WO2011062349A4 - Heat pump - Google Patents

Heat pump Download PDF

Info

Publication number
WO2011062349A4
WO2011062349A4 PCT/KR2010/004791 KR2010004791W WO2011062349A4 WO 2011062349 A4 WO2011062349 A4 WO 2011062349A4 KR 2010004791 W KR2010004791 W KR 2010004791W WO 2011062349 A4 WO2011062349 A4 WO 2011062349A4
Authority
WO
WIPO (PCT)
Prior art keywords
booster
compressor
refrigerant
heat exchanger
expansion mechanism
Prior art date
Application number
PCT/KR2010/004791
Other languages
French (fr)
Korean (ko)
Other versions
WO2011062349A1 (en
Inventor
진심원
장용희
김범석
류병진
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2011062349A1 publication Critical patent/WO2011062349A1/en
Publication of WO2011062349A4 publication Critical patent/WO2011062349A4/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/003Indoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Definitions

  • the present invention relates to a heat pump, and more particularly, to a heat pump in which a refrigerant is circulated, a first heat exchanger, an expansion mechanism, and a second heat exchanger, and the first heat exchanger can supply heat to a heat consumer.
  • a heat pump is a device for cooling / heating a room by using a refrigeration cycle unit including a compressor, a first heat exchanger, an expansion mechanism, and a second heat exchanger to create a more comfortable indoor environment for a user.
  • the heat pump as described above causes the indoor air to be heated / cooled by the first heat exchanger or the second heat exchanger, and then discharged into the room to heat / cool the room.
  • the heat pump can not exhibit sufficient cooling / heating capability due to a change in ambient temperature or a change in ambient temperature. Therefore, the user can replace the existing heat pump with a heat pump having a larger capacity, There is a problem that an additional heat pump is installed.
  • Another object of the present invention is to provide a heat pump capable of various operations according to a load, thereby efficiently coping with a load while minimizing power consumption.
  • a heat pump including a compressor in which a refrigerant is compressed, a first heat exchanger in which refrigerant compressed in the compressor is condensed, an expansion mechanism in which refrigerant condensed in the first heat exchanger is expanded, A refrigerant cycle unit having a second heat exchanger in which the refrigerant expanded in the expansion mechanism evaporates; The refrigerant is separated from the refrigerant flowing from the first heat exchanger to the expansion mechanism and is then compressed to flow between the compressor and the first heat exchanger or the refrigerant evaporated in the second heat exchanger And a booster module for compressing and then flowing between the compressor and the first heat exchanger.
  • the booster module includes a first booster expansion mechanism for expanding the refrigerant flowing in the first heat exchanger, a gas-liquid separator for separating the liquid refrigerant and the gaseous refrigerant in the refrigerant expanded in the first booster expansion mechanism, A second booster expansion mechanism for expanding the separated gaseous refrigerant, and a booster compressor for compressing the refrigerant expanded in the second booster expansion mechanism.
  • the booster module further includes a booster suction pipe for guiding the refrigerant evaporated in the second heat exchanger to be sucked into the booster compressor.
  • the booster module includes a gas-liquid separator suction pipe connecting the first booster expansion mechanism and the gas-liquid separator, a gaseous refrigerant discharge pipe guided to the second booster expansion mechanism by the gaseous refrigerant separated from the gas-liquid separator, Further comprising a booster compressor suction pipe through which the refrigerant expanded in the expansion mechanism is sucked into the booster compressor and a booster compressor discharge pipe through which the refrigerant discharged from the booster compressor is guided between the compressor and the first heat exchanger, The piping connects the booster compressor suction pipe between the second heat exchanger and the compressor.
  • the booster module further includes a check valve installed in the booster suction pipe to prevent the refrigerant of the booster compressor suction pipe from being sucked into the compressor through the booster suction pipe.
  • the first booster expansion mechanism is connected to the first heat exchanger and the first booster expansion mechanism suction pipe.
  • the gas-liquid separator is connected to the expansion mechanism and the gas-liquid separator outlet pipe.
  • the compressor is a capacity variable compressor, and the booster compressor is a constant speed compressor.
  • the booster compressor has a smaller capacity than the compressor.
  • the heat pump includes a controller for controlling the compressor, the booster compressor, and the second booster expansion mechanism according to an operation mode.
  • the control unit drives the compressor in the normal load mode, stops the booster compressor, and closes the second booster expansion mechanism.
  • the control unit turns off the compressor in the partial load mode, drives the booster compressor, and hermetically closes the second booster expansion mechanism.
  • the control unit drives the compressor and the booster compressor in the multi-operation mode, and closes the second booster expansion mechanism.
  • the control unit drives the compressor and the booster compressor in the gas injection mode and opens the second booster expansion mechanism.
  • the first heat exchanger is a water-refrigerant heat exchanger for exchanging heat between the refrigerant and water, and is connected to a heating unit for heating the room and a hot water unit for supplying hot water and a water circulation channel.
  • the booster module can be further coupled to the refrigeration cycle unit, so that the heating capacity can be easily reduced or the heating capacity can be easily increased in the cold region, It is possible to cope with the load condition and to exhibit the optimum performance, and the performance can be improved with the minimum cost.
  • FIG. 1 is a view showing a configuration before a booster module is installed in a refrigeration cycle unit of a heat pump according to an embodiment of the present invention
  • FIG. 2 is a schematic view of a heat pump according to an embodiment of the present invention after a booster module is installed in a refrigeration cycle unit;
  • FIG. 3 is a view showing a structure in which a heating unit and a heating unit are connected to a refrigeration cycle unit of a heat pump according to an embodiment of the present invention
  • FIG. 4 is a front view of the heat pump according to the present invention when the booster module is installed separately from the refrigeration cycle unit.
  • FIG. 5 is a front view of the heat pump according to the present invention when the booster module is mounted on the refrigeration cycle unit.
  • FIG. 6 is a P-h diagram showing a comparison between when the booster module is not installed and when the booster module is installed in the heat pump according to the embodiment of the present invention
  • FIG. 7 is a control block diagram of one embodiment of a heat pump according to the present invention.
  • FIG. 8 is a schematic structural view showing a refrigerant flow in a general load mode of an embodiment of the heat pump according to the present invention.
  • FIG. 9 is a schematic diagram showing a refrigerant flow in the partial load mode of one embodiment of the heat pump according to the present invention.
  • FIG. 10 is a schematic diagram showing a refrigerant flow in the multi-operation mode of one embodiment of the heat pump according to the present invention.
  • FIG. 11 is a schematic view showing a refrigerant flow in the gas injection mode of one embodiment of the heat pump according to the present invention
  • FIG. 12 is a schematic view of a heat pump according to another embodiment of the present invention after a booster module is installed in a refrigeration cycle unit.
  • FIG. 12 is a schematic view of a heat pump according to another embodiment of the present invention after a booster module is installed in a refrigeration cycle unit.
  • FIG. 13 is a schematic diagram showing a refrigerant flow in a general load mode of another embodiment of the heat pump according to the present invention.
  • FIG. 14 is a schematic view showing a refrigerant flow in the gas injection mode of another embodiment of the heat pump according to the present invention.
  • FIG. 15 is a view showing a configuration before a booster module is installed in a refrigeration cycle unit of another embodiment of a heat pump according to the present invention.
  • FIG. 16 is a configuration diagram after the booster module is installed in the refrigeration cycle unit of another embodiment of the heat pump according to the present invention.
  • FIG. 1 is a view of a heat pump according to an embodiment of the present invention before a booster module is installed in a refrigeration cycle unit
  • FIG. 2 is a view after a booster module is installed in a refrigeration cycle unit of a heat pump according to an embodiment of the present invention
  • FIG. 3 is a view illustrating a structure in which a heating unit and a heating unit are connected to a refrigeration cycle unit of a heat pump according to an embodiment of the present invention
  • the heat pump according to the present embodiment includes a refrigeration cycle unit 1 and a booster module 2.
  • the refrigeration cycle unit 1 can be used for cooling / heating the room, hot water supply, and the like.
  • the booster module 2 may be configured such that when the refrigeration cycle unit 1 does not sufficiently cope with the cooling / heating and hot water supply capacity of the room, or when the user desires to increase the cooling / heating capacity and the hot water supply capacity of the room, It can be installed to further increase heating capacity and hot water supply capacity.
  • the refrigeration cycle unit 1 includes a compressor 10 for compressing refrigerant, a first heat exchanger 14 for condensing the refrigerant compressed in the compressor 10, An expansion mechanism 16 in which the refrigerant condensed in the condenser 14 is expanded and a second heat exchanger 18 in which the refrigerant expanded in the expansion mechanism 16 is evaporated.
  • the refrigeration cycle unit 1 may be installed for cooling, for heating, or for cooling / heating.
  • the refrigerating cycle unit 1 can heat the room by blowing the room air into the first heat exchanger 14 and then discharging it back to the room, and after the room air is blown to the second heat exchanger 18 It is possible to cool the room by discharging it back into the room.
  • the refrigeration cycle unit 1 is capable of directly exchanging the indoor air with one of the first heat exchanger 14 and the second heat exchanger 18.
  • the refrigeration cycle unit 1 is connected to the first heat exchanger And an indoor fan circulating the indoor air to one of the indoor heat exchanger (14) and the second heat exchanger (18).
  • the refrigeration cycle unit (1) is constituted by a water-refrigerant heat exchanger in which one of the first heat exchanger (14) and the second heat exchanger (18) exchanges heat between the refrigerant and water, and the mixed air of the room air and the outdoor air is heated
  • Cooling coil is connected to the water-refrigerant heat exchanger through a water circulation channel, water circulates through the water-refrigerant heat exchanger and the cooling / heating coil to cool / heat the cooling / heating coil, and the mixed air of the indoor air and the outdoor air is cooled / It can be cooled / heated by the heating coil and then discharged to the room.
  • the water heat-exchanged with the refrigerant in the refrigeration cycle unit 1 can be used in an air handling unit (AHU) which is cooled and heated in a mixed air of indoor air and outdoor air, and then discharged into the room.
  • AHU air handling unit
  • the refrigeration cycle unit (1) is constituted by a water-refrigerant heat exchanger in which one of the first heat exchanger (14) and the second heat exchanger (18) exchanges heat between refrigerant and water, and water heated or cooled in the water- It is possible to use it for cooling / heating / hot water supply.
  • the second heat exchanger 18 is constituted by a water-refrigerant heat exchanger, and the cooling unit for cooling the room is connected to the water-refrigerant heat exchanger by a water circulation channel, It is possible to cool the cooling unit while circulating the refrigerant heat exchanger and the cooling unit so that the cooling unit can cool the room.
  • the first heat exchanger (14) is constituted by a water refrigerant heat exchanger, and a heating unit for heating the room is connected to the water refrigerant heat exchanger and the water circulation channel, It is possible to heat the heating unit while circulating the heat exchanger and the heating unit, and to allow the heating unit to heat the room.
  • the first heat exchanger (14) is constituted by a water-refrigerant heat exchanger
  • the hot water supply unit for supplying hot water to the room is connected to the water- It is possible to heat the hot water supply unit while circulating the water refrigerant heat exchanger and the hot water supply unit and supply the hot water to the room by the hot water supply unit.
  • the first heat exchanger (14) is composed of a water refrigerant heat exchanger, and the water / refrigerant heat exchanger And the water is circulated through the water-refrigerant heat exchanger and the cooling / heating unit to cool / heat the cooling / heating unit, and the water-refrigerant heat exchanger is connected to the hot water supply unit for supplying hot water to the room and the water circulation channel, It is possible to heat the hot water supply unit while circulating the gaseous hot water unit.
  • the water heat-exchanged with the refrigerant in the refrigerating cycle unit 1 can be used in a heating unit for heating the room, can be used in a cooling unit for cooling the room, and can be used in a hot water supply unit for supplying hot water to the room .
  • the first heat exchanger 14 is a water-refrigerant heat exchanger, the water heated in the first heat exchanger 14 is used in the hot water supply unit 4, the first heat exchanger 14 that the water heated or cooled can be used in the cooling / heating unit 5.
  • the heat pump according to the present embodiment is characterized in that the compressor 10, the first heat exchanger 14, the expansion mechanism 16 and the second heat exchanger 18 can be installed in the refrigeration cycle unit 1, (1) may further include a cooling / heating switching valve (12) capable of switching between cooling and heating.
  • a cooling / heating switching valve (12) capable of switching between cooling and heating.
  • the cooling / heating switching valve 12 allows the refrigerant compressed in the compressor 10 to flow to the first heat exchanger 14 in the heating mode and the refrigerant evaporated in the second heat exchanger 18 to the compressor 10 So that the refrigerant is condensed in the first heat exchanger (14) and the refrigerant is evaporated in the second heat exchanger (18).
  • the cooling / heating switching valve 12 is configured to allow the refrigerant compressed in the compressor 10 to flow to the second heat exchanger 18 in the cooling mode or the defrost mode and the refrigerant evaporated in the first heat exchanger 14 to flow into the compressor 10 So that the refrigerant is evaporated in the first heat exchanger 14 and the refrigerant in the second heat exchanger 18 is condensed.
  • the refrigeration cycle unit 1 may be constituted by a single unit or may be constituted by an indoor unit 6 and an outdoor unit 7.
  • the compressor 10 When the refrigeration cycle unit 1 is constituted by one unit, the compressor 10, the cooling / heating switching valve 12, the condenser 14, the expansion mechanism 16 and the second heat exchanger 18 are provided in one case And can be installed inside.
  • the outdoor unit 7 When the refrigeration cycle unit 1 is constituted by the indoor unit 6 and the outdoor unit 7, the outdoor unit 7 is connected to the compressor 10, the cooling / heating switching valve 12, the expansion mechanism 16 and the second heat exchanger And the indoor unit 6 includes the first heat exchanger 14 and the outdoor unit 7 and the indoor unit 6 can be connected by the refrigerant pipe.
  • the compressor (10) can be connected to the cooling / heating switching valve (12) and the compressor discharge pipe (11).
  • the compressor discharge pipe 11 may be provided with a check valve 11 'for preventing the refrigerant discharged from the booster compressor 90, which will be described later, from flowing into the compressor 10.
  • the cooling / heating switching valve 12 is connected to the first heat exchanger 14 and the first heat exchanger-cooling / heating switching valve connection pipe 13 and can be connected to the compressor 10 and the compressor suction pipe 20 have.
  • the first heat exchanger 14 may be connected to the expansion mechanism 16 and the first heat exchanger-expansion mechanism connection pipe 15.
  • the first heat exchanger (14) is constituted by a water-refrigerant heat exchanger in which refrigerant and water are heat-exchanged, and a heat-radiating passage through which the refrigerant passes and a heat-absorbing passage through which water is absorbed while passing through the heat- .
  • the first heat exchanger 14 may be connected to the hot water supply unit 4 and the heating unit 5 and the water circulation flow path 22 forming a closed circuit.
  • the expansion mechanism (16) may be connected to the second heat exchanger (18) and the expansion mechanism-second heat exchanger connection pipe (17).
  • the expansion mechanism 16 may be an electronic expansion valve.
  • the second heat exchanger 18 may be connected to the cooling / heating switching valve 12 and the second heat exchanger-cooling / heating switching valve connection pipe 19.
  • the second heat exchanger 18 is constituted by an air-cooling type heat exchanger in which the outdoor air is blown to the second heat exchanger 18 so that the refrigerant is evaporated by the outdoor air.
  • the refrigeration cycle unit 1 is connected to the second heat exchanger And an outdoor fan (not shown) for blowing air to the outdoor units 18.
  • the water circulation flow path 22 is provided in the first heat exchanger 14 so that the water heat exchanged with the refrigerant passes through at least one of the hot water supply unit 4 and the heating unit 5 and is then returned to the first heat exchanger 14. [ 1 heat exchanger 14, the hot water supply unit 4 and the heating unit 5 can be connected.
  • the water circulation flow path 22 includes a refrigerating cycle unit pipe 23 located inside the refrigeration cycle unit 1 and a hot water pipe 24 through which the water heated by the first heat exchanger 14 passes through the hot water supply unit 4
  • a cooling / heating pipe 25 through which the water heated by the first heat exchanger 14 passes through the cooling / heating unit 5 and the cooling cycle unit pipe 23 through the hot water pipe 24 and the cooling / And a connection pipe 27 connecting to the heating pipe 25.
  • connection pipe 27 is provided with a water control valve 28 for guiding water heated or cooled by the first heat exchanger 14 to at least one of the hot water pipe 24 and the cold / hot pipe 25, (24) and the heating pipe (25) can be connected to the water control valve (28) through the connection pipe (27).
  • the refrigeration cycle unit 1 is an air heat source heat pump air to water heat pump (AWHP), which includes a flow switch 32 for sensing the flow of water through the refrigeration cycle unit pipe 23, An expansion tank 33 provided at a position spaced apart from the flow switch 31 among the piping 23, a collecting tank 34 connected to the refrigeration cycle unit pipe 23 and provided with an auxiliary heater 35 therein, And a circulation pump 36 installed in the cycle unit pipe 23 for pumping water to circulate.
  • AWHP air heat source heat pump air to water heat pump
  • the expansion tank 33 is a kind of shock absorber which is absorbed when the volume of the heated water is expanded to an appropriate level or higher while passing through the first heat exchanger 14.
  • the expansion tank 33 is filled with nitrogen, Flam can be installed.
  • the water collecting tank 34 collects the water.
  • the auxiliary heater 35 can be selectively operated.
  • the water pump 36 circulates water between the refrigeration cycle unit 1, the hot water supply unit 4 and the heating unit 5 and is installed after the water collecting tank 34 among the refrigeration cycle unit pipes 23 .
  • the hot water supply unit 4 supplies hot water necessary for a user to wash, bath or wash dishes and includes a hot water tank 41 containing water and an auxiliary heater 42 for hot water supply installed in the hot water tank 41 have.
  • the hot water tank 41 may be connected to a cold water receiving portion 43 to which cold water is supplied to the hot water tank 41 and a hot water outlet portion 44 to which hot water from which the hot water of the hot water tank 41 is to be taken out.
  • a hot water supply pipe (24) is provided in the hot water tank (41) to heat water in the hot water tank (41).
  • a hot water outflow mechanism (45) such as a shower can be connected to the hot water outflow section (44).
  • the cold water receiving portion (46) can be connected to the hot water outlet portion (44) so that cold water can be discharged to the hot water outlet mechanism (45).
  • the heating unit 5 may include a bottom cooling / heating unit 51 for cooling / heating the floor of the room, and an air cooling / heating unit 52 for cooling / heating the room air.
  • the floor cooling / heating unit 51 may be embedded in the floor of the room in a meander line.
  • the air conditioning / heating unit 52 may be constituted by a fan coil unit or a radiator.
  • the water supply valve 53 and the water supply valve 54 for guiding water to at least one of the floor heating / heating unit 51 and the air cooling / heating unit 52 may be installed in the cooling / heating pipe 25,
  • the heating unit 51 is connected to the water control valves 53 and 54 and the air cooling / heating pipe 55.
  • the bottom cooling / heating unit 51 is connected to the water control valves 53 and 54, And may be connected to a heating pipe 56.
  • the water heated in the first heat exchanger 14 passes through the refrigerating cycle unit pipe 23 and the connecting pipe 27 one after another in order to cool the hot water in the hot water circulating pump 36,
  • the water in the hot water tank 41 may be heated and then passed through the connecting pipe 27 and the refrigerating cycle unit pipe 23 in order to be recovered to the first heat exchanger 14.
  • the water heated or cooled in the first heat exchanger 14 is supplied to the refrigeration cycle unit pipe 23 and the connection pipe 27 Heating piping 25 and at least one of the bottom cooling / heating unit 51 and the air cooling / heating unit 52 is heated or cooled, and then the cooling / heating piping 25 and the connection piping 25 are connected to each other, (27) and the refrigeration cycle unit pipe (23) in order, and recovered to the first heat exchanger (14).
  • the water heated or cooled in the first heat exchanger 14 flows through the air cooling / heating pipe 25 and the air cooling / Heating piping 25 and the air cooling / heating piping 55 to the cooling / heating pipe 25.
  • the water heated by the first heat exchanger 14 flows through the bottom cooling / heating pipe 56, Heating pipe 51 and the bottom cooling / heating pipe 56 in order, and then to the cooling / heating pipe 25.
  • the booster module 2 may be additionally installed in the refrigeration cycle unit 1 as necessary after the refrigeration cycle unit 1 is installed.
  • the booster module 2 is connected to the refrigeration cycle unit 1 to separate and compress the gaseous refrigerant in the refrigerant flowing from the first heat exchanger 14 to the expansion mechanism 16, (14). ≪ / RTI >
  • the booster module 2 compresses the refrigerant separately from the compressor 10 of the refrigeration cycle unit 1 and supplies the refrigerant to the second heat exchanger 18 when the booster compressor 90 described later compresses the refrigerant separately from the compressor 10 of the refrigeration cycle unit 1,
  • the gaseous refrigerant having an intermediate pressure lower than the evaporation pressure of the booster compressor 90 can be injected into the booster compressor 90 to increase the operation efficiency.
  • the booster module 2 includes a first booster expansion mechanism 62 for expanding the refrigerant condensed in the first heat exchanger 14 and a second booster expansion mechanism 62 for separating the liquid refrigerant and the gaseous refrigerant in the refrigerant expanded in the first booster expansion mechanism 62
