WO2019050077A1 - Multiple heat source multi-heat pump system having air heat source cold storage operation or heat storage operation and water heat source cold storage and heat storage concurrent operation or heat storage and cold storage concurrent operation, and control method - Google Patents

Multiple heat source multi-heat pump system having air heat source cold storage operation or heat storage operation and water heat source cold storage and heat storage concurrent operation or heat storage and cold storage concurrent operation, and control method Download PDF

Info

Publication number
WO2019050077A1
WO2019050077A1 PCT/KR2017/010327 KR2017010327W WO2019050077A1 WO 2019050077 A1 WO2019050077 A1 WO 2019050077A1 KR 2017010327 W KR2017010327 W KR 2017010327W WO 2019050077 A1 WO2019050077 A1 WO 2019050077A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
valve
refrigerant
air
check valve
Prior art date
Application number
PCT/KR2017/010327
Other languages
French (fr)
Korean (ko)
Inventor
오순환
곽명아
고창성
김창준
설현철
Original Assignee
주식회사 엠티에스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170113981A external-priority patent/KR101961169B1/en
Priority claimed from KR1020170113982A external-priority patent/KR101961170B1/en
Application filed by 주식회사 엠티에스 filed Critical 주식회사 엠티에스
Publication of WO2019050077A1 publication Critical patent/WO2019050077A1/en
Priority to PH12020500437A priority Critical patent/PH12020500437A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the present invention uses four types of operation modes based on heat storage base, cooling base, air heat source base and hydrothermal source while using the air heat source of outdoor side and the water heat source of indoor side as separate type, Each base mode can be selectively switched among each other, and automatic switching is possible using the four sides and the electronic valve in each base of the thermal storage alone, thermal storage alone, thermal storage cooldown, simultaneous thermal storage and defrost operation modes. Cooling water is supplied to the evaporator and the cold water is supplied to the evaporator, and the air heat source and the water heat source are used as the heat source of the heat pump. To provide a multi-heat source multi-heat pump and its control method for recovering waste heat discharged as hot water, will be.
  • thermal energy is obtained by burning a combustible material or by using electricity, chemical action, or reaction.
  • the methods of obtaining thermal energy by such combustion, action and reaction are such that the obtained heat energy is stored in a heat storage device or converted into a usable state and then used as a means for drying, cooling, heating or heating.
  • the method of obtaining the thermal energy by the electrical and chemical action is significantly less pollutant production than the method of burning the combustible material.
  • it since it requires a substance or apparatus for reaction, when it is desired to obtain a large amount of heat energy
  • the volume of the device is increased and the device for the device is complicated and bloated due to the necessity of safety, and there is a problem that the thermal energy to be obtained is smaller than the volume of the facility.
  • An outdoor heat source and an air heat source heat pump are known to solve the above problems.
  • the heat pump absorbs heat in the air and compresses it in the compressor to generate a high temperature compressed gas including the shaft force to raise the temperature of the water or to heat the heat exchanged condensation heat to the atmosphere. Is the same as the refrigeration cycle using the evaporation heat, and is constituted by the reverse cycle using the condensation heat in the high temperature maintenance.
  • the heat pump has a water heat exchange system and an air heat source exchange system according to the heat exchange method of the evaporator.
  • the heat pump is an air heat source exchange type
  • the air heat source heat pump when the air heat source heat pump is operated, when the refrigerant is evaporated under low temperature and low pressure using the sensible heat of the air in the heat source evaporator, air is passed
  • the heat pump when the heat pump is a water heat exchange type, the water that is a heating medium is passed through the evaporator, the water is heat exchanged while the heating medium passes through the condenser, and the evaporated refrigerant is guided to the compressor. Which is located in the condenser, to heat the heating equipment to be heated.
  • the air heat source heat pump as described above includes a compressor, a condenser, an expansion valve, and an air heat source evaporator connected through a refrigerant circulation line to form a cycle.
  • the air heat source heat pump When the air heat source heat pump is operated, The refrigerant compressed in the high pressure gas refrigerant is compressed by the condenser and condensed into the high temperature and high pressure liquid refrigerant while the refrigerant circulates through the condenser to heat the refrigerant and heat the condenser.
  • the heat of vaporization of the refrigerant necessary for vaporization is absorbed from the outside, so that the air heat source
  • the gas refrigerant of low temperature and low pressure that has passed through the air heat source evaporator is sucked and compressed by the compressor so that continuous heat exchange is performed in the air heat source evaporator during the above- .
  • the refrigerant temperature of the air heat source evaporator is taken up from the outside air (external air) sucked for heat exchange with the air heat source evaporator to rise (about 5 ⁇ )
  • the refrigerant is sucked into the compressor and compressed into a gas refrigerant of high temperature and high pressure.
  • the air temperature is lower than 5 ⁇ , the refrigerant can not be vaporized into a complete gas and it is sucked into the liquid refrigerant in a particle state such as mist. .
  • the present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide a heat pump apparatus and a heat pump apparatus which use the air heat source and the heat source as heat sources, It has 4 types of operation modes and controllable selectively. By using four sides and electronic valves, it is possible to automatically switch the mode of heat storage single, condensation single, heat accumulation simultaneous operation, simultaneous accumulation heat accumulation and defrost operation mode in each base By making control possible,
  • the hot water is applied to the cooling load by the hot-cooling-based operation mode and at the same time the hot water is produced on the side of the condenser without a separate gas heat source hot water supply device and is applied to the heating load by the heat- And an operation mode based on a hydrothermal source capable of producing hot water and cold water at the same time, respectively.
  • the defrost operation mode is operated, And the refrigerant is operated until all of the refrigerant is removed by the high temperature refrigerant, and the refrigerant is operated until all of the refrigerant is removed, and the four types of base heat storage, cold storage, air heat source, Simultaneously, the necessary operation mode in the defrosting operation mode is switched from the low compression ratio by using the four sides and the electronic valve Group may even provides automatic switching and operation chuknaeng air source that can be used or the heat storage operation and the sequence circle multiple ten won multi heat pump system and a control method having a heat storage chuknaeng simultaneous operation or heat storage operation chuknaeng simultaneously be stopped.
  • the present invention as a means for solving the above problems,
  • the heat storage-based operation mode for supplying hot water is composed of heat storage single operation, storage heat storage simultaneous operation and defrost operation mode,
  • the high-pressure and high-temperature refrigerant discharged from the compressor 10 passes through the water-cooled condenser (a) through the four sides 20 and supplies hot water to the water heat source in the water- ,
  • the refrigerant condensed through the water-cooled condenser (a) flows to the fourth check valve (C4), and the other direction is formed so as not to flow due to the second check valve (C2) in the refrigerant reverse flow direction,
  • the refrigerant passing through the four check valve C4 is branched and passes through each of the sub heat exchangers 40 and is subcooled by the electronic expansion valve 1 (45) so as to further secure the air heat in the evaporator.
  • the first valve V1 is opened without passing through the electronic expansion valve 2 50.
  • the heat storage and cooling operation mode simultaneously supplying the hot water and the cold water is the same as the heat storage single operation until the refrigerant condensed in the water-cooled condenser (a) passes through the sub heat exchanger (40)
  • the third valve V3 is opened and the first valve V1 and the second valve V2 are closed and the refrigerant passes through the water-cooled evaporator b
  • the fourth valve V4 is closed and the fifth valve V5 is opened so that the refrigerant heat exchanged through the four sides 20 is sucked into the compressor 10,
  • the four sides 20 When the defrosting operation condition is satisfied in the air-cooled evaporator (d), the four sides 20 operate in a reverse cycle mode of the heat storage based operation mode, and the four sides
  • the fifth valve V5 is closed and the fourth valve V4 is opened to serve as the air-cooling type condenser c, and at the same time, the high-temperature refrigerant is supplied to the outside air pin Remove,
  • the refrigerant condensed through the air-cooled condenser c flows to the fifth check valve C5 having a small resistance.
  • the first valve V1 and the third valve V3 are closed and the second valve V2 is closed.
  • the refrigerant having passed through the fifth check valve C5 flows to the third check valve C3 and the other direction is connected to the first check valve C1 and the fourth check valve
  • the refrigerant passing through the third check valve C3 is branched and flows through each of the sub heat exchangers 40 and the air heat is discharged from the evaporator by the electronic expansion valve 1 45
  • the refrigerant flows into the second check valve V2 after the pressure is reduced to the low pressure through the electronic expansion valve 2 50.
  • the refrigerant flows in the refrigerant forward direction To the first check valve (C1) and the fourth check valve (C4).
  • the refrigerant passing through the second check valve (C2) is formed at a low pressure, So that the refrigerant is evaporated in the water-cooled evaporator (b) which is the hydrothermal source due to the high pressure at each rear end, and the defrosted refrigerant is repeatedly configured to be sucked into the compressor (10) And,
  • the cold-cooling-based operation mode in which cold water is supplied is constituted by a simultaneous cooling operation mode and a simultaneous cold storage mode operation mode,
  • the four sides 20 are operated and the fifth valve V5 is closed through the four sides 20 of the high pressure and high temperature refrigerant discharged from the compressor 10,
  • the valve V4 is opened, the refrigerant is condensed through the air-cooled condenser c,
  • the refrigerant condensed through the air-cooled condenser c flows to the fifth check valve C5 having a small resistance.
  • the first valve V1 and the third valve V3 are closed and the second valve V2 is closed.
  • the refrigerant having passed through the fifth check valve C5 flows to the third check valve C3 and the other direction is connected to the first check valve C1 and the fourth check valve
  • the refrigerant passing through the third check valve C3 is branched and flows through each of the sub heat exchangers 40 and the air heat is discharged from the evaporator by the electronic expansion valve 1 45
  • the refrigerant flows into the second check valve V2 after the pressure is reduced to the low pressure through the electronic expansion valve 2 50.
  • the refrigerant flows in the refrigerant forward direction To the first check valve (C1) and the fourth check valve (C4).
  • the refrigerant passing through the second check valve (C2) is formed at a low pressure,
  • the refrigerant is evaporated in the water-cooled evaporator (b) which is the hydrothermal source, and the refrigerant heat-exchanged through the four sides 20 is sucked into the compressor 10 again,
  • the four-way valve 20 operates in the coaxial heat storage simultaneous operation mode in which the cold water and the hot water are supplied at the same time, and the fourth valve V4 through the four sides 20 where the refrigerant of high pressure and high temperature discharged from the compressor 10 is operated
  • the first valve V1 and the second valve V2 are closed and the third valve V3 is closed while the fifth valve V5 is opened and the refrigerant is condensed through the water-cooled condenser a
  • the refrigerant condensed in the water-cooled condenser (a) flows to the third check valve (C3), and the other direction is due to the first check valve (C1) and the fourth check valve (C4) in the refrigerant reverse flow direction
  • the refrigerant having passed through the third check valve C3 is branched so as to pass through each of the sub heat exchangers 40 and to further secure the air heat in the evaporator by the electronic expansion valve 1 45
  • the air heat source based operation mode for supplying only hot water or cold water is the same as the heat accumulation and cooling operation based mode.
  • the four sides (20) are operated to automatically switch to the hot water cooling operation mode Lt; / RTI >
  • the heat-source-based operation mode in which the hot water and the cold water are supplied at the same time, Mode.
  • the mode is operated in the heat-storage-cooling mode and the simultaneous operation mode in the heat-storage-based mode. It is operated in the simultaneous operation mode,
  • the air heat source and the heat source are used as the heat source of the heat pump and the four operation modes based on the heat storage base, the cooling base, the air heat source base and the heat source base can be selectively switched and used mutually.
  • the compressor 10 is operated at low compression ratios using the four sides 20 and the first to fifth valves V1 to V5 at the low compression ratio, ) Is not stopped but is continuously driven by automatic switching.
  • the present invention is characterized in that heat storage-based operation mode control for supplying hot water is constituted by heat storage single operation, storage heat storage simultaneous operation, and defrost operation mode control,
  • the high-pressure and high-temperature refrigerant discharged from the compressor 10 passes through the water-cooled condenser (a) through the four sides 20 and the hot water is supplied to the water heat source (S110);
  • the first valve V1 is opened without passing through the electronic expansion valve 2 50 and the second valve V2 and the third valve V3 are closed, 3 (60), the pressure is reduced to a low pressure, and then the air is evaporated in the air-cooled evaporator (c) (S130);
  • the fourth valve V4 is opened, the fifth valve V5 is closed, and the heat-exchanged refrigerant is sucked into the compressor 10 through the four sides 20 (S140); Lt; / RTI >
  • the simultaneous operation of regenerating the hot and cold water simultaneously with the hot water and the cold water is the same as the operation of storing heat until the refrigerant condensed in the water-cooled condenser (a) passes through the sub heat exchanger (40)
  • the third valve V3 is opened, the first valve V1 and the second valve V2 are closed, (S210) through evaporation through a water-cooled evaporator (b);
  • the fourth valve V4 is closed, the fifth valve V5 is opened, and the heat-exchanged refrigerant is sucked into the compressor 10 through the four sides 20 (S220); Lt; / RTI >
  • the four sides 20 operate in a reverse cycle mode of the heat storage-based operation mode control, and the refrigerant discharged from the compressor 10,
  • the fifth valve V5 is closed and the fourth valve V4 is opened to serve as the air-cooling type condenser c, and at the same time, the high-temperature refrigerant is supplied, (S310);
  • the refrigerant condensed through the air-cooled condenser c flows to the fifth check valve C5 having a small resistance.
  • the first valve V1 and the third valve V3 are closed and the second valve V2 is closed.
  • the refrigerant having passed through the fifth check valve C5 flows to the third check valve C3 and the other direction is connected to the first check valve C1 and the fourth check valve
  • the refrigerant passing through the third check valve C3 is branched and flows through each of the sub heat exchangers 40 and the air heat is discharged from the evaporator by the electronic expansion valve 1 45 (S320);
  • the refrigerant flows to the second check valve V2 after the pressure is reduced to a low pressure through the electronic expansion valve 2 (50), and the other direction flows through the first check valve C1
  • the refrigerant passing through the second check valve C2 is prevented from passing through due to the high pressure at the rear end because the refrigerant passing through the second check valve C2 is low in pressure and evaporated in the water- (S330);
  • Cooling-based operation mode control for supplying cold water is composed of simultaneous cooling and simultaneous operation mode control of the combined heat and cold storage,
  • the cold storage single operation control for supplying the cold water operates the four sides 20 and the fifth valve V5 is closed through the four sides 20 where the high temperature and high temperature refrigerant discharged from the compressor 10 is operated, 4 valve (V4) is opened and the refrigerant is condensed through the air-cooled condenser (c) (S410);
  • the refrigerant condensed through the air-cooled condenser c flows to the fifth check valve C5 having a small resistance.
  • the first valve V1 and the third valve V3 are closed and the second valve V2 is closed.
  • the refrigerant having passed through the fifth check valve C5 flows to the third check valve C3 and the other direction is connected to the first check valve C1 and the fourth check valve
  • the refrigerant passing through the third check valve C3 is branched and flows through each of the sub heat exchangers 40 and the air heat is discharged from the evaporator by the electronic expansion valve 1 45
  • a step of subcooling (S420) so as to secure more;
  • the refrigerant flows to the second check valve V2 after the pressure is reduced to a low pressure through the electronic expansion valve 2 (50), and the other direction flows through the first check valve C1
  • the refrigerant passing through the second check valve C2 is prevented from passing through due to the high pressure at the rear end because the refrigerant passing through the second check valve C2 is low in pressure and evaporated in the water- (S430);
  • the cold storage and simultaneous operation mode control simultaneously supplying the cold water and the hot water operates the four sides 20 and operates the fourth valve V4 through the four sides 20 on which the refrigerant of high pressure and high temperature discharged from the compressor 10 is operated,
  • the fifth valve V5 is opened, and the refrigerant is condensed through the water-cooled condenser a (S510);
  • the first valve V1 and the second valve V2 are closed and the third valve V3 is opened so that the refrigerant condensed in the water-cooled condenser a flows to the third check valve C3, Direction is formed to be prevented from flowing due to the first check valve C1 and the fourth check valve C4 in the refrigerant reverse flow direction and the refrigerant passing through the third check valve C3 is branched, A step (S520) of subcooling through the heat exchanger (40) so as to further secure the air heat in the evaporator by the electronic expansion valve (1) (45);
  • the refrigerant flows to the second check valve V2 after the pressure is reduced to a low pressure through the electronic expansion valve 2 (50), and the other direction flows through the first check valve C1
  • the refrigerant passing through the second check valve C2 is prevented from passing through due to the high pressure at the rear end because the refrigerant passing through the second check valve C2 is low in pressure and evaporated in the water- (S530);
  • the air heat source based operation mode control that supplies only hot water or cold water is the same as the heat mode control based on heat storage and hot air cooling.
  • the cold water based operation mode Control can be automatically switched,
  • the heat source based operation mode control that simultaneously supplies hot water and cold water uses the water-cooled condenser (a) and water-cooled evaporator (b) of the indoor unit without going through the outdoor unit, And simultaneous operation mode control.
  • the regeneration mode is operated by the regenerative cooling and simultaneous operation mode control, and the refrigerant flow is switched by operating the four sides (20)
  • simultaneous selection of heat storage based mode control In case of simultaneous selection of heat storage based mode control,
  • the air heat source and the heat source are used as the heat source of the heat pump and the four operation modes based on the heat storage base, the cooling base, the air heat source base and the hydrothermal source can be selectively switched between mutually operating modes
  • the control of the defrosting operation mode is performed at the low compression ratio using the four sides 20 and the first to fifth valves V1 to V5, And the compressor (10) is continuously driven by automatic switching without stopping.
  • the air heat source on the outdoor side and the indoor heat source on the indoor side are used in a separate type, while the air heat source and the water heat source are used simultaneously.
  • Based operation mode, and each base mode can be selectively switched between each other.
  • the heat storage alone, the cooling storage single, the storage heat cooing To provide an efficient refrigerant system operation that can be used for automatic switching without stopping the compressor at a low compression ratio.
  • the existing heat pump equipment is provided with two separate products for producing cold water and hot water.
  • the present invention does not require a chiller or a separate gas heat source hot water supply device, It is possible to produce hot water and cold water at the same time to reduce facility investment cost and operating cost, and to maximize the merits of heat source heat pump and air heat source heat pump, multi heat source multi heat Pump system and a control method thereof.
  • FIG. 1 is a configuration and a refrigerant flow diagram of an embodiment showing a heat storage operation mode using an air heat source according to the present invention
  • FIG. 2 is a configuration and a refrigerant flow diagram of an embodiment showing a simultaneous heat storage and cooling operation mode using a hydrothermal source according to the present invention
  • FIG. 3 is a configuration and a refrigerant flow diagram of an embodiment showing a supercooling operation mode and a defrosting operation mode using an air heat source according to the present invention.
  • FIG. 4 is a configuration and a refrigerant flow diagram of an embodiment showing a simultaneous operation mode of cooing and storing heat using a hydrothermal source according to the present invention
  • P1 first pressure sensor (low pressure)
  • P2 second pressure sensor (high pressure)
  • V2 second valve
  • V3 third valve
  • V4 fourth valve
  • V5 fifth valve
  • T1 Water-cooled condenser intake temperature sensor
  • T2 Water-cooled evaporator intake temperature sensor
  • T3 outdoor temperature sensor
  • the present invention has the following features in order to achieve the above object.
  • the multi-heat source multi-heat pump system according to the present invention has the following embodiments.
  • the heat storage-based operation mode for supplying hot water is composed of heat storage single operation, storage heat storage simultaneous operation, and defrost operation mode,
  • the high-pressure and high-temperature refrigerant discharged from the compressor 10 passes through the water-cooled condenser (a) through the four sides 20 and supplies hot water to the water heat source in the water- ,
  • the refrigerant condensed through the water-cooled condenser (a) flows to the fourth check valve (C4), and the other direction is formed so as not to flow due to the second check valve (C2) in the refrigerant reverse flow direction,
  • the refrigerant passing through the four check valve C4 is branched and passes through each of the sub heat exchangers 40 and is subcooled by the electronic expansion valve 1 (45) so as to further secure the air heat in the evaporator.
  • the first valve V1 is opened without passing through the electronic expansion valve 2 50.
  • the second valve V2 and the third valve V3 are closed and the electronic expansion valve 3 And then the fourth valve (V4) is opened, the fifth valve (V5) is closed, and the heat-exchanged refrigerant is supplied to the four sides (20 And then sucked into the compressor 10,
  • the heat storage and cooling simultaneous operation mode in which the hot water and the cold water are simultaneously supplied is the same as the heat storage single operation until the refrigerant condensed in the water-cooled condenser (a) passes through the sub heat exchanger (40)
  • the third valve V3 is opened and the first valve V1 and the second valve V2 are closed and passed through the water-cooled evaporator b which is the hydrothermal heat source
  • the fourth valve V4 is closed and the fifth valve V5 is opened and the heat exchanged refrigerant is sucked into the compressor 10 through the four sides 20,
  • the four sides 20 When the defrosting operation condition is satisfied in the air-cooled evaporator (d), the four sides 20 operate in a reverse cycle mode of the heat storage based operation mode, and the four sides
  • the fifth valve V5 is closed and the fourth valve V4 is opened to serve as the air-cooling type condenser c, and at the same time, the high-temperature refrigerant is supplied to the outside air pin Remove,
  • the refrigerant condensed through the air-cooled condenser c flows to the fifth check valve C5 having a small resistance.
  • the first valve V1 and the third valve V3 are closed and the second valve V2 is closed.
  • the refrigerant having passed through the fifth check valve C5 flows to the third check valve C3 and the other direction is connected to the first check valve C1 and the fourth check valve
  • the refrigerant passing through the third check valve C3 is branched and flows through each of the sub heat exchangers 40 and the air heat is discharged from the evaporator by the electronic expansion valve 1 45
  • the refrigerant flows into the second check valve V2 after the pressure is reduced to the low pressure through the electronic expansion valve 2 50.
  • the refrigerant flows in the refrigerant forward direction To the first check valve (C1) and the fourth check valve (C4).
  • the refrigerant passing through the second check valve (C2) is formed at a low pressure, So that the refrigerant is evaporated in the water-cooled evaporator (b), which is the hydrothermal heat source, and the heat exchanged refrigerant is sucked into the compressor (10) through the four sides (20) will be.
  • the cold-cooling-based operation mode in which cold water is supplied is constituted by a simultaneous cooling operation mode and a simultaneous cold storage mode operation mode,
  • the four sides 20 are operated and the fifth valve V5 is closed through the four sides 20 of the high pressure and high temperature refrigerant discharged from the compressor 10,
  • the valve V4 is opened, the refrigerant is condensed through the air-cooled condenser c,
  • the refrigerant condensed through the air-cooled condenser c flows to the fifth check valve C5 having a small resistance.
  • the first valve V1 and the third valve V3 are closed and the second valve V2 is closed.
  • the refrigerant having passed through the fifth check valve C5 flows to the third check valve C3 and the other direction is connected to the first check valve C1 and the fourth check valve
  • the refrigerant passing through the third check valve C3 is branched and flows through each of the sub heat exchangers 40 and the air heat is discharged from the evaporator by the electronic expansion valve 1 45
  • the refrigerant flows into the second check valve V2 after the pressure is reduced to the low pressure through the electronic expansion valve 2 50.
  • the refrigerant flows in the refrigerant forward direction To the first check valve (C1) and the fourth check valve (C4).
  • the refrigerant passing through the second check valve (C2) is formed at a low pressure, (B), and the heat-exchanged refrigerant is sucked into the compressor (10) after passing through the four sides (20).
  • the four-way valve 20 operates in the coaxial heat storage simultaneous operation mode in which the cold water and the hot water are supplied at the same time, and the fourth valve V4 through the four sides 20 where the refrigerant of high pressure and high temperature discharged from the compressor 10 is operated
  • the first valve V1 and the second valve V2 are closed and the third valve V3 is closed while the fifth valve V5 is opened and the refrigerant is condensed through the water-cooled condenser a
  • the refrigerant condensed in the water-cooled condenser (a) flows to the third check valve (C3), and the other direction is due to the first check valve (C1) and the fourth check valve (C4) in the refrigerant reverse flow direction
  • the refrigerant having passed through the third check valve C3 is branched so as to pass through each of the sub heat exchangers 40 and to further secure the air heat in the evaporator by the electronic expansion valve 1 45
  • the air heat source based operation mode for supplying only hot water or cold water is the same as the heat accumulation and cooling operation based mode.
  • the four sides (20) are operated to automatically switch to the hot water cooling operation mode Lt; / RTI >
  • the heat-source-based operation mode in which the hot water and the cold water are supplied at the same time, Mode.
  • the mode is operated in the heat-storage-cooling mode and the simultaneous operation mode in the heat-storage-based mode. It is operated in the simultaneous operation mode,
  • the air heat source and the heat source are used as the heat source of the heat pump.
  • the four types of operation modes based on heat storage base, cooling base, air heat source base and hydrothermal source can be selectively switched.
  • the compressor 10 is operated at low compression ratios using the four sides 20 and the first to fifth valves V1 to V5 at the low compression ratio, ) Is not stopped but is continuously driven by automatic switching.
  • the temperature sensors T1 and T2 are provided at the inlet side of the water-cooled condenser (a) and the water-cooled evaporator (b), and the temperature of the temperature sensors T1 and T2 is set to a preset storage temperature or a preset temperature
  • the compressor 10 can be stopped or the compressor 10 can be operated when the temperature of the temperature sensors T1 and T2 does not satisfy the preset storage temperature or the preset cooling temperature .
  • the first and second pressure sensors P1 and P2 are provided at the front and rear ends of the compressor 10 and the inlet side temperature sensors T1 and T2 of the water-cooled condenser a and the water- And the outdoor air temperature sensor (T3) is installed on the side of the air-cooled evaporator (d), and it is possible to change the temperature according to the ratio between the preset high pressure and the preset low pressure,
  • control method of the multi-heat source multi-heat pump system according to the present invention has the following embodiments.
  • the present invention utilizes an air heat source and a hydrothermal source as a heat source of a heat pump, and has a structure capable of selectively operating four operation mode controls based on heat storage base, cooling base, air heat source base and hydrotherm source,
  • the operation mode control is characterized in that it is possible to automatically switch to each other.
  • the present invention is characterized in that heat storage-based operation mode control for supplying hot water is constituted by heat storage single operation, storage heat storage simultaneous operation, and defrost operation mode control,
  • the high-pressure and high-temperature refrigerant discharged from the compressor 10 passes through the water-cooled condenser (a) through the four sides 20 and the hot water is supplied to the water heat source (S110);
  • the first valve V1 is opened without passing through the electronic expansion valve 2 50 and the second valve V2 and the third valve V3 are closed, 3 (60), the pressure is reduced to a low pressure, and then the air is evaporated in the air-cooled evaporator (c) (S130);
  • the fourth valve V4 is opened, the fifth valve V5 is closed, and the heat-exchanged refrigerant is sucked into the compressor 10 through the four sides 20 (S140); Lt; / RTI >
  • the simultaneous operation of regenerating the hot and cold water simultaneously with the hot water and the cold water is the same as the operation of storing heat until the refrigerant condensed in the water-cooled condenser (a) passes through the sub heat exchanger (40)
  • the third valve V3 is opened, the first valve V1 and the second valve V2 are closed, (S210) through evaporation through a water-cooled evaporator (b);
  • the fourth valve V4 is closed, the fifth valve V5 is opened, and the heat-exchanged refrigerant is sucked into the compressor 10 through the four sides 20 (S220); Lt; / RTI >
  • the four sides 20 operate in a reverse cycle mode of the heat storage-based operation mode control, and the refrigerant discharged from the compressor 10,
  • the fifth valve V5 is closed and the fourth valve V4 is opened to serve as the air-cooling type condenser c, and at the same time, the high-temperature refrigerant is supplied, (S310);
  • the refrigerant condensed through the air-cooled condenser c flows to the fifth check valve C5 having a small resistance.
  • the first valve V1 and the third valve V3 are closed and the second valve V2 is closed.
  • the refrigerant having passed through the fifth check valve C5 flows to the third check valve C3 and the other direction is connected to the first check valve C1 and the fourth check valve
  • the refrigerant passing through the third check valve C3 is branched and flows through each of the sub heat exchangers 40 and the air heat is discharged from the evaporator by the electronic expansion valve 1 45 (S320);
  • the refrigerant flows to the second check valve V2 after the pressure is reduced to a low pressure through the electronic expansion valve 2 (50), and the other direction flows through the first check valve C1
  • the refrigerant passing through the second check valve C2 is prevented from passing through due to the high pressure at the rear end because the refrigerant passing through the second check valve C2 is low in pressure and evaporated in the water- (S330);
  • Cooling-based operation mode control for supplying cold water is composed of simultaneous cooling and simultaneous operation mode control of the combined heat and cold storage,
  • the cold storage single operation control for supplying the cold water operates the four sides 20 and the fifth valve V5 is closed through the four sides 20 where the high temperature and high temperature refrigerant discharged from the compressor 10 is operated, 4 valve (V4) is opened and the refrigerant is condensed through the air-cooled condenser (c) (S410);
  • the refrigerant condensed through the air-cooled condenser c flows to the fifth check valve C5 having a small resistance.
  • the first valve V1 and the third valve V3 are closed and the second valve V2 is closed.
  • the refrigerant having passed through the fifth check valve C5 flows to the third check valve C3 and the other direction is connected to the first check valve C1 and the fourth check valve
  • the refrigerant passing through the third check valve C3 is branched and flows through each of the sub heat exchangers 40 and the air heat is discharged from the evaporator by the electronic expansion valve 1 45
  • a step of subcooling (S420) so as to secure more;
  • the refrigerant flows to the second check valve V2 after the pressure is reduced to a low pressure through the electronic expansion valve 2 (50), and the other direction flows through the first check valve C1
  • the refrigerant passing through the second check valve C2 is prevented from passing through due to the high pressure at the rear end because the refrigerant passing through the second check valve C2 is low in pressure and evaporated in the water- (S430);
  • the cold storage and simultaneous operation mode control simultaneously supplying the cold water and the hot water operates the four sides 20 and operates the fourth valve V4 through the four sides 20 on which the refrigerant of high pressure and high temperature discharged from the compressor 10 is operated,
  • the fifth valve V5 is opened, and the refrigerant is condensed through the water-cooled condenser a (S510);
  • the first valve V1 and the second valve V2 are closed and the third valve V3 is opened so that the refrigerant condensed in the water-cooled condenser a flows to the third check valve C3, Direction is formed to be prevented from flowing due to the first check valve C1 and the fourth check valve C4 in the refrigerant reverse flow direction and the refrigerant passing through the third check valve C3 is branched, A step (S520) of subcooling through the heat exchanger (40) so as to further secure the air heat in the evaporator by the electronic expansion valve (1) (45);
  • the refrigerant flows to the second check valve V2 after the pressure is reduced to a low pressure through the electronic expansion valve 2 (50), and the other direction flows through the first check valve C1
  • the refrigerant passing through the second check valve C2 is prevented from passing through due to the high pressure at the rear end because the refrigerant passing through the second check valve C2 is low in pressure and evaporated in the water- (S530);
  • the air heat source based operation mode control that supplies only hot water or cold water is the same as the heat mode control based on heat storage and hot air cooling.
  • the cold water based operation mode Control can be automatically switched,
  • the heat source based operation mode control that simultaneously supplies hot water and cold water uses the water-cooled condenser (a) and water-cooled evaporator (b) of the indoor unit without going through the outdoor unit, And simultaneous operation mode control.
  • the regeneration mode is operated by the regenerative cooling and simultaneous operation mode control, and the refrigerant flow is switched by operating the four sides (20)
  • simultaneous selection of heat storage based mode control In case of simultaneous selection of heat storage based mode control,
  • the air heat source and the heat source are used as the heat source of the heat pump and the four operation modes based on the heat storage base, the cooling base, the air heat source base and the hydrothermal source can be selectively switched between mutually operating modes
  • the control of the defrosting operation mode is performed at the low compression ratio using the four sides 20 and the first to fifth valves V1 to V5, And the compressor (10) is continuously driven by automatic switching without stopping.
  • the air conditioner (d) is configured to be separated from the indoor unit (Indoor) except for the outdoor unit and the air-cooled evaporator (d) It is easy to install even in a narrow space because it is composed of only a pipe. When connecting to a separate indoor unit, it can be easily configured for long distance by connecting only copper pipe, communication line and power line. . ≪ / RTI >
  • the present invention is also characterized in that temperature sensors T1 and T2 are provided on the water inlet side of the water-cooled condenser a and the water-cooled evaporator b, The compressor 10 is stopped when the cold temperature is satisfied,
  • the compressor 10 can be continuously operated without stopping the operation of the compressor.
  • the first and second pressure sensors P1 and P2 are installed at the front and rear ends of the compressor 10 and the inlet side temperature sensors T1 and T2 of the water-cooled condenser a and the water- And the outdoor air temperature sensor T3 is provided on the side of the air-cooled evaporator (d), and it is possible to change the temperature according to the ratio between the preset high pressure and the preset low pressure, ,
  • FIGS. 1, 2, 3 to 4 a multi-heat source multi-heat pump system having an air heat source cold storage operation or a heat storage operation and a heat source heat accumulation heat accumulation heat accumulation operation or an accumulation heat accumulation heat accumulation operation operation according to a preferred embodiment of the present invention, The control method will be described in detail.
  • heat storage based operation mode heat storage based operation mode control
  • the high-pressure and high-temperature refrigerant discharged from the compressor 10 passes through the water-cooled condenser a through the four sides 20 and supplies the hot water to the water heat source in the water-cooled condenser a (step S110)
  • the refrigerant condensed through the water-cooled condenser (a) flows to the fourth check valve (C4), and the other direction is formed so as not to flow due to the second check valve (C2) in the refrigerant reverse flow direction,
  • the refrigerant having passed through the four check valve C4 is branched and subcooled so as to further secure the air heat in the evaporator by the electronic expansion valve 1 (45) through each of the sub heat exchangers 40 (step S120)
  • the first valve V1 is opened without passing through the electronic expansion valve 2 50 and the second valve V2 and the third valve V3 are closed and the electronic expansion valve 3
  • the air is evaporated in the air-cooled evaporator (d) (step S130)
  • the refrigerant condensed in the water-cooled condenser (a) passes through the sub-heat exchanger (40) until the refrigerant passes through the electronic expansion valve (2) (50)
  • the third valve V3 is opened and the first valve V1 and the second valve V2 are closed and evaporated through the water-cooled evaporator b, which is a hydrothermal source, in step S210,
  • the fourth valve V4 is closed and the fifth valve V5 is opened so that the heat exchanged refrigerant is sucked into the compressor 10 through the four sides 20.
  • operation S220
  • Cooled evaporator not the air-cooled evaporator shown in FIG. 1, and supplies the cold water from the hot water supply of the existing water-cooled condenser.
  • the fourth valve V5 is closed and the fourth valve V4 is opened through the four sides 20 on which the refrigerant of high pressure and high temperature discharged from the compressor 10 is operated, , The air-cooled condenser (c), and the refrigerant is condensed (step S410)
  • the refrigerant condensed through the air-cooled condenser c flows to the fifth check valve C5 having a small resistance.
  • the first valve V1 and the third valve V3 are closed and the second valve V2 is closed.
  • the refrigerant having passed through the fifth check valve C5 flows to the third check valve C3 and the other direction is connected to the first check valve C1 and the fourth check valve
  • the refrigerant passing through the third check valve C3 is branched and flows through each of the sub heat exchangers 40 and the air heat is discharged from the evaporator by the electronic expansion valve 1 45 (Step S420). Then,
  • the refrigerant flows back to the second check valve V2 after the pressure is reduced to a low pressure through the electronic expansion valve 2 50.
  • the other direction is the first check valve C1 in the refrigerant forward direction,
  • the refrigerant passing through the second check valve C2 is low in pressure and is prevented from passing through due to the high pressure at the rear end thereof and is evaporated in the water-cooled evaporator (b) (Step S430)
  • the reverse cycle of the heat-storage-based operation mode (heat storage-based operation mode control)
  • the fifth valve V5 is closed and the fourth valve V4 is opened via the four sides 20 of the high pressure and high temperature refrigerant discharged from the compressor 10, (c).
  • the high-temperature refrigerant is supplied to remove the gaps formed in the outer air pins, and the cycle is repeatedly operated until all the gaps are removed (step S310)
  • the configuration and operation are the same as those of the regenerative hot-water-cooled simultaneous operation mode (regenerated hot-water-cooled simultaneous operation mode control) in Fig. 2 described above.
  • the flow of refrigerant is reversed by switching the four sides 20, Cooled evaporator (b) to pass through the water-cooled evaporator (b), as opposed to a simultaneous heat and cold storage operation mode (storage heat and cold storage simultaneous operation mode control) in which the high-pressure and high- It is the opposite of flow.
  • the water-cooled condenser (a), which functions as a heat storage function, and the water-cooled evaporator (b) Function is reversed, so that it is possible to have simultaneous operation of simultaneous storage and simultaneous storage (control of simultaneous operation of simultaneous storage and storage).
  • the air-cooled evaporator (d) is configured to separate the remaining components except the outdoor unit and the air-cooled evaporator (d) into indoor units, and functions as a hydrothermal heat pump It is possible to use the heat source based mode and it can perform all the functions of the heat source and the heat source heat pump when installing the outdoor unit.
  • the outdoor unit is composed only of the air-cooling type evaporator (d), so it can be easily installed in a small space when installing an outdoor unit. When connecting to a separate indoor unit, only the copper pipe, communication line and power line are connected. And has a detachable structure with features such as reduced installation time and lower installation cost.
  • the technical features of the present invention have a structure capable of selectively operating four types of operation modes (operation mode control) based on heat storage base, cooling cooling base, air heat source base, and hydrothermal source.
  • temperature sensors T1 and T2 are provided on the water intake side of the water-cooled condenser (a) and water-cooled evaporator (b), and when the temperature of the temperature sensors T1 and T2 satisfies a preset storage temperature or a preset temperature The compressor 10 is stopped,
  • the compressor 10 can be continuously operated without stopping the operation of the compressor.
  • the first and second pressure sensors P1 and P2 are provided at the front and rear ends of the compressor 10 and the inlet side temperature sensors T1 and T2 of the water-cooled condenser a and the water- Installed,
  • pre-set high pressure and preset low pressure it can be switched or taken depending on the temperature and outside temperature, 4 kinds of base heat storage, cold storage, air heat source, thermal storage alone in the heat source base, And the automatic mode switching control is performed in the operation mode (single storage, single cooling, single storage heat storage, simultaneous accumulation and storage, and defrost operation mode control)
  • the first pressure sensor P1 (low pressure sensor) is provided in the front end channel of the compressor 10 in addition to the ON / OFF selection control of the first to fifth valves V1 to V5 and the first to fifth valves V1 to V5, Cooled condenser (a) and water-cooled evaporator (b), and the air-cooled evaporator (d) are provided with a second pressure sensor P2 (high pressure sensor) (T3) is installed, and it can be switched according to the ratio of preset high pressure and preset low pressure, or four kinds of heat storage, cold storage, air heat source, heat storage alone in the base of hydrothermal source, Simultaneous, coaxial heat storage simultaneous, defrost operation mode (thermal storage alone, thermal storage independent, thermal storage simultaneous cooling, Simultaneous cold storage
  • the four types of operation modes (operation mode control) based on the heat storage base, the cooling base, the air heat source base, and the hydrothermal source can be selectively operated as the separated type of the outdoor unit and the indoor unit.
  • Cooling base Cooling single operation, simultaneous cooling and storage
  • Air heat source base Single heat storage operation, single cooling operation, defrosting

