WO2022131561A1 - Refrigerator and control method thereof - Google Patents

Refrigerator and control method thereof Download PDF

Info

Publication number
WO2022131561A1
WO2022131561A1 PCT/KR2021/016573 KR2021016573W WO2022131561A1 WO 2022131561 A1 WO2022131561 A1 WO 2022131561A1 KR 2021016573 W KR2021016573 W KR 2021016573W WO 2022131561 A1 WO2022131561 A1 WO 2022131561A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
cooling power
refrigerator
load
load response
Prior art date
Application number
PCT/KR2021/016573
Other languages
French (fr)
Korean (ko)
Inventor
송영승
박경배
박민혁
조연수
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2022131561A1 publication Critical patent/WO2022131561A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D15/00Devices not covered by group F25D11/00 or F25D13/00, e.g. non-self-contained movable devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2500/00Problems to be solved
    • F25D2500/04Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/02Sensors detecting door opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/12Sensors measuring the inside temperature
    • F25D2700/121Sensors measuring the inside temperature of particular compartments

Definitions

  • the present invention relates to a refrigerator and a method for controlling the same according to a new method for efficiently performing a load response operation performed to solve an excessive temperature rise in a refrigerator caused by an opening of a door, thereby improving power consumption. .
  • a refrigerator is a device that allows storage objects stored in a storage space to be stored for a long time or while maintaining a constant temperature by using cold air.
  • Such a refrigerator is configured to generate and circulate cold air while being provided with a refrigeration system including a compressor and an evaporator.
  • the compressor When the temperature control for the inside of the storage room rises further than the upper limit reference temperature (NT+diff) based on the set reference temperature (NT; Notch) of the storage room, the compressor is operated to supply cold air into the storage room, and set When the reference temperature (NT) is further lower than the lower limit reference temperature (NT-diff) based on the reference temperature (NT), the operation of the compressor is stopped and the cold air supplied into the storage chamber is blocked.
  • the load response operation is performed with a higher output (output of the compressor) compared to the general storage operation, so that the inside of the storage chamber reaches the normal storage temperature quickly.
  • the above-described load response operation has the advantage of protecting the food in the storage room by quickly stabilizing the temperature in the refrigerator, but also has the disadvantage of lowering power consumption.
  • Patent Publication No. 10-2017-0087440 Patent Publication No. 10-2020-0105183
  • Patent Publication No. 10-2020-0087049 are provided.
  • load response operation is performed only when certain conditions (for example, when a temperature rise of 2°C or more occurs within 5 minutes of opening the door) is performed so that power consumption can be improved in consideration of actual use. did it
  • the temperature at the time the door is opened is a temperature between the set reference temperature (NT) and the upper limit reference temperature (NT+diff) or the temperature of the dissatisfaction area higher than the upper limit reference temperature (NT+diff)
  • NT set reference temperature
  • NT+diff upper limit reference temperature
  • the conventional technology has a disadvantage in that it cannot safely protect food because the load response operation is performed only when a temperature change of 2°C occurs even when the temperature in the refrigerator is close to the dissatisfaction region.
  • the conventional load response operation is controlled to be performed for a predetermined time under the maximum load of the corresponding refrigerator. That is, during the load response operation, the compressor is operated at the maximum load and the cooling fan is operated at the maximum speed so that the temperature inside the refrigerator can be stabilized (maintained within the reference temperature range) as soon as possible.
  • the operation before the defrost is the cooling power during the general storage operation to prevent the temperature of the storage room from rising rapidly during the defrost operation. do.
  • the door may be reopened according to the user's need.
  • the load response operation method of the prior art has a problem in that it is difficult to lower the internal temperature to the satisfactory region even when the internal temperature reaches the unsatisfactory region because the internal temperature cannot be quickly lowered when the door is frequently opened and closed.
  • the present invention has been devised to solve various problems according to the prior art, and an object of the present invention is to solve the operating conditions of the load response operation performed to solve the excessive temperature rise in the refrigerator caused by the opening of the door.
  • An object of the present invention is to provide a refrigerator and a method for controlling the same so that power consumption can be improved by improving and efficiently performing load response operation.
  • Another object of the present invention is to provide a refrigerator and a method for controlling the same so that the load-response operation can be performed by using the temperature inside the refrigerator when the door is opened as a reference, so that the load-response operation can be performed more efficiently.
  • Another object of the present invention is to provide a refrigerator and a method for controlling the same, in which power consumption due to overcooling can be minimized by controlling the amount of cold air supplied to vary according to the temperature inside the refrigerator during load response operation.
  • Another object of the present invention is to reduce power consumption by bringing the internal temperature of the refrigerator to a temperature lower than the lower limit reference temperature (NT-diff) as quickly as possible when the input condition of the defrosting operation is satisfied while the load response operation is performed.
  • An object of the present invention is to provide a refrigerator and a method for controlling the same.
  • the cooling power for performing the load response operation may be determined according to the temperature inside the storage compartment.
  • the load of the cooling power control means can be controlled after the door is closed.
  • the cooling power during the load response operation can be controlled to be higher than that during the general storage operation.
  • the cooling power may vary according to the internal temperature of the storage compartment.
  • the cooling power is, when the temperature in the storage compartment is in the first temperature region higher than the upper limit reference temperature (NT+diff) set based on the set reference temperature (NT) and the set reference temperature (NT) and the upper limit It may be determined differently depending on the case belonging to the second temperature range between the reference temperature (NT+diff).
  • a higher cooling power when the temperature in the storage compartment belongs to the first temperature region than the second temperature region, a higher cooling power may be provided.
  • the cooling power is determined when the temperature in the storage compartment falls within the second temperature range between the set reference temperature (NT) and the upper limit reference temperature (NT+diff) and the set reference temperature (NT) and the lower limit reference temperature ( NT-diff) may be determined differently depending on the case belonging to the third temperature region.
  • a higher cooling power may be provided.
  • the cooling power is lower than the lower limit reference temperature (NT-diff) and when the temperature in the storage compartment is in the third temperature range between the set reference temperature (NT) and the lower limit reference temperature (NT-diff). It may be determined differently depending on the case belonging to the 4 temperature range.
  • a higher cooling power may be provided.
  • the cooling power may be determined differently depending on the temperature region in the storage compartment.
  • the cooling power may be controlled by at least one of a compressor and a cooling fan.
  • the cooling power may be varied by adjusting at least one of the load of the compressor and the load of the cooling fan.
  • the cooling power may be controlled to gradually decrease as the operation duration of the load response operation elapses.
  • the cooling power can be variably controlled according to the temperature inside the storage room after the load-response operation is performed while providing the cooling power of the maximum load.
  • the load response operation when the input condition of the defrost operation is satisfied while the load response operation is being performed, the load response operation is stopped and the operation before the defrost for the defrost operation may be preferentially performed.
  • the cooling power control means when the input condition of the defrost operation is satisfied while the load response operation is being performed, in the pre-defrost operation, the cooling power control means is operated at the maximum load and the internal temperature of the storage chamber is lower than the lower limit reference temperature (NT-diff). It can be cooled until it reaches a low-temperature defrosting operation temperature.
  • NT-diff lower limit reference temperature
  • the maximum load may be a load sufficient to provide a cooling power higher than that during a general storage operation.
  • cooling power can be provided at the maximum load and then cooled until the internal temperature of the storage chamber reaches a temperature lower than the set reference temperature (NT).
  • the load response operation when the operation start condition of the load response operation is satisfied when the door is opened, the load response operation is performed while providing cooling power at the maximum load after the door is closed, and then cooling power is supplied according to the temperature inside the storage room. can be variable.
  • the cooling power of the load response operation is determined in consideration of the temperature inside the refrigerator at the time the door is opened, and the load response operation is performed with the determined cooling power. Accordingly, it is possible to prevent excessive power consumption during the operation of the load response operation, thereby achieving an improvement in power consumption.
  • the refrigerator and the control method thereof according to the present invention are configured such that the cooling power is determined differently depending on the temperature region inside the refrigerator at the time the door is opened. Accordingly, there is an effect that an accurate load response operation can be performed.
  • the refrigerator and the control method thereof according to the present invention are controlled so that the cooling power during operation varies according to the temperature change in the refrigerator while the load response operation is performed. Accordingly, it is possible to reduce power consumption due to excessive load response operation.
  • the cooling power control means is operated at the maximum load in the pre-defrost operation while the load response operation is performed. Accordingly, it has the effect that the time required to reach the defrosting performance temperature can be shortened even in a temperature region where the internal temperature of the furnace is high.
  • the refrigerator and the control method thereof according to the present invention are configured to perform the load-response operation at the maximum load for a predetermined time when the first door is reopened, and then perform the load-response operation while varying the cooling power according to the internal temperature of the refrigerator. Accordingly, it is possible to reduce power consumption.
  • FIG. 1 is a state diagram illustrating an internal structure of a refrigerator according to an embodiment of the present invention
  • FIG. 2 is a block diagram schematically illustrating a structure for a load-responsive operation of a refrigerator according to an embodiment of the present invention
  • thermoelectric module 3 is a state diagram schematically showing the structure of a thermoelectric module according to an embodiment of the present invention.
  • FIG. 4 is a block diagram schematically illustrating a refrigeration cycle of a refrigerator according to an embodiment of the present invention
  • FIG. 5 is a diagram schematically illustrating an operation state performed according to an operation reference value based on a user-set reference temperature for a storage compartment of a refrigerator according to an embodiment of the present invention
  • FIG. 6 is a flowchart illustrating a method for controlling a refrigerator according to a first embodiment of the present invention
  • FIG. 7 is a flowchart illustrating a process of performing a load response operation in a control method of a refrigerator according to the first embodiment of the present invention
  • FIG. 8 is a flowchart illustrating a method for controlling a refrigerator according to a second embodiment of the present invention.
  • FIG. 9 is a graph illustrating a state in which a door is opened in a satisfaction region in a control method of a refrigerator according to a second embodiment of the present invention.
  • FIG. 10 is a graph illustrating a state in which a door is opened in a dissatisfaction area in a control method of a refrigerator according to a second embodiment of the present invention
  • FIG. 11 is a flowchart illustrating a process of performing a load response operation in a control method of a refrigerator according to a second embodiment of the present invention
  • FIG. 12 is a flowchart illustrating a method for controlling a refrigerator according to a third embodiment of the present invention.
  • FIG. 13 is a flowchart illustrating a process of performing a load response operation in a control method of a refrigerator according to a third embodiment of the present invention.
  • FIG. 14 is a flowchart illustrating a method for controlling a refrigerator according to a fourth embodiment of the present invention.
  • FIG. 15 is a flowchart illustrating a process of performing a load response operation in a control method of a refrigerator according to a fourth embodiment of the present invention.
  • 16 is a flowchart illustrating a method for controlling a refrigerator according to a fifth embodiment of the present invention.
  • FIG. 17 is a flowchart illustrating a process of performing a load response operation in a control method of a refrigerator according to a fifth embodiment of the present invention.
  • the present invention is to reduce power consumption and improve power consumption by allowing the load response operation to be controlled differently depending on the internal temperature of the storage room.
  • power consumption can be reduced by allowing the load response operation to be performed not only with the maximum load but with a variable load.
  • FIGS. 1 to 17 Preferred embodiments of such a refrigerator and a method for controlling the same according to the present invention will be described with reference to FIGS. 1 to 17 attached thereto.
  • FIG. 1 is a state diagram illustrating an internal structure of a refrigerator according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram illustrating a structure for load response operation of a refrigerator according to an embodiment of the present invention It is a block diagram.
  • the refrigerator according to the embodiment of the present invention includes a case 11 .
  • the case 11 includes an inner-case 11a forming an inner wall surface of the refrigerator 1 and an outer case 11b forming an exterior surface of the refrigerator 1, and in this case 11, A storage room is provided in which the stored material is stored by the
  • Only one storage compartment may be provided, or a plurality of two or more storage compartments may be provided.
  • the storage chamber includes two storage chambers for storing stored materials in different temperature regions.
  • the storage chamber may include a first storage chamber 12 maintained at a first set reference temperature (NT: Notch Temperature).
  • NT Notch Temperature
  • the first set reference temperature NT may be a temperature at which the stored object is not frozen, but may be in a temperature range lower than the external temperature (indoor temperature) of the refrigerator 1 .
  • the first set reference temperature NT may be set to an internal temperature of 32°C or less and greater than 0°C.
  • the first set reference temperature NT may be set higher than 32°C, or equal to or lower than 0°C, if necessary (eg, depending on the room temperature or the type of storage).
  • the first set reference temperature NT may be the internal temperature of the first storage compartment 12 set by the user, and if the user does not set the first set reference temperature NT, An arbitrarily designated temperature is used as the first set reference temperature NT.
  • a general storage operation is performed in the first storage chamber 12 with a first operation reference value NT ⁇ diff for maintaining the first set reference temperature NT.
  • the first operation reference value NT ⁇ diff is a temperature range value of a satisfactory region including the first lower limit reference temperature NT-diff and the first upper limit reference temperature NT+diff.
  • the inside of the first storage compartment 12 is supplied with or stopped supplying cold air in consideration of the first operation reference value NT ⁇ diff for the first storage compartment 12 based on the first set reference temperature NT.
  • the general storage operation is performed.
  • the first set reference temperature NT and the first operation reference value NT ⁇ diff are as shown in FIG. 3 .
  • the storage chamber may include a second storage chamber 13 maintained at the second set reference temperature NT2.
  • the second set reference temperature NT2 may be a lower temperature than the first set reference temperature NT.
  • the second set reference temperature NT2 may be set by the user, and when the user does not set it, an arbitrarily defined temperature is used.
  • the second set reference temperature NT2 may be a temperature sufficient to freeze the stored object.
  • the second set reference temperature NT2 may be set to a temperature of 0°C or lower -24°C or higher.
  • the second set reference temperature NT2 may be set higher than 0°C, or equal to or lower than -24°C, if necessary (eg, according to the room temperature or the type of storage). .
  • the second set reference temperature NT2 may be the internal temperature of the second storage chamber 13 set by the user, and if the user does not set the second set reference temperature NT2, An arbitrarily designated temperature may be used as the second set reference temperature NT2.
  • the second storage chamber 13 may be operated at a second operating reference value NT2 ⁇ diff2 for maintaining the second set reference temperature NT2.
  • the second operation reference value NT2 ⁇ diff2 is a temperature range value of a satisfactory region including the second lower limit reference temperature NT2-diff2 and the second upper limit reference temperature NT2+diff2.
  • the operation for supplying cold air may be stopped.
  • the operation for supplying cold air may be resumed before reaching the second upper limit reference temperature NT2+diff2.
  • cold air is supplied to the inside of the second storage chamber 13 in consideration of the second operation reference value NT2 ⁇ diff2 for the second storage chamber 13 based on the second set reference temperature NT2, or the supply is stopped. do.
  • the first operation reference value NT ⁇ diff may be set to have a smaller range between the upper limit reference temperature NT+diff and the lower limit reference temperature NT-diff than the second operation reference value NT2 ⁇ diff2.
  • the first lower limit reference temperature NT-diff and the first upper limit reference temperature NT+diff of the first operation reference value NT ⁇ diff may be set to ⁇ 2.0° C.
  • the second lower limit reference temperature (NT2-diff2) and the second upper limit reference temperature (NT2+diff2) of ⁇ diff2) may be set to ⁇ 1.5°C.
  • each of the storage chambers 12 and 13 described above is configured such that the temperature inside the refrigerator is maintained while the fluid is circulated.
  • the fluid may be air.
  • the fluid circulating in the storage chambers 12 and 13 is air as an example.
  • the fluid may be a gas other than air.
  • Temperatures outside the storage chambers 12 and 13 may be measured by the first temperature sensor 1a, and the internal temperature (temperature in the first storage chamber) of the storage chambers 12 and 13 may be measured by the second temperature sensor 1b (see attached FIG. 9 ). ) can be measured by
  • the first temperature sensor 1a and the second temperature sensor 1b may be formed separately.
  • the indoor temperature and the internal temperature of the refrigerator may be measured by the same single temperature sensor, or two or more temperature sensors may be configured to measure cooperatively.
  • doors 12a and 13a are provided in the storage compartments 12 and 13 .
  • the doors 12a and 13a serve to open and close the storage compartments 12 and 13, and may have a rotational opening/closing structure or a drawer type opening/closing structure.
  • One or more of the doors 12a and 13a may be provided.
  • At least one of the doors 12a and 13a or the case 11 may be provided with a detection sensor 14 capable of detecting whether the doors 12a and 13a are opened.
  • the refrigerator 1 includes a cold air heat source.
  • the cold air heat source is configured to generate cold air.
  • the cold air heat source may be made in various ways.
  • the cold air heat source may be composed of a thermoelectric module 23 .
  • thermoelectric module 23 includes at least one of a thermoelectric element 23a including a heat absorbing surface 231 and a heat generating surface 232 , and the heat absorbing surface 231 or the heating surface 232 as shown in FIG. 3 . It can be a module comprising a sink 23b connected to one.
  • the cold air heat source may be composed of evaporators (21, 22).
  • the evaporators 21 and 22 form a refrigeration system together with a compressor 60 (refer to attached FIG. 4), a condenser (not shown), and an expander (not shown), and exchange heat with air passing through the evaporator. operated to lower the temperature of the air.
  • the evaporator When the storage chamber includes a first storage chamber 12 and a second storage chamber 13 , the evaporator includes a first evaporator 21 for supplying cold air to the first storage chamber 12 and the second storage chamber 13 . It may be composed of a second evaporator 22 for supplying cold air to the furnace.
  • the first evaporator 21 is located on the rear side of the first storage chamber 12 in the inner case 11a, and the second evaporator 22 is located on the rear side of the second storage chamber 13 . can be located on the side.
  • the evaporator may be provided only in at least one of the first storage chamber 12 and the second storage chamber 13 .
  • the compressor 60 is connected to supply refrigerant to the first evaporator 21 through the first refrigerant passage 61 and the second refrigerant passage 62 through the second refrigerant passage 62 . It may be connected to supply a refrigerant to the evaporator 22 .
  • each of the refrigerant passages (61, 62) can be selectively opened and closed using the refrigerant valve (63).
  • the refrigerator 1 includes a cooling power control means.
  • the cooling power control means is configured to adjust the cooling power of the cold air supplied to the first storage compartment 12 .
  • the cooling power regulating means may be configured to enable load control by the controller 70 , and the cooling power regulating means may include at least one of the compressor 60 and the first cooling fan 31 .
  • the compressor 60 is one of the components constituting the refrigeration system together with the cold air heat source (evaporator) 21 and 22 , and the cooling power can be adjusted by controlling the load of the compressor 60 .
  • the first cooling fan 31 is a device that supplies cool air generated while passing through the first evaporator 21 to the first storage chamber 12 , and controls the load (rotation speed) of the first cooling fan 31 . control) to control the cooling power.
  • the refrigerator further includes a second cooling fan 41 that supplies cool air generated while passing through the second evaporator 22 to the second storage chamber 13, or the first cooling fan 31 (or , second cooling fan) may be configured to supply cool air generated while passing through the first evaporator 21 or the second evaporator 22 to the second storage chamber 13 .
  • the refrigerator 1 includes a control unit 70 .
  • the control unit 70 may be configured to control the load and operation of the cooling power control means (41, 60). That is, the first storage compartment 12 is set to the first setting while controlling the load and operation of the cooling power control means 41 and 60 based on the temperatures measured by the first temperature sensor 1a and the second temperature sensor 1b. It is controlled to maintain the reference temperature (NT).
  • a temperature range between the first upper limit reference temperature (NT+diff) and the first lower limit reference temperature (NT-diff) may be set as a satisfactory region when viewed based on the first set reference temperature (NT),
  • a temperature higher than the upper limit reference temperature (NT+diff) may be set as a dissatisfaction area.
  • the control unit 70 may control the loads of the cooling power control means 41 and 60 differently according to the general storage operation and the load corresponding operation.
  • the power saving operation in consideration of the power consumption of the cooling power control means 41 and 60 may be controlled to gradually lower the temperature of the first storage chamber 12 .
  • the cooling power control means 41 and 60 are controlled to be operated at a higher load compared to the general storage operation in order to prevent deterioration of the food, and the temperature of the first storage compartment 12 is quickly lowered. can be controlled to
  • the driving start condition may include an opening condition (first driving condition) of the door (first door) 12a.
  • the opening condition of the first door 12a may include when the first door 12a is opened or when the first door 12a is opened and closed. That is, when the first door 12a is not opened, it is determined that the operation start condition of the load response operation is not satisfied.
  • the driving start condition may include a condition of a set elapsed time (a second driving condition).
  • the condition of the set elapsed time may be from the time the first door 12a is opened until the set elapsed time is reached. That is, it may be set to periodically perform the determination of the condition within the set elapsed time.
  • the control unit 70 may include a counter 71 for counting time.
  • condition for the set elapsed time may be after the set time has elapsed as the condition for the elapsed time from the opening time of the first door 12a. That is, it may be set to perform the determination of the condition after the set elapsed time has elapsed.
  • the operation start condition includes a condition in which the temperature in the first storage compartment 12 measured after the first door 12a is opened exceeds the input condition temperature ⁇ t (third operation condition).
  • the input condition temperature ⁇ t may be a specific temperature or a specific temperature range.
  • the input condition temperature ( ⁇ t) is a temperature that satisfies the condition of 0 ⁇ ⁇ t1 ⁇ set upper limit temperature - first upper limit reference temperature (NT+diff).
  • the set upper limit temperature is the maximum temperature allowable by the first storage compartment 12 of the corresponding refrigerator, and may be a reference temperature for determining whether there is a failure or a complete conception of the evaporator (first evaporator) 21 . . That is, the input condition temperature ⁇ t is determined in a range in which the internal temperature (the temperature in the first storage chamber) does not exceed the set upper limit temperature.
  • the input condition temperature ( ⁇ t) is higher than the first upper limit reference temperature (NT+diff) at which the temperature measured at the time the first door 12a is opened is set based on the first set reference temperature NT.
  • a high case and a case lower than the first upper limit reference temperature (NT+diff) may be configured to be different from each other.
  • the operation start condition may include a case in which the internal temperature (temperature in the first storage room) is greater than or equal to the reference value 1 (internal temperature ⁇ the reference value 1) (fourth operation condition).
  • the reference value 1 is greater than the first upper limit reference temperature (NT+diff) and less than or equal to the set upper limit temperature ((NT+diff) ⁇ reference value 1 ⁇ set upper limit temperature).
  • the above-described fourth operating condition is a condition that supplements the second and third operating conditions, and the temperature inside the refrigerator is unsatisfactory after the first door 12a is opened (first upper limit reference temperature (NT+diff)) higher case), the load response operation is performed regardless of the input condition temperature ⁇ t or the elapsed time since the first door 12a is opened.
  • the operation start condition may include a case where the reference value 2 is smaller than the input condition temperature ⁇ t ( ⁇ t > reference value 2) (fifth operation condition). At this time, the reference value 2 is greater than 0 and smaller than or equal to the difference between the set upper limit temperature and the first upper limit reference temperature (NT+diff) (0 ⁇ reference value 2 ⁇ set upper limit temperature - first upper limit reference temperature (NT+) diff)) value.
  • the input condition temperature ⁇ t when the input condition temperature ⁇ t is set to fall between the set upper limit temperature and the first upper limit reference temperature NT+diff after the first door 12a is opened, the input condition temperature ⁇ t It is designed so that the load response operation is performed regardless of whether or not it is reached.
  • the control unit 70 changes the cooling power for performing the load response operation according to the temperature inside the first storage compartment 12 . can be configured to determine.
  • the cooling power during the load response operation is determined differently according to the internal temperature of the first storage chamber 12 at the time when the load response operation starts, and during the load response operation, the control unit 70 controls the cooling power of the cooling power control means according to the determined cooling power. As it is made to control the load, unnecessary power consumption can be reduced.
  • the temperature in the first storage compartment 12 may be divided into a plurality of regions, and the cooling power may be determined differently depending on the temperature region in the first storage compartment 12 .
  • the plurality of temperature regions includes a first temperature region in which the temperature in the first storage compartment 12 is higher than the first upper limit reference temperature (NT+diff) set based on the first set reference temperature (NT), and a first set reference temperature A second temperature region between (NT) and the first upper limit reference temperature (NT+diff), and a third temperature region between the first set reference temperature (NT) and the first lower limit reference temperature (NT-diff), At least one temperature region among the fourth temperature regions lower than the first lower limit reference temperature NT-diff may be included.
  • the cooling power may be determined to be higher as it corresponds to a temperature region of the high temperature range.
  • the controller 70 controls to provide a higher cooling power when the temperature in the first storage chamber 12 belongs to the first temperature region than the second temperature region, and the temperature in the first storage chamber 12 is the third temperature region.
  • higher cooling power is controlled to be provided, and when the temperature in the first storage chamber 12 belongs to the third temperature region than the fourth temperature region, it can be controlled to provide a higher cooling power. have.
  • control unit 70 may control the load response operation to end when the temperature in the first storage chamber 12 reaches the fourth temperature range.
  • control unit 70 may continuously check the internal temperature of the first storage chamber 12 while the load response operation is being performed, and control the cooling power to vary according to the checked temperature.
  • the internal temperature of the first storage chamber 12 gradually decreases due to the load response operation.
  • the cooling power is gradually lowered. This is to prevent excessive temperature drop and power consumption due to this.
  • variable control of the cooling power by the controller 70 By the variable control of the cooling power by the controller 70, the degree of additional temperature drop due to inertia at the end of the load response operation can be minimized, and thus consumption efficiency can be improved.
  • control unit 70 may control the cooling power to be variable according to the driving duration of the load response operation. That is, by variably controlling the cooling power to gradually decrease as the load response operation progresses, it is possible to prevent the internal temperature of the first storage chamber 12 from excessively lowering than the end temperature due to the load response operation.
  • the control unit 70 may control the load response operation to be performed while operating the cooling power control means at the maximum load. That is, when the first door 12a is reopened during the load response operation, the maximum cooling power can be provided when the first door 12a is closed regardless of whether the driving start condition is satisfied.
  • the maximum load is a load sufficient to provide a higher cooling power than that during a general storage operation.
  • the provision of the above-described maximum cooling power is performed until a predetermined time elapses after the re-performation of the load response operation is performed, and after that, it is more preferable to control the cooling power to be variable according to the temperature inside the first storage compartment 12 . do.
  • control unit 70 may control the load response operation to be stopped and the operation before the defrost for the defrost operation to be preferentially performed.
  • the operation before the defrost is cooled until the internal temperature of the first storage chamber 12 reaches a defrosting performance temperature lower than the first lower limit reference temperature (NT-diff) while controlling the cooling power control means to operate at the maximum load. can be controlled as much as possible.
  • the control of the controller 70 is to minimize the time until the defrosting operation temperature is reached even when the internal temperature of the refrigerator is the first upper limit reference temperature (NT+diff) or higher.
  • control unit 70 performs a defrost operation after the operation before the defrost is finished, and after the defrost operation is completed, the cooling power control means is operated at the maximum load, and then the temperature inside the first storage chamber 12 is controlled. 1 It can be controlled to cool until it reaches a temperature lower than the set reference temperature (NT).
  • each operation is performed by the control of the control unit 70 which receives the sensing values of the respective temperature sensors 1a and 1b and operates the refrigeration system, and in the first embodiment below, the first storage compartment 12 For example, each operation for .
  • control unit 70 continuously acquires sensing values for the indoor temperature and the temperature inside the refrigerator in the first storage room 12 ( S110 ).
  • the internal temperature of the refrigerator is measured by the second temperature sensor 1b located in the first storage compartment 12 , and the measured internal temperature is provided to the controller 70 .
  • control unit 70 continuously performs the general storage operation for the first storage compartment 12 while controlling the cooling power control means based on the acquired internal temperature (S120).
  • the general storage operation maintains the temperature range of the satisfactory region (the temperature range between the first upper limit reference temperature (NT+diff) and the first lower limit reference temperature (NT-diff)) based on the first set reference temperature (NT) made to do
  • the compressor 60 constituting the refrigeration system during the general storage operation is controlled to operate at a lower output compared to the load corresponding operation.
  • the compressor 60 when the first upper limit reference temperature (NT+diff) is reached, the compressor 60 is operated while increasing the supply of cold air, and the compressor before reaching the first lower limit reference temperature (NT-diff) While the operation of (60) is stopped, it proceeds by continuously repeating the control to reduce the cold air supply.
  • the compressor 60 may be controlled to operate before reaching the first upper limit reference temperature (NT+diff), and when reaching the dissatisfaction region exceeding the first upper limit reference temperature (NT+diff) It can also be controlled to be driven.
  • control unit 70 continuously determines whether the operation start condition of the load response operation is satisfied based on the temperature information inside the first storage chamber 12 .
  • the driving start condition is preceded by a condition in which the first door 12a is opened.
  • the control unit 70 receives a temperature value for the internal temperature of the refrigerator from the second temperature sensor 1b (S130).
  • the temperature value for the internal temperature may be continuously provided within a set elapsed time after the first door 12a is opened, or may be provided after the set elapsed time has elapsed.
  • control unit 70 checks whether the received internal temperature is a satisfactory region or a dissatisfaction region set based on the first set reference temperature NT.
  • the counted elapsed time from after the first door 12a is opened by the counter 71 Check the time.
  • the increase in the internal temperature is checked to determine whether the increase is equal to or greater than the preset input condition temperature ( ⁇ t).
  • the temperature increase in the refrigerator exceeds 2°C (input condition temperature) when 5 minutes (elapsed time) have elapsed after opening the first door 12a, it is determined that the operation start condition is satisfied and exceeds 2°C. If not, it is judged that the driving start condition is not satisfied.
  • the control unit 70 when it is determined that the operation start condition is satisfied (when the temperature inside the refrigerator is a dissatisfaction area or, even in a satisfactory area, the temperature increase in the refrigerator is greater than or equal to the input condition temperature ( ⁇ t)), the control unit 70 according to the determination result It is controlled to perform the load response operation (S150).
  • the load response operation may be performed while the first door 12a is closed.
  • the load response operation may be performed immediately after the first door 12a is closed, and If it is determined that the driving start condition for the load response operation is satisfied after the first door 12a is closed, the load response operation may be performed immediately after the satisfaction is determined.
  • the load response operation S150 is performed with a cooling power determined according to the internal temperature of the first storage compartment 12 . That is, when the operation start condition for the load response operation is satisfied when the first door 12a is opened, the control unit 70 checks the temperature inside the first storage compartment 12 ( S151 ) and then loads the load according to the checked temperature ( S151 ). The cooling power for performing the corresponding operation is determined (S152), and when the first door 12a is closed, the load of the cooling power adjusting means (compressor or the first cooling fan) is controlled (S153) according to the determined cooling power. It is a response operation.
  • the cooling power is determined differently depending on the temperature region in the first storage chamber 12 . That is, the controller 70 determines to provide a higher cooling power as the interior of the first storage chamber 12 corresponds to a temperature region of a high temperature range. Conversely, the controller 70 determines to provide a lower cooling power as the interior of the first storage chamber 12 corresponds to a temperature region of a low temperature range.
  • the temperature inside the first storage chamber 12 is continuously checked (S154), and the control unit In step 70, the cooling power is recrystallized according to the confirmed temperature (S155), and the load of the cooling power adjusting means is variably controlled (S156) according to the recrystallized cooling power.
  • the internal temperature of the first storage chamber 12 gradually decreases due to the load response operation, and the cooling power is controlled to gradually decrease according to the temperature. In this way, excessive temperature drop and power consumption due to this can be prevented.
  • the cooling power control means compressor or first cooling fan
  • the cooling power may be controlled to be variable according to the temperature inside the first storage chamber 12 during the load response operation.
  • control unit 70 may variably control the cooling power to gradually decrease as the operation progressing time of the load response operation elapses regardless of the temperature change inside the first storage chamber 12 .
  • the control unit 70 operates the cooling power control means (compressor or first cooling fan) at the maximum load, and the load response operation is performed. to be controlled as much as possible. Accordingly, it is possible to reduce the time required for reconfirming the operation start condition of the load response operation.
  • the provision of the maximum cooling power is performed until a predetermined time elapses after the re-performation of the load response operation is performed, and when this time elapses, the cooling power is controlled to be variable according to the temperature inside the first storage chamber 12 .
  • the load response operation is stopped and the operation before the defrost for the defrost operation is controlled to be preferentially performed.
  • control unit 70 controls the cooling power control means (compressor or the first cooling fan) to operate at the maximum load while the internal temperature of the first storage chamber 12 is lower than the first lower limit reference temperature NT-diff. It is operated to cool until it reaches the defrost operation temperature. Accordingly, even when the internal temperature of the refrigerator is the first upper limit reference temperature (NT+diff) or higher, the time until the defrosting operation temperature is reached can be minimized.
  • the cooling power control means compressor or the first cooling fan
  • the control unit 70 performs a defrost operation.
  • the first evaporator 21 is heated by providing hot air, and air is blown through the first evaporator 21 through the operation of the first cooling fan 31 to pass the first evaporator 21 . It will defrost the frost that has been implanted on the surface of
  • the control unit 70 stops providing hot air and operates the cooling power control means (compressor and first cooling fan) at the maximum load while setting the internal temperature of the first storage compartment 12 to the first setting. It is controlled to cool until it reaches a temperature lower than the reference temperature (NT).
  • the cooling power control means compressor and first cooling fan
  • control unit 70 performs a general storage operation, and the temperature range (the first upper limit reference temperature (NT+diff) and the first lower limit reference temperature (NT-diff) of the interior of the first storage chamber 12 is satisfied. temperature range).
  • control unit 70 controls to continuously perform the general storage operation according to the internal temperature of the refrigerator.
  • the refrigerator of the present invention can be implemented in various ways as well as the control method of the first embodiment described above.
  • control method of the second embodiment by the control unit 70 will be described in more detail with reference to the accompanying FIGS. 8 to 11 .
  • the operation start condition according to the control method of the second embodiment is the process of confirming the internal temperature of the refrigerator (S210), performing a general storage operation according to the internal temperature (S220), and the first door 12a during the general storage operation. When it is opened, the process of checking the temperature inside the refrigerator (S230) may be included.
  • the operation start condition according to the control method of the second embodiment may include a process in which different input condition temperatures ⁇ t1 and ⁇ t2 are respectively determined according to the temperature inside the refrigerator.
  • the present invention is such that the input condition temperature ⁇ t is set in different ranges depending on the temperature of the first storage compartment 12 at the time when the door 12a is opened.
  • the temperature of the first storage chamber 12 is higher than the input condition temperature ⁇ t (In the case of a dissatisfied region) and a case lower than the upper limit reference temperature (NT+diff) (in the case of a satisfactory region) may be different from each other.
  • the internal temperature of the refrigerator when the internal temperature of the refrigerator is in the unsatisfactory region, it is determined as the first input condition temperature ⁇ t1, and when the internal temperature is in the satisfactory region, it is determined as the second input condition temperature ⁇ t2.
  • the two input condition temperatures ⁇ t1 and ⁇ t2 are the first when the temperature of the first storage compartment 12 is high at the time the door 12a is opened, and the first when the door 12a is opened. It may be set to a lower temperature (or temperature range) than when the temperature of the storage chamber 12 is low.
  • the temperature ⁇ t1 when the temperature of the first storage compartment 12 is higher than the first upper limit reference temperature (NT+diff) set based on the first set reference temperature (NT) at the time the door (12a) is opened
  • the temperature ⁇ t1 when the temperature of the first storage compartment 12 is higher than the first upper limit reference temperature (NT+diff) set based on the first set reference temperature (NT) at the time the door (12a) is opened
  • the temperature ⁇ t1 is lower than the first upper limit reference temperature NT+diff, it may be set to a temperature (or a temperature range) lower than the second input condition temperature ⁇ t2 .
  • the condition temperature ⁇ t2 is higher than the upper limit reference temperature NT+diff
  • the first input condition temperature ⁇ t1 may be set to a higher temperature (or temperature range).
  • the controller 70 continuously acquires the internal temperature of the refrigerator, and continuously performs a general storage operation for the first storage compartment 12 while controlling the refrigeration system based on the acquired internal temperature.
  • the first storage compartment 12 is the temperature range of the satisfaction region based on the first set reference temperature NT (the temperature between the first upper limit reference temperature NT+diff and the first lower limit reference temperature NT-diff). range) is maintained.
  • control unit 70 continuously determines whether the operation start condition of the load response operation is satisfied based on the temperature information inside the first storage chamber 12 .
  • the driving start condition is preceded by a condition in which the first door 12a is opened.
  • the controller 70 receives a temperature value for the internal temperature of the refrigerator from the second temperature sensor 1b.
  • control unit 70 checks whether the received internal temperature is a satisfactory region or a dissatisfaction region set based on the first set reference temperature NT, and determines the input condition temperature ⁇ t based on this .
  • the first input condition temperature ⁇ t1 is determined (S241), and when the internal temperature is the satisfactory region, the second input condition temperature ⁇ t2 is determined (S242).
  • the first input condition temperature ⁇ t1 may be set to a temperature (or a temperature range) lower than the second input condition temperature ⁇ t2 .
  • the elapsed time may be set to a time sufficient to accurately recognize the temperature increase and the recognized temperature increase to obtain an effective value, and may be usually 5 minutes.
  • control unit 70 receives the internal temperature of the first storage compartment 12 at the time point again from the second temperature sensor 1b.
  • the determination of the driving start condition may be performed periodically within the set elapsed time from the opening time of the door 12a or after the set elapsed time has elapsed from the opening time of the door 12a. may be
  • the load response operation is performed according to the determination result as to whether the operation start condition is satisfied (S250).
  • the temperature of the first storage compartment 12 is In the case of 20°C, the input condition temperature ( ⁇ t2) is set to 4°C, and when the temperature of the first storage chamber 12 is 25°C when the door 12a is opened, the input condition temperature ( ⁇ t1) is 2°C can be set to That is, if the temperature of the first storage compartment 12 is 20° C. at the time the door 12a is opened, the temperature of the first storage compartment 12 reaches 24° C. within the set elapsed time condition (eg, 5 minutes). If the load response operation is performed and the temperature of the storage room is 25°C when the door is opened, the load response operation is performed when the temperature of the first storage room 12 reaches 27°C within the set elapsed time condition (eg, 5 minutes) carry out
  • the load response operation may be performed while the first door 12a is closed.
  • the load response operation is performed immediately after the first door 12a is closed, and the first door 12a is closed. If it is determined that the driving start condition for the load response operation is satisfied after the door 12a is closed, the load response operation is performed immediately after the satisfaction is determined.
  • the control unit 70 checks the temperature in the first storage chamber 12 confirmed through the second temperature sensor 1b (S251) during the load response operation as shown in the flowchart of FIG. After determining the cooling power according to the cooling power (S252), the cooling power thus determined is set as the initial cooling power, and the cooling power control means is controlled (S253) to perform the load response operation.
  • the internal temperature change of the first storage chamber 12 is checked (S254), and the cooling power is recrystallized according to the checked temperature (S255), and then the cooling power control means according to the recrystallized cooling power Variably control the load of (S256).
  • the cooling power may be variably controlled according to the driving time.
  • the operation control method of the second embodiment by the control unit 70 prevents in advance the problem of deterioration of stored food (eg, fresh food, etc.) be able to do
  • the operation start conditions according to the control method (S3) of the third embodiment are the process of checking the temperature inside the refrigerator (S310), performing a storage operation according to the temperature inside the refrigerator (S320), and when the door is opened during the storage operation, the inside of the refrigerator
  • the process of checking the temperature (S330) may be included.
  • the operation start condition according to the control method of the third embodiment is when the temperature change amount per unit time (temperature gradient) is measured while counting the elapsed time and the temperature change amount per unit time is greater than the reference value 3 (temperature change amount > reference value 3) may be included.
  • the reference value 3 may be a value greater than 1.
  • the control unit 70 checks the temperature in the first storage chamber 12 checked through the second temperature sensor 1b ( S361 ), and the temperature confirmed in this way After determining the cooling power according to (S362), the determined cooling power is set as the initial cooling power, and the cooling power control means is controlled (S363) to perform the load response operation.
  • the operation start condition according to the control method of the fourth embodiment is the process of checking the inside temperature (S410), performing a storage operation according to the inside temperature (S420), and checking the inside temperature when the door is opened during the storage operation (S430) may be included. Since this is the same as the content introduced through the control method of the first embodiment described above, repeated description will be omitted.
  • the driving start condition according to the control method S4 of the fourth embodiment is confirmed as a temperature in which the internal temperature exceeds the upper limit reference temperature (NT+diff) after the door 12a is opened, so that the driving start condition is satisfied If it is determined (S440), the control unit 70 counts the elapsed time after closing the door 12a (S450), and controls the load response operation to be input (S460) when the first reference time is reached.
  • the load response operation is started after the sensed value is stabilized, so that the end time of the load response operation can be accurately determined.
  • the operation start condition may be set to perform the load response operation.
  • the second reference time may be shorter than the first reference time.
  • the control unit 70 checks the temperature in the first storage chamber 12 confirmed through the second temperature sensor 1b ( S461 ), and the temperature confirmed in this way After determining the cooling power according to (S462), the cooling power thus determined is set as the initial cooling power, and the cooling power control means is controlled (S463) to perform the load response operation.
  • the operation start condition according to the control method (S5) of the fifth embodiment is the process of checking the temperature inside the refrigerator (S510), performing a storage operation according to the temperature inside the refrigerator (S520), and when the door is opened during the storage operation, the inside of the refrigerator
  • the process of checking the temperature (S530) may be included. Since this is the same as the content introduced through the control method of the first embodiment described above, repeated description will be omitted.
  • the driving start condition according to the control method of the fifth embodiment may include a condition in which a different elapsed time from when the door 12a is closed to when the load response operation is inputted according to the amount of temperature change per unit time is reached.
  • the temperature change per unit time is measured (S540) while counting the elapsed time. If this temperature change is greater than the reference value 3, the counting time is When the first set time elapses, the load response operation is input (S560).
  • the second set time is set to be longer than the first set time.
  • the method in which the load response operation is input when the first set time elapses is an algorithm that considers the constant temperature operation for the freshness (or deterioration) of the stored food, and the load response operation is input when the second set time elapses
  • the method is an algorithm that considers power consumption.
  • the control unit 70 checks the temperature in the first storage chamber 12 confirmed through the second temperature sensor 1b (S561) ) and, after determining (S562) the cooling power according to the thus-confirmed temperature, the determined cooling power is set as the initial cooling power, and the cooling power control means is controlled (S563) to perform the load response operation.
  • the cooling power of the load response operation is determined in consideration of the temperature inside the first storage compartment 12 at the time the first door 12a is opened, and the load response operation is performed with the determined cooling power. Since it is made to be performed, it is possible to prevent excessive power consumption during the operation of the load response operation, thereby improving power consumption.
  • the cooling power is determined differently according to the temperature region inside the first storage compartment 12 at the time when the first door 12a is opened, so that an accurate load response operation can be performed.
  • the refrigerator according to the present invention is controlled to change the cooling power during operation according to a temperature change in the first storage compartment 12 while the load response operation is being performed, thereby reducing power consumption due to the excessive load response operation.
  • the cooling power control means is controlled to operate at the maximum load in the pre-defrost operation performed when the input condition of the defrost operation is satisfied while the load response operation is being performed.
  • the time required to reach the temperature can be shortened.
  • the load response operation is performed at the maximum load for a certain period of time, and then the temperature inside the refrigerator is lowered. As the cooling power is varied according to the load response operation, power consumption can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