  • the first heat exchanger-cooling / heating switching valve connection pipe 13 and the first heat exchanger-expansion mechanism connection pipe 15 are separated from each other And the booster module 2 are connected to the first heat exchanger-cooling / heating switching valve connecting pipes 13A and 13B and connected to the first heat exchanger-expansion mechanism connecting pipes 15A and 15B .
  • the first booster expansion mechanism 62 may be connected to the first heat exchanger 14 and the first booster expansion mechanism suction pipe 64 and the first booster expansion mechanism suction pipe 64 may be connected to the separate first heat exchanger- And may be connected to any one of the expansion mechanism connecting pipes 15A and 15B.
  • the first booster expansion mechanism 62 may be an electronic expansion valve.
  • the gas-liquid separator 70 separates the gaseous refrigerant in the refrigerant condensed in the first heat exchanger 14 from the liquid refrigerant and can be connected to the expansion mechanism 16 and the gas-liquid separator outlet pipe 72, (72) may be connected to the other of the first heat exchanger-expansion mechanism connecting pipes (15A) and (15B).
  • the second booster expansion mechanism 80 allows the gaseous refrigerant of the gas-liquid separator 70 to flow to the booster compressor 90 when the first and second booster expansion devices 80 and 80 are closed and prevents the gaseous refrigerant of the gas-liquid separator 70 from flowing to the booster compressor 90 do.
  • the second booster expansion mechanism 80 can expand the gaseous refrigerant flowing from the gas-liquid separator 70 toward the booster compressor 90 during opening adjustment.
  • the second booster expansion mechanism 80 may be an electronic expansion valve.
  • the booster module 2 may include a gas-liquid separator suction pipe 74 connecting the first booster expansion mechanism 62 and the gas-liquid separator 70.
  • first heat exchanger 14 and the expansion mechanism 16 may be connected through the first heat exchanger-expansion mechanism connection pipe 15 before the booster module 2 is installed, and the booster module 2 may be installed
  • the first booster expansion mechanism suction pipe 64 and the first booster expansion mechanism 62 and the gas-liquid separator suction pipe 74 (one of the first heat exchanger-expansion mechanism connecting pipes 15A and 15B) Liquid separator 70 and the other one 15B of the gas-liquid separator outlet piping 72 and the first heat exchanger-expansion mechanism connection piping 15A, 15B.
  • the booster module 2 includes a vapor phase refrigerant discharge pipe 76 guided to the second booster expansion mechanism 80 by the gaseous refrigerant separated from the gas-liquid separator 70 and a gas phase refrigerant discharged from the second booster expansion device 80
  • the booster compressor suction pipe 92 sucked by the booster compressor 90 and the booster compressor 90 are connected to the compressor 10 and the first heat exchanger 14 of the refrigeration cycle unit 1.
  • compressor discharge piping 94 (95).
  • the booster compressor discharge pipes 94 and 95 are connected to a first booster compressor 91A connecting one of the separated first heat exchanger-cooling / heating selector valve connecting pipes 13A and 13B and the other one of the booster compressor discharge pipes 94 and 95, A discharge pipe 94 and a second booster compressor discharge pipe 95 for guiding the refrigerant discharged from the booster compressor 90 to the first booster compressor discharge pipe 94.
  • the cooling / heating switching valve 12 and the first heat exchanger 14 are connected to the first heat exchanger-cooling / heating switching valve connection pipe 13
  • the first heat exchanger-cool / heat changeover valve connecting pipes 13A and 13B and the first booster compressor 13B are connected to each other, And may be connected to the discharge pipe 94 and another one 13B of the first heat exchanger-cooling / heating changeover valve connecting pipe 13A, 13B.
  • the booster compressor discharge pipes 94 and 95 are provided with a check valve 95 'for preventing the refrigerant compressed by the compressor 10 from flowing to the booster compressor 90.
  • the check valve 95' Can be installed in the compressor discharge pipe (95).
  • the booster module 2 further includes a bypass line 99 for allowing the refrigerant flowing from the gas-liquid separator 70 to the gas-liquid separator outlet line 72 to flow into the first booster expansion mechanism suction line 64.
  • the bypass pipe 99 is provided with a check valve 99 'which prevents the refrigerant of the first booster expansion mechanism suction pipe 64 from flowing to the gas-liquid separator outlet pipe 72 through the bypass pipe 99, The gaseous refrigerant flowing from the separator 70 to the booster compressor suction pipe 92 can be maximized.
  • the booster module 2 can compress the refrigerant vaporized in the second heat exchanger 18 by the booster compressor 90 and then flow between the compressor 10 and the first heat exchanger 14.
  • the booster module 2 may have a structure in which the gaseous refrigerant separated in the gas-liquid separator 70 and the refrigerant evaporated in the second heat exchanger 18 are sucked into the booster compressor 90 together or selectively.
  • the booster module 2 connects the booster compressor suction pipe 92 with the second heat exchanger 18 and the compressor 10 through the booster suction pipe 96 to cool the second refrigerant evaporated in the second heat exchanger 18 It is possible to guide a part of the refrigerant to the booster compressor suction pipe 92.
  • the booster suction pipe 96 may have one end connected to the compressor suction pipe 20 and the other end connected to the booster compressor suction pipe 92.
  • the booster suction piping 96 is connected to the booster module 2 so as to be connected to the booster compressor suction pipe 92 and the first booster suction pipe 97 installed in the refrigeration cycle unit 1 to be connected to the compressor suction pipe 20, And a third booster suction pipe 99 for connecting the first booster suction pipe 97 and the second booster suction pipe 98 to each other.
  • the booster module 2 further includes a check valve 96 'installed in the booster suction pipe 96 for preventing the refrigerant of the booster compressor suction pipe 92 from being sucked into the compressor 10 through the booster suction pipe 96 .
  • the check valve 96 ' may be installed in the second booster suction pipe 98.
  • FIG. 4 is a front view of the heat pump according to the present invention when the booster module of the embodiment is installed separately from the refrigeration cycle unit.
  • FIG. 5 is a sectional view of the heat pump according to the present invention when the booster module is mounted on the refrigeration cycle unit FIG.
  • the booster module 2 may be installed so as to be spaced from the refrigeration cycle unit 1 or to be fastened to the refrigeration cycle unit 1.
  • the booster module 2 is installed apart from the indoor unit 6 and the outdoor unit 7, or installed between the indoor unit 6 and the outdoor unit 7, As shown in FIG.
  • the refrigeration cycle unit 1 may be provided so as to be spaced apart from the outdoor unit 7 and configured separately from the refrigeration cycle unit 1. As shown in FIG. 5, The refrigerating cycle unit 1 may be integrated with the outdoor unit 7 so as to be integrated with the refrigerating cycle unit 1.
  • the booster module 5 can be selectively installed in the outdoor unit O, as shown in FIGS.
  • FIG. 6 is a P-h diagram showing a comparison between when the booster module is not installed and when the booster module is installed in the heat pump according to the present invention.
  • the refrigerant undergoes a process of a-> b '> c -> f -> a, as shown by the dotted line in FIG. 4 while undergoing the usual compression, condensation, expansion, .
  • the refrigerant is cooled to a-> b-> c-> d (d) as shown by a solid line in FIG. 6 while the refrigerant undergoes compression, condensation, expansion, g-> g-> a-, a part of the refrigerant flowing out of the first heat exchanger 14 is expanded and compressed in the booster module 2, > h-> b, and the efficiency of the heat pump is increased as compared with the case where the booster module 2 is not installed, so that the compression work can be reduced.
  • the total power consumption supplied to the compressor 10 and the booster compressor 90 is reduced, and the low-temperature heating capability, particularly in a low outdoor temperature, is improved.
  • the maximum management temperature of the compressor 10 is relatively lower than in the case where the booster module 2 is not installed, and the reliability of the compressor 10 can be improved.
  • FIG. 7 is a control block diagram of a heat pump according to an embodiment of the present invention
  • FIG. 8 is a schematic structural view illustrating a refrigerant flow in a general load mode of an embodiment of a heat pump according to the present invention
  • FIG. 10 is a schematic structural view showing a refrigerant flow in a multi-operation mode of an embodiment of a heat pump according to the present invention
  • FIG. 11 is a schematic view showing the refrigerant flow in the partial load mode of the present invention
  • Fig. 3 is a schematic diagram showing a refrigerant flow in the gas injection mode of one embodiment.
  • the heat pump includes an operation unit 100 for inputting various commands such as operation / stop of a heat pump, a load detection sensor 110 for detecting a load of a heat pump, The first booster expansion mechanism 62, the second booster expansion mechanism 80 and the booster compressor 90 (90) according to the detection result of the load detection sensor 110.
  • the compressor 10 the expansion mechanism 16, the outdoor fan 22, And a control unit 120 for controlling the display unit 120 and the like.
  • the load detection sensor 110 may include a water temperature sensor that detects the load of the hot water supply unit 4 and the heating unit 5.
  • the water temperature sensor may be installed at one side of the water circulation flow path 22 to sense the temperature of water circulating through at least one of the hot water supply unit 4 and the heating unit 5 and the first heat exchanger 14.
  • the water temperature sensor is installed to sense the temperature of the water recovered by the first heat exchanger 14 after passing through at least one of the hot water supply unit 4 and the heating unit 5 and is installed in the refrigeration cycle unit pipe 23 .
  • the load detection sensor 110 may include an outdoor temperature sensor for detecting whether the outdoor temperature is low.
  • the outdoor temperature sensor may be installed in the second heat exchanger 18 to sense the temperature of the outdoor air blown toward the second heat exchanger 18 outdoors.
  • the control unit 120 controls the partial load mode, the general load mode, and the multi-operation mode.
  • the load sensing sensor 110 senses the outdoor low- .
  • the control unit 120 determines that the load of the heat pump is a partial load when the temperature of the water sensed by the load sensing sensor 110 is lower than the first set temperature and the temperature of the water sensed by the load sensing sensor 110 is the first setting If the temperature of the water sensed by the load sensing sensor 110 is equal to or higher than the second set temperature, the load of the heat pump is determined as a normal load. If the temperature of the heat pump is lower than the second set temperature, (I.e., an overload) can be determined.
  • the controller 120 can determine that the load of the heat pump is the outdoor low temperature load when the outdoor temperature sensed by the load sensing sensor 110 is lower than the set temperature.
  • the control unit 120 can control the compressor 10, the booster compressor 90, and the second booster expansion mechanism 80 according to the operation mode, so that the operation mode can be variously configured according to the load,
  • the compressor 10, the booster compressor 90, and the booster compressor 90 are operated in the partial load mode when the load is less than the normal load
  • the second booster expansion mechanism 80 is operated in the normal load mode and the compressor 10, the booster compressor 90 and the second booster expansion mechanism 80 are operated in the multi-operation mode when the load is larger than the general load
  • the compressor 10, the booster compressor 90, and the second booster expansion mechanism 80 can be operated in the gas injection mode.
  • the heat pump according to the present embodiment is characterized in that the compressor 10 is a capacity variable compressor, the booster compressor 90 is a constant speed compressor, and the booster compressor 90 is more compact than the compressor 10 It is preferable that the capacity is formed small.
  • the control unit 120 turns off the compressor 10 in the partial load mode, drives the booster compressor 90, and hermetically closes the second booster expansion mechanism 80.
  • the control unit 120 can open and adjust the expansion mechanism 16 to open the first booster expansion mechanism 62 in a fully opened state and the expansion mechanism 16 to expand the refrigerant.
  • control unit 120 can control the opening degree of the expansion mechanism 16 so that the suction and the degree of the circulation of the booster compressor 90 reach the setting and the degree of the arch.
  • the refrigerant in the compressor suction pipe 19 at the time of the control is not introduced into the compressor 10 but flows through the booster suction pipe 96 and the booster compressor suction pipe 92 in this order
  • the refrigerant is sucked and compressed by the booster compressor 90 and then passed through the booster compressor discharge pipe 94 and the compressor discharge pipe 13 in order to flow to the first heat exchanger 14.
  • the refrigerant flowing into the first heat exchanger 14 is condensed in the first heat exchanger 14 to heat the water passing through the first heat exchanger 14 and then flows into the first booster expansion mechanism 62 and the gas- 70, and may be expanded in the expansion mechanism 16 and then flowed to the second heat exchanger 18.
  • the refrigerant flowing into the second heat exchanger (18) is evaporated by the outdoor air blown from the outdoor fan (22) and then recovered to the compressor suction pipe (19).
  • the heat pump compresses, condenses, expands, and evaporates while the refrigerant circulates through the booster compressor 90, the first heat exchanger 14, the expansion mechanism 16 and the second heat exchanger 18, It is possible to cope with the partial load with less power consumption.
  • the control unit 120 drives the compressor 10 in the normal load mode, stops the booster compressor 90, and hermetically closes the second booster expansion mechanism 80.
  • the control unit 120 can open and adjust the expansion mechanism 16 to open the first booster expansion mechanism 62 in a fully opened state and the expansion mechanism 16 to expand the refrigerant.
  • control unit 120 can control the opening degree of the expansion mechanism 16 so that the suction and the degree of the archetype of the compressor 10 reach the set and the degree of the arch.
  • the refrigerant in the compressor suction pipe 19 during the control is not introduced into the booster compressor 90 but is sucked into the compressor 10 to be compressed. Thereafter, the refrigerant in the compressor discharge pipe 13) in order to flow to the first heat exchanger (14).
  • the refrigerant flowing into the first heat exchanger 14 is condensed in the first heat exchanger 14 to heat the water passing through the first heat exchanger 14 and then flows into the first booster expansion mechanism 62 and the gas- 70, and may be expanded in the expansion mechanism 16 and then flowed to the second heat exchanger 18.
  • the refrigerant flowing into the second heat exchanger (18) is evaporated by the outdoor air blown from the outdoor fan (22) and then recovered to the compressor suction pipe (19).
  • the heat pump compresses, condenses, expands, and evaporates while the refrigerant circulates through the compressor 10, the first heat exchanger 14, the expansion mechanism 16 and the second heat exchanger 18, It is possible to cope with a general load larger than that in the case of driving of the vehicle.
  • the control unit 120 drives the compressor 10 and the booster compressor 90 in the multi-operation mode, and closes the second booster expansion mechanism 80. [ The control unit 120 can open and adjust the expansion mechanism 16 to open the first booster expansion mechanism 62 in a fully opened state and the expansion mechanism 16 to expand the refrigerant.
  • control unit 120 can control the opening degree of the expansion mechanism 16 so that the suction and the degree of the archetype of the compressor 10 reach the set and the degree of the arch.
  • a part of the refrigerant is sucked and compressed by the compressor 10 and then is discharged to the compressor discharge pipe 13, and the remaining part of the refrigerant is sucked by the booster suction
  • the refrigerant passes through the piping 96 and the booster compressor suction pipe 92 and is sucked and compressed by the booster compressor 90 and then discharged to the compressor discharge pipe 13 and merged with the refrigerant discharged from the compressor 10.
  • the refrigerant discharged to the compressor discharge pipe 13 flows into the first heat exchanger 14 and is condensed in the first heat exchanger 14 to heat the water passing through the first heat exchanger 14, Through the expansion mechanism 62 and the gas-liquid separator 70, can be expanded in the expansion mechanism 16 and then flowed to the second heat exchanger 18.
  • the refrigerant flowing into the second heat exchanger (18) is evaporated by the outdoor air blown from the outdoor fan (22) and then recovered to the compressor suction pipe (19).
  • the heat pump compresses, condenses, expands, and evaporates while the refrigerant circulates through the compressor 10 and the booster compressor 90, the first heat exchanger 14, the expansion mechanism 16 and the second heat exchanger 18 , It is possible to cope with a large load greater than that of the single drive of the booster compressor (90) and the single drive of the compressor (10).
  • the control unit 120 may drive the compressor 10 and the booster compressor 90 and open the second booster expansion mechanism 80 in the gas injection mode.
  • the control unit 120 can open the first booster expansion mechanism 62 and adjust the opening degree of the expansion mechanism 16 so that the expansion mechanism 16 expands the refrigerant.
  • the controller 120 controls the booster compressor 90 such that the pressure of the refrigerant sucked into the booster compressor 90 is lower than the evaporation pressure of the second heat exchanger 18, It is possible to control the opening degree of the expansion mechanism 16 by controlling the opening degree of the booster expansion mechanism 80 and the degree of opening of the second booster expansion mechanism 80 so that the suction and the degree of the opening degree of the compressor 10 reach the setting and the degree of arch.
  • the refrigerant of the compressor suction pipe 19 during the control is sucked and compressed by the compressor 10, is discharged to the compressor discharge pipe 13, and then discharged to the first heat exchanger 14 and is condensed in the first heat exchanger 14 to heat water passing through the first heat exchanger 14 and then expanded in the first booster expansion mechanism 62 and then introduced into the gas-liquid separator 70 .
  • the refrigerant introduced into the gas-liquid separator 70 is separated from the gaseous refrigerant and the liquid refrigerant so that the gaseous refrigerant is discharged through the gaseous refrigerant discharge pipe 76 and the liquid refrigerant flows through the expansion mechanism inlet pipe 72, And can be expanded.
  • the refrigerant expanded in the expansion mechanism 16 flows into the second heat exchanger 18 and is evaporated and then recovered into the compressor suction pipe 19.
  • the compressed refrigerant is compressed by the compressor 10 and then discharged to the compressor discharge pipe 13 .
  • the refrigerant discharged to the gaseous refrigerant discharge pipe 76 is expanded in the second booster expansion mechanism 80, and then flows to the booster compressor suction pipe 92, where it is compressed in the booster compressor 90.
  • the refrigerant compressed in the booster compressor (90) is discharged to the booster compressor discharge pipe (94), then flows to the compression discharge pipe (13) and mixed with the refrigerant discharged from the compressor (10).
  • the heat pump is configured such that the refrigerant circulates through the compressor 10, the first heat exchanger 14, the first booster expansion mechanism 62, the expansion mechanism 16, and the second heat exchanger 18,
  • the gaseous refrigerant in the refrigerant condensed in the first heat exchanger 14 is expanded and then gas is injected into the booster compressor 90.
  • the heat pump is connected to the booster compressor 90 and the compressor 10
  • the efficiency is increased and the compression work is reduced.
  • the low-temperature heating capability in which the outdoor temperature is low can be improved.
  • FIG. 12 is a schematic view of a heat pump according to another embodiment of the present invention, in which a booster module is installed in a refrigeration cycle unit
  • FIG. 13 is a schematic view showing a refrigerant flow in a general load mode of another embodiment
  • FIG. 14 is a schematic view showing a refrigerant flow in the gas injection mode of another embodiment of the heat pump according to the present invention.
  • the heat pump according to the present embodiment is not provided with the booster suction pipe 96 and the check valve 96 'of the present invention, and other configurations may be the same as or similar to those of the embodiment of the present invention.
  • the heat pump according to the present embodiment has a general load mode in which the compressor 10 is driven, the booster compressor 90 is not driven, and the second booster expansion mechanism 80 does not pass the gaseous refrigerant 14, the compressor 10 and the booster compressor 90 are driven, and the second booster expansion mechanism 80 has the gas injection mode in which the gaseous refrigerant is passed.
  • the compressor 10 and the booster compressor 90 are driven and the second booster expansion mechanism 80 is controlled to pass the gaseous refrigerant,
  • the booster compressor 90 compresses the gaseous refrigerant separated in the gas-liquid separator 70, and compresses the refrigerant evaporated in the evaporator 18.
  • the compressor 10 can compress the refrigerant evaporated in the evaporator 10.
  • FIG. 15 is a schematic view of a heat pump according to the present invention before a booster module is installed in a refrigeration cycle unit of another embodiment.
  • FIG. 16 is a view showing a configuration after a booster module is installed in a refrigeration cycle unit of another embodiment of a heat pump according to the present invention to be.
  • the heat pump according to the present embodiment is dedicated to heating and does not include the cooling / heating switching valve 12 of the embodiment of the present invention, and other configurations may be the same as or similar to those of the embodiment of the present invention.
  • the refrigeration cycle unit 1 is configured such that the compressor 10 is connected to the first heat exchanger 14 and the compressor discharge pipe 11 and the first heat exchanger 14 is connected to the expansion mechanism 16 and the first heat exchanger- And the expansion mechanism 16 is connected to the second heat exchanger 18 and the expansion mechanism-second heat exchanger connection pipe 17 while the second heat exchanger 18 is connected to the compressor 10 and the compressor suction pipe 20 '.
  • the compressor discharge pipe 11 and the first heat exchanger-expansion mechanism connecting pipe 15 are separated, and the booster module 2 is separated May be connected to the compressor discharge pipes (11A) and (11B) and may be connected to the separated first heat exchanger-expansion mechanism connecting pipes (15A) and (15B).
  • the booster module 2 is connected to the first booster compressor discharge piping 94 and 95 which connects the booster compressor discharge pipes 94 and 95 to either one of the compressor discharge pipes 11A and 11B separated from the compressor discharge pipes 11A and 11B, And a second booster compressor discharge pipe 95 for guiding the refrigerant discharged from the booster compressor 90 to the first booster compressor discharge pipe 94.
  • the compressor 10 and the first heat exchanger 14 are connected to the compressor discharge pipe 11, and after the booster module 2 is installed
  • the first booster compressor discharge pipe 94 and the other one of the compressor discharge pipes 11 can be connected to each other as shown in FIG.
  • the booster suction pipe 96 may have one end connected to the compressor suction pipe 20 'and the other end connected to the booster compressor suction pipe 92.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)

