WO2020027596A1 - Method for controlling refrigerator - Google Patents

Method for controlling refrigerator Download PDF

Info

Publication number
WO2020027596A1
WO2020027596A1 PCT/KR2019/009598 KR2019009598W WO2020027596A1 WO 2020027596 A1 WO2020027596 A1 WO 2020027596A1 KR 2019009598 W KR2019009598 W KR 2019009598W WO 2020027596 A1 WO2020027596 A1 WO 2020027596A1
Authority
WO
WIPO (PCT)
Prior art keywords
cycle
compressor
cooling
storage compartment
temperature
Prior art date
Application number
PCT/KR2019/009598
Other languages
French (fr)
Korean (ko)
Inventor
안승욱
차경훈
채수남
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US17/265,311 priority Critical patent/US11732948B2/en
Priority to CN201980051626.6A priority patent/CN112513550B/en
Priority to EP19844114.9A priority patent/EP3832237A4/en
Priority to AU2019314054A priority patent/AU2019314054B2/en
Publication of WO2020027596A1 publication Critical patent/WO2020027596A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • F25D11/022Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures with two or more evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/19Pumping down refrigerant from one part of the cycle to another part of the cycle, e.g. when the cycle is changed from cooling to heating, or before a defrost cycle is started
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/15Hunting, i.e. oscillation of controlled refrigeration variables reaching undesirable values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/01Timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0251Compressor control by controlling speed with on-off operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2511Evaporator distribution valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2600/00Control issues
    • F25D2600/02Timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/12Sensors measuring the inside temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Definitions

  • the present invention relates to a control method of a refrigerator.
  • Refrigerators are home appliances that keep food at a low temperature, so that the storage compartment is always kept at a constant low temperature.
  • the storage compartment is maintained at a temperature within the upper limit range and the lower limit range based on the set temperature. That is, the refrigerator is controlled by driving a refrigeration cycle when the storage compartment temperature rises to the upper limit temperature, cooling the storage compartment, and stopping the refrigeration cycle when the storage compartment temperature reaches the lower limit temperature.
  • Korean Patent Publication No. 10-1576686 (Registration Date 2015.12.04), which is a prior art document, discloses a control method of a refrigerator.
  • the control method of the refrigerator disclosed in the prior literature operates the refrigerator compartment valve and the freezer compartment fan to cool the refrigerator compartment, and then operates the freezer compartment valve and the freezer compartment fan to cool the freezer compartment.
  • the compressor is stopped.
  • the freezer compartment is rotated to lower the temperature of the freezer compartment by using latent heat of evaporation.
  • the freshness of food stored in the refrigerating compartment is higher the less the change in the temperature of the refrigerating compartment. If the food is fresh, the shelf life of the food may be increased.
  • the temperature of the refrigerating chamber continuously increases until the compressor is operated again for cooling the cooling chamber in the state where the compressor is stopped, and the temperature of the refrigerating chamber is lowered when the compressor is operated again. Is large. Therefore, there is a problem that the freshness of food stored in the refrigerating chamber is inferior.
  • the present invention provides a control method of a refrigerator controlled to reduce a change in temperature of a storage compartment in order to improve freshness of a stored object.
  • the present invention provides a control method of a refrigerator capable of reducing power consumption generated during the on process of a compressor.
  • a control method of a refrigerator includes a compressor for compressing a refrigerant, a first evaporator configured to receive coolant from the compressor, and generate cold air for cooling the first storage compartment, and to supply cold air to the first storage compartment.
  • First cold air supply means a second evaporator receiving coolant from the compressor to generate cold air for the second storage compartment, second cold air supply means for supplying cold air to the second storage compartment, the compressor and the first
  • a valve for selectively opening any one of a first refrigerant passage connecting the refrigerant to flow between the first evaporator and a second refrigerant passage connecting the refrigerant to the compressor and the second evaporator.
  • a control method of a refrigerator configured to alternately cool a storage compartment and a cooling of the second storage compartment, wherein the cooling of the first storage compartment is performed. This is the first cycle for cooling operation step of the compressor is operating, and the first cold air supply means to the first storage operation; When the first cooling cycle is operated for a first operation time, switching to a second cooling cycle for cooling the second storage compartment to operate the compressor and operating the second cold air supply means; And when the second cooling cycle has been operated for a second operating time, the second cooling cycle is stopped.
  • the first reference time is determined using a representative value obtained based on the temperature of the first storage compartment during one operation cycle comprising the previous first cooling cycle and the previous second cooling cycle, and the control unit determines the The first cooling cycle may be operated for a first reference time.
  • the second reference time is determined using the representative value obtained based on the temperature of the second storage compartment during the one operation period, and the control unit is configured to cause the second cooling cycle to be operated during the determined second reference time. Can be.
  • the representative value of the first storage compartment may be a temperature deviation of the first storage compartment
  • the representative value of the second storage compartment may be a temperature deviation of the second storage compartment
  • the controller may compare the representative value and the reference value of each of the storage rooms, and determine the first and second operating time according to the comparison result.
  • the controller may determine the first operation time and the second operation time to be the same time as the operation time in the previous cycle.
  • the controller may determine to increase the first reference time and the second reference time than the operation time in the previous cycle.
  • the controller may determine to decrease the first reference time and the second reference time from the operation time of the previous cycle.
  • the compressor can be operated with a fixed cooling force.
  • the cold power of the compressor in the current first cooling cycle is determined based on the temperature of the first storage compartment during the one operating cycle and remains the same as the cold power of the compressor of the previous first cooling cycle. Or variable.
  • the cooling power of the compressor in the current second cooling cycle is determined based on the temperature of the second storage compartment during the one operation cycle, and may be maintained or changed to be equal to the cooling power of the compressor of the previous second cooling cycle. Can be.
  • a control method of a refrigerator includes a compressor for compressing a refrigerant, a first evaporator for receiving coolant from the compressor and generating cold air for cooling the first storage compartment, and for supplying cold air to the first storage compartment.
  • First cold air supply means a second evaporator receiving coolant from the compressor to generate cold air for the second storage compartment, second cold air supply means for supplying cold air to the second storage compartment, the compressor and the first And a valve for selectively opening any one of a first refrigerant passage connecting the refrigerant to flow between the first evaporator and a second refrigerant passage connecting the refrigerant to the compressor and the second evaporator.
  • a control method of a refrigerator configured to alternately cool a storage compartment and a cooling of the second storage compartment, wherein the cooling of the first storage compartment is performed. It is that the first refrigeration cycle operation for the step of the compressor is operating, and the first cold air supply means to the first storage operation; When the first cooling cycle is operated for a first reference time, switching to a second cooling cycle for cooling the second storage compartment to operate the compressor and operating the second cold air supply means; And when the second cooling cycle has been operated for a second reference time, the second cooling cycle is stopped, wherein the cooling force of the compressor in the current first cooling cycle is equal to the previous first cooling cycle.
  • the representative value of the first storage compartment may be an average temperature of the first storage compartment
  • the representative value of the second storage compartment may be an average temperature of the second storage compartment
  • the representative value of the first storage compartment may be an average temperature of the highest temperature and the lowest temperature of the first storage compartment
  • the representative value of the second storage compartment may be an average temperature of the highest temperature and the lowest temperature of the second storage compartment.
  • the controller may compare the representative value of each storage compartment with a set temperature of each storage compartment, and determine the cooling power of the compressor according to the comparison result.
  • the controller may determine that the cooling power of the compressor in the current cycle is lower than that of the compressor in the previous cycle when the difference between the set temperature and the representative value of the storage compartment is greater than zero.
  • the first reference time and the second reference time may be fixed times.
  • the first operating time in the current first cooling cycle is determined based on the temperature of the first reservoir during the one operating cycle, and may be equal to or varying the first operating time of the previous first cooling cycle. Can be.
  • the second operating time in the current second cooling cycle is determined based on the temperature of the second storage compartment during the one operating cycle, and may be the same or variable as the second operating time of the previous second cooling cycle. .
  • a control method of a refrigerator includes a compressor for compressing a refrigerant, a first evaporator configured to receive coolant from the compressor, and generate cold air for cooling the first storage compartment, and supplying cold air to the first storage compartment.
  • First cold air supply means for supplying a second evaporator to generate cool air for a second storage compartment by receiving refrigerant from the compressor, second cold air supply means for supplying cold air to the second storage compartment, the compressor and the And a valve for selectively opening any one of a first refrigerant passage connecting the refrigerant to flow between the first evaporator and a second refrigerant passage connecting the refrigerant to the compressor and the second evaporator.
  • a control method of a refrigerator configured to alternately cool a storage compartment and a cooling of the second storage compartment, the control method of the refrigerator. It is that the first refrigeration cycle operation for each step of the compressor is operating, and the first cold air supply means to the first storage operation; When the first cooling cycle is operated for a first operation time, switching to a second cooling cycle for cooling the second storage compartment to operate the compressor and operating the second cold air supply means; And when the second cooling cycle has been operated for a second operating time, the second cooling cycle is stopped, wherein the cooling force of the compressor in the current first cooling cycle is equal to the previous first cooling cycle.
  • the compressor is operated in the current second cooling cycle
  • the first reference time includes a previous first cooling cycle and a previous second cooling cycle.
  • a control method of a refrigerator includes a compressor for compressing a refrigerant, a first evaporator configured to receive coolant from the compressor, and generate cold air for cooling the first storage compartment, and supplying cold air to the first storage compartment.
  • First cold air supply means for supplying a second evaporator to generate cool air for a second storage compartment by receiving refrigerant from the compressor, second cold air supply means for supplying cold air to the second storage compartment, the compressor and the And a valve for selectively opening any one of a first refrigerant passage connecting the refrigerant to flow between the first evaporator and a second refrigerant passage connecting the refrigerant to the compressor and the second evaporator.
  • a control method of a refrigerator configured to alternately cool a storage compartment and a cooling of the second storage compartment, the initial operation of the refrigerator comprising: Further comprising: the compressor is operating is the first cooling cycle for cooling the first storage group is operated, and the first cold air supply means to the first storage operation; When the first cooling cycle is operated for a first reference time, switching to a second cooling cycle for cooling the second storage compartment to operate the compressor and operating the second cold air supply means; And when the second cooling cycle has been operated for a second reference time, the second cooling cycle is stopped, wherein the cooling force of the compressor in the current first cooling cycle is equal to the previous first cooling cycle.
  • the first operating time of the first cooling cycle is determined using the third representative value obtained based on the temperature of the first storage chamber during the first operation cycle, and the determined first operating time is the first reference time.
  • the second operating time of the second cooling cycle is determined using the fourth representative value obtained based on the temperature of the second storage compartment during the one operation cycle, and the second operating time is The second reference time is the same or different.
  • the cold power of the compressor or the operating time of the cycle can be varied based on the temperature of the storage compartment in the previous cycle, so that the temperature variation range of the storage compartment can be reduced, thereby improving the freshness of the storage. have.
  • the compressor since the compressor is continuously operated while varying the cold power of the compressor and / or the operating time of the cycle, the compressor can be prevented from operating with excessive cold power, and the compressor does not need to be turned off before turning on the compressor. There is an advantage that can reduce the power consumption by the required starting power.
  • FIG. 1 is a view schematically showing the configuration of a refrigerator according to one embodiment of the present invention.
  • FIG. 2 is a block diagram of a refrigerator according to one embodiment of the present invention.
  • FIG. 3 is a flow chart for schematically explaining a basic control method of a refrigerator according to one embodiment of the present invention.
  • FIG. 4 is a flowchart illustrating a method of determining an operating time of each of a refrigerating cycle and a refrigerating cycle according to an embodiment of the present invention.
  • 5 and 6 are flowcharts illustrating a method of determining the cooling force of the compressor when each of the refrigerating cycle and the refrigeration cycle according to another embodiment of the present invention.
  • first, second, A, B, (a), and (b) may be used. These terms are only for distinguishing the components from other components, and the nature, order or order of the components are not limited by the terms. If a component is described as being “connected”, “coupled” or “connected” to another component, that component may be directly connected or connected to that other component, but there is another component between each component. It will be understood that may be “connected”, “coupled” or “connected”.
  • FIG. 1 is a view schematically showing the configuration of a refrigerator according to an embodiment of the present invention
  • Figure 2 is a block diagram of a refrigerator according to an embodiment of the present invention.
  • the refrigerator 1 according to an embodiment of the present invention includes a cabinet 10 having a freezing compartment 111 and a refrigerating compartment 112 formed therein, and coupled to the cabinet 10. And a door (not shown) for opening and closing the freezing compartment 111 and the refrigerating compartment 112, respectively.
  • the freezing chamber 111 and the refrigerating chamber 112 may be partitioned in the left and right or up and down directions in the cabinet 10 by the partition wall 113.
  • the refrigerator 1 may be referred to as a compressor 21, a condenser 22, an expansion member 23, and a freezer compartment evaporator 24 (or “first evaporator”) for cooling the freezer compartment 111. And a refrigerator compartment evaporator 25 (or referred to as a “second evaporator”) for cooling the refrigerator compartment 112.
  • a state in which the switching valve 26 is operated so that the refrigerant flows to the freezer compartment evaporator 24 may be referred to as a first state of the switching valve 26.
  • a state in which the switching valve 26 is operated so that the refrigerant flows into the refrigerating chamber evaporator 25 may be referred to as a second state of the switching valve 26.
  • the switching valve 26 may be, for example, a three way valve.
  • the switching valve 26 is a first refrigerant passage for connecting the refrigerant flows between the compressor 21 and the refrigerating chamber evaporator 25, and between the compressor 21 and the freezing chamber evaporator 24.
  • One of the second refrigerant passages connecting the refrigerant to flow therebetween may be selectively opened.
  • the switching valve 26 may alternately cool the refrigerator compartment 112 and the freezer compartment 111. have.
  • the refrigerator 1 is a freezer compartment fan 28 (which may be referred to as a "first blower fan") for blowing air to the freezer compartment evaporator 24, and a first motor for rotating the freezer compartment fan 28. (27), a refrigerating compartment fan 29 (which may be referred to as a "second blowing fan”) for blowing air to the refrigerating compartment evaporator 25 and a second motor 30 for rotating the refrigerating compartment fan 29. ) May be further included.
  • a freezer compartment fan 28 (which may be referred to as a "first blower fan”) for blowing air to the freezer compartment evaporator 24, and a first motor for rotating the freezer compartment fan 28.
  • a refrigerating compartment fan 29 (which may be referred to as a "second blowing fan”) for blowing air to the refrigerating compartment evaporator 25 and a second motor 30 for rotating the refrigerating compartment fan 29. ) May be further included.
  • a series of cycles through which the refrigerant flows through the compressor 21, the condenser 22, the expansion member 23 and the freezer evaporator 24 is called a "freezing cycle"
  • the refrigerant is the compressor 21
  • a series of cycles through which the condenser 22, the expansion member 23, and the refrigerating chamber evaporator 25 flows will be referred to as a "refrigeration cycle.”
  • Refrigerating cycle is activated means that the compressor 21 is turned on, the refrigerating chamber fan 29 is rotated, and the refrigerant flows through the refrigerating chamber evaporator 25 by the switching valve 26. This means that the refrigerant flowing through the practical evaporator 25 and the air are heat exchanged.
  • the freezing cycle is activated means that the compressor 21 is turned on, the freezer compartment fan 28 is rotated, and the refrigerant flows through the freezer compartment evaporator 24 by the switching valve 26. It means that the refrigerant flowing through the freezer evaporator 24 and the heat exchange.
  • one expansion member 23 is described as being located upstream of the switching valve 26.
  • a first expansion member is located between the switching valve 26 and the freezing chamber evaporator 24. It is also possible to provide a second expansion member between the switching valve 26 and the refrigerating chamber evaporator 25.
  • the switching valve 26 is not used, the first valve is provided on the inlet side of the freezer compartment evaporator 24, and the second valve is provided on the inlet side of the refrigerator compartment evaporator 25. It is also possible.
  • the first valve may be turned on when the refrigeration cycle is in operation, the second valve may be turned off, and the first valve may be turned off when the refrigeration cycle is in operation, and the second valve may be turned on.
  • the refrigerator 1 includes a freezer compartment temperature sensor 41 for detecting a temperature of the freezer compartment 111, a refrigerator compartment temperature sensor 42 for detecting a temperature of the refrigerator compartment 112, and the freezer compartment 111. And an input unit 43 capable of inputting a target temperature (or a set temperature) of each of the refrigerating compartments 112, and a cooling cycle (a freezing cycle and And a control unit 50 for controlling the refrigeration cycle.
  • a temperature lower than the set temperature of the refrigerating chamber 112 is referred to as a first refrigerating chamber reference temperature (or a first reference temperature), and a temperature higher than the set temperature of the refrigerating chamber 112 is referred to as a second refrigerating chamber reference temperature (the first temperature). 2 reference temperature).
  • a range between the first refrigerator compartment reference temperature and the second refrigerator compartment reference temperature may be referred to as a refrigerator compartment set temperature range.
  • the set temperature of the refrigerator compartment 112 may be an average temperature of the first refrigerator compartment reference temperature and the second refrigerator compartment reference temperature.
  • a temperature lower than a set temperature of the freezer compartment 111 is referred to as a first freezer compartment reference temperature (or a third reference temperature), and a temperature higher than a set temperature of the freezer compartment 111 is referred to as a second freezer compartment reference temperature (or Fourth reference temperature).
  • a range between the first freezer compartment reference temperature and the second freezer compartment reference temperature may be referred to as a freezer compartment set temperature range.
  • the set temperature of the freezer compartment 111 may be an average temperature of the first freezer compartment reference temperature and the second freezer compartment reference temperature.
  • the user may set a target temperature of each of the freezing compartment 111 and the refrigerating compartment 112.
  • the controller 50 may control the refrigeration cycle, the refrigeration cycle and the pump down operation to achieve one operation cycle. That is, the controller 50 operates the cycle while continuously operating the compressor 21 without stopping it.
  • the pump down operation refers to an operation of collecting the refrigerant remaining in each of the evaporators to the compressor 21 by operating the compressor 21 in a state in which the refrigerant is supplied to all of the plurality of evaporators.
  • the controller 50 operates the refrigerating cycle, and when the stop condition of the refrigerating cycle is satisfied, operates the refrigeration cycle.
  • the pump down operation may be performed.
  • the start condition of the refrigeration cycle in the present invention may be the same as the stop condition of the refrigeration cycle.
  • the pump down operation may be omitted under special conditions.
  • the refrigeration cycle and the refrigeration cycle can be operated alternately.
  • the refrigerating cycle and the refrigerating cycle may achieve one operation cycle.
  • the pump down operation may be omitted.
  • the refrigerator 1 of the present invention may further include a memory 44 in which the temperatures of each of the freezing compartment 111 and the refrigerating compartment 112 are stored during one operation cycle.
  • FIG. 3 is a flowchart illustrating a basic control method of a refrigerator according to an embodiment of the present invention.
  • the power of the refrigerator 1 is turned on (S1).
  • the refrigerator 1 may operate to cool the freezing compartment 111 or the refrigerating chamber 112.
  • the controller 50 operates the refrigerating cycle (S2).
  • the controller 50 may turn on the compressor 21 and rotate the refrigerating compartment fan 29.
  • the controller 50 switches the switching valve 26 to the first state so that the refrigerant flows into the refrigerating chamber evaporator 25.
  • the freezer compartment 28 remains stationary when the refrigeration cycle is in operation.
  • Air exchanged with the refrigerating chamber evaporator 25 is supplied to the refrigerating chamber 112. Therefore, the temperature of the refrigerating chamber 112 is lowered, while the temperature of the freezing chamber 111 is increased.
  • the controller 50 determines whether a stop condition of the refrigeration cycle is satisfied (S3). That is, the controller 50 determines whether the start condition of the refrigeration cycle is satisfied.
  • the controller 50 may determine that the stop condition of the refrigerating cycle is satisfied when the refrigerating cycle operates and the first operation time elapses.
  • the first operating time may vary.
  • step S3 If it is determined in step S3 that the start condition of the refrigeration cycle is satisfied, the control unit 50 operates the refrigeration cycle (S4).
  • the controller 50 switches the switching valve 26 to the second state so that the refrigerant flows to the freezer compartment evaporator 24.
  • the compressor 21 continues to operate without stopping even when switching from the refrigeration cycle to the refrigeration cycle.
  • the control unit 50 rotates the freezer compartment fan 28 and stops the refrigerating compartment fan 29.
  • the controller 50 may determine whether the stop condition of the refrigerating cycle is satisfied during the operation of the refrigerating cycle (S5).
  • the controller 50 may determine that the stop condition of the refrigeration cycle is satisfied when the refrigeration cycle operates and the second operation time elapses.
  • the second operation time may vary.
  • the pump down operation may be performed (S6).
  • the controller 50 operates the refrigerating cycle again.
  • FIG. 4 is a flowchart illustrating a method of determining an operating time of each of a refrigerating cycle and a refrigerating cycle according to an embodiment of the present invention.
  • the refrigerator cycle may be operated for a first reference time until the refrigerator is operated (S11) and the cycle is stabilized (S12), and the refrigeration cycle may be operated for a second reference time. Can be driven.
  • the first reference time and the second reference time are fixed times as predetermined times and may be stored in the memory 44.
  • the temperature of the refrigerating chamber 112 is located within the refrigerating chamber set temperature range, or the temperature of the freezing chamber 111 is set in the freezer compartment. It may include one or more of the cases located within the temperature range.
  • an operation time of each of the refrigerating cycle and the refrigerating cycle may be determined based on the temperatures of the refrigerating chamber 112 and the freezing chamber 111 during one previous operation cycle.
  • the control unit 50 obtains the representative value based on the temperature of the storage chamber during the previous one operation cycle, and calculates the difference between the representative value and the reference value (S13).
  • the first operating time of the refrigerating cycle is set to the same time as the first reference time. May be determined or at other times.
  • the temperature of the refrigerating compartment 112 during the previous one operation cycle is periodically sensed by the refrigerating compartment temperature sensor 42 and stored in the memory 44.
  • the temperature of the refrigerating chamber 112 during the previous one operation cycle is the temperature of the refrigerating chamber 112 when the refrigerating cycle operates, the temperature of the refrigerating chamber 112 when the refrigerating cycle operates, and the temperature of the pump down operation.
  • the second operation time of the freezing cycle is determined to be the same time as the second reference time or Can be determined at other times.
  • the temperature of the freezer compartment 111 during the previous one operation cycle is periodically sensed by the freezer compartment temperature sensor 41 and stored in the memory 44.
  • the temperature of the freezer compartment 111 during one previous operation cycle is the temperature of the freezer compartment 111 when the refrigeration cycle operates, the temperature of the freezer compartment 111 when the refrigeration cycle operates and the pump down operation. It includes the temperature of the freezing chamber 111.
  • the controller 50 determines whether the preset reference value is equal to the representative value obtained based on the temperature of the storage chamber during the previous one operation cycle (S14).
  • the representative value may be, for example, a temperature deviation of the storage compartment, and the reference value may be a reference deviation.
  • step S14 when the reference value and the representative value are the same, the controller 50 determines to keep the operation time of the current cycle the same as the operation time of the previous cycle (S15).
  • the determined driving time is reflected (S21). That is, operate the cooling cycle with the determined operating time.
  • step S14 determines whether the reference value and the representative value is greater than zero (S16).
  • the operation time is operated in the previous cycle so that the time for which the temperature variation of the storage compartment is maintained is long. Decide to increase over time.
  • the controller 50 may calculate the amount of change in the driving time according to the difference between the reference value and the representative value (S17).
  • the operation time is the first than the operation time of the previous cycle. Decrease by time.
  • the operation time is the first time than the operation time of the previous cycle. It may be determined to increase by a larger second time.
  • the controller 50 may calculate the amount of change in the driving time according to the difference between the reference value and the representative value (S19).
  • the operation time is the first than the operation time of the previous cycle. Decrease by time.
  • the operation time is the first time than the operation time of the previous cycle. Decreasing by a larger second time may be determined.
  • the second operation time of the refrigerating cycle is determined based on the temperature deviation and the reference deviation obtained based on the temperature of the freezer compartment of the previous cycle, by determining the direction in which the temperature deviation of the freezer compartment decreases, There is an advantage to reduce the temperature change range.
  • the operation time of each of the refrigerating cycle and the refrigerating cycle may be maintained or varied, and the compressor may be operated at a fixed cooling force or the cooling power of the compressor may be changed for each cycle during the refrigerating cycle operation.
  • the compressor may be operated at a fixed cooling power or the cooling power of the compressor may be changed for each cycle.
  • 5 and 6 are flowcharts illustrating a method of determining the cooling force of the compressor when each of the refrigerating cycle and the refrigerating cycle according to another embodiment of the present invention.
  • the refrigerator of the present embodiment basically operates in the order of the refrigeration cycle, the refrigeration cycle, and the pump down as described with reference to FIG. 4.
  • the pump down operation may be omitted.
  • the controller 50 calculates a representative value based on the temperature of the refrigerating chamber 112 during the previous one operation cycle (S31).
  • the temperature of the refrigerating compartment 112 during the previous one operation cycle is periodically sensed by the refrigerating compartment temperature sensor 42 and stored in the memory 44.
  • the temperature of the refrigerating chamber 112 during the previous one operation cycle is the temperature of the refrigerating chamber 112 when the refrigerating cycle operates, the temperature of the refrigerating chamber 112 when the refrigerating cycle operates, and the pump.
  • the temperature of the refrigerating chamber 112 at the time of down operation is included.
  • the representative value may be, for example, an average temperature of the refrigerating chamber 112 during one previous operation cycle.
  • the representative value may be an average temperature of the highest temperature and the lowest temperature of the refrigerating chamber 112 during the previous one operation cycle.
  • the controller 50 calculates a difference between the set temperature and the representative value (S32).
  • the controller 50 determines whether the difference between the set temperature and the representative value is O, that is, whether the set temperature and the representative value are the same (S33).
  • step S34 when the set temperature and the representative value are the same, the controller 50 determines that the cooling force of the refrigerating chamber 112 is maintained (S34).
  • step S33 determines whether the set temperature and the representative value is greater than zero (S35).
  • the controller 50 determines that the cooling force of the refrigerating compartment 112 is reduced than that of the refrigerating compartment 112 in a previous refrigeration cycle (S37).
  • the cooling force of the compressor 21 in the current refrigeration cycle is reduced than the cooling power of the compressor 21 in the previous refrigeration cycle operation.
  • the controller 50 may calculate the amount of change in cooling power according to the difference between the set temperature and the representative value (S36).
  • the cooling force of the compressor 21 is changed to the previous refrigeration cycle. It can be determined to reduce by a first level than the cold power of the compressor 21 of.
  • the cooling force of the compressor 21 is changed to the previous refrigeration cycle. It can be determined to reduce by a second level than the cold power of the compressor 21 of. At this time, the second level is larger than the first level.
  • step S35 when it is determined in step S35 that the difference between the set temperature and the representative value is less than zero, it is determined that the cooling power of the refrigerating chamber 112 is increased to be higher than the cooling power of the refrigerating chamber 112 in the previous cycle (S39). ).
  • the cooling force of the compressor 21 in the current refrigeration cycle is increased rather than the cold power of the compressor 21 of the previous refrigeration cycle operation.
  • the controller 50 may calculate the amount of change in cooling power according to the difference between the set temperature and the representative value (S38).
  • the cooling force of the compressor 21 is changed to the previous refrigeration cycle. It can be determined to increase by a third level than the cooling power of the compressor 21 of.
  • the cooling force of the compressor 21 is changed to the previous refrigeration cycle. It can be determined to increase by the fourth level than the cooling power of the compressor 21 of. At this time, the fourth level is greater than the third level.
  • the first level may be set equal to or different from the third level, and the second level may be set equal to or different from the fourth level.
  • the control unit 50 operates the refrigerating cycle with the determined cold power (or cold power of the compressor) of the refrigerating compartment (S40).
  • the controller 50 may determine whether the operation time of the refrigerating cycle has passed the first reference time (S41). That is, the controller 50 may determine whether the stop condition of the refrigerating cycle is satisfied.
  • the first reference time may be a fixed time.
  • step S41 when the operation time of the refrigerating cycle has passed the first reference time, the controller 50 stops the refrigerating cycle and operates the refrigerating cycle.
  • the controller 50 calculates a representative value based on the temperature of the freezer compartment 111 during one previous operation cycle (S42).
  • the temperature of the freezer compartment 111 during one previous operation cycle is periodically sensed by the freezer compartment temperature sensor 41 and stored in the memory 44.
  • the temperature of the freezer compartment 111 during one previous operation cycle includes the temperature of the freezer compartment 111 when the refrigeration cycle operates, the temperature of the freezer compartment 111 when the refrigeration cycle operates, and the pump. It includes the temperature of the freezer compartment 111 during the down operation.
  • the temperature of the freezer compartment 111 during the previous one operation cycle may include the temperature of the freezer compartment 111 when the refrigeration cycle operates, the temperature of the freezer compartment 111 during the pump down operation, and the refrigerating cycle immediately before. It may include the temperature of the freezer compartment 111 when operating.
  • the representative value may be, for example, an average temperature of the freezing compartment 111 during one previous operation cycle.
  • the representative value may be an average temperature of the highest temperature and the lowest temperature of the freezer compartment 111 during one previous operation cycle.
  • the controller 50 calculates a difference between the set temperature and the representative value (S43).
  • the controller 50 determines whether the difference between the set temperature and the representative value is O, that is, whether the set temperature and the representative value are the same (S44).
  • step S44 when the set temperature and the representative value are the same, the controller 50 determines that the cooling force of the freezer compartment 111 is maintained (S45).
  • step S44 determines whether the set temperature and the representative value is greater than zero (S46).
  • the controller 50 determines that the cooling force of the freezing compartment 111 is reduced than that of the freezing compartment 111 in the previous freezing cycle (S48).
  • the cooling force of the compressor 21 in the current refrigeration cycle is reduced than the cold power of the compressor 21 in the previous refrigeration cycle operation.
  • the controller 50 may calculate the amount of change in cooling power according to the difference between the set temperature and the representative value (S47).
  • the cooling force of the compressor 21 is changed to the previous refrigeration cycle. It can be determined to reduce by a first level than the cold power of the compressor 21 of.
  • the cooling force of the compressor 21 is changed to the previous refrigeration cycle. It can be determined to reduce by a second level than the cold power of the compressor 21 of. At this time, the second level is larger than the first level.
  • step S46 when the difference between the reference value and the representative value is less than zero, it is determined that the cooling power of the freezer compartment 111 is increased than the cold power of the freezer compartment 111 in the previous freezing cycle ( S50).
  • the cooling power of the compressor 21 in the current refrigeration cycle is increased than the cooling power of the compressor 21 in the previous refrigeration cycle operation.
  • the controller 50 may calculate the amount of change in cooling power according to the difference between the set temperature and the representative value (S38).
  • the cooling power of the compressor 21 is changed to the previous refrigeration cycle. It can be determined to increase by a third level than the cooling power of the compressor 21 of.
  • the cooling force of the compressor 21 is changed to the previous refrigeration cycle. It can be determined to increase by the fourth level than the cooling power of the compressor 21 of. At this time, the fourth level is greater than the third level.
  • the first level may be set equal to or different from the third level, and the second level may be set equal to or different from the fourth level.
  • the controller 50 drives the refrigeration cycle with the determined cold power (or cold power of the compressor) of the freezing compartment 111 (S51).
  • the controller 50 may determine whether the operation time of the refrigeration cycle has passed the second reference time (S52). That is, the controller 50 may determine whether the stop condition of the refrigeration cycle is satisfied.
  • the second reference time may be a fixed time.
  • step S52 when the operation time of the refrigeration cycle has passed the second reference time, the control unit 50 stops the refrigeration cycle, and performs the pump down operation (S53).
  • the cooling force of the compressor 21 can be varied so that the difference between the set temperature and the representative value can be reduced, and thus the temperature variation of the refrigerating compartment and the freezing compartment can be reduced, thereby improving the freshness of the stored object.
  • the compressor since the compressor is continuously operated while varying the cold power of the compressor, the compressor can be prevented from operating with excessive cold power, and since the compressor does not need to be turned on after turning off the compressor, power by starting power required in the process of turning on the compressor. This has the advantage of reducing consumption.
  • the cooling power of the compressor 21 is determined based on the difference between the set temperature and the representative value.
  • the cooling power of the compressor 21 may be determined based on whether the representative value falls within a temperature satisfaction section. Can be.
  • the upper limit temperature of the temperature satisfying section is a temperature lower than the second reference temperature of the storage compartment
  • the lower limit temperature of the temperature satisfying section is a temperature higher than the first reference temperature of the storage compartment
  • the set temperature is a temperature within the temperature satisfying section. to be.
  • the controller 50 may operate the compressor such that the cold power of the storage compartment is the same as the cold power of the storage compartment in a previous cycle.
  • control unit 50 may control the compressor such that the cold power of the storage compartment is increased than the cold power of the storage compartment in the previous cycle. That is, the cooling power of the compressor in the current cycle can be increased than the cooling power of the compressor in the previous cycle.
  • the controller 50 may control the compressor such that the cooling power of the storage compartment is lower than that of the storage compartment in a previous cycle. That is, the cooling power of the compressor in the current cycle can be reduced than that of the compressor in the previous cycle.
  • FIG. 4 a technique of varying an operating time of a refrigeration cycle and a freezing cycle is disclosed.
  • FIGS. 5 and 6 a technique of varying the cooling power of each of the refrigeration cycle and a refrigeration cycle is disclosed. Do.
  • the operating time and cold power of the refrigeration cycle may vary, and the operating time and cold power of the refrigeration cycle may vary.
  • the operation time of the refrigerating cycle may be operated for a first reference time, which is a fixed time, and the operation time of the refrigeration cycle may be operated for a second reference time, which is a fixed time, until the stabilization condition of the cycle is satisfied.
  • the cold power of the cycle and the cold power of the refrigeration cycle can vary.
  • the cooling power in each cycle may be varied, but also the operation time in each cycle may be varied.
  • the stabilization condition of the cycle when the stabilization condition of the cycle is satisfied, it means a case in which the cooling force increases or decreases within a predetermined range when the cooling force of the compressor in each cooling cycle is changed by a predetermined number of times. For example, it may be determined that the stabilization condition of the cycle is satisfied when the variable amount of cooling force falls within the reference range while the cooling force is varied for five times.
  • the representative value of the refrigerating compartment for variable cooling power may be referred to as the first representative value, and the representative value of the freezer compartment may be referred to as the second representative value.
  • the representative value of the refrigerating chamber for varying the operation time may be referred to as the third representative value, and the representative value of the freezer compartment may be referred to as the fourth representative value.
  • the refrigerating compartment may be referred to as a first storage compartment, and the freezing compartment may be referred to as a second storage compartment.
  • the refrigeration cycle may be referred to as a first cooling cycle for the first storage compartment, and the refrigeration cycle may be referred to as a second cooling cycle for the second storage compartment.
  • the refrigerating compartment fan may be referred to as a first cold air supply means for a first storage compartment, and the freezer compartment fan may be referred to as a second cold air supply means for a second storage compartment.
  • the refrigerating compartment may be referred to as a second storage compartment
  • the freezing compartment may be referred to as a first storage compartment.
  • the refrigeration cycle may be referred to as a second cooling cycle for the second storage compartment, and the refrigeration cycle may be referred to as a first cooling cycle for the first storage compartment.
  • the refrigerator compartment fan may be referred to as a second cold air supply means for the second storage compartment
  • the freezer compartment fan may be referred to as a first cold air supply means for the first storage compartment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