The present invention determines the cooling power for load-responsive operation in consideration of the in-compartment temperature at the point when a door is opened, and performs load-responsive operation at the determined cooling power. Thus, excessive power consumption during load-responsive operation can be prevented, and thus it is possible to improve the power consumption resulting therefrom.

Description

냉장고 및 그 제어방법Refrigerator and its control method
본 발명은 도어의 개방에 따라 야기되는 고내의 과도한 온도 상승을 해소하기 위해 수행되는 부하 대응운전이 효율적으로 수행되도록 하여 소비 전력이 개선될 수 있도록 한 새로운 방식에 따른 냉장고 및 그 제어방법에 관한 것이다.The present invention relates to a refrigerator and a method for controlling the same according to a new method for efficiently performing a load response operation performed to solve an excessive temperature rise in a refrigerator caused by an opening of a door, thereby improving power consumption. .
일반적으로 냉장고는 냉기를 이용하여 저장공간에 저장된 보관 대상물을 장시간 혹은, 일정한 온도를 유지하면서 보관할 수 있도록 한 기기이다.BACKGROUND ART In general, a refrigerator is a device that allows storage objects stored in a storage space to be stored for a long time or while maintaining a constant temperature by using cold air.
이러한 냉장고에는 압축기 및 증발기를 포함하는 냉동시스템이 구비되면서 냉기를 생성 및 순환하도록 구성된다.Such a refrigerator is configured to generate and circulate cold air while being provided with a refrigeration system including a compressor and an evaporator.
상기 저장실 내부에 대한 온도 제어는 해당 저장실의 설정 기준온도(NT;Notch)를 기준으로 상한 기준온도(NT+diff)에 비해 더욱 상승하면 압축기를 동작시켜 해당 저장실 내로 냉기가 공급되도록 운전되고, 설정 기준온도(NT)를 기준으로 하한 기준온도(NT-diff)에 비해 더욱 하락하면 압축기의 동작을 정지시켜 해당 저장실 내로 공급되는 냉기가 차단되도록 운전된다.When the temperature control for the inside of the storage room rises further than the upper limit reference temperature (NT+diff) based on the set reference temperature (NT; Notch) of the storage room, the compressor is operated to supply cold air into the storage room, and set When the reference temperature (NT) is further lower than the lower limit reference temperature (NT-diff) based on the reference temperature (NT), the operation of the compressor is stopped and the cold air supplied into the storage chamber is blocked.
한편, 저장실에 대한 일반 저장운전이 수행되는 도중 냉동시스템이 고장나지 않았음에도 불구하고 저장실 내의 온도가 상승되는 경우가 있다.On the other hand, there is a case in which the temperature in the storage chamber rises even though the refrigeration system does not fail while the general storage operation for the storage chamber is being performed.
이는, 통상적으로 저장실 내에 뜨거운 음식물이 저장되거나 혹은, 도어를 장시간 개방시킴에 따라 실내 공기가 고내로 유입될 경우 등이 될 수 있다.This may be the case when hot food is usually stored in the storage compartment, or when the indoor air flows into the storage chamber when the door is opened for a long time.
이에 따라, 종래에는 도어가 개방되면 일반 저장운전에 비해 높은 출력(압축기의 출력)으로 부하 대응운전을 수행하여 신속하게 저장실 내부를 정상 저장 온도에까지 이르도록 하고 있다.Accordingly, in the related art, when the door is opened, the load response operation is performed with a higher output (output of the compressor) compared to the general storage operation, so that the inside of the storage chamber reaches the normal storage temperature quickly.
상기한 부하 대응운전은 신속히 고내 온도를 안정화시킴에 따라 저장실 내의 음식물을 보호하게 되는 장점을 가지는 반면, 소비전력을 저하시킨다는 단점도 있다.The above-described load response operation has the advantage of protecting the food in the storage room by quickly stabilizing the temperature in the refrigerator, but also has the disadvantage of lowering power consumption.
이러한 부하 대응운전에 관련하여는 공개특허 제10-2017-0087440호, 공개특허 제10-2020-0105183호, 공개특허 제10-2020-0087049호 등 다양한 방식이 제공되고 있다.In relation to the load response operation, various methods such as Patent Publication No. 10-2017-0087440, Patent Publication No. 10-2020-0105183, and Patent Publication No. 10-2020-0087049 are provided.
그러나, 종래에는 냉장고에 대한 소비전력의 측정시 도어를 개폐하지 않고 일반 저장운전의 수행으로만 측정하고 있음에 따라 효율적인 부하 대응운전을 위한 노력이 부족하였다.However, conventionally, when the power consumption of the refrigerator is measured only by performing a general storage operation without opening and closing the door, efforts for efficient load response operation are insufficient.
즉, 종래의 소비전력에 대한 측정은 소비자의 실생활(도어를 수시로 개폐하는 행동)을 고려하지 않고 수행되기 때문에 소비자가 실제 사용하면서 체감하는 소비전력과는 차이가 있다는 불만이 야기될 수밖에 없었다.In other words, since the conventional measurement of power consumption is performed without considering the consumer's real life (the action of opening and closing the door frequently), complaints that it is different from the power consumption perceived by the consumer while actually using it were inevitably caused.
물론, 공개특허 제10-2018-0055242호에서와 같이 소비전력의 저하를 방지할 수 있도록 부하 대응운전의 실행 조건을 효율화시키고자 하는 노력도 있다.Of course, there is also an effort to improve the efficiency of the execution conditions of the load response operation so as to prevent a decrease in power consumption as in Patent Publication No. 10-2018-0055242.
즉, 도어가 개방되더라도 일정한 조건(예컨대, 도어 개방 후 5분 내에 2℃ 이상의 온도 상승이 발생될 경우)을 만족할 때에만 부하 대응운전이 수행되도록 함으로써 실사용을 고려한 소비전력의 향상을 이룰 수 있도록 한 것이다.That is, even when the door is opened, load response operation is performed only when certain conditions (for example, when a temperature rise of 2℃ or more occurs within 5 minutes of opening the door) is performed so that power consumption can be improved in consideration of actual use. did it
하지만, 전술된 종래 기술의 부하 대응운전은 도어가 개방되는 시점의 고내 온도를 고려하지 않음에 따라 실사용시의 상황을 충분히 만족하지 못한다는 단점이 있다.However, the load response operation of the prior art has a drawback in that it does not sufficiently satisfy the situation in actual use because the temperature inside the refrigerator at the time the door is opened is not considered.
예컨대, 종래 기술의 경우 도어가 개방되는 시점의 온도가 설정 기준온도(NT)와 상한 기준온도(NT+diff) 사이의 온도이거나 상한 기준온도(NT+diff)에 비해 더욱 높은 불만 영역의 온도일 경우에는 5분 내에 2℃를 초과하지 않더라도 상기 상한 기준온도(NT+diff)를 초과한 불만 영역에 진입되어 식품의 변질이 발생될 수 있다. 즉, 종래의 기술은 고내 온도가 불만 영역에 가까운 온도이더라도 2℃의 온도 변화가 발생되어야만 부하 대응운전이 수행되도록 이루어지기 때문에 식품을 안전하게 보호하지 못하였던 단점이 있다.For example, in the case of the prior art, the temperature at the time the door is opened is a temperature between the set reference temperature (NT) and the upper limit reference temperature (NT+diff) or the temperature of the dissatisfaction area higher than the upper limit reference temperature (NT+diff) In this case, even if it does not exceed 2°C within 5 minutes, it may enter the dissatisfaction area exceeding the upper limit reference temperature (NT+diff), and deterioration of food may occur. That is, the conventional technology has a disadvantage in that it cannot safely protect food because the load response operation is performed only when a temperature change of 2°C occurs even when the temperature in the refrigerator is close to the dissatisfaction region.
이와 함께, 종래 기술의 경우 도어가 개방되는 시점의 온도가 설정 기준온도(NT)와 하한 기준온도(NT-diff) 사이이거나 하한 기준온도(NT-diff)에 비해 더욱 낮은 온도일 경우에는 5분 내에 2℃ 이상 온도가 오르더라도 여전히 저장실 내부는 설정 기준온도(NT)를 만족하는 범위임에도 불구하고 무조건적인 부하 대응운전이 수행되기 때문에 오히려 소비전력이 저하되는 문제점이 발생된다.In addition, in the case of the prior art, if the temperature at the time the door is opened is between the set reference temperature (NT) and the lower limit reference temperature (NT-diff) or is lower than the lower limit reference temperature (NT-diff), 5 minutes Even if the temperature rises by more than 2℃ inside the storage room, there is a problem in that power consumption is rather reduced because the unconditional load response operation is performed despite the range that satisfies the set reference temperature (NT) inside the storage room.
또한, 종래의 부하 대응운전은 해당 냉장고의 최대 부하로 일정 시간동안 수행되도록 제어된다. 즉, 부하 대응운전시에는 압축기를 최대 부하로 운전함과 더불어 냉각팬을 최대 속도로 운전함으로써 최대한 빨리 고내 온도가 안정화(기준온도 범위로의 유지)될 수 있도록 하고 있다.In addition, the conventional load response operation is controlled to be performed for a predetermined time under the maximum load of the corresponding refrigerator. That is, during the load response operation, the compressor is operated at the maximum load and the cooling fan is operated at the maximum speed so that the temperature inside the refrigerator can be stabilized (maintained within the reference temperature range) as soon as possible.
하지만, 전술된 종래의 방법은 고내 온도가 만족 영역에 도달하였음에도 불구하고 정해진 시간동안 부하 대응운전이 계속 수행되기 때문에 과냉이 발생되는 경우가 있었고, 이로 인한 전력소모 역시 커짐에 따라 소비전력이 저하될 수밖에 없다는 문제점이 있었다.However, in the conventional method described above, there was a case in which overcooling occurred because the load response operation was continued for a predetermined time even though the temperature inside the refrigerator reached the satisfactory range, and as a result, the power consumption also increased. There was a problem that there was no choice.
또한, 전술된 부하 대응운전이 수행되는 도중에는 제상운전의 투입 조건이 만족되는 경우가 발생될 수 있다.Also, while the above-described load response operation is being performed, a case in which the input condition of the defrost operation is satisfied may occur.
이렇게 제상운전의 투입 조건이 만족되는 경우에는, 부하 대응운전은 중단됨과 더불어 제상운전을 위한 제상전 운전이 우선적으로 수행된다.In this way, when the input condition of the defrost operation is satisfied, the load response operation is stopped and the operation before the defrost for the defrost operation is preferentially performed.
상기 제상전 운전은 제상운전시 저장실의 온도가 급격히 상승됨을 방지하기 위해 일반 저장운전시의 냉력으로 고내 온도가 하한 기준온도(NT-diff)보다 낮은 온도의 제상 수행온도에 도달할 때까지 냉각시키게 된다.The operation before the defrost is the cooling power during the general storage operation to prevent the temperature of the storage room from rising rapidly during the defrost operation. do.
하지만, 상기 고내 온도가 상한 기준온도(NT+diff) 혹은, 그 이상의 온도 영역일 경우에는 상기 제상 수행온도에 도달할 때까지의 시간이 오래 소요될 수밖에 없고, 이로 인한 전력소모가 오히려 심하게 발생되어 소비전력을 저하시키는 원인이 되었다.However, when the internal temperature of the refrigerator is the upper limit reference temperature (NT+diff) or higher, it takes a long time until the defrosting temperature is reached, and power consumption is rather severe. This caused the power to drop.
또한, 전술된 부하 대응운전이 수행되는 도중에는 사용자의 필요에 의해 도어가 재오픈되는 경우가 발생될 수 있다.Also, while the above-described load response operation is being performed, the door may be reopened according to the user's need.
이렇게 부하 대응운전 중 도어가 재오픈될 때에는 상기 부하 대응운전이 초기화되면서 다시금 부하 대응운전의 수행 여부를 판단하고 있다.In this way, when the door is reopened during the load response operation, it is determined whether the load response operation is performed again while the load response operation is initialized.
하지만, 이러한 종래 기술의 부하 대응운전 방법은 도어의 잦은 개폐가 이루어질 경우 고내 온도를 빠르게 낮추지 못하기 때문에 고내 온도가 불만족 영역에 도달하더라도 만족 영역으로 낮추기에는 어려움이 있다는 문제점을 가진다.However, the load response operation method of the prior art has a problem in that it is difficult to lower the internal temperature to the satisfactory region even when the internal temperature reaches the unsatisfactory region because the internal temperature cannot be quickly lowered when the door is frequently opened and closed.
본 발명은 전술된 종래 기술에 따른 각종 문제점을 해결하기 위해 안출된 것으로써, 본 발명의 목적은 도어의 개방에 따라 야기되는 고내의 과도한 온도 상승을 해소하기 위해 수행되는 부하 대응운전의 동작 조건을 개선하여 효율적인 부하 대응운전이 수행되도록 함으로써 소비 전력이 개선될 수 있도록 한 냉장고 및 그 제어방법을 제공하는데 있다.The present invention has been devised to solve various problems according to the prior art, and an object of the present invention is to solve the operating conditions of the load response operation performed to solve the excessive temperature rise in the refrigerator caused by the opening of the door. An object of the present invention is to provide a refrigerator and a method for controlling the same so that power consumption can be improved by improving and efficiently performing load response operation.
또한, 본 발명의 다른 목적은 도어가 개방될 때의 고내 온도가 기준이 되어 부하 대응운전이 수행될 수 있도록 함으로써 더욱 효율적인 부하 대응운전이 수행될 수 있도록 한 냉장고 및 그 제어방법을 제공하는데 있다.Another object of the present invention is to provide a refrigerator and a method for controlling the same so that the load-response operation can be performed by using the temperature inside the refrigerator when the door is opened as a reference, so that the load-response operation can be performed more efficiently.
또한, 본 발명의 다른 목적은 부하 대응운전시 고내 온도에 따라 냉기공급량이 달라질 수 있도록 제어함으로써 과냉으로 인한 전력 소모를 최소화할 수 있도록 한 냉장고 및 그 제어방법을 제공하는데 있다.Another object of the present invention is to provide a refrigerator and a method for controlling the same, in which power consumption due to overcooling can be minimized by controlling the amount of cold air supplied to vary according to the temperature inside the refrigerator during load response operation.
또한, 본 발명의 다른 목적은 부하 대응운전이 수행되는 도중 제상운전의 투입 조건이 만족될 경우 고내 온도를 하한 기준온도(NT-diff)보다 낮은 온도에까지 최대한 빠르게 이르도록 함으로써 전력소모를 줄일 수 있도록 한 냉장고 및 그 제어방법을 제공하는데 있다.In addition, another object of the present invention is to reduce power consumption by bringing the internal temperature of the refrigerator to a temperature lower than the lower limit reference temperature (NT-diff) as quickly as possible when the input condition of the defrosting operation is satisfied while the load response operation is performed. An object of the present invention is to provide a refrigerator and a method for controlling the same.
상기한 목적을 달성하기 위한 본 발명의 냉장고에 따르면 저장실 내부의 온도에 따라 부하 대응운전의 수행을 위한 냉력이 결정될 수 있다.According to the refrigerator of the present invention for achieving the above object, the cooling power for performing the load response operation may be determined according to the temperature inside the storage compartment.
본 발명의 냉장고에 따르면, 도어가 폐쇄된 후에 냉력조절수단의 부하가 제어될 수 있다.According to the refrigerator of the present invention, the load of the cooling power control means can be controlled after the door is closed.
본 발명의 냉장고에 따르면, 부하 대응운전시 냉력이 일반 저장운전시 냉력보다 높게 제어될 수 있다.According to the refrigerator of the present invention, the cooling power during the load response operation can be controlled to be higher than that during the general storage operation.
본 발명의 냉장고에 따르면, 저장실 내부 온도에 따라 냉력이 가변될 수 있다.According to the refrigerator of the present invention, the cooling power may vary according to the internal temperature of the storage compartment.
본 발명의 냉장고에 따르면, 냉력은, 저장실 내의 온도가 설정 기준온도(NT)를 기준으로 설정된 상한 기준온도(NT+diff)보다 높은 제1온도 영역에 속할 경우와 설정 기준온도(NT)와 상한 기준온도(NT+diff) 사이의 제2온도 영역에 속할 경우에 따라 달리 결정될 수 있다.According to the refrigerator of the present invention, the cooling power is, when the temperature in the storage compartment is in the first temperature region higher than the upper limit reference temperature (NT+diff) set based on the set reference temperature (NT) and the set reference temperature (NT) and the upper limit It may be determined differently depending on the case belonging to the second temperature range between the reference temperature (NT+diff).
본 발명의 냉장고에 따르면, 저장실 내의 온도가 제2온도 영역보다 제1온도 영역에 속할 경우 더욱 높은 냉력이 제공될 수 있다.According to the refrigerator of the present invention, when the temperature in the storage compartment belongs to the first temperature region than the second temperature region, a higher cooling power may be provided.
본 발명의 냉장고에 따르면, 냉력은, 저장실 내의 온도가 설정 기준온도(NT)와 상한 기준온도(NT+diff) 사이의 제2온도 영역에 속할 경우와 설정 기준온도(NT)와 하한 기준온도(NT-diff) 사이의 제3온도 영역에 속할 경우에 따라 달리 결정될 수 있다.According to the refrigerator of the present invention, the cooling power is determined when the temperature in the storage compartment falls within the second temperature range between the set reference temperature (NT) and the upper limit reference temperature (NT+diff) and the set reference temperature (NT) and the lower limit reference temperature ( NT-diff) may be determined differently depending on the case belonging to the third temperature region.
또한, 본 발명의 냉장고에 따르면, 저장실 내의 온도가 제3온도 영역보다 제2온도 영역에 속할 경우 더욱 높은 냉력이 제공될 수 있다.In addition, according to the refrigerator of the present invention, when the temperature in the storage compartment belongs to the second temperature region than the third temperature region, a higher cooling power may be provided.
본 발명의 냉장고에 따르면, 냉력은, 저장실 내의 온도가 설정 기준온도(NT)와 하한 기준온도(NT-diff) 사이의 제3온도 영역에 속할 경우와 하한 기준온도(NT-diff)보다 낮은 제4온도 영역에 속할 경우에 따라 달리 결정될 수 있다.According to the refrigerator of the present invention, the cooling power is lower than the lower limit reference temperature (NT-diff) and when the temperature in the storage compartment is in the third temperature range between the set reference temperature (NT) and the lower limit reference temperature (NT-diff). It may be determined differently depending on the case belonging to the 4 temperature range.
본 발명의 냉장고에 따르면, 저장실 내의 온도가 제4온도 영역보다 제3온도 영역에 속할 경우 더욱 높은 냉력이 제공될 수 있다.According to the refrigerator of the present invention, when the temperature in the storage compartment belongs to the third temperature region than the fourth temperature region, a higher cooling power may be provided.
본 발명의 냉장고에 따르면, 저장실 내의 온도 영역에 따라 냉력이 달리 결정될 수 있다.According to the refrigerator of the present invention, the cooling power may be determined differently depending on the temperature region in the storage compartment.
본 발명의 냉장고에 따르면, 냉력은 압축기와 냉각팬 중 적어도 하나로 조절될 수 있다.According to the refrigerator of the present invention, the cooling power may be controlled by at least one of a compressor and a cooling fan.
본 발명의 냉장고에 따르면, 압축기의 부하와 냉각팬의 부하 중 적어도 어느 한 부하를 조절하여 냉력이 가변될 수 있다.According to the refrigerator of the present invention, the cooling power may be varied by adjusting at least one of the load of the compressor and the load of the cooling fan.
본 발명의 냉장고에 따르면, 저장실 내부의 온도가 높을 수록 냉력이 더욱 높게 제어될 수 있다.According to the refrigerator of the present invention, the higher the temperature inside the storage compartment, the higher the cooling power can be controlled.
본 발명의 냉장고에 따르면, 부하 대응운전의 운전 진행시간이 경과할 수록 냉력이 점차 낮아지게 제어될 수 있다.According to the refrigerator of the present invention, the cooling power may be controlled to gradually decrease as the operation duration of the load response operation elapses.
본 발명의 냉장고에 따르면, 부하 대응운전이 수행되는 도중 도어가 재개방될 경우, 최대 부하의 냉력을 제공하면서 부하 대응운전을 수행한 다음 저장실 내부의 온도에 따라 냉력이 가변되게 제어될 수 있다.According to the refrigerator of the present invention, when the door is reopened while the load-response operation is being performed, the cooling power can be variably controlled according to the temperature inside the storage room after the load-response operation is performed while providing the cooling power of the maximum load.
본 발명의 냉장고에 따르면, 부하 대응운전이 수행되는 도중 제상운전의 투입 조건이 만족된 경우, 부하 대응운전은 중단됨과 더불어 제상운전을 위한 제상전 운전이 우선적으로 수행될 수 있다.According to the refrigerator of the present invention, when the input condition of the defrost operation is satisfied while the load response operation is being performed, the load response operation is stopped and the operation before the defrost for the defrost operation may be preferentially performed.
본 발명의 냉장고에 따르면, 부하 대응운전이 수행되는 도중 제상운전의 투입 조건이 만족된 경우, 제상전 운전은 냉력조절수단이 최대 부하로 동작되면서 저장실 내부 온도가 하한 기준온도(NT-diff)보다 낮은 온도의 제상 수행온도에 도달할 때까지 냉각할 수 있다.According to the refrigerator of the present invention, when the input condition of the defrost operation is satisfied while the load response operation is being performed, in the pre-defrost operation, the cooling power control means is operated at the maximum load and the internal temperature of the storage chamber is lower than the lower limit reference temperature (NT-diff). It can be cooled until it reaches a low-temperature defrosting operation temperature.
본 발명의 냉장고에 따르면, 최대 부하는, 일반 저장운전시의 냉력보다 높은 냉력이 제공될 수 있을 정도의 부하가 될 수 있다.According to the refrigerator of the present invention, the maximum load may be a load sufficient to provide a cooling power higher than that during a general storage operation.
본 발명의 냉장고에 따르면, 제상운전이 완료된 후 최대 부하로 냉력을 제공한 다음 저장실 내부 온도가 설정 기준온도(NT)보다 낮은 온도에 도달할 때까지 냉각할 수 있다.According to the refrigerator of the present invention, after the defrosting operation is completed, cooling power can be provided at the maximum load and then cooled until the internal temperature of the storage chamber reaches a temperature lower than the set reference temperature (NT).
본 발명의 냉장고에 따르면, 도어의 개방시에 부하 대응운전의 운전 시작조건이 만족되면, 도어가 폐쇄된 후에 최대 부하로 냉력을 제공하면서 부하 대응운전이 수행한 다음 저장실 내부의 온도에 따라 냉력을 가변할 수 있다.According to the refrigerator of the present invention, when the operation start condition of the load response operation is satisfied when the door is opened, the load response operation is performed while providing cooling power at the maximum load after the door is closed, and then cooling power is supplied according to the temperature inside the storage room. can be variable.
이상에서와 같이, 본 발명의 냉장고 및 그 제어방법은 도어가 개방되는 시점의 고내 온도를 고려하여 부하 대응운전의 냉력이 결정되고, 이렇게 결정된 냉력으로 부하 대응운전이 수행되도록 이루어진다. 이에 따라 부하 대응운전의 동작 중 과도한 전력 소모를 방지할 수 있고, 이로 인한 소비전력의 향상을 이룰 수 있게 된 효과를 가진다.As described above, in the refrigerator and the control method thereof of the present invention, the cooling power of the load response operation is determined in consideration of the temperature inside the refrigerator at the time the door is opened, and the load response operation is performed with the determined cooling power. Accordingly, it is possible to prevent excessive power consumption during the operation of the load response operation, thereby achieving an improvement in power consumption.
또한, 본 발명의 냉장고 및 그 제어방법은 도어가 개방되는 시점의 고내 온도 영역에 따라 냉력이 달리 결정되도록 이루어진다. 이에 따라 정확한 부하 대응운전이 수행될 수 있게 된 효과를 가진다.In addition, the refrigerator and the control method thereof according to the present invention are configured such that the cooling power is determined differently depending on the temperature region inside the refrigerator at the time the door is opened. Accordingly, there is an effect that an accurate load response operation can be performed.