Abstract

The present invention relates to a heat pump comprising a refrigerating cycle unit and a booster module. The refrigerating cycle unit comprises: a compressor in which a refrigerant is compressed; a first heat exchanger in which the refrigerant compressed by the compressor is condensed; an expansion device in which the refrigerant condensed by the first heat exchanger expands; and a second heat exchanger in which the refrigerant expanded by the expansion device evaporates. The booster module is connected to the refrigerating cycle to separate a refrigerant vapor from the refrigerant flowing from the first heat exchanger to the expansion device, compress the separated refrigerant vapor, and enable the compressed refrigerant to flow between the compressor and the first heat exchanger, or to compress the refrigerant evaporated in the second heat exchanger and enable the compressed refrigerant to flow between the compressor and the first heat exchanger. The heat pump of the present invention is advantageous in that heating ability can be conveniently improved, and optimum performance can be achieved in accordance with a variety of load conditions which might not be handled by a compressor of a refrigerating cycle unit alone.

Description

히트 펌프Heat pump
본 발명은 히트 펌프에 관한 것으로서, 특히 냉매가 순환되는 압축기와 제 1 열교환기와 팽창기구와 제 2 열교환기로 갖고 제 1 열교환기가 열수요처로 열을 공급할 수 있는 히트 펌프에 관한 것이다.The present invention relates to a heat pump, and more particularly, to a heat pump in which a refrigerant is circulated, a first heat exchanger, an expansion mechanism, and a second heat exchanger, and the first heat exchanger can supply heat to a heat consumer.
일반적으로 히트 펌프는 사용자에게 보다 쾌적한 실내 환경을 조성하기 위해 압축기, 제 1 열교환기, 팽창기구, 제 2 열교환기로 이루어지는 냉동 사이클 유닛을 이용하여 실내를 냉/난방시키는 기기이다.Generally, a heat pump is a device for cooling / heating a room by using a refrigeration cycle unit including a compressor, a first heat exchanger, an expansion mechanism, and a second heat exchanger to create a more comfortable indoor environment for a user.
상기와 같은 히트 펌프는 실내의 공기를 제 1 열교환기나 제 2 열교환기에 의해 가열/냉각시킨 후 실내로 토출하는 것에 의해 실내를 난방/냉방시킨다. The heat pump as described above causes the indoor air to be heated / cooled by the first heat exchanger or the second heat exchanger, and then discharged into the room to heat / cool the room.
그러나, 종래 기술에 따른 히트 펌프는 기온 변화나 주변 환경의 변화로 인해 히트 펌프가 충분한 냉/난방 능력을 발휘하지 못하는 경우가 있고, 사용자는 기존 설치된 히트 펌프를 보다 대용량의 히트 펌프로 교체하거나 새로운 히트 펌프를 추가로 설치하는 문제점이 있다. However, according to the conventional heat pump, the heat pump can not exhibit sufficient cooling / heating capability due to a change in ambient temperature or a change in ambient temperature. Therefore, the user can replace the existing heat pump with a heat pump having a larger capacity, There is a problem that an additional heat pump is installed.
본 발명은 상기한 종래 기술의 문제점을 해결하기 위하여 안출된 것으로서, 냉동 사이클 유닛에 성능을 보강하는 부스터 모듈이 연결되는 히트 펌프를 제공하는데 그 목적이 있다.SUMMARY OF THE INVENTION It is an object of the present invention to provide a heat pump in which a booster module for enhancing performance is connected to a refrigeration cycle unit.
본 발명의 다른 목적은 부스터 모듈의 부스터 압축기로 냉매 가스가 인젝션 되어 저온 조건에서의 난방 성능을 높일 수 있는 히트 펌프를 제공하는데 있다. It is another object of the present invention to provide a heat pump capable of increasing the heating performance under a low temperature condition by injecting a refrigerant gas into a booster compressor of a booster module.
본 발명이 또 다른 목적은 부하에 따른 다양한 운전이 가능하여 소비전력을 최소화하면서 부하에 효율적으로 대응할 수 있는 히트 펌프를 제공하는데 있다.Another object of the present invention is to provide a heat pump capable of various operations according to a load, thereby efficiently coping with a load while minimizing power consumption.
상기한 과제를 해결하기 위한 본 발명에 따른 히트 펌프는 냉매가 압축되는 압축기와, 상기 압축기에서 압축된 냉매가 응축되는 제 1 열교환기와, 상기 제 1 열교환기에서 응축된 냉매가 팽창되는 팽창기구와, 상기 팽창기구에서 팽창된 냉매가 증발되는 제 2 열교환기를 갖는 냉동 사이클 유닛과; 상기 냉동 사이클 유닛에 연결되어 상기 제 1 열교환기에서 팽창기구로 유동되는 냉매 중 기상 냉매를 분리하여 압축한 후 상기 압축기와 제 1 열교환기의 사이로 유동시키거나 상기 제 2 열교환기에서 증발된 냉매를 압축한 후 상기 압축기와 제 1 열교환기의 사이로 유동시키는 부스터 모듈을 포함한다.According to an aspect of the present invention, there is provided a heat pump including a compressor in which a refrigerant is compressed, a first heat exchanger in which refrigerant compressed in the compressor is condensed, an expansion mechanism in which refrigerant condensed in the first heat exchanger is expanded, A refrigerant cycle unit having a second heat exchanger in which the refrigerant expanded in the expansion mechanism evaporates; The refrigerant is separated from the refrigerant flowing from the first heat exchanger to the expansion mechanism and is then compressed to flow between the compressor and the first heat exchanger or the refrigerant evaporated in the second heat exchanger And a booster module for compressing and then flowing between the compressor and the first heat exchanger.
상기 부스터 모듈은 상기 제 1 열교환기에서 유동된 냉매를 팽창하는 제 1 부스터 팽창기구와, 상기 제 1 부스터 팽창기구에서 팽창된 냉매 중 액냉매와 기상 냉매를 분리하는 기액 분리기와, 상기 기액 분리기에서 분리된 기상 냉매를 팽창하는 제 2 부스터 팽창기구와, 상기 제 2 부스터 팽창기구에서 팽창된 냉매를 압축하는 부스터 압축기를 포함한다. The booster module includes a first booster expansion mechanism for expanding the refrigerant flowing in the first heat exchanger, a gas-liquid separator for separating the liquid refrigerant and the gaseous refrigerant in the refrigerant expanded in the first booster expansion mechanism, A second booster expansion mechanism for expanding the separated gaseous refrigerant, and a booster compressor for compressing the refrigerant expanded in the second booster expansion mechanism.
상기 부스터 모듈은 상기 제 2 열교환기에서 증발된 냉매가 상기 부스터 압축기로 흡입되게 안내하는 부스터 흡입배관을 더 포함한다. The booster module further includes a booster suction pipe for guiding the refrigerant evaporated in the second heat exchanger to be sucked into the booster compressor.
상기 부스터 모듈은 제 1 부스터 팽창기구와 상기 기액 분리기를 연결하는 기액 분리기 흡입배관과, 상기 기액 분리기에서 분리된 기상 냉매가 상기 제 2 부스터 팽창기구로 안내되는 기상 냉매 토출배관과, 상기 제 2 부스터 팽창기구에서 팽창된 냉매가 상기 부스터 압축기로 흡입되는 부스터 압축기 흡입배관과, 상기 부스터 압축기에서 토출된 냉매가 상기 압축기와 제 1 열교환기의 사이로 안내되는 부스터 압축기 토출배관을 더 포함하고, 상기 부스터 흡입배관은 상기 제 2 열교환기와 압축기의 사이와 상기 부스터 압축기 흡입배관을 연결한다. The booster module includes a gas-liquid separator suction pipe connecting the first booster expansion mechanism and the gas-liquid separator, a gaseous refrigerant discharge pipe guided to the second booster expansion mechanism by the gaseous refrigerant separated from the gas-liquid separator, Further comprising a booster compressor suction pipe through which the refrigerant expanded in the expansion mechanism is sucked into the booster compressor and a booster compressor discharge pipe through which the refrigerant discharged from the booster compressor is guided between the compressor and the first heat exchanger, The piping connects the booster compressor suction pipe between the second heat exchanger and the compressor.
상기 부스터 모듈은 상기 부스터 흡입배관에 설치되어 상기 부스터 압축기 흡입배관의 냉매가 상기 부스터 흡입배관을 통해 상기 압축기로 흡입되는 것을 막는 체크밸브를 더 포함한다. The booster module further includes a check valve installed in the booster suction pipe to prevent the refrigerant of the booster compressor suction pipe from being sucked into the compressor through the booster suction pipe.
상기 제 1 부스터 팽창기구는 상기 제 1 열교환기와 제 1 부스터 팽창기구 흡입배관으로 연결된다. The first booster expansion mechanism is connected to the first heat exchanger and the first booster expansion mechanism suction pipe.
상기 기액 분리기는 상기 팽창기구와 기액분리기 출구배관으로 연결된다. The gas-liquid separator is connected to the expansion mechanism and the gas-liquid separator outlet pipe.
상기 압축기는 용량 가변 압축기이고, 상기 부스터 압축기는 정속 압축기이다. The compressor is a capacity variable compressor, and the booster compressor is a constant speed compressor.
상기 부스터 압축기는 상기 압축기 보다 용량이 작다. The booster compressor has a smaller capacity than the compressor.
상기 히트 펌프는 운전 모드에 따라 상기 압축기와 부스터 압축기와 제 2 부스터 팽창기구를 제어하는 제어부를 포함한다. The heat pump includes a controller for controlling the compressor, the booster compressor, and the second booster expansion mechanism according to an operation mode.
상기 제어부는 일반 부하 모드시 상기 압축기를 구동시키고, 상기 부스터 압축기를 정지시키며, 상기 제 2 부스터 팽창기구를 밀폐시킨다. The control unit drives the compressor in the normal load mode, stops the booster compressor, and closes the second booster expansion mechanism.
상기 제어부는 부분 부하 모드시 상기 압축기를 오프시키고, 상기 부스터 압축기를 구동시키며, 상기 제 2 부스터 팽창기구를 밀폐시킨다.  The control unit turns off the compressor in the partial load mode, drives the booster compressor, and hermetically closes the second booster expansion mechanism.
상기 제어부는 멀티 운전 모드시 상기 압축기와 부스터 압축기를 구동시키고, 상기 제 2 부스터 팽창기구를 밀폐시킨다.  The control unit drives the compressor and the booster compressor in the multi-operation mode, and closes the second booster expansion mechanism.
상기 제어부는 가스 인젝션 모드시 상기 압축기와 부스터 압축기를 구동시키고, 상기 제 2 부스터 팽창기구를 개방시킨다.  The control unit drives the compressor and the booster compressor in the gas injection mode and opens the second booster expansion mechanism.
상기 제 1 열교환기는 냉매와 물을 열교환시키는 수냉매 열교환기이고, 실내를 난방시키는 난방 유닛 및 온수를 공급하는 급탕 유닛과 물 순환 유로로 연결된다. The first heat exchanger is a water-refrigerant heat exchanger for exchanging heat between the refrigerant and water, and is connected to a heating unit for heating the room and a hot water unit for supplying hot water and a water circulation channel.
상기와 같이 구성되는 본 발명에 따른 히트 펌프는 부스터 모듈이 냉동 사이클 유닛에 추가로 결합 가능하므로, 난방 능력이 부족하거나 한랭지에서 난방능력을 간편하게 높일 수 있고, 냉동 사이클 유닛의 압축기만으로 대응하기 어려운 다양한 부하 조건에 대응할 수 있어 최적의 성능을 발휘할 수 있으며, 최소한의 비용으로 성능을 향상시킬 수 있어 이점이 있다.In the heat pump according to the present invention, the booster module can be further coupled to the refrigeration cycle unit, so that the heating capacity can be easily reduced or the heating capacity can be easily increased in the cold region, It is possible to cope with the load condition and to exhibit the optimum performance, and the performance can be improved with the minimum cost.
도 1은 본 발명에 따른 히트 펌프 일실시예의 냉동 사이클 유닛에 부스터 모듈이 설치되기 전의 구성도,FIG. 1 is a view showing a configuration before a booster module is installed in a refrigeration cycle unit of a heat pump according to an embodiment of the present invention;
도 2는 본 발명에 따른 히트 펌프 일실시예의 냉동 사이클 유닛에 부스터 모듈이 설치된 후의 구성도, FIG. 2 is a schematic view of a heat pump according to an embodiment of the present invention after a booster module is installed in a refrigeration cycle unit;
도 3은 본 발명에 따른 히트 펌프 일실시예의 냉동 사이클 유닛에 급탕 유닛과 난방 유닛이 연결된 구성도, FIG. 3 is a view showing a structure in which a heating unit and a heating unit are connected to a refrigeration cycle unit of a heat pump according to an embodiment of the present invention,
도 4는 본 발명에 따른 히트 펌프 일실시예의 부스터 모듈이 냉동 사이클 유닛과 분리되게 설치 되었을 때의 정면도,4 is a front view of the heat pump according to the present invention when the booster module is installed separately from the refrigeration cycle unit.
도 5는 본 발명에 따른 히트 펌프 일실시예의 부스터 모듈이 냉동 사이클 유닛에 장착 되었을 때의 정면도,5 is a front view of the heat pump according to the present invention when the booster module is mounted on the refrigeration cycle unit.
도 6은 본 발명에 따른 히트 펌프 일실시예의 부스터 모듈이 설치되지 않을 때와 부스터 모듈이 설치되었을 때를 비교한 P-h 선도, 6 is a P-h diagram showing a comparison between when the booster module is not installed and when the booster module is installed in the heat pump according to the embodiment of the present invention,
도 7는 본 발명에 따른 히트 펌프 일실시예의 제어 블록도, 7 is a control block diagram of one embodiment of a heat pump according to the present invention,
도 8은 본 발명에 따른 히트 펌프 일실시예의 일반 부하 모드시 냉매 흐름이 도시된 개략 구성도, FIG. 8 is a schematic structural view showing a refrigerant flow in a general load mode of an embodiment of the heat pump according to the present invention,
도 9는 본 발명에 따른 히트 펌프 일실시예의 부분 부하 모드시 냉매 흐름이 도시된 개략 구성도, 9 is a schematic diagram showing a refrigerant flow in the partial load mode of one embodiment of the heat pump according to the present invention,
도 10은 본 발명에 따른 히트 펌프 일실시예의 멀티 운전 모드시 냉매 흐름이 도시된 개략 구성도, FIG. 10 is a schematic diagram showing a refrigerant flow in the multi-operation mode of one embodiment of the heat pump according to the present invention,
도 11은 본 발명에 따른 히트 펌프 일실시예의 가스 인젝션 모드시 냉매 흐름이 도시된 개략 구성도, 11 is a schematic view showing a refrigerant flow in the gas injection mode of one embodiment of the heat pump according to the present invention,
도 12는 본 발명에 따른 히트 펌프 다른 실시예의 냉동 사이클 유닛에 부스터 모듈이 설치된 후의 구성도, FIG. 12 is a schematic view of a heat pump according to another embodiment of the present invention after a booster module is installed in a refrigeration cycle unit. FIG.
도 13은 본 발명에 따른 히트 펌프 다른 실시예의 일반 부하 모드시 냉매 흐름이 도시된 개략 구성도,  13 is a schematic diagram showing a refrigerant flow in a general load mode of another embodiment of the heat pump according to the present invention,
도 14는 본 발명에 따른 히트 펌프 다른 실시예의 가스 인젝션 모드시 냉매 흐름이 도시된 개략 구성도, FIG. 14 is a schematic view showing a refrigerant flow in the gas injection mode of another embodiment of the heat pump according to the present invention. FIG.
도 15는 본 발명에 따른 히트 펌프 또 다른 실시예의 냉동 사이클 유닛에 부스터 모듈이 설치되기 전의 구성도, FIG. 15 is a view showing a configuration before a booster module is installed in a refrigeration cycle unit of another embodiment of a heat pump according to the present invention;
도 16은 본 발명에 따른 히트 펌프 또 다른 실시예의 냉동 사이클 유닛에 부스터 모듈이 설치된 후의 구성도이다. FIG. 16 is a configuration diagram after the booster module is installed in the refrigeration cycle unit of another embodiment of the heat pump according to the present invention.
도 1은 본 발명에 따른 히트 펌프 일실시예의 냉동 사이클 유닛에 부스터 모듈이 설치되기 전의 구성도이고, 도 2는 본 발명에 따른 히트 펌프 일실시예의 냉동 사이클 유닛에 부스터 모듈이 설치된 후의 구성도이며, 도 3은 본 발명에 따른 히트 펌프 일실시예의 냉동 사이클 유닛에 급탕 유닛과 난방 유닛이 연결된 구성도이고, FIG. 1 is a view of a heat pump according to an embodiment of the present invention before a booster module is installed in a refrigeration cycle unit, and FIG. 2 is a view after a booster module is installed in a refrigeration cycle unit of a heat pump according to an embodiment of the present invention FIG. 3 is a view illustrating a structure in which a heating unit and a heating unit are connected to a refrigeration cycle unit of a heat pump according to an embodiment of the present invention,
본 실시예에 따른 히트 펌프는 냉동 사이클 유닛(1)과, 부스터 모듈(2)을 포함한다. The heat pump according to the present embodiment includes a refrigeration cycle unit 1 and a booster module 2.
냉동 사이클 유닛(1)은 실내의 냉/난방과 급탕 등에 이용될 수 있다. The refrigeration cycle unit 1 can be used for cooling / heating the room, hot water supply, and the like.
부스터 모듈(2)은 냉동 사이클 유닛(1)이 실내의 냉/난방과 급탕 용량에 충분히 대응되지 못하거나, 사용자 등이 실내의 냉/난방 용량과 급탕 용량을 높이기를 희망할 경우 실내의 냉/난방 용량과 급탕 용량을 추가로 높이기 위해 설치될 수 있다. The booster module 2 may be configured such that when the refrigeration cycle unit 1 does not sufficiently cope with the cooling / heating and hot water supply capacity of the room, or when the user desires to increase the cooling / heating capacity and the hot water supply capacity of the room, It can be installed to further increase heating capacity and hot water supply capacity.
냉동 사이클 유닛(1)은 도 1 내지 도 3에 도시된 바와 같이 냉매를 압축하는 압축기(10)와, 압축기(10)에서 압축된 냉매가 응축되는 제 1 열교환기(14)와, 제 1 열교환기(14)에서 응축된 냉매가 팽창되는 팽창기구(16)와, 팽창기구(16)에서 팽창된 냉매가 증발되는 제 2 열교환기(18)를 포함할 수 있다.1 to 3, the refrigeration cycle unit 1 includes a compressor 10 for compressing refrigerant, a first heat exchanger 14 for condensing the refrigerant compressed in the compressor 10, An expansion mechanism 16 in which the refrigerant condensed in the condenser 14 is expanded and a second heat exchanger 18 in which the refrigerant expanded in the expansion mechanism 16 is evaporated.
냉동 사이클 유닛(1)은 냉방용으로 설치되는 것도 가능하고, 난방용으로 설치되는 것도 가능하며, 냉/난방 겸용으로 설치되는 것도 가능하다.The refrigeration cycle unit 1 may be installed for cooling, for heating, or for cooling / heating.
냉동 사이클 유닛(1)은 실내 공기가 제 1 열교환기(14)로 송풍된 후 실내로 다시 토출되는 것에 의해 실내를 난방시키는 것이 가능하고, 실내 공기가 제 2 열교환기(18)로 송풍된 후 실내로 다시 토출되는 것에 의해 실내를 냉방시키는 것이 가능하다. The refrigerating cycle unit 1 can heat the room by blowing the room air into the first heat exchanger 14 and then discharging it back to the room, and after the room air is blown to the second heat exchanger 18 It is possible to cool the room by discharging it back into the room.
즉, 냉동 사이클 유닛(1)은 실내 공기를 제 1 열교환기(14)와 제 2 열교환기(18) 중 하나와 직접 열교환시키는 것이 가능하고, 이 경우 냉동 사이클 유닛(1)은 제 1 열교환기(14)와 제 2 열교환기(18) 중 하나로 실내 공기를 순환시키는 실내 팬을 포함할 수 있다.That is, the refrigeration cycle unit 1 is capable of directly exchanging the indoor air with one of the first heat exchanger 14 and the second heat exchanger 18. In this case, the refrigeration cycle unit 1 is connected to the first heat exchanger And an indoor fan circulating the indoor air to one of the indoor heat exchanger (14) and the second heat exchanger (18).
냉동 사이클 유닛(1)은 제 1 열교환기(14)와 제 2 열교환기(18) 중 하나가 냉매와 물을 열교환시키는 수냉매 열교환기로 구성되고, 실내 공기와 실외 공기의 혼합 공기가 가열 또는 냉각되는 냉각/가열 코일이 수냉매 열교환기와 물 순환 유로로 연결되어, 물이 수냉매 열교환기와 냉각/가열 코일을 순환하면서 냉각/가열 코일을 냉각/가열시키고, 실내 공기와 실외 공기의 혼합 공기가 냉각/가열 코일에 의해 냉각/가열된 후 실내로 토출되는 것이 가능하다. The refrigeration cycle unit (1) is constituted by a water-refrigerant heat exchanger in which one of the first heat exchanger (14) and the second heat exchanger (18) exchanges heat between the refrigerant and water, and the mixed air of the room air and the outdoor air is heated Cooling coil is connected to the water-refrigerant heat exchanger through a water circulation channel, water circulates through the water-refrigerant heat exchanger and the cooling / heating coil to cool / heat the cooling / heating coil, and the mixed air of the indoor air and the outdoor air is cooled / It can be cooled / heated by the heating coil and then discharged to the room.
즉, 냉동 사이클 유닛(1)에서 냉매와 열교환된 물은 실내 공기와 실외 공기의 혼합 공기를 냉각/가열시킨 후 실내로 토출되는 에어 핸들링 유닛(AHU: Air Handling Unit)에서 이용될 수 있다.That is, the water heat-exchanged with the refrigerant in the refrigeration cycle unit 1 can be used in an air handling unit (AHU) which is cooled and heated in a mixed air of indoor air and outdoor air, and then discharged into the room.
냉동 사이클 유닛(1)은 제 1 열교환기(14)와 제 2 열교환기(18) 중 하나가 냉매와 물이 열교환되는 수냉매 열교환기로 구성되고, 수냉매 열교환기에서 가열 또는 냉각된 물이 실내의 냉/난방/급탕에 이용되는 것이 가능하다. The refrigeration cycle unit (1) is constituted by a water-refrigerant heat exchanger in which one of the first heat exchanger (14) and the second heat exchanger (18) exchanges heat between refrigerant and water, and water heated or cooled in the water- It is possible to use it for cooling / heating / hot water supply.
냉동 사이클 유닛(1)은 냉방용으로 설치되는 경우, 제 2 열교환기(18)가 수냉매 열교환기로 구성되고, 실내를 냉방시키는 냉방 유닛이 수냉매 열교환기와 물 순환 유로로 연결되어, 물이 수냉매 열교환기와 냉방 유닛을 순환하면서 냉방 유닛을 냉각시키고, 냉방 유닛이 실내를 냉각시키는 것이 가능하다.When the refrigeration cycle unit 1 is installed for cooling, the second heat exchanger 18 is constituted by a water-refrigerant heat exchanger, and the cooling unit for cooling the room is connected to the water-refrigerant heat exchanger by a water circulation channel, It is possible to cool the cooling unit while circulating the refrigerant heat exchanger and the cooling unit so that the cooling unit can cool the room.