A method for controlling a refrigerator in the present embodiment comprises the steps of: as a first refrigeration cycle for refrigeration of a first storage chamber is operated, operating a compressor and operating a first cold air supply means for the first storage chamber; when the first refrigeration cycle has been operated for a first run time, converting to a second refrigeration cycle for refrigeration of a second storage chamber, and operating a second cold air supply means; and if the second refrigeration cycle has been operated for a second run time, stopping the second refrigeration cycle. In particular, a first reference time is determined using a representative value obtained on the basis of the temperature of the first storage chamber during a single run cycle, which includes a previous first refrigeration cycle and a previous second refrigeration cycle; a control unit causes the first refrigeration cycle to operate for the determined first reference time; a second reference time period is determined using a representative value obtained on the basis of the temperature of the second storage chamber during the single run cycle; and the control unit causes the second refrigeration cycle to operate for the determined second reference time.

Description

냉장고의 제어방법Refrigerator Control Method
본 발명은 냉장고의 제어방법에 관한 것이다. The present invention relates to a control method of a refrigerator.
냉장고는 음식물을 저온으로 보관하는 가전 기기로서, 저장실이 항상 일정한 저온으로 유지되도록 하고 있다. Refrigerators are home appliances that keep food at a low temperature, so that the storage compartment is always kept at a constant low temperature.
현재 가정용 냉장고의 경우, 저장실이 설정 온도를 기준으로 상한 범위와 하한 범위 내의 온도로 유지되도록 하고 있다. 즉, 저장실 온도가 상한 온도로 상승하면 냉동 사이클을 구동하여 저장실을 냉각하고, 저장실 온도가 하한 온도에 도달하면 냉동 사이클을 정지하는 방법으로 냉장고를 제어하고 있다. In the case of the domestic refrigerator, the storage compartment is maintained at a temperature within the upper limit range and the lower limit range based on the set temperature. That is, the refrigerator is controlled by driving a refrigeration cycle when the storage compartment temperature rises to the upper limit temperature, cooling the storage compartment, and stopping the refrigeration cycle when the storage compartment temperature reaches the lower limit temperature.
근래에는, 냉동실 및 냉장실에 증발기가 각각 설치된 냉장고가 개발되었다. 이러한 냉장고는, 냉종실 및 냉장실 각각의 증발기 중 한 증발기로 냉매가 유동되도록 한 후에 다른 한 증발기로 냉매가 유동하도록 한다. In recent years, refrigerators in which freezers and refrigerators have evaporators, respectively, have been developed. Such a refrigerator allows the refrigerant to flow to one of the evaporators of the cooling chamber and the refrigerating chamber and then to the other evaporator.
선행문헌인 한국등록특허공보 제10-1576686호(등록일 2015.12.04)에는 냉장고의 제어방법이 개시된다. Korean Patent Publication No. 10-1576686 (Registration Date 2015.12.04), which is a prior art document, discloses a control method of a refrigerator.
선행문헌에 개시된 냉장고의 제어방법은, 냉장실 밸브와 냉동실 팬을 동작시켜 냉장실을 냉각시킨 후, 냉동실 밸브와 냉동실 팬을 동작시켜 냉동실을 냉각한다. The control method of the refrigerator disclosed in the prior literature operates the refrigerator compartment valve and the freezer compartment fan to cool the refrigerator compartment, and then operates the freezer compartment valve and the freezer compartment fan to cool the freezer compartment.
냉동실의 냉각 완료 후 압축기가 정지되도록 하며, 이 상태에서 냉동실 팬을 회전시켜 증발 잠열을 이용하여 냉동실의 온도를 낮춘다. After the cooling of the freezer compartment is completed, the compressor is stopped. In this state, the freezer compartment is rotated to lower the temperature of the freezer compartment by using latent heat of evaporation.
그런데, 선행문헌의 경우, 압축기가 정지된 상태에서 냉동실의 온도를 낮출 수는 있으나, 냉장실의 온도를 낮추지 못하는 문제가 있다. By the way, in the case of the prior document, it is possible to lower the temperature of the freezer compartment in the state in which the compressor is stopped, but there is a problem that can not lower the temperature of the refrigerating compartment.
일반적으로 냉장실에 저장된 음식물의 신선도는 냉장실의 온도의 변화량이 적을 수록 높다. 음식물의 신선도가 높은 경우 음식물의 보관 기간이 증가될 수 있다. In general, the freshness of food stored in the refrigerating compartment is higher the less the change in the temperature of the refrigerating compartment. If the food is fresh, the shelf life of the food may be increased.
그런데, 선행문헌의 경우, 압축기가 정지된 상태에서는 냉징실 냉각을 위하여, 압축기가 다시 작동할 때까지 냉장실의 온도가 지속적으로 상승하게 되고, 압축기가 다시 작동하면 냉장실의 온도가 하강하게 되어 온도 변화가 크다. 따라서, 냉장실에 보관된 음식물의 신선도가 떨어지는 문제가 있다. However, in the case of the prior document, the temperature of the refrigerating chamber continuously increases until the compressor is operated again for cooling the cooling chamber in the state where the compressor is stopped, and the temperature of the refrigerating chamber is lowered when the compressor is operated again. Is large. Therefore, there is a problem that the freshness of food stored in the refrigerating chamber is inferior.
본 발명은, 피보관물의 신선도 향상을 위하여, 저장실의 온도 변화가 줄어들도록 제어되는 냉장고의 제어방법을 제공한다. The present invention provides a control method of a refrigerator controlled to reduce a change in temperature of a storage compartment in order to improve freshness of a stored object.
또한, 본 발명은 압축기의 온 과정에서 발생되는 소비 전력을 줄일 수 있는 냉장고의 제어방법을 제공한다. In addition, the present invention provides a control method of a refrigerator capable of reducing power consumption generated during the on process of a compressor.
일 측면에 따른 냉장고의 제어방법은, 냉매를 압축하는 압축기와, 상기 압축기로부터 냉매를 공급받아 제 1 저장실을 냉각시키기 위한 냉기를 발생시키는 제 1 증발기와, 상기 제 1 저장실에 냉기를 공급하기 위한 제 1 냉기공급수단과, 상기 압축기로부터 냉매를 공급받아 제 2 저장실을 위한 냉기를 발생시키는 제 2 증발기와, 상기 제 2 저장실에 냉기를 공급하기 위한 제 2 냉기공급수단과, 상기 압축기와 상기 제 1 증발기 사이에 냉매가 흐로도록 연결하는 제 1 냉매통로와 상기 압축기와 상기 제 2 증발기 사이에 냉매가 흐르도록 연결하는 제 2 냉매통로 중 어느 하나를 선택적으로 개방하는 밸브를 포함함으로써, 상기 제 1 저장실의 냉각과 상기 제 2 저장실 냉각이 교번하여 이루어지도록 구성된 냉장고의 제어방법에 있어서, 상기 제 1 저장실의 냉각을 위한 상기 제 1 냉각 사이클이 작동되어 압축기가 작동하고, 상기 제 1 저장실을 위한 제 1 냉기공급수단이 작동하는 단계; 상기 제 1 냉각 사이클이 제 1 운전 시간 동안 작동된 경우, 상기 제 2 저장실의 냉각을 위한 제 2 냉각 사이클로 전환되어 상기 압축기가 작동하고, 상기 제 2 냉기공급수단이 작동하는 단계; 및 상기 제 2 냉각 사이클이 제 2 운전 시간 동안 작동된 경우, 상기 제 2 냉각 사이클이 정지되는 단계를 포함한다. In one embodiment, a control method of a refrigerator includes a compressor for compressing a refrigerant, a first evaporator configured to receive coolant from the compressor, and generate cold air for cooling the first storage compartment, and to supply cold air to the first storage compartment. First cold air supply means, a second evaporator receiving coolant from the compressor to generate cold air for the second storage compartment, second cold air supply means for supplying cold air to the second storage compartment, the compressor and the first And a valve for selectively opening any one of a first refrigerant passage connecting the refrigerant to flow between the first evaporator and a second refrigerant passage connecting the refrigerant to the compressor and the second evaporator. A control method of a refrigerator configured to alternately cool a storage compartment and a cooling of the second storage compartment, wherein the cooling of the first storage compartment is performed. This is the first cycle for cooling operation step of the compressor is operating, and the first cold air supply means to the first storage operation; When the first cooling cycle is operated for a first operation time, switching to a second cooling cycle for cooling the second storage compartment to operate the compressor and operating the second cold air supply means; And when the second cooling cycle has been operated for a second operating time, the second cooling cycle is stopped.
상기 제 1 기준 시간은 이전의 제 1 냉각 사이클과 이전의 제 2 냉각 사이클을 포함하는 1회의 운전 주기 동안의 상기 제 1 저장실의 온도에 기초하여 획득된 대표값을 이용하여 결정되고, 제어부는 결정된 제 1 기준 시간 동안 상기 제 1 냉각 사이클이 작동되도록 할 수 있다. The first reference time is determined using a representative value obtained based on the temperature of the first storage compartment during one operation cycle comprising the previous first cooling cycle and the previous second cooling cycle, and the control unit determines the The first cooling cycle may be operated for a first reference time.
상기 제 2 기준 시간은 상기 1회의 운전 주기 동안의 상기 제 2 저장실의 온도에 기초하여 획득된 대표값을 이용하여 결정되고, 상기 제어부는 결정된 제 2 기준 시간 동안 상기 제 2 냉각 사이클이 작동되도록 할 수 있다. The second reference time is determined using the representative value obtained based on the temperature of the second storage compartment during the one operation period, and the control unit is configured to cause the second cooling cycle to be operated during the determined second reference time. Can be.
상기 제 1 저장실의 대표값은 상기 제 1 저장실의 온도 편차이고, 상기 제 2 저장실의 대표값은 상기 제 2 저장실의 온도 편차일 수 있다. The representative value of the first storage compartment may be a temperature deviation of the first storage compartment, and the representative value of the second storage compartment may be a temperature deviation of the second storage compartment.
상기 제어부는, 상기 각 저장실의 대표값과 기준값을 비교하고, 비교 결과에 따라서 상기 제 1 운전 시간 및 제 2 운전 시간을 결정할 수 있다. The controller may compare the representative value and the reference value of each of the storage rooms, and determine the first and second operating time according to the comparison result.
상기 제어부는, 상기 기준값과 상기 각 저장실의 대표값이 동일한 경우에는 상기 제 1 운전 시간 및 제 2 운전 시간을 이전 사이클에서의 운전 시간과 동일한 시간으로 결정할 수 있다. When the reference value and the representative value of each storage chamber are the same, the controller may determine the first operation time and the second operation time to be the same time as the operation time in the previous cycle.
상기 제어부는, 상기 기준값과 상기 저장실의 대표값의 차이가 0보다 큰 경우에는 상기 제 1 기준 시간 및 제 2 기준 시간을 이전 사이클에서의 운전 시간 보다 증가시키는 것으로 결정할 수 있다. When the difference between the reference value and the representative value of the storage compartment is greater than zero, the controller may determine to increase the first reference time and the second reference time than the operation time in the previous cycle.
상기 제어부는, 상기 기준값과 상기 저장실의 대표값의 차이가 0보다 작은 경우에는 상기 제 1 기준 시간 및 제 2 기준 시간을 이전 사이클에서의 운전 시간 보다 감소시키는 것으로 결정할 수 있다. If the difference between the reference value and the representative value of the storage compartment is less than 0, the controller may determine to decrease the first reference time and the second reference time from the operation time of the previous cycle.
사이클의 횟수와 무관하게 상기 압축기는 고정된 냉력으로 작동될 수 있다. Regardless of the number of cycles, the compressor can be operated with a fixed cooling force.
본 실시 예에서, 현재의 제 1 냉각 사이클에서의 압축기의 냉력은 상기 1회의 운전 주기 동안의 상기 제 1 저장실의 온도에 기초하여 결정되며, 이전의 제 1 냉각 사이클의 압축기의 냉력과 동일하게 유지되거나 가변될 수 있다. In this embodiment, the cold power of the compressor in the current first cooling cycle is determined based on the temperature of the first storage compartment during the one operating cycle and remains the same as the cold power of the compressor of the previous first cooling cycle. Or variable.
또한, 현재의 제 2 냉각 사이클에서의 압축기의 냉력은 상기 1회의 운전 주기 동안의 상기 제 2 저장실의 온도에 기초하여 결정되며, 이전의 제 2 냉각 사이클의 압축기의 냉력과 동일하게 유지되거나 가변될 수 있다. In addition, the cooling power of the compressor in the current second cooling cycle is determined based on the temperature of the second storage compartment during the one operation cycle, and may be maintained or changed to be equal to the cooling power of the compressor of the previous second cooling cycle. Can be.
다른 측면에 따른 냉장고의 제어방법은, 냉매를 압축하는 압축기와, 상기 압축기로부터 냉매를 공급받아 제 1 저장실을 냉각시키기 위한 냉기를 발생시키는 제 1 증발기와, 상기 제 1 저장실에 냉기를 공급하기 위한 제 1 냉기공급수단과, 상기 압축기로부터 냉매를 공급받아 제 2 저장실을 위한 냉기를 발생시키는 제 2 증발기와, 상기 제 2 저장실에 냉기를 공급하기 위한 제 2 냉기공급수단과, 상기 압축기와 상기 제 1 증발기 사이에 냉매가 흐로도록 연결하는 제 1 냉매통로와 상기 압축기와 상기 제 2 증발기 사이에 냉매가 흐르도록 연결하는 제 2 냉매통로 중 어느 하나를 선택적으로 개방하는 밸브를 포함함으로써, 상기 제 1 저장실의 냉각과 상기 제 2 저장실 냉각이 교번하여 이루어지도록 구성된 냉장고의 제어방법에 있어서, 상기 제 1 저장실의 냉각을 위한 상기 제 1 냉각 사이클이 작동되어 압축기가 작동하고, 상기 제 1 저장실을 위한 제 1 냉기공급수단이 작동하는 단계; 상기 제 1 냉각 사이클이 제 1 기준 시간 동안 작동된 경우, 상기 제 2 저장실의 냉각을 위한 제 2 냉각 사이클로 전환되어 상기 압축기가 작동하고, 상기 제 2 냉기공급수단이 작동하는 단계; 및 상기 제 2 냉각 사이클이 제 2 기준 시간 동안 작동된 경우, 상기 제 2 냉각 사이클이 정지되는 단계를 포함하고, 현재의 제 1 냉각 사이클에서의 상기 압축기의 냉력은 이전의 제 1 냉각 사이클과 이전의 제 2 냉각 사이클을 포함하는 1회의 운전 주기 동안의 상기 제 1 저장실의 온도에 기초하여 획득된 대표값을 이용하여 결정되고, 제어부는 결정된 냉력으로 상기 압축기가 현재의 제 1 냉각 사이클에서 작동되도록 하고, 현재의 제 2 냉각 사이클에서의 상기 압축기의 냉력은 상기 1회의 운전 주기 동안의 상기 제 2 저장실의 온도에 기초하여 획득된 대표값을 이용하여 결정되고, 제어부는 결정된 냉력으로 상기 압축기가 현재의 제 2 냉각 사이클에서 작동되도록 한다. A control method of a refrigerator according to another aspect includes a compressor for compressing a refrigerant, a first evaporator for receiving coolant from the compressor and generating cold air for cooling the first storage compartment, and for supplying cold air to the first storage compartment. First cold air supply means, a second evaporator receiving coolant from the compressor to generate cold air for the second storage compartment, second cold air supply means for supplying cold air to the second storage compartment, the compressor and the first And a valve for selectively opening any one of a first refrigerant passage connecting the refrigerant to flow between the first evaporator and a second refrigerant passage connecting the refrigerant to the compressor and the second evaporator. A control method of a refrigerator configured to alternately cool a storage compartment and a cooling of the second storage compartment, wherein the cooling of the first storage compartment is performed. It is that the first refrigeration cycle operation for the step of the compressor is operating, and the first cold air supply means to the first storage operation; When the first cooling cycle is operated for a first reference time, switching to a second cooling cycle for cooling the second storage compartment to operate the compressor and operating the second cold air supply means; And when the second cooling cycle has been operated for a second reference time, the second cooling cycle is stopped, wherein the cooling force of the compressor in the current first cooling cycle is equal to the previous first cooling cycle. Is determined using a representative value obtained based on the temperature of the first reservoir during one operation cycle comprising a second cooling cycle of the controller, and the control unit is configured to operate the compressor in the current first cooling cycle with the determined cooling force. And the cooling power of the compressor in the current second cooling cycle is determined using the representative value obtained based on the temperature of the second storage compartment during the one operation cycle, and the controller determines that the compressor is currently To operate in the second cooling cycle.
상기 제 1 저장실의 대표값은 상기 제 1 저장실의 평균 온도이고, 상기 제 2 저장실의 대표값은 상기 제 2 저장실의 평균 온도일 수 있다. The representative value of the first storage compartment may be an average temperature of the first storage compartment, and the representative value of the second storage compartment may be an average temperature of the second storage compartment.
또는, 상기 제 1 저장실의 대표값은 상기 제 1 저장실의 최고 온도와 최저 온도의 평균 온도이고, 상기 제 2 저장실의 대표값은 상기 제 2 저장실의 최고 온도와 최저 온도의 평균 온도일 수 있다. Alternatively, the representative value of the first storage compartment may be an average temperature of the highest temperature and the lowest temperature of the first storage compartment, and the representative value of the second storage compartment may be an average temperature of the highest temperature and the lowest temperature of the second storage compartment.
상기 제어부는, 상기 각 저장실의 대표값과 각 저장실의 설정 온도를 비교하고, 비교 결과에 따라서 상기 압축기의 냉력을 결정할 수 있다. The controller may compare the representative value of each storage compartment with a set temperature of each storage compartment, and determine the cooling power of the compressor according to the comparison result.
상기 제어부는, 상기 각 설정 온도와 상기 각 저장실의 대표값이 동일한 경우에는 현재 사이클에서의 압축기의 냉력을 이전 사이클에서의 압축기의 냉력과 동일한 냉력으로 결정할 수 있다. The controller may determine the cooling power of the compressor in the current cycle to the same cooling power as that of the compressor in the previous cycle when the set temperature and the representative value of the storage compartments are the same.
상기 제어부는, 상기 각 설정 온도와 상기 저장실의 대표값의 차이가 0보다 큰 경우에는 현재 사이클에서의 압축기의 냉력을 이전 사이클에서의 압축기의 냉력 보다 감소시키는 것으로 결정할 수 있다. The controller may determine that the cooling power of the compressor in the current cycle is lower than that of the compressor in the previous cycle when the difference between the set temperature and the representative value of the storage compartment is greater than zero.
상기 각 설정 온도와 상기 저장실의 대표값의 차이가 0보다 작은 경우에는 현재 사이클에서의 압축기의 냉력을 이전 사이클에서의 압축기의 냉력 보다 증가시키는 것으로 결정할 수 있다. When the difference between the set temperature and the representative value of the storage chamber is less than zero, it may be determined that the cooling power of the compressor in the current cycle is increased than that of the compressor in the previous cycle.
상기 제 1 기준 시간 및 상기 제 2 기준 시간은 고정된 시간일 수 있다. The first reference time and the second reference time may be fixed times.
또는, 현재의 제 1 냉각 사이클에서의 제 1 운전 시간은 상기 1회의 운전 주기 동안의 상기 제 1 저장실의 온도에 기초하여 결정되며, 이전의 제 1 냉각 사이클의 제 1 운전 시간과 동일하거나 가변될 수 있다. Alternatively, the first operating time in the current first cooling cycle is determined based on the temperature of the first reservoir during the one operating cycle, and may be equal to or varying the first operating time of the previous first cooling cycle. Can be.