또한, 본 발명의 냉장고 및 그 제어방법은 부하 대응운전이 수행되는 도중 고내 온도 변화에 따라 동작중 냉력이 달라지도록 제어된다. 이에 따라 과도한 부하 대응운전으로 인한 전력 소모를 줄일 수 있게 된 효과를 가진다.In addition, the refrigerator and the control method thereof according to the present invention are controlled so that the cooling power during operation varies according to the temperature change in the refrigerator while the load response operation is performed. Accordingly, it is possible to reduce power consumption due to excessive load response operation.
또한, 본 발명의 냉장고 및 그 제어방법은 부하 대응운전이 수행되는 도중 제상전 운전에서 냉력조절수단이 최대 부하로 동작된다. 이에 따라, 고내 온도가 높은 온도 영역이더라도 제상 수행온도에 도달할 때까지의 소요 시간이 단축될 수 있다는 효과를 가진다.In addition, in the refrigerator and the control method thereof according to the present invention, the cooling power control means is operated at the maximum load in the pre-defrost operation while the load response operation is performed. Accordingly, it has the effect that the time required to reach the defrosting performance temperature can be shortened even in a temperature region where the internal temperature of the furnace is high.
또한, 본 발명의 냉장고 및 그 제어방법은 제1도어가 재오픈될 경우 최대 부하로 부하 대응운전이 일정시간 수행되도록 한 다음 고내 온도에 따라 냉력을 가변하면서 부하 대응운전을 수행하도록 이루어진다. 이에 따라 전력 소모를 줄일 수 있게 된 효과를 가진다.In addition, the refrigerator and the control method thereof according to the present invention are configured to perform the load-response operation at the maximum load for a predetermined time when the first door is reopened, and then perform the load-response operation while varying the cooling power according to the internal temperature of the refrigerator. Accordingly, it is possible to reduce power consumption.
도 1은 본 발명의 실시예에 따른 냉장고의 내부 구조를 설명하기 위해 나타낸 상태도1 is a state diagram illustrating an internal structure of a refrigerator according to an embodiment of the present invention;
도 2는 본 발명의 실시예에 따른 냉장고의 부하 대응운전을 위한 구조를 설명하기 위해 개략화하여 나타낸 블럭도2 is a block diagram schematically illustrating a structure for a load-responsive operation of a refrigerator according to an embodiment of the present invention;
도 3은 본 발명의 실시예에 따른 열전모듈의 구조를 개략적으로 나타낸 상태도3 is a state diagram schematically showing the structure of a thermoelectric module according to an embodiment of the present invention;
도 4는 본 발명의 실시예에 따른 냉장고의 냉동 사이클을 개략화하여 나타낸 블럭도4 is a block diagram schematically illustrating a refrigeration cycle of a refrigerator according to an embodiment of the present invention;
도 5는 본 발명의 실시예에 따른 냉장고의 저장실에 대하여 사용자 설정 기준온도를 기준으로 운전 기준값에 따라 수행되는 운전 상태를 개략화하여 나타낸 도면5 is a diagram schematically illustrating an operation state performed according to an operation reference value based on a user-set reference temperature for a storage compartment of a refrigerator according to an embodiment of the present invention;
도 6은 본 발명의 제1실시예에 따른 냉장고의 제어방법을 설명하기 위해 나타낸 순서도6 is a flowchart illustrating a method for controlling a refrigerator according to a first embodiment of the present invention;
도 7은 본 발명의 제1실시예에 따른 냉장고의 제어방법 중 부하 대응운전의 수행 과정을 설명하기 위해 나타낸 순서도7 is a flowchart illustrating a process of performing a load response operation in a control method of a refrigerator according to the first embodiment of the present invention;
도 8은 본 발명의 제2실시예에 따른 냉장고의 제어방법을 설명하기 위해 나타낸 순서도8 is a flowchart illustrating a method for controlling a refrigerator according to a second embodiment of the present invention;
도 9는 본 발명의 제2실시예에 따른 냉장고의 제어방법 중 도어가 만족 영역에서 개방된 상태를 설명하기 위해 나타낸 그래프9 is a graph illustrating a state in which a door is opened in a satisfaction region in a control method of a refrigerator according to a second embodiment of the present invention;
도 10은 본 발명의 제2실시예에 따른 냉장고의 제어방법 중 도어가 불만 영역에서 개방된 상태를 설명하기 위해 나타낸 그래프10 is a graph illustrating a state in which a door is opened in a dissatisfaction area in a control method of a refrigerator according to a second embodiment of the present invention;
도 11은 본 발명의 제2실시예에 따른 냉장고의 제어방법 중 부하 대응운전의 수행 과정을 설명하기 위해 나타낸 순서도11 is a flowchart illustrating a process of performing a load response operation in a control method of a refrigerator according to a second embodiment of the present invention;
도 12는 본 발명의 제3실시예에 따른 냉장고의 제어방법을 설명하기 위해 나타낸 순서도12 is a flowchart illustrating a method for controlling a refrigerator according to a third embodiment of the present invention;
도 13은 본 발명의 제3실시예에 따른 냉장고의 제어방법 중 부하 대응운전의 수행 과정을 설명하기 위해 나타낸 순서도13 is a flowchart illustrating a process of performing a load response operation in a control method of a refrigerator according to a third embodiment of the present invention;
도 14는 본 발명의 제4실시예에 따른 냉장고의 제어방법을 설명하기 위해 나타낸 순서도14 is a flowchart illustrating a method for controlling a refrigerator according to a fourth embodiment of the present invention;
도 15는 본 발명의 제4실시예에 따른 냉장고의 제어방법 중 부하 대응운전의 수행 과정을 설명하기 위해 나타낸 순서도15 is a flowchart illustrating a process of performing a load response operation in a control method of a refrigerator according to a fourth embodiment of the present invention;
도 16은 본 발명의 제5실시예에 따른 냉장고의 제어방법을 설명하기 위해 나타낸 순서도16 is a flowchart illustrating a method for controlling a refrigerator according to a fifth embodiment of the present invention;
도 17은 본 발명의 제5실시예에 따른 냉장고의 제어방법 중 부하 대응운전의 수행 과정을 설명하기 위해 나타낸 순서도17 is a flowchart illustrating a process of performing a load response operation in a control method of a refrigerator according to a fifth embodiment of the present invention;
본 발명은 부하 대응운전이 저장실 내부 온도에 따라 달리 제어될 수 있도록 함으로써 전력 소모를 줄여 소비전력을 향상시킬 수 있도록 한 것이다.The present invention is to reduce power consumption and improve power consumption by allowing the load response operation to be controlled differently depending on the internal temperature of the storage room.
즉, 본 발명은 부하 대응운전이 최대 부하로만 수행되는 것이 아니라 가변적인 부하로 수행되도록 함으로써 전력 소모를 줄일 수 있도록 한 것이다.That is, according to the present invention, power consumption can be reduced by allowing the load response operation to be performed not only with the maximum load but with a variable load.
이러한, 본 발명의 냉장고 및 그 제어방법에 대한 바람직한 실시예들을 첨부된 도 1 내지 도 17을 참조하여 설명한다.Preferred embodiments of such a refrigerator and a method for controlling the same according to the present invention will be described with reference to FIGS. 1 to 17 attached thereto.
첨부된 도 1은 본 발명의 실시예에 따른 냉장고의 내부 구조를 설명하기 위해 나타낸 상태도이고, 도 2는 본 발명의 실시예에 따른 냉장고의 부하 대응운전을 위한 구조를 설명하기 위해 개략화하여 나타낸 블럭도이다.1 is a state diagram illustrating an internal structure of a refrigerator according to an embodiment of the present invention, and FIG. 2 is a schematic diagram illustrating a structure for load response operation of a refrigerator according to an embodiment of the present invention It is a block diagram.
이들 도면에 도시된 바와 같이, 본 발명의 실시예에 따른 냉장고는 케이스(11)가 포함된다.As shown in these drawings, the refrigerator according to the embodiment of the present invention includes a case 11 .
상기 케이스(11)는 냉장고(1)의 고내 벽면을 형성하는 이너케이스(inner-case)(11a) 및 외관을 형성하는 아웃케이스(outter case)(11b)가 포함되며, 이러한 케이스(11)에 의해 저장물이 저장되는 저장실이 제공된다.The case 11 includes an inner-case 11a forming an inner wall surface of the refrigerator 1 and an outer case 11b forming an exterior surface of the refrigerator 1, and in this case 11, A storage room is provided in which the stored material is stored by the
상기 저장실은 하나만 제공될 수도 있고 둘 이상 복수로 제공될 수가 있다. 본 발명의 실시예에서는 상기 저장실이 서로 다른 온도 영역으로 저장물을 저장하는 두 개의 저장실이 포함됨을 그 예로 한다.Only one storage compartment may be provided, or a plurality of two or more storage compartments may be provided. In an embodiment of the present invention, it is assumed that the storage chamber includes two storage chambers for storing stored materials in different temperature regions.
이러한 저장실은 제1설정 기준온도(NT:Notch Temperature)로 유지되는 제1저장실(12)이 포함될 수 있다.The storage chamber may include a first storage chamber 12 maintained at a first set reference temperature (NT: Notch Temperature).
상기 제1설정 기준온도(NT)는 저장물이 결빙되지 않을 정도의 온도이면서도 냉장고(1)의 외부 온도(실내 온도)에 비해서는 낮은 온도 범위가 될 수 있다.The first set reference temperature NT may be a temperature at which the stored object is not frozen, but may be in a temperature range lower than the external temperature (indoor temperature) of the refrigerator 1 .
예컨대, 상기 제1설정 기준온도(NT)는 32℃ 이하 0℃ 초과의 고내 온도로 이루어질 수 있다. 물론, 상기 제1설정 기준온도(NT)는 필요에 따라(예컨대, 실내온도 혹은, 저장물의 종류 등에 따라) 32℃에 비해 더욱 높거나 혹은, 0℃에 비해 같거나 낮게 설정될 수도 있다.For example, the first set reference temperature NT may be set to an internal temperature of 32°C or less and greater than 0°C. Of course, the first set reference temperature NT may be set higher than 32°C, or equal to or lower than 0°C, if necessary (eg, depending on the room temperature or the type of storage).
특히, 상기 제1설정 기준온도(NT)는 사용자에 의해 설정되는 제1저장실(12)의 고내 온도가 될 수 있으며, 만일, 사용자가 상기 제1설정 기준온도(NT)를 설정하지 않을 경우에는 임의로 지정된 온도가 제1설정 기준온도(NT)로 사용된다.In particular, the first set reference temperature NT may be the internal temperature of the first storage compartment 12 set by the user, and if the user does not set the first set reference temperature NT, An arbitrarily designated temperature is used as the first set reference temperature NT.
이와 함께, 상기 제1저장실(12)은 상기 제1설정 기준온도(NT)를 유지하기 위한 제1운전 기준값(NT±diff)으로 일반 저장운전이 수행된다.In addition, a general storage operation is performed in the first storage chamber 12 with a first operation reference value NT±diff for maintaining the first set reference temperature NT.
상기 제1운전 기준값(NT±diff)은 제1하한 기준온도(NT-diff)와 제1상한 기준온도(NT+diff)가 포함되는 만족 영역의 온도 범위값이다.The first operation reference value NT±diff is a temperature range value of a satisfactory region including the first lower limit reference temperature NT-diff and the first upper limit reference temperature NT+diff.
즉, 제1저장실(12) 내의 고내 온도가 제1설정 기준온도(NT)를 기준으로 제1하한 기준온도(NT-diff1)에 도달될 경우에는 냉기 공급을 위한 운전을 중단하게 된다. 반면, 상기 고내 온도가 제1설정 기준온도(NT)를 기준으로 상승될 경우에는 제1상한 기준온도(NT+diff)에 이르기 전에 냉기 공급을 위한 운전이 재개된다.That is, when the temperature inside the refrigerator in the first storage chamber 12 reaches the first lower limit reference temperature NT-diff1 based on the first set reference temperature NT, the operation for supplying cold air is stopped. On the other hand, when the internal temperature of the refrigerator is increased based on the first set reference temperature NT, the operation for supplying cold air is resumed before reaching the first upper limit reference temperature NT+diff.
이렇듯, 상기 제1저장실(12) 내부는 제1설정 기준온도(NT)를 기초로 상기 제1저장실(12)에 대한 제1운전 기준값(NT±diff)을 고려하여 냉기가 공급 또는, 공급 중단되면서 일반 저장운전이 수행된다.As such, the inside of the first storage compartment 12 is supplied with or stopped supplying cold air in consideration of the first operation reference value NT±diff for the first storage compartment 12 based on the first set reference temperature NT. The general storage operation is performed.
이러한 제1설정 기준온도(NT)와 제1운전 기준값(NT±diff)에 관련하여는 첨부된 도 3에 도시된 바와 같다.The first set reference temperature NT and the first operation reference value NT±diff are as shown in FIG. 3 .
또한, 상기 저장실은 제2설정 기준온도(NT2)로 유지되는 제2저장실(13)이 포함될 수 있다.In addition, the storage chamber may include a second storage chamber 13 maintained at the second set reference temperature NT2.
상기 제2설정 기준온도(NT2)는 상기 제1설정 기준온도(NT)보다 낮은 온도가 될 수 있다. 이때, 상기 제2설정 기준온도(NT2)는 사용자에 의해 설정될 수 있으며, 사용자가 설정하지 않을 경우에는 임의로 규정된 온도가 사용된다.The second set reference temperature NT2 may be a lower temperature than the first set reference temperature NT. In this case, the second set reference temperature NT2 may be set by the user, and when the user does not set it, an arbitrarily defined temperature is used.
상기 제2설정 기준온도(NT2)는 저장물을 결빙시킬 수 있을 정도의 온도가 될 수 있다. 예컨대, 상기 제2설정 기준온도(NT2)는 0℃ 이하 -24℃ 이상의 온도로 설정될 수 있다.The second set reference temperature NT2 may be a temperature sufficient to freeze the stored object. For example, the second set reference temperature NT2 may be set to a temperature of 0°C or lower -24°C or higher.
물론, 상기 제2설정 기준온도(NT2)는 필요에 따라(예컨대, 실내 온도 혹은, 저장물의 종류 등에 따라) 0℃에 비해 더욱 높거나 혹은, -24℃에 비해 같거나 더욱 낮게 설정될 수도 있다.Of course, the second set reference temperature NT2 may be set higher than 0°C, or equal to or lower than -24°C, if necessary (eg, according to the room temperature or the type of storage). .
특히, 상기 제2설정 기준온도(NT2)는 사용자에 의해 설정되는 제2저장실(13)의 고내 온도가 될 수 있으며, 만일, 사용자가 상기 제2설정 기준온도(NT2)를 설정하지 않을 경우에는 임의로 지정된 온도가 제2설정 기준온도(NT2)로 사용될 수 있다.In particular, the second set reference temperature NT2 may be the internal temperature of the second storage chamber 13 set by the user, and if the user does not set the second set reference temperature NT2, An arbitrarily designated temperature may be used as the second set reference temperature NT2.
이와 함께, 상기 제2저장실(13)은 상기 제2설정 기준온도(NT2)를 유지하기 위한 제2운전 기준값(NT2±diff2)으로 운전되도록 이루어질 수 있다.In addition, the second storage chamber 13 may be operated at a second operating reference value NT2±diff2 for maintaining the second set reference temperature NT2.
상기 제2운전 기준값(NT2±diff2)은 제2하한 기준온도(NT2-diff2)와 제2상한 기준온도(NT2+diff2)가 포함되는 만족 영역의 온도 범위값이다.The second operation reference value NT2±diff2 is a temperature range value of a satisfactory region including the second lower limit reference temperature NT2-diff2 and the second upper limit reference temperature NT2+diff2.
즉, 제2저장실(13) 내의 고내 온도가 제2설정 기준온도(NT2±diff2)를 기준으로 제2하한 기준온도(NT2-diff2)에 도달될 경우에는 냉기 공급을 위한 운전을 중단할 수 있다. 반면, 상기 고내 온도가 제2설정 기준온도(NT2)를 기준으로 상승될 경우에는 제2상한 기준온도(NT2+diff2)에 이르기 전에 냉기 공급을 위한 운전을 재개할 수 있다.That is, when the internal temperature of the refrigerator in the second storage chamber 13 reaches the second lower limit reference temperature NT2-diff2 based on the second set reference temperature NT2±diff2, the operation for supplying cold air may be stopped. . On the other hand, when the internal temperature of the refrigerator is increased based on the second set reference temperature NT2, the operation for supplying cold air may be resumed before reaching the second upper limit reference temperature NT2+diff2.
이렇듯, 상기 제2저장실(13) 내부는 제2설정 기준온도(NT2)를 기초로 상기 제2저장실(13)에 대한 제2운전 기준값(NT2±diff2)을 고려하여 냉기가 공급 또는, 공급 중단된다.As such, cold air is supplied to the inside of the second storage chamber 13 in consideration of the second operation reference value NT2±diff2 for the second storage chamber 13 based on the second set reference temperature NT2, or the supply is stopped. do.
특히, 상기 제1운전 기준값(NT±diff)은 제2운전 기준값(NT2±diff2)에 비해 상한 기준온도(NT+diff)와 하한 기준온도(NT-diff) 간의 범위가 더욱 작게 설정될 수 있다.In particular, the first operation reference value NT±diff may be set to have a smaller range between the upper limit reference temperature NT+diff and the lower limit reference temperature NT-diff than the second operation reference value NT2±diff2. .
예컨대, 제1운전 기준값(NT±diff)의 제1하한 기준온도(NT-diff)와 제1상한 기준온도(NT+diff)는 ±2.0℃로 설정될 수 있고, 상기 제2운전 기준값(NT2±diff2)의 제2하한 기준온도(NT2-diff2)와 제2상한 기준온도(NT2+diff2)는 ±1.5℃로 설정될 수 있다.For example, the first lower limit reference temperature NT-diff and the first upper limit reference temperature NT+diff of the first operation reference value NT±diff may be set to ±2.0° C., and the second operation reference value NT2 The second lower limit reference temperature (NT2-diff2) and the second upper limit reference temperature (NT2+diff2) of ±diff2) may be set to ±1.5°C.
한편, 전술된 각 저장실(12,13)은 유체가 순환되면서 고내 온도가 유지되도록 이루어진다.On the other hand, each of the storage chambers 12 and 13 described above is configured such that the temperature inside the refrigerator is maintained while the fluid is circulated.
상기 유체는 공기가 될 수 있다. 아래의 설명에서도 상기 저장실(12,13)을 순환하는 유체가 공기임을 그 예로 한다. 물론, 상기 유체는 공기 이외의 기체가 될 수도 있다.The fluid may be air. In the following description, the fluid circulating in the storage chambers 12 and 13 is air as an example. Of course, the fluid may be a gas other than air.
저장실(12,13) 외부의 온도(실내온도)는 제1온도센서(1a)에 의해 측정될 수 있고, 고내 온도(제1저장실 내의 온도)는 제2온도센서(1b)(첨부된 도 9 참조)에 의해 측정될 수 있다.Temperatures outside the storage chambers 12 and 13 (internal temperature) may be measured by the first temperature sensor 1a, and the internal temperature (temperature in the first storage chamber) of the storage chambers 12 and 13 may be measured by the second temperature sensor 1b (see attached FIG. 9 ). ) can be measured by
상기 제1온도센서(1a)와 제2온도센서(1b)는 별개로 이루어질 수 있다. 물론, 실내온도와 고내 온도는 동일한 하나의 온도센서로 측정되거나 혹은, 둘 이상 복수의 온도센서가 협력하여 측정하도록 구성될 수도 있다.The first temperature sensor 1a and the second temperature sensor 1b may be formed separately. Of course, the indoor temperature and the internal temperature of the refrigerator may be measured by the same single temperature sensor, or two or more temperature sensors may be configured to measure cooperatively.
또한, 상기 저장실(12,13)에는 도어(12a,13a)가 구비된다.In addition, doors 12a and 13a are provided in the storage compartments 12 and 13 .
상기 도어(12a,13a)는 저장실(12,13)을 개폐하는 역할을 하며, 회전식 개폐 구조로 구성될 수도 있고, 서랍식의 개폐 구조로 구성될 수도 있다.The doors 12a and 13a serve to open and close the storage compartments 12 and 13, and may have a rotational opening/closing structure or a drawer type opening/closing structure.
상기 도어(12a,13a)는 하나 혹은, 그 이상 복수로 제공 될 수가 있다.One or more of the doors 12a and 13a may be provided.
특히, 상기 도어(12a,13a) 혹은, 케이스(11) 중 적어도 어느 한 부위에는 상기 도어(12a,13a)의 개방 여부를 감지할 수 있는 감지센서(14)가 구비될 수 있다.In particular, at least one of the doors 12a and 13a or the case 11 may be provided with a detection sensor 14 capable of detecting whether the doors 12a and 13a are opened.
다음으로, 본 발명의 실시예에 따른 냉장고(1)에는 냉기열원이 포함된다.Next, the refrigerator 1 according to the embodiment of the present invention includes a cold air heat source.
상기 냉기열원은 냉기를 생성하도록 제공되는 구성이다.The cold air heat source is configured to generate cold air.
이러한 냉기열원은 다양하게 이루어질 수 있다.The cold air heat source may be made in various ways.
예컨대, 상기 냉기열원은 열전모듈(23)로 구성될 수 있다.For example, the cold air heat source may be composed of a thermoelectric module 23 .
이때, 상기 열전모듈(23)은 첨부된 도 3과 같이 흡열면(231)과 발열면(232)을 포함하는 열전소자(23a)와, 상기 흡열면(231)이나 발열면(232) 중 적어도 하나에 연결된 싱크(sink)(23b)를 포함하는 모듈이 될 수 있다.At this time, the thermoelectric module 23 includes at least one of a thermoelectric element 23a including a heat absorbing surface 231 and a heat generating surface 232 , and the heat absorbing surface 231 or the heating surface 232 as shown in FIG. 3 . It can be a module comprising a sink 23b connected to one.
또한, 상기 냉기열원은 증발기(21,22)로 구성될 수 있다.In addition, the cold air heat source may be composed of evaporators (21, 22).
상기 증발기(21,22)는 압축기(60)(첨부된 도 4 참조)와 응축기(도시는 생략됨) 및 팽창기(도시는 생략됨)와 함께 냉동시스템을 이루며, 해당 증발기를 지나는 공기와 열교환되면서 상기 공기의 온도를 낮추도록 동작된다.The evaporators 21 and 22 form a refrigeration system together with a compressor 60 (refer to attached FIG. 4), a condenser (not shown), and an expander (not shown), and exchange heat with air passing through the evaporator. operated to lower the temperature of the air.
상기 저장실이 제1저장실(12)과 제2저장실(13)을 포함할 경우 상기 증발기는 상기 제1저장실(12)로 냉기를 공급하기 위한 제1증발기(21)와 상기 제2저장실(13)로 냉기를 공급하기 위한 제2증발기(22)로 구성될 수 있다.When the storage chamber includes a first storage chamber 12 and a second storage chamber 13 , the evaporator includes a first evaporator 21 for supplying cold air to the first storage chamber 12 and the second storage chamber 13 . It may be composed of a second evaporator 22 for supplying cold air to the furnace.
이때, 상기 제1증발기(21)는 상기 이너케이스(11a) 내부 중 상기 제1저장실(12) 내의 후방측에 위치되고, 상기 제2증발기(22)는 상기 제2저정실(13) 내의 후방측에 위치될 수 있다.At this time, the first evaporator 21 is located on the rear side of the first storage chamber 12 in the inner case 11a, and the second evaporator 22 is located on the rear side of the second storage chamber 13 . can be located on the side.
물론, 도시되지는 않았으나 제1저장실(12) 혹은, 제2저장실(13) 중 적어도 어느 한 저장실 내에만 증발기가 제공될 수도 있다.Of course, although not shown, the evaporator may be provided only in at least one of the first storage chamber 12 and the second storage chamber 13 .
이와 함께, 상기 증발기(21,22)가 두 개로 제공되더라도 해당 냉동시스템을 이루는 압축기(60)는 하나만 제공될 수 있다. In addition, even if two evaporators 21 and 22 are provided, only one compressor 60 constituting the corresponding refrigeration system may be provided.
이의 경우 첨부된 도 4에 도시된 바와 같이 압축기(60)는 제1냉매통로(61)를 통해 제1증발기(21)로 냉매를 공급하도록 연결됨과 더불어 제2냉매통로(62)를 통해 제2증발기(22)로 냉매를 공급하도록 연결될 수 있다. 이때 상기 각 냉매통로(61,62)는 냉매밸브(63)를 이용하여 선택적으로 개폐될 수 있다.In this case, as shown in FIG. 4 , the compressor 60 is connected to supply refrigerant to the first evaporator 21 through the first refrigerant passage 61 and the second refrigerant passage 62 through the second refrigerant passage 62 . It may be connected to supply a refrigerant to the evaporator 22 . At this time, each of the refrigerant passages (61, 62) can be selectively opened and closed using the refrigerant valve (63).
다음으로, 본 발명의 실시예에 따른 냉장고(1)에는 냉력조절수단이 포함된다.Next, the refrigerator 1 according to the embodiment of the present invention includes a cooling power control means.
상기 냉력조절수단은 제1저장실(12)로 공급되는 냉기의 냉력을 조절하도록 제공되는 구성이다.The cooling power control means is configured to adjust the cooling power of the cold air supplied to the first storage compartment 12 .
상기 냉력조절수단은 제어부(70)에 의한 부하 제어가 가능하게 구성될 수 있으며, 상기 냉력조절수단에는 압축기(60)와 제1냉각팬(31) 중 적어도 어느 하나가 포함될 수 있다.The cooling power regulating means may be configured to enable load control by the controller 70 , and the cooling power regulating means may include at least one of the compressor 60 and the first cooling fan 31 .
여기서, 상기 압축기(60)는 상기 냉기열원(증발기)(21,22)와 함께 냉동시스템을 이루는 구성 중 하나이며, 이러한 압축기(60)의 부하 조절을 통해 냉력을 조절할 수 있다.Here, the compressor 60 is one of the components constituting the refrigeration system together with the cold air heat source (evaporator) 21 and 22 , and the cooling power can be adjusted by controlling the load of the compressor 60 .