냉동 사이클 유닛(1)은 난방용으로 설치되는 경우, 제 1 열교환기(14)가 수냉매 열교환기로 구성되고, 실내를 난방시키는 난방유닛이 수냉매 열교환기와 물 순환 유로로 연결되어, 물이 수냉매 열교환기와 난방유닛을 순환하면서 난방유닛을 가열시키고 난방유닛이 실내를 난방시키는 것이 가능하다.When the refrigeration cycle unit (1) is provided for heating, the first heat exchanger (14) is constituted by a water refrigerant heat exchanger, and a heating unit for heating the room is connected to the water refrigerant heat exchanger and the water circulation channel, It is possible to heat the heating unit while circulating the heat exchanger and the heating unit, and to allow the heating unit to heat the room.
냉동 사이클 유닛(1)은 급탕용으로 설치되는 경우, 제 1 열교환기(14)가 수냉매 열교환기로 구성되고, 실내에 온수를 공급하는 급탕유닛이 수냉매 열교환기와 물 순환 유로로 연결되어, 물이 수냉매 열교환기와 급탕유닛을 순환하면서 급탕유닛을 가열시키고 급탕유닛이 실내로 온수를 공급시키는 것이 가능하다.When the refrigeration cycle unit (1) is provided for hot water supply, the first heat exchanger (14) is constituted by a water-refrigerant heat exchanger, the hot water supply unit for supplying hot water to the room is connected to the water- It is possible to heat the hot water supply unit while circulating the water refrigerant heat exchanger and the hot water supply unit and supply the hot water to the room by the hot water supply unit.
냉동 사이클 유닛(1)은 냉/난방/급탕으로 설치되는 경우, 제 1 열교환기(14)가 수냉매 열교환기로 구성되고, 수냉매 열교환기가 실내를 냉/난방 시키는 냉/난방 유닛과 물 순환 유로로 연결되어 물이 수냉매 열교환기와 냉/난방 유닛을 순환하면서 냉/난방 유닛을 냉각/가열시키며, 수냉매 열교환기가 실내로 온수를 공급하는 급탕 유닛과 물 순환 유로로 연결되어 물이 수냉매 열교환기가 급탕유닛를 순환하면서 급탕 유닛을 가열시키는 것이 가능하다.When the refrigeration cycle unit (1) is provided with a cooling / heating / hot water supply, the first heat exchanger (14) is composed of a water refrigerant heat exchanger, and the water / refrigerant heat exchanger And the water is circulated through the water-refrigerant heat exchanger and the cooling / heating unit to cool / heat the cooling / heating unit, and the water-refrigerant heat exchanger is connected to the hot water supply unit for supplying hot water to the room and the water circulation channel, It is possible to heat the hot water supply unit while circulating the gaseous hot water unit.
즉, 냉동 사이클 유닛(1)에서 냉매와 열교환된 물은 실내를 난방시키는 난방 유닛에서 이용될 수 있고, 실내를 냉방시키는 냉방 유닛에서 이용될 수 있으며, 실내로 온수를 공급하는 급탕 유닛에서 이용될 수 있다. That is, the water heat-exchanged with the refrigerant in the refrigerating cycle unit 1 can be used in a heating unit for heating the room, can be used in a cooling unit for cooling the room, and can be used in a hot water supply unit for supplying hot water to the room .
이하, 냉동 사이클 장치(1)는 제 1 열교환기(14)가 수냉매 열교환기로 구성되고, 제 1 열교환기(14)에서 가열된 물이 급탕 유닛(4)에서 이용되며, 제 1 열교환기(14)에서 가열 되거나 냉각된 물이 냉/난방 유닛(5)에서 이용될 수 있는 것으로 설명한다.Hereinafter, in the refrigeration cycle apparatus 1, the first heat exchanger 14 is a water-refrigerant heat exchanger, the water heated in the first heat exchanger 14 is used in the hot water supply unit 4, the first heat exchanger 14 that the water heated or cooled can be used in the cooling / heating unit 5.
본 실시예에 따른 히트 펌프는 압축기(10)와 제 1 열교환기(14)와 팽창기구(16)와 제 2 열교환기(18)가 냉동 사이클 유닛(1)에 설치될 수 있고, 냉동 사이클 유닛(1)은 냉/난방을 절환할 수 있는 냉/난방 절환 밸브(12)를 더 포함할 수 있다.The heat pump according to the present embodiment is characterized in that the compressor 10, the first heat exchanger 14, the expansion mechanism 16 and the second heat exchanger 18 can be installed in the refrigeration cycle unit 1, (1) may further include a cooling / heating switching valve (12) capable of switching between cooling and heating.
냉/난방 절환 밸브(12)는 난방 모드시 압축기(10)에서 압축된 냉매를 제 1 열교환기(14)로 유동시킴과 아울러 제 2 열교환기(18)에서 증발된 냉매를 압축기(10)로 유동시켜 제 1 열교환기(14)에서 냉매가 응축되고 제 2 열교환기(18)에서 냉매가 증발되게 한다. The cooling / heating switching valve 12 allows the refrigerant compressed in the compressor 10 to flow to the first heat exchanger 14 in the heating mode and the refrigerant evaporated in the second heat exchanger 18 to the compressor 10 So that the refrigerant is condensed in the first heat exchanger (14) and the refrigerant is evaporated in the second heat exchanger (18).
냉/난방 절환 밸브(12)는 냉방 모드이거나 제상 모드시 압축기(10)에서 압축된 냉매를 제 2 열교환기(18)로 유동됨과 아울러 제 1 열교환기(14)에서 증발된 냉매가 압축기(10)로 유동시켜 제 1 열교환기(14)에서 냉매가 증발되고, 제 2 열교환기(18)에서 냉매가 응축되게 한다.The cooling / heating switching valve 12 is configured to allow the refrigerant compressed in the compressor 10 to flow to the second heat exchanger 18 in the cooling mode or the defrost mode and the refrigerant evaporated in the first heat exchanger 14 to flow into the compressor 10 So that the refrigerant is evaporated in the first heat exchanger 14 and the refrigerant in the second heat exchanger 18 is condensed.
냉동 사이클 유닛(1)은 하나의 유닛으로 구성되는 것도 가능하고, 실내기(6)와 실외기(7)로 구성되는 것도 가능하다.The refrigeration cycle unit 1 may be constituted by a single unit or may be constituted by an indoor unit 6 and an outdoor unit 7.
냉동 사이클 유닛(1)은 하나의 유닛으로 구성될 경우 압축기(10)와 냉/난방 절환 밸브(12)와 응축기(14)와 팽창기구(16)와 제 2 열교환기(18)가 하나의 케이스 내부에 설치될 수 있다.When the refrigeration cycle unit 1 is constituted by one unit, the compressor 10, the cooling / heating switching valve 12, the condenser 14, the expansion mechanism 16 and the second heat exchanger 18 are provided in one case And can be installed inside.
냉동 사이클 유닛(1)은 실내기(6)와 실외기(7)로 구성될 경우 실외기(7)가 압축기(10)와 냉/난방 절환 밸브(12)와 팽창기구(16)와 제 2 열교환기(18)를 포함하고, 실내기(6)가 제 1 열교환기(14)를 포함하며, 실외기(7)와 실내기(6)가 냉매 배관으로 연결될 수 있다. When the refrigeration cycle unit 1 is constituted by the indoor unit 6 and the outdoor unit 7, the outdoor unit 7 is connected to the compressor 10, the cooling / heating switching valve 12, the expansion mechanism 16 and the second heat exchanger And the indoor unit 6 includes the first heat exchanger 14 and the outdoor unit 7 and the indoor unit 6 can be connected by the refrigerant pipe.
압축기(10)는 냉/난방 절환 밸브(12)와 압축기 토출배관(11)으로 연결될 수 있다.The compressor (10) can be connected to the cooling / heating switching valve (12) and the compressor discharge pipe (11).
압축기 토출배관(11)에는 후술하는 부스터 압축기(90)에서 토출된 냉매가 압축기(10)로 유입되는 것을 막는 체크밸브(11')가 설치될 수 있다.The compressor discharge pipe 11 may be provided with a check valve 11 'for preventing the refrigerant discharged from the booster compressor 90, which will be described later, from flowing into the compressor 10.
냉/난방 절환밸브(12)는 제 1 열교환기(14)와 제 1 열교환기-냉/난방 절환밸브 연결배관(13)으로 연결되고, 압축기(10)와 압축기 흡입배관(20)으로 연결될 수 있다.The cooling / heating switching valve 12 is connected to the first heat exchanger 14 and the first heat exchanger-cooling / heating switching valve connection pipe 13 and can be connected to the compressor 10 and the compressor suction pipe 20 have.
제 1 열교환기(14)는 팽창기구(16)와 제 1 열교환기-팽창기구 연결배관(15)으로 연결될 수 있다.The first heat exchanger 14 may be connected to the expansion mechanism 16 and the first heat exchanger-expansion mechanism connection pipe 15.
제 1 열교환기(14)는 냉매와 물이 열교환되는 수냉매 열교환기로 구성되고, 냉매가 통과하면서 방열되는 방열 유로와, 물이 통과하면서 흡열되는 흡열 유로가 열전달부재를 사이에 두고 형성될 수 있다.The first heat exchanger (14) is constituted by a water-refrigerant heat exchanger in which refrigerant and water are heat-exchanged, and a heat-radiating passage through which the refrigerant passes and a heat-absorbing passage through which water is absorbed while passing through the heat- .
제 1 열교환기(14)에는 급탕 유닛(4) 및 난방 유닛(5)과 폐회로를 형성하는 물 순환 유로(22)가 연결될 수 있다. The first heat exchanger 14 may be connected to the hot water supply unit 4 and the heating unit 5 and the water circulation flow path 22 forming a closed circuit.
팽창기구(16)는 제 2 열교환기(18)와 팽창기구-제 2 열교환기 연결배관(17)으로 연결될 수 있다. The expansion mechanism (16) may be connected to the second heat exchanger (18) and the expansion mechanism-second heat exchanger connection pipe (17).
팽창기구(16)는 전자 팽창밸브로 이루어질 수 있다. The expansion mechanism 16 may be an electronic expansion valve.
제 2 열교환기(18)는 냉/난방 절환밸브(12)와 제 2 열교환기-냉/난방 절환밸브 연결배관(19)로 연결될 수 있다. The second heat exchanger 18 may be connected to the cooling / heating switching valve 12 and the second heat exchanger-cooling / heating switching valve connection pipe 19.
제 2 열교환기(18)는 실외 공기를 제 2 열교환기(18)로 송풍시켜 냉매가 실외 공기에 의해 증발되는 공랭식 열교환기로 구성되고, 냉동 사이클 유닛(1)은 실외 공기를 제 2 열교환기(18)로 송풍시키는 실외팬(미도시)을 더 포함할 수 있다. The second heat exchanger 18 is constituted by an air-cooling type heat exchanger in which the outdoor air is blown to the second heat exchanger 18 so that the refrigerant is evaporated by the outdoor air. The refrigeration cycle unit 1 is connected to the second heat exchanger And an outdoor fan (not shown) for blowing air to the outdoor units 18.
물 순환 유로(22)는 제 1 열교환기(14)에서 냉매와 열교환된 물이 급탕 유닛(4)과 난방 유닛(5) 중 적어도 하나를 통과한 후 제 1 열교환기(14)로 회수되도록 제 1 열교환기(14)와 급탕 유닛(4)과 난방 유닛(5)을 연결할 수 있다.The water circulation flow path 22 is provided in the first heat exchanger 14 so that the water heat exchanged with the refrigerant passes through at least one of the hot water supply unit 4 and the heating unit 5 and is then returned to the first heat exchanger 14. [ 1 heat exchanger 14, the hot water supply unit 4 and the heating unit 5 can be connected.
물 순환 유로(22)는 냉동 사이클 유닛(1) 내부에 위치하는 냉동 사이클 유닛 배관(23)과, 제 1 열교환기(14)에서 가열된 물이 급탕 유닛(4)을 통과하는 급탕 배관(24)과, 제 1 열교환기(14)에서 가열된 물이 냉/난방 유닛(5)을 통과하는 냉/난방 배관(25)과, 냉동 사이클 유닛 배관(23)을 급탕 배관(24) 및 냉/난방 배관(25)에 연결하는 연결 배관(27)을 포함할 수 있다. The water circulation flow path 22 includes a refrigerating cycle unit pipe 23 located inside the refrigeration cycle unit 1 and a hot water pipe 24 through which the water heated by the first heat exchanger 14 passes through the hot water supply unit 4 A cooling / heating pipe 25 through which the water heated by the first heat exchanger 14 passes through the cooling / heating unit 5 and the cooling cycle unit pipe 23 through the hot water pipe 24 and the cooling / And a connection pipe 27 connecting to the heating pipe 25.
연결 배관(27)에는 제 1 열교환기(14)에서 가열되거나 냉각된 물을 급탕 배관(24)과 냉/난방 배관(25) 중 적어도 하나로 안내하는 물 조절밸브(28)가 설치되고, 급탕 배관(24)과 난방 배관(25)은 연결배관(27)을 통해 물 조절밸브(28)에 연결될 수 있다. The connection pipe 27 is provided with a water control valve 28 for guiding water heated or cooled by the first heat exchanger 14 to at least one of the hot water pipe 24 and the cold / hot pipe 25, (24) and the heating pipe (25) can be connected to the water control valve (28) through the connection pipe (27).
이하, 냉동 사이클 유닛(1)과, 급탕 유닛(4)과, 난방 유닛(5)에 대해 상세히 설명한다. Hereinafter, the refrigeration cycle unit 1, the hot water supply unit 4, and the heating unit 5 will be described in detail.
냉동 사이클 유닛(1)은 공기열원 히트펌프 냉/난방기(AWHP: air to water heat pump )로서, 냉동 사이클 유닛 배관(23)을 통과하는 물의 흐름을 감지하는 플로우 스위치(32)와, 냉동 사이클 유닛 배관(23) 중 플로우 스위치(31)와 이격된 위치에 설치된 팽창탱크(33)와, 냉동 사이클 유닛 배관(23)이 연결되고 내부에 보조 히터(35)가 설치된 집수 탱크(34)와, 냉동 사이클 유닛 배관(23)에 설치되어 물이 순환되게 펌핑시키는 순환 펌프(36)를 포함할 수 있다.The refrigeration cycle unit 1 is an air heat source heat pump air to water heat pump (AWHP), which includes a flow switch 32 for sensing the flow of water through the refrigeration cycle unit pipe 23, An expansion tank 33 provided at a position spaced apart from the flow switch 31 among the piping 23, a collecting tank 34 connected to the refrigeration cycle unit pipe 23 and provided with an auxiliary heater 35 therein, And a circulation pump 36 installed in the cycle unit pipe 23 for pumping water to circulate.
팽창 탱크(33)는 제 1 열교환기(14)를 통과하면서 가열된 물의 부피가 적정 수준이상으로 팽창되었을 때 이를 흡수하는 일종의 완충기로서, 그 내부에는 질소가 충전됨과 아울러 물의 부피에 대응하여 움직이는 다이어플램이 설치될 수 있다.The expansion tank 33 is a kind of shock absorber which is absorbed when the volume of the heated water is expanded to an appropriate level or higher while passing through the first heat exchanger 14. The expansion tank 33 is filled with nitrogen, Flam can be installed.
집수 탱크(34)는 물이 집수되는 것으로서, 제상 운전이나 제 1 열교환기(14)의 열량이 요구되는 열량에 미치지 못하는 경우 보조 히터(35)가 선택적으로 작동될 수 있다.The water collecting tank 34 collects the water. When the defrosting operation or the heat amount of the first heat exchanger 14 does not reach the required heat amount, the auxiliary heater 35 can be selectively operated.
워터 펌프(36)는 물이 냉동 사이클 유닛(1)와 급탕 유닛(4)과 난방 유닛(5)을 순환되게 하는 것으로서, 냉동 사이클 유닛 배관(23) 중 집수 탱크(34)의 이후에 설치될 수 있다.The water pump 36 circulates water between the refrigeration cycle unit 1, the hot water supply unit 4 and the heating unit 5 and is installed after the water collecting tank 34 among the refrigeration cycle unit pipes 23 .
급탕 유닛(4)은 사용자가 세면, 목욕 또는 설거지 등에 필요한 온수를 공급하는 것으로서, 물이 담겨지는 급탕 탱크(41)와, 급탕 탱크(41)에 설치된 급탕용 보조 히터(42)를 포함할 수 있다.The hot water supply unit 4 supplies hot water necessary for a user to wash, bath or wash dishes and includes a hot water tank 41 containing water and an auxiliary heater 42 for hot water supply installed in the hot water tank 41 have.
급탕 탱크(41)에는 냉수가 급탕 탱크(41)로 급수되는 냉수 입수부(43)와, 급탕 탱크(41)의 온수가 출수되는 온수가 출수되는 온수 출수부(44)가 연결될 수 있다.The hot water tank 41 may be connected to a cold water receiving portion 43 to which cold water is supplied to the hot water tank 41 and a hot water outlet portion 44 to which hot water from which the hot water of the hot water tank 41 is to be taken out.
급탕 탱크(41)에는 급탕 배관(24)이 설치되어 급탕 탱크(41) 내의 물을 가열할 수 있다.A hot water supply pipe (24) is provided in the hot water tank (41) to heat water in the hot water tank (41).
온수 출수부(44)에는 샤워기와 같은 온수 출수기구(45)가 연결될 수 있다.A hot water outflow mechanism (45) such as a shower can be connected to the hot water outflow section (44).
온수 출수부(44)에는 온수 출수기구(45)로 냉수가 출수될 수 있게 냉수 입수부(46)가 연결될 수 있다. The cold water receiving portion (46) can be connected to the hot water outlet portion (44) so that cold water can be discharged to the hot water outlet mechanism (45).
난방 유닛(5)은 실내의 바닥을 냉/난방시키는 바닥 냉/난방 유닛(51)과, 실내의 공기를 냉/난방시키는 공기 냉/난방 유닛(52)을 포함할 수 있다. The heating unit 5 may include a bottom cooling / heating unit 51 for cooling / heating the floor of the room, and an air cooling / heating unit 52 for cooling / heating the room air.
바닥 냉/난방 유닛(51)은 실내 바닥에 미앤더라인(meander line)으로 매설될 수 있다.The floor cooling / heating unit 51 may be embedded in the floor of the room in a meander line.
공기 냉/난방 유닛(52)은 팬 코일 유닛(Fan coil unit) 또는 라디에이터(Radiator) 등으로 구성될 수 있다.The air conditioning / heating unit 52 may be constituted by a fan coil unit or a radiator.
냉/난방 배관(25)에는 물을 바닥 냉/난방 유닛(51)과 공기 냉/난방 유닛(52) 중 적어도 하나로 안내하는 물 조절밸브(53)(54)가 설치될 수 있고, 바닥 냉/난방 유닛(51)은 물 조절밸브(53)(54)와 공기 냉/난방 배관(55)으로 연결되며, 바닥 냉/난방 유닛(51)은 물 조절밸브(53)(54)와 바닥 냉/난방 배관(56)으로 연결될 수 있다. The water supply valve 53 and the water supply valve 54 for guiding water to at least one of the floor heating / heating unit 51 and the air cooling / heating unit 52 may be installed in the cooling / heating pipe 25, The heating unit 51 is connected to the water control valves 53 and 54 and the air cooling / heating pipe 55. The bottom cooling / heating unit 51 is connected to the water control valves 53 and 54, And may be connected to a heating pipe 56.
순환 펌프(36)의 구동시, 물 조절밸브(28)가 급탕 모드이면, 제 1 열교환기(14)에서 가열된 물은 냉동 사이클 유닛 배관(23)과 연결 배관(27)을 차례로 통과하여 급탕 배관(24)으로 유입되고, 급탕 탱크(41) 내의 물을 가열시킨 후 연결배관(27)과 냉동 사이클 유닛 배관(23)을 차례로 통과하여 제 1 열교환기(14)로 회수될 수 있다.  The water heated in the first heat exchanger 14 passes through the refrigerating cycle unit pipe 23 and the connecting pipe 27 one after another in order to cool the hot water in the hot water circulating pump 36, The water in the hot water tank 41 may be heated and then passed through the connecting pipe 27 and the refrigerating cycle unit pipe 23 in order to be recovered to the first heat exchanger 14.
순환 펌프(36)의 구동시, 물 조절밸브(28)가 냉/난방 모드이면, 제 1 열교환기(14)에서 가열되거나 냉각된 물은 냉동 사이클 유닛 배관(23)과 연결 배관(27)을 차례로 통과하여 냉/난방 배관(25)으로 유입되고, 바닥 냉/난방 유닛(51)과 공기 냉/난방 유닛(52) 중 적어도 하나를 가열시거나 냉각시킨 후 냉/난방 배관(25)과 연결배관(27)과 냉동 사이클 유닛 배관(23)을 차례로 통과하여 제 1 열교환기(14)로 회수될 수 있다.  When the water control valve 28 is in the cooling / heating mode at the time of driving the circulation pump 36, the water heated or cooled in the first heat exchanger 14 is supplied to the refrigeration cycle unit pipe 23 and the connection pipe 27 Heating piping 25 and at least one of the bottom cooling / heating unit 51 and the air cooling / heating unit 52 is heated or cooled, and then the cooling / heating piping 25 and the connection piping 25 are connected to each other, (27) and the refrigeration cycle unit pipe (23) in order, and recovered to the first heat exchanger (14).
이때, 물 조절밸브(55)(56)가 공기 냉/난방 모드이면, 제 1 열교환기(14)에서 가열되거나 냉각된 물은 공기 냉/난방 배관(25)과 공기 냉/난방 유닛(52)과 공기 냉/난방 배관(55) 차례로 통과하여 냉/난방 배관(25)으로 출수되고, 바닥 냉/난방 모드이면, 제 1 열교환기(14)에서 가열된 물은 바닥 냉/난방 배관(56)과 바닥 냉/난방 유닛(51)과 바닥 냉/난방 배관(56) 차례로 통과하여 냉/난방 배관(25)으로 출수될 수 있다.  At this time, when the water control valves 55 and 56 are in the air cooling / heating mode, the water heated or cooled in the first heat exchanger 14 flows through the air cooling / heating pipe 25 and the air cooling / Heating piping 25 and the air cooling / heating piping 55 to the cooling / heating pipe 25. In the bottom cooling / heating mode, the water heated by the first heat exchanger 14 flows through the bottom cooling / heating pipe 56, Heating pipe 51 and the bottom cooling / heating pipe 56 in order, and then to the cooling / heating pipe 25.
부스터 모듈(2)은 냉동 사이클 유닛(1)이 설치된 후 필요에 따라 냉동 사이클 유닛(1)에 부가적으로 설치될 수 있다.  The booster module 2 may be additionally installed in the refrigeration cycle unit 1 as necessary after the refrigeration cycle unit 1 is installed.
부스터 모듈(2)은 냉동 사이클 유닛(1)에 연결되어 제 1 열교환기(14)에서 팽창기구(16)로 유동되는 냉매 중 기상 냉매를 분리하여 압축한 후 압축기(10)와 제 1 열교환기(14)의 사이로 유동시킬 수 있다.  The booster module 2 is connected to the refrigeration cycle unit 1 to separate and compress the gaseous refrigerant in the refrigerant flowing from the first heat exchanger 14 to the expansion mechanism 16, (14). ≪ / RTI >
부스터 모듈(2)은 후술하는 부스터 압축기(90)가 냉동 사이클 유닛(1)의 압축기(10)와 별도로 냉매를 압축하고 제 1 열교환기(14)의 응축압 보다 높고 제 2 열교환기(18)의 증발압 보다 낮은 중간압의 기상 냉매를 부스터 압축기(90)로 인젝션하여 운전 효율을 높일 수 있다.  The booster module 2 compresses the refrigerant separately from the compressor 10 of the refrigeration cycle unit 1 and supplies the refrigerant to the second heat exchanger 18 when the booster compressor 90 described later compresses the refrigerant separately from the compressor 10 of the refrigeration cycle unit 1, The gaseous refrigerant having an intermediate pressure lower than the evaporation pressure of the booster compressor 90 can be injected into the booster compressor 90 to increase the operation efficiency.
부스터 모듈(2)은 제 1 열교환기(14)에서 응축된 냉매를 팽창하는 제 1 부스터 팽창기구(62)와, 제 1 부스터 팽창기구(62)에서 팽창된 냉매 중 액냉매와 기상 냉매를 분리하는 기액 분리기(70)와, 기액 분리기(70)에서 분리된 기상 냉매를 팽창하는 제 2 부스터 팽창기구(80)와, 제 2 부스터 팽창기구(80)에서 팽창된 냉매를 압축하는 부스터 압축기(90)를 포함할 수 있다.  The booster module 2 includes a first booster expansion mechanism 62 for expanding the refrigerant condensed in the first heat exchanger 14 and a second booster expansion mechanism 62 for separating the liquid refrigerant and the gaseous refrigerant in the refrigerant expanded in the first booster expansion mechanism 62 A second booster expansion mechanism 80 for expanding the gaseous refrigerant separated by the gas-liquid separator 70, a booster compressor 90 for compressing the refrigerant expanded in the second booster expansion mechanism 80, ).
본 실시예에 따른 히트 펌프는 부스터 모듈(2)의 설치시, 제 1 열교환기-냉/난방 절환밸브 연결배관(13)과 제 1 열교환기-팽창기구 연결배관(15)의 각각이 분리되고, 부스터 모듈(2)은 분리된 제 1 열교환기-냉/난방 절환밸브 연결배관(13A)(13B)과 연결되며, 분리된 제 1 열교환기-팽창기구 연결배관(15A)(15B)과 연결될 수 있다.  In the heat pump according to the present embodiment, when the booster module 2 is installed, the first heat exchanger-cooling / heating switching valve connection pipe 13 and the first heat exchanger-expansion mechanism connection pipe 15 are separated from each other And the booster module 2 are connected to the first heat exchanger-cooling / heating switching valve connecting pipes 13A and 13B and connected to the first heat exchanger-expansion mechanism connecting pipes 15A and 15B .