현재의 제 2 냉각 사이클에서의 제 2 운전 시간은 상기 1회의 운전 주기 동안의 상기 제 2 저장실의 온도에 기초하여 결정되며, 이전의 제 2 냉각 사이클의 제 2 운전 시간과 동일하거나 가변될 수 있다. The second operating time in the current second cooling cycle is determined based on the temperature of the second storage compartment during the one operating cycle, and may be the same or variable as the second operating time of the previous second cooling cycle. .
또 다른 측면에 따른 냉장고의 제어방법은, 냉매를 압축하는 압축기와, 상기 압축기로부터 냉매를 공급받아 제 1 저장실을 냉각시키기 위한 냉기를 발생시키는 제 1 증발기와, 상기 제 1 저장실에 냉기를 공급하기 위한 제 1 냉기공급수단과, 상기 압축기로부터 냉매를 공급받아 제 2 저장실을 위한 냉기를 발생시키는 제 2 증발기와, 상기 제 2 저장실에 냉기를 공급하기 위한 제 2 냉기공급수단과, 상기 압축기와 상기 제 1 증발기 사이에 냉매가 흐로도록 연결하는 제 1 냉매통로와 상기 압축기와 상기 제 2 증발기 사이에 냉매가 흐르도록 연결하는 제 2 냉매통로 중 어느 하나를 선택적으로 개방하는 밸브를 포함함으로써, 상기 제 1 저장실의 냉각과 상기 제 2 저장실 냉각이 교번하여 이루어지도록 구성된 냉장고의 제어방법에 있어서, 상기 제 1 저장실의 냉각을 위한 상기 제 1 냉각 사이클이 작동되어 압축기가 작동하고, 상기 제 1 저장실을 위한 제 1 냉기공급수단이 작동하는 단계; 상기 제 1 냉각 사이클이 제 1 운전 시간 동안 작동된 경우, 상기 제 2 저장실의 냉각을 위한 제 2 냉각 사이클로 전환되어 상기 압축기가 작동하고, 상기 제 2 냉기공급수단이 작동하는 단계; 및 상기 제 2 냉각 사이클이 제 2 운전 시간 동안 작동된 경우, 상기 제 2 냉각 사이클이 정지되는 단계를 포함하고, 현재의 제 1 냉각 사이클에서의 상기 압축기의 냉력은 이전의 제 1 냉각 사이클과 이전의 제 2 냉각 사이클을 포함하는 1회의 운전 주기 동안의 상기 제 1 저장실의 온도에 기초하여 획득된 제1대표값을 이용하여 결정되고, 제어부는 결정된 냉력으로 상기 압축기가 현재의 제 1 냉각 사이클에서 작동되도록 하고, 현재의 제 2 냉각 사이클에서의 상기 압축기의 냉력은 상기 1회의 운전 주기 동안의 상기 제 2 저장실의 온도에 기초하여 획득된 제2대표값을 이용하여 결정되고, 제어부는 결정된 냉력으로 상기 압축기가 현재의 제 2 냉각 사이클에서 작동되고, 상기 제 1 기준 시간은 이전의 제 1 냉각 사이클과 이전의 제 2 냉각 사이클을 포함하는 1회의 운전 주기 동안의 상기 제 1 저장실의 온도에 기초하여 획득된 제3대표값을 이용하여 결정되고, 제어부는 결정된 제 1 기준 시간 동안 상기 제 1 냉각 사이클이 작동되도록 하고, 상기 제 2 기준 시간은 상기 1회의 운전 주기 동안의 상기 제 2 저장실의 온도에 기초하여 획득된 제4대표값을 이용하여 결정되고, 상기 제어부는 결정된 제 2 기준 시간 동안 상기 제 2 냉각 사이클이 작동되도록 한다. According to another aspect, a control method of a refrigerator includes a compressor for compressing a refrigerant, a first evaporator configured to receive coolant from the compressor, and generate cold air for cooling the first storage compartment, and supplying cold air to the first storage compartment. First cold air supply means for supplying a second evaporator to generate cool air for a second storage compartment by receiving refrigerant from the compressor, second cold air supply means for supplying cold air to the second storage compartment, the compressor and the And a valve for selectively opening any one of a first refrigerant passage connecting the refrigerant to flow between the first evaporator and a second refrigerant passage connecting the refrigerant to the compressor and the second evaporator. 1. A control method of a refrigerator configured to alternately cool a storage compartment and a cooling of the second storage compartment, the control method of the refrigerator. It is that the first refrigeration cycle operation for each step of the compressor is operating, and the first cold air supply means to the first storage operation; When the first cooling cycle is operated for a first operation time, switching to a second cooling cycle for cooling the second storage compartment to operate the compressor and operating the second cold air supply means; And when the second cooling cycle has been operated for a second operating time, the second cooling cycle is stopped, wherein the cooling force of the compressor in the current first cooling cycle is equal to the previous first cooling cycle. Is determined using a first representative value obtained based on the temperature of the first reservoir during one operation cycle comprising a second cooling cycle of the controller, and the control unit determines that the compressor is And the cooling power of the compressor in the current second cooling cycle is determined using a second representative value obtained based on the temperature of the second storage compartment during the one operating cycle, and the control unit The compressor is operated in the current second cooling cycle, and the first reference time includes a previous first cooling cycle and a previous second cooling cycle. Determined using a third representative value obtained based on the temperature of the first storage room during one operation cycle, and a control unit causes the first cooling cycle to be operated for the determined first reference time, and the second reference time. Is determined using a fourth representative value obtained based on the temperature of the second storage compartment during the one operation period, and the control unit causes the second cooling cycle to be operated during the determined second reference time.
또 다른 측면에 따른 냉장고의 제어방법은, 냉매를 압축하는 압축기와, 상기 압축기로부터 냉매를 공급받아 제 1 저장실을 냉각시키기 위한 냉기를 발생시키는 제 1 증발기와, 상기 제 1 저장실에 냉기를 공급하기 위한 제 1 냉기공급수단과, 상기 압축기로부터 냉매를 공급받아 제 2 저장실을 위한 냉기를 발생시키는 제 2 증발기와, 상기 제 2 저장실에 냉기를 공급하기 위한 제 2 냉기공급수단과, 상기 압축기와 상기 제 1 증발기 사이에 냉매가 흐로도록 연결하는 제 1 냉매통로와 상기 압축기와 상기 제 2 증발기 사이에 냉매가 흐르도록 연결하는 제 2 냉매통로 중 어느 하나를 선택적으로 개방하는 밸브를 포함함으로써, 상기 제 1 저장실의 냉각과 상기 제 2 저장실 냉각이 교번하여 이루어지도록 구성된 냉장고의 제어방법에 있어서, 냉장고 작동 초기, 상기 제 1 저장실의 냉각을 위한 상기 제 1 냉각 사이클이 작동되어 압축기가 작동하고, 상기 제 1 저장실을 위한 제 1 냉기공급수단이 작동하는 단계; 상기 제 1 냉각 사이클이 제 1 기준 시간 동안 작동된 경우, 상기 제 2 저장실의 냉각을 위한 제 2 냉각 사이클로 전환되어 상기 압축기가 작동하고, 상기 제 2 냉기공급수단이 작동하는 단계; 및 상기 제 2 냉각 사이클이 제 2 기준 시간 동안 작동된 경우, 상기 제 2 냉각 사이클이 정지되는 단계를 포함하고, 현재의 제 1 냉각 사이클에서의 상기 압축기의 냉력은 이전의 제 1 냉각 사이클과 이전의 제 2 냉각 사이클을 포함하는 1회의 운전 주기 동안의 상기 제 1 저장실의 온도에 기초하여 획득된 제1대표값을 이용하여 결정되고, 제어부는 결정된 냉력으로 상기 압축기가 현재의 제 1 냉각 사이클에서 작동되도록 하고, 현재의 제 2 냉각 사이클에서의 상기 압축기의 냉력은 상기 1회의 운전 주기 동안의 상기 제 2 저장실의 온도에 기초하여 획득된 제2대표값을 이용하여 결정되고, 제어부는 결정된 냉력으로 상기 압축기가 현재의 제 2 냉각 사이클에서 작동되고, 각 냉각 사이클에서 냉력 변동이 안정화 조건을 만족하는 경우에는, 상기 제어부는, 상기 1회의 운전 주기 동안의 상기 제 1 저장실의 온도에 기초하여 획득된 제3대표값을 이용하여 상기 제 1 냉각 사이클의 제 1 운전 시간을 결정하며, 결정된 제 1 운전 시간은 상기 제 1 기준 시간과 동일하거나 다르고, 상기 1회의 운전 주기 동안의 상기 제 2 저장실의 온도에 기초하여 획득된 제4대표값을 이용하여 상기 제 2 냉각 사이클의 제 2 운전 시간을 결정하며, 결정된 제 2 운전 시간은 상기 제 2 기준 시간가 동일하거나 다른 것을 특징으로 한다. According to another aspect, a control method of a refrigerator includes a compressor for compressing a refrigerant, a first evaporator configured to receive coolant from the compressor, and generate cold air for cooling the first storage compartment, and supplying cold air to the first storage compartment. First cold air supply means for supplying a second evaporator to generate cool air for a second storage compartment by receiving refrigerant from the compressor, second cold air supply means for supplying cold air to the second storage compartment, the compressor and the And a valve for selectively opening any one of a first refrigerant passage connecting the refrigerant to flow between the first evaporator and a second refrigerant passage connecting the refrigerant to the compressor and the second evaporator. 1. A control method of a refrigerator configured to alternately cool a storage compartment and a cooling of the second storage compartment, the initial operation of the refrigerator comprising: Further comprising: the compressor is operating is the first cooling cycle for cooling the first storage group is operated, and the first cold air supply means to the first storage operation; When the first cooling cycle is operated for a first reference time, switching to a second cooling cycle for cooling the second storage compartment to operate the compressor and operating the second cold air supply means; And when the second cooling cycle has been operated for a second reference time, the second cooling cycle is stopped, wherein the cooling force of the compressor in the current first cooling cycle is equal to the previous first cooling cycle. Is determined using a first representative value obtained based on the temperature of the first reservoir during one operation cycle comprising a second cooling cycle of the controller, and the control unit determines that the compressor is And the cooling power of the compressor in the current second cooling cycle is determined using a second representative value obtained based on the temperature of the second storage compartment during the one operating cycle, and the control unit If the compressor is operated in the current second cooling cycle, and the cooling force fluctuations satisfy the stabilization conditions in each cooling cycle, the control unit, The first operating time of the first cooling cycle is determined using the third representative value obtained based on the temperature of the first storage chamber during the first operation cycle, and the determined first operating time is the first reference time. The second operating time of the second cooling cycle is determined using the fourth representative value obtained based on the temperature of the second storage compartment during the one operation cycle, and the second operating time is The second reference time is the same or different.
제안되는 발명에 의하면, 이전 사이클에서의 저장실의 온도에 기초하여 압축기의 냉력 또는 사이클의 운전 시간이 가변될 수 있어, 저장실의 온도 변화 폭이 줄어들 수 있고 이에 따라, 피보관물의 신선도가 향상될 수 있다. According to the proposed invention, the cold power of the compressor or the operating time of the cycle can be varied based on the temperature of the storage compartment in the previous cycle, so that the temperature variation range of the storage compartment can be reduced, thereby improving the freshness of the storage. have.
또한, 압축기의 냉력 및/또는 사이클의 운전 시간을 가변시키면서 압축기를 연속 운전시키므로, 상기 압축기가 과도한 냉력으로 동작하는 것이 방지될 수 있고, 압축기를 오프시킨 후 온시키지 않아도 되므로, 압축기를 온 시키는 과정에서 필요한 기동 전력에 의한 전력 소비를 줄일 수 있는 장점이 있다. In addition, since the compressor is continuously operated while varying the cold power of the compressor and / or the operating time of the cycle, the compressor can be prevented from operating with excessive cold power, and the compressor does not need to be turned off before turning on the compressor. There is an advantage that can reduce the power consumption by the required starting power.
도 1은 본 발명의 일 실시 예에 따른 냉장고의 구성을 개략적으로 보여주는 도면.1 is a view schematically showing the configuration of a refrigerator according to one embodiment of the present invention;
도 2는 본 발명의 일 실시 예에 따른 냉장고의 블럭도.2 is a block diagram of a refrigerator according to one embodiment of the present invention;
도 3은 본 발명의 일 실시 예에 따른 냉장고의 기본 제어방법을 개략적으로 설명하기 위한 흐름도. 3 is a flow chart for schematically explaining a basic control method of a refrigerator according to one embodiment of the present invention;
도 4는 본 발명의 일 실시 예에 따른 냉장 사이클 및 냉동 사이클 각각의 운전 시간을 결정하는 방법을 설명하기 위한 흐름도. 4 is a flowchart illustrating a method of determining an operating time of each of a refrigerating cycle and a refrigerating cycle according to an embodiment of the present invention.
도 5 및 도 6은 본 발명의 다른 실시 예에 따른 냉장 사이클 및 냉동 사이클 각각이 작동할 때의 압축기의 냉력을 결정하는 방법을 설명하기 위한 흐름도. 5 and 6 are flowcharts illustrating a method of determining the cooling force of the compressor when each of the refrigerating cycle and the refrigeration cycle according to another embodiment of the present invention.
이하, 본 발명의 일부 실시 예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명의 실시 예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 실시예에 대한 이해를 방해한다고 판단되는 경우에는 그 상세한 설명은 생략한다. Hereinafter, some embodiments of the present invention will be described in detail with reference to the accompanying drawings. In adding reference numerals to the components of each drawing, it should be noted that the same reference numerals are assigned to the same components as much as possible even though they are shown in different drawings. In addition, in describing the embodiments of the present invention, if it is determined that the detailed description of the related well-known configuration or function interferes with the understanding of the embodiments of the present invention, the detailed description thereof will be omitted.
또한, 본 발명의 실시예의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다. In addition, in describing the components of the embodiment of the present invention, terms such as first, second, A, B, (a), and (b) may be used. These terms are only for distinguishing the components from other components, and the nature, order or order of the components are not limited by the terms. If a component is described as being "connected", "coupled" or "connected" to another component, that component may be directly connected or connected to that other component, but there is another component between each component. It will be understood that may be "connected", "coupled" or "connected".
도 1은 본 발명의 일 실시 예에 따른 냉장고의 구성을 개략적으로 보여주는 도면이고, 도 2는 본 발명의 일 실시 예에 따른 냉장고의 블럭도이다. 1 is a view schematically showing the configuration of a refrigerator according to an embodiment of the present invention, Figure 2 is a block diagram of a refrigerator according to an embodiment of the present invention.
도 1 및 도 2를 참조하면, 본 발명의 일 실시 예에 따른 냉장고(1)는, 내부에 냉동실(111)과 냉장실(112)이 형성되는 캐비닛(10)과, 상기 캐비닛(10)에 결합되어 상기 냉동실(111)과 냉장실(112)을 각각 개폐하는 도어(미도시)를 포함할 수 있다. 1 and 2, the refrigerator 1 according to an embodiment of the present invention includes a cabinet 10 having a freezing compartment 111 and a refrigerating compartment 112 formed therein, and coupled to the cabinet 10. And a door (not shown) for opening and closing the freezing compartment 111 and the refrigerating compartment 112, respectively.
상기 냉동실(111)과 냉장실(112)은 구획벽(113)에 의하여 상기 캐비닛(10)의 내부에서 좌우 방향 또는 상하 방향으로 구획될 수 있다. The freezing chamber 111 and the refrigerating chamber 112 may be partitioned in the left and right or up and down directions in the cabinet 10 by the partition wall 113.
상기 냉장고(1)는, 압축기(21)와, 응축기(22)와, 팽창 부재(23)와, 냉동실(111) 냉각을 위한 냉동실용 증발기(24)(또는 "제 1 증발기"라고 할 수 있음)와, 냉장실(112) 냉각을 위한 냉장실용 증발기(25)(또는 "제 2 증발기"라고 할 수 있음)를 더 포함할 수 있다. The refrigerator 1 may be referred to as a compressor 21, a condenser 22, an expansion member 23, and a freezer compartment evaporator 24 (or “first evaporator”) for cooling the freezer compartment 111. And a refrigerator compartment evaporator 25 (or referred to as a “second evaporator”) for cooling the refrigerator compartment 112.
상기 냉장고(1)는 상기 팽창 부재(23)를 지난 냉매를 상기 냉동실용 증발기(24) 및 냉장실용 증발기(26) 중 어느 하나로 유동되도록 하기 위한 절환 밸브(26)를 포함할 수 있다. The refrigerator 1 may include a switching valve 26 for allowing the refrigerant passing through the expansion member 23 to flow into any one of the freezer compartment evaporator 24 and the refrigerator compartment evaporator 26.
본 발명에서 냉매가 냉동실용 증발기(24)로 유동하도록 상기 절환 밸브(26)가 작동한 상태를 상기 절환 밸브(26)의 제1상태라 할 수 있다. 또한, 냉매가 냉장실용 증발기(25)로 유동하도록 상기 절환 밸브(26)가 작동한 상태를 상기 절환 밸브(26)의 제2상태라 할 수 있다. 상기 절환 밸브(26)는 일 예로 삼방 밸브(three way valve)일 수 있다. In the present invention, a state in which the switching valve 26 is operated so that the refrigerant flows to the freezer compartment evaporator 24 may be referred to as a first state of the switching valve 26. In addition, a state in which the switching valve 26 is operated so that the refrigerant flows into the refrigerating chamber evaporator 25 may be referred to as a second state of the switching valve 26. The switching valve 26 may be, for example, a three way valve.
상기 절환 밸브(26)는, 상기 압축기(21)와 상기 냉장실용 증발기(25) 사이에 냉매가 흐로도록 연결하는 제 1 냉매통로와, 상기 압축기(21)와 상기 냉동실용 증발기(24) 사이에 사이에 냉매가 흐르도록 연결하는 제2냉매통로 중 어느 하나를 선택적으로 개방할 수 있다 이러한 절환 밸브(26)에 의해서 상기 냉장실(112)의 냉각과 상기 냉동실(111)의 냉각이 교번하여 이루어질 수 있다. The switching valve 26 is a first refrigerant passage for connecting the refrigerant flows between the compressor 21 and the refrigerating chamber evaporator 25, and between the compressor 21 and the freezing chamber evaporator 24. One of the second refrigerant passages connecting the refrigerant to flow therebetween may be selectively opened. The switching valve 26 may alternately cool the refrigerator compartment 112 and the freezer compartment 111. have.
상기 냉장고(1)는 상기 냉동실용 증발기(24)로 공기를 송풍하기 위한 냉동실 팬(28)("제 1 송풍팬"이라고 할 수 있음), 상기 냉동실 팬(28)을 회전시키기 위한 제 1 모터(27), 상기 냉장실용 증발기(25)로 공기를 송풍하기 위한 냉장실 팬(29)("제 2 송풍팬"이라고 할 수 있음) 및 상기 냉장실 팬(29)을 회전시키기 위한 제 2 모터(30)를 더 포함할 수 있다. The refrigerator 1 is a freezer compartment fan 28 (which may be referred to as a "first blower fan") for blowing air to the freezer compartment evaporator 24, and a first motor for rotating the freezer compartment fan 28. (27), a refrigerating compartment fan 29 (which may be referred to as a "second blowing fan") for blowing air to the refrigerating compartment evaporator 25 and a second motor 30 for rotating the refrigerating compartment fan 29. ) May be further included.
본 발명에서, 냉매가 압축기(21), 응축기(22), 팽창 부재(23) 및 냉동실용 증발기(24)를 유동하는 일련의 사이클을 "냉동 사이클"이라 이름하고, 냉매가 압축기(21), 응축기(22), 팽창 부재(23) 및 냉장실용 증발기(25)를 유동하는 일련의 사이클을 "냉장 사이클"이라 이름하기로 한다.In the present invention, a series of cycles through which the refrigerant flows through the compressor 21, the condenser 22, the expansion member 23 and the freezer evaporator 24 is called a "freezing cycle", and the refrigerant is the compressor 21, A series of cycles through which the condenser 22, the expansion member 23, and the refrigerating chamber evaporator 25 flows will be referred to as a "refrigeration cycle."