또한, 상기 제1냉각팬(31)은 제1증발기(21)를 통과하면서 생성된 냉기를 제1저장실(12)에 공급하는 기기이며, 이러한 제1냉각팬(31)의 부하 조절(회전 속도의 조절)을 통해 냉력을 조절할 수 있다.In addition, the first cooling fan 31 is a device that supplies cool air generated while passing through the first evaporator 21 to the first storage chamber 12 , and controls the load (rotation speed) of the first cooling fan 31 . control) to control the cooling power.
물론, 냉장고에는 제2증발기(22)를 통과하면서 생성된 냉기를 제2저장실(13)에 공급하는 제2냉각팬(41)이 더 포함되거나, 혹은, 상기 제1냉각팬(31)(혹은, 제2냉각팬)이 상기 제2저장실(13)로 제1증발기(21) 혹은, 제2증발기(22)를 통과하면서 생성된 냉기를 공급하도록 구성될 수도 있다.Of course, the refrigerator further includes a second cooling fan 41 that supplies cool air generated while passing through the second evaporator 22 to the second storage chamber 13, or the first cooling fan 31 (or , second cooling fan) may be configured to supply cool air generated while passing through the first evaporator 21 or the second evaporator 22 to the second storage chamber 13 .
다음으로, 본 발명의 실시예에 따른 냉장고(1)에는 제어부(70)가 포함된다.Next, the refrigerator 1 according to the embodiment of the present invention includes a control unit 70 .
상기 제어부(70)는 냉력조절수단(41,60)의 부하 및 운전을 제어하도록 구성될 수 있다. 즉, 제1온도센서(1a) 및 제2온도센서(1b)에 의해 측정된 온도를 기준으로 냉력조절수단(41,60)의 부하 및 운전을 제어하면서 제1저장실(12)이 제1설정 기준온도(NT)를 유지하도록 제어하게 된다.The control unit 70 may be configured to control the load and operation of the cooling power control means (41, 60). That is, the first storage compartment 12 is set to the first setting while controlling the load and operation of the cooling power control means 41 and 60 based on the temperatures measured by the first temperature sensor 1a and the second temperature sensor 1b. It is controlled to maintain the reference temperature (NT).
상기 제1설정 기준온도(NT)를 기준으로 볼 때 제1상한 기준온도(NT+diff) 및 제1하한 기준온도(NT-diff) 사이의 온도 범위는 만족 영역으로 설정될 수 있고, 상기 제1상한 기준온도(NT+diff)에 비해 더욱 높은 온도는 불만 영역으로 설정될 수 있다.A temperature range between the first upper limit reference temperature (NT+diff) and the first lower limit reference temperature (NT-diff) may be set as a satisfactory region when viewed based on the first set reference temperature (NT), A temperature higher than the upper limit reference temperature (NT+diff) may be set as a dissatisfaction area.
상기 제어부(70)는 일반 저장운전과 부하 대응운전에 따라 상기 냉력조절수단(41,60)의 부하를 달리 제어할 수 있다.The control unit 70 may control the loads of the cooling power control means 41 and 60 differently according to the general storage operation and the load corresponding operation.
예컨대, 일반 저장운전시에는 냉력조절수단(41,60)의 전력 소모를 고려한 절전 운전으로 동작되면서 서서히 제1저장실(12)의 온도를 낮추도록 제어될 수 있다.For example, during the general storage operation, the power saving operation in consideration of the power consumption of the cooling power control means 41 and 60 may be controlled to gradually lower the temperature of the first storage chamber 12 .
반면, 부하 대응운전시에는 식품의 변질을 방지하기 위해 상기 냉력조절수단(41,60)을 일반 저장운전시에 비해 더욱 높은 부하로 운전되도록 제어하면서 신속하게 제1저장실(12)의 온도를 낮추도록 제어될 수 있다.On the other hand, in the load response operation, the cooling power control means 41 and 60 are controlled to be operated at a higher load compared to the general storage operation in order to prevent deterioration of the food, and the temperature of the first storage compartment 12 is quickly lowered. can be controlled to
이와 함께, 상기 부하 대응운전은 운전 시작조건을 만족할 경우에만 실시될 수 있도록 함으로써 전력 소모를 줄일 수 있도록 함이 바람직하다.In addition, it is preferable to reduce power consumption by enabling the load response operation to be performed only when an operation start condition is satisfied.
이러한 운전 시작조건은, 도어(제1도어)(12a)의 개방 조건(제1운전조건)이 포함될 수 있다.The driving start condition may include an opening condition (first driving condition) of the door (first door) 12a.
상기 제1도어(12a)의 개방 조건은 제1도어(12a)가 개방되거나 혹은, 제1도어(12a)가 개방되고 폐쇄되었을 때가 포함될 수 있다. 즉, 제1도어(12a)가 개방되지 않은 상태의 경우는 부하 대응운전의 운전 시작조건을 만족하지 못한 것으로 판단된다.The opening condition of the first door 12a may include when the first door 12a is opened or when the first door 12a is opened and closed. That is, when the first door 12a is not opened, it is determined that the operation start condition of the load response operation is not satisfied.
또한, 상기 운전 시작조건은, 설정된 경과 시간의 조건(제2운전조건)이 포함될 수 있다.Also, the driving start condition may include a condition of a set elapsed time (a second driving condition).
상기 설정된 경과 시간의 조건은 상기 제1도어(12a)가 개방된 이후부터 설정된 경과 시간에 도달하기 까지가 될 수 있다. 즉, 이러한 설정 경과 시간 이내에 조건에 대한 판단을 주기적으로 수행하도록 설정될 수 있다. 이를 위해, 상기 제어부(70)에는 시간을 카운팅하는 카운터(71)가 포함될 수 있다.The condition of the set elapsed time may be from the time the first door 12a is opened until the set elapsed time is reached. That is, it may be set to periodically perform the determination of the condition within the set elapsed time. To this end, the control unit 70 may include a counter 71 for counting time.
물론, 상기 설정된 경과 시간의 조건은 상기 제1도어(12a)의 개방 시점으로부터의 경과 시간에 대한 조건은 설정된 시간이 경과된 이후가 될 수 있다. 즉, 이러한 설정 경과 시간이 경과된 이후에 상기 조건의 판단을 수행하도록 설정될 수 있다.Of course, the condition for the set elapsed time may be after the set time has elapsed as the condition for the elapsed time from the opening time of the first door 12a. That is, it may be set to perform the determination of the condition after the set elapsed time has elapsed.
또한, 상기 운전 시작조건은, 상기 제1도어(12a)가 개방된 이후부터의 측정된 제1저장실(12) 내의 온도가 투입 조건온도(Δt)를 초과하는 조건(제3운전조건)이 포함될 수 있다.In addition, the operation start condition includes a condition in which the temperature in the first storage compartment 12 measured after the first door 12a is opened exceeds the input condition temperature Δt (third operation condition). can
상기 투입 조건온도(Δt)는 특정한 온도가 될 수도 있고, 특정한 온도의 범위가 될 수도 있다.The input condition temperature Δt may be a specific temperature or a specific temperature range.
바람직하게는, 상기 투입 조건온도(Δt)는 0 < Δt1 ≤ 설정 상한온도 - 제1상한 기준온도(NT+diff)의 조건을 만족하는 온도이다. 이때, 상기 설정 상한온도는 해당 냉장고의 제1저장실(12)이 허용할 수 있는 최대의 온도로써, 고장 여부나 증발기(제1증발기)(21)의 완전한 착상을 판단하는 기준 온도가 될 수 있다. 즉, 상기 투입 조건온도(Δt)는 고내 온도(제1저장실 내의 온도)가 설정 상한온도를 초과하지 않는 범위에서 결정되도록 이루어진다.Preferably, the input condition temperature (Δt) is a temperature that satisfies the condition of 0 < Δt1 ≤ set upper limit temperature - first upper limit reference temperature (NT+diff). In this case, the set upper limit temperature is the maximum temperature allowable by the first storage compartment 12 of the corresponding refrigerator, and may be a reference temperature for determining whether there is a failure or a complete conception of the evaporator (first evaporator) 21 . . That is, the input condition temperature Δt is determined in a range in which the internal temperature (the temperature in the first storage chamber) does not exceed the set upper limit temperature.
이와 함께, 상기 투입 조건온도(Δt)는 상기 제1도어(12a)가 개방된 시점에 측정된 온도가 제1설정 기준온도(NT)를 기준으로 설정된 제1상한 기준온도(NT+diff)보다 높은 경우와 상기 제1상한 기준온도(NT+diff)보다 낮은 경우가 서로 다르도록 이루어질 수 있다.In addition, the input condition temperature (Δt) is higher than the first upper limit reference temperature (NT+diff) at which the temperature measured at the time the first door 12a is opened is set based on the first set reference temperature NT. A high case and a case lower than the first upper limit reference temperature (NT+diff) may be configured to be different from each other.
또한, 상기 운전 시작조건은, 고내 온도(제1저장실 내의 온도)가 기준값 1 보다 크거나 같은 경우(고내 온도≥기준값 1)(제4운전조건)가 포함될 수 있다.In addition, the operation start condition may include a case in which the internal temperature (temperature in the first storage room) is greater than or equal to the reference value 1 (internal temperature ≥ the reference value 1) (fourth operation condition).
여기서, 상기 기준값 1은 제1상한 기준온도(NT+diff)에 비해서는 크고 설정 상한온도에 비해서는 작거나 같은 값((NT+diff)<기준값 1≤설정 상한온도)이다.Here, the reference value 1 is greater than the first upper limit reference temperature (NT+diff) and less than or equal to the set upper limit temperature ((NT+diff)<reference value 1≤set upper limit temperature).
즉, 전술된 제4운전조건은 상기 제2운전조건 및 제3운전조건을 보완하는 조건으로써 제1도어(12a)가 개방된 후 고내 온도가 불만 영역(제1상한 기준온도(NT+diff)보다 높은 경우)에 속한다면 투입 조건온도(Δt)나 제1도어(12a)가 개방된 후부터의 경과 시간에 상관없이 부하 대응운전이 수행되도록 한 것이다.That is, the above-described fourth operating condition is a condition that supplements the second and third operating conditions, and the temperature inside the refrigerator is unsatisfactory after the first door 12a is opened (first upper limit reference temperature (NT+diff)) higher case), the load response operation is performed regardless of the input condition temperature Δt or the elapsed time since the first door 12a is opened.
또한, 상기 운전 시작조건은, 기준값 2가 투입 조건온도(Δt)보다 작은 경우(Δt>기준값 2)(제5운전조건)가 포함될 수 있다. 이때, 상기 기준값 2는 0보다는 크면서도 설정 상한온도로부터 제1상한 기준온도(NT+diff) 간의 차이에 비해서는 작거나 같은(0 < 기준값 2 ≤ 설정 상한온도-제1상한 기준온도(NT+diff)) 값이다.In addition, the operation start condition may include a case where the reference value 2 is smaller than the input condition temperature Δt (Δt > reference value 2) (fifth operation condition). At this time, the reference value 2 is greater than 0 and smaller than or equal to the difference between the set upper limit temperature and the first upper limit reference temperature (NT+diff) (0 < reference value 2 ≤ set upper limit temperature - first upper limit reference temperature (NT+) diff)) value.
즉, 제1도어(12a)가 개방된 후 투입 조건온도(Δt)가 설정 상한온도와 제1상한 기준온도(NT+diff) 사이의 온도에 속하도록 설정될 경우 상기 투입 조건온도(Δt)에의 도달 여부에 상관없이 부하 대응운전이 수행되도록 한 것이다.That is, when the input condition temperature Δt is set to fall between the set upper limit temperature and the first upper limit reference temperature NT+diff after the first door 12a is opened, the input condition temperature Δt It is designed so that the load response operation is performed regardless of whether or not it is reached.
한편, 상기 제어부(70)는, 제1도어(12a)의 개방시에 부하 대응운전의 운전 시작조건이 만족되면 제1저장실(12) 내부의 온도에 따라 부하 대응운전의 수행을 위한 냉력을 달리 결정하도록 구성될 수 있다.On the other hand, if the operation start condition of the load response operation is satisfied when the first door 12a is opened, the control unit 70 changes the cooling power for performing the load response operation according to the temperature inside the first storage compartment 12 . can be configured to determine.
이는, 부하 대응운전의 수행시 고내 온도(제1저장실 내부 온도)가 만족 영역에 속함에도 불구하고 정해진 시간동안 최대 냉력으로 부하 대응운전이 계속 수행될 경우 과냉이 발생될 우려가 있고, 이로 인한 전력소모가 커질 수밖에 없기 때문이다.This is because there is a risk of overcooling if the load response operation continues with the maximum cooling power for a predetermined time even though the internal temperature (the temperature inside the first storage room) falls within the satisfactory range when the load response operation is performed. This is because consumption is bound to increase.
즉, 부하 대응운전이 시작되는 시점의 제1저장실(12) 내부 온도에 따라 부하 대응운전시의 냉력이 달리 결정되고, 부하 대응운전시에는 이렇게 결정된 냉력에 따라 제어부(70)가 냉력조절수단의 부하를 제어하도록 이루어짐에 따라 불필요한 전력소모를 줄일 수 있도록 한 것이다.That is, the cooling power during the load response operation is determined differently according to the internal temperature of the first storage chamber 12 at the time when the load response operation starts, and during the load response operation, the control unit 70 controls the cooling power of the cooling power control means according to the determined cooling power. As it is made to control the load, unnecessary power consumption can be reduced.
특히, 상기 제1저장실(12) 내의 온도는 복수의 영역으로 구분되고, 상기 냉력은 상기 제1저장실(12) 내의 온도 영역에 따라 달리 결정되도록 이루어질 수 있다.In particular, the temperature in the first storage compartment 12 may be divided into a plurality of regions, and the cooling power may be determined differently depending on the temperature region in the first storage compartment 12 .
상기 복수의 온도 영역은 제1저장실(12) 내의 온도가 제1설정 기준온도(NT)를 기준으로 설정된 제1상한 기준온도(NT+diff)보다 높은 제1온도 영역과, 제1설정 기준온도(NT)와 제1상한 기준온도(NT+diff) 사이의 제2온도 영역과, 제1설정 기준온도(NT)와 제1하한 기준온도(NT-diff) 사이의 제3온도 영역과, 제1하한 기준온도(NT-diff)보다 낮은 제4온도 영역 중 적어도 어느 한 온도 영역이 포함될 수 있다.The plurality of temperature regions includes a first temperature region in which the temperature in the first storage compartment 12 is higher than the first upper limit reference temperature (NT+diff) set based on the first set reference temperature (NT), and a first set reference temperature A second temperature region between (NT) and the first upper limit reference temperature (NT+diff), and a third temperature region between the first set reference temperature (NT) and the first lower limit reference temperature (NT-diff), At least one temperature region among the fourth temperature regions lower than the first lower limit reference temperature NT-diff may be included.
이때, 상기 냉력은 상기 높은 온도 범위의 온도 영역에 해당될 수록 더욱 높게 결정되도록 이루어질 수 있다.In this case, the cooling power may be determined to be higher as it corresponds to a temperature region of the high temperature range.
예컨대, 상기 제어부(70)는, 제1저장실(12) 내의 온도가 제2온도 영역보다 제1온도 영역에 속할 경우 더욱 높은 냉력이 제공되게 제어하고, 제1저장실(12) 내의 온도가 제3온도 영역보다 제2온도 영역에 속할 경우 더욱 높은 냉력이 제공되게 제어하며, 제1저장실(12) 내의 온도가 제4온도 영역보다 제3온도 영역에 속할 경우 더욱 높은 냉력이 제공되게 제어하도록 이루어질 수 있다.For example, the controller 70 controls to provide a higher cooling power when the temperature in the first storage chamber 12 belongs to the first temperature region than the second temperature region, and the temperature in the first storage chamber 12 is the third temperature region. When belonging to the second temperature region than the temperature region, higher cooling power is controlled to be provided, and when the temperature in the first storage chamber 12 belongs to the third temperature region than the fourth temperature region, it can be controlled to provide a higher cooling power. have.
물론, 제어부(70)는 상기 제1저장실(12) 내의 온도가 제4온도 영역에 도달하면 부하 대응운전이 종료되도록 제어할 수 있다.Of course, the control unit 70 may control the load response operation to end when the temperature in the first storage chamber 12 reaches the fourth temperature range.
즉, 제1저장실(12) 내의 온도가 제4온도 영역에 도달하였음에도 불구하고 계속적인 부하 대응운전이 수행된다면 과냉이 발생되어 해당 제1저장실(12) 내의 저장물을 오히려 손상시키는 문제가 야기될 수 있다. 이를 고려한다면 제1저장실(12) 내의 온도가 제1하한 기준온도(NT-diff)보다 낮은 온도에 도달될 경우 부하 대응운전을 종료하고 일반 저장운전으로 전환되도록 함이 바람직하다.That is, if the load response operation is continuously performed despite the temperature in the first storage chamber 12 reaching the fourth temperature range, overcooling occurs and the storage in the first storage chamber 12 is damaged. can Considering this, when the temperature in the first storage compartment 12 reaches a temperature lower than the first lower limit reference temperature NT-diff, it is preferable to end the load response operation and switch to the general storage operation.
또한, 상기 제어부(70)는 부하 대응운전의 수행되는 도중 제1저장실(12) 내부 온도를 지속적으로 확인하고, 이렇게 확인된 온도에 따라 냉력을 가변하도록 제어할 수 있다.In addition, the control unit 70 may continuously check the internal temperature of the first storage chamber 12 while the load response operation is being performed, and control the cooling power to vary according to the checked temperature.
즉, 부하 대응운전으로 인해 제1저장실(12) 내부 온도는 점차 내려가게 되는데, 이러한 온도가 부하 대응운전의 종료 온도에 점차 수렴할 수록(저장실 내부의 온도가 낮아질 수록) 냉력을 점차 낮아지게 제어함으로써 과도한 온도 하락 및 이로 인한 전력소모를 방지할 수 있도록 한 것이다.That is, the internal temperature of the first storage chamber 12 gradually decreases due to the load response operation. As this temperature gradually converges to the end temperature of the load response operation (the lower the temperature inside the storage chamber), the cooling power is gradually lowered. This is to prevent excessive temperature drop and power consumption due to this.
이러한 제어부(70)에 의한 냉력의 가변 제어에 의해 부하 대응운전의 종료시 관성으로 인한 추가 온도 하락 정도를 최소화할 수 있고, 이로 인해 소비효율이 개선될 수 있다.By the variable control of the cooling power by the controller 70, the degree of additional temperature drop due to inertia at the end of the load response operation can be minimized, and thus consumption efficiency can be improved.
물론, 상기 제어부(70)는 부하 대응운전의 운전 진행시간에 따라 냉력이 가변되도록 제어할 수도 있다. 즉, 부하 대응운전이 진행될 수록 점차 냉력이 줄어들게 가변 제어함으로써 부하 대응운전에 의한 제1저장실(12) 내부 온도가 종료 온도보다 과도하게 하락됨이 방지될 수 있다.Of course, the control unit 70 may control the cooling power to be variable according to the driving duration of the load response operation. That is, by variably controlling the cooling power to gradually decrease as the load response operation progresses, it is possible to prevent the internal temperature of the first storage chamber 12 from excessively lowering than the end temperature due to the load response operation.
또한, 상기 제어부(70)는, 부하 대응운전이 수행되는 도중 제1도어(12a)가 재개방될 경우, 최대 부하로 냉력조절수단을 동작하면서 부하 대응운전이 수행되도록 제어할 수 있다. 즉, 부하 대응운전 도중 제1도어(12a)가 재개방되면 운전 시작조건의 만족 여부에 상관없이 제1도어(12a)가 폐쇄되면 최대 냉력이 제공될 수 있도록 한 것이다.Also, when the first door 12a is reopened while the load response operation is being performed, the control unit 70 may control the load response operation to be performed while operating the cooling power control means at the maximum load. That is, when the first door 12a is reopened during the load response operation, the maximum cooling power can be provided when the first door 12a is closed regardless of whether the driving start condition is satisfied.
이때, 상기 최대 부하는, 일반 저장운전시의 냉력보다는 높은 냉력이 제공될 수 있을 정도의 부하이다.In this case, the maximum load is a load sufficient to provide a higher cooling power than that during a general storage operation.
물론, 상기한 최대 냉력의 제공은 부하 대응운전의 재수행이 진행된 후 일정 시간 경과시까지 수행되도록 하며, 그 이후에는 제1저장실(12) 내부의 온도에 따라 냉력이 가변되게 제어함이 더욱 바람직하다.Of course, the provision of the above-described maximum cooling power is performed until a predetermined time elapses after the re-performation of the load response operation is performed, and after that, it is more preferable to control the cooling power to be variable according to the temperature inside the first storage compartment 12 . do.
또한, 상기 제어부(70)는, 부하 대응운전이 수행되는 도중 제상운전의 투입 조건이 만족된 경우, 부하 대응운전은 중단됨과 더불어 제상운전을 위한 제상전 운전이 우선적으로 수행되도록 제어할 수 있다.In addition, when the input condition of the defrost operation is satisfied while the load response operation is being performed, the control unit 70 may control the load response operation to be stopped and the operation before the defrost for the defrost operation to be preferentially performed.
특히, 상기 제상전 운전은 냉력조절수단이 최대 부하로 동작되도록 제어하면서 제1저장실(12) 내부 온도가 제1하한 기준온도(NT-diff)보다 낮은 온도의 제상 수행온도에 도달할 때까지 냉각되도록 제어될 수 있다.In particular, the operation before the defrost is cooled until the internal temperature of the first storage chamber 12 reaches a defrosting performance temperature lower than the first lower limit reference temperature (NT-diff) while controlling the cooling power control means to operate at the maximum load. can be controlled as much as possible.
이러한 제어부(70)의 제어는 고내 온도가 제1상한 기준온도(NT+diff) 혹은, 그 이상의 온도 영역일 경우라도 제상 수행온도에 도달할 때까지의 시간을 최소화할 수 있도록 하기 위함이다.The control of the controller 70 is to minimize the time until the defrosting operation temperature is reached even when the internal temperature of the refrigerator is the first upper limit reference temperature (NT+diff) or higher.
이와 함께, 상기 제어부(70)는, 상기 제상전 운전이 종료된 후 제상운전을 수행하고, 상기 제상운전이 완료된 후 최대 부하로 냉력조절수단을 동작한 후 제1저장실(12) 내부 온도가 제1설정 기준온도(NT)보다 낮은 온도에 도달할 때까지 냉각되도록 제어할 수 있다.At the same time, the control unit 70 performs a defrost operation after the operation before the defrost is finished, and after the defrost operation is completed, the cooling power control means is operated at the maximum load, and then the temperature inside the first storage chamber 12 is controlled. 1 It can be controlled to cool until it reaches a temperature lower than the set reference temperature (NT).
다음은, 전술된 제1실시예에 따른 냉장고의 일반 저장운전과 부하 대응운전을 위한 제어방법을 첨부된 도 6 및 도 7의 순서도를 참조하여 더욱 구체적으로 설명하도록 한다.Next, a control method for a general storage operation and a load response operation of the refrigerator according to the first embodiment described above will be described in more detail with reference to the accompanying flowcharts of FIGS. 6 and 7 .
설명에 앞서, 각 운전은 각 온도센서(1a,1b)의 센싱값을 제공받고 냉동시스템을 운전하는 제어부(70)의 제어에 의해 수행되며, 아래의 제1실시예에서는 제1저장실(12)에 대한 각각의 운전임을 그 예로 한다.Prior to the description, each operation is performed by the control of the control unit 70 which receives the sensing values of the respective temperature sensors 1a and 1b and operates the refrigeration system, and in the first embodiment below, the first storage compartment 12 For example, each operation for .
먼저, 첨부된 도 6의 순서도와 같이 제어부(70)는 실내온도 및 제1저장실(12) 내의 고내 온도에 대한 센싱값을 지속적으로 취득(S110)한다.First, as shown in the flowchart of FIG. 6 , the control unit 70 continuously acquires sensing values for the indoor temperature and the temperature inside the refrigerator in the first storage room 12 ( S110 ).
상기 고내 온도는 제1저장실(12)에 위치된 제2온도센서(1b)에 의해 측정되며, 이렇게 측정된 고내 온도는 제어부(70)로 제공된다.The internal temperature of the refrigerator is measured by the second temperature sensor 1b located in the first storage compartment 12 , and the measured internal temperature is provided to the controller 70 .
그리고, 상기 제어부(70)는 상기 취득된 고내 온도를 토대로 냉력조절수단을 제어하면서 제1저장실(12)에 대한 일반 저장운전을 지속적으로 수행(S120)한다.Then, the control unit 70 continuously performs the general storage operation for the first storage compartment 12 while controlling the cooling power control means based on the acquired internal temperature (S120).
상기 일반 저장운전은 제1설정 기준온도(NT)를 기준으로 만족 영역의 온도 범위(제1상한 기준온도(NT+diff) 및 제1하한 기준온도(NT-diff) 사이의 온도 범위)를 유지하도록 이루어진다.The general storage operation maintains the temperature range of the satisfactory region (the temperature range between the first upper limit reference temperature (NT+diff) and the first lower limit reference temperature (NT-diff)) based on the first set reference temperature (NT) made to do
이때, 상기 일반 저장운전시 냉동시스템을 이루는 압축기(60)는 부하 대응운전에 비해 낮은 출력으로 동작되도록 제어된다.In this case, the compressor 60 constituting the refrigeration system during the general storage operation is controlled to operate at a lower output compared to the load corresponding operation.