제 1 부스터 팽창기구(62)는 제 1 열교환기(14)와 제 1 부스터 팽창기구 흡입배관(64)으로 연결될 수 있고, 제 1 부스터 팽창기구 흡입배관(64)는 분리된 제 1 열교환기-팽창기구 연결배관(15A)(15B) 중 어느 하나(15A)와 연결될 수 있다.  The first booster expansion mechanism 62 may be connected to the first heat exchanger 14 and the first booster expansion mechanism suction pipe 64 and the first booster expansion mechanism suction pipe 64 may be connected to the separate first heat exchanger- And may be connected to any one of the expansion mechanism connecting pipes 15A and 15B.
제 1 부스터 팽창기구(62)는 전자 팽창밸브로 이루어질 수 있다.  The first booster expansion mechanism 62 may be an electronic expansion valve.
기액 분리기(70)는 제 1 열교환기(14)에서 응축된 냉매 중 기상 냉매를 액 냉매와 분리하는 것으로서, 팽창기구(16)와 기액분리기 출구배관(72)으로 연결될 수 있고, 기액분리기 출구배관(72)는 분리된 제 1 열교환기-팽창기구 연결배관(15A)(15B) 중 다른 하나(15B)와 연결될 수 있다.    The gas-liquid separator 70 separates the gaseous refrigerant in the refrigerant condensed in the first heat exchanger 14 from the liquid refrigerant and can be connected to the expansion mechanism 16 and the gas-liquid separator outlet pipe 72, (72) may be connected to the other of the first heat exchanger-expansion mechanism connecting pipes (15A) and (15B).
제 2 부스터 팽창기구(80)는 개방시 기액 분리기(70)의 기상 냉매가 부스터 압축기(90)로 유동되게 하고, 밀폐시 기액 분리기(70)의 기상 냉매가 부스터 압축기(90)로 유동되지 않게 한다. 제 2 부스터 팽창기구(80)는 개도 조절시 기액 분리기(70)에서 부스터 압축기(90)를 향해 유동되는 기상 냉매를 팽창시킬 수 있다.  The second booster expansion mechanism 80 allows the gaseous refrigerant of the gas-liquid separator 70 to flow to the booster compressor 90 when the first and second booster expansion devices 80 and 80 are closed and prevents the gaseous refrigerant of the gas-liquid separator 70 from flowing to the booster compressor 90 do. The second booster expansion mechanism 80 can expand the gaseous refrigerant flowing from the gas-liquid separator 70 toward the booster compressor 90 during opening adjustment.
제 2 부스터 팽창기구(80)는 전자 팽창밸브로 이루어질 수 있다.  The second booster expansion mechanism 80 may be an electronic expansion valve.
부스터 모듈(2)은 제 1 부스터 팽창기구(62)와 기액 분리기(70)를 연결하는 기액 분리기 흡입배관(74)을 포함할 수 있다.   The booster module 2 may include a gas-liquid separator suction pipe 74 connecting the first booster expansion mechanism 62 and the gas-liquid separator 70.
즉, 제 1 열교환기(14)와 팽창기구(16)는 부스터 모듈(2)이 설치되기 전에 제 1 열교환기-팽창기구 연결배관(15)을 통해 연결될 수 있고, 부스터 모듈(2)의 설치된 후에 제 1 열교환기-팽창기구 연결배관(15A)(15B) 중 어느 하나(15A)와 제 1 부스터 팽창기구 흡입배관(64)과 제 1 부스터 팽창기구(62)와, 기액 분리기 흡입배관(74)과, 기액 분리기(70)와, 기액분리기 출구배관(72)과 제 1 열교환기-팽창기구 연결배관(15A)(15B) 중 다른 하나(15B)를 통해 연결될 수 있다.  That is, the first heat exchanger 14 and the expansion mechanism 16 may be connected through the first heat exchanger-expansion mechanism connection pipe 15 before the booster module 2 is installed, and the booster module 2 may be installed The first booster expansion mechanism suction pipe 64 and the first booster expansion mechanism 62 and the gas-liquid separator suction pipe 74 (one of the first heat exchanger-expansion mechanism connecting pipes 15A and 15B) Liquid separator 70 and the other one 15B of the gas-liquid separator outlet piping 72 and the first heat exchanger-expansion mechanism connection piping 15A, 15B.
부스터 모듈(2)은 기액 분리기(70)에서 분리된 기상 냉매가 제 2 부스터 팽창기구(80)로 안내되는 기상 냉매 토출배관(76)과, 제 2 부스터 팽창기구(80)에서 팽창된 냉매가 부스터 압축기(90)로 흡입되는 부스터 압축기 흡입배관(92)과, 부스터 압축기(90)에서 토출된 냉매가 냉동 사이클 유닛(1)의 압축기(10)와 제 1 열교환기(14) 사이로 안내되는 부스터 압축기 토출배관(94)(95)을 더 포함할 수 있다. The booster module 2 includes a vapor phase refrigerant discharge pipe 76 guided to the second booster expansion mechanism 80 by the gaseous refrigerant separated from the gas-liquid separator 70 and a gas phase refrigerant discharged from the second booster expansion device 80 The booster compressor suction pipe 92 sucked by the booster compressor 90 and the booster compressor 90 are connected to the compressor 10 and the first heat exchanger 14 of the refrigeration cycle unit 1. [ And compressor discharge piping 94 (95).
부스터 압축기 토출배관(94)(95)은 분리된 제 1 열교환기-냉/난방 절환밸브 연결배관(13A)(13B)의 어느 하나(13A)와 다른 하나(13B)를 연결하는 제 1 부스터 압축기 토출 배관(94)과, 부스터 압축기(90)에서 토출된 냉매를 제 1 부스터 압축기 토출 배관(94)으로 안내하는 제 2 부스터 압축기 토출 배관(95)를 포함할 수 있다.  The booster compressor discharge pipes 94 and 95 are connected to a first booster compressor 91A connecting one of the separated first heat exchanger-cooling / heating selector valve connecting pipes 13A and 13B and the other one of the booster compressor discharge pipes 94 and 95, A discharge pipe 94 and a second booster compressor discharge pipe 95 for guiding the refrigerant discharged from the booster compressor 90 to the first booster compressor discharge pipe 94.
즉, 냉/난방 절환 밸브(12)와 제 1 열교환기(14)는 부스터 모듈(2)이 설치되기 전에 도 1에 도시된 바와 같이, 제 1 열교환기-냉/난방 절환밸브 연결배관(13)으로 연결되고, 부스터 모듈(2)의 설치된 후에 도 2에 도시된 바와 같이, 제 1 열교환기-냉/난방 절환밸브 연결배관(13A)(13B)의 어느 하나(13A)와 제 1 부스터 압축기 토출 배관(94)와 제 1 열교환기-냉/난방 절환밸브 연결배관(13A)(13B)의 다른 하나(13B)로 연결될 수 있다.  That is, before the booster module 2 is installed, the cooling / heating switching valve 12 and the first heat exchanger 14 are connected to the first heat exchanger-cooling / heating switching valve connection pipe 13 As shown in FIG. 2, after one of the booster modules 2 is installed, one of the first heat exchanger-cool / heat changeover valve connecting pipes 13A and 13B and the first booster compressor 13B are connected to each other, And may be connected to the discharge pipe 94 and another one 13B of the first heat exchanger-cooling / heating changeover valve connecting pipe 13A, 13B.
부스터 압축기 토출배관(94)(95)에는 압축기(10)에서 압축된 냉매가 부스터 압축기(90)로 흐르는 것을 막는 체크 밸브(95')가 설치되는 바, 체크 밸브(95')는 제 2 부스터 압축기 토출 배관(95)에 설치될 수 있다.  The booster compressor discharge pipes 94 and 95 are provided with a check valve 95 'for preventing the refrigerant compressed by the compressor 10 from flowing to the booster compressor 90. The check valve 95' Can be installed in the compressor discharge pipe (95).
부스터 모듈(2)은 기액 분리기(70)에서 기액 분리기 출구 배관(72)으로 유동된 냉매가 제 1 부스터 팽창기구 흡입배관(64)으로 흐르게 하는 바이패스 배관(99)을 더 포함한다. 바이패스 배관(99)에는 제 1 부스터 팽창기구 흡입배관(64)의 냉매가 바이패스 배관(99)을 통해 기액 분리기 출구 배관(72)으로 흐르지 않게 막는 체크밸브(99')가 설치되고, 기액분리기(70)에서 부스터 압축기 흡입배관(92)으로 유동되는 기상 냉매는 최대화될 수 있다.  The booster module 2 further includes a bypass line 99 for allowing the refrigerant flowing from the gas-liquid separator 70 to the gas-liquid separator outlet line 72 to flow into the first booster expansion mechanism suction line 64. The bypass pipe 99 is provided with a check valve 99 'which prevents the refrigerant of the first booster expansion mechanism suction pipe 64 from flowing to the gas-liquid separator outlet pipe 72 through the bypass pipe 99, The gaseous refrigerant flowing from the separator 70 to the booster compressor suction pipe 92 can be maximized.
부스터 모듈(2)은 제 2 열교환기(18)에서 증발된 냉매를 부스터 압축기(90)에서 압축한 후 압축기(10)와 제 1 열교환기(14)의 사이로 유동시킬 수 있다.  The booster module 2 can compress the refrigerant vaporized in the second heat exchanger 18 by the booster compressor 90 and then flow between the compressor 10 and the first heat exchanger 14. [
부스터 모듈(2)은 기액 분리기(70)에서 분리된 기상 냉매와 제 2 열교환기(18)에서 증발된 냉매가 부스터 압축기(90)로 함께 혹은 선택적으로 흡입되는 구조로 이루어질 수 있다. The booster module 2 may have a structure in which the gaseous refrigerant separated in the gas-liquid separator 70 and the refrigerant evaporated in the second heat exchanger 18 are sucked into the booster compressor 90 together or selectively.
부스터 모듈(2)은 제 2 열교환기(18)와 압축기(10)의 사이와 부스터 압축기 흡입배관(92)을 부스터 흡입배관(96)으로 연결하여 제 2 열교환기(18)에서 증발된 냉매 중 일부를 부스터 압축기 흡입배관(92)으로 안내할 수 있다.  The booster module 2 connects the booster compressor suction pipe 92 with the second heat exchanger 18 and the compressor 10 through the booster suction pipe 96 to cool the second refrigerant evaporated in the second heat exchanger 18 It is possible to guide a part of the refrigerant to the booster compressor suction pipe 92.
부스터 흡입배관(96)은 일단이 압축기 흡입배관(20)에 연결되고 타단이 부스터 압축기 흡입배관(92)으로 연결될 수 있다. The booster suction pipe 96 may have one end connected to the compressor suction pipe 20 and the other end connected to the booster compressor suction pipe 92.
부스터 흡입배관(96)은 압축기 흡입배관(20)에 연결되게 냉동 사이클 유닛(1)에 설치된 제 1 부스터 흡입배관(97)과, 부스터 압축기 흡입배관(92)에 연결되게 부스터 모듈(2)에 설치된 제 2 부스터 흡입배관(98)과, 제 1 부스터 흡입배관(97)과 제 2 부스터 흡입배관(98)를 연결하는 제 3 부스터 흡입배관(99)을 포함할 수 있다.  The booster suction piping 96 is connected to the booster module 2 so as to be connected to the booster compressor suction pipe 92 and the first booster suction pipe 97 installed in the refrigeration cycle unit 1 to be connected to the compressor suction pipe 20, And a third booster suction pipe 99 for connecting the first booster suction pipe 97 and the second booster suction pipe 98 to each other.
부스터 모듈(2)은 부스터 흡입배관(96)에 설치되어 부스터 압축기 흡입배관(92)의 냉매가 부스터 흡입배관(96)을 통해 압축기(10)로 흡입되는 것을 막는 체크밸브(96')를 더 포함할 수 있다.  The booster module 2 further includes a check valve 96 'installed in the booster suction pipe 96 for preventing the refrigerant of the booster compressor suction pipe 92 from being sucked into the compressor 10 through the booster suction pipe 96 .
체크밸브(96')는 제 2 부스터 흡입배관(98)에 설치될 수 있다. The check valve 96 'may be installed in the second booster suction pipe 98.
도 4는 본 발명에 따른 히트 펌프 일실시예의 부스터 모듈이 냉동 사이클 유닛과 분리되게 설치되었을 때의 정면도이며, 도 5는 본 발명에 따른 히트 펌프 일실시예의 부스터 모듈이 냉동 사이클 유닛에 장착 되었을 때의 정면도이다. FIG. 4 is a front view of the heat pump according to the present invention when the booster module of the embodiment is installed separately from the refrigeration cycle unit. FIG. 5 is a sectional view of the heat pump according to the present invention when the booster module is mounted on the refrigeration cycle unit FIG.
냉동 사이클 유닛(1)이 하나의 유닛으로 구성되는 경우, 부스터 모듈(2)은 냉동 사이클 유닛(1)과 이격되게 설치되거나 냉동 사이클 유닛(1)에 체결되게 설치될 수 있다. When the refrigeration cycle unit 1 is constituted by one unit, the booster module 2 may be installed so as to be spaced from the refrigeration cycle unit 1 or to be fastened to the refrigeration cycle unit 1. [
냉동 사이클 유닛(1)이 실내기(6)와 실외기(7)로 구성될 경우, 부스터 모듈(2)은 실내기(6)와 실외기(7)와 이격되게 설치되거나 실내기(6)와 실외기(7) 중 하나에 체결되게 설치될 수 있다. When the refrigeration cycle unit 1 is constituted by the indoor unit 6 and the outdoor unit 7, the booster module 2 is installed apart from the indoor unit 6 and the outdoor unit 7, or installed between the indoor unit 6 and the outdoor unit 7, As shown in FIG.
냉동 사이클 유닛(1)이 도 4에 도시된 바와 같이, 실외기(7)와 이격되게 설치되어 냉동 사이클 유닛(1)과 분리형으로 구성될 수 있고, 도 5에 도시된 바와 같이, 실외기(7)와 일체화되게 실외기(7)에 장착되어 냉동 사이클 유닛(1)과 일체형으로 구성될 수 있다. 4, the refrigeration cycle unit 1 may be provided so as to be spaced apart from the outdoor unit 7 and configured separately from the refrigeration cycle unit 1. As shown in FIG. 5, The refrigerating cycle unit 1 may be integrated with the outdoor unit 7 so as to be integrated with the refrigerating cycle unit 1. [
즉, 부스터 모듈(5)은 도 4 및 도 5에 도시된 바와 같이, 실외기(O)에 선택적으로 장착될 수 있다. That is, the booster module 5 can be selectively installed in the outdoor unit O, as shown in FIGS.
도 6은 본 발명에 따른 히트 펌프 일실시예의 부스터 모듈이 설치되지 않을 때와 부스터 모듈이 설치되었을 때를 비교한 P-h 선도이다.  6 is a P-h diagram showing a comparison between when the booster module is not installed and when the booster module is installed in the heat pump according to the present invention.
부스터 모듈(2)이 설치되지 않은 경우 냉매는 통상적인 압축,응축,팽창,증발 과정을 거치면서 도 4에 점선으로 도시된 바와 같이, a->b'>c ->f ->a의 과정이 진행된다. When the booster module 2 is not installed, the refrigerant undergoes a process of a-> b '> c -> f -> a, as shown by the dotted line in FIG. 4 while undergoing the usual compression, condensation, expansion, .
반면에, 냉매는 부스터 모듈(2)이 추가 설치된 경우 냉매는 압축,응축,팽창,팽창,증발 과정을 거치면서 도 6에 실선으로 도시된 바와 같이, 냉a->b->c->d->e->f->a의 과정으로 진행되고, 제 1 열교환기(14)에서 유출된 냉매 중 일부가 부스터 모듈(2)에서 팽창, 압축 과정을 거치면서 도 6의 d->g->h->b의 과정으로 진행되며, 히트 펌프는 부스터 모듈(2)이 설치되지 않는 경우 보다 전체적으로 효율이 상승되면서 압축일이 감소될 수 있다. On the other hand, when the booster module 2 is additionally installed, the refrigerant is cooled to a-> b-> c-> d (d) as shown by a solid line in FIG. 6 while the refrigerant undergoes compression, condensation, expansion, g-> g-> a-, a part of the refrigerant flowing out of the first heat exchanger 14 is expanded and compressed in the booster module 2, > h-> b, and the efficiency of the heat pump is increased as compared with the case where the booster module 2 is not installed, so that the compression work can be reduced.
즉, 압축기(10)와 부스터 압축기(90)로 공급되는 전체 소비전력은 감소되고, 특히 실외가 저온인 저온 난방 능력이 향상된다. 그리고, 부스터 모듈(2)의 설치된 경우는 부스터 모듈(2)이 설치되지 않는 경우 보다 압축기(10)의 최대 관리 온도는 상대적으로 낮게 되고, 압축기(10)의 신뢰성은 향상될 수 있다. That is, the total power consumption supplied to the compressor 10 and the booster compressor 90 is reduced, and the low-temperature heating capability, particularly in a low outdoor temperature, is improved. When the booster module 2 is installed, the maximum management temperature of the compressor 10 is relatively lower than in the case where the booster module 2 is not installed, and the reliability of the compressor 10 can be improved.
도 7은 본 발명에 따른 히트 펌프 일실시예의 제어 블록도이고, 도 8은 본 발명에 따른 히트 펌프 일실시예의 일반 부하 모드시 냉매 흐름이 도시된 개략 구성도이며, 도 9는 본 발명에 따른 히트 펌프 일실시예의 부분 부하 모드시 냉매 흐름이 도시된 개략 구성도이고, 도 10은 본 발명에 따른 히트 펌프 일실시예의 멀티 운전 모드시 냉매 흐름이 도시된 개략 구성도이며, 도 11은 본 발명에 따른 히트 펌프 일실시예의 가스 인젝션 모드시 냉매 흐름이 도시된 개략 구성도이다. FIG. 7 is a control block diagram of a heat pump according to an embodiment of the present invention, FIG. 8 is a schematic structural view illustrating a refrigerant flow in a general load mode of an embodiment of a heat pump according to the present invention, FIG. 10 is a schematic structural view showing a refrigerant flow in a multi-operation mode of an embodiment of a heat pump according to the present invention, and FIG. 11 is a schematic view showing the refrigerant flow in the partial load mode of the present invention Fig. 3 is a schematic diagram showing a refrigerant flow in the gas injection mode of one embodiment.
본 실시예에 따른 히트 펌프는, 히트 펌프의 운전/정지 등의 각종 명령을 입력하는 조작부(100)와, 히트 펌프의 부하를 감지하는 부하 감지 센서(110)와, 조작부(100)의 조작과 부하 감지 센서(110)의 감지 결과에 따라 압축기(10)와 팽창기구(16)와 실외팬(22)과 제 1 부스터 팽창기구(62)와 제 2 부스터 팽창기구(80)와 부스터 압축기(90) 등을 제어하는 제어부(120)를 더 포함할 수 있다. The heat pump according to the present embodiment includes an operation unit 100 for inputting various commands such as operation / stop of a heat pump, a load detection sensor 110 for detecting a load of a heat pump, The first booster expansion mechanism 62, the second booster expansion mechanism 80 and the booster compressor 90 (90) according to the detection result of the load detection sensor 110. The compressor 10, the expansion mechanism 16, the outdoor fan 22, And a control unit 120 for controlling the display unit 120 and the like.
부하 감지 센서(110)는 급탕 유닛(4)과 난방 유닛(5)의 부하를 감지하는 물 온도 센서를 포함할 수 있다. The load detection sensor 110 may include a water temperature sensor that detects the load of the hot water supply unit 4 and the heating unit 5. [
물 온도 센서는 급탕 유닛(4)과 난방 유닛(5) 중 적어도 하나와 제 1 열교환기(14)를 순환하는 물의 온도를 감지하도록 물 순환 유로(22) 일측에 설치될 수 있다.  The water temperature sensor may be installed at one side of the water circulation flow path 22 to sense the temperature of water circulating through at least one of the hot water supply unit 4 and the heating unit 5 and the first heat exchanger 14. [
물 온도 센서는 급탕 유닛(4)과 난방 유닛(5) 중 적어도 하나를 통과한 후 제 1 열교환기(14)로 회수되는 물의 온도를 감지하게 설치되고, 냉동 사이클 유닛 배관(23)에 설치되는 것이 바람직하다. The water temperature sensor is installed to sense the temperature of the water recovered by the first heat exchanger 14 after passing through at least one of the hot water supply unit 4 and the heating unit 5 and is installed in the refrigeration cycle unit pipe 23 .
부하 감지 센서(110)는 실외의 저온 여부를 감지하는 실외 온도 센서를 포함할 수 있다.  The load detection sensor 110 may include an outdoor temperature sensor for detecting whether the outdoor temperature is low.
실외 온도 센서는 실외에서 제 2 열교환기(18)를 향해 송풍되는 실외 공기의 온도를 감지하도록 제 2 열교환기(18)에 설치될 수 있다. The outdoor temperature sensor may be installed in the second heat exchanger 18 to sense the temperature of the outdoor air blown toward the second heat exchanger 18 outdoors.
제어부(120)는 부하 감지 센서(110)에서 부하를 감지하면, 부분 부하 모드와, 일반 부하 모드와, 멀티 운전 모드로 제어하고, 부하 감지 센서(110)에서 실외 저온 부하를 감지하면 가스 인젝션 모드로 제어할 수 있다.  When the load sensing sensor 110 senses a load, the control unit 120 controls the partial load mode, the general load mode, and the multi-operation mode. When the load sensing sensor 110 senses the outdoor low- .
제어부(120)는 부하 감지 센서(110)에서 감지된 물의 온도가 제 1 설정온도 미만이면, 히트 펌프의 부하를 부분 부하로 판단하고, 부하 감지 센서(110)에서 감지된 물의 온도가 제 1 설정온도 이상이고 제 1 설정 온도 보다 소정온도 높은 제 2 설정 온도 미만이면, 히트 펌프의 부하를 일반 부하로 판단하며, 부하 감지 센서(110)에서 감지된 물의 온도가 제 2 설정 온도 이상이면, 히트 펌프의 부하를 멀티 운전 부하(즉, 과부하)로 판단할 수 있다.  The control unit 120 determines that the load of the heat pump is a partial load when the temperature of the water sensed by the load sensing sensor 110 is lower than the first set temperature and the temperature of the water sensed by the load sensing sensor 110 is the first setting If the temperature of the water sensed by the load sensing sensor 110 is equal to or higher than the second set temperature, the load of the heat pump is determined as a normal load. If the temperature of the heat pump is lower than the second set temperature, (I.e., an overload) can be determined.
제어부(120)는 부하 감지 센서(110)에서 감지된 실외의 온도가 설정 온도 이하이면, 히트 펌프의 부하를 실외 저온 부하로 판단할 수 있다. The controller 120 can determine that the load of the heat pump is the outdoor low temperature load when the outdoor temperature sensed by the load sensing sensor 110 is lower than the set temperature.
제어부(120)는 운전 모드에 따라 압축기(10)와 부스터 압축기(90)와 제 2 부스터 팽창기구(80)를 함께 제어할 수 있는 바, 부하에 따라 운전 모드를 다양하게 구성할 수 있고, 부하가 일반 부하 보다 작은 경우 압축기(10)와 부스터 압축기(90)와 제 2 부스터 팽창기구(80)를 부분 부하 모드로 운전시키고, 부하가 일반 부하인 경우 압축기(10)와 부스터 압축기(90)와 제 2 부스터 팽창기구(80)를 일반 부하 모드로 운전시키며, 부하가 일반 부하 보다 큰 경우 압축기(10)와 부스터 압축기(90)와 제 2 부스터 팽창기구(80)를 멀티 운전 모드로 운전시키고, 저온 부하인 경우 압축기(10)와 부스터 압축기(90)와 제 2 부스터 팽창기구(80)를 가스 인젝션 모드로 운전할 수 있다.  The control unit 120 can control the compressor 10, the booster compressor 90, and the second booster expansion mechanism 80 according to the operation mode, so that the operation mode can be variously configured according to the load, The compressor 10, the booster compressor 90, and the booster compressor 90 are operated in the partial load mode when the load is less than the normal load, The second booster expansion mechanism 80 is operated in the normal load mode and the compressor 10, the booster compressor 90 and the second booster expansion mechanism 80 are operated in the multi-operation mode when the load is larger than the general load, The compressor 10, the booster compressor 90, and the second booster expansion mechanism 80 can be operated in the gas injection mode.