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

The present invention relates to a multiple heat source multi-heat pump system having an air heat source cold storage operation or heat storage operation and a water heat source cold storage and heat storage concurrent operation or heat storage and cold storage concurrent operation, and a control method thereof. More particularly, the aim of the present invention is to provide a multiple heat source multi-heat pump and a control method thereof, wherein the multiple heat source multi-heat pump uses an air heat source and a water heat source as the heat sources of a heat pump to produce cold water from a vaporizer and stores the cold water in a cold storage tank, thereby applying the cold water to a cooling load, and at the same time, even without a separate gas heat source hot water supply device, collects waste heat that is selectively disposed from a water cooling type and air cooling type condenser to use the waste heat for hot water supply. The present invention has a structure in which the air heat source and the water heat source are used as the heat sources of the heat pump and when used concurrently can selectively operate in a total of four kinds of operation modes (operation mode control), i.e., heat storage, cold storage, air heat source, and water heat source-based operation modes. Here, automatic conversion control between heat storage only, cold storage only, concurrent heat storage and cold storage, concurrent cold storage and heat storage, and defrosting operation mode (heat storage only, cold storage only, concurrent heat storage and cold storage, concurrent cold storage and heat storage, and defrosting operation mode control) within each operation mode can be performed by using a four-way electronic valve.