이와 함께, 상기 일반 저장운전은 제1상한 기준온도(NT+diff)에 도달하면 압축기(60)가 운전되면서 냉기 공급을 증가시킴과 더불어 제1하한 기준온도(NT-diff)에 도달하기 전에 압축기(60)의 운전이 정지되면서 냉기 공급을 감소하는 제어를 지속적으로 반복함으로써 진행된다.In addition, in the general storage operation, when the first upper limit reference temperature (NT+diff) is reached, the compressor 60 is operated while increasing the supply of cold air, and the compressor before reaching the first lower limit reference temperature (NT-diff) While the operation of (60) is stopped, it proceeds by continuously repeating the control to reduce the cold air supply.
물론, 상기 압축기(60)는 상기 제1상한 기준온도(NT+diff)에 도달하기 전에 운전되도록 제어될 수도 있고, 상기 제1상한 기준온도(NT+diff)를 초과한 불만 영역에 도달할 때 운전되도록 제어될 수도 있다.Of course, the compressor 60 may be controlled to operate before reaching the first upper limit reference temperature (NT+diff), and when reaching the dissatisfaction region exceeding the first upper limit reference temperature (NT+diff) It can also be controlled to be driven.
또한, 전술된 일반 저장운전이 수행되는 도중 제어부(70)는 제1저장실(12) 내의 고내 온도정보에 기초하여 부하 대응운전의 운전 시작조건이 만족되었는지의 여부를 지속적으로 판단한다.In addition, while the above-described general storage operation is being performed, the control unit 70 continuously determines whether the operation start condition of the load response operation is satisfied based on the temperature information inside the first storage chamber 12 .
이러한 운전 시작조건은 제1도어(12a)가 개방되는 조건이 선행된다.The driving start condition is preceded by a condition in which the first door 12a is opened.
즉, 제1저장실(12)을 개폐하는 제1도어(12a)의 개방이 이루어질 경우에만 부하 대응운전의 운전 시작조건에 대한 판단이 이루어지며, 제1도어(12a)가 개방되지 않은 상황에서는 전술된 일반 저장운전을 반복하여 수행한다.That is, only when the first door 12a for opening and closing the first storage compartment 12 is opened, the operation start condition of the load response operation is determined, and in a situation where the first door 12a is not opened, Repeated normal storage operation is performed.
그리고, 상기 일반 저장운전이 수행되는 도중 제1도어(12a)가 개방됨이 확인되면, 제어부(70)는 제2온도센서(1b)로부터 고내 온도에 대한 온도값을 제공(S130)받는다. 이때, 상기 고내 온도에 대한 온도값은 제1도어(12a)가 개방된 후부터 설정된 경과 시간 이내에 지속적으로 제공받을 수도 있고, 상기 설정된 경과 시간이 경과된 이후에 제공받을 수 있다.When it is confirmed that the first door 12a is opened while the general storage operation is being performed, the control unit 70 receives a temperature value for the internal temperature of the refrigerator from the second temperature sensor 1b (S130). In this case, the temperature value for the internal temperature may be continuously provided within a set elapsed time after the first door 12a is opened, or may be provided after the set elapsed time has elapsed.
계속해서, 상기 제어부(70)는 상기 제공받은 고내 온도가 제1설정 기준온도(NT)를 기준으로 설정된 만족 영역인지 혹은, 불만 영역인지를 확인한다.Subsequently, the control unit 70 checks whether the received internal temperature is a satisfactory region or a dissatisfaction region set based on the first set reference temperature NT.
이러한 확인 결과, 상기 고내 온도가 불만 영역(제1상한 기준온도(NT+diff)를 벗어난 영역)에 속함으로 확인된다면 투입 조건온도(Δt)나 제1도어(12a)가 개방된 후부터의 경과 시간에 상관없이 운전 시작조건이 만족된 것으로 판단(S140)한다.As a result of this check, if it is confirmed that the internal temperature of the refrigerator belongs to the dissatisfaction region (the region outside the first upper limit reference temperature (NT+diff)), the input condition temperature Δt or the elapsed time from the opening of the first door 12a Regardless, it is determined that the driving start condition is satisfied (S140).
반면, 상기 고내 온도가 만족 영역(제1상한 기준온도(NT+diff) 이내의 영역)에 속함으로 확인되면, 카운터(71)에 의해 상기 제1도어(12a)가 개방된 후로부터 카운팅되는 경과 시간을 확인한다.On the other hand, if it is confirmed that the internal temperature of the refrigerator belongs to the satisfactory region (the region within the first upper limit reference temperature (NT+diff)), the counted elapsed time from after the first door 12a is opened by the counter 71 Check the time.
그리고, 이러한 경과 시간이 카운팅되는 도중 혹은, 카운팅 시간이 경과되면 고내 온도의 상승폭을 확인하여 상기 상승폭이 미리 설정된 투입 조건온도(Δt) 이상인지를 확인한다.Then, while the elapsed time is being counted or when the counting time has elapsed, the increase in the internal temperature is checked to determine whether the increase is equal to or greater than the preset input condition temperature (Δt).
즉, 고내 온도의 상승폭이 투입 조건온도(Δt)에 비해 크거나 같다면 운전 시작조건이 만족된 것으로 판단(S140)하고, 고내 온도의 상승폭이 투입 조건온도(Δt)에 비해 작다면 운전 시작조건이 만족되지 않은 것으로 판단한다.That is, if the increase in the internal temperature is greater than or equal to the input condition temperature (Δt), it is determined that the operation start condition is satisfied (S140). judged to be unsatisfactory.
예컨대, 제1도어(12a)의 개방 후 5분(경과 시간)이 경과되었을 때의 고내 온도 상승폭이 2℃(투입 조건온도)를 초과하면 운전 시작조건이 만족된 것으로 판단하고, 2℃를 초과하지 않는다면 운전 시작조건이 만족되지 않은 것으로 판단하는 것이다.For example, if the temperature increase in the refrigerator exceeds 2°C (input condition temperature) when 5 minutes (elapsed time) have elapsed after opening the first door 12a, it is determined that the operation start condition is satisfied and exceeds 2°C. If not, it is judged that the driving start condition is not satisfied.
그리고, 상기 운전 시작조건이 만족(고내 온도가 불만 영역이거나, 만족 영역이더라도 고내 온도 상승폭이 투입 조건온도(Δt)에 비해 크거나 같을 경우)된 것으로 판단되면 제어부(70)는 이 판단 결과에 따라 부하 대응운전을 수행(S150)하도록 제어하게 된다.And, when it is determined that the operation start condition is satisfied (when the temperature inside the refrigerator is a dissatisfaction area or, even in a satisfactory area, the temperature increase in the refrigerator is greater than or equal to the input condition temperature (Δt)), the control unit 70 according to the determination result It is controlled to perform the load response operation (S150).
상기 부하 대응운전은 제1도어(12a)가 폐쇄된 상태에서 수행될 수 있다.The load response operation may be performed while the first door 12a is closed.
즉, 상기 제1도어(12a)가 폐쇄되기 전에 부하 대응운전에 대한 운전 시작조건이 만족되었음으로 판단될 경우에는 상기 제1도어(12a)가 폐쇄된 직후 부하 대응운전을 수행할 수 있고, 상기 제1도어(12a)가 폐쇄된 후 부하 대응운전에 대한 운전 시작조건이 만족되었음으로 판단된다면 상기 만족 여부의 판단이 이루어진 직후에 부하 대응운전을 수행할 수 있다.That is, if it is determined that the driving start condition for the load response operation is satisfied before the first door 12a is closed, the load response operation may be performed immediately after the first door 12a is closed, and If it is determined that the driving start condition for the load response operation is satisfied after the first door 12a is closed, the load response operation may be performed immediately after the satisfaction is determined.
특히, 첨부된 도 7의 순서도와 같이 상기 부하 대응운전(S150)은 제1저장실(12) 내부의 온도에 따라 결정된 냉력으로 수행된다. 즉, 제어부(70)는 제1도어(12a)의 개방시에 부하 대응운전을 위한 운전 시작조건이 만족되면 제1저장실(12) 내부의 온도를 확인(S151)한 후 확인된 온도에 따라 부하 대응운전의 수행을 위한 냉력을 결정(S152)하고, 상기 제1도어(12a)가 폐쇄되면 상기 결정된 냉력에 따라 냉력조절수단(압축기 혹은, 제1냉각팬)의 부하를 제어(S153)하면서 부하 대응운전을 수행하는 것이다.In particular, as shown in the flow chart of FIG. 7 , the load response operation S150 is performed with a cooling power determined according to the internal temperature of the first storage compartment 12 . That is, when the operation start condition for the load response operation is satisfied when the first door 12a is opened, the control unit 70 checks the temperature inside the first storage compartment 12 ( S151 ) and then loads the load according to the checked temperature ( S151 ). The cooling power for performing the corresponding operation is determined (S152), and when the first door 12a is closed, the load of the cooling power adjusting means (compressor or the first cooling fan) is controlled (S153) according to the determined cooling power. It is a response operation.
이때, 상기 냉력은 상기 제1저장실(12) 내의 온도 영역에 따라 달리 결정된다. 즉, 제어부(70)는 상기 제1저장실(12) 내부가 높은 온도 범위의 온도 영역에 해당될 수록 더욱 높은 냉력을 제공하도록 결정한다. 반대로, 제어부(70)는 상기 제1저장실(12) 내부가 낮은 온도 범위의 온도 영역에 해당될 수록 더욱 낮은 냉력을 제공하도록 결정한다.In this case, the cooling power is determined differently depending on the temperature region in the first storage chamber 12 . That is, the controller 70 determines to provide a higher cooling power as the interior of the first storage chamber 12 corresponds to a temperature region of a high temperature range. Conversely, the controller 70 determines to provide a lower cooling power as the interior of the first storage chamber 12 corresponds to a temperature region of a low temperature range.
그리고, 상기 결정된 냉력으로 제어부(70)에 의한 냉력조절수단(압축기 혹은, 제1냉각팬)의 부하 제어가 수행되는 도중에는 제1저장실(12) 내부 온도가 지속적으로 확인(S154)되고, 상기 제어부(70)는 상기 확인된 온도에 따라 냉력을 재결정(S155)하여 이렇게 재결정된 냉력에 따라 상기 냉력조절수단의 부하를 가변 제어(S156)한다.And, while the load control of the cooling power control means (compressor or the first cooling fan) by the control unit 70 with the determined cooling power is performed, the temperature inside the first storage chamber 12 is continuously checked (S154), and the control unit In step 70, the cooling power is recrystallized according to the confirmed temperature (S155), and the load of the cooling power adjusting means is variably controlled (S156) according to the recrystallized cooling power.
즉, 부하 대응운전으로 인해 제1저장실(12) 내부 온도는 점차 내려가며, 이러한 온도에 따라 냉력을 점차 낮아지게 제어하는 것이다. 이로써 과도한 온도 하락 및 이로 인한 전력소모를 방지할 수 있다.That is, the internal temperature of the first storage chamber 12 gradually decreases due to the load response operation, and the cooling power is controlled to gradually decrease according to the temperature. In this way, excessive temperature drop and power consumption due to this can be prevented.
물론, 제1도어(12a)의 개방시 부하 대응운전의 운전 시작조건이 만족되면, 제1도어(12a)가 폐쇄된 후에 최대 부하로 냉력조절수단(압축기 혹은, 제1냉각팬)을 동작하면서 최대 냉력의 부하 대응운전이 수행되도록 제어한 후 부하 대응운전 중 제1저장실(12) 내부의 온도에 따라 상기 냉력이 가변되게 제어할 수도 있다.Of course, if the operation start condition of the load response operation is satisfied when the first door 12a is opened, the cooling power control means (compressor or first cooling fan) is operated at the maximum load after the first door 12a is closed. After controlling so that the load response operation of the maximum cooling power is performed, the cooling power may be controlled to be variable according to the temperature inside the first storage chamber 12 during the load response operation.
이와 함께, 상기 제어부(70)는 제1저장실(12) 내부의 온도 변화에 상관없이 부하 대응운전의 운전 진행시간이 경과할 수록 점차 냉력이 줄어들게 가변 제어할 수도 있다.In addition, the control unit 70 may variably control the cooling power to gradually decrease as the operation progressing time of the load response operation elapses regardless of the temperature change inside the first storage chamber 12 .
만일, 상기 부하 대응운전이 수행되는 도중 제1도어(12a)가 재개방될 경우, 제어부(70)는 최대 부하로 냉력조절수단(압축기 혹은, 제1냉각팬)을 동작하면서 부하 대응운전이 수행되도록 제어하게 된다. 이로써 부하 대응운전의 운전 시작조건을 재확인하는데 소요되는 시간을 줄일 수 있게 된다.If the first door 12a is reopened while the load response operation is being performed, the control unit 70 operates the cooling power control means (compressor or first cooling fan) at the maximum load, and the load response operation is performed. to be controlled as much as possible. Accordingly, it is possible to reduce the time required for reconfirming the operation start condition of the load response operation.
상기한 최대 냉력의 제공은 부하 대응운전의 재수행이 진행된 후 일정 시간 경과시까지 수행되며, 이러한 시간이 경과되면 상기 제1저장실(12) 내부의 온도에 따라 냉력이 가변되게 제어된다.The provision of the maximum cooling power is performed until a predetermined time elapses after the re-performation of the load response operation is performed, and when this time elapses, the cooling power is controlled to be variable according to the temperature inside the first storage chamber 12 .
이와 함께, 상기 부하 대응운전이 수행되는 도중 제상운전의 투입 조건이 만족될 경우 부하 대응운전은 중단되고 제상운전을 위한 제상전 운전이 우선적으로 수행되도록 제어된다.In addition, when the input condition of the defrost operation is satisfied while the load response operation is being performed, the load response operation is stopped and the operation before the defrost for the defrost operation is controlled to be preferentially performed.
즉, 제어부(70)는 냉력조절수단(압축기 혹은, 제1냉각팬)이 최대 부하로 동작되도록 제어하면서 제1저장실(12) 내부 온도가 제1하한 기준온도(NT-diff)보다 낮은 온도의 제상 수행온도에 도달할 때까지 냉각되도록 운전하게 된다. 이에 따라 고내 온도가 제1상한 기준온도(NT+diff) 혹은, 그 이상의 온도 영역일 경우라도 제상 수행온도에 도달할 때까지의 시간이 최소화될 수 있다.That is, the control unit 70 controls the cooling power control means (compressor or the first cooling fan) to operate at the maximum load while the internal temperature of the first storage chamber 12 is lower than the first lower limit reference temperature NT-diff. It is operated to cool until it reaches the defrost operation temperature. Accordingly, even when the internal temperature of the refrigerator is the first upper limit reference temperature (NT+diff) or higher, the time until the defrosting operation temperature is reached can be minimized.
그리고, 상기 제상전 운전이 종료되면 제어부(70)는 제상운전을 수행한다. 상기 제상운전은 열기를 제공하여 제1증발기(21)를 가열함과 더불어 제1냉각팬(31)의 동작을 통해 공기가 제1증발기(21)를 지나도록 송풍시킴으로써 상기 제1증발기(21)의 표면에 착상된 성에를 제상하게 된다.And, when the operation before the defrost is finished, the control unit 70 performs a defrost operation. In the defrosting operation, the first evaporator 21 is heated by providing hot air, and air is blown through the first evaporator 21 through the operation of the first cooling fan 31 to pass the first evaporator 21 . It will defrost the frost that has been implanted on the surface of
계속해서, 상기 제상운전이 완료되면 제어부(70)는 열기 제공을 중단함과 더불어 최대 부하로 냉력조절수단(압축기 및 제1냉각팬)을 동작하면서 제1저장실(12) 내부 온도가 제1설정 기준온도(NT)보다 낮은 온도에 도달할 때까지 냉각되도록 제어한다.Subsequently, when the defrosting operation is completed, the control unit 70 stops providing hot air and operates the cooling power control means (compressor and first cooling fan) at the maximum load while setting the internal temperature of the first storage compartment 12 to the first setting. It is controlled to cool until it reaches a temperature lower than the reference temperature (NT).
이후, 제어부(70)는 일반 저장운전을 수행하면서 제1저장실(12) 내부가 만족 영역의 온도 범위(제1상한 기준온도(NT+diff) 및 제1하한 기준온도(NT-diff) 사이의 온도 범위)를 유지하도록 제어한다.Thereafter, the control unit 70 performs a general storage operation, and the temperature range (the first upper limit reference temperature (NT+diff) and the first lower limit reference temperature (NT-diff) of the interior of the first storage chamber 12 is satisfied. temperature range).
물론, 전술된 일반 저장운전의 수행 도중 부하 대응운전의 운전 시작조건이 만족되지 않으면 제어부(70)는 고내 온도에 따라 상기 일반 저장운전을 계속해서 수행하도록 제어한다.Of course, if the operation start condition of the load response operation is not satisfied during the execution of the above-described general storage operation, the control unit 70 controls to continuously perform the general storage operation according to the internal temperature of the refrigerator.
한편, 본 발명의 냉장고는 전술된 제1실시예의 제어방법뿐 아니라 다양하게 방법으로 실시될 수 있다.On the other hand, the refrigerator of the present invention can be implemented in various ways as well as the control method of the first embodiment described above.
하기에서는, 이러한 냉장고의 다른 실시예에 따른 제어방법을 각각 설명하도록 한다.Hereinafter, a control method according to another embodiment of such a refrigerator will be described, respectively.
먼저, 제어부(70)에 의한 제2실시예의 제어방법에 대하여 첨부된 도 8 내지 도 11을 참조하여 더욱 구체적으로 설명하도록 한다.First, the control method of the second embodiment by the control unit 70 will be described in more detail with reference to the accompanying FIGS. 8 to 11 .
상기 제2실시예의 제어방법에 따른 운전 시작조건은 고내 온도를 확인(S210)하고, 이 고내 온도에 따른 일반 저장운전을 수행(S220)하는 과정과, 일반 저장운전 도중 제1도어(12a)가 개방될 경우 고내 온도를 확인(S230)하는 과정이 포함될 수 있다.The operation start condition according to the control method of the second embodiment is the process of confirming the internal temperature of the refrigerator (S210), performing a general storage operation according to the internal temperature (S220), and the first door 12a during the general storage operation. When it is opened, the process of checking the temperature inside the refrigerator (S230) may be included.
또한, 제2실시예의 제어방법에 따른 운전 시작조건은, 고내 온도에 따라 서로 다른 투입 조건온도(Δt1,Δt2)가 각각 결정되는 과정이 포함될 수 있다.In addition, the operation start condition according to the control method of the second embodiment may include a process in which different input condition temperatures Δt1 and Δt2 are respectively determined according to the temperature inside the refrigerator.
즉, 종래 기술의 경우 도어(12a)가 개방된 시점에 제1저장실(12)의 온도에 상관없이 항상 동일한 투입 조건온도(온도 상승폭)를 기준으로 운전 시작조건의 만족 여부를 판단한 반면, 본 발명은 도어(12a)가 개방된 시점의 제1저장실(12) 온도에 따라 상기 투입 조건온도(Δt)가 서로 다른 범위로 설정되도록 한 것이다.That is, in the case of the prior art, it is determined whether or not the operation start condition is satisfied based on the same input condition temperature (temperature increase width) regardless of the temperature of the first storage compartment 12 at the time the door 12a is opened, whereas the present invention is such that the input condition temperature Δt is set in different ranges depending on the temperature of the first storage compartment 12 at the time when the door 12a is opened.
이러한 투입 조건온도(Δt)는, 상기 도어(12a)가 개방된 시점에 상기 제1저장실(12)의 온도가 설정 기준온도(NT)를 기준으로 설정된 상한 기준온도(NT+diff)보다 높은 경우(불만 영역일 경우)와 상기 상한 기준온도(NT+diff)보다 낮은 경우(만족 영역일 경우)가 서로 다르도록 이루어질 수 있다.When the input condition temperature Δt is higher than the upper limit reference temperature (NT+diff) set based on the set reference temperature (NT) at the time the door 12a is opened, the temperature of the first storage chamber 12 is higher than the input condition temperature Δt (In the case of a dissatisfied region) and a case lower than the upper limit reference temperature (NT+diff) (in the case of a satisfactory region) may be different from each other.
즉, 고내 온도가 불만 영역일 경우에는 제1투입 조건온도(Δt1)로 결정되고, 고내 온도가 만족 영역일 경우에는 제2투입 조건온도(Δt2)로 결정된다.That is, when the internal temperature of the refrigerator is in the unsatisfactory region, it is determined as the first input condition temperature Δt1, and when the internal temperature is in the satisfactory region, it is determined as the second input condition temperature Δt2.
특히, 상기 두 투입 조건온도(Δt1,Δt2)는, 상기 도어(12a)가 개방된 시점에 상기 제1저장실(12)의 온도가 높은 경우가 상기 도어(12a)가 개방된 시점에 상기 제1저장실(12)의 온도가 낮은 경우보다 낮은 온도(혹은, 온도 범위)로 설정될 수 있다.In particular, the two input condition temperatures Δt1 and Δt2 are the first when the temperature of the first storage compartment 12 is high at the time the door 12a is opened, and the first when the door 12a is opened. It may be set to a lower temperature (or temperature range) than when the temperature of the storage chamber 12 is low.
즉, 도어(12a)가 개방된 시점에 제1저장실(12)의 온도가 제1설정 기준온도(NT)를 기준으로 설정된 제1상한 기준온도(NT+diff)보다 높은 경우의 제1투입 조건온도(Δt1)가 제1상한 기준온도(NT+diff)보다 낮은 경우의 제2투입 조건온도(Δt2) 보다 낮은 온도(혹은, 온도 범위)로 설정될 수 있다.That is, the first input condition when the temperature of the first storage compartment 12 is higher than the first upper limit reference temperature (NT+diff) set based on the first set reference temperature (NT) at the time the door (12a) is opened When the temperature Δt1 is lower than the first upper limit reference temperature NT+diff, it may be set to a temperature (or a temperature range) lower than the second input condition temperature Δt2 .
물론, 도어(12a)가 개방된 시점에 상기 제1저장실(12)의 온도가 제1설정 기준온도(NT)를 기준으로 설정된 제1상한 기준온도(NT+diff)보다 낮은 경우의 제2투입 조건온도(Δt2)가 상기 상한 기준온도(NT+diff)보다 높은 경우의 제1투입 조건온도(Δt1) 보다 높은 온도(혹은, 온도 범위)로 설정되도록 이루어질 수도 있다.Of course, the second input when the temperature of the first storage compartment 12 is lower than the first upper limit reference temperature (NT+diff) set based on the first set reference temperature (NT) at the time the door 12a is opened When the condition temperature Δt2 is higher than the upper limit reference temperature NT+diff, the first input condition temperature Δt1 may be set to a higher temperature (or temperature range).
하기에서는, 전술된 제2실시예에 따른 냉장고의 부하 대응운전을 위한 제어방법을 첨부된 도 7의 순서도 및 도 8과 도 9의 그래프를 참조하여 더욱 구체적으로 설명하도록 한다.Hereinafter, the control method for the load response operation of the refrigerator according to the second embodiment will be described in more detail with reference to the flowchart of FIG. 7 and the graphs of FIGS. 8 and 9 .
먼저, 제어부(70)는 고내 온도를 지속적으로 취득하고, 이 취득된 고내 온도를 토대로 냉동시스템을 제어하면서 제1저장실(12)에 대한 일반 저장운전을 지속적으로 수행한다.First, the controller 70 continuously acquires the internal temperature of the refrigerator, and continuously performs a general storage operation for the first storage compartment 12 while controlling the refrigeration system based on the acquired internal temperature.
이로써, 제1저장실(12)은 제1설정 기준온도(NT)를 기준으로 만족 영역의 온도 범위(제1상한 기준온도(NT+diff) 및 제1하한 기준온도(NT-diff) 사이의 온도 범위)를 유지하게 된다.Accordingly, the first storage compartment 12 is the temperature range of the satisfaction region based on the first set reference temperature NT (the temperature between the first upper limit reference temperature NT+diff and the first lower limit reference temperature NT-diff). range) is maintained.
그리고, 전술된 일반 저장운전이 수행되는 도중 제어부(70)는 제1저장실(12) 내의 고내 온도정보에 기초하여 부하 대응운전의 운전 시작조건이 만족되었는지의 여부를 지속적으로 판단한다.And, while the above-described general storage operation is being performed, the control unit 70 continuously determines whether the operation start condition of the load response operation is satisfied based on the temperature information inside the first storage chamber 12 .
이러한 운전 시작조건은 제1도어(12a)가 개방되는 조건이 선행된다.The driving start condition is preceded by a condition in which the first door 12a is opened.
즉, 제1저장실(12)을 개폐하는 제1도어(12a)의 개방이 이루어질 경우에만 부하 대응운전의 운전 시작조건에 대한 판단이 이루어지며, 제1도어(12a)가 개방되지 않은 상황에서는 전술된 일반 저장운전을 반복하여 수행한다.That is, only when the first door 12a that opens and closes the first storage compartment 12 is opened, the operation start condition of the load response operation is determined, and in a situation where the first door 12a is not opened, Repeated general storage operation is performed.