"냉장 사이클이 작동된다"는 것은, 압축기(21)가 온되고, 냉장실 팬(29)이 회전되고, 냉매가 상기 절환 밸브(26)에 의해서 상기 냉장실용 증발기(25)를 유동하면서, 상기 냉장실용 증발기(25)를 유동하는 냉매와 공기가 열교환되는 것을 의미한다. "Refrigerating cycle is activated" means that the compressor 21 is turned on, the refrigerating chamber fan 29 is rotated, and the refrigerant flows through the refrigerating chamber evaporator 25 by the switching valve 26. This means that the refrigerant flowing through the practical evaporator 25 and the air are heat exchanged.
또한, "냉동 사이클이 작동된다"는 것은 압축기(21)가 온되고, 냉동실 팬(28)이 회전되고, 냉매가 상기 절환 밸브(26)에 의해서 상기 냉동실용 증발기(24)를 유동하면서, 상기 냉동실용 증발기(24)를 유동하는 냉매와 공기가 열교환되는 것을 의미한다. Further, "the freezing cycle is activated" means that the compressor 21 is turned on, the freezer compartment fan 28 is rotated, and the refrigerant flows through the freezer compartment evaporator 24 by the switching valve 26. It means that the refrigerant flowing through the freezer evaporator 24 and the heat exchange.
위의 설명에서는 하나의 팽창 부재(23)가 상기 절환 밸브(26)의 상류에 위치되는 것으로 설명하였으나, 이와 달리, 상기 절환 밸브(26)와 상기 냉동실용 증발기(24) 사이에 제 1 팽창 부재가 구비되고, 상기 절환 밸브(26)와 상기 냉장실용 증발기(25) 사이에 제 2 팽창 부재가 구비되는 것도 가능하다. In the above description, one expansion member 23 is described as being located upstream of the switching valve 26. Alternatively, a first expansion member is located between the switching valve 26 and the freezing chamber evaporator 24. It is also possible to provide a second expansion member between the switching valve 26 and the refrigerating chamber evaporator 25.
또 다른 예로서, 상기 절환 밸브(26)가 사용되지 않고, 상기 냉동실용 증발기(24)의 입구 측에 제 1 밸브가 구비되고, 상기 냉장실용 증발기(25)의 입구 측에 제 2 밸브가 구비되는 것도 가능하다. 냉동 사이클의 작동 시에는 제 1 밸브가 온되고, 제 2 밸브가 오프될 수 있고, 냉장 사이클의 작동 시에는 제 1 밸브가 오프되고, 제 2 밸브가 온될 수 있다. As another example, the switching valve 26 is not used, the first valve is provided on the inlet side of the freezer compartment evaporator 24, and the second valve is provided on the inlet side of the refrigerator compartment evaporator 25. It is also possible. The first valve may be turned on when the refrigeration cycle is in operation, the second valve may be turned off, and the first valve may be turned off when the refrigeration cycle is in operation, and the second valve may be turned on.
상기 냉장고(1)는, 상기 냉동실(111)의 온도를 감지하기 위한 냉동실 온도센서(41)와, 상기 냉장실(112)의 온도를 감지하기 위한 냉장실 온도센서(42)와, 상기 냉동실(111)과 냉장실(112) 각각의 목표 온도(또는 설정 온도)를 입력할 수 있는 입력부(43)와, 입력된 목표 온도와 온도 센서(41, 42)에서 감지된 온도에 기초하여 냉각 사이클(냉동 사이클 및 냉장 사이클을 포함)을 제어하는 제어부(50)를 포함할 수 있다. The refrigerator 1 includes a freezer compartment temperature sensor 41 for detecting a temperature of the freezer compartment 111, a refrigerator compartment temperature sensor 42 for detecting a temperature of the refrigerator compartment 112, and the freezer compartment 111. And an input unit 43 capable of inputting a target temperature (or a set temperature) of each of the refrigerating compartments 112, and a cooling cycle (a freezing cycle and And a control unit 50 for controlling the refrigeration cycle.
본 명세서에서, 상기 냉장실(112)의 설정 온도 보다 낮은 온도를 제 1 냉장실 기준 온도(또는 제 1 기준 온도)라 하고, 상기 냉장실(112)의 설정 온도 보다 높은 온도를 제 2 냉장실 기준 온도(제 2 기준 온도)라 이름할 수 있다. 또한, 상기 제 1 냉장실 기준 온도와 제 2 냉장실 기준 온도 사이의 범위를 냉장실 설정 온도 범위라 이름할 수 있다. In the present specification, a temperature lower than the set temperature of the refrigerating chamber 112 is referred to as a first refrigerating chamber reference temperature (or a first reference temperature), and a temperature higher than the set temperature of the refrigerating chamber 112 is referred to as a second refrigerating chamber reference temperature (the first temperature). 2 reference temperature). In addition, a range between the first refrigerator compartment reference temperature and the second refrigerator compartment reference temperature may be referred to as a refrigerator compartment set temperature range.
제한적이지는 않으나, 상기 냉장실(112)의 설정 온도는 상기 제 1 냉장실 기준 온도와 제 2 냉장실 기준 온도의 평균 온도일 수 있다. Although not limited, the set temperature of the refrigerator compartment 112 may be an average temperature of the first refrigerator compartment reference temperature and the second refrigerator compartment reference temperature.
본 명세서에서, 상기 냉동실(111)의 설정 온도 보다 낮은 온도를 제 1 냉동실 기준 온도(또는 제 3 기준 온도)라 하고, 상기 냉동실(111)의 설정 온도 보다 높은 온도를 제 2 냉동실 기준 온도(또는 제 4 기준 온도)라 이름할 수 있다. 또한, 상기 제 1 냉동실 기준 온도와 제 2 냉동실 기준 온도 사이의 범위를 냉동실 설정 온도 범위라 이름할 수 있다. In this specification, a temperature lower than a set temperature of the freezer compartment 111 is referred to as a first freezer compartment reference temperature (or a third reference temperature), and a temperature higher than a set temperature of the freezer compartment 111 is referred to as a second freezer compartment reference temperature (or Fourth reference temperature). In addition, a range between the first freezer compartment reference temperature and the second freezer compartment reference temperature may be referred to as a freezer compartment set temperature range.
제한적이지는 않으나, 상기 냉동실(111)의 설정 온도는 상기 제 1 냉동실 기준 온도와 제 2 냉동실 기준 온도의 평균 온도일 수 있다. Although not limited, the set temperature of the freezer compartment 111 may be an average temperature of the first freezer compartment reference temperature and the second freezer compartment reference temperature.
본 발명에서는 사용자는 상기 냉동실(111) 및 냉장실(112) 각각의 목표 온도를 설정할 수 있다. In the present invention, the user may set a target temperature of each of the freezing compartment 111 and the refrigerating compartment 112.
본 발명에서 상기 제어부(50)는 냉장 사이클, 냉동 사이클 및 펌프 다운 운전이 1회의 운전 주기를 이루도록 제어할 수 있다. 즉, 상기 제어부(50)는 압축기(21)를 정지시키지 않고, 연속적으로 운전시키면서 상기 사이클을 동작시킨다. In the present invention, the controller 50 may control the refrigeration cycle, the refrigeration cycle and the pump down operation to achieve one operation cycle. That is, the controller 50 operates the cycle while continuously operating the compressor 21 without stopping it.
본 실시 예에서, 펌프 다운 운전은 복수의 증발기 모두에 냉매 공급을 차단한 상태에서 압축기(21)를 운전시켜 상기 각 증발기에 잔류하는 냉매를 압축기(21)로 모으는 운전을 의미한다. In the present exemplary embodiment, the pump down operation refers to an operation of collecting the refrigerant remaining in each of the evaporators to the compressor 21 by operating the compressor 21 in a state in which the refrigerant is supplied to all of the plurality of evaporators.
상기 제어부(50)는 상기 냉장 사이클을 작동시키고, 냉장 사이클의 정지 조건이 만족되면, 상기 냉동 사이클을 작동시킨다. 상기 냉동 사이클을 작동시키는 중에 상기 냉동 사이클의 정지 조건이 만족 되면, 상기 펌프 다운 운전을 수행할 수 있다. The controller 50 operates the refrigerating cycle, and when the stop condition of the refrigerating cycle is satisfied, operates the refrigeration cycle. When the stop condition of the refrigeration cycle is satisfied while operating the refrigeration cycle, the pump down operation may be performed.
이때, 본 발명에서 상기 냉장 사이클의 시작 조건은 상기 냉동 사이클의 정지 조건과 동일할 수 있다. At this time, the start condition of the refrigeration cycle in the present invention may be the same as the stop condition of the refrigeration cycle.
본 실시 예에서 상기 펌프 다운 운전은 특수한 조건에서는 생략될 수 있다. 이 경우 냉장 사이클과 냉동 사이클이 교번하여 작동될 수 있다. 이때에는 상기 냉장 사이클 및 냉동 사이클이 1회의 운전 주기를 이룰 수 있다. In this embodiment, the pump down operation may be omitted under special conditions. In this case, the refrigeration cycle and the refrigeration cycle can be operated alternately. In this case, the refrigerating cycle and the refrigerating cycle may achieve one operation cycle.
일 예로 외기 온도가 낮은 경우에는 상기 펌프 다운 운전이 생략될 수 있다. For example, when the outside temperature is low, the pump down operation may be omitted.
한편, 본 발명의 냉장고(1)는, 1회의 운전 주기 동안의 냉동실(111) 및 냉장실(112) 각각의 온도가 저장되는 메모리(44)를 더 포함할 수 있다. Meanwhile, the refrigerator 1 of the present invention may further include a memory 44 in which the temperatures of each of the freezing compartment 111 and the refrigerating compartment 112 are stored during one operation cycle.
이하에서는 본 발명의 냉장고의 기본 제어방법에 대해서 설명하기로 한다.Hereinafter, a basic control method of the refrigerator of the present invention will be described.
도 3은 본 발명의 일 실시 예에 따른 냉장고의 기본 제어방법을 개략적으로 설명하기 위한 흐름도이다. 3 is a flowchart illustrating a basic control method of a refrigerator according to an embodiment of the present invention.
도 3을 참조하면, 냉장고(1)의 전원이 온된다(S1). 상기 냉장고(1)의 전원이 온되면, 냉동실(111) 또는 냉장실(112)을 냉각하기 위하여 냉장고(1)가 작동할 수 있다. Referring to FIG. 3, the power of the refrigerator 1 is turned on (S1). When the power of the refrigerator 1 is turned on, the refrigerator 1 may operate to cool the freezing compartment 111 or the refrigerating chamber 112.
이하에서는 상기 냉장실(112)을 먼저 냉각한 후에 상기 냉동실(111)을 냉각할 때의 냉장고의 기본 제어방법에 대해서 예를 들어 설명하기로 한다. Hereinafter, a basic control method of the refrigerator at the time of cooling the refrigerator compartment 112 first and then the freezer compartment 111 will be described.
상기 냉장실(112)을 냉각하기 위하여, 상기 제어부(50)는, 상기 냉장 사이클을 작동시킨다(S2). In order to cool the refrigerating compartment 112, the controller 50 operates the refrigerating cycle (S2).
일 예로, 상기 제어부(50)는, 상기 압축기(21)를 온시키고, 상기 냉장실 팬(29)을 회전시킬 수 있다. 상기 제어부(50)는 냉매가 상기 냉장실용 증발기(25)로 유동하도록 상기 절환 밸브(26)를 제1상태로 절환시킨다. For example, the controller 50 may turn on the compressor 21 and rotate the refrigerating compartment fan 29. The controller 50 switches the switching valve 26 to the first state so that the refrigerant flows into the refrigerating chamber evaporator 25.
상기 냉장 사이클이 작동할 때에 상기 냉동실 팬(28)은 정지 상태를 유지한다. The freezer compartment 28 remains stationary when the refrigeration cycle is in operation.
그러면, 상기 압축기(21)에서 압축된 후 상기 응축기(22)를 지난 냉매는 상기 절환 밸브(26)를 통해 상기 냉장실용 증발기(25)로 유동된다. 상기 냉장실용 증발기(25)를 유동하면서 증발된 냉매는 다시 상기 압축기(21)로 유입된다. Then, the refrigerant compressed by the compressor 21 and passed through the condenser 22 flows to the refrigerating chamber evaporator 25 through the switching valve 26. The refrigerant evaporated while flowing in the refrigerating chamber evaporator 25 flows back into the compressor 21.
상기 냉장실용 증발기(25)와 열교환된 공기는 상기 냉장실(112)로 공급된다. 따라서, 상기 냉장실(112)의 온도는 하강하게 되는 반면, 상기 냉동실(111)의 온도는 상승하게 된다. Air exchanged with the refrigerating chamber evaporator 25 is supplied to the refrigerating chamber 112. Therefore, the temperature of the refrigerating chamber 112 is lowered, while the temperature of the freezing chamber 111 is increased.
상기 냉장 사이클이 작동하는 중에 상기 제어부(50)는 냉장 사이클의 정지 조건이 만족되었는지 여부를 판단한다(S3). 즉, 상기 제어부(50)는, 상기 냉동 사이클의 시작 조건이 만족되었는지 여부를 판단한다. While the refrigeration cycle is in operation, the controller 50 determines whether a stop condition of the refrigeration cycle is satisfied (S3). That is, the controller 50 determines whether the start condition of the refrigeration cycle is satisfied.
일 예로, 상기 제어부(50)는 상기 냉장 사이클이 작동하고, 제 1 운전 시간이 경과되면, 상기 냉장 사이클의 정지 조건이 만족된 것으로 판단할 수 있다. 본 실시 예에서 상기 제 1 운전 시간은 가변될 수 있다. For example, the controller 50 may determine that the stop condition of the refrigerating cycle is satisfied when the refrigerating cycle operates and the first operation time elapses. In the present embodiment, the first operating time may vary.
단계 S3에서 판단 결과, 상기 냉동 사이클의 시작 조건이 만족된 것으로 판단되면, 상기 제어부(50)는 상기 냉동 사이클을 작동시킨다(S4). If it is determined in step S3 that the start condition of the refrigeration cycle is satisfied, the control unit 50 operates the refrigeration cycle (S4).
일 예로 상기 제어부(50)는 상기 냉동실용 증발기(24)로 냉매가 유동할 수 있도록 상기 절환 밸브(26)를 제2상태로 절환시킨다. 상기 냉장 사이클에서 냉동 사이클로 전환되더라도 상기 압축기(21)는 정지되지 않고 지속적으로 작동한다. For example, the controller 50 switches the switching valve 26 to the second state so that the refrigerant flows to the freezer compartment evaporator 24. The compressor 21 continues to operate without stopping even when switching from the refrigeration cycle to the refrigeration cycle.
상기 제어부(50)는, 상기 냉동실 팬(28)을 회전시키고 상기 냉장실 팬(29)을 정지시킨다. The control unit 50 rotates the freezer compartment fan 28 and stops the refrigerating compartment fan 29.
상기 제어부(50)는, 상기 냉동 사이클의 작동 중에 상기 냉동 사이클의 정지 조건이 만족되었는지 여부를 판단할 수 있다(S5). The controller 50 may determine whether the stop condition of the refrigerating cycle is satisfied during the operation of the refrigerating cycle (S5).
일 예로, 상기 제어부(50)는 상기 냉동 사이클이 작동하고, 제 2 운전 시간이 경과되면, 상기 냉동 사이클의 정지 조건이 만족된 것으로 판단할 수 있다. 본 실시 예에서 상기 제 2 운전 시간은 가변될 수 있다. For example, the controller 50 may determine that the stop condition of the refrigeration cycle is satisfied when the refrigeration cycle operates and the second operation time elapses. In the present embodiment, the second operation time may vary.
상기 냉동 사이클이 정지되면, 상기 펌프 다운 운전이 수행될 수 있다(S6). When the refrigeration cycle is stopped, the pump down operation may be performed (S6).
냉장고(1)의 전원이 오프되지 않는 한(S7) 상기 제어부(50)는 다시 냉장 사이클을 작동시킨다. As long as the power of the refrigerator 1 is not turned off (S7), the controller 50 operates the refrigerating cycle again.
도 4는 본 발명의 일 실시 예에 따른 냉장 사이클 및 냉동 사이클 각각의 운전 시간을 결정하는 방법을 설명하기 위한 흐름도이다. 4 is a flowchart illustrating a method of determining an operating time of each of a refrigerating cycle and a refrigerating cycle according to an embodiment of the present invention.
도 3 및 도 4를 참조하면, 상기 냉장고가 운전되고(S11), 사이클이 안정화(S12)되기 전까지는 상기 냉장 사이클은 제 1 기준 시간 동안 운전될 수 있고, 상기 냉동 사이클은 제 2 기준 시간 동안 운전될 수 있다. 3 and 4, the refrigerator cycle may be operated for a first reference time until the refrigerator is operated (S11) and the cycle is stabilized (S12), and the refrigeration cycle may be operated for a second reference time. Can be driven.
상기 제 1 기준 시간 및 제 2 기준 시간은 미리 결정된 시간으로서 고정된 시간이며, 상기 메모리(44)에 저장될 수 있다. The first reference time and the second reference time are fixed times as predetermined times and may be stored in the memory 44.
본 실시 예에서, 사이클이 안정화되는 경우는, 상기 냉장고의 전체 운전 시간이 설정 시간에 도달하거나, 상기 냉장실(112)의 온도가 냉장실 설정 온도 범위 내에 위치되거나 상기 냉동실(111)의 온도가 냉동실 설정 온도 범위 내에 위치되는 경우 중 하나 이상을 포함할 수 있다. In the present embodiment, when the cycle is stabilized, the total operating time of the refrigerator reaches a set time, the temperature of the refrigerating chamber 112 is located within the refrigerating chamber set temperature range, or the temperature of the freezing chamber 111 is set in the freezer compartment. It may include one or more of the cases located within the temperature range.
사이클이 안정화된 이후에는 상기 냉장 사이클과 상기 냉동 사이클 각각의 운전 시간은 이전의 1회의 운전 주기 동안의 냉장실(112) 및 냉동실(111) 각각의 온도에 기초하여 결정될 수 있다. After the cycle is stabilized, an operation time of each of the refrigerating cycle and the refrigerating cycle may be determined based on the temperatures of the refrigerating chamber 112 and the freezing chamber 111 during one previous operation cycle.
상기 제어부(50)는, 이전의 1회의 운전 주기 동안의 저장실의 온도에 기초하여 대표값을 획득하고, 대표값과 기준값의 차이를 연산한다(S13). The control unit 50 obtains the representative value based on the temperature of the storage chamber during the previous one operation cycle, and calculates the difference between the representative value and the reference value (S13).
예를 들어, 이전의 1회의 운전 주기 동안의 냉장실(112)의 온도에 기초하여 획득된 대표값과 기준값의 비교에 의해서, 상기 냉장 사이클의 제 1 운전 시간이 상기 제 1 기준 시간과 동일한 시간으로 결정되거나 다른 시간으로 결정될 수 있다. For example, by comparing the representative value and the reference value obtained based on the temperature of the refrigerating chamber 112 during the previous one operation cycle, the first operating time of the refrigerating cycle is set to the same time as the first reference time. May be determined or at other times.
이전의 1회의 운전 주기 동안의 상기 냉장실(112)의 온도는 상기 냉장실 온도센서(42)에 의해서 주기적으로 감지되고 상기 메모리(44)에 저장된다. The temperature of the refrigerating compartment 112 during the previous one operation cycle is periodically sensed by the refrigerating compartment temperature sensor 42 and stored in the memory 44.
이전의 1회의 운전 주기 동안의 냉장실(112)의 온도는, 냉장 사이클이 작동할 때의 냉장실(112)의 온도, 냉동 사이클이 작동할 때의 냉장실(112)의 온도 및 상기 펌프 다운 운전 시의 냉장실(112)의 온도를 포함한다. The temperature of the refrigerating chamber 112 during the previous one operation cycle is the temperature of the refrigerating chamber 112 when the refrigerating cycle operates, the temperature of the refrigerating chamber 112 when the refrigerating cycle operates, and the temperature of the pump down operation. The temperature of the refrigerating chamber 112.
또한, 이전의 1회의 운전 주기 동안의 냉동실(111)의 온도에 기초하여 획득된 대표값과 기준값의 비교에 의해서, 상기 냉동 사이클의 제 2 운전 시간이 상기 제 2 기준 시간과 동일한 시간으로 결정되거나 다른 시간으로 결정될 수 있다. Further, by comparing the representative value and the reference value obtained based on the temperature of the freezer compartment 111 during the previous one operation cycle, the second operation time of the freezing cycle is determined to be the same time as the second reference time or Can be determined at other times.
이전의 1회의 운전 주기 동안의 상기 냉동실(111)의 온도는 상기 냉동실 온도센서(41)에 의해서 주기적으로 감지되고 상기 메모리(44)에 저장된다. The temperature of the freezer compartment 111 during the previous one operation cycle is periodically sensed by the freezer compartment temperature sensor 41 and stored in the memory 44.
이전의 1회의 운전 주기 동안의 냉동실(111)의 온도는, 냉장 사이클이 작동할 때의 냉동실(111)의 온도, 냉동 사이클이 작동할 때의 냉동실(111)의 온도 및 상기 펌프 다운 운전 시의 냉동실(111)의 온도를 포함한다. The temperature of the freezer compartment 111 during one previous operation cycle is the temperature of the freezer compartment 111 when the refrigeration cycle operates, the temperature of the freezer compartment 111 when the refrigeration cycle operates and the pump down operation. It includes the temperature of the freezing chamber 111.
냉장 사이클과 냉동 사이클 각각의 운전 시간을 결정하는 방법은 동일하므로, 이하에서는 저장실로 통칭하여 저장실의 냉각을 위한 사이클의 운전 시간을 결정하는 방법을 설명하기로 한다. Since the method of determining the operation time of each of the refrigerating cycle and the refrigerating cycle is the same, a method of determining an operation time of a cycle for cooling the storage compartment will be described below.
