoelectric element is attached.

【0007】[0007]

【作用】この発明によれば、冷蔵運転中の半導体熱電素
子の自己発熱と庫内側からの吸熱による庫外側集熱板の
高熱が放熱器に伝達される時、素子取付プレートの熱が
面状に大きくなされた作動流体通路中の空間内に封入さ
れた作動流体に効率良く伝達され、次いでこの作動流体
が速やかに放熱器全面に広がり従って熱はすみやかに拡
散され、放熱器の温度分布が温度差3℃以下位までに均
一化される。かくして半導体熱電素子の庫外側集熱板の
温度が従来以上に低温となり、冷蔵性能が向上する。ま
た、吸熱部における作動流体通路を面状に大きくしたこ
とによるこの部分の作動流体の封入圧に対する耐圧力の
低下は、素子取付プレートの反対側に設けた補強プレー
トにより補強されて、従来と同等以上の耐圧力を低コス
トで、重量増加も少なく、実現できる。
According to the present invention, when the high heat of the outside heat collecting plate due to the self-heating of the semiconductor thermoelectric element during the refrigerating operation and the heat absorption from the inside of the refrigerator is transmitted to the radiator, the heat of the element mounting plate is planar. The large working fluid is efficiently transmitted to the working fluid enclosed in the space in the passage, and this working fluid spreads quickly over the entire surface of the radiator, so that heat is quickly diffused and the temperature distribution of the radiator is The difference is equalized to 3 ° C. or less. Thus, the temperature of the heat collecting plate on the outside of the refrigerator of the semiconductor thermoelectric element becomes lower than before, and the refrigerating performance is improved. In addition, the decrease in withstand pressure against the filling pressure of the working fluid in this part due to the enlargement of the working fluid passage in the heat absorbing part is reinforced by the reinforcing plate provided on the opposite side of the element mounting plate, The above pressure resistance can be realized at low cost and with little increase in weight.

【0008】[0008]

【実施例】以下、この発明の一実施例を図1乃至図4を
参照して説明する。なお放熱器以外の基本構成は従来例
と同一であるため省略し、放熱器についてのみ説明す
る。図1はこの発明の一実施例による電子冷温蔵庫を示
す断面図である。図2は本発明が特徴とする放熱器7の
平面図である。図3は図2の放熱器7の側面図を示すと
共に付属器具をも示す。図4は図2のIV−IV線に沿った
断面図である。放熱器7は庫外側集熱板5bと放熱部7
eとを備え作動流体7aを含んだ板厚1.6mm程度の
圧延・圧着加工によるロールボンド式ヒートポンプであ
る。更にヒートパイプの吸熱部7fには放熱フィン7b
を設けず、放熱部7eのみに放熱フィン7bを設けてい
る。本発明の特徴とする点は吸熱部7fでの作動流体通
路が面状に大きくなされていて素子取付プレート7cか
ら作動流体7aへの熱伝達面積を増大したことである
(図4参照)。放熱部7eでの作動流体通路は吸熱部7
fより小さな格子状に設け、温度の均一化を計った構造
とし、放熱部7eには放熱用フィン7bを熱伝導が良好
なロー材等で接合している。吸熱部7fの一側面には半
導体熱電素子5を取りつけるための素子取付プレート7
cを接合し、これと反対側の面には補強プレート7gを
接合している。これは作動流体の内圧に上記の面状に大
きくなされた膨管部が耐える様にしている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. Since the basic structure other than the radiator is the same as that of the conventional example, it is omitted, and only the radiator will be described. FIG. 1 is a sectional view showing an electronic cold storage according to an embodiment of the present invention. FIG. 2 is a plan view of the radiator 7 which is a feature of the present invention. FIG. 3 shows a side view of the radiator 7 of FIG. 2 and also shows accessories. FIG. 4 is a sectional view taken along line IV-IV in FIG. The radiator 7 includes a heat collecting plate 5b on the outside of the refrigerator and a heat radiating portion 7
It is a roll-bond type heat pump that is provided with e and includes working fluid 7a and has a plate thickness of about 1.6 mm by rolling and pressure bonding. Further, the heat radiating fin 7b is provided on the heat absorbing portion 7f of the heat pipe.
The heat dissipating fins 7b are provided only in the heat dissipating portion 7e. A feature of the present invention is that the working fluid passage in the heat absorbing portion 7f is made large in a plane shape to increase the heat transfer area from the element mounting plate 7c to the working fluid 7a (see FIG. 4). The working fluid passage in the heat radiating portion 7e is the heat absorbing portion 7
The heat-dissipating fins 7b are joined to the heat-dissipating portion 7e with a brazing material or the like having good heat conduction. An element mounting plate 7 for mounting the semiconductor thermoelectric element 5 on one side surface of the heat absorbing portion 7f.
c is joined, and a reinforcing plate 7g is joined to the surface on the opposite side. This allows the expansion tube portion, which is enlarged in the above-mentioned plane, to withstand the internal pressure of the working fluid.