그리고, 상기 일반 저장운전이 수행되는 도중 제1도어(12a)가 개방됨이 확인되면, 제어부(70)는 제2온도센서(1b)로부터 고내 온도에 대한 온도값을 제공받는다.And, when it is confirmed that the first door 12a is opened while the general storage operation is being performed, the controller 70 receives a temperature value for the internal temperature of the refrigerator from the second temperature sensor 1b.
계속해서, 상기 제어부(70)는 상기 제공받은 고내 온도가 제1설정 기준온도(NT)를 기준으로 설정된 만족 영역인지 혹은, 불만 영역인지를 확인하고, 이를 토대로 투입 조건온도(Δt)를 결정한다.Subsequently, the control unit 70 checks whether the received internal temperature is a satisfactory region or a dissatisfaction region set based on the first set reference temperature NT, and determines the input condition temperature Δt based on this .
즉, 고내 온도가 불만 영역일 경우에는 제1투입 조건온도(Δt1)로 결정(S241)되고, 고내 온도가 만족 영역일 경우에는 제2투입 조건온도(Δt2)로 결정(S242)된다. 이때, 상기 제1투입 조건온도(Δt1)는 상기 제2투입 조건온도(Δt2) 보다 낮은 온도(혹은, 온도 범위)로 설정될 수 있다.That is, when the internal temperature of the refrigerator is the unsatisfactory region, the first input condition temperature Δt1 is determined (S241), and when the internal temperature is the satisfactory region, the second input condition temperature Δt2 is determined (S242). In this case, the first input condition temperature Δt1 may be set to a temperature (or a temperature range) lower than the second input condition temperature Δt2 .
그리고, 상기한 과정에 의해 투입 조건온도(Δt1 혹은, Δt2)가 결정되면 도어(12a)가 개방된 이후부터의 경과 시간을 카운터(71)를 이용하여 카운팅한다.Then, when the input condition temperature (Δt1 or Δt2) is determined by the above process, the elapsed time from when the door 12a is opened is counted using the counter 71 .
이때, 상기 경과 시간은 온도 상승을 정확히 인지할 수 있으면서도 이렇게 인지된 온도 상승값이 유효한 값을 얻을 정도의 시간으로 설정될 수 있으며, 통상 5분이 될 수 있다.In this case, the elapsed time may be set to a time sufficient to accurately recognize the temperature increase and the recognized temperature increase to obtain an effective value, and may be usually 5 minutes.
그리고, 설정된 경과 시간이 경과되면 제어부(70)는 해당 시점의 제1저장실(12)에 대한 고내 온도를 제2온도센서(1b)로부터 재차적으로 제공받는다.And, when the set elapsed time has elapsed, the control unit 70 receives the internal temperature of the first storage compartment 12 at the time point again from the second temperature sensor 1b.
이후, 상기 제공받은 고내 온도가 상기 투입 조건온도(Δt1 혹은, Δt2) 이상 상승되었음이 확인된다면 부하 대응운전의 운전 시작조건을 만족한 것으로 판단한다.Thereafter, if it is confirmed that the received internal temperature of the refrigerator has increased by more than the input condition temperature (Δt1 or Δt2), it is determined that the operation start condition of the load response operation is satisfied.
즉, 첨부된 도 9와 같이 도어(12a) 개방시 고내 온도가 불만 영역일 경우 투입 조건온도로 설정된 Δt1 이상 상승되면 부하 대응운전의 운전 시작조건을 만족한 것으로 판단하고, 첨부된 도 10과 같이 도어(12a) 개방시 고내 온도가 만족 영역일 경우 투입 조건온도로 설정된 Δt2 이상 상승되면 부하 대응운전의 운전 시작조건을 만족한 것으로 판단한다.That is, when the temperature inside the refrigerator is a dissatisfaction area when the door 12a is opened as shown in FIG. 9, if the temperature of the input condition rises above Δt1 set as the input condition temperature, it is determined that the operation start condition of the load response operation is satisfied, as shown in FIG. 10 When the door 12a is opened and the temperature inside the refrigerator is in the satisfactory range, it is determined that the operation start condition of the load response operation is satisfied if the temperature Δt2 or more set as the input condition temperature rises.
이때, 상기한 운전 시작조건에 대한 판단은 도어(12a)의 개방 시점으로부터 상기 설정 경과시간 이내에 주기적으로 수행되거나 혹은, 상기 도어(12a)의 개방 시점으로부터 상기 설정 경과시간이 경과된 이후에 수행될 수도 있다.In this case, the determination of the driving start condition may be performed periodically within the set elapsed time from the opening time of the door 12a or after the set elapsed time has elapsed from the opening time of the door 12a. may be
그리고, 상기한 운전 시작조건의 만족 여부에 대한 판단 결과에 따라 부하 대응운전을 수행(S250)한다.Then, the load response operation is performed according to the determination result as to whether the operation start condition is satisfied (S250).
일 예로써, 제1설정 기준온도(NT)가 13℃이고, 제1상한 기준온도(NT+diff)는 23℃일 때 도어(12a)가 개방된 시점에 제1저장실(12)의 온도가 20℃일 경우에는 투입 조건온도(Δt2)가 4℃로 설정되고, 도어(12a)가 개방된 시점에 제1저장실(12)의 온도가 25℃일 경우에는 투입 조건온도(Δt1)가 2℃로 설정될 수 있다. 즉, 도어(12a)가 개방된 시점에 제1저장실(12)의 온도가 20℃일 경우 설정된 경과 시간의 조건(예컨대, 5분) 이내에 제1저장실(12)의 온도가 24℃에 도달하면 부하 대응운전을 수행하고, 도어가 개방된 시점에 저장실의 온도가 25℃일 경우 설정된 경과 시간의 조건(예컨대, 5분) 이내에 제1저장실(12)의 온도가 27℃에 도달하면 부하 대응운전을 수행한다.As an example, when the first set reference temperature NT is 13° C. and the first upper limit reference temperature NT+diff is 23° C., the temperature of the first storage compartment 12 is In the case of 20°C, the input condition temperature (Δt2) is set to 4°C, and when the temperature of the first storage chamber 12 is 25°C when the door 12a is opened, the input condition temperature (Δt1) is 2°C can be set to That is, if the temperature of the first storage compartment 12 is 20° C. at the time the door 12a is opened, the temperature of the first storage compartment 12 reaches 24° C. within the set elapsed time condition (eg, 5 minutes). If the load response operation is performed and the temperature of the storage room is 25°C when the door is opened, the load response operation is performed when the temperature of the first storage room 12 reaches 27°C within the set elapsed time condition (eg, 5 minutes) carry out
상기 부하 대응운전은 제1도어(12a)가 폐쇄된 상태에서 수행될 수 있다.The load response operation may be performed while the first door 12a is closed.
즉, 상기 제1도어(12a)가 폐쇄되기 전에 부하 대응운전에 대한 운전 시작조건이 만족되었음으로 판단될 경우에는 상기 제1도어(12a)가 폐쇄된 직후 부하 대응운전을 수행하고, 상기 제1도어(12a)가 폐쇄된 후 부하 대응운전에 대한 운전 시작조건이 만족되었음으로 판단된다면 상기 만족 여부의 판단이 이루어진 직후에 부하 대응운전을 수행한다.That is, if it is determined that the driving start condition for the load response operation is satisfied before the first door 12a is closed, the load response operation is performed immediately after the first door 12a is closed, and the first door 12a is closed. If it is determined that the driving start condition for the load response operation is satisfied after the door 12a is closed, the load response operation is performed immediately after the satisfaction is determined.
특히, 첨부된 도 11의 순서도와 같이 부하 대응운전시 제어부(70)는 제2온도센서(1b)를 통해 확인된 제1저장실(12) 내의 온도를 확인(S251)하고, 이렇게 확인된 온도에 따른 냉력을 결정(S252)한 후 이렇게 결정한 냉력을 초기 냉력으로 설정하여 냉력조절수단을 제어(S253)함으로써 부하 대응운전을 실시한다.In particular, as shown in the flowchart of FIG. 11, the control unit 70 checks the temperature in the first storage chamber 12 confirmed through the second temperature sensor 1b (S251) during the load response operation as shown in the flowchart of FIG. After determining the cooling power according to the cooling power (S252), the cooling power thus determined is set as the initial cooling power, and the cooling power control means is controlled (S253) to perform the load response operation.
그리고, 상기 부하 대응운전이 수행되는 도중에는 제1저장실(12)의 내부 온도 변화를 확인(S254)하며, 이렇게 확인된 온도에 따른 냉력을 재결정(S255)한 후 재결정된 냉력에 따라 상기 냉력조절수단의 부하를 가변 제어(S256)한다.And, while the load response operation is being performed, the internal temperature change of the first storage chamber 12 is checked (S254), and the cooling power is recrystallized according to the checked temperature (S255), and then the cooling power control means according to the recrystallized cooling power Variably control the load of (S256).
물론, 운전 진행시간에 따라 상기 냉력이 가변되게 제어될 수도 있다.Of course, the cooling power may be variably controlled according to the driving time.
이렇듯, 제어부(70)에 의한 제2시예의 운전 제어방법은 특정된 온도 상승폭만으로 운전 시작조건을 판단할 경우 야기될 수 있는 저장식품(예컨대, 신선식품 등)의 변질 등에 대한 문제를 미연에 방지할 수 있게 된다.As such, the operation control method of the second embodiment by the control unit 70 prevents in advance the problem of deterioration of stored food (eg, fresh food, etc.) be able to do
다음은, 제어부(70)에 의한 제3실시예의 제어방법에 대하여 첨부된 도 12의 순서도를 참조하여 더욱 구체적으로 설명하도록 한다.Next, the control method of the third embodiment by the control unit 70 will be described in more detail with reference to the accompanying flowchart of FIG. 12 .
상기 제3실시예의 제어방법(S3)에 따른 운전 시작조건은 고내 온도를 확인(S310)하고, 이 고내 온도에 따른 저장운전을 수행(S320)하는 과정과, 저장운전 도중 도어가 개방될 경우 고내 온도를 확인(S330)하는 과정이 포함될 수 있다.The operation start conditions according to the control method (S3) of the third embodiment are the process of checking the temperature inside the refrigerator (S310), performing a storage operation according to the temperature inside the refrigerator (S320), and when the door is opened during the storage operation, the inside of the refrigerator The process of checking the temperature (S330) may be included.
또한, 제3실시예의 제어방법에 따른 운전 시작조건은, 경과 시간을 카운팅하면서 단위 시간당 온도변화량(온도기울기)을 측정 한 후 단위시간당 온도변화량이 기준값 3보다 클 경우(온도변화량 > 기준값 3)가 포함될 수 있다. 이때 상기 기준값 3은 1보다 큰 값이 될 수 있다.In addition, the operation start condition according to the control method of the third embodiment is when the temperature change amount per unit time (temperature gradient) is measured while counting the elapsed time and the temperature change amount per unit time is greater than the reference value 3 (temperature change amount > reference value 3) may be included. In this case, the reference value 3 may be a value greater than 1.
즉, 도어(12a)가 개방된 후 단위시간당 온도변화량이 기준값 3보다 크다면 고내 온도의 급격한 증가가 이루어짐으로 인지하면서 운전 시작조건을 만족한 것으로 판단(S340)하고, 이후 시간 카운팅(S350)후 설정시간이 경과되면 부하 대응운전이 수행(S360)되도록 한 것이다.That is, if the amount of temperature change per unit time after the door 12a is opened is greater than the reference value 3, it is determined that the operation start condition is satisfied while recognizing that a rapid increase in the internal temperature is made (S340), and after counting the time (S350) When the set time elapses, the load response operation is performed (S360).
특히, 첨부된 도 13의 순서도와 같이 상기 부하 대응운전시 제어부(70)는 제2온도센서(1b)를 통해 확인된 제1저장실(12) 내의 온도를 확인(S361)하고, 이렇게 확인된 온도에 따른 냉력을 결정(S362)한 후 이렇게 결정한 냉력을 초기 냉력으로 설정하여 냉력조절수단을 제어(S363)함으로써 부하 대응운전을 실시한다.In particular, as shown in the flow chart of FIG. 13 , during the load response operation, the control unit 70 checks the temperature in the first storage chamber 12 checked through the second temperature sensor 1b ( S361 ), and the temperature confirmed in this way After determining the cooling power according to (S362), the determined cooling power is set as the initial cooling power, and the cooling power control means is controlled (S363) to perform the load response operation.
그리고, 상기 부하 대응운전이 수행되는 도중에는 제1저장실(12)의 내부 온도 변화를 확인(S364)하며, 이렇게 확인된 온도에 따른 냉력을 재결정(S365)한 후 재결정된 냉력에 따라 상기 냉력조절수단의 부하를 가변 제어(S366)한다.And, while the load response operation is being performed, a change in the internal temperature of the first storage compartment 12 is checked (S364), and the cooling power according to the checked temperature is recrystallized (S365), and then the cooling power control means according to the recrystallized cooling power. Variably control the load of (S366).
다음은, 제어부(70)에 의한 제4실시예의 제어방법에 대하여 첨부된 도 14의 순서도를 참조하여 더욱 구체적으로 설명하도록 한다.Next, the control method of the fourth embodiment by the control unit 70 will be described in more detail with reference to the accompanying flowchart of FIG. 14 .
상기 제4실시예의 제어방법에 따른 운전 시작조건은 고내 온도를 확인(S410)하고, 이 고내 온도에 따른 저장운전을 수행(S420)하는 과정과, 저장운전 도중 도어가 개방될 경우 고내 온도를 확인(S430)하는 과정이 포함될 수 있다. 이는 전술된 제1실시예의 제어방법을 통해 소개된 내용과 동일하기 때문에 반복 설명은 생략한다.The operation start condition according to the control method of the fourth embodiment is the process of checking the inside temperature (S410), performing a storage operation according to the inside temperature (S420), and checking the inside temperature when the door is opened during the storage operation (S430) may be included. Since this is the same as the content introduced through the control method of the first embodiment described above, repeated description will be omitted.
또한, 제4실시예의 제어방법(S4)에 따른 운전 시작조건은, 도어(12a)가 개방된 이후에 고내 온도가 상한 기준온도(NT+diff)를 초과한 온도로 확인되어 운전 시작조건이 만족되었음으로 판단(S440)되면, 제어부(70)는 도어(12a) 폐쇄후 경과 시간을 카운팅(S450)하여 제1기준시간에 도달될 경우에 부하 대응운전이 투입(S460)되도록 제어한다.In addition, the driving start condition according to the control method S4 of the fourth embodiment is confirmed as a temperature in which the internal temperature exceeds the upper limit reference temperature (NT+diff) after the door 12a is opened, so that the driving start condition is satisfied If it is determined (S440), the control unit 70 counts the elapsed time after closing the door 12a (S450), and controls the load response operation to be input (S460) when the first reference time is reached.
즉, 저장식품과 제1저장실(12) 내의 냉기는 서서히 열교환됨을 고려할 때 센싱값의 안정화가 이루어진 후 부하 대응운전이 시작되도록 함으로써 부하 대응운전의 종료 시점이 정확히 판단될 수 있도록 한 것이다.That is, considering that the stored food and the cold air in the first storage room 12 are gradually heat exchanged, the load response operation is started after the sensed value is stabilized, so that the end time of the load response operation can be accurately determined.
특히, 상기 도어(12a)가 개방된 이후에 고내 온도≥(NT+diff + 설정 상한온도)/2를 만족할 경우에는 상기 카운팅되는 경과 시간이 제2기준시간으로 재설정된 후 상기 카운팅된 시간이 제2기준시간에 도달될 경우에 부하 대응운전을 수행하도록 운전 시작조건이 설정될 수 있다. 이때, 상기 제2기준시간은 상기 제1기준시간에 비해 짧은 시간이 될 수 있다.In particular, when the internal temperature ≥ (NT+diff + set upper limit temperature)/2 is satisfied after the door 12a is opened, the counted time is reset after the counted elapsed time is reset to the second reference time. When the second reference time is reached, the operation start condition may be set to perform the load response operation. In this case, the second reference time may be shorter than the first reference time.
즉, 고내 온도가 고내 온도≥(NT+diff + 설정 상한온도)/2에 해당될 경우가 고내 온도<(NT+diff + 설정 상한온도)/2에 해당될 경우에 비해 더욱 높은 온도이기 때문에 더욱 짧은 시간만 카운팅한 후 부하 대응운전이 투입될 수 있도록 한 것이다.That is, the case where the internal temperature of the refrigerator is higher than the case where the internal temperature of the refrigerator is ≥(NT+diff + upper limit temperature)/2 After counting for a short time, load response operation can be put into operation.
특히, 첨부된 도 15의 순서도와 같이 상기 부하 대응운전시 제어부(70)는 제2온도센서(1b)를 통해 확인된 제1저장실(12) 내의 온도를 확인(S461)하고, 이렇게 확인된 온도에 따른 냉력을 결정(S462)한 후 이렇게 결정한 냉력을 초기 냉력으로 설정하여 냉력조절수단을 제어(S463)함으로써 부하 대응운전을 실시한다.In particular, as shown in the flow chart of FIG. 15 , during the load response operation, the control unit 70 checks the temperature in the first storage chamber 12 confirmed through the second temperature sensor 1b ( S461 ), and the temperature confirmed in this way After determining the cooling power according to (S462), the cooling power thus determined is set as the initial cooling power, and the cooling power control means is controlled (S463) to perform the load response operation.
그리고, 상기 부하 대응운전이 수행되는 도중에는 제1저장실(12)의 내부 온도 변화를 확인(S464)하며, 이렇게 확인된 온도에 따른 냉력을 재결정(S465)한 후 재결정된 냉력에 따라 상기 냉력조절수단의 부하를 가변 제어(S466)한다.And, while the load response operation is being performed, a change in the internal temperature of the first storage chamber 12 is checked (S464), and the cooling power is recrystallized according to the checked temperature (S465), and then the cooling power control means according to the recrystallized cooling power Variably control the load of (S466).
다음은, 제어부(70)에 의한 제5실시예의 제어방법에 대하여 첨부된 도 16의 순서도를 참조하여 더욱 구체적으로 설명하도록 한다.Next, the control method of the fifth embodiment by the control unit 70 will be described in more detail with reference to the accompanying flowchart of FIG. 16 .
상기 제5실시예의 제어방법(S5)에 따른 운전 시작조건은 고내 온도를 확인(S510)하고, 이 고내 온도에 따른 저장운전을 수행(S520)하는 과정과, 저장운전 도중 도어가 개방될 경우 고내 온도를 확인(S530)하는 과정이 포함될 수 있다. 이는 전술된 제1실시예의 제어방법을 통해 소개된 내용과 동일하기 때문에 반복 설명은 생략한다.The operation start condition according to the control method (S5) of the fifth embodiment is the process of checking the temperature inside the refrigerator (S510), performing a storage operation according to the temperature inside the refrigerator (S520), and when the door is opened during the storage operation, the inside of the refrigerator The process of checking the temperature (S530) may be included. Since this is the same as the content introduced through the control method of the first embodiment described above, repeated description will be omitted.
또한, 제5실시예의 제어방법에 따른 운전 시작조건은, 단위 시간당 온도 변화량에 따라 도어(12a) 폐쇄시부터 부하 대응운전이 투입되기까지의 달리 설정된 경과 시간에 도달하는 조건이 포함될 수 있다.In addition, the driving start condition according to the control method of the fifth embodiment may include a condition in which a different elapsed time from when the door 12a is closed to when the load response operation is inputted according to the amount of temperature change per unit time is reached.
즉, 고내 온도의 측정 시 해당 고내 온도가 상한 기준온도(NT+diff) 이상일 경우에는 경과 시간을 카운팅하면서 단위 시간당 온도 변화량을 측정(S540) 한 후 이 온도 변화량이 기준값 3보다 크면, 카운팅 시간이 제1설정시간을 경과할 경우 부하 대응운전이 투입(S560)되도록 한다.That is, when the internal temperature of the refrigerator is greater than the upper limit reference temperature (NT+diff), the temperature change per unit time is measured (S540) while counting the elapsed time. If this temperature change is greater than the reference value 3, the counting time is When the first set time elapses, the load response operation is input (S560).
만일, 온도 변화량이 기준값 3보다 작으면, 카운팅 시간이 제2설정시간을 경과할 경우 부하 대응운전이 투입(S570)되도록 한다.If the amount of temperature change is smaller than the reference value 3, when the counting time elapses the second set time, the load response operation is input (S570).
상기 제2설정시간은 상기 제1설정시간에 비해서는 긴 시간으로 설정된다.The second set time is set to be longer than the first set time.
상기한 제1설정시간의 경과시 부하 대응운전이 투입되도록 하는 방식은 저장식품의 신선도(혹은, 변질)를 위해 정온운전을 고려한 알고리듬이고, 상기 제2설정시간 경과시 부하 대응운전이 투입되도록 하는 방식은 소비전력을 고려한 알고리듬이다.The method in which the load response operation is input when the first set time elapses is an algorithm that considers the constant temperature operation for the freshness (or deterioration) of the stored food, and the load response operation is input when the second set time elapses The method is an algorithm that considers power consumption.
특히, 첨부된 도 17의 순서도와 같이 상기 부하 대응운전이 투입(S560,S570)되면 제어부(70)는 제2온도센서(1b)를 통해 확인된 제1저장실(12) 내의 온도를 확인(S561)하고, 이렇게 확인된 온도에 따른 냉력을 결정(S562)한 후 이렇게 결정한 냉력을 초기 냉력으로 설정하여 냉력조절수단을 제어(S563)함으로써 부하 대응운전을 실시한다.In particular, when the load response operation is input (S560, S570) as shown in the flowchart of FIG. 17, the control unit 70 checks the temperature in the first storage chamber 12 confirmed through the second temperature sensor 1b (S561) ) and, after determining (S562) the cooling power according to the thus-confirmed temperature, the determined cooling power is set as the initial cooling power, and the cooling power control means is controlled (S563) to perform the load response operation.
그리고, 상기 부하 대응운전이 수행되는 도중에는 제1저장실(12)의 내부 온도 변화를 확인(S564)하며, 이렇게 확인된 온도에 따른 냉력을 재결정(S565)한 후 재결정된 냉력에 따라 상기 냉력조절수단의 부하를 가변 제어(S566)한다.And, while the load response operation is being performed, the change in the internal temperature of the first storage chamber 12 is checked (S564), and the cooling power according to the checked temperature is recrystallized (S565), and then the cooling power control means according to the recrystallized cooling power Variably control the load of (S566).
이상에서와 같이, 본 발명의 냉장고는 제1도어(12a)가 개방되는 시점의 제1저장실(12) 내부의 온도를 고려하여 부하 대응운전의 냉력이 결정되고, 이렇게 결정된 냉력으로 부하 대응운전이 수행되도록 이루어지기 때문에 부하 대응운전의 동작 중 과도한 전력 소모를 방지할 수 있고, 이로 인한 소비전력의 향상을 이룰 수 있게 된다.As described above, in the refrigerator of the present invention, the cooling power of the load response operation is determined in consideration of the temperature inside the first storage compartment 12 at the time the first door 12a is opened, and the load response operation is performed with the determined cooling power. Since it is made to be performed, it is possible to prevent excessive power consumption during the operation of the load response operation, thereby improving power consumption.
또한, 본 발명의 냉장고는 제1도어(12a)가 개방되는 시점의 제1저장실(12) 내부의 온도 영역에 따라 냉력이 달리 결정되도록 이루어짐에 따라 정확한 부하 대응운전이 수행될 수 있게 된다.In addition, in the refrigerator of the present invention, the cooling power is determined differently according to the temperature region inside the first storage compartment 12 at the time when the first door 12a is opened, so that an accurate load response operation can be performed.
또한, 본 발명의 냉장고는 부하 대응운전이 수행되는 도중 제1저장실(12) 내부의 온도 변화에 따라 동작중 냉력이 달라지도록 제어됨에 따라 과도한 부하 대응운전으로 인한 전력 소모를 줄일 수 있게 된다.In addition, the refrigerator according to the present invention is controlled to change the cooling power during operation according to a temperature change in the first storage compartment 12 while the load response operation is being performed, thereby reducing power consumption due to the excessive load response operation.
또한, 본 발명의 냉장고는 부하 대응운전이 수행되는 도중 제상운전의 투입 조건이 만족될 경우 수행되는 제상전 운전에서 냉력조절수단이 최대 부하로 동작되도록 제어되기 때문에 고내 온도가 높은 온도 영역이더라도 제상 수행온도에 도달할 때까지의 소요 시간이 단축될 수 있다.In addition, in the refrigerator of the present invention, the cooling power control means is controlled to operate at the maximum load in the pre-defrost operation performed when the input condition of the defrost operation is satisfied while the load response operation is being performed. The time required to reach the temperature can be shortened.
또한, 본 발명의 냉장고는 부하 대응운전이 수행되는 도중에는 사용자의 필요에 의해 제1도어(12a)가 재오픈되는 경우가 발생될 경우 최대 부하로 부하 대응운전이 일정시간 수행되도록 한 후 고내 온도에 따라 냉력을 가변하면서 부하 대응운전을 수행하도록 이루어지기 때문에 전력 소모를 줄일 수 있게 된다.In addition, in the refrigerator of the present invention, when the first door 12a is reopened due to the user's need while the load response operation is being performed, the load response operation is performed at the maximum load for a certain period of time, and then the temperature inside the refrigerator is lowered. As the cooling power is varied according to the load response operation, power consumption can be reduced.