본 실시예에 따른 히트 펌프는 보다 다양한 부하에 효율적으로 대응하기 위해 압축기(10)가 용량 가변 압축기이고, 부스터 압축기(90)가 정속 압축기로 이루어지며, 부스터 압축기(90)는 압축기(10) 보다 용량이 작게 형성되는 것이 바람직하다.    The heat pump according to the present embodiment is characterized in that the compressor 10 is a capacity variable compressor, the booster compressor 90 is a constant speed compressor, and the booster compressor 90 is more compact than the compressor 10 It is preferable that the capacity is formed small.
제어부(120)는 부분 부하 모드시 압축기(10)를 오프시키고, 부스터 압축기(90)를 구동시키며, 제 2 부스터 팽창기구(80)를 밀폐시킨다. 그리고, 제어부(120)는 제 1 부스터 팽창기구(62)를 풀 오픈시키고, 팽창기구(16)가 냉매를 팽창시키게 팽창기구(16)를 설정 개도로 개도 조절할 수 있다.    The control unit 120 turns off the compressor 10 in the partial load mode, drives the booster compressor 90, and hermetically closes the second booster expansion mechanism 80. The control unit 120 can open and adjust the expansion mechanism 16 to open the first booster expansion mechanism 62 in a fully opened state and the expansion mechanism 16 to expand the refrigerant.
이때, 제어부(120)는 부스터 압축기(90)의 흡입과열도가 설정과열도에 이르게 팽창기구(16)의 개도를 제어할 수 있다. At this time, the control unit 120 can control the opening degree of the expansion mechanism 16 so that the suction and the degree of the circulation of the booster compressor 90 reach the setting and the degree of the arch.
상기와 같은 제어시 압축기 흡입 배관(19)의 냉매는 도 2 및 도 8에 도시된 바와 같이, 압축기(10)로 유입되지 않고, 부스터 흡입배관(96)과 부스터 압축기 흡입배관(92)을 차례로 통과한 후 부스터 압축기(90)로 흡입되어 압축되고, 이후 부스터 압축기 토출배관(94)과 압축기 토출배관(13)을 차례로 통과하여 제 1 열교환기(14)로 유동될 수 있다. 2 and 8, the refrigerant in the compressor suction pipe 19 at the time of the control is not introduced into the compressor 10 but flows through the booster suction pipe 96 and the booster compressor suction pipe 92 in this order The refrigerant is sucked and compressed by the booster compressor 90 and then passed through the booster compressor discharge pipe 94 and the compressor discharge pipe 13 in order to flow to the first heat exchanger 14. [
제 1 열교환기(14)로 유동된 냉매는 제 1 열교환기(14)에서 응축되면서 제 1 열교환기(14)를 통과하는 물을 가열하고, 이후 제 1 부스터 팽창기구(62)와 기액 분리기(70)를 차례로 통과하며, 팽창기구(16)에서 팽창된 후 제 2 열교환기(18)로 유동될 수 있다. The refrigerant flowing into the first heat exchanger 14 is condensed in the first heat exchanger 14 to heat the water passing through the first heat exchanger 14 and then flows into the first booster expansion mechanism 62 and the gas- 70, and may be expanded in the expansion mechanism 16 and then flowed to the second heat exchanger 18.
제 2 열교환기(18)로 유동된 냉매는 실외 팬(22)에서 송풍되는 실외 공기에 의해 증발되고, 이후 압축기 흡입 배관(19)으로 회수될 수 있다. The refrigerant flowing into the second heat exchanger (18) is evaporated by the outdoor air blown from the outdoor fan (22) and then recovered to the compressor suction pipe (19).
즉, 히트 펌프는 냉매가 부스터 압축기(90)와 제 1 열교환기(14)와 팽창기구(16)와 제 2 열교환기(18)를 순환하면서 압축,응축,팽창,증발되고, 압축기(10)를 구동하는 경우 보다 적은 소비전력으로 부분 부하에 대응할 수 있게 된다. That is, the heat pump compresses, condenses, expands, and evaporates while the refrigerant circulates through the booster compressor 90, the first heat exchanger 14, the expansion mechanism 16 and the second heat exchanger 18, It is possible to cope with the partial load with less power consumption.
제어부(120)는 일반 부하 모드시 압축기(10)를 구동시키고, 부스터 압축기(90)를 정지시키며, 제 2 부스터 팽창기구(80)를 밀폐시킨다. 그리고, 제어부(120)는 제 1 부스터 팽창기구(62)를 풀 오픈시키고, 팽창기구(16)가 냉매를 팽창시키게 팽창기구(16)를 설정 개도로 개도 조절할 수 있다.   The control unit 120 drives the compressor 10 in the normal load mode, stops the booster compressor 90, and hermetically closes the second booster expansion mechanism 80. The control unit 120 can open and adjust the expansion mechanism 16 to open the first booster expansion mechanism 62 in a fully opened state and the expansion mechanism 16 to expand the refrigerant.
이때, 제어부(120)는 압축기(10)의 흡입과열도가 설정과열도에 이르게 팽창기구(16)의 개도를 제어할 수 있다. At this time, the control unit 120 can control the opening degree of the expansion mechanism 16 so that the suction and the degree of the archetype of the compressor 10 reach the set and the degree of the arch.
상기와 같은 제어시 압축기 흡입 배관(19)의 냉매는 도 2 및 도 9에 도시된 바와 같이, 부스터 압축기(90)로 유입되지 않고, 압축기(10)로 흡입되어 압축되고, 이후 압축기 토출배관(13)을 차례로 통과하여 제 1 열교환기(14)로 유동될 수 있다. 2 and 9, the refrigerant in the compressor suction pipe 19 during the control is not introduced into the booster compressor 90 but is sucked into the compressor 10 to be compressed. Thereafter, the refrigerant in the compressor discharge pipe 13) in order to flow to the first heat exchanger (14).
제 1 열교환기(14)로 유동된 냉매는 제 1 열교환기(14)에서 응축되면서 제 1 열교환기(14)를 통과하는 물을 가열하고, 이후 제 1 부스터 팽창기구(62)와 기액 분리기(70)를 차례로 통과하며, 팽창기구(16)에서 팽창된 후 제 2 열교환기(18)로 유동될 수 있다. The refrigerant flowing into the first heat exchanger 14 is condensed in the first heat exchanger 14 to heat the water passing through the first heat exchanger 14 and then flows into the first booster expansion mechanism 62 and the gas- 70, and may be expanded in the expansion mechanism 16 and then flowed to the second heat exchanger 18.
제 2 열교환기(18)로 유동된 냉매는 실외 팬(22)에서 송풍되는 실외 공기에 의해 증발되고, 이후 압축기 흡입 배관(19)으로 회수될 수 있다. The refrigerant flowing into the second heat exchanger (18) is evaporated by the outdoor air blown from the outdoor fan (22) and then recovered to the compressor suction pipe (19).
즉, 히트 펌프는 냉매가 압축기(10)와 제 1 열교환기(14)와 팽창기구(16)와 제 2 열교환기(18)를 순환하면서 압축,응축,팽창,증발되고, 부스터 압축기(90)의 구동의 경우 보다 큰 일반 부하에 대응할 수 있게 된다. That is, the heat pump compresses, condenses, expands, and evaporates while the refrigerant circulates through the compressor 10, the first heat exchanger 14, the expansion mechanism 16 and the second heat exchanger 18, It is possible to cope with a general load larger than that in the case of driving of the vehicle.
제어부(120)는 멀티 운전 모드시 압축기(10)와 부스터 압축기(90)를 구동시키고, 제 2 부스터 팽창기구(80)를 밀폐시킨다. 그리고, 제어부(120)는 제 1 부스터 팽창기구(62)를 풀 오픈시키고, 팽창기구(16)가 냉매를 팽창시키게 팽창기구(16)를 설정 개도로 개도 조절할 수 있다. The control unit 120 drives the compressor 10 and the booster compressor 90 in the multi-operation mode, and closes the second booster expansion mechanism 80. [ The control unit 120 can open and adjust the expansion mechanism 16 to open the first booster expansion mechanism 62 in a fully opened state and the expansion mechanism 16 to expand the refrigerant.
이때, 제어부(120)는 압축기(10)의 흡입과열도가 설정과열도에 이르게 팽창기구(16)의 개도를 제어할 수 있다.  At this time, the control unit 120 can control the opening degree of the expansion mechanism 16 so that the suction and the degree of the archetype of the compressor 10 reach the set and the degree of the arch.
상기와 같은 제어시 압축기 흡입 배관(19)의 냉매는 도 2 및 도 10에 도시된 바와 같이, 일부가 압축기(10)로 흡입되어 압축된 후 압축기 토출배관(13)으로 토출되고 나머지가 부스터 흡입배관(96)과 부스터 압축기 흡입배관(92)을 차례로 통과한 후 부스터 압축기(90)로 흡입되어 압축된 후 압축기 토출배관(13)으로 토출되어 압축기(10)에서 토출된 냉매와 합쳐진다. 2 and 10, a part of the refrigerant is sucked and compressed by the compressor 10 and then is discharged to the compressor discharge pipe 13, and the remaining part of the refrigerant is sucked by the booster suction The refrigerant passes through the piping 96 and the booster compressor suction pipe 92 and is sucked and compressed by the booster compressor 90 and then discharged to the compressor discharge pipe 13 and merged with the refrigerant discharged from the compressor 10.
압축기 토출배관(13)으로 토출된 냉매는 제 1 열교환기(14)로 유동되어 제 1 열교환기(14)에서 응축되면서 제 1 열교환기(14)를 통과하는 물을 가열하고, 이후 제 1 부스터 팽창기구(62)와 기액 분리기(70)를 차례로 통과하며, 팽창기구(16)에서 팽창된 후 제 2 열교환기(18)로 유동될 수 있다.  The refrigerant discharged to the compressor discharge pipe 13 flows into the first heat exchanger 14 and is condensed in the first heat exchanger 14 to heat the water passing through the first heat exchanger 14, Through the expansion mechanism 62 and the gas-liquid separator 70, can be expanded in the expansion mechanism 16 and then flowed to the second heat exchanger 18. [
제 2 열교환기(18)로 유동된 냉매는 실외 팬(22)에서 송풍되는 실외 공기에 의해 증발되고, 이후 압축기 흡입 배관(19)으로 회수될 수 있다. The refrigerant flowing into the second heat exchanger (18) is evaporated by the outdoor air blown from the outdoor fan (22) and then recovered to the compressor suction pipe (19).
즉, 히트 펌프는 냉매가 압축기(10) 및 부스터 압축기(90)와 제 1 열교환기(14)와 팽창기구(16)와 제 2 열교환기(18)를 순환하면서 압축,응축,팽창,증발되고, 부스터 압축기(90)의 단독 구동과 압축기(10)의 단독 구동의 경우 보다 큰 대부하에 대응할 수 있게 된다. That is, the heat pump compresses, condenses, expands, and evaporates while the refrigerant circulates through the compressor 10 and the booster compressor 90, the first heat exchanger 14, the expansion mechanism 16 and the second heat exchanger 18 , It is possible to cope with a large load greater than that of the single drive of the booster compressor (90) and the single drive of the compressor (10).
제어부(120)는 가스 인젝션 모드시 압축기(10)와 부스터 압축기(90)를 구동시키고, 제 2 부스터 팽창기구(80)를 개방시킬 수 있다. 그리고, 제어부(120)는 제 1 부스터 팽창기구(62)를 개방시키고, 팽창기구(16)가 냉매를 팽창시키게 팽창기구(16)를 설정 개도로 개도 조절할 수 있다.  The control unit 120 may drive the compressor 10 and the booster compressor 90 and open the second booster expansion mechanism 80 in the gas injection mode. The control unit 120 can open the first booster expansion mechanism 62 and adjust the opening degree of the expansion mechanism 16 so that the expansion mechanism 16 expands the refrigerant.
이때, 제어부(120)는 부스터 압축기(90)로 흡입되는 냉매의 압력이 제 2 열교환기(18)의 증발압 보다 낮고, 제 1 열교환기(14)의 응축압보다 높은 중간압이 되게 제 1 부스터 팽창기구(80)의 개도와 제 2 부스터 팽창기구(80)의 개도를 제어하고, 압축기(10)의 흡입과열도가 설정과열도에 이르게 팽창기구(16)의 개도를 제어할 수 있다. At this time, the controller 120 controls the booster compressor 90 such that the pressure of the refrigerant sucked into the booster compressor 90 is lower than the evaporation pressure of the second heat exchanger 18, It is possible to control the opening degree of the expansion mechanism 16 by controlling the opening degree of the booster expansion mechanism 80 and the degree of opening of the second booster expansion mechanism 80 so that the suction and the degree of the opening degree of the compressor 10 reach the setting and the degree of arch.
상기와 같은 제어시 압축기 흡입 배관(19)의 냉매는 도 2 및 도 11에 도시된 바와 같이, 압축기(10)로 흡입되어 압축된 후 압축기 토출배관(13)으로 토출되고 이후 제 1 열교환기(14)로 유동되어 제 1 열교환기(14)에서 응축되면서 제 1 열교환기(14)를 통과하는 물을 가열하고, 이후 제 1 부스터 팽창기구(62)에서 팽창된 후 기액 분리기(70)로 유입될 수 있다. 기액 분리기(70)로 유입된 냉매는 기상 냉매와 액냉매가 분리되어, 기상 냉매가 기상 냉매 토출배관(76)을 토출되고, 액냉매가 팽창기구 입구배관(72)을 통해 팽창기구(16)로 유동되어 팽창될 수 있다.  As shown in FIGS. 2 and 11, the refrigerant of the compressor suction pipe 19 during the control is sucked and compressed by the compressor 10, is discharged to the compressor discharge pipe 13, and then discharged to the first heat exchanger 14 and is condensed in the first heat exchanger 14 to heat water passing through the first heat exchanger 14 and then expanded in the first booster expansion mechanism 62 and then introduced into the gas-liquid separator 70 . The refrigerant introduced into the gas-liquid separator 70 is separated from the gaseous refrigerant and the liquid refrigerant so that the gaseous refrigerant is discharged through the gaseous refrigerant discharge pipe 76 and the liquid refrigerant flows through the expansion mechanism inlet pipe 72, And can be expanded.
팽창기구(16)에서 팽창된 냉매는 제 2 열교환기(18)로 유동되어 증발되고, 이후 압축기 흡입 배관(19)으로 회수되며, 압축기(10)에서 압축된 후 압축기 토출 배관(13)으로 토출될 수 있다. The refrigerant expanded in the expansion mechanism 16 flows into the second heat exchanger 18 and is evaporated and then recovered into the compressor suction pipe 19. The compressed refrigerant is compressed by the compressor 10 and then discharged to the compressor discharge pipe 13 .
한편, 기상 냉매 토출배관(76)으로 토출된 냉매는 제 2 부스터 팽창기구(80)에서 팽창된 후 부스터 압축기 흡입배관(92)으로 유동되고, 이후 부스터 압축기(90)에서 압축된다. 부스터 압축기(90)에서 압축된 냉매는 부스터 압축기 토출배관(94)으로 토출된 후 압추기 토출 배관(13)으로 유동되어 압축기(10)에서 토출된 냉매와 혼합된다. On the other hand, the refrigerant discharged to the gaseous refrigerant discharge pipe 76 is expanded in the second booster expansion mechanism 80, and then flows to the booster compressor suction pipe 92, where it is compressed in the booster compressor 90. The refrigerant compressed in the booster compressor (90) is discharged to the booster compressor discharge pipe (94), then flows to the compression discharge pipe (13) and mixed with the refrigerant discharged from the compressor (10).
즉, 히트 펌프는 냉매가 압축기(10) 및 제 1 열교환기(14)와 제 1 부스터 팽창기구(62)와, 팽창기구(16)와 제 2 열교환기(18)를 순환하면서 압축,응축,팽창,팽창, 증발되고, 제 1 열교환기(14)에서 응축된 냉매 중 기상 냉매가 팽창된 후 부스터 압축기(90)로 가스 인젝션되며, 히트 펌프는 가스 인젝션 없이 부스터 압축기(90)와 압축기(10)를 구동하는 경우 보다 효율이 상승되면서 압축일이 감소된다. 특히 실외가 저온인 저온 난방 능력이 향상될 수 있다. That is, the heat pump is configured such that the refrigerant circulates through the compressor 10, the first heat exchanger 14, the first booster expansion mechanism 62, the expansion mechanism 16, and the second heat exchanger 18, The gaseous refrigerant in the refrigerant condensed in the first heat exchanger 14 is expanded and then gas is injected into the booster compressor 90. The heat pump is connected to the booster compressor 90 and the compressor 10 The efficiency is increased and the compression work is reduced. The low-temperature heating capability in which the outdoor temperature is low can be improved.
도 12는 본 발명에 따른 히트 펌프 다른 실시예의 냉동 사이클 유닛에 부스터 모듈이 설치된 후의 구성도이고, 도 13은 본 발명에 따른 히트 펌프 다른 실시예의 일반 부하 모드시 냉매 흐름이 도시된 개략 구성도, 도 14는 본 발명에 따른 히트 펌프 다른 실시예의 가스 인젝션 모드시 냉매 흐름이 도시된 개략 구성도이다. FIG. 12 is a schematic view of a heat pump according to another embodiment of the present invention, in which a booster module is installed in a refrigeration cycle unit, FIG. 13 is a schematic view showing a refrigerant flow in a general load mode of another embodiment, FIG. 14 is a schematic view showing a refrigerant flow in the gas injection mode of another embodiment of the heat pump according to the present invention.
본 실시예에 따른 히트 펌프는 본 발명 일실시예의 부스터 흡입배관(96)과 체크 밸브(96')가 설치되지 않고, 기타의 구성은 본 발명 일실시예와 동일하거나 유사하게 구성될 수 있다. The heat pump according to the present embodiment is not provided with the booster suction pipe 96 and the check valve 96 'of the present invention, and other configurations may be the same as or similar to those of the embodiment of the present invention.
본 실시예에 따른 히트 펌프는 도 12에 도시된 바와 같이 압축기(10)가 구동되고 부스터 압축기(90)가 구동되지 않으며 제 2 부스터 팽창기구(80)가 기상 냉매를 통과시키지 않는 일반 부하 모드를 갖고, 도 14에 도시된 바와 같이 압축기(10)와 부스터 압축기(90)가 구동되고 제 2 부스터 팽창기구(80)가 기상 냉매를 통과시키는 가스 인젝션 모드를 갖을 수 있다. 12, the heat pump according to the present embodiment has a general load mode in which the compressor 10 is driven, the booster compressor 90 is not driven, and the second booster expansion mechanism 80 does not pass the gaseous refrigerant 14, the compressor 10 and the booster compressor 90 are driven, and the second booster expansion mechanism 80 has the gas injection mode in which the gaseous refrigerant is passed.
즉, 부하 감지 센서(110)에서 저온 부하가 감지되면, 압축기(10)와 부스터 압축기(90)가 구동되고 제 2 부스터 팽창기구(80)가 기상 냉매를 통과시키게 제어되어, 압축기(10)는 증발기(18)에서 증발된 냉매를 압축하고, 부스터 압축기(90)는 기액 분리기(70)에서 분리된 기상 냉매를 압축할 수 있다.   That is, when the low temperature load is detected by the load detection sensor 110, the compressor 10 and the booster compressor 90 are driven and the second booster expansion mechanism 80 is controlled to pass the gaseous refrigerant, The booster compressor 90 compresses the gaseous refrigerant separated in the gas-liquid separator 70, and compresses the refrigerant evaporated in the evaporator 18.
반면에, 부하 감지 센서(110)에서 저온 부하가 감지되지 않으면, 압축기(10)가 구동되고 부스터 압축기(90)가 구동되지 않으며 제 2 부스터 팽창기구(80)가 기상 냉매를 통과시키지 않게 제어되어, 압축기(10)는 증발기(10)에서 증발된 냉매를 압축할 수 있다.  On the other hand, if the low temperature load is not detected by the load detection sensor 110, the compressor 10 is driven, the booster compressor 90 is not driven, and the second booster expansion mechanism 80 is controlled not to pass the gaseous refrigerant , The compressor 10 can compress the refrigerant evaporated in the evaporator 10.
도 15는 본 발명에 따른 히트 펌프 또 다른 실시예의 냉동 사이클 유닛에 부스터 모듈이 설치되기 전의 구성도이고, 도 16은 본 발명에 따른 히트 펌프 다른 실시예의 냉동 사이클 유닛에 부스터 모듈이 설치된 후의 구성도이다. FIG. 15 is a schematic view of a heat pump according to the present invention before a booster module is installed in a refrigeration cycle unit of another embodiment. FIG. 16 is a view showing a configuration after a booster module is installed in a refrigeration cycle unit of another embodiment of a heat pump according to the present invention to be.
본 실시예에 따른 히트 펌프는 난방 전용으로서, 본 발명 일실시예의 냉/난방 절환밸브(12)을 포함하지 않고, 기타의 구성은 본 발명 일실시예와 동일하거나 유사하게 구성될 수 있다. The heat pump according to the present embodiment is dedicated to heating and does not include the cooling / heating switching valve 12 of the embodiment of the present invention, and other configurations may be the same as or similar to those of the embodiment of the present invention.
냉동 사이클 유닛(1)은 압축기(10)가 제 1 열교환기(14)와 압축기 토출배관(11)으로 연결되고, 제 1 열교환기(14)가 팽창기구(16)와 제 1 열교환기-팽창기구 연결배관(15)으로 연결되며, 팽창기구(16)가 제 2 열교환기(18)와 팽창기구-제 2 열교환기 연결배관(17)으로 연결되며, 제 2 열교환기(18)가 압축기(10)와 압축기 흡입배관(20')으로 연결될 수 있다.  The refrigeration cycle unit 1 is configured such that the compressor 10 is connected to the first heat exchanger 14 and the compressor discharge pipe 11 and the first heat exchanger 14 is connected to the expansion mechanism 16 and the first heat exchanger- And the expansion mechanism 16 is connected to the second heat exchanger 18 and the expansion mechanism-second heat exchanger connection pipe 17 while the second heat exchanger 18 is connected to the compressor 10 and the compressor suction pipe 20 '.
본 실시예에 따른 히트 펌프는 부스터 모듈(2)의 설치시, 압축기 토출배관(11)과, 제 1 열교환기-팽창기구 연결배관(15) 각각이 분리되고, 부스터 모듈(2)은 분리된 압축기 토출배관(11A)(11B)과 연결되며, 분리된 제 1 열교환기-팽창기구 연결배관(15A)(15B)과 연결될 수 있다.  In the heat pump according to the present embodiment, when the booster module 2 is installed, the compressor discharge pipe 11 and the first heat exchanger-expansion mechanism connecting pipe 15 are separated, and the booster module 2 is separated May be connected to the compressor discharge pipes (11A) and (11B) and may be connected to the separated first heat exchanger-expansion mechanism connecting pipes (15A) and (15B).
부스터 모듈(2)은 부스터 압축기 토출배관(94)(95)이 분리된 압축기 토출배관(11A)(11B)의 어느 하나(11A)와 다른 하나(11B)를 연결하는 제 1 부스터 압축기 토출 배관(94)과, 부스터 압축기(90)에서 토출된 냉매를 제 1 부스터 압축기 토출 배관(94)으로 안내하는 제 2 부스터 압축기 토출 배관(95)를 포함할 수 있다.  The booster module 2 is connected to the first booster compressor discharge piping 94 and 95 which connects the booster compressor discharge pipes 94 and 95 to either one of the compressor discharge pipes 11A and 11B separated from the compressor discharge pipes 11A and 11B, And a second booster compressor discharge pipe 95 for guiding the refrigerant discharged from the booster compressor 90 to the first booster compressor discharge pipe 94.
즉, 압축기(10)와 제 1 열교환기(14)는 부스터 모듈(2)이 설치되기 전에 도 14에 도시된 바와 같이, 압축기 토출배관(11)으로 연결되고, 부스터 모듈(2)의 설치된 후에 도 15에 도시된 바와 같이, 압축기 토출배관(11)의 어느 하나(11A)와 제 1 부스터 압축기 토출 배관(94)와 압축기 토출배관(11)의 다른 하나(11B)로 연결될 수 있다.  14, before the booster module 2 is installed, the compressor 10 and the first heat exchanger 14 are connected to the compressor discharge pipe 11, and after the booster module 2 is installed The first booster compressor discharge pipe 94 and the other one of the compressor discharge pipes 11 can be connected to each other as shown in FIG.
부스터 흡입배관(96)은 일단이 압축기 흡입배관(20')에 연결되고 타단이 부스터 압축기 흡입배관(92)에 연결될 수 있다.  The booster suction pipe 96 may have one end connected to the compressor suction pipe 20 'and the other end connected to the booster compressor suction pipe 92.