【0009】次に動作について説明する。冷蔵(温蔵)
のスイッチをONにすると半導体熱電素子5のヒートポ
ンプ作用(ヒートポンプ作用と自己発熱)により、庫内
側集熱板5aから熱伝導ブロック6へ、そして槽壁4の
順に冷却(加温)され、庫内温度を低下(上昇)させ
る。逆に放熱器7の吸熱部7fは庫外側集熱板5bによ
り庫内側からの熱移動量と半導体熱電素子5の発熱量
(吸熱量)で加熱(冷却)される。この時放熱器7の素
子取付プレート7cと作動流体7aの接触面が従来より
十分に大きく(図4参照)、かつ、この部分に滞留する
作動流体の量も多いため、冷蔵運転時には多量の熱が放
熱器7の吸熱器7fへ伝わる。それで、この通路部に封
入された作動流体7aがこの吸熱部7fで蒸発気化して
放熱部7eに従来以上に多くの熱を運び、放熱部7eで
凝縮液化する。そこで放出された熱は放熱部7eに形成
されたフィン7bを通じてファン8による強制送風で大
気中に放熱される。凝縮液化した作動流体7aは重力又
はウイックの毛細管力により、吸熱部7fに戻り、再
度、熱の運搬を行うと言ったサイクルを繰返す。一方、
放熱器7の板材(約1.6mm)自体を通じての直接放
熱(放熱部7e及び吸熱部7f表面からの直接放熱)も
小量ではあるが行われる。これらの熱伝導作用により半
導体熱電素子5の能力設定値である規定温度差まで庫内
温度は庫外温度より低下し、冷蔵状態を維持する。な
お、温蔵運転時には、放熱器7の吸熱部7fは半導体熱
電素子5による庫内側への熱移動量で冷却される。従っ
て放熱器内部の作動流体は作動しない。しかし放熱器7
の板材(約1.6mm)を伝わって大気から熱が補給さ
れて、熱伝導ブロック5bに装着された図示しないサー
マル・スイッチにより設定された温度になるように半導
体熱電素子5は温蔵状態を維持する。
Next, the operation will be described. Cold storage (hot storage)
When the switch is turned ON, the heat pump action (heat pump action and self-heating) of the semiconductor thermoelectric element 5 cools (heats) the inside heat collecting plate 5a to the heat conduction block 6 and then the tank wall 4 in that order. Decrease (increase) temperature. On the contrary, the heat absorbing portion 7f of the radiator 7 is heated (cooled) by the heat transfer amount from the inside of the storage and the heat generation amount (heat absorption amount) of the semiconductor thermoelectric element 5 by the heat collection plate 5b outside the storage. At this time, since the contact surface between the element mounting plate 7c of the radiator 7 and the working fluid 7a is sufficiently larger than before (see FIG. 4), and the amount of working fluid retained in this portion is large, a large amount of heat is generated during refrigeration operation. Is transmitted to the heat absorber 7f of the radiator 7. Then, the working fluid 7a sealed in the passage portion is vaporized and vaporized by the heat absorbing portion 7f and carries more heat to the heat radiating portion 7e than before, and is condensed and liquefied by the heat radiating portion 7e. The heat radiated there is radiated to the atmosphere by forced air blowing by the fan 8 through the fins 7b formed on the heat radiating portion 7e. The condensed and liquefied working fluid 7a returns to the heat absorbing portion 7f by gravity or the capillary force of the wick, and repeats the cycle of carrying heat again. on the other hand,
Direct heat dissipation (direct heat dissipation from the surfaces of the heat dissipation part 7e and the heat absorption part 7f) through the plate material (about 1.6 mm) of the heat dissipation device 7 itself is also carried out though it is a small amount. Due to these heat conduction effects, the internal cold storage temperature becomes lower than the external cold storage temperature up to the specified temperature difference which is the capacity setting value of the semiconductor thermoelectric element 5, and the cold storage state is maintained. During the warming operation, the heat absorbing portion 7f of the radiator 7 is cooled by the amount of heat transferred to the inside of the refrigerator by the semiconductor thermoelectric element 5. Therefore, the working fluid inside the radiator does not work. But radiator 7
The semiconductor thermoelectric element 5 is kept in a warmed state so that heat is replenished from the atmosphere through the plate material (about 1.6 mm) and the temperature is set by a thermal switch (not shown) mounted on the heat conduction block 5b. maintain.