구체적으로 예를 들면, 상기 제어부(50)는, 미리 설정된 기준값과, 이전의 1회의 운전 주기 동안의 저장실의 온도에 기초하여 획득한 대표값이 동일한지 여부를 판단한다(S14). More specifically, for example, the controller 50 determines whether the preset reference value is equal to the representative value obtained based on the temperature of the storage chamber during the previous one operation cycle (S14).
이때, 상기 대표값은 일 예로 상기 저장실의 온도 편차일 수 있고, 상기 기준값은 기준 편차일 수 있다. In this case, the representative value may be, for example, a temperature deviation of the storage compartment, and the reference value may be a reference deviation.
단계 S14에서 판단 결과, 상기 기준값과 상기 대표값이 동일한 경우에는 상기 제어부(50)는 상기 현재의 사이클의 운전 시간을 이전 사이클의 운전 시간과 동일하게 유지하는 것으로 결정한다(S15). 결정된 운전 시간을 반영한다(S21). 즉, 결정된 운전 시간으로 냉각 사이클을 작동시킨다. As a result of the determination in step S14, when the reference value and the representative value are the same, the controller 50 determines to keep the operation time of the current cycle the same as the operation time of the previous cycle (S15). The determined driving time is reflected (S21). That is, operate the cooling cycle with the determined operating time.
반면, 단계 S14에서 판단 결과, 상기 기준값과 상기 대표값이 동일하지 않는 경우에는 상기 제어부(50)는 상기 기준값과 상기 대표값의 차이가 0보다 큰지 여부를 판단한다(S16). On the other hand, if it is determined in step S14 that the reference value and the representative value is not the same, the controller 50 determines whether the difference between the reference value and the representative value is greater than zero (S16).
상기 기준값과 상기 대표값의 차이가 0보다 큰 경우에는 상기 운전 시간을 이전의 사이클에서의 운전 시간 보다 증가시키는 것으로 결정할 수 있다(S18). When the difference between the reference value and the representative value is greater than zero, it may be determined that the operation time is increased than the operation time in the previous cycle (S18).
즉, 상기 저장실의 온도 편차가 상기 기준 편차 보다 작은 경우는, 상기 저장실의 온도 변화의 폭이 적으므로, 이와 같이 상기 저장실의 온도 편차가 유지되는 시간이 길어지도록 운전 시간을 이전의 사이클에서의 운전 시간 보다 증가시키는 것으로 결정한다. That is, when the temperature deviation of the storage compartment is smaller than the reference deviation, since the width of the temperature variation of the storage compartment is small, the operation time is operated in the previous cycle so that the time for which the temperature variation of the storage compartment is maintained is long. Decide to increase over time.
이때, 상기 제어부(50)는 상기 기준값과 상기 대표값의 차이 크기에 따라서 운전 시간 변화량을 산출할 수 있다(S17). In this case, the controller 50 may calculate the amount of change in the driving time according to the difference between the reference value and the representative value (S17).
예를 들어, 상기 기준값과 상기 대표값의 차이가 0 보다 크면서, 상기 기준값과 상기 대표값의 차이값의 절대값이 제1기준값 이하인 경우에는 상기 운전 시간을 이전의 사이클의 운전 시간 보다 제1시간 만큼 증가시키는 것으로 결정할 수 있다. For example, when the difference between the reference value and the representative value is greater than 0, and the absolute value of the difference between the reference value and the representative value is less than or equal to the first reference value, the operation time is the first than the operation time of the previous cycle. Decrease by time.
또한, 상기 기준값과 상기 대표값의 차이가 0 보다 크면서, 상기 기준값과 상기 대표값의 차이값의 절대값이 제1기준값 보다 큰 경우에는 상기 운전 시간을 이전의 사이클의 운전 시간 보다 제1시간 보다 더 큰 제2시간 만큼 증가시키는 것으로 결정할 수 있다. Further, when the difference between the reference value and the representative value is greater than zero, and the absolute value of the difference between the reference value and the representative value is greater than the first reference value, the operation time is the first time than the operation time of the previous cycle. It may be determined to increase by a larger second time.
한편, 단계 S16에서 판단 결과, 상기 기준값과 상기 대표값의 차이가 0보다 작은 경우에는, 상기 운전 시간을 이전의 사이클에서의 운전 시간 보다 감소시키는 것으로 결정할 수 있다(S20). On the other hand, if it is determined in step S16 that the difference between the reference value and the representative value is less than zero, it may be determined that the operation time is reduced than the operation time in the previous cycle (S20).
이때, 상기 제어부(50)는 상기 기준값과 상기 대표값의 차이 크기에 따라서 운전 시간 변화량을 산출할 수 있다(S19). In this case, the controller 50 may calculate the amount of change in the driving time according to the difference between the reference value and the representative value (S19).
예를 들어, 상기 기준값과 상기 대표값의 차이가 0 보다 작으면서, 상기 기준값과 상기 대표값의 차이값의 절대값이 제1기준값 이하인 경우에는 상기 운전 시간을 이전의 사이클의 운전 시간 보다 제1시간 만큼 감소시키는 것으로 결정할 수 있다. For example, when the difference between the reference value and the representative value is less than 0 and the absolute value of the difference between the reference value and the representative value is less than or equal to the first reference value, the operation time is the first than the operation time of the previous cycle. Decrease by time.
또한, 상기 기준값과 상기 대표값의 차이가 0 보다 작으면서, 상기 기준값과 상기 대표값의 차이값의 절대값이 제1기준값 보다 큰 경우에는 상기 운전 시간을 이전의 사이클의 운전 시간 보다 제1시간 보다 더 큰 제2시간 만큼 감소시키는 것으로 결정할 수 있다. Further, when the difference between the reference value and the representative value is less than 0 and the absolute value of the difference between the reference value and the representative value is greater than the first reference value, the operation time is the first time than the operation time of the previous cycle. Decreasing by a larger second time may be determined.
정리하면, 본 실시 예의 경우, 냉장 사이클의 제 1 운전 시간을 이전 사이클의 냉장실의 온도에 기초하여 획득된 온도 편차와 기준 편차를 기초하여 결정하되, 상기 냉장실의 온도 편차가 줄어드는 방향으로 결정함으로써, 냉장실의 온도 변화 폭을 줄일 수 있는 장점이 있다. In summary, in the present embodiment, by determining the first operating time of the refrigerating cycle based on the temperature deviation and the reference deviation obtained based on the temperature of the refrigerating chamber of the previous cycle, by determining in the direction of decreasing the temperature deviation of the refrigerating compartment There is an advantage that can reduce the temperature change of the refrigerator compartment.
또한, 본 실시 예의 경우, 냉동 사이클의 제 2 운전 시간을 이전 사이클의 냉동실의 온도에 기초하여 획득된 온도 편차와 기준 편차를 기초하여 결정하되, 상기 냉동실의 온도 편차가 줄어드는 방향으로 결정함으로써, 냉동실의 온도 변화 폭을 줄일 수 있는 장점이 있다. In addition, in the present embodiment, the second operation time of the refrigerating cycle is determined based on the temperature deviation and the reference deviation obtained based on the temperature of the freezer compartment of the previous cycle, by determining the direction in which the temperature deviation of the freezer compartment decreases, There is an advantage to reduce the temperature change range.
즉, 냉동실 및 냉장실 각각의 온도를 기초하여 운전 시간을 개별적으로 결정하므로, 냉동실 및 냉장실 각각의 온도 변화 폭을 줄일 수 있는 장점이 있다. That is, since the operation time is individually determined based on the temperature of each of the freezer compartment and the refrigerating compartment, there is an advantage of reducing the temperature variation of each of the freezer compartment and the refrigerating compartment.
본 실시 예에서 상기 냉장 사이클 및 상기 냉동 사이클 각각의 운전 시간은 유지되거나 가변될 수 있으며, 냉장 사이클 작동 시에 상기 압축기는 고정된 냉력으로 작동되거나 상기 압축기의 냉력이 사이클 별로 가변될 수 있다. In the present embodiment, the operation time of each of the refrigerating cycle and the refrigerating cycle may be maintained or varied, and the compressor may be operated at a fixed cooling force or the cooling power of the compressor may be changed for each cycle during the refrigerating cycle operation.
또한, 냉동 사이클 작동 중에는 상기 압축기가 고정된 냉력으로 작동되거나 상기 압축기의 냉력이 사이클 별로 가변될 수 있다. In addition, during the refrigeration cycle operation, the compressor may be operated at a fixed cooling power or the cooling power of the compressor may be changed for each cycle.
도 5 및 도 6은 본 발명의 다른 실시 예에 따른 냉장 사이클 및 냉동 사이클 각각이 작동할 때의 압축기의 냉력을 결정하는 방법을 설명하기 위한 흐름도이다. 5 and 6 are flowcharts illustrating a method of determining the cooling force of the compressor when each of the refrigerating cycle and the refrigerating cycle according to another embodiment of the present invention.
도 5 및 도 6을 참조하면, 본 실시의 냉장고도 기본적으로 도 4에서 설명한 바와 같이 냉장 사이클, 냉동 사이클 및 펌프 다운 순으로 작동한다. 물론, 경우에 따라서 상기 펌프 다운 운전은 생략될 수 있다. 5 and 6, the refrigerator of the present embodiment basically operates in the order of the refrigeration cycle, the refrigeration cycle, and the pump down as described with reference to FIG. 4. Of course, in some cases, the pump down operation may be omitted.
상기 제어부(50)는, 사이클이 안정화된 후에는, 이전의 1회의 운전 주기 동안의 상기 냉장실(112)의 온도에 기초하여 대표값을 산출한다(S31). After the cycle is stabilized, the controller 50 calculates a representative value based on the temperature of the refrigerating chamber 112 during the previous one operation cycle (S31).
예를 들어, 이전의 1회의 운전 주기 동안의 상기 냉장실(112)의 온도는 상기 냉장실 온도센서(42)에 의해서 주기적으로 감지되고 상기 메모리(44)에 저장된다. For example, the temperature of the refrigerating compartment 112 during the previous one operation cycle is periodically sensed by the refrigerating compartment temperature sensor 42 and stored in the memory 44.
상술한 바와 같이 이전의 1회의 운전 주기 동안의 냉장실(112)의 온도는, 냉장 사이클이 작동할 때의 냉장실(112)의 온도, 냉동 사이클이 작동할 때의 냉장실(112)의 온도 및 상기 펌프 다운 운전 시의 냉장실(112)의 온도를 포함한다. As described above, the temperature of the refrigerating chamber 112 during the previous one operation cycle is the temperature of the refrigerating chamber 112 when the refrigerating cycle operates, the temperature of the refrigerating chamber 112 when the refrigerating cycle operates, and the pump. The temperature of the refrigerating chamber 112 at the time of down operation is included.
이때, 상기 대표값은 일 예로 이전의 1회의 운전 주기 동안의 상기 냉장실(112)의 평균 온도일 수 있다. In this case, the representative value may be, for example, an average temperature of the refrigerating chamber 112 during one previous operation cycle.
또는, 상기 대표값은 이전의 1회의 운전 주기 동안의 상기 냉장실(112)의 최고 온도와 최저 온도의 평균 온도일 수 있다. Alternatively, the representative value may be an average temperature of the highest temperature and the lowest temperature of the refrigerating chamber 112 during the previous one operation cycle.
상기 제어부(50)는, 상기 설정 온도와 상기 대표값의 차이를 연산한다(S32). The controller 50 calculates a difference between the set temperature and the representative value (S32).
그 다음, 상기 제어부(50)는, 상기 설정 온도와 상기 대표값의 차이가 O인지 여부, 즉 설정 온도와 대표값이 동일한지 여부를 판단한다(S33). Next, the controller 50 determines whether the difference between the set temperature and the representative value is O, that is, whether the set temperature and the representative value are the same (S33).
단계 S33에서 판단 결과, 상기 설정 온도와 대표값이 동일한 경우에는 상기 제어부(50)는 상기 냉장실(112)의 냉력을 유지시키는 것으로 결정한다(S34). As a result of the determination in step S33, when the set temperature and the representative value are the same, the controller 50 determines that the cooling force of the refrigerating chamber 112 is maintained (S34).
즉, 이전의 냉장 사이클 작동 시의 상기 압축기(21)의 냉력과 동일한 냉력으로 현재의 냉장 사이클에서 상기 압축기(21)가 작동하는 것으로 결정한다. That is, it is determined that the compressor 21 operates in the current refrigeration cycle with the same cooling force as the cold power of the compressor 21 in the previous refrigeration cycle operation.
반면, 단계 S33에서 판단 결과, 상기 설정 온도와 대표값이 동일하지 않은 경우에는 상기 제어부(50)는 상기 설정 온도와 상기 대표값의 차이가 0보다 큰지 여부를 판단한다(S35). On the other hand, if it is determined in step S33 that the set temperature and the representative value is not the same, the controller 50 determines whether the difference between the set temperature and the representative value is greater than zero (S35).
상기 설정 온도와 상기 대표값의 차이가 0보다 큰 경우에는 상기 제어부(50)는 상기 냉장실(112)의 냉력을 이전 냉장 사이클에서의 냉장실(112)의 냉력 보다 감소시키는 것으로 결정한다(S37). When the difference between the set temperature and the representative value is greater than zero, the controller 50 determines that the cooling force of the refrigerating compartment 112 is reduced than that of the refrigerating compartment 112 in a previous refrigeration cycle (S37).
즉, 이전의 냉장 사이클 작동 시의 상기 압축기(21)의 냉력 보다 현재의 냉장 사이클에서의 압축기(21)의 냉력이 감소되도록 한다. That is, the cooling force of the compressor 21 in the current refrigeration cycle is reduced than the cooling power of the compressor 21 in the previous refrigeration cycle operation.
이때, 상기 제어부(50)는 상기 설정 온도와 상기 대표값의 차이 크기에 따라서 냉력 변화량을 산출할 수 있다(S36). In this case, the controller 50 may calculate the amount of change in cooling power according to the difference between the set temperature and the representative value (S36).
예를 들어, 상기 설정 온도와 대표값의 차이가 0 보다 크면서, 상기 설정 온도와 상기 대표값의 차이값의 절대값이 제1기준값 이하인 경우에는 상기 압축기(21)의 냉력을 이전의 냉장 사이클의 압축기(21)의 냉력 보다 제1레벨 만큼 감소시키는 것으로 결정할 수 있다. For example, when the difference between the set temperature and the representative value is greater than zero and the absolute value of the difference between the set temperature and the representative value is equal to or less than a first reference value, the cooling force of the compressor 21 is changed to the previous refrigeration cycle. It can be determined to reduce by a first level than the cold power of the compressor 21 of.
또한, 상기 설정 온도와 상기 대표값의 차이가 0 보다 크면서, 상기 설정 온도와 상기 대표값의 차이값의 절대값이 제1기준값 보다 큰 경우에는 상기 압축기(21)의 냉력을 이전의 냉장 사이클의 압축기(21)의 냉력 보다 제2레벨 만큼 감소시키는 것으로 결정할 수 있다. 이때, 제2레벨은 제1레벨 보다 큰 값이다. Further, when the difference between the set temperature and the representative value is greater than zero, and the absolute value of the difference between the set temperature and the representative value is greater than the first reference value, the cooling force of the compressor 21 is changed to the previous refrigeration cycle. It can be determined to reduce by a second level than the cold power of the compressor 21 of. At this time, the second level is larger than the first level.
한편, 단계 S35에서 판단 결과, 상기 설정 온도와 상기 대표값의 차이가 0 보다 작은 경우에는, 상기 냉장실(112)의 냉력을 이전 사이클에서의 냉장실(112)의 냉력 보다 증가시키는 것으로 결정한다(S39). On the other hand, when it is determined in step S35 that the difference between the set temperature and the representative value is less than zero, it is determined that the cooling power of the refrigerating chamber 112 is increased to be higher than the cooling power of the refrigerating chamber 112 in the previous cycle (S39). ).
즉, 이전의 냉장 사이클 작동 사의 상기 압축기(21)의 냉력 보다 현재의 냉장 사이클에서의 압축기(21)의 냉력이 증가되도록 한다. That is, the cooling force of the compressor 21 in the current refrigeration cycle is increased rather than the cold power of the compressor 21 of the previous refrigeration cycle operation.
이때, 상기 제어부(50)는 상기 설정 온도와 상기 대표값의 차이 크기에 따라서 냉력 변화량을 산출할 수 있다(S38). In this case, the controller 50 may calculate the amount of change in cooling power according to the difference between the set temperature and the representative value (S38).
예를 들어, 상기 설정 온도와 대표값의 차이가 0 보다 작으면서, 상기 설정 온도와 상기 대표값의 차이값의 절대값이 제1기준값 이하인 경우에는 상기 압축기(21)의 냉력을 이전의 냉장 사이클의 압축기(21)의 냉력 보다 제3레벨 만큼 증가시키는 것으로 결정할 수 있다. For example, when the difference between the set temperature and the representative value is less than 0 and the absolute value of the difference between the set temperature and the representative value is equal to or less than a first reference value, the cooling force of the compressor 21 is changed to the previous refrigeration cycle. It can be determined to increase by a third level than the cooling power of the compressor 21 of.
또한, 상기 설정 온도와 상기 대표값의 차이가 0 보다 작으면서, 상기 설정 온도와 상기 대표값의 차이값의 절대값이 제1기준값 보다 큰 경우에는 상기 압축기(21)의 냉력을 이전의 냉장 사이클의 압축기(21)의 냉력 보다 제4레벨 만큼 증가시키는 것으로 결정할 수 있다. 이때, 제4레벨은 제3레벨 보다 큰 값이다. 상기 제1레벨은 상기 제3레벨과 동일하거나 다르게 설정될 수 있고, 상기 제2레벨은 상기 제4레벨과 동일하거나 다르게 설정될 수 있다. In addition, when the difference between the set temperature and the representative value is less than 0 and the absolute value of the difference between the set temperature and the representative value is larger than the first reference value, the cooling force of the compressor 21 is changed to the previous refrigeration cycle. It can be determined to increase by the fourth level than the cooling power of the compressor 21 of. At this time, the fourth level is greater than the third level. The first level may be set equal to or different from the third level, and the second level may be set equal to or different from the fourth level.
상기 제어부(50)는 결정된 냉장실의 냉력(또는 압축기의 냉력)으로 상기 냉장 사이클을 운전시킨다(S40).The control unit 50 operates the refrigerating cycle with the determined cold power (or cold power of the compressor) of the refrigerating compartment (S40).
상기 제어부(50)는 냉장 사이클의 운전 시간이 제 1 기준 시간을 경과하였는지 여부를 판단할 수 있다(S41). 즉, 상기 제어부(50)는 상기 냉장 사이클의 정지 조건이 만족되었는지 여부를 판단할 수 있다. The controller 50 may determine whether the operation time of the refrigerating cycle has passed the first reference time (S41). That is, the controller 50 may determine whether the stop condition of the refrigerating cycle is satisfied.
이때, 상기 제 1 기준 시간은 고정된 시간일 수 있다. In this case, the first reference time may be a fixed time.
단계 S41에서 판단 결과, 냉장 사이클의 운전 시간이 제 1 기준 시간을 경과한 경우, 상기 제어부(50)는 상기 냉장 사이클을 정지시키고, 상기 냉동 사이클을 작동시킨다. As a result of the determination in step S41, when the operation time of the refrigerating cycle has passed the first reference time, the controller 50 stops the refrigerating cycle and operates the refrigerating cycle.
상기 제어부(50)는, 이전의 1회의 운전 주기 동안의 냉동실(111)의 온도에 기초하여 대표값을 산출한다(S42). The controller 50 calculates a representative value based on the temperature of the freezer compartment 111 during one previous operation cycle (S42).