Claims (20)

  1. 저장실;storeroom;
    상기 저장실을 개폐하는 도어;a door for opening and closing the storage compartment;
    상기 저장실 내부의 온도를 측정하는 온도센서;a temperature sensor for measuring the temperature inside the storage chamber;
    냉기를 생성하는 냉기열원;a cold air heat source that generates cold air;
    부하 제어가 가능하게 구성되면서 저장실로 공급되는 냉기의 냉력을 조절하기 위한 냉력조절수단;Cooling power control means for adjusting the cooling power of the cold air supplied to the storage chamber while the load control is possible;
    상기 냉력조절수단의 부하를 제어하는 제어부;를 포함하며,Includes; a control unit for controlling the load of the cooling power control means;
    상기 제어부는,The control unit is
    도어의 개방시에 부하 대응운전의 운전 시작조건이 만족되면, 저장실 내부의 온도에 따라 부하 대응운전의 수행을 위한 냉력을 결정하고, 도어가 폐쇄된 이후에는 상기 결정된 냉력에 따라 냉력조절수단의 부하를 제어하면서 부하 대응운전을 수행하도록 이루어짐을 특징으로 하는 냉장고.When the operation start condition of the load response operation is satisfied when the door is opened, the cooling power for performing the load response operation is determined according to the temperature inside the storage room, and after the door is closed, the load of the cooling power control means is determined according to the determined cooling power Refrigerator, characterized in that it is configured to perform a load response operation while controlling the.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 제어부는,The control unit is
    상기 부하 대응운전시 냉력이 일반 저장운전시 냉력보다 높게 제어함을 특징으로 하는 냉장고.The refrigerator, characterized in that the cooling power during the load response operation is controlled to be higher than that during the general storage operation.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 냉력은,The cooling power is
    부하 대응운전의 수행 중 저장실 내부 온도에 따라 가변됨을 특징으로 하는 냉장고.A refrigerator, characterized in that it varies according to the internal temperature of the storage room during the load response operation.
  4. 제 3 항에 있어서,4. The method of claim 3,
    상기 냉력은,The cooling power is
    부하 대응운전이 수행되는 도중 저장실 내부의 온도가 낮아질 수록 더욱 낮아지게 가변 제어됨을 특징으로 하는 냉장고.Refrigerator, characterized in that the lower the temperature inside the storage chamber during the load response operation is variably controlled to become lower.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 복수의 온도 영역은,The plurality of temperature regions,
    설정 기준온도(NT)를 기준으로 설정된 상한 기준온도(NT+diff)보다 높은 제1온도 영역과,A first temperature region higher than the upper limit reference temperature (NT + diff) set based on the set reference temperature (NT),
    설정 기준온도(NT)와 상한 기준온도(NT+diff) 사이의 제2온도 영역과,a second temperature region between the set reference temperature (NT) and the upper limit reference temperature (NT + diff);
    설정 기준온도(NT)와 하한 기준온도(NT-diff) 사이의 제3온도 영역과,a third temperature region between the set reference temperature (NT) and the lower limit reference temperature (NT-diff);
    하한 기준온도(NT-diff)보다 낮은 제4온도 영역 중 적어도 어느 한 온도 영역이 포함됨을 특징으로 하는 냉장고.Refrigerator, characterized in that at least one temperature region of the fourth temperature region lower than the lower limit reference temperature (NT-diff) is included.
  6. 제 5 항에 있어서,6. The method of claim 5,
    상기 제어부는,The control unit is
    저장실 내의 온도가 제2온도 영역보다 제1온도 영역에 속할 경우 더욱 높은 냉력이 제공되게 제어하도록 이루어짐을 특징으로 하는 냉장고.The refrigerator according to claim 1, wherein when the temperature in the storage compartment belongs to the first temperature region than the second temperature region, a higher cooling power is controlled to be provided.
  7. 제 5 항에 있어서,6. The method of claim 5,
    상기 제어부는,The control unit is
    저장실 내의 온도가 제3온도 영역보다 제2온도 영역에 속할 경우 더욱 높은 냉력이 제공되게 제어하도록 이루어짐을 특징으로 하는 냉장고.The refrigerator according to claim 1, wherein when the temperature in the storage compartment belongs to the second temperature region than the third temperature region, a higher cooling power is provided.
  8. 제 5 항에 있어서,6. The method of claim 5,
    상기 제어부는,The control unit is
    저장실 내의 온도가 제4온도 영역보다 제3온도 영역에 속할 경우 더욱 높은 냉력이 제공되게 제어하도록 이루어짐을 특징으로 하는 냉장고.The refrigerator according to claim 1, wherein when the temperature in the storage compartment belongs to the third temperature region than the fourth temperature region, a higher cooling power is provided.
  9. 제 1 항에 있어서,The method of claim 1,
    상기 냉력조절수단은, 압축기와 냉각팬 중 적어도 하나가 포함되고,The cooling power control means includes at least one of a compressor and a cooling fan,
    상기 제어부는, 상기 압축기의 부하와 냉각팬의 부하 중 적어도 어느 한 부하를 조절하여 냉력이 가변되게 제어하도록 이루어짐을 특징으로 하는 냉장고.and the controller is configured to control at least one of a load of the compressor and a load of the cooling fan to vary the cooling power.
  10. 제 1 항에 있어서,The method of claim 1,
    상기 냉력은,The cooling power is
    상기 부하 대응운전의 운전 진행시간이 경과할 수록 점차 낮아지게 가변 제어됨을 특징으로 하는 냉장고.Refrigerator, characterized in that variably controlled to gradually decrease as the operation progress time of the load response operation elapses.
  11. 제 1 항에 있어서,The method of claim 1,
    상기 제어부는,The control unit is
    상기 부하 대응운전이 수행되는 도중 도어가 재개방될 경우, 최대 부하로 냉력조절수단을 동작하면서 부하 대응운전이 수행되도록 제어한 후 저장실 내부의 온도에 따라 냉력이 가변되게 제어하도록 이루어짐을 특징으로 하는 냉장고.When the door is reopened while the load response operation is being performed, the cooling power control means is operated at the maximum load and the load response operation is controlled to be performed, and then the cooling power is controlled to vary according to the temperature inside the storage room. refrigerator.
  12. 제 1 항에 있어서,The method of claim 1,
    상기 제어부는,The control unit is
    상기 부하 대응운전이 수행되는 도중 제상운전의 투입 조건이 만족된 경우, 부하 대응운전은 중단됨과 더불어 제상운전을 위한 제상전 운전이 우선적으로 수행되고,If the input condition of the defrost operation is satisfied while the load response operation is being performed, the load response operation is stopped and the operation before the defrost for the defrost operation is preferentially performed,
    상기 제상전 운전은 냉력조절수단이 최대 부하로 동작되도록 제어하면서 저장실 내부 온도가 하한 기준온도(NT-diff)보다 낮은 온도의 제상 수행온도에 도달할 때까지 냉각되도록 이루어짐을 특징으로 하는 냉장고.The refrigerator, characterized in that the pre-defrost operation is performed to cool the cooling power control means to operate at the maximum load until the internal temperature of the storage chamber reaches a defrosting execution temperature lower than the lower limit reference temperature (NT-diff).
  13. 제 12 항에 있어서,13. The method of claim 12,
    상기 최대 부하는,The maximum load is
    일반 저장운전시의 냉력보다 높은 냉력이 제공될 수 있을 정도의 부하임을 특징으로 하는 냉장고.A refrigerator, characterized in that the load is sufficient to provide a cooling power higher than that during a general storage operation.
  14. 제 12 항에 있어서,13. The method of claim 12,
    상기 제어부는,The control unit is
    상기 제상전 운전이 종료된 후 제상운전을 수행하고,After the operation before the defrost is finished, a defrost operation is performed,
    상기 제상운전이 완료된 후 최대 부하로 냉력조절수단을 동작한 후 저장실 내부 온도가 설정 기준온도(NT)보다 낮은 온도에 도달할 때까지 냉각되게 제어하도록 이루어짐을 특징으로 하는 냉장고.After the defrosting operation is completed, the cooling power control means is operated at the maximum load, and then the temperature inside the storage compartment is controlled to be cooled until it reaches a temperature lower than the set reference temperature (NT).
  15. 저장실;storeroom;
    상기 저장실을 개폐하는 도어;a door for opening and closing the storage compartment;
    상기 저장실 내부의 온도를 측정하는 온도센서;a temperature sensor for measuring the temperature inside the storage chamber;
    냉기를 생성하는 냉기열원;a cold air heat source that generates cold air;
    상기 냉기열원에 의해 생성되어 공급되는 냉기의 냉력을 조절하는 냉력조절수단;cooling power control means for controlling the cooling power of the cold air generated and supplied by the cold air heat source;
    상기 냉력이 점차 증가 혹은, 점차 감소되거나 최대 부하로 제공되도록 상기 냉력조절수단을 제어하는 제어부;를 포함하며,A control unit for controlling the cooling power adjusting means so that the cooling power is gradually increased, gradually decreased, or provided as a maximum load;
    상기 제어부는,The control unit is
    도어의 개방시에 부하 대응운전의 운전 시작조건이 만족되면, 도어가 폐쇄된 후에 최대 부하로 냉력조절수단을 동작하면서 최대 냉력의 부하 대응운전이 수행되도록 제어한 후 부하 대응운전 중 저장실 내부의 온도에 따라 상기 냉력이 가변되게 제어하도록 이루어짐을 특징으로 하는 냉장고.If the operation start condition of the load response operation is satisfied when the door is opened, after the door is closed, the cooling power control means is operated at the maximum load and the load response operation of the maximum cooling power is controlled to be performed, and then the temperature inside the storage room during the load response operation Refrigerator, characterized in that the cooling power is variably controlled according to the
  16. 제 15 항에 있어서,16. The method of claim 15,
    상기 제어부는,The control unit is
    상기 부하 대응운전이 수행되는 도중 도어가 재개방될 경우, 최대 부하로 냉력조절수단을 동작하면서 부하 대응운전이 수행되도록 제어한 후 저장실 내부의 온도에 따라 냉력이 가변되게 제어하도록 이루어짐을 특징으로 하는 냉장고.When the door is reopened while the load response operation is being performed, the cooling power control means is operated at the maximum load and the load response operation is controlled to be performed, and then the cooling power is controlled to vary according to the temperature inside the storage room. refrigerator.
  17. 제 15 항에 있어서,16. The method of claim 15,
    상기 제어부는,The control unit is
    상기 부하 대응운전이 수행되는 도중 제상운전의 투입 조건이 만족된 경우, 부하 대응운전은 중단됨과 더불어 제상운전을 위한 제상전 운전이 우선적으로 수행되고,If the input condition of the defrost operation is satisfied while the load response operation is being performed, the load response operation is stopped and the operation before the defrost for the defrost operation is preferentially performed,
    상기 제상전 운전은 냉력조절수단이 최대 부하로 동작되도록 제어하면서 저장실 내부 온도가 하한 기준온도(NT-diff)보다 낮은 온도의 제상 수행온도에 도달할 때까지 냉각되도록 이루어짐을 특징으로 하는 냉장고.The refrigerator, characterized in that the pre-defrost operation is performed to cool the cooling power control means to operate at the maximum load until the internal temperature of the storage chamber reaches a defrosting execution temperature lower than the lower limit reference temperature (NT-diff).
  18. 저장실 내의 온도가 불만 영역일 때 냉기 공급을 증가시키고 만족 영역일 때 냉기 공급이 감소하도록 제어하면서 고내 온도를 만족 영역으로 유지하는 일반 저장운전단계;a general storage operation step of increasing the cold air supply when the temperature in the storage room is in the unsatisfactory region and maintaining the temperature in the storage in the satisfactory region while controlling so that the cold air supply is decreased when the temperature is in the satisfactory region;
    일반 저장운전이 수행되는 도중 도어가 개방되었을 때 부하 대응운전의 운전 시작조건이 만족되면, 저장실 내부의 온도에 따라 부하 대응운전의 수행을 위한 냉력을 결정하는 냉력 결정단계;a cooling power determination step of determining a cooling power for performing a load response operation according to a temperature inside the storage room when the operation start condition of the load response operation is satisfied when the door is opened while the general storage operation is being performed;
    상기 냉력이 결정되고 도어가 폐쇄된 후 상기 결정된 냉력에 따라 냉력조절수단의 부하를 제어하면서 부하 대응운전을 수행하는 부하 대응운전단계;가 포함되어 진행됨을 특징으로 하는 냉장고의 제어방법.and a load response operation step of performing a load response operation while controlling the load of the cooling power adjusting means according to the determined cooling power after the cooling power is determined and the door is closed.
  19. 제 18 항에 있어서,19. The method of claim 18,
    상기 부하 대응운전단계의 부하 대응운전이 수행되는 도중에는 저장실 내부 온도에 따라 냉력조절수단의 냉력이 가변되도록 제어됨을 특징으로 하는 냉장고의 제어방법.The control method of the refrigerator, characterized in that while the load response operation of the load response operation step is performed, the cooling power of the cooling power adjusting means is controlled to vary according to the internal temperature of the storage compartment.
  20. 제 18 항에 있어서,19. The method of claim 18,
    상기 부하 대응운전이 수행되는 도중 도어가 재개방될 경우,If the door is reopened while the load response operation is being performed,
    최대 부하로 냉력조절수단을 동작하면서 부하 대응운전을 수행하고,While operating the cooling power control means at the maximum load, the load response operation is performed,
    상기 부하 대응운전이 수행되는 도중 저장실 내부의 온도를 확인하여 상기 온도가 낮아질 수록 상기 냉력이 점차 줄어들게 제어함을 특징으로 하는 냉장고의 제어방법.The control method of the refrigerator, characterized in that by checking the temperature inside the storage chamber while the load response operation is performed, and controlling the cooling power to gradually decrease as the temperature decreases.
PCT/KR2021/016573 2020-12-14 2021-11-12 Refrigerator and control method thereof WO2022131561A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200174460A KR20220084713A (en) 2020-12-14 2020-12-14 refrigerator and operating method thereof
KR10-2020-0174460 2020-12-14