Description

공기열원 축냉운전 또는 축열운전과 수열원 축냉축열 동시운전 또는 축열축냉 동시운전을 갖는 다중열원 멀티 히트펌프 시스템 및 제어방법Multiple Heat Source Multi Heat Pump System and Control Method with Air Heat Source Cooling or Heat Storage Operation and Simultaneous Operation of Heat Source Cooling and Storage Stage
본 발명은 실외기측 공기열원과 실내기측 수열원을 분리형 타입으로 사용하고, 공기열원과 수열원을 동시에 사용하면서, 축열 기반, 축냉 기반, 공기열원 기반, 수열원 기반 총 4가지 기반의 운전모드로 구성되며, 각각의 기반 모드는 상호간 선택적으로 전환 사용 가능하며, 각각의 기반 내의 축열 단독, 축냉 단독, 축열축냉 동시, 축냉축열 동시, 제상 운전 모드는 사방변과 전자식 밸브를 사용하여 자동 전환 사용이 가능해지도록 하며, 공기열원 및 수열원을 히트펌프의 열원으로 이용하여, 증발기측에서 냉수를 생산하여, 냉방부하에 적용하고, 동시에 별도의 가스열원 급탕장치를 구비하지 않고도, 수냉식 및 공랭식 응축기에서 선택적으로 버려지는 폐열을 회수하여, 급탕수로 활용하는 다중열원 멀티 히트펌프 및 이의 제어방법을 제공하고자 하는 것이다.The present invention uses four types of operation modes based on heat storage base, cooling base, air heat source base and hydrothermal source while using the air heat source of outdoor side and the water heat source of indoor side as separate type, Each base mode can be selectively switched among each other, and automatic switching is possible using the four sides and the electronic valve in each base of the thermal storage alone, thermal storage alone, thermal storage cooldown, simultaneous thermal storage and defrost operation modes. Cooling water is supplied to the evaporator and the cold water is supplied to the evaporator, and the air heat source and the water heat source are used as the heat source of the heat pump. To provide a multi-heat source multi-heat pump and its control method for recovering waste heat discharged as hot water, will be.
일반적으로 열에너지를 얻는 방법으로는 가연물질을 연소시키거나 전기, 화학적 작용 및 반응 등을 이용하고 있다. In general, thermal energy is obtained by burning a combustible material or by using electricity, chemical action, or reaction.
이러한 연소 및 작용 및 반응에 의하여 열에너지를 얻는 방법들은 얻어진 열에너지를 축열장치에 축열 시키거나 이용 가능한 상태로 변환시킨 후 이를 건조나 냉,난방 또는 가열을 위한 수단으로 이용하게 되는데 연소에 의한 방법은 가연물질을 준비해야 하고, 또한 연소시키면서 열에너지를 얻어야 하기 때문에 가연물질을 연소시키기 위한 장치의 필요성과 더불어 가연물질 연소로 인한 환경오염물질 생성과 배출 문제가 있다.The methods of obtaining thermal energy by such combustion, action and reaction are such that the obtained heat energy is stored in a heat storage device or converted into a usable state and then used as a means for drying, cooling, heating or heating. There is a problem of generation and emission of environmental pollutants due to combustion of combustible materials, together with the necessity of a device for combusting combustible materials, since materials must be prepared and burned and heat energy must be obtained.
전기적, 화학적 작용에 의하여 열에너지를 얻는 방법은 가연물질을 연소시키는 방법에 비하여 오염물질의 생성이 현저하게 적게 되지만, 반응을 위한 물질이나 장치를 필요로 하기 때문에 많은 양의 열에너지를 얻고자 할 때에는 이에 따른 장치의 부피가 커지는 문제가 있고, 안전성을 구비해야 함으로써 이를 위한 장치가 복잡하고 비대해지는 결점이 있으며, 시설물의 부피에 비하여 얻어지는 열에너지가 작은 문제점이 있다.The method of obtaining the thermal energy by the electrical and chemical action is significantly less pollutant production than the method of burning the combustible material. However, since it requires a substance or apparatus for reaction, when it is desired to obtain a large amount of heat energy There is a problem in that the volume of the device is increased and the device for the device is complicated and bloated due to the necessity of safety, and there is a problem that the thermal energy to be obtained is smaller than the volume of the facility.
상술한 문제점을 해결할 수 있는 것으로 외기열원 및 공기열원 히트펌프가 알려져 있다.An outdoor heat source and an air heat source heat pump are known to solve the above problems.
히트펌프는 공기중에서 열을 흡수하여 압축기에서 압축과정을 거쳐 축동력을 포함한 높은온도의 압축가스를 생성하여 물의 온도를 높이거나 열교환된 응축열을 대기로 방열하도록 하는 열원 장비로서, 사이클의 구성은 저온유지에서는 증발열을 이용하는 냉동사이클과 동일하며, 고온유지에서는 반대로 응축열을 이용하는 역사이클로 구성된다.The heat pump absorbs heat in the air and compresses it in the compressor to generate a high temperature compressed gas including the shaft force to raise the temperature of the water or to heat the heat exchanged condensation heat to the atmosphere. Is the same as the refrigeration cycle using the evaporation heat, and is constituted by the reverse cycle using the condensation heat in the high temperature maintenance.
통상, 하우스 등과 같이 난방을 요하는 난방시설물은 히트펌프를 이용하여 직간접적으로 수행한다. 상기 히트펌프는 증발기의 열 교환하는 방식에 따라 수열교환방식과 공기열원교환방식 등이 있으나, 사용처에 따라 적합한 것을 채택하여 사용하고 있다.In general, heating facilities requiring heating such as houses are directly or indirectly carried out using a heat pump. The heat pump has a water heat exchange system and an air heat source exchange system according to the heat exchange method of the evaporator.
상기 히트펌프가 공기열원 교환방식인 경우는 공기열원 히트펌프가 가동되면 공기열원 증발기에서 공기의 현열을 이용하여 냉매가 저온, 저압 하에서 증발될 때 공기를 통과시켜 공기가 통과되는 동안 기열 교환하여 증발된 냉매를 압축기로 안내하여 압축하는 것이고, 히트펌프가 수열교환방식인 경우에는 증발기에 열매체인 물을 통과시켜 열매체가 통과되는 동안 수열 교환하여 증발된 냉매를 압축기로 안내하고 압축기에서 난방시설물 내부에 위치한 응축기인 방열기에서 방열하도록 함으로써 난방하고자 하는 난방시설물을 난방하게 된다.In the case where the heat pump is an air heat source exchange type, when the air heat source heat pump is operated, when the refrigerant is evaporated under low temperature and low pressure using the sensible heat of the air in the heat source evaporator, air is passed, And when the heat pump is a water heat exchange type, the water that is a heating medium is passed through the evaporator, the water is heat exchanged while the heating medium passes through the condenser, and the evaporated refrigerant is guided to the compressor. Which is located in the condenser, to heat the heating equipment to be heated.
위와 같이 히트펌프는 공기열원교환방식과 수열교환방식으로 각각 마련된 경우에 대해서만 언급하였으나 공기열원교환방식과 수열교환방식을 결합 혼용하여 사용하기도 한다.Although the above-mentioned heat pump is referred to only when the air heat source exchange method and the water heat exchange method are respectively provided, the air heat source exchange method and the water heat exchange method may be used in combination.
상기한 바와 같은 공기열원 히트펌프는 압축기, 응축기, 팽창밸브 및 공기열원 증발기가 냉매순환라인을 통해 연결되어 하나의 사이클을 이루고 구비되어 있으며, 상기 공기열원 히트펌프가 가동되면 압축기가 가동됨에 따라서 고온고압의 가스냉매로 압축되고, 이렇게 압축된 냉매는 응축기로 압송되며, 냉매가 응축기를 통과하는 동안 열 교환(방열)하여 응축기 주위를 가온시키면서 고온고압의 액상냉매로 응축된다.The air heat source heat pump as described above includes a compressor, a condenser, an expansion valve, and an air heat source evaporator connected through a refrigerant circulation line to form a cycle. When the air heat source heat pump is operated, The refrigerant compressed in the high pressure gas refrigerant is compressed by the condenser and condensed into the high temperature and high pressure liquid refrigerant while the refrigerant circulates through the condenser to heat the refrigerant and heat the condenser.
이렇게 응축된 고온고압의 액상냉매는 팽창밸브에서 저압상태로 되면서 공기열원 증발기에서 증발되게 되고, 이렇게 공기열원 증발기에서 냉매가 증발(기화)됨에 따라 기화에 필요한 냉매의 기화열을 외부로부터 흡수하므로 공기열원 증발기의 주위는 냉각되게 되며, 상기 공기열원 증발기를 통과한 저온저압의 가스냉매는 압축기에 의해 흡입 압축되어 상기에서 언급한 바와 같은 과정을 반복적으로 수행하는 동안 공기열원 증발기에서 지속적인 열 교환이 이루어지게 되는 것이다.As the refrigerant evaporates (vaporizes) in the air heat source evaporator, the heat of vaporization of the refrigerant necessary for vaporization is absorbed from the outside, so that the air heat source The gas refrigerant of low temperature and low pressure that has passed through the air heat source evaporator is sucked and compressed by the compressor so that continuous heat exchange is performed in the air heat source evaporator during the above- .
위에서 설명한 바와 같이, 공기열원 히트펌프가 가동될 때 공기열원 증발기의 냉매온도는 공기열원 증발기와 열교환을 위해 흡입되는 외기(외부공기)에서 빼앗아 상승(5℃정도)되게 되고, 이렇게 상승된 냉매는 압축기로 흡입되어 고온고압의 가스냉매로 압축된다. 이렇게 공기열원 증발기에서 압축기로 흡입되는 동안 냉매는 완전기체상태의 가스냉매로 되어 흡입되어야 하나, 외기온도가 5℃이하로 낮은 경우에는 완전기체로 기화되지 못하고 안개와 같은 입자상태의 액상냉매로 흡입되게 된다.As described above, when the air heat source heat pump is operated, the refrigerant temperature of the air heat source evaporator is taken up from the outside air (external air) sucked for heat exchange with the air heat source evaporator to rise (about 5 캜) The refrigerant is sucked into the compressor and compressed into a gas refrigerant of high temperature and high pressure. When the air temperature is lower than 5 캜, the refrigerant can not be vaporized into a complete gas and it is sucked into the liquid refrigerant in a particle state such as mist. .
[선행기술문헌][Prior Art Literature]
[특허문헌][Patent Literature]
대한민국 특허공보 10-7418710Korean Patent Publication No. 10-7418710
대한민국 특허공보 10-1184699Korean Patent Publication No. 10-1184699
대한민국 특허공보 10-8383680Korean Patent Publication No. 10-8383680
본 발명은 상기와 같은 문제를 해결하기 위해 안출된 것으로서, 본 발명의 목적은 공기열원 및 수열원을 히트펌프의 열원으로 이용하여, 동시에 사용하면서 축열 기반, 축냉 기반, 공기열원 기반, 수열원 기반 총 4가지 기반의 운전 모드 및 제어를 선택적으로 운전가능한 구조를 가지는 것으로, 사방변과 전자식 밸브를 사용하여 각 기반 내의 축열 단독, 축냉 단독, 축열축냉 동시, 축냉축열 동시, 제상 운전모드를 자동 전환 제어가 가능하도록 함으로써, SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide a heat pump apparatus and a heat pump apparatus which use the air heat source and the heat source as heat sources, It has 4 types of operation modes and controllable selectively. By using four sides and electronic valves, it is possible to automatically switch the mode of heat storage single, condensation single, heat accumulation simultaneous operation, simultaneous accumulation heat accumulation and defrost operation mode in each base By making control possible,
상기 축냉기반 운전 모드에 의하여 냉방부하에 적용하고, 동시에 별도의 가스열원 급탕장치를 구비하지않고 응축기측에서 온수를 생산하여, 축열기반 운전 모드에 의하여 난방부하에 적용하도록 형성하여, 온수 및 냉수를 별도로 생산 가능한 공기열원 또는 온수와 냉수를 동시 생산 가능한 수열원 기반 운전모드를 각각 구동시키며, 동절기에 공기열원 기반 운전모드에 의한 공랭식 증발기에 성에가 형성된 경우에, 제상운전모드를 작동시켜서, 공랭식 증발기에 고온의 냉매를 공급하여 성에가 전부 제거될 때까지 운전하게 되며, 상기 전술된 4가지 기반의 축열, 축냉, 공기열원, 수열원 각각의 기반내의 축열 단독, 축냉 단독, 축열축냉 동시, 축냉축열 동시, 제상 운전 모드에서 필요한 운전 모드를 사방변과 전자식 밸브를 사용하여 저압축비에서 압축기를 정지하지 않으면서도 자동 전환하여 사용할 수 있는 공기열원 축냉운전 또는 축열운전과 수열원 축냉축열 동시운전 또는 축열축냉 동시운전을 갖는 다중열원 멀티 히트펌프 시스템 및 제어방법을 제공하는데 있다.The hot water is applied to the cooling load by the hot-cooling-based operation mode and at the same time the hot water is produced on the side of the condenser without a separate gas heat source hot water supply device and is applied to the heating load by the heat- And an operation mode based on a hydrothermal source capable of producing hot water and cold water at the same time, respectively. When the air conditioner based on the air heat source based operation mode is formed in the winter season, the defrost operation mode is operated, And the refrigerant is operated until all of the refrigerant is removed by the high temperature refrigerant, and the refrigerant is operated until all of the refrigerant is removed, and the four types of base heat storage, cold storage, air heat source, Simultaneously, the necessary operation mode in the defrosting operation mode is switched from the low compression ratio by using the four sides and the electronic valve Group may even provides automatic switching and operation chuknaeng air source that can be used or the heat storage operation and the sequence circle multiple ten won multi heat pump system and a control method having a heat storage chuknaeng simultaneous operation or heat storage operation chuknaeng simultaneously be stopped.
본 발명의 다른 목적 및 장점들은 하기에 설명될 것이며, 본 발명의 실시예에 의해 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허청구범위에 나타낸 수단 및 조합에 의해 실현될 수 있다.Other objects and advantages of the present invention will be described hereinafter and will be understood by the embodiments of the present invention. Further, the objects and advantages of the present invention can be realized by the means and the combination shown in the claims.
본 발명은 상기와 같은 문제점을 해결하기 위한 수단으로서, SUMMARY OF THE INVENTION The present invention, as a means for solving the above problems,
온수를 공급하는 상기 축열기반 운전모드는 축열 단독운전, 축열축냉 동시운전, 제상 운전 모드로 구성되며, The heat storage-based operation mode for supplying hot water is composed of heat storage single operation, storage heat storage simultaneous operation and defrost operation mode,
온수를 공급하는 축열 단독운전은 압축기(10)에서 토출된 고압고온의 냉매가 사방변(20)을 거쳐 수냉식 응축기(a)를 통과하며, 상기 수냉식 응축기(a)에서 수열원으로 온수를 공급하며,In the single heat storage operation for supplying hot water, the high-pressure and high-temperature refrigerant discharged from the compressor 10 passes through the water-cooled condenser (a) through the four sides 20 and supplies hot water to the water heat source in the water- ,
상기 수냉식 응축기(a)를 통과하여 응축된 냉매는 제 4체크밸브(C4)로 유동되며, 타측방향은 냉매 역유동방향으로의 제 2체크밸브(C2)로 인하여 유동되지 못하도록 형성되며, 상기 제 4체크밸브(C4)를 통과한 냉매는 분지되어, 각각의 서브열교환기(40)를 거치며, 전자팽창밸브1(45)에 의해 증발기에서 공기열을 더 확보할 수 있도록 과냉시키며, 다시 1개의 냉매로 합쳐지며, 전자팽창밸브2(50)을 지나지 않고, 제 1밸브(V1)가 열리며, 제 2밸브(V2) 및 제 3밸브(V3)는 닫히며, 전자팽창밸브3(60)를 통과하여 저압으로 압력이 저감된 후에, 공기열원인 공랭식 증발기(d)에서 증발되며, 이후 제 4밸브(V4)는 열리며, 제 5밸브(V5)는 닫히며, 사방변(20)을 지나 열교환된 냉매는 다시 압축기(10)로 흡입되도록 구성되며,The refrigerant condensed through the water-cooled condenser (a) flows to the fourth check valve (C4), and the other direction is formed so as not to flow due to the second check valve (C2) in the refrigerant reverse flow direction, The refrigerant passing through the four check valve C4 is branched and passes through each of the sub heat exchangers 40 and is subcooled by the electronic expansion valve 1 (45) so as to further secure the air heat in the evaporator. And the first valve V1 is opened without passing through the electronic expansion valve 2 50. The second valve V2 and the third valve V3 are closed and the electronic expansion valve 3 And then the fourth valve V4 is opened and the fifth valve V5 is closed and the heat exchange is performed through the four sides 20 and the heat exchange The refrigerant is again sucked into the compressor 10,
온수와 냉수를 동시에 공급하는 상기 축열축냉 동시운전 모드는 수냉식 응축기(a)에서 응축된 냉매가 서브열교환기(40)를 통과하는 과정까지는 축열 단독 운전과 같으며, 통과된 냉매는 전자팽창밸브2(50)을 통과하여 저압으로 압력이 저감된 후에, 제 3밸브(V3)는 열리며, 제 1밸브(V1) 및 제 2밸브(V2)는 닫히며, 수열원인 수냉식 증발기(b)로 통과하여 증발되며, 제 4밸브(V4)는 닫히며, 제 5밸브(V5)는 열리며, 사방변(20)을 지나 열교환된 냉매는 다시 압축기(10)로 흡입되도록 구성되며,The heat storage and cooling operation mode simultaneously supplying the hot water and the cold water is the same as the heat storage single operation until the refrigerant condensed in the water-cooled condenser (a) passes through the sub heat exchanger (40) The third valve V3 is opened and the first valve V1 and the second valve V2 are closed and the refrigerant passes through the water-cooled evaporator b The fourth valve V4 is closed and the fifth valve V5 is opened so that the refrigerant heat exchanged through the four sides 20 is sucked into the compressor 10,
축열기반 운전모드 중, 저외기일 경우 실외기의 공랭식 증발기(d) 공기핀 사이에 성에가 형성되기 때문에 능력이 저하되기 시작하는데, 이를 제상하기 위하여, In the case of low-temperature air-conditioning mode, the performance of the air-cooled evaporator (d) of the outdoor unit is deteriorated due to the formation of a gap between the air pins.
상기 공랭식 증발기(d)에서 제상운전조건이 만족하는 경우, 축열기반 운전 모드의 역사이클 방식으로 사방변(20)이 작동하며, 압축기(10)에서 토출된 고압고온의 냉매가 작동된 사방변(20)을 거쳐 제 5밸브(V5)는 닫히며, 제 4밸브(V4)는 열리며, 공랭식 응축기(c)의 역할을 함과 동시에 고온의 냉매를 공급하여, 외부의 공기핀에 형성된 성에를 제거하며, When the defrosting operation condition is satisfied in the air-cooled evaporator (d), the four sides 20 operate in a reverse cycle mode of the heat storage based operation mode, and the four sides The fifth valve V5 is closed and the fourth valve V4 is opened to serve as the air-cooling type condenser c, and at the same time, the high-temperature refrigerant is supplied to the outside air pin Remove,
상기 공랭식 응축기(c)를 통과하여 응축된 냉매는 저항이 작은 제 5체크밸브(C5)로 유동되며, 제 1밸브(V1) 및 제 3밸브(V3)는 닫히며, 제 2밸브(V2)는 열리며, 상기 제 5체크밸브(C5)를 통과한 냉매는 제 3체크밸브(C3)로 유동되며, 타측방향은 냉매 역유동방향으로의 제 1체크밸브(C1) 및 제 4체크밸브(C4)로 인하여 유동되지 못하도록 형성되며, 상기 제 3체크밸브(C3)를 통과한 냉매는 분지되어, 각각의 서브열교환기(40)를 거치며, 전자팽창밸브1(45)에 의해 증발기에서 공기열을 더 확보할 수 있도록 과냉시키며, 다시 1개의 냉매로 합쳐지며, 전자팽창밸브2(50)를 통과하여 저압으로 압력이 저감된 후에, 제 2체크밸브(V2)로 유동되며, 타측방향은 냉매 순방향으로 제 1체크밸브(C1) 및 제 4체크밸브(C4)로 유동되나, 제 2체크밸브(C2)를 지나는 냉매는 저압으로 형성되므로, 각 후단의 고압으로 인하여, 통과하지 못하게 되며, 수열원인 수냉식 증발기(b)에서 증발되며, 사방변(20)을 지나 열교환된 냉매는 다시 압축기(10)로 흡입되도록 반복 구성으로 제상이 이루어지도록 구성되고,The refrigerant condensed through the air-cooled condenser c flows to the fifth check valve C5 having a small resistance. The first valve V1 and the third valve V3 are closed and the second valve V2 is closed. The refrigerant having passed through the fifth check valve C5 flows to the third check valve C3 and the other direction is connected to the first check valve C1 and the fourth check valve And the refrigerant passing through the third check valve C3 is branched and flows through each of the sub heat exchangers 40 and the air heat is discharged from the evaporator by the electronic expansion valve 1 45 The refrigerant flows into the second check valve V2 after the pressure is reduced to the low pressure through the electronic expansion valve 2 50. The refrigerant flows in the refrigerant forward direction To the first check valve (C1) and the fourth check valve (C4). However, since the refrigerant passing through the second check valve (C2) is formed at a low pressure, So that the refrigerant is evaporated in the water-cooled evaporator (b) which is the hydrothermal source due to the high pressure at each rear end, and the defrosted refrigerant is repeatedly configured to be sucked into the compressor (10) And,
냉수를 공급하는 축냉기반 운전모드는 축냉 단독운전, 축냉축열 동시운전 모드로 구성되며, The cold-cooling-based operation mode in which cold water is supplied is constituted by a simultaneous cooling operation mode and a simultaneous cold storage mode operation mode,
냉수를 공급하는 축냉 단독운전은 사방변(20)이 작동하며, 압축기(10)에서 토출된 고압고온의 냉매가 작동된 사방변(20)을 거쳐 제 5밸브(V5)는 닫히며, 제 4밸브(V4)는 열리며, 공랭식 응축기(c)를 통과하여 냉매는 응축되며, The four sides 20 are operated and the fifth valve V5 is closed through the four sides 20 of the high pressure and high temperature refrigerant discharged from the compressor 10, The valve V4 is opened, the refrigerant is condensed through the air-cooled condenser c,
상기 공랭식 응축기(c)를 통과하여 응축된 냉매는 저항이 작은 제 5체크밸브(C5)로 유동되며, 제 1밸브(V1) 및 제 3밸브(V3)는 닫히며, 제 2밸브(V2)는 열리며, 상기 제 5체크밸브(C5)를 통과한 냉매는 제 3체크밸브(C3)로 유동되며, 타측방향은 냉매 역유동방향으로의 제 1체크밸브(C1) 및 제 4체크밸브(C4)로 인하여 유동되지 못하도록 형성되며, 상기 제 3체크밸브(C3)를 통과한 냉매는 분지되어, 각각의 서브열교환기(40)를 거치며, 전자팽창밸브1(45)에 의해 증발기에서 공기열을 더 확보할 수 있도록 과냉시키며, 다시 1개의 냉매로 합쳐지며, 전자팽창밸브2(50)를 통과하여 저압으로 압력이 저감된 후에, 제 2체크밸브(V2)로 유동되며, 타측방향은 냉매 순방향으로 제 1체크밸브(C1) 및 제 4체크밸브(C4)로 유동되나, 제 2체크밸브(C2)를 지나는 냉매는 저압으로 형성되므로, 각 후단의 고압으로 인하여, 통과하지 못하게 되며, 수열원인 수냉식 증발기(b)에서 증발되며, 사방변(20)을 지나 열교환된 냉매는 다시 압축기(10)로 흡입되도록 구성되며,The refrigerant condensed through the air-cooled condenser c flows to the fifth check valve C5 having a small resistance. The first valve V1 and the third valve V3 are closed and the second valve V2 is closed. The refrigerant having passed through the fifth check valve C5 flows to the third check valve C3 and the other direction is connected to the first check valve C1 and the fourth check valve And the refrigerant passing through the third check valve C3 is branched and flows through each of the sub heat exchangers 40 and the air heat is discharged from the evaporator by the electronic expansion valve 1 45 The refrigerant flows into the second check valve V2 after the pressure is reduced to the low pressure through the electronic expansion valve 2 50. The refrigerant flows in the refrigerant forward direction To the first check valve (C1) and the fourth check valve (C4). However, since the refrigerant passing through the second check valve (C2) is formed at a low pressure, The refrigerant is evaporated in the water-cooled evaporator (b) which is the hydrothermal source, and the refrigerant heat-exchanged through the four sides 20 is sucked into the compressor 10 again,
냉수와 온수를 동시에 공급하는 축냉축열 동시 운전모드는 사방변(20)이 작동하며, 압축기(10)에서 토출된 고압고온의 냉매가 작동된 사방변(20)을 거쳐 제 4밸브(V4)는 닫히며, 제 5밸브(V5)는 열리며, 수냉식 응축기(a)를 통과하여 냉매는 응축되며, 제 1밸브(V1), 제 2밸브(V2)는 닫히며, 제 3밸브(V3)는 열리며, 수냉식 응축기(a)에서 응축된 냉매가 제 3체크밸브(C3)로 유동되며, 타측방향은 냉매 역유동방향으로의 제 1체크밸브(C1) 및 제 4체크밸브(C4)로 인하여 유동되지 못하도록 형성되며, 상기 제 3체크밸브(C3)를 통과한 냉매는 분지되어, 각각의 서브열교환기(40)를 거치며, 전자팽창밸브1(45)에 의해 증발기에서 공기열을 더 확보할 수 있도록 과냉시키며, 다시 1개의 냉매로 합쳐지며, 전자팽창밸브2(50)를 통과하여 저압으로 압력이 저감된 후에, 제 2체크밸브(V2)로 유동되며, 타측방향은 냉매 순방향으로 제 1체크밸브(C1) 및 제 4체크밸브(C4)로 유동되나, 제 2체크밸브(C2)를 지나는 냉매는 저압으로 형성되므로, 각 후단의 고압으로 인하여, 통과하지 못하게 되며, 수열원인 수냉식 증발기(b)에서 증발되며, 사방변(20)을 지나 열교환된 냉매는 다시 압축기(10)로 흡입되도록 구성되며,The four-way valve 20 operates in the coaxial heat storage simultaneous operation mode in which the cold water and the hot water are supplied at the same time, and the fourth valve V4 through the four sides 20 where the refrigerant of high pressure and high temperature discharged from the compressor 10 is operated The first valve V1 and the second valve V2 are closed and the third valve V3 is closed while the fifth valve V5 is opened and the refrigerant is condensed through the water-cooled condenser a, The refrigerant condensed in the water-cooled condenser (a) flows to the third check valve (C3), and the other direction is due to the first check valve (C1) and the fourth check valve (C4) in the refrigerant reverse flow direction And the refrigerant having passed through the third check valve C3 is branched so as to pass through each of the sub heat exchangers 40 and to further secure the air heat in the evaporator by the electronic expansion valve 1 45 After the pressure is reduced to a low pressure through the electronic expansion valve 2 (50), the second check valve (V2) And the refrigerant passing through the second check valve C2 is formed at a low pressure, so that the refrigerant flowing through the first check valve C1 and the fourth check valve C4 And is evaporated in the water-cooled evaporator (b) which is the hydrothermal source, and the refrigerant heat-exchanged through the four sides 20 is sucked into the compressor 10 again,
온수 또는 냉수만을 공급하는 공기열원 기반 운전모드는 축열 및 축냉기반 모드와 동일하며, 온수를 생산하는 축열기반 운전 모드에서 사방변(20)을 작동시켜, 냉수를 생산하는 축냉기반 운전 모드로 자동 전환이 가능하며, The air heat source based operation mode for supplying only hot water or cold water is the same as the heat accumulation and cooling operation based mode. In the heat accumulation based operation mode for producing hot water, the four sides (20) are operated to automatically switch to the hot water cooling operation mode Lt; / RTI >
온수와 냉수를 동시에 공급하는 수열원 기반 운전모드는 실외기를 거치지 않고 실내기의 수냉식 응축기(a) 및 수냉식 증발기(b)를 사용함으로써, 축열기반의 축열축냉 동시 운전 모드와 축냉기반의 축냉축열 동시 운전 모드로 구성되며, 축열기반모드에서 축냉기반 모드 동시 선택시에는 축열축냉 동시 운전 모드로 작동되며, 사방변(20)이 작동하여 냉매의 흐름이 전환되어 축냉기반 모드에서 축열기반 모드 동시 선택시에는 축냉축열 동시 운전 모드로 작동되며,(A) and the water-cooled evaporator (b) of the indoor unit without using the outdoor unit, the heat-source-based operation mode in which the hot water and the cold water are supplied at the same time, Mode. In simultaneous selection of the cooling-based mode in the heat-storage-based mode, the mode is operated in the heat-storage-cooling mode and the simultaneous operation mode in the heat-storage-based mode. It is operated in the simultaneous operation mode,