예를 들어, 이전의 1회의 운전 주기 동안의 상기 냉동실(111)의 온도는 상기 냉동실 온도센서(41)에 의해서 주기적으로 감지되고 상기 메모리(44)에 저장된다. For example, the temperature of the freezer compartment 111 during one previous operation cycle is periodically sensed by the freezer compartment temperature sensor 41 and stored in the memory 44.
상술한 바와 같이 이전의 1회의 운전 주기 동안의 냉동실(111)의 온도는, 냉장 사이클이 작동할 때의 냉동실(111)의 온도, 냉동 사이클이 작동할 때의 냉동실(111)의 온도 및 상기 펌프 다운 운전 시의 냉동실(111)의 온도를 포함한다. As described above, the temperature of the freezer compartment 111 during one previous operation cycle includes the temperature of the freezer compartment 111 when the refrigeration cycle operates, the temperature of the freezer compartment 111 when the refrigeration cycle operates, and the pump. It includes the temperature of the freezer compartment 111 during the down operation.
또는, 이전의 1회의 운전 주기 동안의 냉동실(111)의 온도는, 냉동 사이클이 작동할 때의 냉동실(111)의 온도, 상기 펌프 다운 운전 시의 냉동실(111)의 온도 및 직전의 냉장 사이클이 작동할 때의 냉동실(111)의 온도를 포함할 수 있다. Alternatively, the temperature of the freezer compartment 111 during the previous one operation cycle may include the temperature of the freezer compartment 111 when the refrigeration cycle operates, the temperature of the freezer compartment 111 during the pump down operation, and the refrigerating cycle immediately before. It may include the temperature of the freezer compartment 111 when operating.
이때, 상기 대표값은 일 예로 이전의 1회의 운전 주기 동안의 상기 냉동실(111)의 평균 온도일 수 있다. In this case, the representative value may be, for example, an average temperature of the freezing compartment 111 during one previous operation cycle.
또는, 상기 대표값은 이전의 1회의 운전 주기 동안의 상기 냉동실(111)의 최고 온도와 최저 온도의 평균 온도일 수 있다. Alternatively, the representative value may be an average temperature of the highest temperature and the lowest temperature of the freezer compartment 111 during one previous operation cycle.
상기 제어부(50)는, 상기 설정 온도와 상기 대표값의 차이를 연산한다(S43). The controller 50 calculates a difference between the set temperature and the representative value (S43).
그 다음, 상기 제어부(50)는, 상기 설정 온도와 상기 대표값의 차이가 O인지 여부, 즉 설정 온도와 대표값이 동일한지 여부를 판단한다(S44). Next, the controller 50 determines whether the difference between the set temperature and the representative value is O, that is, whether the set temperature and the representative value are the same (S44).
단계 S44에서 판단 결과, 상기 설정 온도와 대표값이 동일한 경우에는 상기 제어부(50)는 상기 냉동실(111)의 냉력을 유지시키는 것으로 결정한다(S45). As a result of the determination in step S44, when the set temperature and the representative value are the same, the controller 50 determines that the cooling force of the freezer compartment 111 is maintained (S45).
즉, 이전의 냉동 사이클 작동 시의 상기 압축기(21)의 냉력과 동일한 냉력으로 현재의 냉동 사이클에서 상기 압축기(21)가 작동하는 것으로 결정한다. That is, it is determined that the compressor 21 operates in the current refrigeration cycle with the same cooling force as that of the compressor 21 in the previous refrigeration cycle operation.
반면, 단계 S44에서 판단 결과, 상기 설정 온도와 대표값이 동일하지 않은 경우에는 상기 제어부(50)는 상기 설정 온도와 상기 대표값의 차이가 0보다 큰지 여부를 판단한다(S46). On the other hand, if it is determined in step S44 that the set temperature and the representative value is not the same, the controller 50 determines whether the difference between the set temperature and the representative value is greater than zero (S46).
상기 설정 온도와 상기 대표값의 차이가 0보다 큰 경우에는 상기 제어부(50)는 상기 냉동실(111)의 냉력을 이전 냉동 사이클에서의 냉동실(111)의 냉력 보다 감소시키는 것으로 결정한다(S48). When the difference between the set temperature and the representative value is greater than zero, the controller 50 determines that the cooling force of the freezing compartment 111 is reduced than that of the freezing compartment 111 in the previous freezing cycle (S48).
즉, 이전의 냉동 사이클 작동 시의 상기 압축기(21)의 냉력 보다 현재의 냉동 사이클에서의 압축기(21)의 냉력이 감소되도록 한다. That is, the cooling force of the compressor 21 in the current refrigeration cycle is reduced than the cold power of the compressor 21 in the previous refrigeration cycle operation.
이때, 상기 제어부(50)는 상기 설정 온도와 상기 대표값의 차이 크기에 따라서 냉력 변화량을 산출할 수 있다(S47). In this case, the controller 50 may calculate the amount of change in cooling power according to the difference between the set temperature and the representative value (S47).
예를 들어, 상기 설정 온도와 대표값의 차이가 0 보다 크면서, 상기 설정 온도와 상기 대표값의 차이값의 절대값이 제1기준값 이하인 경우에는 상기 압축기(21)의 냉력을 이전의 냉동 사이클의 압축기(21)의 냉력 보다 제1레벨 만큼 감소시키는 것으로 결정할 수 있다. For example, when the difference between the set temperature and the representative value is greater than zero, and the absolute value of the difference between the set temperature and the representative value is equal to or less than a first reference value, the cooling force of the compressor 21 is changed to the previous refrigeration cycle. It can be determined to reduce by a first level than the cold power of the compressor 21 of.
또한, 상기 설정 온도와 상기 대표값의 차이가 0 보다 크면서, 상기 설정 온도와 상기 대표값의 차이값의 절대값이 제1기준값 보다 큰 경우에는 상기 압축기(21)의 냉력을 이전의 냉동 사이클의 압축기(21)의 냉력 보다 제2레벨 만큼 감소시키는 것으로 결정할 수 있다. 이때, 제2레벨은 제1레벨 보다 큰 값이다. Further, when the difference between the set temperature and the representative value is greater than zero, and the absolute value of the difference between the set temperature and the representative value is greater than a first reference value, the cooling force of the compressor 21 is changed to the previous refrigeration cycle. It can be determined to reduce by a second level than the cold power of the compressor 21 of. At this time, the second level is larger than the first level.
한편, 단계 S46에서 판단 결과, 상기 기준값과 상기 대표값의 차이가 0 보다 작은 경우에는, 상기 냉동실(111)의 냉력을 이전의 냉동 사이클에서의 냉동실(111)의 냉력 보다 증가시키는 것으로 결정한다(S50). On the other hand, as a result of the determination in step S46, when the difference between the reference value and the representative value is less than zero, it is determined that the cooling power of the freezer compartment 111 is increased than the cold power of the freezer compartment 111 in the previous freezing cycle ( S50).
즉, 이전의 냉동 사이클 작동 시의 상기 압축기(21)의 냉력 보다 현재의 냉동 사이클에서의 압축기(21)의 냉력이 증가되도록 한다. That is, the cooling power of the compressor 21 in the current refrigeration cycle is increased than the cooling power of the compressor 21 in the previous refrigeration cycle operation.
이때, 상기 제어부(50)는 상기 설정 온도와 상기 대표값의 차이 크기에 따라서 냉력 변화량을 산출할 수 있다(S38). In this case, the controller 50 may calculate the amount of change in cooling power according to the difference between the set temperature and the representative value (S38).
예를 들어, 상기 설정 온도와 대표값의 차이가 0 보다 작으면서, 상기 설정 온도와 상기 대표값의 차이값의 절대값이 제1기준값 이하인 경우에는 상기 압축기(21)의 냉력을 이전의 냉동 사이클의 압축기(21)의 냉력 보다 제3레벨 만큼 증가시키는 것으로 결정할 수 있다. For example, when the difference between the set temperature and the representative value is less than 0, and the absolute value of the difference between the set temperature and the representative value is equal to or less than a first reference value, the cooling power of the compressor 21 is changed to the previous refrigeration cycle. It can be determined to increase by a third level than the cooling power of the compressor 21 of.
또한, 상기 설정 온도와 상기 대표값의 차이가 0 보다 작으면서, 상기 설정 온도와 상기 대표값의 차이값의 절대값이 제1기준값 보다 큰 경우에는 상기 압축기(21)의 냉력을 이전의 냉동 사이클의 압축기(21)의 냉력 보다 제4레벨 만큼 증가시키는 것으로 결정할 수 있다. 이때, 제4레벨은 제3레벨 보다 큰 값이다. 상기 제1레벨은 상기 제3레벨과 동일하거나 다르게 설정될 수 있고, 상기 제2레벨은 상기 제4레벨과 동일하거나 다르게 설정될 수 있다. In addition, when the difference between the set temperature and the representative value is less than 0 and the absolute value of the difference between the set temperature and the representative value is larger than the first reference value, the cooling force of the compressor 21 is changed to the previous refrigeration cycle. It can be determined to increase by the fourth level than the cooling power of the compressor 21 of. At this time, the fourth level is greater than the third level. The first level may be set equal to or different from the third level, and the second level may be set equal to or different from the fourth level.
상기 제어부(50)는 결정된 냉동실(111)의 냉력(또는 압축기의 냉력)으로 상기 냉동 사이클을 운전시킨다(S51).The controller 50 drives the refrigeration cycle with the determined cold power (or cold power of the compressor) of the freezing compartment 111 (S51).
상기 제어부(50)는 냉동 사이클의 운전 시간이 제 2 기준 시간을 경과하였는지 여부를 판단할 수 있다(S52). 즉, 상기 제어부(50)는 상기 냉동 사이클의 정지 조건이 만족되었는지 여부를 판단할 수 있다. 이때, 상기 제 2 기준 시간은 고정된 시간일 수 있다. The controller 50 may determine whether the operation time of the refrigeration cycle has passed the second reference time (S52). That is, the controller 50 may determine whether the stop condition of the refrigeration cycle is satisfied. In this case, the second reference time may be a fixed time.
단계 S52에서 판단 결과, 냉동 사이클의 운전 시간이 제 2 기준 시간을 경과한 경우, 상기 제어부(50)는 상기 냉동 사이클을 정지시키고, 상기 펌프 다운 운전을 수행한다(S53). As a result of the determination in step S52, when the operation time of the refrigeration cycle has passed the second reference time, the control unit 50 stops the refrigeration cycle, and performs the pump down operation (S53).
제안되는 발명에 의하면, 설정 온도와 대표값의 차이가 줄어들도록 압축기(21)의 냉력이 가변될 수 있어, 냉장실 및 냉동실의 온도 변화 폭이 줄어들 수 있어 피보관물의 신선도가 향상될 수 있다. According to the proposed invention, the cooling force of the compressor 21 can be varied so that the difference between the set temperature and the representative value can be reduced, and thus the temperature variation of the refrigerating compartment and the freezing compartment can be reduced, thereby improving the freshness of the stored object.
또한, 압축기의 냉력을 가변시키면서 압축기를 연속 운전시키므로, 상기 압축기가 과도한 냉력으로 동작하는 것이 방지될 수 있고, 압축기를 오프시킨 후 온시키지 않아도 되므로, 압축기를 온 시키는 과정에서 필요한 기동 전력에 의한 전력 소비를 줄일 수 있는 장점이 있다. In addition, since the compressor is continuously operated while varying the cold power of the compressor, the compressor can be prevented from operating with excessive cold power, and since the compressor does not need to be turned on after turning off the compressor, power by starting power required in the process of turning on the compressor. This has the advantage of reducing consumption.
위의 실시 예에서는 설정 온도와 대표값의 차이를 기초로 압축기(21)의 냉력을 결정하였으나, 이와 달리 상기 대표값이 온도 만족 구간에 속하는지 여부에 기초하여 상기 압축기(21)의 냉력이 결정될 수 있다. In the above embodiment, the cooling power of the compressor 21 is determined based on the difference between the set temperature and the representative value. On the contrary, the cooling power of the compressor 21 may be determined based on whether the representative value falls within a temperature satisfaction section. Can be.
상기 온도 만족 구간의 상한 온도는 상기 저장실의 제 2 기준 온도 보다 낮은 온도이고, 상기 온도 만족 구간의 하한 온도는 상기 저장실의 제 1 기준 온도 보다 높은 온도이며, 상기 설정 온도는 상기 온도 만족 구간 내의 온도이다. The upper limit temperature of the temperature satisfying section is a temperature lower than the second reference temperature of the storage compartment, the lower limit temperature of the temperature satisfying section is a temperature higher than the first reference temperature of the storage compartment, and the set temperature is a temperature within the temperature satisfying section. to be.
이 경우, 상기 제어부(50)는 상기 저장실의 대표값이 상기 온도 만족 구간에 속하는 경우에는 저장실의 냉력이 이전 사이클에서의 저장실의 냉력과 동일하도록 압축기를 작동시킬 수 있다. In this case, when the representative value of the storage compartment falls within the temperature satisfying interval, the controller 50 may operate the compressor such that the cold power of the storage compartment is the same as the cold power of the storage compartment in a previous cycle.
반면, 상기 제어부(50)는 상기 저장실의 대표값이 상기 온도 만족 구간의 상한 온도 보다 높은 경우에는 상기 저장실의 냉력이 이전 사이클에서의 저장실의 냉력 보다 증가되도록 압축기를 제어할 수 있다. 즉, 현재 사이클에서의 압축기의 냉력이 이전 사이클에서의 압축기의 냉력 보다 증가되도록 할 수 있다. On the other hand, when the representative value of the storage compartment is higher than the upper limit temperature of the temperature satisfaction section, the control unit 50 may control the compressor such that the cold power of the storage compartment is increased than the cold power of the storage compartment in the previous cycle. That is, the cooling power of the compressor in the current cycle can be increased than the cooling power of the compressor in the previous cycle.
상기 제어부(50)는 상기 저장실의 대표값이 상기 온도 만족 구간의 하한 온도 보다 낮은 경우에는 상기 저장실의 냉력이 이전 사이클에서의 저장실의 냉력 보다 감소되도록 압축기를 제어할 수 있다. 즉, 현재 사이클에서의 압축기의 냉력이 이전 사이클에서의 압축기의 냉력 보다 감소되도록 할 수 있다. When the representative value of the storage compartment is lower than the lower limit temperature of the temperature satisfaction section, the controller 50 may control the compressor such that the cooling power of the storage compartment is lower than that of the storage compartment in a previous cycle. That is, the cooling power of the compressor in the current cycle can be reduced than that of the compressor in the previous cycle.
도 4에서는 냉장 사이클 및 냉동 사이클의 운전 시간이 가변되는 기술이 개시되고, 도 5 및 도 6에서는 냉장 사이클 및 냉동 사이클 각각의 냉력이 가변되는 기술이 개시되나, 두 기술의 종합적으로 적용되는 것도 가능하다. In FIG. 4, a technique of varying an operating time of a refrigeration cycle and a freezing cycle is disclosed. In FIGS. 5 and 6, a technique of varying the cooling power of each of the refrigeration cycle and a refrigeration cycle is disclosed. Do.
예를 들어, 냉장 사이클의 운전 시간 및 냉력이 가변될 수 있고, 냉동 사이클의 운전 시간 및 냉력이 가변될 수 있다. For example, the operating time and cold power of the refrigeration cycle may vary, and the operating time and cold power of the refrigeration cycle may vary.
이때, 사이클의 안정화 조건 만족 전까지는 상기 냉장 사이클의 운전 시간은 고정된 시간인 제 1 기준 시간 동안 운전되고, 상기 냉동 사이클의 운전 시간은 고정 시간인 제 2 기준 시간 동안 운전될 수 있으며, 상기 냉장 사이클의 냉력 및 냉동 사이클의 냉력은 가변될 수 있다. In this case, the operation time of the refrigerating cycle may be operated for a first reference time, which is a fixed time, and the operation time of the refrigeration cycle may be operated for a second reference time, which is a fixed time, until the stabilization condition of the cycle is satisfied. The cold power of the cycle and the cold power of the refrigeration cycle can vary.
사이클의 안정화 조건 만족된 이후에는 상기 각 사이클에서의 냉력이 가변될 뿐만 아니라 각 사이클에서의 운전 시간도 가변될 수 있다. After the stabilization condition of the cycle is satisfied, not only the cooling power in each cycle may be varied, but also the operation time in each cycle may be varied.
본 실시 예에서 사이클의 안정화 조건이 만족된 경우는, 각 냉각 사이클에서의 압축기의 냉력이 일정 횟수 만큼 가변될 때, 냉력이 일정 범위 안에서 증가하거나 감소하는 경우를 의미한다. 예를 들어, 냉력이 5회 동안 가변되는 과정에서 냉력 가변량이 기준 범위 내에 속하는 경우 사이클의 안정화 조건이 만족된 것으로 판단할 수 있다. In this embodiment, when the stabilization condition of the cycle is satisfied, it means a case in which the cooling force increases or decreases within a predetermined range when the cooling force of the compressor in each cooling cycle is changed by a predetermined number of times. For example, it may be determined that the stabilization condition of the cycle is satisfied when the variable amount of cooling force falls within the reference range while the cooling force is varied for five times.
본 실시 예의 경우, 냉력 가변을 위한 냉장실의 대표값을 제1 대표값이라 하고 냉동실의 대표값을 제2 대표값이라고 할 수 있다. In the present exemplary embodiment, the representative value of the refrigerating compartment for variable cooling power may be referred to as the first representative value, and the representative value of the freezer compartment may be referred to as the second representative value.
또한, 운전 시간 가변을 위한 냉장실의 대표값을 제3 대표값이라 하고 냉동실의 대표값을 제4 대표값이라고 할 수 있다. In addition, the representative value of the refrigerating chamber for varying the operation time may be referred to as the third representative value, and the representative value of the freezer compartment may be referred to as the fourth representative value.
본 명세서에서 상기 냉장실을 제 1 저장실이라 이름할 수 있고, 상기 냉동실을 제 2 저장실이라 이름할 수 있다. 상기 냉장 사이클을 상기 제 1 저장실을 위한 제 1 냉각 사이클이라 할 수 있고, 상기 냉동 사이클을 상기 제 2 저장실을 위한 제 2 냉각 사이클이라 이름할 수 있다. 상기 냉장실 팬을 제 1 저장실을 위한 제 1 냉기공급수단이라 이름할 수 있고, 상기 냉동실 팬을 제 2 저장실을 위한 제 2 냉기공급수단이라 이름할 수 있다. In the present specification, the refrigerating compartment may be referred to as a first storage compartment, and the freezing compartment may be referred to as a second storage compartment. The refrigeration cycle may be referred to as a first cooling cycle for the first storage compartment, and the refrigeration cycle may be referred to as a second cooling cycle for the second storage compartment. The refrigerating compartment fan may be referred to as a first cold air supply means for a first storage compartment, and the freezer compartment fan may be referred to as a second cold air supply means for a second storage compartment.
또는 이와 반대로, 상기 냉장실을 제 2 저장실이라 이름할 수 있고, 상기 냉동실을 제 1 저장실이라 이름할 수 있다. 상기 냉장 사이클을 상기 제 2 저장실을 위한 제 2 냉각 사이클이라 할 수 있고, 상기 냉동 사이클을 상기 제 1 저장실을 위한 제 1 냉각 사이클이라 이름할 수 있다. 상기 냉장실 팬을 제 2 저장실을 위한 제 2 냉기공급수단이라 이름할 수 있고, 상기 냉동실 팬을 제 1 저장실을 위한 제 1 냉기공급수단이라 이름할 수 있다. Alternatively, the refrigerating compartment may be referred to as a second storage compartment, and the freezing compartment may be referred to as a first storage compartment. The refrigeration cycle may be referred to as a second cooling cycle for the second storage compartment, and the refrigeration cycle may be referred to as a first cooling cycle for the first storage compartment. The refrigerator compartment fan may be referred to as a second cold air supply means for the second storage compartment, and the freezer compartment fan may be referred to as a first cold air supply means for the first storage compartment.