Claims (20)

  1. 냉매가 압축되는 압축기와, 상기 압축기에서 압축된 냉매가 응축되는 제 1 열교환A first compressor for compressing the refrigerant; a first heat exchanger for condensing the refrigerant compressed in the compressor;
    기와, 상기 제 1 열교환기에서 응축된 냉매가 팽창되는 팽창기구와, 상기 팽창기구An expansion mechanism in which the refrigerant condensed in the first heat exchanger is expanded,
    에서 팽창된 냉매가 증발되는 제 2 열교환기를 갖는 냉동 사이클 유닛과; A refrigerant cycle unit having a second heat exchanger in which the refrigerant expanded in the evaporator is evaporated;
    상기 냉동 사이클 유닛에 연결되어 상기 제 1 열교환기에서 팽창기구로 유동 A second heat exchanger connected to the refrigeration cycle unit,
    되는 냉매 중 기상 냉매를 분리하여 압축한 후 상기 압축기와 제 1 열교환기의 사Phase refrigerant in the refrigerant discharged from the compressor is separated and compressed, and then the compressor and the first heat exchanger
    이로 유동시키거나 상기 제 2 열교환기에서 증발된 냉매를 압축한 후 상기 압축기Or after compressing the refrigerant evaporated in the second heat exchanger,
    와 제 1 열교환기의 사이로 유동시키는 부스터 모듈을 포함하는 히트 펌프.And a booster module that flows between the first heat exchanger and the first heat exchanger.
  2. 제 1 항에 있어서,The method according to claim 1,
    상기 부스터 모듈은 상기 제 1 열교환기에서 유동된 냉매를 팽창하는 제 1 The booster module includes a first heat exchanger
    부스터 팽창기구와,A booster expansion mechanism,
    상기 제 1 부스터 팽창기구에서 팽창된 냉매 중 액냉매와 기상 냉매를 분리The liquid refrigerant and the gaseous refrigerant in the refrigerant expanded in the first booster expansion mechanism are separated
    하는 기액 분리기와,Liquid separator,
    상기 기액 분리기에서 분리된 기상 냉매를 팽창하는 제 2 부스터 팽창기구A second booster expansion mechanism for expanding the gaseous refrigerant separated in the gas-
    와,Wow,
    상기 제 2 부스터 팽창기구에서 팽창된 냉매를 압축하는 부스터 압축기를 포And a booster compressor for compressing the refrigerant expanded in the second booster expansion mechanism
    함하는 히트 펌프.Heat pump.
  3. 제 2 항에 있어서,3. The method of claim 2,
    상기 부스터 모듈은 상기 제 2 열교환기에서 증발된 냉매가 상기 부스터 압Wherein the booster module is configured such that the refrigerant vaporized in the second heat exchanger
    축기로 흡입되게 안내하는 부스터 흡입배관을 더 포함하는 히트 펌프.And a booster suction pipe for guiding the suction pipe to be sucked into the condenser.
  4. 제 3 항에 있어서,The method of claim 3,
    상기 부스터 모듈은 제 1 부스터 팽창기구와 상기 기액 분리기를 연결하는 The booster module is connected to the first booster expansion mechanism and the gas-liquid separator
    기액 분리기 흡입배관과,Liquid separator suction pipe,
    상기 기액 분리기에서 분리된 기상 냉매가 상기 제 2 부스터 팽창기구로 안And the gaseous refrigerant separated from the gas-liquid separator flows through the second booster expansion mechanism
    내되는 기상 냉매 토출배관과,A gas-phase refrigerant discharge pipe,
    상기 제 2 부스터 팽창기구에서 팽창된 냉매가 상기 부스터 압축기로 흡입되The refrigerant expanded in the second booster expansion mechanism is sucked into the booster compressor
    는 부스터 압축기 흡입배관과,A booster compressor suction pipe,
    상기 부스터 압축기에서 토출된 냉매가 상기 압축기와 제 1 열교환기의 사이Wherein the refrigerant discharged from the booster compressor flows between the compressor and the first heat exchanger
    로 안내되는 부스터 압축기 토출배관을 더 포함하고,Further comprising a booster compressor discharge pipe guided to the booster compressor,
    상기 부스터 흡입배관은 상기 제 2 열교환기와 압축기의 사이와 상기 부스터 The booster suction pipe is connected between the second heat exchanger and the compressor,
    압축기 흡입배관을 연결하는 히트 펌프.Heat pump connecting compressor suction pipe.
  5. 제 4 항에 있어서,5. The method of claim 4,
    상기 부스터 모듈은 상기 부스터 흡입배관에 설치되어 상기 부스터 압축기  The booster module is installed in the booster suction pipe,
    흡입배관의 냉매가 상기 부스터 흡입배관을 통해 상기 압축기로 흡입되는 것을 막The refrigerant of the suction pipe is prevented from being sucked into the compressor through the booster suction pipe
    는 체크밸브를 더 포함하는 히트 펌프.Further comprising a check valve.
  6. 제 4 항에 있어서,5. The method of claim 4,
    상기 제 1 부스터 팽창기구는 상기 제 1 열교환기와 제 1 부스터 팽창기구  The first booster expansion mechanism includes a first heat exchanger and a first booster expansion mechanism
    흡입배관으로 연결되는 히트 펌프.Heat pump connected to suction piping.
  7. 제 4 항에 있어서,5. The method of claim 4,
    상기 기액 분리기는 상기 팽창기구와 기액분리기 출구배관으로 연결되는 히 The gas-liquid separator is connected to the gas-liquid separator outlet pipe
    트 펌프.Pump.
  8. 제 3 항에 있어서,The method of claim 3,
    상기 압축기는 용량 가변 압축기이고, 상기 부스터 압축기는 정속 압축기인  Wherein the compressor is a capacity variable compressor, and the booster compressor is a constant-
    히트 펌프.Heat pump.
  9. 제 3 항에 있어서,The method of claim 3,
    상기 부스터 압축기는 상기 압축기 보다 용량이 작은 히트 펌프. Wherein the booster compressor has a smaller capacity than the compressor.
  10. 제 3 항에 있어서,The method of claim 3,
    상기 히트 펌프는 운전 모드에 따라 상기 압축기와 부스터 압축기와 제 2 부 The heat pump is operated by the compressor, the booster compressor,
    스터 팽창기구를 제어하는 제어부를 포함하는 히트 펌프.And a control unit for controlling the stator expansion mechanism.
  11. 제 10 항에 있어서,11. The method of claim 10,
    상기 제어부는 일반 부하 모드시 상기 압축기를 구동시키고, 상기 부스터 압 Wherein the controller drives the compressor in a normal load mode,
    축기를 정지시키며, 상기 제 2 부스터 팽창기구를 밀폐시키는 히트 펌프.And stops the condenser and seals the second booster expansion mechanism.
  12. 제 10 항에 있어서,11. The method of claim 10,
    상기 제어부는 부분 부하 모드시 상기 압축기를 오프시키고, 상기 부스터 압 The controller turns off the compressor in the partial load mode,
    축기를 구동시키며, 상기 제 2 부스터 팽창기구를 밀폐시키는 히트 펌프.And the second booster expansion mechanism is sealed.
  13. 제 10 항에 있어서,11. The method of claim 10,
    상기 제어부는 멀티 운전 모드시 상기 압축기와 부스터 압축기를 구동시키 The control unit drives the compressor and the booster compressor in a multi-operation mode
    고, 상기 제 2 부스터 팽창기구를 밀폐시키는 히트 펌프.And the second booster expansion mechanism is sealed.
  14. 제 10 항에 있어서,11. The method of claim 10,
    상기 제어부는 가스 인젝션 모드시 상기 압축기와 부스터 압축기를 구동시키 The control unit drives the compressor and the booster compressor in the gas injection mode
    고, 상기 제 2 부스터 팽창기구를 개방시키는 히트 펌프.And the second booster expansion mechanism is opened.
  15. 제 1 항에 있어서,The method according to claim 1,
    상기 제 1 열교환기는 냉매와 물을 열교환시키는 수냉매 열교환기이고, 실내 The first heat exchanger is a water-refrigerant heat exchanger for exchanging heat between refrigerant and water,
    를 난방시키는 난방 유닛 및 온수를 공급하는 급탕 유닛과 물 순환 유로로 연결된 A heating unit for heating the hot water supply unit and a hot water supply unit for supplying hot water,
    히트 펌프.Heat pump.
  16. 냉매가 압축되는 압축기와, 상기 압축기에서 압축된 냉매가 응축되는 제 1 열교환A first compressor for compressing the refrigerant; a first heat exchanger for condensing the refrigerant compressed in the compressor;
    기와, 상기 제 1 열교환기에서 응축된 냉매가 팽창되는 팽창기구와, 상기 팽창기구An expansion mechanism in which the refrigerant condensed in the first heat exchanger is expanded,
    에서 팽창된 냉매가 증발되는 제 2 열교환기를 갖는 냉동 사이클 유닛과;A refrigerant cycle unit having a second heat exchanger in which the refrigerant expanded in the evaporator is evaporated;
    상기 냉동 사이클 유닛에 선택적으로 장착되는 부스터 모듈을 포함하고, And a booster module selectively mounted on the refrigeration cycle unit,
    상기 부스터 모듈은 상기 제 1 열교환기에서 유동된 냉매를 팽창하는 제 1  The booster module includes a first heat exchanger
    부스터 팽창기구와,A booster expansion mechanism,
    상기 제 1 부스터 팽창기구에서 팽창된 냉매 중 액냉매와 기상 냉매를 분리 The liquid refrigerant and the gaseous refrigerant in the refrigerant expanded in the first booster expansion mechanism are separated
    하는 기액 분리기와,Liquid separator,
    상기 기액 분리기에서 분리된 기상 냉매를 팽창하는 제 2 부스터 팽창기구 A second booster expansion mechanism for expanding the gaseous refrigerant separated in the gas-
    와,Wow,
    상기 제 2 부스터 팽창기구에서 팽창된 냉매를 압축하는 부스터 압축기를 포 And a booster compressor for compressing the refrigerant expanded in the second booster expansion mechanism
    함하고, 실내 부하에 대응되어 선택적으로 운전되는 히트 펌프.And selectively operates in response to an indoor load.
  17. 제 16 항에 있어서,17. The method of claim 16,
    상기 부스터 모듈은 제 1 부스터 팽창기구와 상기 기액 분리기를 연결하는  The booster module is connected to the first booster expansion mechanism and the gas-liquid separator
    기액 분리기 흡입배관과,Liquid separator suction pipe,
    상기 기액 분리기에서 분리된 기상 냉매가 상기 제 2 부스터 팽창기구로 안 And the gaseous refrigerant separated from the gas-liquid separator flows through the second booster expansion mechanism
    내되는 기상 냉매 토출배관과,A gas-phase refrigerant discharge pipe,
    상기 제 2 부스터 팽창기구에서 팽창된 냉매가 상기 부스터 압축기로 흡입되 The refrigerant expanded in the second booster expansion mechanism is sucked into the booster compressor
    는 부스터 압축기 흡입배관과,A booster compressor suction pipe,
    상기 부스터 압축기에서 토출된 냉매가 상기 압축기와 제 1 열교환기의 사이 Wherein the refrigerant discharged from the booster compressor flows between the compressor and the first heat exchanger
    로 안내되는 부스터 압축기 토출배관을 더 포함하는 히트 펌프.Further comprising a booster compressor discharge pipe guided to the booster compressor.
  18. 제 17 항에 있어서,18. The method of claim 17,
    상기 제 1 부스터 팽창기구는 상기 제 1 열교환기와 제 1 부스터 팽창기구  The first booster expansion mechanism includes a first heat exchanger and a first booster expansion mechanism
    흡입배관으로 연결되는 히트 펌프.Heat pump connected to suction piping.
  19. 제 18 항에 있어서,19. The method of claim 18,
    상기 기액 분리기는 상기 팽창기구와 기액분리기 출구배관으로 연결되는 히 The gas-liquid separator is connected to the gas-liquid separator outlet pipe
    트 펌프.Pump.
  20. 제 17 항에 있어서,18. The method of claim 17,
    상기 압축기는 용량 가변 압축기이고, Wherein the compressor is a capacity variable compressor,
    상기 부스터 압축기는 상기 압축기 보다 용량이 작은 정속 압축기인 히트 펌 The booster compressor is a constant-speed compressor having a capacity smaller than that of the compressor.
    프.Pf.
PCT/KR2010/004791 2009-11-20 2010-07-21 Heat pump WO2011062349A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020090112739A KR101321549B1 (en) 2009-11-20 2009-11-20 Heat pump
KR10-2009-0112739 2009-11-20