공기열원 및 수열원을 히트펌프의 열원으로 이용하여, 동시에 사용하면서 축열 기반, 축냉 기반, 공기열원 기반, 수열원 기반 총 4가지 기반의 운전 모드를 상호 선택적으로 전환 사용할 수 있고, 상호간 운전모드가 전환되더라도, 각각의 기반 내의 축열 단독, 축냉 단독, 축열축냉 동시, 축냉축열 동시, 제상 운전 모드는 사방변(20)과 제1~5밸브(V1~V5)를 사용하여 저압축비에서 압축기(10)가 정지하지 않으면서도 자동 전환으로 연속적으로 구동되도록 이루어지는 것을 특징으로 한다.The air heat source and the heat source are used as the heat source of the heat pump and the four operation modes based on the heat storage base, the cooling base, the air heat source base and the heat source base can be selectively switched and used mutually. The compressor 10 is operated at low compression ratios using the four sides 20 and the first to fifth valves V1 to V5 at the low compression ratio, ) Is not stopped but is continuously driven by automatic switching.
또한, 본 발명은 온수를 공급하는 축열기반 운전 모드 제어는 축열 단독운전, 축열축냉 동시운전, 제상 운전 모드 제어로 구성되며, In addition, the present invention is characterized in that heat storage-based operation mode control for supplying hot water is constituted by heat storage single operation, storage heat storage simultaneous operation, and defrost operation mode control,
온수를 공급하는 축열 단독운전 제어는 압축기(10)에서 토출된 고압고온의 냉매가 사방변(20)을 거쳐 수냉식 응축기(a)를 통과하며, 상기 수냉식 응축기(a)에서 수열원으로 온수를 공급하는 단계(S110);In the heat storage single operation control for supplying hot water, the high-pressure and high-temperature refrigerant discharged from the compressor 10 passes through the water-cooled condenser (a) through the four sides 20 and the hot water is supplied to the water heat source (S110);
상기 수냉식 응축기(a)를 통과하여 응축된 냉매는 제 4체크밸브(C4)로 유동되며, 타측방향은 냉매 역유동방향으로의 제 2체크밸브(C2)로 인하여 유동되지 못하도록 형성되며, 상기 제 4체크밸브(C4)를 통과한 냉매는 분지되어, 각각의 서브열교환기(40)를 거치며, 전자팽창밸브1(45)에 의해 증발기에서 공기열을 더 확보할 수 있도록 과냉시키는 단계(S120); The refrigerant condensed through the water-cooled condenser (a) flows to the fourth check valve (C4), and the other direction is formed so as not to flow due to the second check valve (C2) in the refrigerant reverse flow direction, 4, the refrigerant having passed through the check valve C4 is branched and subcooled (S120) through each sub-heat exchanger 40 so as to further secure the air heat in the evaporator by the electronic expansion valve 1 (45);
상기 다시 1개의 냉매로 합쳐지며, 전자팽창밸브2(50)를 지나지 않고, 제 1밸브(V1)가 열리며, 제 2밸브(V2) 및 제 3밸브(V3)는 닫히며, 전자팽창밸브3(60)를 통과하여 저압으로 압력이 저감된 후에, 공기열원인 공랭식 증발기(d)에서 증발되는 단계(S130);The first valve V1 is opened without passing through the electronic expansion valve 2 50 and the second valve V2 and the third valve V3 are closed, 3 (60), the pressure is reduced to a low pressure, and then the air is evaporated in the air-cooled evaporator (c) (S130);
상기 이후 제 4밸브(V4)는 열리며, 제 5밸브(V5)는 닫히며, 열교환된 냉매는 사방변(20)을 지나 다시 압축기(10)로 흡입되도록 구성되는 단계(S140); 로 이루어지고,The fourth valve V4 is opened, the fifth valve V5 is closed, and the heat-exchanged refrigerant is sucked into the compressor 10 through the four sides 20 (S140); Lt; / RTI >
온수와 냉수를 동시에 공급하는 축열축냉 동시운전 제어는 수냉식 응축기(a)에서 응축된 냉매가 서브열교환기(40)를 통과하는 과정까지는 축열 단독 운전과 같으며,  The simultaneous operation of regenerating the hot and cold water simultaneously with the hot water and the cold water is the same as the operation of storing heat until the refrigerant condensed in the water-cooled condenser (a) passes through the sub heat exchanger (40)
상기 통과된 냉매는 전자팽창밸브2(50)을 통과하여 저압으로 압력이 저감된 후에, 제 3밸브(V3)는 열리며, 제 1밸브(V1) 및 제 2밸브(V2)는 닫히며, 수열원인 수냉식 증발기(b)로 통과하여 증발되는 단계(S210); After the refrigerant passed through the EEV 50 is reduced to a low pressure, the third valve V3 is opened, the first valve V1 and the second valve V2 are closed, (S210) through evaporation through a water-cooled evaporator (b);
상기 제 4밸브(V4)는 닫히며, 제 5밸브(V5)는 열리며, 열교환된 냉매는 사방변(20)을 지나 다시 압축기(10)로 흡입되도록 구성되는 단계(S220); 로 이루어지고, The fourth valve V4 is closed, the fifth valve V5 is opened, and the heat-exchanged refrigerant is sucked into the compressor 10 through the four sides 20 (S220); Lt; / RTI >
축열기반 운전모드 제어의 축열 단독운전 제어 중, 저외기일 경우 실외기의 공랭식 증발기(d) 공기핀 사이에 성에가 형성되기 때문에 능력이 저하되기 시작하는데, 이를 제상하기 위하여, In the case of low-temperature operation, the performance of the air-cooled evaporator (d) of the outdoor unit is deteriorated due to the formation of an air gap between the air pins.
상기 공랭식 증발기(d)에서 제상운전조건이 만족하는 경우, 축열기반 운전 모드 제어의 역사이클 방식으로 사방변(20)이 작동하며, 압축기(10)에서 토출된 고압고온의 냉매가 작동된 사방변(20)을 거쳐 제 5밸브(V5)는 닫히며, 제 4밸브(V4)는 열리며, 공랭식 응축기(c)의 역할을 함과 동시에 고온의 냉매를 공급하여, 외부의 공기핀에 형성된 성에를 제거하는 단계(S310); When the defrosting operation condition is satisfied in the air-cooled evaporator (d), the four sides 20 operate in a reverse cycle mode of the heat storage-based operation mode control, and the refrigerant discharged from the compressor 10, The fifth valve V5 is closed and the fourth valve V4 is opened to serve as the air-cooling type condenser c, and at the same time, the high-temperature refrigerant is supplied, (S310);
상기 공랭식 응축기(c)를 통과하여 응축된 냉매는 저항이 작은 제 5체크밸브(C5)로 유동되며, 제 1밸브(V1) 및 제 3밸브(V3)는 닫히며, 제 2밸브(V2)는 열리며, 상기 제 5체크밸브(C5)를 통과한 냉매는 제 3체크밸브(C3)로 유동되며, 타측방향은 냉매 역유동방향으로의 제 1체크밸브(C1) 및 제 4체크밸브(C4)로 인하여 유동되지 못하도록 형성되며, 상기 제 3체크밸브(C3)를 통과한 냉매는 분지되어, 각각의 서브열교환기(40)를 거치며, 전자팽창밸브1(45)에 의해 증발기에서 공기열을 더 확보할 수 있도록 과냉시키는 단계(S320);The refrigerant condensed through the air-cooled condenser c flows to the fifth check valve C5 having a small resistance. The first valve V1 and the third valve V3 are closed and the second valve V2 is closed. The refrigerant having passed through the fifth check valve C5 flows to the third check valve C3 and the other direction is connected to the first check valve C1 and the fourth check valve And the refrigerant passing through the third check valve C3 is branched and flows through each of the sub heat exchangers 40 and the air heat is discharged from the evaporator by the electronic expansion valve 1 45 (S320);
상기 다시 1개의 냉매로 합쳐지며, 전자팽창밸브2(50)를 통과하여 저압으로 압력이 저감된 후에, 제 2체크밸브(V2)로 유동되며, 타측방향은 냉매 순방향으로 제 1체크밸브(C1) 및 제 4체크밸브(C4)로 유동되나, 제 2체크밸브(C2)를 지나는 냉매는 저압으로 형성되므로, 각 후단의 고압으로 인하여, 통과하지 못하게 되며, 수열원인 수냉식 증발기(b)에서 증발되는 단계(S330);The refrigerant flows to the second check valve V2 after the pressure is reduced to a low pressure through the electronic expansion valve 2 (50), and the other direction flows through the first check valve C1 The refrigerant passing through the second check valve C2 is prevented from passing through due to the high pressure at the rear end because the refrigerant passing through the second check valve C2 is low in pressure and evaporated in the water- (S330);
상기 열교환된 냉매는 사방변(20)을 지나 다시 압축기(10)로 흡입되는 단계(S340); 로 이루어지고,Exchanged refrigerant is sucked into the compressor 10 through the four sides 20 (S340); Lt; / RTI >
냉수를 공급하는 축냉기반 운전모드 제어는 축냉 단독운전, 축냉축열 동시운전 모드 제어로 구성되며, Cooling-based operation mode control for supplying cold water is composed of simultaneous cooling and simultaneous operation mode control of the combined heat and cold storage,
냉수를 공급하는 축냉 단독운전 제어는 사방변(20)이 작동하며, 압축기(10)에서 토출된 고압고온의 냉매가 작동된 사방변(20)을 거쳐 제 5밸브(V5)는 닫히며, 제 4밸브(V4)는 열리며, 공랭식 응축기(c)를 통과하여 냉매는 응축되는 단계(S410); The cold storage single operation control for supplying the cold water operates the four sides 20 and the fifth valve V5 is closed through the four sides 20 where the high temperature and high temperature refrigerant discharged from the compressor 10 is operated, 4 valve (V4) is opened and the refrigerant is condensed through the air-cooled condenser (c) (S410);
상기 공랭식 응축기(c)를 통과하여 응축된 냉매는 저항이 작은 제 5체크밸브(C5)로 유동되며, 제 1밸브(V1) 및 제 3밸브(V3)는 닫히며, 제 2밸브(V2)는 열리며, 상기 제 5체크밸브(C5)를 통과한 냉매는 제 3체크밸브(C3)로 유동되며, 타측방향은 냉매 역유동방향으로의 제 1체크밸브(C1) 및 제 4체크밸브(C4)로 인하여 유동되지 못하도록 형성되며, 상기 제 3체크밸브(C3)를 통과한 냉매는 분지되어, 각각의 서브열교환기(40)를 거치며, 전자팽창밸브1(45)에 의해 증발기에서 공기열을 더 확보할 수 있도록 과냉시키는 단계(S420);The refrigerant condensed through the air-cooled condenser c flows to the fifth check valve C5 having a small resistance. The first valve V1 and the third valve V3 are closed and the second valve V2 is closed. The refrigerant having passed through the fifth check valve C5 flows to the third check valve C3 and the other direction is connected to the first check valve C1 and the fourth check valve And the refrigerant passing through the third check valve C3 is branched and flows through each of the sub heat exchangers 40 and the air heat is discharged from the evaporator by the electronic expansion valve 1 45 A step of subcooling (S420) so as to secure more;
상기 다시 1개의 냉매로 합쳐지며, 전자팽창밸브2(50)를 통과하여 저압으로 압력이 저감된 후에, 제 2체크밸브(V2)로 유동되며, 타측방향은 냉매 순방향으로 제 1체크밸브(C1) 및 제 4체크밸브(C4)로 유동되나, 제 2체크밸브(C2)를 지나는 냉매는 저압으로 형성되므로, 각 후단의 고압으로 인하여, 통과하지 못하게 되며, 수열원인 수냉식 증발기(b)에서 증발되는 단계(S430);The refrigerant flows to the second check valve V2 after the pressure is reduced to a low pressure through the electronic expansion valve 2 (50), and the other direction flows through the first check valve C1 The refrigerant passing through the second check valve C2 is prevented from passing through due to the high pressure at the rear end because the refrigerant passing through the second check valve C2 is low in pressure and evaporated in the water- (S430);
상기 열교환된 냉매는 사방변(20)을 지나 다시 압축기(10)로 흡입되도록 구성되는 단계(S440); 로 이루어지고,Exchanged refrigerant is sucked into the compressor 10 after passing through the four sides (S440); Lt; / RTI >
냉수와 온수를 동시에 공급하는 축냉축열 동시 운전모드 제어는 사방변(20)이 작동하며, 압축기(10)에서 토출된 고압고온의 냉매가 작동된 사방변(20)을 거쳐 제 4밸브(V4)는 닫히며, 제 5밸브(V5)는 열리며, 수냉식 응축기(a)를 통과하여 냉매는 응축되는 단계(S510);The cold storage and simultaneous operation mode control simultaneously supplying the cold water and the hot water operates the four sides 20 and operates the fourth valve V4 through the four sides 20 on which the refrigerant of high pressure and high temperature discharged from the compressor 10 is operated, The fifth valve V5 is opened, and the refrigerant is condensed through the water-cooled condenser a (S510);
상기 제 1밸브(V1), 제 2밸브(V2)는 닫히며, 제 3밸브(V3)는 열리며, 수냉식 응축기(a)에서 응축된 냉매가 제 3체크밸브(C3)로 유동되며, 타측방향은 냉매 역유동방향으로의 제 1체크밸브(C1) 및 제 4체크밸브(C4)로 인하여 유동되지 못하도록 형성되며, 상기 제 3체크밸브(C3)를 통과한 냉매는 분지되어, 각각의 서브열교환기(40)를 거치며, 전자팽창밸브1(45)에 의해 증발기에서 공기열을 더 확보할 수 있도록 과냉시키는 단계(S520); The first valve V1 and the second valve V2 are closed and the third valve V3 is opened so that the refrigerant condensed in the water-cooled condenser a flows to the third check valve C3, Direction is formed to be prevented from flowing due to the first check valve C1 and the fourth check valve C4 in the refrigerant reverse flow direction and the refrigerant passing through the third check valve C3 is branched, A step (S520) of subcooling through the heat exchanger (40) so as to further secure the air heat in the evaporator by the electronic expansion valve (1) (45);
상기 다시 1개의 냉매로 합쳐지며, 전자팽창밸브2(50)를 통과하여 저압으로 압력이 저감된 후에, 제 2체크밸브(V2)로 유동되며, 타측방향은 냉매 순방향으로 제 1체크밸브(C1) 및 제 4체크밸브(C4)로 유동되나, 제 2체크밸브(C2)를 지나는 냉매는 저압으로 형성되므로, 각 후단의 고압으로 인하여, 통과하지 못하게 되며, 수열원인 수냉식 증발기(b)에서 증발되는 단계(S530); The refrigerant flows to the second check valve V2 after the pressure is reduced to a low pressure through the electronic expansion valve 2 (50), and the other direction flows through the first check valve C1 The refrigerant passing through the second check valve C2 is prevented from passing through due to the high pressure at the rear end because the refrigerant passing through the second check valve C2 is low in pressure and evaporated in the water- (S530);
상기 열교환된 냉매는 사방변(20)을 지나 다시 압축기(10)로 흡입되도록 구성되는 단계(S540); 로 이루어지고,Exchanged refrigerant is sucked into the compressor 10 through the four sides 20 (S540); Lt; / RTI >
온수 또는 냉수만을 공급하는 공기열원 기반 운전모드 제어는 축열 및 축냉기반 모드 제어와 동일하며, 온수를 생산하는 축열기반 운전 모드 제어에서 사방변(20)을 작동시켜, 냉수를 생산하는 축냉기반 운전 모드 제어로 자동 전환이 가능하며, The air heat source based operation mode control that supplies only hot water or cold water is the same as the heat mode control based on heat storage and hot air cooling. In the heat storage based operation mode control for producing hot water, the cold water based operation mode Control can be automatically switched,
온수와 냉수를 동시에 공급하는 수열원 기반 운전모드 제어는 실외기를 거치지 않고 실내기의 수냉식 응축기(a) 및 수냉식 증발기(b)를 사용함으로써, 축열기반의 축열축냉 동시 운전 모드 제어와 축냉기반의 축냉축열 동시 운전 모드 제어로 구성되며, 축열기반 모드 제어에서 축냉기반 모드 제어 동시 선택시에는 축열축냉 동시 운전 모드 제어로 작동되며, 사방변(20)이 작동하여 냉매의 흐름이 전환되어 축냉기반 모드 제어에서 축열기반 모드 제어 동시 선택시에는 축냉축열 동시 운전 모드 제어로 작동되며,The heat source based operation mode control that simultaneously supplies hot water and cold water uses the water-cooled condenser (a) and water-cooled evaporator (b) of the indoor unit without going through the outdoor unit, And simultaneous operation mode control. In the case of simultaneous selection of the cooling-based mode control in the regenerative-based mode control, the regeneration mode is operated by the regenerative cooling and simultaneous operation mode control, and the refrigerant flow is switched by operating the four sides (20) In case of simultaneous selection of heat storage based mode control,
공기열원 및 수열원을 히트펌프의 열원으로 이용하여, 동시에 사용하면서 축열 기반, 축냉 기반, 공기열원 기반, 수열원 기반 총 4가지 기반의 운전 모드 제어를 상호간 선택적으로 전환 사용할 수 있고, 상호간 운전모드 제어가 전환되더라도, 각각의 기반 내의 축열 단독, 축냉 단독, 축열축냉 동시, 축냉축열 동시, 제상 운전 모드 제어는 사방변(20)과 제1∼5밸브(V1∼V5)를 사용하여 저압축비에서 압축기(10)가 정지하지 않으면서도 자동 전환으로 연속적으로 구동되어 이루어지는 것을 특징으로 한다.The air heat source and the heat source are used as the heat source of the heat pump and the four operation modes based on the heat storage base, the cooling base, the air heat source base and the hydrothermal source can be selectively switched between mutually operating modes The control of the defrosting operation mode is performed at the low compression ratio using the four sides 20 and the first to fifth valves V1 to V5, And the compressor (10) is continuously driven by automatic switching without stopping.
이상에서 살펴본 바와 같이, 본 발명은 실외기측 공기열원과 실내기측 수열원을 분리형 타입으로 사용하고, 공기열원과 수열원을 동시에 사용하면서, 축열 기반, 축냉 기반, 공기열원 기반, 수열원 기반 총 4가지 기반의 운전모드로 구성되며, 각각의 기반 모드는 상호간 선택적으로 전환 사용 가능하며, 각각의 기반 내의 축열 단독, 축냉 단독, 축열축냉 동시, 축냉축열 동시, 제상 운전 모드는 사방변과 전자식 밸브를 사용하여 저압축비에서 압축기를 정지하지 않으면서도 자동 전환 사용이 가능한 효율적인 냉매계통운전을 제공하는데 있다.As described above, according to the present invention, the air heat source on the outdoor side and the indoor heat source on the indoor side are used in a separate type, while the air heat source and the water heat source are used simultaneously. Based operation mode, and each base mode can be selectively switched between each other. In each base, the heat storage alone, the cooling storage single, the storage heat cooing, To provide an efficient refrigerant system operation that can be used for automatic switching without stopping the compressor at a low compression ratio.
또한, 본 발명은 기존 히트펌프 설비는 냉수, 온수를 생산하는 2대의 제품을 따로 설치하여 사용하지만, 본 발명은 칠러나 별도의 가스열원 급탕장치가 필요없이, 1대의 제품만으로 온수 및 냉수를 단독적으로 생산 할 수 있으며, 필요시 온수 및 냉수를 동시 생산도 가능하여 시설투자비 및 운전비를 절감하고, 수열원 히트펌프와 공기열원 히트펌프의 장점을 극대화하여 Energy 효율을 증대시킬 수 있는 다중열원 멀티히트펌프 시스템 및 이의 제어방법을 제공하고자 하는 것이다.In the present invention, the existing heat pump equipment is provided with two separate products for producing cold water and hot water. However, the present invention does not require a chiller or a separate gas heat source hot water supply device, It is possible to produce hot water and cold water at the same time to reduce facility investment cost and operating cost, and to maximize the merits of heat source heat pump and air heat source heat pump, multi heat source multi heat Pump system and a control method thereof.
도 1은 본 발명에 따른 공기열원을 이용한 축열 운전모드를 나타낸 일실시예의 구성 및 냉매흐름도.BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a configuration and a refrigerant flow diagram of an embodiment showing a heat storage operation mode using an air heat source according to the present invention; FIG.
도 2는 본 발명에 따른 수열원을 이용한 축열축냉 동시운전모드를 나타낸 일실시예의 구성 및 냉매 흐름도.FIG. 2 is a configuration and a refrigerant flow diagram of an embodiment showing a simultaneous heat storage and cooling operation mode using a hydrothermal source according to the present invention; FIG.
도 3은 본 발명에 따른 공기열원을 이용한 축냉 운전모드 및 제상 운전모드를 나타낸 일실시예의 구성 및 냉매 흐름도.FIG. 3 is a configuration and a refrigerant flow diagram of an embodiment showing a supercooling operation mode and a defrosting operation mode using an air heat source according to the present invention.
도 4는 본 발명에 따른 수열원을 이용한 축냉축열 동시운전모드를 나타낸 일실시예의 구성 및 냉매 흐름도.FIG. 4 is a configuration and a refrigerant flow diagram of an embodiment showing a simultaneous operation mode of cooing and storing heat using a hydrothermal source according to the present invention; FIG.
<도면의 주요부분에 대한 부호의 표시><Indication of Signs for Main Parts of the Drawings>
10: 압축기 20: 사방변10: compressor 20: all sides
40: 서브열교환기 50: 전자팽창밸브140: Sub-heat exchanger 50: Electronic expansion valve 1
60: 전자팽창밸브2 70: 전자팽창밸브360: Electronic expansion valve 2 70: Electronic expansion valve 3
a: 수냉식 응축기 b: 수냉식 증발기a: water-cooled condenser b: water-cooled evaporator
c: 공랭식 응축기 d: 공랭식 증발기c: air-cooled condenser d: air-cooled evaporator
P1: 제 1압력센서(저압) P2: 제 2압력센서(고압)P1: first pressure sensor (low pressure) P2: second pressure sensor (high pressure)
C1 : 제 1체크밸브 C2 : 제 2체크밸브C1: first check valve C2: second check valve
C3 : 제 3체크밸브 C4 : 제 4체크밸브C3: third check valve C4: fourth check valve
C5 : 제 5체크밸브 V1: 제 1밸브C5: fifth check valve V1: first valve
V2: 제 2밸브 V3: 제 3밸브V2: second valve V3: third valve
V4: 제 4밸브 V5: 제 5밸브V4: fourth valve V5: fifth valve
T1 : 수냉식 응축기 입수온도 센서T1: Water-cooled condenser intake temperature sensor
T2 : 수냉식 증발기 입수온도 센서T2: Water-cooled evaporator intake temperature sensor
T3 : 실외기측 외기온도 센서T3: outdoor temperature sensor
본 발명의 여러 실시예들을 상세히 설명하기 전에, 다음의 상세한 설명에 기재되거나 도면에 도시된 구성요소들의 구성 및 배열들의 상세로 그 응용이 제한되는 것이 아니라는 것을 알 수 있을 것이다. 본 발명은 다른 실시예들로 구현되고 실시될 수 있고 다양한 방법으로 수행될 수 있다. 또, 장치 또는 요소 방향(예를 들어 "전(front)", "후(back)", "위(up)", "아래(down)", "상(top)", "하(bottom)", "좌(left)", "우(right)", "횡(lateral)")등과 같은 용어들에 관하여 본원에 사용된 표현 및 술어는 단지 본 발명의 설명을 단순화하기 위해 사용되고, 관련된 장치 또는 요소가 단순히 특정 방향을 가져야 함을 나타내거나 의미하지 않는다는 것을 알 수 있을 것이다. 또한, "제 1(first)", "제 2(second)"와 같은 용어는 설명을 위해 본원 및 첨부 청구항들에 사용되고 상대적인 중요성 또는 취지를 나타내거나 의미하는 것으로 의도되지 않는다.Before describing in detail several embodiments of the invention, it will be appreciated that the application is not limited to the details of construction and arrangement of components set forth in the following detailed description or illustrated in the drawings. The invention may be embodied and carried out in other embodiments and carried out in various ways. It should also be noted that the device or element orientation (e.g., "front," "back," "up," "down," "top," "bottom, Expressions and predicates used herein for terms such as " left, " " right, " " lateral, " and the like are used merely to simplify the description of the present invention, Or that the element has to have a particular orientation. Also, terms such as " first " and " second " are used herein for the purpose of the description and the appended claims, and are not intended to indicate or imply their relative importance or purpose.
본 발명은 상기의 목적을 달성하기 위해 아래의 특징을 갖는다.The present invention has the following features in order to achieve the above object.
이하 첨부된 도면을 참조로 본 발명의 바람직한 실시예를 상세히 설명하도록 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings. Prior to this, terms and words used in the present specification and claims should not be construed as limited to ordinary or dictionary terms, and the inventor should appropriately interpret the concepts of the terms appropriately It should be interpreted in accordance with the meaning and concept consistent with the technical idea of the present invention based on the principle that it can be defined.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해하여야 한다.Therefore, the embodiments described in this specification and the configurations shown in the drawings are merely the most preferred embodiments of the present invention and do not represent all the technical ideas of the present invention. Therefore, It is to be understood that equivalents and modifications are possible.
본 발명에서의 다중열원 멀티 히트펌프 시스템은 하기와 같은 실시예를 가진다.The multi-heat source multi-heat pump system according to the present invention has the following embodiments.
온수를 공급하는 축열기반 운전모드는 축열 단독운전, 축열축냉 동시운전, 제상 운전 모드로 구성되며, The heat storage-based operation mode for supplying hot water is composed of heat storage single operation, storage heat storage simultaneous operation, and defrost operation mode,
온수를 공급하는 축열 단독운전은 압축기(10)에서 토출된 고압고온의 냉매가 사방변(20)을 거쳐 수냉식 응축기(a)를 통과하며, 상기 수냉식 응축기(a)에서 수열원으로 온수를 공급하며,In the single heat storage operation for supplying hot water, the high-pressure and high-temperature refrigerant discharged from the compressor 10 passes through the water-cooled condenser (a) through the four sides 20 and supplies hot water to the water heat source in the water- ,
상기 수냉식 응축기(a)를 통과하여 응축된 냉매는 제 4체크밸브(C4)로 유동되며, 타측방향은 냉매 역유동방향으로의 제 2체크밸브(C2)로 인하여 유동되지 못하도록 형성되며, 상기 제 4체크밸브(C4)를 통과한 냉매는 분지되어, 각각의 서브열교환기(40)를 거치며, 전자팽창밸브1(45)에 의해 증발기에서 공기열을 더 확보할 수 있도록 과냉시키며, 다시 1개의 냉매로 합쳐지며, 전자팽창밸브2(50)를 지나지 않고, 제 1밸브(V1)가 열리며, 제 2밸브(V2) 및 제 3밸브(V3)는 닫히며, 전자팽창밸브3(60)를 통과하여 저압으로 압력이 저감된 후에, 공기열원인 공랭식 증발기(d)에서 증발되며, 이후 제 4밸브(V4)는 열리며, 제 5밸브(V5)는 닫히며, 열교환된 냉매는 사방변(20)을 지나 다시 압축기(10)로 흡입되도록 구성되며,The refrigerant condensed through the water-cooled condenser (a) flows to the fourth check valve (C4), and the other direction is formed so as not to flow due to the second check valve (C2) in the refrigerant reverse flow direction, The refrigerant passing through the four check valve C4 is branched and passes through each of the sub heat exchangers 40 and is subcooled by the electronic expansion valve 1 (45) so as to further secure the air heat in the evaporator. And the first valve V1 is opened without passing through the electronic expansion valve 2 50. The second valve V2 and the third valve V3 are closed and the electronic expansion valve 3 And then the fourth valve (V4) is opened, the fifth valve (V5) is closed, and the heat-exchanged refrigerant is supplied to the four sides (20 And then sucked into the compressor 10,