Claims (15)

  1. 냉매를 압축하는 압축기와, 상기 압축기로부터 냉매를 공급받아 제 1 저장실을 냉각시키기 위한 냉기를 발생시키는 제 1 증발기와, 상기 제 1 저장실에 냉기를 공급하기 위한 제 1 냉기공급수단과, 상기 압축기로부터 냉매를 공급받아 제 2 저장실을 위한 냉기를 발생시키는 제 2 증발기와, 상기 제 2 저장실에 냉기를 공급하기 위한 제 2 냉기공급수단과, 상기 압축기와 상기 제 1 증발기 사이에 냉매가 흐로도록 연결하는 제 1 냉매통로와 상기 압축기와 상기 제 2 증발기 사이에 냉매가 흐르도록 연결하는 제 2 냉매통로 중 어느 하나를 선택적으로 개방하는 밸브를 포함함으로써, 상기 제 1 저장실의 냉각과 상기 제 2 저장실 냉각이 교번하여 이루어지도록 구성된 냉장고의 제어방법에 있어서, A compressor for compressing the refrigerant, a first evaporator for receiving coolant from the compressor to generate cold air for cooling the first storage compartment, first cold air supply means for supplying cold air to the first storage compartment, and the compressor from the compressor. A second evaporator receiving coolant to generate cold air for the second storage compartment, a second cold air supply means for supplying cold air to the second storage compartment, and a refrigerant to be connected between the compressor and the first evaporator to flow; And a valve for selectively opening any one of a second refrigerant passage connecting the first refrigerant passage and the refrigerant and the second evaporator to flow the refrigerant, thereby cooling the first storage compartment and cooling the second storage compartment. In the control method of the refrigerator configured to be alternately,
    상기 제 1 저장실의 냉각을 위한 상기 제 1 냉각 사이클이 작동되어 압축기가 작동하고, 상기 제 1 저장실을 위한 상기 제 1 냉기공급수단이 작동하는 단계; Operating a first cooling cycle for cooling the first storage compartment to operate a compressor and operating the first cold air supply means for the first storage chamber;
    상기 제 1 냉각 사이클이 제 1 운전 시간 동안 작동된 경우, 상기 제 2 저장실의 냉각을 위한 제 2 냉각 사이클로 전환되어 상기 압축기가 작동하고, 상기 제 2 냉기공급수단이 작동하는 단계; 및 When the first cooling cycle is operated for a first operation time, switching to a second cooling cycle for cooling the second storage compartment to operate the compressor and operating the second cold air supply means; And
    상기 제 2 냉각 사이클이 제 2 운전 시간 동안 작동된 경우, 상기 제 2 냉각 사이클이 정지되는 단계를 포함하고, If the second cooling cycle has been operated for a second operating time, the second cooling cycle is stopped;
    상기 제 1 기준 시간은 이전의 제 1 냉각 사이클과 이전의 제 2 냉각 사이클을 포함하는 1회의 운전 주기 동안의 상기 제 1 저장실의 온도에 기초하여 획득된 대표값을 이용하여 결정되고, 제어부는 결정된 제 1 기준 시간 동안 상기 제 1 냉각 사이클이 작동되도록 하고, The first reference time is determined using a representative value obtained based on the temperature of the first storage compartment during one operation cycle comprising the previous first cooling cycle and the previous second cooling cycle, and the control unit determines the Allow the first cooling cycle to operate for a first reference time,
    상기 제 2 기준 시간은 상기 1회의 운전 주기 동안의 상기 제 2 저장실의 온도에 기초하여 획득된 대표값을 이용하여 결정되고, 상기 제어부는 결정된 제 2 기준 시간 동안 상기 제 2 냉각 사이클이 작동되도록 하는 냉장고의 제어방법. The second reference time is determined using the representative value obtained based on the temperature of the second storage compartment during the one operation period, and the controller is configured to operate the second cooling cycle during the determined second reference time. How to control the refrigerator.
  2. 제 1 항에 있어서, The method of claim 1,
    상기 제 1 저장실의 대표값은 상기 제 1 저장실의 온도 편차이고, The representative value of the first storage compartment is a temperature deviation of the first storage compartment,
    상기 제 2 저장실의 대표값은 상기 제 2 저장실의 온도 편차인 냉장고의 제어방법. The representative value of the second storage compartment is a control method of the refrigerator which is a temperature deviation of the second storage compartment.
  3. 제 1 항 또는 제 2 항에 있어서, The method according to claim 1 or 2,
    상기 제어부는, 상기 각 저장실의 대표값과 기준값을 비교하고, 비교 결과에 따라서 상기 제 1 기준 시간 및 제 2 기준 시간을 결정하는 냉장고의 제어방법. And the control unit compares the representative value and the reference value of the respective storage compartments and determines the first reference time and the second reference time according to a comparison result.
  4. 제 3 항에 있어서, The method of claim 3, wherein
    상기 제어부는, 상기 기준값과 상기 각 저장실의 대표값이 동일한 경우에는 상기 제 1 기준 시간 및 제 2 기준 시간을 이전 사이클에서의 운전 시간과 동일한 시간으로 결정하는 냉장고의 제어방법. And when the reference value is equal to the representative value of each of the storage compartments, the controller determines the first reference time and the second reference time to be the same time as the operation time in the previous cycle.
  5. 제 4 항에 있어서, The method of claim 4, wherein
    상기 제어부는, 상기 기준값과 상기 저장실의 대표값의 차이가 0보다 큰 경우에는 상기 제 1 기준 시간 및 제 2 기준 시간을 이전 사이클에서의 운전 시간 보다 증가시키는 것으로 결정하고, If the difference between the reference value and the representative value of the storage compartment is greater than zero, the controller determines that the first reference time and the second reference time are increased from the operation time in the previous cycle.
    상기 기준값과 상기 저장실의 대표값의 차이가 0보다 작은 경우에는 상기 제 1 기준 시간 및 제 2 기준 시간을 이전 사이클에서의 운전 시간 보다 감소시키는 것으로 결정하는 냉장고의 제어방법. And when the difference between the reference value and the representative value of the storage compartment is less than zero, determining that the first reference time and the second reference time are reduced from the operation time in a previous cycle.
  6. 제 1 항에 있어서, The method of claim 1,
    사이클의 횟수와 무관하게 상기 압축기는 고정된 냉력으로 작동되는 냉장고의 제어방법. Regardless of the number of cycles, the compressor is operated by a fixed cooling power control method of the refrigerator.
  7. 제 1 항에 있어서, The method of claim 1,
    현재의 제 1 냉각 사이클에서의 압축기의 냉력은 상기 1회의 운전 주기 동안의 상기 제 1 저장실의 온도에 기초하여 결정되며, 이전의 제 1 냉각 사이클의 압축기의 냉력과 동일하게 유지되거나 가변되고, The cooling power of the compressor in the current first cooling cycle is determined based on the temperature of the first reservoir during the one operation cycle, and remains equal or variable to the cooling power of the compressor of the previous first cooling cycle,
    현재의 제 2 냉각 사이클에서의 압축기의 냉력은 상기 1회의 운전 주기 동안의 상기 제 2 저장실의 온도에 기초하여 결정되며, 이전의 제 2 냉각 사이클의 압축기의 냉력과 동일하게 유지되거나 가변되는 냉장고의 제어방법. The cooling power of the compressor in the current second cooling cycle is determined based on the temperature of the second storage compartment during the one operation cycle, and the refrigerator's power remains the same or varies as that of the compressor of the previous second cooling cycle. Control method.
  8. 냉매를 압축하는 압축기와, 상기 압축기로부터 냉매를 공급받아 제 1 저장실을 냉각시키기 위한 냉기를 발생시키는 제 1 증발기와, 상기 제 1 저장실에 냉기를 공급하기 위한 제 1 냉기공급수단과, 상기 압축기로부터 냉매를 공급받아 제 2 저장실을 위한 냉기를 발생시키는 제 2 증발기와, 상기 제 2 저장실에 냉기를 공급하기 위한 제 2 냉기공급수단과, 상기 압축기와 상기 제 1 증발기 사이에 냉매가 흐로도록 연결하는 제 1 냉매통로와 상기 압축기와 상기 제 2 증발기 사이에 냉매가 흐르도록 연결하는 제 2 냉매통로 중 어느 하나를 선택적으로 개방하는 밸브를 포함함으로써, 상기 제 1 저장실의 냉각과 상기 제 2 저장실 냉각이 교번하여 이루어지도록 구성된 냉장고의 제어방법에 있어서, A compressor for compressing the refrigerant, a first evaporator for receiving coolant from the compressor to generate cold air for cooling the first storage compartment, first cold air supply means for supplying cold air to the first storage compartment, and the compressor from the compressor. A second evaporator receiving coolant to generate cold air for the second storage compartment, a second cold air supply means for supplying cold air to the second storage compartment, and a refrigerant to be connected between the compressor and the first evaporator to flow; And a valve for selectively opening any one of a second refrigerant passage connecting the first refrigerant passage and the refrigerant and the second evaporator to flow the refrigerant, thereby cooling the first storage compartment and cooling the second storage compartment. In the control method of the refrigerator configured to be alternately,
    상기 제 1 저장실의 냉각을 위한 상기 제 1 냉각 사이클이 작동되어 압축기가 작동하고, 상기 제 1 저장실을 위한 제 1 냉기공급수단이 작동하는 단계; Operating a first cooling cycle for cooling the first storage compartment to operate a compressor and operating a first cold air supply means for the first storage compartment;
    상기 제 1 냉각 사이클이 제 1 기준 시간 동안 작동된 경우, 상기 제 2 저장실의 냉각을 위한 제 2 냉각 사이클로 전환되어 상기 압축기가 작동하고, 상기 제 2 냉기공급수단이 작동하는 단계; 및 When the first cooling cycle is operated for a first reference time, switching to a second cooling cycle for cooling the second storage compartment to operate the compressor and operating the second cold air supply means; And
    상기 제 2 냉각 사이클이 제 2 기준 시간 동안 작동된 경우, 상기 제 2 냉각 사이클이 정지되는 단계를 포함하고, If the second cooling cycle has been operated for a second reference time, the second cooling cycle is stopped;
    현재의 제 1 냉각 사이클에서의 상기 압축기의 냉력은 이전의 제 1 냉각 사이클과 이전의 제 2 냉각 사이클을 포함하는 1회의 운전 주기 동안의 상기 제 1 저장실의 온도에 기초하여 획득된 대표값을 이용하여 결정되고, 제어부는 결정된 냉력으로 상기 압축기가 현재의 제 1 냉각 사이클에서 작동되도록 하고, The cold power of the compressor in the current first cooling cycle uses the representative value obtained based on the temperature of the first reservoir during one operation cycle comprising the previous first cooling cycle and the previous second cooling cycle. And the control unit causes the compressor to operate in the current first cooling cycle with the determined cooling force,
    현재의 제 2 냉각 사이클에서의 상기 압축기의 냉력은 상기 1회의 운전 주기 동안의 상기 제 2 저장실의 온도에 기초하여 획득된 대표값을 이용하여 결정되고, 제어부는 결정된 냉력으로 상기 압축기가 현재의 제 2 냉각 사이클에서 작동되도록 하는 냉장고의 제어방법. The cold power of the compressor in the current second cooling cycle is determined using the representative value obtained based on the temperature of the second storage compartment during the one operation cycle, and the control unit determines that the compressor is 2 Control method of the refrigerator to be operated in the cooling cycle.
  9. 제 8 항에 있어서, The method of claim 8,
    상기 제 1 저장실의 대표값은 상기 제 1 저장실의 평균 온도이고, The representative value of the first storage compartment is an average temperature of the first storage compartment,
    상기 제 2 저장실의 대표값은 상기 제 2 저장실의 평균 온도인 냉장고의 제어방법. The representative value of the second storage compartment is a control method of the refrigerator, which is an average temperature of the second storage compartment.
  10. 제 8 항에 있어서, The method of claim 8,
    상기 제 1 저장실의 대표값은 상기 제 1 저장실의 최고 온도와 최저 온도의 평균 온도이고, The representative value of the first storage compartment is an average temperature of the highest temperature and the lowest temperature of the first storage compartment,
    상기 제 2 저장실의 대표값은 상기 제 2 저장실의 최고 온도와 최저 온도의 평균 온도인 냉장고의 제어방법. The representative value of the second storage compartment is a control method of the refrigerator, which is an average temperature of the highest temperature and the lowest temperature of the second storage compartment.
  11. 제 8 항에 있어서, The method of claim 8,
    상기 제어부는, 상기 각 저장실의 대표값과 각 저장실의 설정 온도를 비교하고, 비교 결과에 따라서 상기 압축기의 냉력을 결정하는 냉장고의 제어방법. And the control unit compares a representative value of each storage compartment with a set temperature of each storage compartment, and determines a cooling power of the compressor according to a comparison result.
  12. 제 11 항에 있어서, The method of claim 11,
    상기 제어부는, 상기 각 설정 온도와 상기 각 저장실의 대표값이 동일한 경우에는 현재 사이클에서의 압축기의 냉력을 이전 사이클에서의 압축기의 냉력과 동일한 냉력으로 결정하는 냉장고의 제어방법. And the control unit determines that the cooling power of the compressor in the current cycle is equal to the cooling power of the compressor in the previous cycle when the set temperature and the representative value of the storage compartments are the same.
  13. 제 12 항에 있어서, The method of claim 12,
    상기 제어부는, 상기 각 설정 온도와 상기 저장실의 대표값의 차이가 0보다 큰 경우에는 현재 사이클에서의 압축기의 냉력을 이전 사이클에서의 압축기의 냉력 보다 감소시키는 것으로 결정하고, The controller determines that the cooling power of the compressor in the current cycle is lower than that of the compressor in the previous cycle when the difference between the set temperature and the representative value of the storage compartment is greater than zero.
    상기 각 설정 온도와 상기 저장실의 대표값의 차이가 0보다 작은 경우에는 현재 사이클에서의 압축기의 냉력을 이전 사이클에서의 압축기의 냉력 보다 증가시키는 것으로 결정하는 냉장고의 제어방법. And when the difference between the set temperature and the representative value of the storage compartment is less than zero, determining that the cooling power of the compressor in the current cycle is increased than that of the compressor in the previous cycle.
  14. 제 8 항에 있어서, The method of claim 8,
    상기 제 1 기준 시간 및 상기 제 2 기준 시간은 고정된 시간인 냉장고의 제어방법. And the first reference time and the second reference time are fixed times.
  15. 제 8 항에 있어서, The method of claim 8,
    현재의 제 1 냉각 사이클에서의 제 1 운전 시간은 상기 1회의 운전 주기 동안의 상기 제 1 저장실의 온도에 기초하여 결정되며, 이전의 제 1 냉각 사이클의 제 1 운전 시간과 동일하거나 가변되고, The first operating time in the current first cooling cycle is determined based on the temperature of the first storage compartment during the one operating cycle, which is equal to or variable than the first operating time of the previous first cooling cycle,
    현재의 제 2 냉각 사이클에서의 제 2 운전 시간은 상기 1회의 운전 주기 동안의 상기 제 2 저장실의 온도에 기초하여 결정되며, 이전의 제 2 냉각 사이클의 제 2 운전 시간과 동일하거나 가변되는 냉장고의 제어방법. The second operating time in the current second cooling cycle is determined based on the temperature of the second storage compartment during the one operating cycle and is equal to or variable than the second operating time of the previous second cooling cycle. Control method.
PCT/KR2019/009598 2018-08-02 2019-08-01 Method for controlling refrigerator WO2020027596A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/265,311 US11732948B2 (en) 2018-08-02 2019-08-01 Method for controlling refrigerator to alternately cool two storage compartments
CN201980051626.6A CN112513550B (en) 2018-08-02 2019-08-01 Control method of refrigerator
EP19844114.9A EP3832237A4 (en) 2018-08-02 2019-08-01 Method for controlling refrigerator
AU2019314054A AU2019314054B2 (en) 2018-08-02 2019-08-01 Method for controlling refrigerator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0090461 2018-08-02
KR1020180090461A KR102567056B1 (en) 2018-08-02 2018-08-02 Refrigerator and method for controlling the same