【0010】[0010]

【発明の効果】以上の様にこの発明によれば、電子冷温
蔵庫の半導体熱電素子を取り付ける放熱器の素子取付プ
レートの部分のみ作動流体の通路を面状に大きく、その
他の部分はこの部分より小さな格子状に作動流体通路を
設け、この素子取付部の反素子側に補強プレートをロー
付により接合して構成したので、放熱器の素子取付プレ
ートと作動流体の接触面が従来より十分に大きく、かつ
この部分に滞留する作動流体の量も多いため、冷蔵時
に、この通路部に封入された作動流体がこの吸熱部で蒸
発気化し、放熱部に従来以上に多くの熱を運び冷却ファ
ンによる強制送風で極めて効率良く放熱され、半導体熱
電素子の庫外側集熱板の温度が従来以上に低温となり、
冷蔵性能を向上できる。さらに、素子取付部の作動流体
通路を面状に大きくしたことによるこの部分の作動流体
の封入圧に対する耐圧力の低下も、この補強プレートに
より応力が緩和し、従来と同等以上の耐圧力を低コスト
で、重量増加も少なく実現できる。
As described above, according to the present invention, only the element mounting plate of the radiator for mounting the semiconductor thermoelectric element of the electronic cold storage has a large passage for the working fluid, and the other portions have this area. Since the working fluid passages are provided in a smaller grid and the reinforcing plate is joined to the element side of this element mounting part by brazing, the contact surface between the element mounting plate of the radiator and the working fluid is more sufficient than before. Since the working fluid is large and the amount of working fluid accumulated in this portion is large, the working fluid enclosed in this passage is vaporized and vaporized in this heat absorbing portion during refrigeration, and carries more heat to the heat radiating portion than in the conventional cooling fan. The heat is radiated extremely efficiently by the forced air flow, and the temperature of the outside heat collecting plate of the semiconductor thermoelectric element becomes lower than before,
The refrigeration performance can be improved. In addition, even if the working fluid passage of the element mounting part is enlarged in a planar shape, the pressure resistance of this portion against the filling pressure of the working fluid is also reduced by this reinforcing plate, and the pressure resistance equal to or higher than the conventional pressure is reduced. It can be realized at low cost with little weight increase.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例による電子冷温蔵庫の概要
構造図である。
FIG. 1 is a schematic structural diagram of an electronic cold storage according to an embodiment of the present invention.

【図2】図1の電子冷温蔵庫における放熱器の作動流体
通路を表わすロールボンド式ヒートパイプの本体部正面
図である。
FIG. 2 is a front view of a main body of a roll bond type heat pipe showing a working fluid passage of a radiator in the electronic cold storage of FIG.

【図3】図2の放熱器の右側面図である。FIG. 3 is a right side view of the radiator shown in FIG.

【図4】図2の放熱器のIV−IV断面図である。4 is a cross-sectional view taken along the line IV-IV of the radiator of FIG.

【図5】従来の電子冷温蔵庫の概要構造図である。FIG. 5 is a schematic structural diagram of a conventional electronic cold storage.

【図6】図5の電子冷温蔵庫における放熱器の作動流体
通路を表わすロールボンド式ヒートパイプの本体部正面
図である。
6 is a front view of a main body of a roll bond type heat pipe showing a working fluid passage of a radiator in the electronic cold storage of FIG.

【図7】図5の放熱器の右側面図である。FIG. 7 is a right side view of the radiator shown in FIG.

【図8】図5の放熱器のVIII−VIII断面図である。8 is a sectional view of the radiator of FIG. 5, taken along the line VIII-VIII.

【符号の説明】[Explanation of symbols]

1 断熱箱体 1a 庫内側空間 1b 庫外側空間 2 本体 2a 断熱壁 3 蓋 4 槽壁 5 熱電素子 5a 庫内側集熱板 5b 庫外側集熱板 6 熱伝導ブロック 7 放熱器 7a 作動流体 7b フィン 7c 素子取付プレート 7e 放熱部 7f 吸熱部 7g 補強プレート 8 ファン 9 パッキン 10 囲い板 10a 吹出口 10b 吸込口 DESCRIPTION OF SYMBOLS 1 Insulation box 1a Inside space 1b Outside space 2 Main body 2a Insulation wall 3 Lid 4 Tank wall 5 Thermoelectric element 5a Inside heat collecting plate 5b Outside heat collecting plate 6 Heat conduction block 7 Radiator 7a Working fluid 7b Fin 7c Element mounting plate 7e Heat dissipation part 7f Heat absorption part 7g Reinforcement plate 8 Fan 9 Packing 10 Enclosure plate 10a Air outlet 10b Suction port