온수와 냉수를 동시에 공급하는 축열축냉 동시운전 모드는 수냉식 응축기(a)에서 응축된 냉매가 서브열교환기(40)를 통과하는 과정까지는 축열 단독 운전과 같으며, 통과된 냉매는 전자팽창밸브2(50)을 통과하여 저압으로 압력이 저감된 후에, 제 3밸브(V3)는 열리며, 제 1밸브(V1) 및 제 2밸브(V2)는 닫히며, 수열원인 수냉식 증발기(b)로 통과하여 증발되며, 제 4밸브(V4)는 닫히며, 제 5밸브(V5)는 열리며, 열교환된 냉매는 사방변(20)을 지나 다시 압축기(10)로 흡입되도록 구성되며, The heat storage and cooling simultaneous operation mode in which the hot water and the cold water are simultaneously supplied is the same as the heat storage single operation until the refrigerant condensed in the water-cooled condenser (a) passes through the sub heat exchanger (40) The third valve V3 is opened and the first valve V1 and the second valve V2 are closed and passed through the water-cooled evaporator b which is the hydrothermal heat source The fourth valve V4 is closed and the fifth valve V5 is opened and the heat exchanged refrigerant is sucked into the compressor 10 through the four sides 20,
축열기반 운전모드의 축열 단독운전 중, 저외기일 경우 실외기의 공랭식 증발기(d) 공기핀 사이에 성에가 형성되기 때문에 능력이 저하되기 시작하는데, 이를 제상하기 위하여, (D) In the case of low ambient temperature, the capacity of the air-cooled evaporator (d) of the outdoor unit is deteriorated due to the formation of a gap between the air pins.
상기 공랭식 증발기(d)에서 제상운전조건이 만족하는 경우, 축열기반 운전 모드의 역사이클 방식으로 사방변(20)이 작동하며, 압축기(10)에서 토출된 고압고온의 냉매가 작동된 사방변(20)을 거쳐 제 5밸브(V5)는 닫히며, 제 4밸브(V4)는 열리며, 공랭식 응축기(c)의 역할을 함과 동시에 고온의 냉매를 공급하여, 외부의 공기핀에 형성된 성에를 제거하며, When the defrosting operation condition is satisfied in the air-cooled evaporator (d), the four sides 20 operate in a reverse cycle mode of the heat storage based operation mode, and the four sides The fifth valve V5 is closed and the fourth valve V4 is opened to serve as the air-cooling type condenser c, and at the same time, the high-temperature refrigerant is supplied to the outside air pin Remove,
상기 공랭식 응축기(c)를 통과하여 응축된 냉매는 저항이 작은 제 5체크밸브(C5)로 유동되며, 제 1밸브(V1) 및 제 3밸브(V3)는 닫히며, 제 2밸브(V2)는 열리며, 상기 제 5체크밸브(C5)를 통과한 냉매는 제 3체크밸브(C3)로 유동되며, 타측방향은 냉매 역유동방향으로의 제 1체크밸브(C1) 및 제 4체크밸브(C4)로 인하여 유동되지 못하도록 형성되며, 상기 제 3체크밸브(C3)를 통과한 냉매는 분지되어, 각각의 서브열교환기(40)를 거치며, 전자팽창밸브1(45)에 의해 증발기에서 공기열을 더 확보할 수 있도록 과냉시키며, 다시 1개의 냉매로 합쳐지며, 전자팽창밸브2(50)를 통과하여 저압으로 압력이 저감된 후에, 제 2체크밸브(V2)로 유동되며, 타측방향은 냉매 순방향으로 제 1체크밸브(C1) 및 제 4체크밸브(C4)로 유동되나, 제 2체크밸브(C2)를 지나는 냉매는 저압으로 형성되므로, 각 후단의 고압으로 인하여, 통과하지 못하게 되며, 수열원인 수냉식 증발기(b)에서 증발되며, 열교환된 냉매는 사방변(20)을 지나 다시 압축기(10)로 흡입되도록 반복 구성으로 제상이 이루어지도록 형성된 것이다. The refrigerant condensed through the air-cooled condenser c flows to the fifth check valve C5 having a small resistance. The first valve V1 and the third valve V3 are closed and the second valve V2 is closed. The refrigerant having passed through the fifth check valve C5 flows to the third check valve C3 and the other direction is connected to the first check valve C1 and the fourth check valve And the refrigerant passing through the third check valve C3 is branched and flows through each of the sub heat exchangers 40 and the air heat is discharged from the evaporator by the electronic expansion valve 1 45 The refrigerant flows into the second check valve V2 after the pressure is reduced to the low pressure through the electronic expansion valve 2 50. The refrigerant flows in the refrigerant forward direction To the first check valve (C1) and the fourth check valve (C4). However, since the refrigerant passing through the second check valve (C2) is formed at a low pressure, So that the refrigerant is evaporated in the water-cooled evaporator (b), which is the hydrothermal heat source, and the heat exchanged refrigerant is sucked into the compressor (10) through the four sides (20) will be.
냉수를 공급하는 축냉기반 운전모드는 축냉 단독운전, 축냉축열 동시운전 모드로 구성되며, The cold-cooling-based operation mode in which cold water is supplied is constituted by a simultaneous cooling operation mode and a simultaneous cold storage mode operation mode,
냉수를 공급하는 축냉 단독운전은 사방변(20)이 작동하며, 압축기(10)에서 토출된 고압고온의 냉매가 작동된 사방변(20)을 거쳐 제 5밸브(V5)는 닫히며, 제 4밸브(V4)는 열리며, 공랭식 응축기(c)를 통과하여 냉매는 응축되며, The four sides 20 are operated and the fifth valve V5 is closed through the four sides 20 of the high pressure and high temperature refrigerant discharged from the compressor 10, The valve V4 is opened, the refrigerant is condensed through the air-cooled condenser c,
상기 공랭식 응축기(c)를 통과하여 응축된 냉매는 저항이 작은 제 5체크밸브(C5)로 유동되며, 제 1밸브(V1) 및 제 3밸브(V3)는 닫히며, 제 2밸브(V2)는 열리며, 상기 제 5체크밸브(C5)를 통과한 냉매는 제 3체크밸브(C3)로 유동되며, 타측방향은 냉매 역유동방향으로의 제 1체크밸브(C1) 및 제 4체크밸브(C4)로 인하여 유동되지 못하도록 형성되며, 상기 제 3체크밸브(C3)를 통과한 냉매는 분지되어, 각각의 서브열교환기(40)를 거치며, 전자팽창밸브1(45)에 의해 증발기에서 공기열을 더 확보할 수 있도록 과냉시키며, 다시 1개의 냉매로 합쳐지며, 전자팽창밸브2(50)를 통과하여 저압으로 압력이 저감된 후에, 제 2체크밸브(V2)로 유동되며, 타측방향은 냉매 순방향으로 제 1체크밸브(C1) 및 제 4체크밸브(C4)로 유동되나, 제 2체크밸브(C2)를 지나는 냉매는 저압으로 형성되므로, 각 후단의 고압으로 인하여, 통과하지 못하게 되며, 수열원인 수냉식 증발기(b)에서 증발되며, 열교환된 냉매는 사방변(20)을 지나 다시 압축기(10)로 흡입되도록 구성되며,The refrigerant condensed through the air-cooled condenser c flows to the fifth check valve C5 having a small resistance. The first valve V1 and the third valve V3 are closed and the second valve V2 is closed. The refrigerant having passed through the fifth check valve C5 flows to the third check valve C3 and the other direction is connected to the first check valve C1 and the fourth check valve And the refrigerant passing through the third check valve C3 is branched and flows through each of the sub heat exchangers 40 and the air heat is discharged from the evaporator by the electronic expansion valve 1 45 The refrigerant flows into the second check valve V2 after the pressure is reduced to the low pressure through the electronic expansion valve 2 50. The refrigerant flows in the refrigerant forward direction To the first check valve (C1) and the fourth check valve (C4). However, since the refrigerant passing through the second check valve (C2) is formed at a low pressure, (B), and the heat-exchanged refrigerant is sucked into the compressor (10) after passing through the four sides (20). In addition,
냉수와 온수를 동시에 공급하는 축냉축열 동시 운전모드는 사방변(20)이 작동하며, 압축기(10)에서 토출된 고압고온의 냉매가 작동된 사방변(20)을 거쳐 제 4밸브(V4)는 닫히며, 제 5밸브(V5)는 열리며, 수냉식 응축기(a)를 통과하여 냉매는 응축되며, 제 1밸브(V1), 제 2밸브(V2)는 닫히며, 제 3밸브(V3)는 열리며, 수냉식 응축기(a)에서 응축된 냉매가 제 3체크밸브(C3)로 유동되며, 타측방향은 냉매 역유동방향으로의 제 1체크밸브(C1) 및 제 4체크밸브(C4)로 인하여 유동되지 못하도록 형성되며, 상기 제 3체크밸브(C3)를 통과한 냉매는 분지되어, 각각의 서브열교환기(40)를 거치며, 전자팽창밸브1(45)에 의해 증발기에서 공기열을 더 확보할 수 있도록 과냉시키며, 다시 1개의 냉매로 합쳐지며, 전자팽창밸브2(50)를 통과하여 저압으로 압력이 저감된 후에, 제 2체크밸브(V2)로 유동되며, 타측방향은 냉매 순방향으로 제 1체크밸브(C1) 및 제 4체크밸브(C4)로 유동되나, 제 2체크밸브(C2)를 지나는 냉매는 저압으로 형성되므로, 각 후단의 고압으로 인하여, 통과하지 못하게 되며, 수열원인 수냉식 증발기(b)에서 증발되며, 열교환된 냉매는 사방변(20)을 지나 다시 압축기(10)로 흡입되도록 구성되며,The four-way valve 20 operates in the coaxial heat storage simultaneous operation mode in which the cold water and the hot water are supplied at the same time, and the fourth valve V4 through the four sides 20 where the refrigerant of high pressure and high temperature discharged from the compressor 10 is operated The first valve V1 and the second valve V2 are closed and the third valve V3 is closed while the fifth valve V5 is opened and the refrigerant is condensed through the water-cooled condenser a, The refrigerant condensed in the water-cooled condenser (a) flows to the third check valve (C3), and the other direction is due to the first check valve (C1) and the fourth check valve (C4) in the refrigerant reverse flow direction And the refrigerant having passed through the third check valve C3 is branched so as to pass through each of the sub heat exchangers 40 and to further secure the air heat in the evaporator by the electronic expansion valve 1 45 After the pressure is reduced to a low pressure through the electronic expansion valve 2 (50), the second check valve (V2) And the refrigerant passing through the second check valve C2 is formed at a low pressure, so that the refrigerant flowing through the first check valve C1 and the fourth check valve C4 And is evaporated in the water-cooled evaporator (b), which is a hydrothermal heat source, and the heat-exchanged refrigerant is sucked into the compressor (10) through the four sides (20)
온수 또는 냉수만을 공급하는 공기열원 기반 운전모드는 축열 및 축냉기반 모드와 동일하며, 온수를 생산하는 축열기반 운전 모드에서 사방변(20)을 작동시켜, 냉수를 생산하는 축냉기반 운전 모드로 자동 전환이 가능하며, The air heat source based operation mode for supplying only hot water or cold water is the same as the heat accumulation and cooling operation based mode. In the heat accumulation based operation mode for producing hot water, the four sides (20) are operated to automatically switch to the hot water cooling operation mode Lt; / RTI &gt;
온수와 냉수를 동시에 공급하는 수열원 기반 운전모드는 실외기를 거치지 않고 실내기의 수냉식 응축기(a) 및 수냉식 증발기(b)를 사용함으로써, 축열기반의 축열축냉 동시 운전 모드와 축냉기반의 축냉축열 동시 운전 모드로 구성되며, 축열기반모드에서 축냉기반 모드 동시 선택시에는 축열축냉 동시 운전 모드로 작동되며, 사방변(20)이 작동하여 냉매의 흐름이 전환되어 축냉기반 모드에서 축열기반 모드 동시 선택시에는 축냉축열 동시 운전 모드로 작동되며,(A) and the water-cooled evaporator (b) of the indoor unit without using the outdoor unit, the heat-source-based operation mode in which the hot water and the cold water are supplied at the same time, Mode. In simultaneous selection of the cooling-based mode in the heat-storage-based mode, the mode is operated in the heat-storage-cooling mode and the simultaneous operation mode in the heat-storage-based mode. It is operated in the simultaneous operation mode,
공기열원 및 수열원을 히트펌프의 열원으로 이용하여, 동시에 사용하면서 축열 기반, 축냉 기반, 공기열원 기반, 수열원 기반 총 4가지 기반의 운전 모드를 상호간 선택적으로 전환 사용할 수 있고, 상호간 운전모드가 전환되더라도, 각각의 기반 내의 축열 단독, 축냉 단독, 축열축냉 동시, 축냉축열 동시, 제상 운전 모드는 사방변(20)과 제1~5밸브(V1~V5)를 사용하여 저압축비에서 압축기(10)가 정지하지 않으면서도 자동 전환으로 연속적으로 구동되도록 이루어지는 것을 특징으로 한다. The air heat source and the heat source are used as the heat source of the heat pump. At the same time, the four types of operation modes based on heat storage base, cooling base, air heat source base and hydrothermal source can be selectively switched. The compressor 10 is operated at low compression ratios using the four sides 20 and the first to fifth valves V1 to V5 at the low compression ratio, ) Is not stopped but is continuously driven by automatic switching.
또한, 상기 수냉식 응축기(a) 및 수냉식 증발기(b) 입수측에 온도센서(T1,T2)를 설치하고, 상기 온도센서(T1,T2)의 온도가 사전설정 축열온도 또는 사전설정 축냉온도를 충족하는 경우 압축기(10)를 정지시키거나, 온도센서(T1,T2)의 온도가 사전설정 축열온도 또는 사전설정 축냉온도를 충족하지 않는 경우 압축기(10)를 운전할 수 있도록 하는 것을 특징으로 한다.The temperature sensors T1 and T2 are provided at the inlet side of the water-cooled condenser (a) and the water-cooled evaporator (b), and the temperature of the temperature sensors T1 and T2 is set to a preset storage temperature or a preset temperature The compressor 10 can be stopped or the compressor 10 can be operated when the temperature of the temperature sensors T1 and T2 does not satisfy the preset storage temperature or the preset cooling temperature .
또한, 상기 압축기(10)의 전, 후단에는 각각 제 1, 2압력센서(P1, P2)가 설치되고, 수냉식 응축기(a) 및 수냉식 증발기(b)의 입수측 온도센서(T1, T2)가 설치되며, 공랭식 증발기(d) 측에 외기 온도센서(T3)가 설치되도록 구성하여, 사전설정 고압과 사전설정 저압의 비에 따라 전환 또는 입수온도, 외기온도에 따라 4가지 기반의 축열, 축냉, 공기열원, 수열원 기반 내의 축열단독, 축냉단독, 축열축냉 동시, 축냉축열 동시, 제상 운전 모드가 자동 전환 제어하는 것을 특징으로 한다.The first and second pressure sensors P1 and P2 are provided at the front and rear ends of the compressor 10 and the inlet side temperature sensors T1 and T2 of the water-cooled condenser a and the water- And the outdoor air temperature sensor (T3) is installed on the side of the air-cooled evaporator (d), and it is possible to change the temperature according to the ratio between the preset high pressure and the preset low pressure, The air heat source, the heat storage alone in the hydrothermal source base, the heat storage alone, the heat storage, the simultaneous cooling, the simultaneous storage and the defrost operation modes.
또한, 본 발명에서의 다중열원 멀티 히트펌프 시스템의 제어방법은 하기와 같은 실시예를 가진다.The control method of the multi-heat source multi-heat pump system according to the present invention has the following embodiments.
본 발명은 공기열원 및 수열원을 히트펌프의 열원으로 이용하여, 축열 기반, 축냉 기반, 공기열원 기반, 수열원 기반의 4가지 운전 모드 제어를 선택적으로 운전가능한 구조를 가지는 것으로, 기반 내에서의 운전 모드 제어는 서로 자동 전환이 가능한 것을 특징으로 한다.The present invention utilizes an air heat source and a hydrothermal source as a heat source of a heat pump, and has a structure capable of selectively operating four operation mode controls based on heat storage base, cooling base, air heat source base and hydrotherm source, The operation mode control is characterized in that it is possible to automatically switch to each other.
또한, 본 발명은 온수를 공급하는 축열기반 운전 모드 제어는 축열 단독운전, 축열축냉 동시운전, 제상 운전 모드 제어로 구성되며, In addition, the present invention is characterized in that heat storage-based operation mode control for supplying hot water is constituted by heat storage single operation, storage heat storage simultaneous operation, and defrost operation mode control,
온수를 공급하는 축열 단독운전 제어는 압축기(10)에서 토출된 고압고온의 냉매가 사방변(20)을 거쳐 수냉식 응축기(a)를 통과하며, 상기 수냉식 응축기(a)에서 수열원으로 온수를 공급하는 단계(S110);In the heat storage single operation control for supplying hot water, the high-pressure and high-temperature refrigerant discharged from the compressor 10 passes through the water-cooled condenser (a) through the four sides 20 and the hot water is supplied to the water heat source (S110);
상기 수냉식 응축기(a)를 통과하여 응축된 냉매는 제 4체크밸브(C4)로 유동되며, 타측방향은 냉매 역유동방향으로의 제 2체크밸브(C2)로 인하여 유동되지 못하도록 형성되며, 상기 제 4체크밸브(C4)를 통과한 냉매는 분지되어, 각각의 서브열교환기(40)를 거치며, 전자팽창밸브1(45)에 의해 증발기에서 공기열을 더 확보할 수 있도록 과냉시키는 단계(S120); The refrigerant condensed through the water-cooled condenser (a) flows to the fourth check valve (C4), and the other direction is formed so as not to flow due to the second check valve (C2) in the refrigerant reverse flow direction, 4, the refrigerant having passed through the check valve C4 is branched and subcooled (S120) through each sub-heat exchanger 40 so as to further secure the air heat in the evaporator by the electronic expansion valve 1 (45);
상기 다시 1개의 냉매로 합쳐지며, 전자팽창밸브2(50)를 지나지 않고, 제 1밸브(V1)가 열리며, 제 2밸브(V2) 및 제 3밸브(V3)는 닫히며, 전자팽창밸브3(60)를 통과하여 저압으로 압력이 저감된 후에, 공기열원인 공랭식 증발기(d)에서 증발되는 단계(S130);The first valve V1 is opened without passing through the electronic expansion valve 2 50 and the second valve V2 and the third valve V3 are closed, 3 (60), the pressure is reduced to a low pressure, and then the air is evaporated in the air-cooled evaporator (c) (S130);
상기 이후 제 4밸브(V4)는 열리며, 제 5밸브(V5)는 닫히며, 열교환된 냉매는 사방변(20)을 지나 다시 압축기(10)로 흡입되도록 구성되는 단계(S140); 로 이루어지고,The fourth valve V4 is opened, the fifth valve V5 is closed, and the heat-exchanged refrigerant is sucked into the compressor 10 through the four sides 20 (S140); Lt; / RTI &gt;
온수와 냉수를 동시에 공급하는 축열축냉 동시운전 제어는 수냉식 응축기(a)에서 응축된 냉매가 서브열교환기(40)를 통과하는 과정까지는 축열 단독 운전과 같으며,  The simultaneous operation of regenerating the hot and cold water simultaneously with the hot water and the cold water is the same as the operation of storing heat until the refrigerant condensed in the water-cooled condenser (a) passes through the sub heat exchanger (40)
상기 통과된 냉매는 전자팽창밸브2(50)을 통과하여 저압으로 압력이 저감된 후에, 제 3밸브(V3)는 열리며, 제 1밸브(V1) 및 제 2밸브(V2)는 닫히며, 수열원인 수냉식 증발기(b)로 통과하여 증발되는 단계(S210); After the refrigerant passed through the EEV 50 is reduced to a low pressure, the third valve V3 is opened, the first valve V1 and the second valve V2 are closed, (S210) through evaporation through a water-cooled evaporator (b);
상기 제 4밸브(V4)는 닫히며, 제 5밸브(V5)는 열리며, 열교환된 냉매는 사방변(20)을 지나 다시 압축기(10)로 흡입되도록 구성되는 단계(S220); 로 이루어지고, The fourth valve V4 is closed, the fifth valve V5 is opened, and the heat-exchanged refrigerant is sucked into the compressor 10 through the four sides 20 (S220); Lt; / RTI &gt;
축열기반 운전모드 제어의 축열 단독운전 제어 중, 저외기일 경우 실외기의 공랭식 증발기(d) 공기핀 사이에 성에가 형성되기 때문에 능력이 저하되기 시작하는데, 이를 제상하기 위하여, In the case of low-temperature operation, the performance of the air-cooled evaporator (d) of the outdoor unit is deteriorated due to the formation of an air gap between the air pins.
상기 공랭식 증발기(d)에서 제상운전조건이 만족하는 경우, 축열기반 운전 모드 제어의 역사이클 방식으로 사방변(20)이 작동하며, 압축기(10)에서 토출된 고압고온의 냉매가 작동된 사방변(20)을 거쳐 제 5밸브(V5)는 닫히며, 제 4밸브(V4)는 열리며, 공랭식 응축기(c)의 역할을 함과 동시에 고온의 냉매를 공급하여, 외부의 공기핀에 형성된 성에를 제거하는 단계(S310); When the defrosting operation condition is satisfied in the air-cooled evaporator (d), the four sides 20 operate in a reverse cycle mode of the heat storage-based operation mode control, and the refrigerant discharged from the compressor 10, The fifth valve V5 is closed and the fourth valve V4 is opened to serve as the air-cooling type condenser c, and at the same time, the high-temperature refrigerant is supplied, (S310);
상기 공랭식 응축기(c)를 통과하여 응축된 냉매는 저항이 작은 제 5체크밸브(C5)로 유동되며, 제 1밸브(V1) 및 제 3밸브(V3)는 닫히며, 제 2밸브(V2)는 열리며, 상기 제 5체크밸브(C5)를 통과한 냉매는 제 3체크밸브(C3)로 유동되며, 타측방향은 냉매 역유동방향으로의 제 1체크밸브(C1) 및 제 4체크밸브(C4)로 인하여 유동되지 못하도록 형성되며, 상기 제 3체크밸브(C3)를 통과한 냉매는 분지되어, 각각의 서브열교환기(40)를 거치며, 전자팽창밸브1(45)에 의해 증발기에서 공기열을 더 확보할 수 있도록 과냉시키는 단계(S320);The refrigerant condensed through the air-cooled condenser c flows to the fifth check valve C5 having a small resistance. The first valve V1 and the third valve V3 are closed and the second valve V2 is closed. The refrigerant having passed through the fifth check valve C5 flows to the third check valve C3 and the other direction is connected to the first check valve C1 and the fourth check valve And the refrigerant passing through the third check valve C3 is branched and flows through each of the sub heat exchangers 40 and the air heat is discharged from the evaporator by the electronic expansion valve 1 45 (S320);
상기 다시 1개의 냉매로 합쳐지며, 전자팽창밸브2(50)를 통과하여 저압으로 압력이 저감된 후에, 제 2체크밸브(V2)로 유동되며, 타측방향은 냉매 순방향으로 제 1체크밸브(C1) 및 제 4체크밸브(C4)로 유동되나, 제 2체크밸브(C2)를 지나는 냉매는 저압으로 형성되므로, 각 후단의 고압으로 인하여, 통과하지 못하게 되며, 수열원인 수냉식 증발기(b)에서 증발되는 단계(S330);The refrigerant flows to the second check valve V2 after the pressure is reduced to a low pressure through the electronic expansion valve 2 (50), and the other direction flows through the first check valve C1 The refrigerant passing through the second check valve C2 is prevented from passing through due to the high pressure at the rear end because the refrigerant passing through the second check valve C2 is low in pressure and evaporated in the water- (S330);
상기 열교환된 냉매는 사방변(20)을 지나 다시 압축기(10)로 흡입되는 단계(S340); 로 이루어지고,Exchanged refrigerant is sucked into the compressor 10 through the four sides 20 (S340); Lt; / RTI &gt;
냉수를 공급하는 축냉기반 운전모드 제어는 축냉 단독운전, 축냉축열 동시운전 모드 제어로 구성되며, Cooling-based operation mode control for supplying cold water is composed of simultaneous cooling and simultaneous operation mode control of the combined heat and cold storage,
냉수를 공급하는 축냉 단독운전 제어는 사방변(20)이 작동하며, 압축기(10)에서 토출된 고압고온의 냉매가 작동된 사방변(20)을 거쳐 제 5밸브(V5)는 닫히며, 제 4밸브(V4)는 열리며, 공랭식 응축기(c)를 통과하여 냉매는 응축되는 단계(S410); The cold storage single operation control for supplying the cold water operates the four sides 20 and the fifth valve V5 is closed through the four sides 20 where the high temperature and high temperature refrigerant discharged from the compressor 10 is operated, 4 valve (V4) is opened and the refrigerant is condensed through the air-cooled condenser (c) (S410);
상기 공랭식 응축기(c)를 통과하여 응축된 냉매는 저항이 작은 제 5체크밸브(C5)로 유동되며, 제 1밸브(V1) 및 제 3밸브(V3)는 닫히며, 제 2밸브(V2)는 열리며, 상기 제 5체크밸브(C5)를 통과한 냉매는 제 3체크밸브(C3)로 유동되며, 타측방향은 냉매 역유동방향으로의 제 1체크밸브(C1) 및 제 4체크밸브(C4)로 인하여 유동되지 못하도록 형성되며, 상기 제 3체크밸브(C3)를 통과한 냉매는 분지되어, 각각의 서브열교환기(40)를 거치며, 전자팽창밸브1(45)에 의해 증발기에서 공기열을 더 확보할 수 있도록 과냉시키는 단계(S420);The refrigerant condensed through the air-cooled condenser c flows to the fifth check valve C5 having a small resistance. The first valve V1 and the third valve V3 are closed and the second valve V2 is closed. The refrigerant having passed through the fifth check valve C5 flows to the third check valve C3 and the other direction is connected to the first check valve C1 and the fourth check valve And the refrigerant passing through the third check valve C3 is branched and flows through each of the sub heat exchangers 40 and the air heat is discharged from the evaporator by the electronic expansion valve 1 45 A step of subcooling (S420) so as to secure more;
상기 다시 1개의 냉매로 합쳐지며, 전자팽창밸브2(50)를 통과하여 저압으로 압력이 저감된 후에, 제 2체크밸브(V2)로 유동되며, 타측방향은 냉매 순방향으로 제 1체크밸브(C1) 및 제 4체크밸브(C4)로 유동되나, 제 2체크밸브(C2)를 지나는 냉매는 저압으로 형성되므로, 각 후단의 고압으로 인하여, 통과하지 못하게 되며, 수열원인 수냉식 증발기(b)에서 증발되는 단계(S430);The refrigerant flows to the second check valve V2 after the pressure is reduced to a low pressure through the electronic expansion valve 2 (50), and the other direction flows through the first check valve C1 The refrigerant passing through the second check valve C2 is prevented from passing through due to the high pressure at the rear end because the refrigerant passing through the second check valve C2 is low in pressure and evaporated in the water- (S430);
상기 열교환된 냉매는 사방변(20)을 지나 다시 압축기(10)로 흡입되도록 구성되는 단계(S440); 로 이루어지고,Exchanged refrigerant is sucked into the compressor 10 after passing through the four sides (S440); Lt; / RTI &gt;
냉수와 온수를 동시에 공급하는 축냉축열 동시 운전모드 제어는 사방변(20)이 작동하며, 압축기(10)에서 토출된 고압고온의 냉매가 작동된 사방변(20)을 거쳐 제 4밸브(V4)는 닫히며, 제 5밸브(V5)는 열리며, 수냉식 응축기(a)를 통과하여 냉매는 응축되는 단계(S510);The cold storage and simultaneous operation mode control simultaneously supplying the cold water and the hot water operates the four sides 20 and operates the fourth valve V4 through the four sides 20 on which the refrigerant of high pressure and high temperature discharged from the compressor 10 is operated, The fifth valve V5 is opened, and the refrigerant is condensed through the water-cooled condenser a (S510);
상기 제 1밸브(V1), 제 2밸브(V2)는 닫히며, 제 3밸브(V3)는 열리며, 수냉식 응축기(a)에서 응축된 냉매가 제 3체크밸브(C3)로 유동되며, 타측방향은 냉매 역유동방향으로의 제 1체크밸브(C1) 및 제 4체크밸브(C4)로 인하여 유동되지 못하도록 형성되며, 상기 제 3체크밸브(C3)를 통과한 냉매는 분지되어, 각각의 서브열교환기(40)를 거치며, 전자팽창밸브1(45)에 의해 증발기에서 공기열을 더 확보할 수 있도록 과냉시키는 단계(S520); The first valve V1 and the second valve V2 are closed and the third valve V3 is opened so that the refrigerant condensed in the water-cooled condenser a flows to the third check valve C3, Direction is formed to be prevented from flowing due to the first check valve C1 and the fourth check valve C4 in the refrigerant reverse flow direction and the refrigerant passing through the third check valve C3 is branched, A step (S520) of subcooling through the heat exchanger (40) so as to further secure the air heat in the evaporator by the electronic expansion valve (1) (45);