Publications (1)

Publication Number Publication Date
WO2022131561A1 true WO2022131561A1 (en) 2022-06-23

Family

ID=82059615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/016573 WO2022131561A1 (en) 2020-12-14 2021-11-12 Refrigerator and control method thereof

Country Status (2)

Country Link
KR (1) KR20220084713A (en)
WO (1) WO2022131561A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10300305A (en) * 1997-04-23 1998-11-13 Matsushita Refrig Co Ltd Thermoelectric module type electric refrigerator
KR19990010019A (en) * 1997-07-14 1999-02-05 윤종용 Refrigerator and its control method
JP2001289550A (en) * 2000-04-03 2001-10-19 Matsushita Refrig Co Ltd Thermoelectric module type electric refrigerator
KR20190005032A (en) * 2017-07-05 2019-01-15 엘지전자 주식회사 Refrigerator and method for controlling the same
KR20190107899A (en) * 2018-03-13 2019-09-23 엘지전자 주식회사 Refrigerator

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180055242A (en) 2016-11-16 2018-05-25 엘지전자 주식회사 Refrigerator and control method of the same
KR102191582B1 (en) 2017-07-19 2020-12-15 엘지전자 주식회사 A refrigerator and a control method the same
KR102679302B1 (en) 2019-01-10 2024-07-01 엘지전자 주식회사 Refrigerator
KR102674401B1 (en) 2019-02-28 2024-06-13 엘지전자 주식회사 Control method for refrigerator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10300305A (en) * 1997-04-23 1998-11-13 Matsushita Refrig Co Ltd Thermoelectric module type electric refrigerator
KR19990010019A (en) * 1997-07-14 1999-02-05 윤종용 Refrigerator and its control method
JP2001289550A (en) * 2000-04-03 2001-10-19 Matsushita Refrig Co Ltd Thermoelectric module type electric refrigerator
KR20190005032A (en) * 2017-07-05 2019-01-15 엘지전자 주식회사 Refrigerator and method for controlling the same
KR20190107899A (en) * 2018-03-13 2019-09-23 엘지전자 주식회사 Refrigerator

Also Published As

Publication number Publication date
KR20220084713A (en) 2022-06-21

Similar Documents

Publication Publication Date Title
WO2019190113A1 (en) Refrigerator and method for controlling same
AU2018295869B2 (en) Refrigerator and method of controlling the same
WO2015069006A1 (en) Refrigerator
WO2017164712A1 (en) Refrigerator and control method therefor
WO2019172532A1 (en) Refrigerator and controlling method thereof
WO2016013798A1 (en) Refrigerator and control method thereof
WO2018088839A1 (en) Refrigerator and method for controlling refrigerator
WO2017164711A1 (en) Control method for refrigerator
WO2019164084A1 (en) Refrigerator
WO2018088845A1 (en) Refrigerator and control method of refrigerator
WO2020111688A1 (en) Refrigerator and control method thereof
WO2020111680A1 (en) Refrigerator and controlling method thereof
WO2017105047A1 (en) Refrigerator and control method therefor
WO2018194324A1 (en) Refrigeration cycle device and three-way flow rate control valve
WO2020027596A1 (en) Method for controlling refrigerator
AU2018295870B2 (en) Refrigerator and method of controlling the same
WO2022131561A1 (en) Refrigerator and control method thereof
WO2022270772A1 (en) Refrigerator
AU2018286352B2 (en) Refrigerator and method of controlling the same
WO2022131560A1 (en) Refrigerator and control method thereof
WO2022131562A1 (en) Refrigerator and control method thereof
WO2022103154A1 (en) Refrigerator and method for controlling same
WO2022131564A1 (en) Refrigerator and control method thereof
WO2022131563A1 (en) Refrigerator and control method thereof
WO2022145847A1 (en) Refrigerator and control method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21906866

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21906866

Country of ref document: EP

Kind code of ref document: A1