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 庫内側と庫外側との間に通電状態に応じ
た熱ポンプ作用をする熱電素子とこの熱を放散させるた
めに庫外側にヒートパイプ式の放熱器を設けてなる電子
冷温蔵庫において、このヒートパイプ式の放熱器は熱電
素子に接する吸熱部における作動流体の通路が面状に大
きくなされ、放熱部における作動流体の通路が格子状に
なされ、かつ該放熱部の面積は吸熱部の面積よりも大き
くなっており、該吸熱部の一側面に素子取付プレートを
接合しかつ該吸熱部の他側面に補強プレートを接合し、
該素子取付プレートに前記熱電素子を取り付けたことを
特徴とする電子冷温蔵庫。
1. An electronic refrigerating and refrigerating system comprising: a thermoelectric element, which acts as a heat pump depending on the energization state, between the inside and the outside of the refrigerator; and a heat pipe type radiator on the outside of the refrigerator to dissipate this heat. In this case, this heat pipe type radiator has a large passage for the working fluid in the heat absorbing portion which is in contact with the thermoelectric element, the passage for the working fluid in the heat radiating portion has a lattice shape, and the area of the heat radiating portion absorbs heat. Is larger than the area of the heat absorbing portion, the element mounting plate is joined to one side surface of the heat absorbing portion, and the reinforcing plate is joined to the other side surface of the heat absorbing portion,
An electronic cold storage, wherein the thermoelectric element is attached to the element mounting plate.
JP911193A 1993-01-22 1993-01-22 Electronic refrigerating and heating plant Pending JPH06221738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP911193A JPH06221738A (en) 1993-01-22 1993-01-22 Electronic refrigerating and heating plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP911193A JPH06221738A (en) 1993-01-22 1993-01-22 Electronic refrigerating and heating plant

Publications (1)

Publication Number Publication Date
JPH06221738A true JPH06221738A (en) 1994-08-12

Family

ID=11711528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP911193A Pending JPH06221738A (en) 1993-01-22 1993-01-22 Electronic refrigerating and heating plant

Country Status (1)

Country Link
JP (1) JPH06221738A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009074788A3 (en) * 2007-12-10 2009-07-30 Hot Stixx Ltd Apparatus for hot and cold processing
EP2504639A2 (en) * 2009-11-23 2012-10-03 BSH Bosch und Siemens Hausgeräte GmbH Refrigeration appliance having a roll bond unit
CN107131677A (en) * 2017-05-31 2017-09-05 安徽金诚天骏汽车零部件制造有限公司 Refrigeration heat-radiation structure
CN107131706A (en) * 2017-05-31 2017-09-05 安徽金诚天骏汽车零部件制造有限公司 The mounting structure of semiconductor chilling plate and radiating tube

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009074788A3 (en) * 2007-12-10 2009-07-30 Hot Stixx Ltd Apparatus for hot and cold processing
US8347897B2 (en) 2007-12-10 2013-01-08 Hot-Stixx Limited Apparatus for hot and cold processing
EP2504639A2 (en) * 2009-11-23 2012-10-03 BSH Bosch und Siemens Hausgeräte GmbH Refrigeration appliance having a roll bond unit
CN107131677A (en) * 2017-05-31 2017-09-05 安徽金诚天骏汽车零部件制造有限公司 Refrigeration heat-radiation structure
CN107131706A (en) * 2017-05-31 2017-09-05 安徽金诚天骏汽车零部件制造有限公司 The mounting structure of semiconductor chilling plate and radiating tube

Similar Documents

Publication Publication Date Title
US5737923A (en) Thermoelectric device with evaporating/condensing heat exchanger
KR20190082523A (en) Cooling device using thermo-electric module
JPH024163A (en) Cooling device for semiconductor element for power
JP2006343078A (en) Refrigerator
JPH0642852A (en) Thermoelectric type cold storage/warm storage combination device utilizing thermoelectric semiconductor element
JP3979531B2 (en) Electronic cooling device
JPH08145522A (en) Electronic freezing refrigerator
JPH04126973A (en) Electronic refrigerator
JPH0878589A (en) Boiling/cooling device
JPH06221738A (en) Electronic refrigerating and heating plant
JP3539274B2 (en) Cooling structure of antenna device
JPH0791796A (en) Electronic refrigeration type cold storage box
JPH0821679A (en) Electronic refrigeration type drinking water cooler
JPH0498026A (en) Outdoor unit of air conditioner
KR101013931B1 (en) Air Conditioner Using Thermoelectric modules
KR100306513B1 (en) A cooling pipe for improving cooling efficient in thermoelectric element and a cooler using thereof
JP2001358488A (en) Cooler for facility
JPH06147726A (en) Electronic refrigerator
CN217685509U (en) Radiator and air condensing units
KR100784399B1 (en) Double refrigerator hot chamber
KR20060005254A (en) Outdoor unit of air conditioner
KR100407049B1 (en) Refrigerator Utilizing Peltier Element
CN218993562U (en) Portable air conditioner
CN211720642U (en) Heat dissipation assembly and electric appliance
JP2000274908A (en) Refrigeration/heat-insulation apparatus