상기 다시 1개의 냉매로 합쳐지며, 전자팽창밸브2(50)를 통과하여 저압으로 압력이 저감된 후에, 제 2체크밸브(V2)로 유동되며, 타측방향은 냉매 순방향으로 제 1체크밸브(C1) 및 제 4체크밸브(C4)로 유동되나, 제 2체크밸브(C2)를 지나는 냉매는 저압으로 형성되므로, 각 후단의 고압으로 인하여, 통과하지 못하게 되며, 수열원인 수냉식 증발기(b)에서 증발되는 단계(S530); The refrigerant flows to the second check valve V2 after the pressure is reduced to a low pressure through the electronic expansion valve 2 (50), and the other direction flows through the first check valve C1 The refrigerant passing through the second check valve C2 is prevented from passing through due to the high pressure at the rear end because the refrigerant passing through the second check valve C2 is low in pressure and evaporated in the water- (S530);
상기 열교환된 냉매는 사방변(20)을 지나 다시 압축기(10)로 흡입되도록 구성되는 단계(S540); 로 이루어지고,Exchanged refrigerant is sucked into the compressor 10 through the four sides 20 (S540); Lt; / RTI &gt;
온수 또는 냉수만을 공급하는 공기열원 기반 운전모드 제어는 축열 및 축냉기반 모드 제어와 동일하며, 온수를 생산하는 축열기반 운전 모드 제어에서 사방변(20)을 작동시켜, 냉수를 생산하는 축냉기반 운전 모드 제어로 자동 전환이 가능하며, The air heat source based operation mode control that supplies only hot water or cold water is the same as the heat mode control based on heat storage and hot air cooling. In the heat storage based operation mode control for producing hot water, the cold water based operation mode Control can be automatically switched,
온수와 냉수를 동시에 공급하는 수열원 기반 운전모드 제어는 실외기를 거치지 않고 실내기의 수냉식 응축기(a) 및 수냉식 증발기(b)를 사용함으로써, 축열기반의 축열축냉 동시 운전 모드 제어와 축냉기반의 축냉축열 동시 운전 모드 제어로 구성되며, 축열기반 모드 제어에서 축냉기반 모드 제어 동시 선택시에는 축열축냉 동시 운전 모드 제어로 작동되며, 사방변(20)이 작동하여 냉매의 흐름이 전환되어 축냉기반 모드 제어에서 축열기반 모드 제어 동시 선택시에는 축냉축열 동시 운전 모드 제어로 작동되며,The heat source based operation mode control that simultaneously supplies hot water and cold water uses the water-cooled condenser (a) and water-cooled evaporator (b) of the indoor unit without going through the outdoor unit, And simultaneous operation mode control. In the case of simultaneous selection of the cooling-based mode control in the regenerative-based mode control, the regeneration mode is operated by the regenerative cooling and simultaneous operation mode control, and the refrigerant flow is switched by operating the four sides (20) In case of simultaneous selection of heat storage based mode control,
공기열원 및 수열원을 히트펌프의 열원으로 이용하여, 동시에 사용하면서 축열 기반, 축냉 기반, 공기열원 기반, 수열원 기반 총 4가지 기반의 운전 모드 제어를 상호간 선택적으로 전환 사용할 수 있고, 상호간 운전모드 제어가 전환되더라도, 각각의 기반 내의 축열 단독, 축냉 단독, 축열축냉 동시, 축냉축열 동시, 제상 운전 모드 제어는 사방변(20)과 제1∼5밸브(V1∼V5)를 사용하여 저압축비에서 압축기(10)가 정지하지 않으면서도 자동 전환으로 연속적으로 구동되어 이루어지는 것을 특징으로 한다.The air heat source and the heat source are used as the heat source of the heat pump and the four operation modes based on the heat storage base, the cooling base, the air heat source base and the hydrothermal source can be selectively switched between mutually operating modes The control of the defrosting operation mode is performed at the low compression ratio using the four sides 20 and the first to fifth valves V1 to V5, And the compressor (10) is continuously driven by automatic switching without stopping.
또한, 본 발명은 공랭식 증발기(d)를 실외기(Outdoor), 상기 공랭식 증발기(d)를 제외한 나머지 구성들을 실내기(Indoor)로 분리하도록 구성하여, 동파될 우려가 없으며, 실외기는 공랭식 증발기(d)로만 구성이 되어 좁은 공간에도 쉽게 설치가 가능하며, 분리된 실내기와 연결 시, 동배관 및 통신선, 전원선만 연결하는 구성으로 먼거리에도 쉽게 구성이 가능하며, 설치시간이 감소되고 비용이 저렴한 분리형 구조로 구성되는 것을 특징으로 한다.The air conditioner (d) is configured to be separated from the indoor unit (Indoor) except for the outdoor unit and the air-cooled evaporator (d) It is easy to install even in a narrow space because it is composed of only a pipe. When connecting to a separate indoor unit, it can be easily configured for long distance by connecting only copper pipe, communication line and power line. . &Lt; / RTI &gt;
또한, 본 발명은 상기 수냉식 응축기(a) 및 수냉식 증발기(b) 입수측에 온도센서(T1,T2)를 설치하고, 상기 온도센서(T1,T2)의 온도가 사전설정 축열온도 또는 사전설정 축냉온도를 충족하는 경우 압축기(10)를 정지시키는 것이며, The present invention is also characterized in that temperature sensors T1 and T2 are provided on the water inlet side of the water-cooled condenser a and the water-cooled evaporator b, The compressor 10 is stopped when the cold temperature is satisfied,
온도센서(T1,T2)의 온도가 사전설정 축열온도 또는 사전설정 축냉온도를 충족하지 않는 경우에는 압축기(10)작동을 정지하지 않고, 연속운전할 수 있도록 하는 것을 특징으로 한다.When the temperature of the temperature sensors T1 and T2 does not satisfy the preset storage temperature or the preset temperature of the shaft, the compressor 10 can be continuously operated without stopping the operation of the compressor.
또한, 본 발명은 상기 압축기(10)의 전, 후단에는 각각 제 1, 2압력센서(P1, P2)가 설치되고, 수냉식 응축기(a) 및 수냉식 증발기(b)의 입수측 온도센서(T1, T2)가 설치되며, 공랭식 증발기(d) 측에 외기 온도센서(T3)가 설치되도록 구성하여, 사전설정 고압과 사전설정 저압의 비에 따라 전환 또는 입수온도, 외기온도에 따라 4가지 기반의 축열, 축냉, 공기열원, 수열원 기반 내의 축열단독, 축냉단독, 축열축냉 동시, 축냉축열 동시, 제상 운전 모드 제어가 자동 전환 제어하는 것을 특징으로 한다.The first and second pressure sensors P1 and P2 are installed at the front and rear ends of the compressor 10 and the inlet side temperature sensors T1 and T2 of the water-cooled condenser a and the water- And the outdoor air temperature sensor T3 is provided on the side of the air-cooled evaporator (d), and it is possible to change the temperature according to the ratio between the preset high pressure and the preset low pressure, , The air conditioning heat source, the air heat source, the heat storage alone in the hydrothermal source base, the cooling fan alone, the simultaneous thermal storage cooling, the simultaneous thermal storage and defrosting mode control.
이하, 도 1, 2, 3 내지 도 4를 참조하여 본 발명의 바람직한 실시예에 따른 공기열원 축냉운전 또는 축열운전과 수열원 축냉축열 동시운전 또는 축열축냉 동시운전을 갖는 다중열원 멀티 히트펌프 시스템 및 제어방법을 상세히 설명하도록 한다.Hereinafter, referring to FIGS. 1, 2, 3 to 4, a multi-heat source multi-heat pump system having an air heat source cold storage operation or a heat storage operation and a heat source heat accumulation heat accumulation heat accumulation operation or an accumulation heat accumulation heat accumulation operation operation according to a preferred embodiment of the present invention, The control method will be described in detail.
본 발명에 따른 온수를 공급하는 축열기반 운전 모드(축열기반 운전 모드 제어)가 선택되는 경우에는, 도 1에 도시된 바와 같이, 제어부에서 축열 단독 운전 모드(축열 단독 운전 모드 제어)를 나타낸 일실시예의 구성 및 냉매 흐름도로써,(사방변(20)=OFF, V1=ON, V2=OFF, V3=OFF, V4=ON, V5=OFF) In the case where the heat storage based operation mode (heat storage based operation mode control) for supplying the hot water according to the present invention is selected, as shown in FIG. 1, a control operation of the heat storage single operation mode (20) = OFF, V1 = ON, V2 = OFF, V3 = OFF, V4 = ON, V5 = OFF)
상기 압축기(10)에서 토출된 고압고온의 냉매가 사방변(20)을 거쳐 수냉식 응축기(a)를 통과하며, 상기 수냉식 응축기(a)에서 수열원으로 온수를 공급하며(S110단계),The high-pressure and high-temperature refrigerant discharged from the compressor 10 passes through the water-cooled condenser a through the four sides 20 and supplies the hot water to the water heat source in the water-cooled condenser a (step S110)
상기 수냉식 응축기(a)를 통과하여 응축된 냉매는 제 4체크밸브(C4)로 유동되며, 타측방향은 냉매 역유동방향으로의 제 2체크밸브(C2)로 인하여 유동되지 못하도록 형성되며, 상기 제 4체크밸브(C4)를 통과한 냉매는 분지되어, 각각의 서브열교환기(40)를 거치며, 전자팽창밸브1(45)에 의해 증발기에서 공기열을 더 확보할 수 있도록 과냉시키며(S120단계),The refrigerant condensed through the water-cooled condenser (a) flows to the fourth check valve (C4), and the other direction is formed so as not to flow due to the second check valve (C2) in the refrigerant reverse flow direction, The refrigerant having passed through the four check valve C4 is branched and subcooled so as to further secure the air heat in the evaporator by the electronic expansion valve 1 (45) through each of the sub heat exchangers 40 (step S120)
다시 1개의 냉매로 합쳐지며, 전자팽창밸브2(50)을 지나지 않고, 제 1밸브(V1)가 열리며, 제 2밸브(V2) 및 제 3밸브(V3)는 닫히며, 전자팽창밸브3(60)를 통과하여 저압으로 압력이 저감된 후에, 공기열원인 공랭식 증발기(d)에서 증발되며(S130단계),The first valve V1 is opened without passing through the electronic expansion valve 2 50 and the second valve V2 and the third valve V3 are closed and the electronic expansion valve 3 The air is evaporated in the air-cooled evaporator (d) (step S130)
이후 제 4밸브(V4)는 열리며, 제 5밸브(V5)는 닫히며, 열교환된 냉매는 사방변(20)을 지나 다시 압축기(10)로 흡입되도록 이루어지는 것이다.(S140단계)Thereafter, the fourth valve V4 is opened, the fifth valve V5 is closed, and the heat-exchanged refrigerant is sucked into the compressor 10 through the four sides 20. In operation S140,
또한, 본 발명의 다른 실시예로서, 도 2에 도시된 바와 같이,Further, as another embodiment of the present invention, as shown in Fig. 2,
온수를 공급하는 축열기반 운전 모드(축열기반 운전 모드 제어)에서 냉수까지 동시에 공급하는 축열축냉 동시운전 모드(축열축냉 동시운전 모드 제어)가 선택되는 경우에는(사방변(20)=OFF, V1=OFF, V2=OFF, V3=ON, V4=OFF, V5=ON)(20) = OFF, V1 = 0) is selected in the regenerative hot-water co-operation mode (heat accumulation-cooling operation mode control) in which hot water is simultaneously supplied to the cold water from the heat- OFF, V2 = OFF, V3 = ON, V4 = OFF, V5 = ON)
수냉식 응축기(a)에서 응축된 냉매가 서브열교환기(40)를 통과하는 과정까지는 축열 단독 운전과 같으며, 통과된 냉매는 전자팽창밸브2(50)을 통과하여 저압으로 압력이 저감된 후에, 제 3밸브(V3)는 열리며, 제 1밸브(V1) 및 제 2밸브(V2)는 닫히며, 수열원인 수냉식 증발기(b)로 통과하여 증발되며(S210단계),The refrigerant condensed in the water-cooled condenser (a) passes through the sub-heat exchanger (40) until the refrigerant passes through the electronic expansion valve (2) (50) The third valve V3 is opened and the first valve V1 and the second valve V2 are closed and evaporated through the water-cooled evaporator b, which is a hydrothermal source, in step S210,
제 4밸브(V4)는 닫히며, 제 5밸브(V5)는 열리며, 열교환된 냉매는 사방변(20)을 지나 다시 압축기(10)로 흡입되도록 이루어진 것이다.(S220단계)The fourth valve V4 is closed and the fifth valve V5 is opened so that the heat exchanged refrigerant is sucked into the compressor 10 through the four sides 20. In operation S220,
상기 전술된 도 1에서의 공랭식 증발기가 아닌 수냉식 증발기를 선택하여 기존 수냉식 응축기의 온수 공급에서 냉수까지 공급하는 것이다. Cooled evaporator, not the air-cooled evaporator shown in FIG. 1, and supplies the cold water from the hot water supply of the existing water-cooled condenser.
또한, 본 발명의 다른 실시예로서, 도 3에 도시된 바와 같이,Further, as another embodiment of the present invention, as shown in Fig. 3,
냉수를 공급하는 축냉기반 운전 모드(축냉기반 운전 모드 제어)가 선택되는 경우에는 제어부에서 축냉 단독 운전 모드(축냉 단독 운전 모드 제어)를 나타낸 일실시예의 구성 및 냉매 흐름도로써(사방변(20)=ON, V1=OFF, V2=ON, V3=OFF, V4=ON, V5=OFF), (20) is a refrigerant flow diagram of a configuration and a refrigerant flow diagram of a single-shaft single-operation mode (a single-shaft single-mode operation mode control) in a case where a hot-water- ON, V1 = OFF, V2 = ON, V3 = OFF, V4 = ON, V5 = OFF)
상기 사방변(20)이 작동하며, 압축기(10)에서 토출된 고압고온의 냉매가 작동된 사방변(20)을 거쳐 제 5밸브(V5)는 닫히며, 제 4밸브(V4)는 열리며, 공랭식 응축기(c)를 통과하여 냉매는 응축되며(S410단계), The fourth valve V5 is closed and the fourth valve V4 is opened through the four sides 20 on which the refrigerant of high pressure and high temperature discharged from the compressor 10 is operated, , The air-cooled condenser (c), and the refrigerant is condensed (step S410)
상기 공랭식 응축기(c)를 통과하여 응축된 냉매는 저항이 작은 제 5체크밸브(C5)로 유동되며, 제 1밸브(V1) 및 제 3밸브(V3)는 닫히며, 제 2밸브(V2)는 열리며, 상기 제 5체크밸브(C5)를 통과한 냉매는 제 3체크밸브(C3)로 유동되며, 타측방향은 냉매 역유동방향으로의 제 1체크밸브(C1) 및 제 4체크밸브(C4)로 인하여 유동되지 못하도록 형성되며, 상기 제 3체크밸브(C3)를 통과한 냉매는 분지되어, 각각의 서브열교환기(40)를 거치며, 전자팽창밸브1(45)에 의해 증발기에서 공기열을 더 확보할 수 있도록 과냉시키며(S420단계),The refrigerant condensed through the air-cooled condenser c flows to the fifth check valve C5 having a small resistance. The first valve V1 and the third valve V3 are closed and the second valve V2 is closed. The refrigerant having passed through the fifth check valve C5 flows to the third check valve C3 and the other direction is connected to the first check valve C1 and the fourth check valve And the refrigerant passing through the third check valve C3 is branched and flows through each of the sub heat exchangers 40 and the air heat is discharged from the evaporator by the electronic expansion valve 1 45 (Step S420). Then,
다시 1개의 냉매로 합쳐지며, 전자팽창밸브2(50)를 통과하여 저압으로 압력이 저감된 후에, 제 2체크밸브(V2)로 유동되며, 타측방향은 냉매 순방향으로 제 1체크밸브(C1) 및 제 4체크밸브(C4)로 유동되나, 제 2체크밸브(C2)를 지나는 냉매는 저압으로 형성되므로, 각 후단의 고압으로 인하여, 통과하지 못하게 되며, 수열원인 수냉식 증발기(b)에서 증발되며(S430단계),The refrigerant flows back to the second check valve V2 after the pressure is reduced to a low pressure through the electronic expansion valve 2 50. The other direction is the first check valve C1 in the refrigerant forward direction, The refrigerant passing through the second check valve C2 is low in pressure and is prevented from passing through due to the high pressure at the rear end thereof and is evaporated in the water-cooled evaporator (b) (Step S430)
열교환된 냉매는 사방변(20)을 지나 다시 압축기(10)로 흡입되도록 구성되며,(S440단계)The heat-exchanged refrigerant is sucked into the compressor 10 through the four sides 20 (step S440)
마찬가지로, 축열기반 운전모드(축열기반 운전모드 제어) 중, 저외기일 경우 실외기의 공랭식 증발기(d) 공기핀 사이에 성에가 형성되기 때문에 이를 제상하기 위한 사이클이 도 3에 도시된 바와 같이 축냉 단독 운전 모드(축냉 단독 운전 모드 제어)와 냉매의 흐름이 같으며, 상기 공랭식 증발기(d)에서 제상운전조건이 만족하는 경우, 축열기반 운전 모드(축열기반 운전 모드 제어)의 역사이클 방식으로 사방변(20)이 작동하며, 압축기(10)에서 토출된 고압고온의 냉매가 작동된 사방변(20)을 거쳐 제 5밸브(V5)는 닫히며, 제 4밸브(V4)는 열리며, 공랭식 응축기(c)의 역할을 함과 동시에 고온의 냉매를 공급하여, 외부의 공기핀에 형성된 성에를 제거하게 되고, 전부 제거될 때까지 사이클은 반복적으로 작동하게 된다.(S310단계)Likewise, in the case of low ambient temperature during the heat storage based operation mode (heat storage based operation mode control), since the air is formed between the air pins of the air-cooled evaporator (d) of the outdoor unit, If the defrosting operation condition is satisfied in the air-cooled evaporator (d), the reverse cycle of the heat-storage-based operation mode (heat storage-based operation mode control) The fifth valve V5 is closed and the fourth valve V4 is opened via the four sides 20 of the high pressure and high temperature refrigerant discharged from the compressor 10, (c). At the same time, the high-temperature refrigerant is supplied to remove the gaps formed in the outer air pins, and the cycle is repeatedly operated until all the gaps are removed (step S310)
또한, 본 발명의 다른 실시예로서, 도 4에 도시된 바와 같이,Further, as another embodiment of the present invention, as shown in FIG. 4,
냉수를 공급하는 축냉기반 운전 모드(축냉기반 운전 모드 제어)에서 온수까지 동시에 공급하는 축냉축열 동시운전 모드(축냉축열 동시운전 모드 제어)가 선택되는 경우에는(사방변(20)=ON, V1=OFF, V2=OFF, V3=ON, V4=OFF, V5=ON)(20) = ON, V1 = (ON) and (V1 = 0) are selected when simultaneous cold storage mode simultaneous operation mode (simultaneous cold storage mode simultaneous operation mode control) OFF, V2 = OFF, V3 = ON, V4 = OFF, V5 = ON)
이러한 경우, 전술된 도 2에서의 축열축냉 동시 운전 모드(축열축냉 동시 운전 모드 제어)와 구성 및 작동은 동일하되, 사방변(20) 절환으로 냉매의 흐름만 반대로 구성하는 것으로, 압축기(10)에서 토출된 고압고온의 냉매가 사방변(20)을 거쳐 수냉식 응축기(a)를 통과하는 축열축냉 동시운전모드(축열축냉 동시운전모드 제어)와는 반대로, 수냉식 증발기(b)를 먼저 통과하도록 냉매의 흐름만 정반대로 만드는 것이다.In this case, the configuration and operation are the same as those of the regenerative hot-water-cooled simultaneous operation mode (regenerated hot-water-cooled simultaneous operation mode control) in Fig. 2 described above. However, only the flow of refrigerant is reversed by switching the four sides 20, Cooled evaporator (b) to pass through the water-cooled evaporator (b), as opposed to a simultaneous heat and cold storage operation mode (storage heat and cold storage simultaneous operation mode control) in which the high-pressure and high- It is the opposite of flow.
이로써, 도 4에 도시된 바와 같이 도 2에 도시된 축열축냉 동시운전 모드(축열축냉 동시운전 모드 제어)일 때, 축열기능을 하던 수냉식 응축기(a)와 축냉기능을 하던 수냉식 증발기(b)의 기능이 뒤바뀌면서, 축냉축열 동시 운전(축냉축열 동시 운전 제어) 기능을 가질 수 있도록 한 것이다. As shown in Fig. 4, the water-cooled condenser (a), which functions as a heat storage function, and the water-cooled evaporator (b) Function is reversed, so that it is possible to have simultaneous operation of simultaneous storage and simultaneous storage (control of simultaneous operation of simultaneous storage and storage).
더불어, 본 발명에서는 공랭식 증발기(d)를 실외기(Outdoor), 상기 공랭식 증발기(d)를 제외한 나머지 구성들을 실내기(Indoor)로 분리하도록 구성하며, 실내기만 단독 설치 시 수열원 히트펌프의 기능을 수행하며, 수열원 기반의 모드를 사용 할 수 있으며, 실외기까지 설치 시 수열원과 공기열원 히트펌프의 기능을 전부 수행할 수 있어, 4가지 기반의 기반 모드를 다 사용할 수 있다는 특징이 있다. 또한, 실외기는 공랭식 증발기(d)로만 구성이 되어 실외기 설치 시 좁은 공간에도 쉽게 설치가 가능하며, 분리된 실내기와 연결 시, 동배관 및 통신선, 전원선만 연결하는 구성으로 먼거리에도 쉽게 구성이 가능하며, 설치시간을 줄이고 설치비용 또한 저렴한 특징을 가지는 분리형 구조로 구성되어 있다.In addition, in the present invention, the air-cooled evaporator (d) is configured to separate the remaining components except the outdoor unit and the air-cooled evaporator (d) into indoor units, and functions as a hydrothermal heat pump It is possible to use the heat source based mode and it can perform all the functions of the heat source and the heat source heat pump when installing the outdoor unit. The outdoor unit is composed only of the air-cooling type evaporator (d), so it can be easily installed in a small space when installing an outdoor unit. When connecting to a separate indoor unit, only the copper pipe, communication line and power line are connected. And has a detachable structure with features such as reduced installation time and lower installation cost.
또한, 본 발명의 기술적 특징은 축열 기반, 축냉 기반, 공기열원 기반, 수열원 기반 총 4가지 기반의 운전 모드(운전 모드 제어)를 선택적으로 운전 가능한 구조를 가지는 것으로, 이를 위하여, Also, the technical features of the present invention have a structure capable of selectively operating four types of operation modes (operation mode control) based on heat storage base, cooling cooling base, air heat source base, and hydrothermal source.
상기 수냉식 응축기(a) 및 수냉식 증발기(b) 입수측에 온도센서(T1,T2)를 설치하고, 상기 온도센서(T1,T2)의 온도가 사전설정 축열온도 또는 사전설정 축냉온도를 충족하는 경우 압축기(10)를 정지시키는 것이며, Wherein temperature sensors T1 and T2 are provided on the water intake side of the water-cooled condenser (a) and water-cooled evaporator (b), and when the temperature of the temperature sensors T1 and T2 satisfies a preset storage temperature or a preset temperature The compressor 10 is stopped,
온도센서(T1,T2)의 온도가 사전설정 축열온도 또는 사전설정 축냉온도를 충족하지 않는 경우에는 압축기(10)작동을 정지하지 않고, 연속운전할 수 있도록 하는 것이다.When the temperature of the temperature sensors T1 and T2 does not satisfy the preset storage temperature or the preset temperature of the shaft, the compressor 10 can be continuously operated without stopping the operation of the compressor.
또한, 상기 압축기(10)의 전, 후단에는 각각 제 1, 2압력센서(P1, P2)가 설치되고, 수냉식 응축기(a) 및 수냉식 증발기(b)의 입수측 온도센서(T1, T2)가 설치되며,The first and second pressure sensors P1 and P2 are provided at the front and rear ends of the compressor 10 and the inlet side temperature sensors T1 and T2 of the water-cooled condenser a and the water- Installed,
공랭식 증발기(d) 측에 외기 온도센서(T3)가 설치되도록 구성하여,And the outside air temperature sensor T3 is installed on the side of the air-cooled evaporator (d)
사전설정 고압과 사전설정 저압의 비에 따라 전환 또는 입수온도, 외기온도에 따라 4가지 기반의 축열, 축냉, 공기열원, 수열원 기반 내의 축열단독, 축냉단독, 축열축냉 동시, 축냉축열 동시, 제상 운전 모드(축열단독, 축냉단독, 축열축냉 동시, 축냉축열 동시, 제상 운전 모드 제어)가 자동 전환 제어하는 것이며, 이를 위하여,Depending on the ratio of pre-set high pressure and preset low pressure, it can be switched or taken depending on the temperature and outside temperature, 4 kinds of base heat storage, cold storage, air heat source, thermal storage alone in the heat source base, And the automatic mode switching control is performed in the operation mode (single storage, single cooling, single storage heat storage, simultaneous accumulation and storage, and defrost operation mode control)
실외기(Outdoor)와 실내기(Indoor)의 분리형 타입으로 사방변(20)과 제 1~5밸브(V1~V5)의 ON/OFF 선택제어를 통해, 축열 기반, 축냉 기반, 공기열원 기반, 수열원 기반 운전 모드(축열 기반, 축냉 기반, 공기열원 기반, 수열원 기반 운전 모드 제어)를 선택적으로 전환구동할 수 있는 것이다.It is a separate type of indoor and outdoor indoor and outdoor type indoor and outdoor units through the on / off selection control of the four sides 20 and the first to fifth valves V1 to V5. Based operation mode (heat storage base, cooling cooling base, air heat source base, hydrotherm source based operation mode control).
또한, 이러한 기반 내의 축열단독, 축냉단독, 축열축냉 동시, 축냉축열 동시, 제상 운전 모드(축열 기반, 축냉 기반, 공기열원 기반, 수열원 기반 운전 모드 제어)의 자동 전환 구동시, 전술된 사방변(20)과 제 1~5밸브(V1~V5)의 ON/OFF 선택제어 외에, 전술된 상기 압축기(10)의 전단 관로에는 제 1압력센서(P1)(저압센서)가 설치되고, 후단 관로에는 제 2압력센서(P2)(고압센서)가 설치되어 있도록 하였고, 수냉식 응축기(a) 및 수냉식 증발기(b)의 입수측 온도센서(T1, T2)와 공랭식 증발기(d) 측에 외기 온도센서(T3)를 설치하여, 사전설정 고압과 사전설정 저압의 비에 따라 전환 또는 입수온도, 외기온도에 따라 4가지 기반의 축열, 축냉, 공기열원, 수열원 기반 내의 축열단독, 축냉단독, 축열축냉 동시, 축냉축열 동시, 제상 운전 모드(축열단독, 축냉단독, 축열축냉 동시, 축냉축열 동시, 제상 운전 모드 제어)가 저압축비에서 압축기(10)를 정지하지 않으면서도 자동 전환 제어되도록 한다.In the automatic switching operation of the thermal storage alone, the cooling storage alone, the thermal storage cooling, the simultaneous thermal storage and the defrosting operation mode (heat storage base, cooling cooling base, air heat source base and hydrotherm source based operation mode control) The first pressure sensor P1 (low pressure sensor) is provided in the front end channel of the compressor 10 in addition to the ON / OFF selection control of the first to fifth valves V1 to V5 and the first to fifth valves V1 to V5, Cooled condenser (a) and water-cooled evaporator (b), and the air-cooled evaporator (d) are provided with a second pressure sensor P2 (high pressure sensor) (T3) is installed, and it can be switched according to the ratio of preset high pressure and preset low pressure, or four kinds of heat storage, cold storage, air heat source, heat storage alone in the base of hydrothermal source, Simultaneous, coaxial heat storage simultaneous, defrost operation mode (thermal storage alone, thermal storage independent, thermal storage simultaneous cooling, Simultaneous cold storage and storage, and defrost operation mode control) are automatically switched and controlled without stopping the compressor 10 at a low compression ratio.
이로써, 본 발명에서는 상기와 같이, 실외기와 실내기의 분리형 타입으로 축열 기반, 축냉 기반, 공기열원 기반, 수열원 기반 총 4가지 기반의 운전 모드(운전 모드 제어)를 선택적으로 운전가능한 구조를 가지는 것으로 이를 요약하면 하기와 같다.As described above, according to the present invention, the four types of operation modes (operation mode control) based on the heat storage base, the cooling base, the air heat source base, and the hydrothermal source can be selectively operated as the separated type of the outdoor unit and the indoor unit This can be summarized as follows.
1. 축열기반 - 축열 단독운전, 축열축냉 동시운전, 제상 운전1. Heat storage base - Single heat storage operation, simultaneous operation of heat storage and cooling, defrosting operation
2. 축냉기반 - 축냉 단독운전, 축냉축열 동시운전2. Cooling base - Cooling single operation, simultaneous cooling and storage
3. 공기열원 기반 - 축열 단독운전, 축냉 단독운전, 제상3. Air heat source base - Single heat storage operation, single cooling operation, defrosting
4. 수열원 기반 - 축열축냉 동시운전, 축냉축열 동시운전4. Based on heat source - Simultaneous operation of heat storage and cooling, simultaneous operation of heat storage and storage
(기반 내에서의 운전 모드는 자동 전환 제어 가능)(Operation mode within base is automatic switching control)
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술 사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변경이 가능함은 물론이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. It is to be understood that various changes and modifications may be made without departing from the scope of the appended claims.