Publications (2)

Publication Number Publication Date
WO2011062349A1 WO2011062349A1 (en) 2011-05-26
WO2011062349A4 true WO2011062349A4 (en) 2011-07-28

Family

ID=43769240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/004791 WO2011062349A1 (en) 2009-11-20 2010-07-21 Heat pump

Country Status (5)

Country Link
US (1) US20110120180A1 (en)
EP (1) EP2325579B1 (en)
KR (1) KR101321549B1 (en)
CN (1) CN102072590B (en)
WO (1) WO2011062349A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101329509B1 (en) * 2008-08-04 2013-11-13 엘지전자 주식회사 Hot water circulation system associated with heat pump and method for controlling the same
KR101581395B1 (en) 2014-05-16 2015-12-30 우양에이치씨(주) Heatpump system using Booster and Method for operating the Heatpump system
KR101658185B1 (en) 2016-03-23 2016-09-21 천두황 Heat-pump Type thermo-hygrostate system
CN111189259B (en) * 2018-08-20 2022-07-22 李华玉 Combined cycle heat pump device
DE102020120772A1 (en) * 2019-09-17 2021-03-18 Hanon Systems Compressor module
CN112629020B (en) * 2020-12-17 2023-04-14 青岛海尔新能源电器有限公司 Heat pump water heater and control method thereof
USD1029211S1 (en) * 2021-10-01 2024-05-28 Bootbox Labs, Inc. Window mountable heat pump

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH234315A (en) * 1943-07-13 1944-09-30 Escher Wyss Maschf Ag Heat pump.
US3301002A (en) * 1965-04-26 1967-01-31 Carrier Corp Conditioning apparatus
JPS602257U (en) * 1983-06-15 1985-01-09 三洋電機株式会社 Compressor operation control device
US4787211A (en) * 1984-07-30 1988-11-29 Copeland Corporation Refrigeration system
US5095712A (en) * 1991-05-03 1992-03-17 Carrier Corporation Economizer control with variable capacity
JPH06137615A (en) * 1992-10-26 1994-05-20 Matsushita Electric Ind Co Ltd Cold accumulation apparatus
IL116764A (en) * 1996-01-15 2001-01-11 Acclim Line Ltd Central air conditioning system
JP2001056156A (en) * 1999-06-11 2001-02-27 Daikin Ind Ltd Air conditioning apparatus
US6276148B1 (en) * 2000-02-16 2001-08-21 David N. Shaw Boosted air source heat pump
KR100567491B1 (en) * 2002-02-12 2006-04-03 마츠시타 덴끼 산교 가부시키가이샤 Heat pump water heater
JP4214021B2 (en) * 2003-08-20 2009-01-28 ヤンマー株式会社 Engine heat pump
US6931871B2 (en) * 2003-08-27 2005-08-23 Shaw Engineering Associates, Llc Boosted air source heat pump
JP4454323B2 (en) * 2004-01-29 2010-04-21 三洋電機株式会社 Refrigeration system
US20080098760A1 (en) * 2006-10-30 2008-05-01 Electro Industries, Inc. Heat pump system and controls
JP3904013B2 (en) * 2004-10-25 2007-04-11 松下電器産業株式会社 Heat pump type water heater
US7654104B2 (en) * 2005-05-27 2010-02-02 Purdue Research Foundation Heat pump system with multi-stage compression
JP4899489B2 (en) * 2006-01-19 2012-03-21 ダイキン工業株式会社 Refrigeration equipment
KR101387478B1 (en) * 2007-03-13 2014-04-24 엘지전자 주식회사 Compression system and Air-conditioning system using the same
EP2203693B1 (en) * 2007-09-24 2019-10-30 Carrier Corporation Refrigerant system with bypass line and dedicated economized flow compression chamber
JP5400796B2 (en) * 2007-12-28 2014-01-29 ジョンソン コントロールズ テクノロジー カンパニー Vapor compression system and method of operating the same

Also Published As

Publication number Publication date
KR101321549B1 (en) 2013-10-30
EP2325579A2 (en) 2011-05-25
WO2011062349A1 (en) 2011-05-26
CN102072590A (en) 2011-05-25
CN102072590B (en) 2013-06-12
KR20110056060A (en) 2011-05-26
EP2325579A3 (en) 2015-01-14
US20110120180A1 (en) 2011-05-26
EP2325579B1 (en) 2017-08-30

Similar Documents

Publication Publication Date Title
WO2011062348A1 (en) Heat pump
WO2011062349A4 (en) Heat pump
WO2011149152A1 (en) Hot water supply device associated with heat pump
WO2017069472A1 (en) Air conditioner and control method therefor
WO2021215695A1 (en) Heat pump system for vehicle
WO2011145779A1 (en) Hot water supply device associated with heat pump
WO2018012818A1 (en) Heat pump system for vehicle
WO2011145780A1 (en) Hot water supply device associated with heat pump
WO2015111847A1 (en) Heat pump system for vehicle
WO2011149151A1 (en) Hot water supply device associated with heat pump
WO2019147085A1 (en) Air conditioner and control method therefor
WO2015194891A1 (en) Refrigerator
WO2016114557A1 (en) Air conditioning system
AU2018309544B2 (en) Vehicle, refrigerator for vehicle, and controlling method for refrigerator for vehicle
WO2021172752A1 (en) Vapor injection module and heat pump system using same
WO2019160294A1 (en) Vehicle heat management system
WO2019143195A1 (en) Multi-type air conditioner
WO2020027596A1 (en) Method for controlling refrigerator
WO2021040427A1 (en) Air conditioner and control method thereof
WO2014030884A1 (en) Vehicle heat pump system
WO2016129880A1 (en) Air conditioner
WO2019050077A1 (en) Multiple heat source multi-heat pump system having air heat source cold storage operation or heat storage operation and water heat source cold storage and heat storage concurrent operation or heat storage and cold storage concurrent operation, and control method
WO2022270772A1 (en) Refrigerator
WO2022139291A1 (en) Air conditioner and operation method thereof
WO2020122615A1 (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10831716

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10831716

Country of ref document: EP

Kind code of ref document: A1