Publications (1)

Publication Number Publication Date
WO2020027596A1 true WO2020027596A1 (en) 2020-02-06

Family

ID=69232022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/009598 WO2020027596A1 (en) 2018-08-02 2019-08-01 Method for controlling refrigerator

Country Status (6)

Country Link
US (1) US11732948B2 (en)
EP (1) EP3832237A4 (en)
KR (1) KR102567056B1 (en)
CN (1) CN112513550B (en)
AU (1) AU2019314054B2 (en)
WO (1) WO2020027596A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102363069B1 (en) * 2020-08-10 2022-02-14 엘지전자 주식회사 Refrigerator and method for controlling the same
CN113007963A (en) * 2021-02-03 2021-06-22 合肥朗驰工业设计有限公司 Control method and system for parallel double-system refrigerator
KR102412126B1 (en) * 2021-10-21 2022-07-01 주식회사 스키피오 Ice machine and operation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000055341A (en) * 1999-02-05 2000-09-05 윤종용 Control method for intercooler refrigerator
KR100716300B1 (en) * 2006-01-09 2007-05-09 삼성전자주식회사 Controlling method for the refrigerator
US20070227166A1 (en) * 2003-12-22 2007-10-04 General Electric Company Methods and apparatus for controlling refrigerators
KR101576686B1 (en) 2010-06-14 2015-12-10 엘지전자 주식회사 Control method for refrigerator
KR101705528B1 (en) * 2010-07-29 2017-02-22 엘지전자 주식회사 Refrigerator and controlling method of the same
KR20180061762A (en) * 2016-11-30 2018-06-08 엘지전자 주식회사 Refrigerator and method for controlling the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100404984B1 (en) 2000-08-24 2003-11-10 가부시끼가이샤 도시바 Refrigerator and controlling method therefor
DE10260350B4 (en) * 2002-07-04 2015-11-26 Lg Electronics Inc. A method of controlling operation of a dual evaporator cooling system
KR20060024284A (en) * 2004-09-13 2006-03-16 삼성전자주식회사 Refrigerator and controlling method for the same
JP5097361B2 (en) 2006-05-15 2012-12-12 ホシザキ電機株式会社 Cooling storage and operation method thereof
KR101324041B1 (en) * 2007-03-13 2013-11-01 호시자키 덴키 가부시키가이샤 Cooling storage and method of operating the same
KR100806314B1 (en) 2007-03-30 2008-02-27 엘지전자 주식회사 Method for controlling of refrigerator
WO2009061120A2 (en) 2007-11-05 2009-05-14 Lg Electronics, Inc. Control method of refrigerator
KR20130004678A (en) * 2011-07-04 2013-01-14 위니아만도 주식회사 Operating system and method of refrigerator with inverter compressor
KR102144486B1 (en) 2013-11-04 2020-08-13 엘지전자 주식회사 A refrigerator and a control method the same
KR102341711B1 (en) * 2015-07-02 2021-12-21 삼성전자주식회사 Refrigerator and control method thereof
KR102518816B1 (en) 2016-03-24 2023-04-06 엘지전자 주식회사 Refrigerator and Controlling method for the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000055341A (en) * 1999-02-05 2000-09-05 윤종용 Control method for intercooler refrigerator
US20070227166A1 (en) * 2003-12-22 2007-10-04 General Electric Company Methods and apparatus for controlling refrigerators
KR100716300B1 (en) * 2006-01-09 2007-05-09 삼성전자주식회사 Controlling method for the refrigerator
KR101576686B1 (en) 2010-06-14 2015-12-10 엘지전자 주식회사 Control method for refrigerator
KR101705528B1 (en) * 2010-07-29 2017-02-22 엘지전자 주식회사 Refrigerator and controlling method of the same
KR20180061762A (en) * 2016-11-30 2018-06-08 엘지전자 주식회사 Refrigerator and method for controlling the same

Also Published As

Publication number Publication date
AU2019314054B2 (en) 2024-08-01
AU2019314054A1 (en) 2021-03-18
CN112513550B (en) 2022-12-02
US11732948B2 (en) 2023-08-22
US20210302092A1 (en) 2021-09-30
KR102567056B1 (en) 2023-08-16
CN112513550A (en) 2021-03-16
EP3832237A4 (en) 2022-05-18
KR20200015107A (en) 2020-02-12
EP3832237A1 (en) 2021-06-09

Similar Documents

Publication Publication Date Title
WO2019172532A1 (en) Refrigerator and controlling method thereof
WO2019190113A1 (en) Refrigerator and method for controlling same
WO2019190114A1 (en) Refrigerator and method for controlling same
WO2017164712A1 (en) Refrigerator and control method therefor
WO2020027596A1 (en) Method for controlling refrigerator
WO2016013798A1 (en) Refrigerator and control method thereof
WO2018088839A1 (en) Refrigerator and method for controlling refrigerator
WO2017164710A1 (en) Control method for refrigerator
AU2018295869B2 (en) Refrigerator and method of controlling the same
WO2017105079A1 (en) Refrigerator
WO2017164711A1 (en) Control method for refrigerator
WO2018088845A1 (en) Refrigerator and control method of refrigerator
EP3338041A1 (en) Refrigerator
WO2019194453A1 (en) Water purifier and method for controlling the same
WO2018194324A1 (en) Refrigeration cycle device and three-way flow rate control valve
WO2020045958A1 (en) Refrigerator and control method thereof
EP3158275A1 (en) Refrigerator
WO2017105047A1 (en) Refrigerator and control method therefor
WO2011062349A4 (en) Heat pump
WO2019164115A1 (en) Refrigerator and controlling method for the same
AU2018286352B2 (en) Refrigerator and method of controlling the same
EP3818316A1 (en) Refrigerator and control method thereof
WO2021040427A1 (en) Air conditioner and control method thereof
AU2018295870B2 (en) Refrigerator and method of controlling the same
WO2023287029A1 (en) Refrigerator and operation control method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19844114

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019844114

Country of ref document: EP

Effective date: 20210302

ENP Entry into the national phase

Ref document number: 2019314054

Country of ref document: AU

Date of ref document: 20190801

Kind code of ref document: A