Claims (10)

  1. 공기열원 및 수열원을 히트펌프의 열원으로 이용하여, 축열 기반, 축냉 기반, 공기열원 기반, 수열원 기반 총 4가지 기반의 운전 모드를 선택적으로 운전가능한 구조를 가지는 것으로, 기반 내에서의 운전 모드는 서로 자동 전환이 가능한 것을 특징으로 하는 공기열원 축냉운전 또는 축열운전과 수열원 축냉축열 동시운전 또는 축열축냉 동시운전을 갖는 다중열원 멀티 히트펌프 시스템. The air heat source and the heat source are used as the heat source of the heat pump to selectively operate the four operation modes based on the heat storage base, the cooling base, the air heat source base, and the hydrothermal source. A multi-heat source multi-heat pump system having an air heat source, a heat accumulation operation or a heat accumulation operation, a simultaneous operation of heat source heat accumulation and heat accumulation, or a heat accumulation heat accumulation simultaneous operation.
  2. 제 1항에 있어서,The method according to claim 1,
    온수를 공급하는 상기 축열기반 운전모드는 축열 단독운전, 축열축냉 동시운전, 제상 운전 모드로 구성되며, The heat storage-based operation mode for supplying hot water is composed of heat storage single operation, storage heat storage simultaneous operation and defrost operation mode,
    온수를 공급하는 축열 단독운전은 압축기(10)에서 토출된 고압고온의 냉매가 사방변(20)을 거쳐 수냉식 응축기(a)를 통과하며, 상기 수냉식 응축기(a)에서 수열원으로 온수를 공급하며,In the single heat storage operation for supplying hot water, the high-pressure and high-temperature refrigerant discharged from the compressor 10 passes through the water-cooled condenser (a) through the four sides 20 and supplies hot water to the water heat source in the water- ,
    상기 수냉식 응축기(a)를 통과하여 응축된 냉매는 제 4체크밸브(C4)로 유동되며, 타측방향은 냉매 역유동방향으로의 제 2체크밸브(C2)로 인하여 유동되지 못하도록 형성되며, 상기 제 4체크밸브(C4)를 통과한 냉매는 분지되어, 각각의 서브열교환기(40)를 거치며, 전자팽창밸브1(45)에 의해 증발기에서 공기열을 더 확보할 수 있도록 과냉시키며, 다시 1개의 냉매로 합쳐지며, 전자팽창밸브2(50)을 지나지 않고, 제 1밸브(V1)가 열리며, 제 2밸브(V2) 및 제 3밸브(V3)는 닫히며, 전자팽창밸브3(60)를 통과하여 저압으로 압력이 저감된 후에, 공기열원인 공랭식 증발기(d)에서 증발되며, 이후 제 4밸브(V4)는 열리며, 제 5밸브(V5)는 닫히며, 사방변(20)을 지나 열교환된 냉매는 다시 압축기(10)로 흡입되도록 구성되며,The refrigerant condensed through the water-cooled condenser (a) flows to the fourth check valve (C4), and the other direction is formed so as not to flow due to the second check valve (C2) in the refrigerant reverse flow direction, The refrigerant passing through the four check valve C4 is branched and passes through each of the sub heat exchangers 40 and is subcooled by the electronic expansion valve 1 (45) so as to further secure the air heat in the evaporator. And the first valve V1 is opened without passing through the electronic expansion valve 2 50. The second valve V2 and the third valve V3 are closed and the electronic expansion valve 3 And then the fourth valve V4 is opened and the fifth valve V5 is closed and the heat exchange is performed through the four sides 20 and the heat exchange The refrigerant is again sucked into the compressor 10,
    온수와 냉수를 동시에 공급하는 상기 축열축냉 동시운전 모드는 수냉식 응축기(a)에서 응축된 냉매가 서브열교환기(40)를 통과하는 과정까지는 축열 단독 운전과 같으며, 통과된 냉매는 전자팽창밸브2(50)을 통과하여 저압으로 압력이 저감된 후에, 제 3밸브(V3)는 열리며, 제 1밸브(V1) 및 제 2밸브(V2)는 닫히며, 수열원인 수냉식 증발기(b)로 통과하여 증발되며, 제 4밸브(V4)는 닫히며, 제 5밸브(V5)는 열리며, 사방변(20)을 지나 열교환된 냉매는 다시 압축기(10)로 흡입되도록 구성되며,The heat storage and cooling operation mode simultaneously supplying the hot water and the cold water is the same as the heat storage single operation until the refrigerant condensed in the water-cooled condenser (a) passes through the sub heat exchanger (40) The third valve V3 is opened and the first valve V1 and the second valve V2 are closed and the refrigerant passes through the water-cooled evaporator b The fourth valve V4 is closed and the fifth valve V5 is opened so that the refrigerant heat exchanged through the four sides 20 is sucked into the compressor 10,
    축열기반 운전모드 중, 저외기일 경우 실외기의 공랭식 증발기(d) 공기핀 사이에 성에가 형성되기 때문에 능력이 저하되기 시작하는데, 이를 제상하기 위하여, In the case of low-temperature air-conditioning mode, the performance of the air-cooled evaporator (d) of the outdoor unit is deteriorated due to the formation of a gap between the air pins.
    상기 공랭식 증발기(d)에서 제상운전조건이 만족하는 경우, 축열기반 운전 모드의 역사이클 방식으로 사방변(20)이 작동하며, 압축기(10)에서 토출된 고압고온의 냉매가 작동된 사방변(20)을 거쳐 제 5밸브(V5)는 닫히며, 제 4밸브(V4)는 열리며, 공랭식 응축기(c)의 역할을 함과 동시에 고온의 냉매를 공급하여, 외부의 공기핀에 형성된 성에를 제거하며, When the defrosting operation condition is satisfied in the air-cooled evaporator (d), the four sides 20 operate in a reverse cycle mode of the heat storage based operation mode, and the four sides The fifth valve V5 is closed and the fourth valve V4 is opened to serve as the air-cooling type condenser c, and at the same time, the high-temperature refrigerant is supplied to the outside air pin Remove,
    상기 공랭식 응축기(c)를 통과하여 응축된 냉매는 저항이 작은 제 5체크밸브(C5)로 유동되며, 제 1밸브(V1) 및 제 3밸브(V3)는 닫히며, 제 2밸브(V2)는 열리며, 상기 제 5체크밸브(C5)를 통과한 냉매는 제 3체크밸브(C3)로 유동되며, 타측방향은 냉매 역유동방향으로의 제 1체크밸브(C1) 및 제 4체크밸브(C4)로 인하여 유동되지 못하도록 형성되며, 상기 제 3체크밸브(C3)를 통과한 냉매는 분지되어, 각각의 서브열교환기(40)를 거치며, 전자팽창밸브1(45)에 의해 증발기에서 공기열을 더 확보할 수 있도록 과냉시키며, 다시 1개의 냉매로 합쳐지며, 전자팽창밸브2(50)를 통과하여 저압으로 압력이 저감된 후에, 제 2체크밸브(V2)로 유동되며, 타측방향은 냉매 순방향으로 제 1체크밸브(C1) 및 제 4체크밸브(C4)로 유동되나, 제 2체크밸브(C2)를 지나는 냉매는 저압으로 형성되므로, 각 후단의 고압으로 인하여, 통과하지 못하게 되며, 수열원인 수냉식 증발기(b)에서 증발되며, 사방변(20)을 지나 열교환된 냉매는 다시 압축기(10)로 흡입되도록 반복 구성으로 제상이 이루어지도록 구성되고,The refrigerant condensed through the air-cooled condenser c flows to the fifth check valve C5 having a small resistance. The first valve V1 and the third valve V3 are closed and the second valve V2 is closed. The refrigerant having passed through the fifth check valve C5 flows to the third check valve C3 and the other direction is connected to the first check valve C1 and the fourth check valve And the refrigerant passing through the third check valve C3 is branched and flows through each of the sub heat exchangers 40 and the air heat is discharged from the evaporator by the electronic expansion valve 1 45 The refrigerant flows into the second check valve V2 after the pressure is reduced to the low pressure through the electronic expansion valve 2 50. The refrigerant flows in the refrigerant forward direction To the first check valve (C1) and the fourth check valve (C4). However, since the refrigerant passing through the second check valve (C2) is formed at a low pressure, So that the refrigerant is evaporated in the water-cooled evaporator (b) which is the hydrothermal source due to the high pressure at each rear end, and the defrosted refrigerant is repeatedly configured to be sucked into the compressor (10) And,
    냉수를 공급하는 축냉기반 운전모드는 축냉 단독운전, 축냉축열 동시운전 모드로 구성되며, The cold-cooling-based operation mode in which cold water is supplied is constituted by a simultaneous cooling operation mode and a simultaneous cold storage mode operation mode,
    냉수를 공급하는 축냉 단독운전은 사방변(20)이 작동하며, 압축기(10)에서 토출된 고압고온의 냉매가 작동된 사방변(20)을 거쳐 제 5밸브(V5)는 닫히며, 제 4밸브(V4)는 열리며, 공랭식 응축기(c)를 통과하여 냉매는 응축되며, The four sides 20 are operated and the fifth valve V5 is closed through the four sides 20 of the high pressure and high temperature refrigerant discharged from the compressor 10, The valve V4 is opened, the refrigerant is condensed through the air-cooled condenser c,
    상기 공랭식 응축기(c)를 통과하여 응축된 냉매는 저항이 작은 제 5체크밸브(C5)로 유동되며, 제 1밸브(V1) 및 제 3밸브(V3)는 닫히며, 제 2밸브(V2)는 열리며, 상기 제 5체크밸브(C5)를 통과한 냉매는 제 3체크밸브(C3)로 유동되며, 타측방향은 냉매 역유동방향으로의 제 1체크밸브(C1) 및 제 4체크밸브(C4)로 인하여 유동되지 못하도록 형성되며, 상기 제 3체크밸브(C3)를 통과한 냉매는 분지되어, 각각의 서브열교환기(40)를 거치며, 전자팽창밸브1(45)에 의해 증발기에서 공기열을 더 확보할 수 있도록 과냉시키며, 다시 1개의 냉매로 합쳐지며, 전자팽창밸브2(50)를 통과하여 저압으로 압력이 저감된 후에, 제 2체크밸브(V2)로 유동되며, 타측방향은 냉매 순방향으로 제 1체크밸브(C1) 및 제 4체크밸브(C4)로 유동되나, 제 2체크밸브(C2)를 지나는 냉매는 저압으로 형성되므로, 각 후단의 고압으로 인하여, 통과하지 못하게 되며, 수열원인 수냉식 증발기(b)에서 증발되며, 사방변(20)을 지나 열교환된 냉매는 다시 압축기(10)로 흡입되도록 구성되며,The refrigerant condensed through the air-cooled condenser c flows to the fifth check valve C5 having a small resistance. The first valve V1 and the third valve V3 are closed and the second valve V2 is closed. The refrigerant having passed through the fifth check valve C5 flows to the third check valve C3 and the other direction is connected to the first check valve C1 and the fourth check valve And the refrigerant passing through the third check valve C3 is branched and flows through each of the sub heat exchangers 40 and the air heat is discharged from the evaporator by the electronic expansion valve 1 45 The refrigerant flows into the second check valve V2 after the pressure is reduced to the low pressure through the electronic expansion valve 2 50. The refrigerant flows in the refrigerant forward direction To the first check valve (C1) and the fourth check valve (C4). However, since the refrigerant passing through the second check valve (C2) is formed at a low pressure, The refrigerant is evaporated in the water-cooled evaporator (b) which is the hydrothermal source, and the refrigerant heat-exchanged through the four sides 20 is sucked into the compressor 10 again,
    냉수와 온수를 동시에 공급하는 축냉축열 동시 운전모드는 사방변(20)이 작동하며, 압축기(10)에서 토출된 고압고온의 냉매가 작동된 사방변(20)을 거쳐 제 4밸브(V4)는 닫히며, 제 5밸브(V5)는 열리며, 수냉식 응축기(a)를 통과하여 냉매는 응축되며, 제 1밸브(V1), 제 2밸브(V2)는 닫히며, 제 3밸브(V3)는 열리며, 수냉식 응축기(a)에서 응축된 냉매가 제 3체크밸브(C3)로 유동되며, 타측방향은 냉매 역유동방향으로의 제 1체크밸브(C1) 및 제 4체크밸브(C4)로 인하여 유동되지 못하도록 형성되며, 상기 제 3체크밸브(C3)를 통과한 냉매는 분지되어, 각각의 서브열교환기(40)를 거치며, 전자팽창밸브1(45)에 의해 증발기에서 공기열을 더 확보할 수 있도록 과냉시키며, 다시 1개의 냉매로 합쳐지며, 전자팽창밸브2(50)를 통과하여 저압으로 압력이 저감된 후에, 제 2체크밸브(V2)로 유동되며, 타측방향은 냉매 순방향으로 제 1체크밸브(C1) 및 제 4체크밸브(C4)로 유동되나, 제 2체크밸브(C2)를 지나는 냉매는 저압으로 형성되므로, 각 후단의 고압으로 인하여, 통과하지 못하게 되며, 수열원인 수냉식 증발기(b)에서 증발되며, 사방변(20)을 지나 열교환된 냉매는 다시 압축기(10)로 흡입되도록 구성되며,The four-way valve 20 operates in the coaxial heat storage simultaneous operation mode in which the cold water and the hot water are supplied at the same time, and the fourth valve V4 through the four sides 20 where the refrigerant of high pressure and high temperature discharged from the compressor 10 is operated The first valve V1 and the second valve V2 are closed and the third valve V3 is closed while the fifth valve V5 is opened and the refrigerant is condensed through the water-cooled condenser a, The refrigerant condensed in the water-cooled condenser (a) flows to the third check valve (C3), and the other direction is due to the first check valve (C1) and the fourth check valve (C4) in the refrigerant reverse flow direction And the refrigerant having passed through the third check valve C3 is branched so as to pass through each of the sub heat exchangers 40 and to further secure the air heat in the evaporator by the electronic expansion valve 1 45 After the pressure is reduced to a low pressure through the electronic expansion valve 2 (50), the second check valve (V2) And the refrigerant passing through the second check valve C2 is formed at a low pressure, so that the refrigerant flowing through the first check valve C1 and the fourth check valve C4 And is evaporated in the water-cooled evaporator (b) which is the hydrothermal source, and the refrigerant heat-exchanged through the four sides 20 is sucked into the compressor 10 again,
    온수 또는 냉수만을 공급하는 공기열원 기반 운전모드는 축열 및 축냉기반 모드와 동일하며, 온수를 생산하는 축열기반 운전 모드에서 사방변(20)을 작동시켜, 냉수를 생산하는 축냉기반 운전 모드로 자동 전환이 가능하며, The air heat source based operation mode for supplying only hot water or cold water is the same as the heat accumulation and cooling operation based mode. In the heat accumulation based operation mode for producing hot water, the four sides (20) are operated to automatically switch to the hot water cooling operation mode Lt; / RTI &gt;
    온수와 냉수를 동시에 공급하는 수열원 기반 운전모드는 실외기를 거치지 않고 실내기의 수냉식 응축기(a) 및 수냉식 증발기(b)를 사용함으로써, 축열기반의 축열축냉 동시 운전 모드와 축냉기반의 축냉축열 동시 운전 모드로 구성되며, 축열기반모드에서 축냉기반 모드 동시 선택시에는 축열축냉 동시 운전 모드로 작동되며, 사방변(20)이 작동하여 냉매의 흐름이 전환되어 축냉기반 모드에서 축열기반 모드 동시 선택시에는 축냉축열 동시 운전 모드로 작동되며,(A) and the water-cooled evaporator (b) of the indoor unit without using the outdoor unit, the heat-source-based operation mode in which the hot water and the cold water are supplied at the same time, Mode. In simultaneous selection of the cooling-based mode in the heat-storage-based mode, the mode is operated in the heat-storage-cooling mode and the simultaneous operation mode in the heat-storage-based mode. It is operated in the simultaneous operation mode,
    공기열원 및 수열원을 히트펌프의 열원으로 이용하여, 동시에 사용하면서 축열 기반, 축냉 기반, 공기열원 기반, 수열원 기반 총 4가지 기반의 운전 모드를 상호 선택적으로 전환 사용할 수 있고, 상호간 운전모드가 전환되더라도, 각각의 기반 내의 축열 단독, 축냉 단독, 축열축냉 동시, 축냉축열 동시, 제상 운전 모드는 사방변(20)과 제1~5밸브(V1~V5)를 사용하여 저압축비에서 압축기(10)가 정지하지 않으면서도 자동 전환으로 연속적으로 구동되도록,The air heat source and the heat source are used as the heat source of the heat pump and the four operation modes based on the heat storage base, the cooling base, the air heat source base and the heat source base can be selectively switched and used mutually. The compressor 10 is operated at low compression ratios using the four sides 20 and the first to fifth valves V1 to V5 at the low compression ratio, ) Is not stopped but is continuously driven by automatic switching,
    이루어지는 것을 특징으로 하는 공기열원 축냉운전 또는 축열운전과 수열원 축냉축열 동시운전 또는 축열축냉 동시운전을 갖는 다중열원 멀티 히트펌프 시스템.Wherein the air heat source is one of a heat source and a heat source.
  3. 제 1항에 있어서,The method according to claim 1,
    공랭식 증발기(d)를 실외기(Outdoor), 상기 공랭식 증발기(d)를 제외한 나머지 구성들을 실내기(Indoor)로 분리하도록 구성하며, 실내기만 단독 설치 시 수열원 히트펌프의 기능을 수행하며, 수열원 기반의 모드를 사용 할 수 있으며, 실외기까지 설치 시 수열원과 공기열원 히트펌프의 기능을 전부 수행할 수 있어, 4가지 기반의 기반 모드를 다 사용할 수 있고, 또한, 실외기는 공랭식 증발기(d)로만 구성이 되어 실외기 설치 시 좁은 공간에도 쉽게 설치가 가능하며, 분리된 실내기와 연결 시, 동배관 및 통신선, 전원선만 연결하는 구성으로 먼거리에도 쉽게 구성이 가능하며, 설치시간을 줄이고 설치비용 또한 저렴한 특징을 가지는 분리형 구조인 것을 특징으로 하는 공기열원 축냉운전 또는 축열운전과 수열원 축냉축열 동시운전 또는 축열축냉 동시운전을 갖는 다중열원 멀티 히트펌프 시스템.The air-cooled evaporator (d) is configured to separate the remaining components except the outdoor unit and the air-cooled evaporator (d) into indoor units. The indoor unit performs the function of the heat source heat pump only when the indoor unit is installed alone. Mode, and when the outdoor unit is installed, it can perform all the functions of the hydrothermal source and the heat source heat pump of the air heat source, so that four base modes can be used, and the outdoor unit can be used only with the air- It can be easily installed in a small space when installing an outdoor unit. When connecting to a separate indoor unit, it can be easily configured for long distances by connecting copper pipes, communication lines and power lines only. Characterized in that it is a separate type structure having a feature of separating air from the heat source, The ten won multiple multi heat pump system.
  4. 제 1항에 있어서,The method according to claim 1,
    상기 수냉식 응축기(a) 및 수냉식 증발기(b) 입수측에 온도센서(T1,T2)를 설치하고, 상기 온도센서(T1,T2)의 온도가 사전설정 축열온도 또는 사전설정 축냉온도를 충족하는 경우 압축기(10)를 정지시키는 것이며, Wherein temperature sensors T1 and T2 are provided on the water intake side of the water-cooled condenser (a) and water-cooled evaporator (b), and when the temperature of the temperature sensors T1 and T2 satisfies a preset storage temperature or a preset temperature The compressor 10 is stopped,
    온도센서(T1,T2)의 온도가 사전설정 축열온도 또는 사전설정 축냉온도를 충족하지 않는 경우에는 압축기(10)작동을 정지하지 않고, 연속운전할 수 있도록 하는 것을 특징으로 하는 공기열원 축냉운전 또는 축열운전과 수열원 축냉축열 동시운전 또는 축열축냉 동시운전을 갖는 다중열원 멀티 히트펌프 시스템.When the temperature of the temperature sensors (T1, T2) does not satisfy the predetermined storage heat temperature or the preset cooling temperature, the operation of the compressor (10) is not stopped and continuous operation is possible Multiple Heat Source Multi Heat Pump System with Heat Storage Operation and Simultaneous Heat Storage Circulation Heat Storage Simultaneous Operation or Heat Storage and Cooling Simultaneous Operation.
  5. 제 1항에 있어서,The method according to claim 1,
    또한, 상기 압축기(10)의 전, 후단에는 각각 제 1, 2압력센서(P1, P2)가 설치되고, 수냉식 응축기(a) 및 수냉식 증발기(b)의 입수측 온도센서(T1, T2)가 설치되며,The first and second pressure sensors P1 and P2 are provided at the front and rear ends of the compressor 10 and the inlet side temperature sensors T1 and T2 of the water-cooled condenser a and the water- Installed,
    공랭식 증발기(d) 측에 외기 온도센서(T3)가 설치되도록 구성하여,And the outside air temperature sensor T3 is installed on the side of the air-cooled evaporator (d)
    사전설정 고압과 사전설정 저압의 비에 따라 전환 또는 입수온도, 외기온도에 따라 4가지 기반의 축열, 축냉, 공기열원, 수열원 기반 내의 축열단독, 축냉단독, 축열축냉 동시, 축냉축열 동시, 제상 운전 모드가 자동 전환 제어하는 것을 특징으로 하는 공기열원 축냉운전 또는 축열운전과 수열원 축냉축열 동시운전 또는 축열축냉 동시운전을 갖는 다중열원 멀티 히트펌프 시스템.Depending on the ratio of pre-set high pressure and preset low pressure, it can be switched or taken depending on the temperature and outside temperature, 4 kinds of base heat storage, cold storage, air heat source, thermal storage alone in the heat source base, And the operation mode is automatically controlled to be switched. The multi-heat source multi-heat pump system having the air heat source cooling operation or the heat storage operation and the simultaneous operation of heat source heat accumulation and heat accumulation or the heat accumulation and cooling simultaneous operation.
  6. 공기열원 및 수열원을 히트펌프의 열원으로 이용하여, 축열 기반, 축냉 기반, 공기열원 기반, 수열원 기반 총 4가지 기반의 운전 모드 제어를 선택적으로 운전가능한 구조를 가지는 것으로, 기반 내에서의 운전 모드 제어는 서로 자동 전환이 가능한 것을 특징으로 하는 공기열원 축냉운전 또는 축열운전과 수열원 축냉축열 동시운전 또는 축열축냉 동시운전을 갖는 다중열원 멀티 히트펌프 시스템의 제어방법. The air heat source and the heat source are used as the heat source of the heat pump to have a structure capable of selectively operating the operation mode control based on the heat storage base, cooling base, air heat source base, Wherein the mode control is capable of automatically switching from one to another. The method for controlling a multi-heat source multi-heat pump system having an air heat source, a heat storage operation or a heat storage operation,
  7. 제 6항에 있어서,The method according to claim 6,
    온수를 공급하는 축열기반 운전 모드 제어는 축열 단독운전, 축열축냉 동시운전, 제상 운전 모드 제어로 구성되며, The heat storage based operation mode control for supplying hot water is composed of single heat storage operation, simultaneous operation of heat storage and cooling, and defrost operation mode control,
    온수를 공급하는 축열 단독운전 제어는 압축기(10)에서 토출된 고압고온의 냉매가 사방변(20)을 거쳐 수냉식 응축기(a)를 통과하며, 상기 수냉식 응축기(a)에서 수열원으로 온수를 공급하는 단계(S110);In the heat storage single operation control for supplying hot water, the high-pressure and high-temperature refrigerant discharged from the compressor 10 passes through the water-cooled condenser (a) through the four sides 20 and the hot water is supplied to the water heat source (S110);
    상기 수냉식 응축기(a)를 통과하여 응축된 냉매는 제 4체크밸브(C4)로 유동되며, 타측방향은 냉매 역유동방향으로의 제 2체크밸브(C2)로 인하여 유동되지 못하도록 형성되며, 상기 제 4체크밸브(C4)를 통과한 냉매는 분지되어, 각각의 서브열교환기(40)를 거치며, 전자팽창밸브1(45)에 의해 증발기에서 공기열을 더 확보할 수 있도록 과냉시키는 단계(S120); The refrigerant condensed through the water-cooled condenser (a) flows to the fourth check valve (C4), and the other direction is formed so as not to flow due to the second check valve (C2) in the refrigerant reverse flow direction, 4, the refrigerant having passed through the check valve C4 is branched and subcooled (S120) through each sub-heat exchanger 40 so as to further secure the air heat in the evaporator by the electronic expansion valve 1 (45);
    상기 다시 1개의 냉매로 합쳐지며, 전자팽창밸브2(50)를 지나지 않고, 제 1밸브(V1)가 열리며, 제 2밸브(V2) 및 제 3밸브(V3)는 닫히며, 전자팽창밸브3(60)를 통과하여 저압으로 압력이 저감된 후에, 공기열원인 공랭식 증발기(d)에서 증발되는 단계(S130);The first valve V1 is opened without passing through the electronic expansion valve 2 50 and the second valve V2 and the third valve V3 are closed, 3 (60), the pressure is reduced to a low pressure, and then the air is evaporated in the air-cooled evaporator (c) (S130);
    상기 이후 제 4밸브(V4)는 열리며, 제 5밸브(V5)는 닫히며, 열교환된 냉매는 사방변(20)을 지나 다시 압축기(10)로 흡입되도록 구성되는 단계(S140); 로 이루어지고,The fourth valve V4 is opened, the fifth valve V5 is closed, and the heat-exchanged refrigerant is sucked into the compressor 10 through the four sides 20 (S140); Lt; / RTI &gt;
    온수와 냉수를 동시에 공급하는 축열축냉 동시운전 제어는 수냉식 응축기(a)에서 응축된 냉매가 서브열교환기(40)를 통과하는 과정까지는 축열 단독 운전과 같으며,  The simultaneous operation of regenerating the hot and cold water simultaneously with the hot water and the cold water is the same as the operation of storing heat until the refrigerant condensed in the water-cooled condenser (a) passes through the sub heat exchanger (40)
    상기 통과된 냉매는 전자팽창밸브2(50)을 통과하여 저압으로 압력이 저감된 후에, 제 3밸브(V3)는 열리며, 제 1밸브(V1) 및 제 2밸브(V2)는 닫히며, 수열원인 수냉식 증발기(b)로 통과하여 증발되는 단계(S210); After the refrigerant passed through the EEV 50 is reduced to a low pressure, the third valve V3 is opened, the first valve V1 and the second valve V2 are closed, (S210) through evaporation through a water-cooled evaporator (b);
    상기 제 4밸브(V4)는 닫히며, 제 5밸브(V5)는 열리며, 열교환된 냉매는 사방변(20)을 지나 다시 압축기(10)로 흡입되도록 구성되는 단계(S220); 로 이루어지고, The fourth valve V4 is closed, the fifth valve V5 is opened, and the heat-exchanged refrigerant is sucked into the compressor 10 through the four sides 20 (S220); Lt; / RTI &gt;
    축열기반 운전모드 제어의 축열 단독운전 제어 중, 저외기일 경우 실외기의 공랭식 증발기(d) 공기핀 사이에 성에가 형성되기 때문에 능력이 저하되기 시작하는데, 이를 제상하기 위하여, In the case of low-temperature operation, the performance of the air-cooled evaporator (d) of the outdoor unit is deteriorated due to the formation of an air gap between the air pins.
    상기 공랭식 증발기(d)에서 제상운전조건이 만족하는 경우, 축열기반 운전 모드 제어의 역사이클 방식으로 사방변(20)이 작동하며, 압축기(10)에서 토출된 고압고온의 냉매가 작동된 사방변(20)을 거쳐 제 5밸브(V5)는 닫히며, 제 4밸브(V4)는 열리며, 공랭식 응축기(c)의 역할을 함과 동시에 고온의 냉매를 공급하여, 외부의 공기핀에 형성된 성에를 제거하는 단계(S310); When the defrosting operation condition is satisfied in the air-cooled evaporator (d), the four sides 20 operate in a reverse cycle mode of the heat storage-based operation mode control, and the refrigerant discharged from the compressor 10, The fifth valve V5 is closed and the fourth valve V4 is opened to serve as the air-cooling type condenser c, and at the same time, the high-temperature refrigerant is supplied, (S310);
    상기 공랭식 응축기(c)를 통과하여 응축된 냉매는 저항이 작은 제 5체크밸브(C5)로 유동되며, 제 1밸브(V1) 및 제 3밸브(V3)는 닫히며, 제 2밸브(V2)는 열리며, 상기 제 5체크밸브(C5)를 통과한 냉매는 제 3체크밸브(C3)로 유동되며, 타측방향은 냉매 역유동방향으로의 제 1체크밸브(C1) 및 제 4체크밸브(C4)로 인하여 유동되지 못하도록 형성되며, 상기 제 3체크밸브(C3)를 통과한 냉매는 분지되어, 각각의 서브열교환기(40)를 거치며, 전자팽창밸브1(45)에 의해 증발기에서 공기열을 더 확보할 수 있도록 과냉시키는 단계(S320);The refrigerant condensed through the air-cooled condenser c flows to the fifth check valve C5 having a small resistance. The first valve V1 and the third valve V3 are closed and the second valve V2 is closed. The refrigerant having passed through the fifth check valve C5 flows to the third check valve C3 and the other direction is connected to the first check valve C1 and the fourth check valve And the refrigerant passing through the third check valve C3 is branched and flows through each of the sub heat exchangers 40 and the air heat is discharged from the evaporator by the electronic expansion valve 1 45 (S320);
    상기 다시 1개의 냉매로 합쳐지며, 전자팽창밸브2(50)를 통과하여 저압으로 압력이 저감된 후에, 제 2체크밸브(V2)로 유동되며, 타측방향은 냉매 순방향으로 제 1체크밸브(C1) 및 제 4체크밸브(C4)로 유동되나, 제 2체크밸브(C2)를 지나는 냉매는 저압으로 형성되므로, 각 후단의 고압으로 인하여, 통과하지 못하게 되며, 수열원인 수냉식 증발기(b)에서 증발되는 단계(S330);The refrigerant flows to the second check valve V2 after the pressure is reduced to a low pressure through the electronic expansion valve 2 (50), and the other direction flows through the first check valve C1 The refrigerant passing through the second check valve C2 is prevented from passing through due to the high pressure at the rear end because the refrigerant passing through the second check valve C2 is low in pressure and evaporated in the water- (S330);
    상기 열교환된 냉매는 사방변(20)을 지나 다시 압축기(10)로 흡입되는 단계(S340); 로 이루어지고,Exchanged refrigerant is sucked into the compressor 10 through the four sides 20 (S340); Lt; / RTI &gt;
    냉수를 공급하는 축냉기반 운전모드 제어는 축냉 단독운전, 축냉축열 동시운전 모드 제어로 구성되며, Cooling-based operation mode control for supplying cold water is composed of simultaneous cooling and simultaneous operation mode control of the combined heat and cold storage,
    냉수를 공급하는 축냉 단독운전 제어는 사방변(20)이 작동하며, 압축기(10)에서 토출된 고압고온의 냉매가 작동된 사방변(20)을 거쳐 제 5밸브(V5)는 닫히며, 제 4밸브(V4)는 열리며, 공랭식 응축기(c)를 통과하여 냉매는 응축되는 단계(S410); The cold storage single operation control for supplying the cold water operates the four sides 20 and the fifth valve V5 is closed through the four sides 20 where the high temperature and high temperature refrigerant discharged from the compressor 10 is operated, 4 valve (V4) is opened and the refrigerant is condensed through the air-cooled condenser (c) (S410);
    상기 공랭식 응축기(c)를 통과하여 응축된 냉매는 저항이 작은 제 5체크밸브(C5)로 유동되며, 제 1밸브(V1) 및 제 3밸브(V3)는 닫히며, 제 2밸브(V2)는 열리며, 상기 제 5체크밸브(C5)를 통과한 냉매는 제 3체크밸브(C3)로 유동되며, 타측방향은 냉매 역유동방향으로의 제 1체크밸브(C1) 및 제 4체크밸브(C4)로 인하여 유동되지 못하도록 형성되며, 상기 제 3체크밸브(C3)를 통과한 냉매는 분지되어, 각각의 서브열교환기(40)를 거치며, 전자팽창밸브1(45)에 의해 증발기에서 공기열을 더 확보할 수 있도록 과냉시키는 단계(S420);The refrigerant condensed through the air-cooled condenser c flows to the fifth check valve C5 having a small resistance. The first valve V1 and the third valve V3 are closed and the second valve V2 is closed. The refrigerant having passed through the fifth check valve C5 flows to the third check valve C3 and the other direction is connected to the first check valve C1 and the fourth check valve And the refrigerant passing through the third check valve C3 is branched and flows through each of the sub heat exchangers 40 and the air heat is discharged from the evaporator by the electronic expansion valve 1 45 A step of subcooling (S420) so as to secure more;
    상기 다시 1개의 냉매로 합쳐지며, 전자팽창밸브2(50)를 통과하여 저압으로 압력이 저감된 후에, 제 2체크밸브(V2)로 유동되며, 타측방향은 냉매 순방향으로 제 1체크밸브(C1) 및 제 4체크밸브(C4)로 유동되나, 제 2체크밸브(C2)를 지나는 냉매는 저압으로 형성되므로, 각 후단의 고압으로 인하여, 통과하지 못하게 되며, 수열원인 수냉식 증발기(b)에서 증발되는 단계(S430);The refrigerant flows to the second check valve V2 after the pressure is reduced to a low pressure through the electronic expansion valve 2 (50), and the other direction flows through the first check valve C1 The refrigerant passing through the second check valve C2 is prevented from passing through due to the high pressure at the rear end because the refrigerant passing through the second check valve C2 is low in pressure and evaporated in the water- (S430);
    상기 열교환된 냉매는 사방변(20)을 지나 다시 압축기(10)로 흡입되도록 구성되는 단계(S440); 로 이루어지고,Exchanged refrigerant is sucked into the compressor 10 after passing through the four sides (S440); Lt; / RTI &gt;
    냉수와 온수를 동시에 공급하는 축냉축열 동시 운전모드 제어는 사방변(20)이 작동하며, 압축기(10)에서 토출된 고압고온의 냉매가 작동된 사방변(20)을 거쳐 제 4밸브(V4)는 닫히며, 제 5밸브(V5)는 열리며, 수냉식 응축기(a)를 통과하여 냉매는 응축되는 단계(S510);The cold storage and simultaneous operation mode control simultaneously supplying the cold water and the hot water operates the four sides 20 and operates the fourth valve V4 through the four sides 20 on which the refrigerant of high pressure and high temperature discharged from the compressor 10 is operated, The fifth valve V5 is opened, and the refrigerant is condensed through the water-cooled condenser a (S510);
    상기 제 1밸브(V1), 제 2밸브(V2)는 닫히며, 제 3밸브(V3)는 열리며, 수냉식 응축기(a)에서 응축된 냉매가 제 3체크밸브(C3)로 유동되며, 타측방향은 냉매 역유동방향으로의 제 1체크밸브(C1) 및 제 4체크밸브(C4)로 인하여 유동되지 못하도록 형성되며, 상기 제 3체크밸브(C3)를 통과한 냉매는 분지되어, 각각의 서브열교환기(40)를 거치며, 전자팽창밸브1(45)에 의해 증발기에서 공기열을 더 확보할 수 있도록 과냉시키는 단계(S520); The first valve V1 and the second valve V2 are closed and the third valve V3 is opened so that the refrigerant condensed in the water-cooled condenser a flows to the third check valve C3, Direction is formed to be prevented from flowing due to the first check valve C1 and the fourth check valve C4 in the refrigerant reverse flow direction and the refrigerant passing through the third check valve C3 is branched, A step (S520) of subcooling through the heat exchanger (40) so as to further secure the air heat in the evaporator by the electronic expansion valve (1) (45);
    상기 다시 1개의 냉매로 합쳐지며, 전자팽창밸브2(50)를 통과하여 저압으로 압력이 저감된 후에, 제 2체크밸브(V2)로 유동되며, 타측방향은 냉매 순방향으로 제 1체크밸브(C1) 및 제 4체크밸브(C4)로 유동되나, 제 2체크밸브(C2)를 지나는 냉매는 저압으로 형성되므로, 각 후단의 고압으로 인하여, 통과하지 못하게 되며, 수열원인 수냉식 증발기(b)에서 증발되는 단계(S530); The refrigerant flows to the second check valve V2 after the pressure is reduced to a low pressure through the electronic expansion valve 2 (50), and the other direction flows through the first check valve C1 The refrigerant passing through the second check valve C2 is prevented from passing through due to the high pressure at the rear end because the refrigerant passing through the second check valve C2 is low in pressure and evaporated in the water- (S530);
    상기 열교환된 냉매는 사방변(20)을 지나 다시 압축기(10)로 흡입되도록 구성되는 단계(S540); 로 이루어지고,Exchanged refrigerant is sucked into the compressor 10 through the four sides 20 (S540); Lt; / RTI &gt;
    온수 또는 냉수만을 공급하는 공기열원 기반 운전모드 제어는 축열 및 축냉기반 모드 제어와 동일하며, 온수를 생산하는 축열기반 운전 모드 제어에서 사방변(20)을 작동시켜, 냉수를 생산하는 축냉기반 운전 모드 제어로 자동 전환이 가능하며, The air heat source based operation mode control that supplies only hot water or cold water is the same as the heat mode control based on heat storage and hot air cooling. In the heat storage based operation mode control for producing hot water, the cold water based operation mode Control can be automatically switched,
    온수와 냉수를 동시에 공급하는 수열원 기반 운전모드 제어는 실외기를 거치지 않고 실내기의 수냉식 응축기(a) 및 수냉식 증발기(b)를 사용함으로써, 축열기반의 축열축냉 동시 운전 모드 제어와 축냉기반의 축냉축열 동시 운전 모드 제어로 구성되며, 축열기반 모드 제어에서 축냉기반 모드 제어 동시 선택시에는 축열축냉 동시 운전 모드 제어로 작동되며, 사방변(20)이 작동하여 냉매의 흐름이 전환되어 축냉기반 모드 제어에서 축열기반 모드 제어 동시 선택시에는 축냉축열 동시 운전 모드 제어로 작동되며,The heat source based operation mode control that simultaneously supplies hot water and cold water uses the water-cooled condenser (a) and water-cooled evaporator (b) of the indoor unit without going through the outdoor unit, And simultaneous operation mode control. In the case of simultaneous selection of the cooling-based mode control in the regenerative-based mode control, the regeneration mode is operated by the regenerative cooling and simultaneous operation mode control, and the refrigerant flow is switched by operating the four sides (20) In case of simultaneous selection of heat storage based mode control,
    공기열원 및 수열원을 히트펌프의 열원으로 이용하여, 동시에 사용하면서 축열 기반, 축냉 기반, 공기열원 기반, 수열원 기반 총 4가지 기반의 운전 모드 제어를 상호간 선택적으로 전환 사용할 수 있고, 상호간 운전모드 제어가 전환되더라도, 각각의 기반 내의 축열 단독, 축냉 단독, 축열축냉 동시, 축냉축열 동시, 제상 운전 모드 제어는 사방변(20)과 제1∼5밸브(V1∼V5)를 사용하여 저압축비에서 압축기(10)가 정지하지 않으면서도 자동 전환으로 연속적으로 구동되어 이루어지는 것을 특징으로 하는 공기열원 축냉운전 또는 축열운전과 수열원 축냉축열 동시운전 또는 축열축냉 동시운전을 갖는 다중열원 멀티 히트펌프 시스템의 제어방법.The air heat source and the heat source are used as the heat source of the heat pump and the four operation modes based on the heat storage base, the cooling base, the air heat source base and the hydrothermal source can be selectively switched between mutually operating modes The control of the defrosting operation mode is performed at the low compression ratio using the four sides 20 and the first to fifth valves V1 to V5, Wherein the compressor (10) is continuously driven by automatic switching while the compressor (10) is not stopped. The air conditioner according to any one of claims 1 to 3, wherein the air conditioner Way.
  8. 제 6항에 있어서,The method according to claim 6,
    공랭식 증발기(d)를 실외기(Outdoor), 상기 공랭식 증발기(d)를 제외한 나머지 구성들을 실내기(Indoor)로 분리하도록 구성하며, 실내기만 단독 설치 시 수열원 히트펌프의 기능을 수행하며, 수열원 기반의 모드를 사용 할 수 있으며, 실외기까지 설치 시 수열원과 공기열원 히트펌프의 기능을 전부 수행할 수 있어, 4가지 기반의 기반 모드를 다 사용할 수 있고, 또한, 실외기는 공랭식 증발기(d)로만 구성이 되어 실외기 설치 시 좁은 공간에도 쉽게 설치가 가능하며, 분리된 실내기와 연결 시, 동배관 및 통신선, 전원선만 연결하는 구성으로 먼거리에도 쉽게 구성이 가능하며, 설치시간을 줄이고 설치비용 또한 저렴한 특징을 가지는 분리형 구조인 것을 특징으로 하는 공기열원 축냉운전 또는 축열운전과 수열원 축냉축열 동시운전 또는 축열축냉 동시운전을 갖는 다중열원 멀티 히트펌프 시스템의 제어방법.The air-cooled evaporator (d) is configured to separate the remaining components except the outdoor unit and the air-cooled evaporator (d) into indoor units. The indoor unit performs the function of the heat source heat pump only when the indoor unit is installed alone. Mode, and when the outdoor unit is installed, it can perform all the functions of the hydrothermal source and the heat source heat pump of the air heat source, so that four base modes can be used, and the outdoor unit can be used only with the air- It can be easily installed in a small space when installing an outdoor unit. When connecting to a separate indoor unit, it can be easily configured for long distances by connecting copper pipes, communication lines and power lines only. Characterized in that it is a separate type structure having a feature of separating air from the heat source, Is a method of controlling a multi-ten won multi heat pump system.
  9. 제 6항에 있어서,The method according to claim 6,
    상기 수냉식 응축기(a) 및 수냉식 증발기(b) 입수측에 온도센서(T1,T2)를 설치하고, 상기 온도센서(T1,T2)의 온도가 사전설정 축열온도 또는 사전설정 축냉온도를 충족하는 경우 압축기(10)를 정지시키는 것이며, Wherein temperature sensors T1 and T2 are provided on the water intake side of the water-cooled condenser (a) and water-cooled evaporator (b), and when the temperature of the temperature sensors T1 and T2 satisfies a preset storage temperature or a preset temperature The compressor 10 is stopped,
    온도센서(T1,T2)의 온도가 사전설정 축열온도 또는 사전설정 축냉온도를 충족하지 않는 경우에는 압축기(10)작동을 정지하지 않고, 연속운전할 수 있도록 하는 것을 특징으로 하는 공기열원 축냉운전 또는 축열운전과 수열원 축냉축열 동시운전 또는 축열축냉 동시운전을 갖는 다중열원 멀티 히트펌프 시스템의 제어방법.When the temperature of the temperature sensors (T1, T2) does not satisfy the predetermined storage heat temperature or the preset cooling temperature, the operation of the compressor (10) is not stopped and continuous operation is possible A Method for Controlling a Multiple Heat Source Multi Heat Pump System with Simultaneous Operation of Heat Storage Operation and Simultaneous Heat Storage and Storage Heat Storage Operation.
  10. 제 6항에 있어서,The method according to claim 6,
    상기 압축기(10)의 전, 후단에는 각각 제 1, 2압력센서(P1, P2)가 설치되고, 수냉식 응축기(a) 및 수냉식 증발기(b)의 입수측 온도센서(T1, T2)가 설치되며,The first and second pressure sensors P1 and P2 are installed at the front and rear ends of the compressor 10 and the inlet side temperature sensors T1 and T2 of the water-cooled condenser a and the water- ,
    공랭식 증발기(d) 측에 외기 온도센서(T3)가 설치되도록 구성하여,And the outside air temperature sensor T3 is installed on the side of the air-cooled evaporator (d)
    사전설정 고압과 사전설정 저압의 비에 따라 전환 또는 입수온도, 외기온도에 따라 4가지 기반의 축열, 축냉, 공기열원, 수열원 기반 내의 축열단독, 축냉단독, 축열축냉 동시, 축냉축열 동시, 제상 운전 모드 제어가 자동 전환 제어하는 것을 특징으로 하는 공기열원 축냉운전 또는 축열운전과 수열원 축냉축열 동시운전 또는 축열축냉 동시운전을 갖는 다중열원 멀티 히트펌프 시스템의 제어방법.Depending on the ratio of pre-set high pressure and preset low pressure, it can be switched or taken depending on the temperature and outside temperature, 4 kinds of base heat storage, cold storage, air heat source, thermal storage alone in the heat source base, Wherein the operation mode control is an automatic switching control, wherein the air heat source cooling operation or the heat storage operation and the control of the multi-heat source multi-heat pump system having the heat source heat accumulation heat accumulation heat accumulation operation or the accumulation heat accumulation cooling simultaneous operation are performed.
PCT/KR2017/010327 2017-09-06 2017-09-20 Multiple heat source multi-heat pump system having air heat source cold storage operation or heat storage operation and water heat source cold storage and heat storage concurrent operation or heat storage and cold storage concurrent operation, and control method WO2019050077A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PH12020500437A PH12020500437A1 (en) 2017-09-06 2020-03-04 Multiple heat source multi heat pump system with air heat source cooling operation, air heat source heating operation , water heat source cooling and heating simultaneous heat, water heat source heating and cooling simultaneous operation

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020170113981A KR101961169B1 (en) 2017-09-06 2017-09-06 Multiple Heat Source Multi Heat Pump System with Air Heat Source Cooling Operation, Air Heat Source Heating Operation, Water Heat Source Cooling and Heating Simultaneous Operation, Water Heat Source Heating and Cooling Simultaneous Operation
KR10-2017-0113982 2017-09-06
KR1020170113982A KR101961170B1 (en) 2017-09-06 2017-09-06 Method for Multiple Heat Source Multi Heat Pump System with Air Heat Source Cooling Operation, Air Heat Source Heating Operation, Water Heat Source Cooling and Heating Simultaneous Operation, Water Heat Source Heating and Cooling Simultaneous Operation
KR10-2017-0113981 2017-09-06

Publications (1)

Publication Number Publication Date
WO2019050077A1 true WO2019050077A1 (en) 2019-03-14

Family

ID=65635107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/010327 WO2019050077A1 (en) 2017-09-06 2017-09-20 Multiple heat source multi-heat pump system having air heat source cold storage operation or heat storage operation and water heat source cold storage and heat storage concurrent operation or heat storage and cold storage concurrent operation, and control method

Country Status (2)

Country Link
PH (1) PH12020500437A1 (en)
WO (1) WO2019050077A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110173779A (en) * 2019-05-29 2019-08-27 中国科学院广州能源研究所 A kind of big temperature difference cold supply system of combined type and its control method
CN112240615A (en) * 2020-05-19 2021-01-19 青岛腾远设计事务所有限公司 Cold and heat accumulation system
CN114938611A (en) * 2022-06-08 2022-08-23 中国矿业大学 Multi-energy complementary disaster recovery backup data center thermal management system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050069734A (en) * 2003-12-31 2005-07-05 (주)이앤이 시스템 Regenerative geothermal heat pump unit
JP3126239U (en) * 2006-08-05 2006-10-19 豊 宇久田 Air conditioner
KR20090044885A (en) * 2007-11-01 2009-05-07 원에이치피산업 주식회사 Heat pump type air conditioning and heating system
KR101647285B1 (en) * 2016-05-02 2016-08-10 박을병 Thermal storage air conditioning system that can perform sequential or simultaneous frost accumulation and emissions or heat storage and dissipation by using a single heat exchanger and its control method
KR20170086336A (en) * 2016-01-18 2017-07-26 (주) 지산에너텍 Drying equipment having heat pump combined thermal storage tank and cool storage tank and drying method using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050069734A (en) * 2003-12-31 2005-07-05 (주)이앤이 시스템 Regenerative geothermal heat pump unit
JP3126239U (en) * 2006-08-05 2006-10-19 豊 宇久田 Air conditioner
KR20090044885A (en) * 2007-11-01 2009-05-07 원에이치피산업 주식회사 Heat pump type air conditioning and heating system
KR20170086336A (en) * 2016-01-18 2017-07-26 (주) 지산에너텍 Drying equipment having heat pump combined thermal storage tank and cool storage tank and drying method using the same
KR101647285B1 (en) * 2016-05-02 2016-08-10 박을병 Thermal storage air conditioning system that can perform sequential or simultaneous frost accumulation and emissions or heat storage and dissipation by using a single heat exchanger and its control method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110173779A (en) * 2019-05-29 2019-08-27 中国科学院广州能源研究所 A kind of big temperature difference cold supply system of combined type and its control method
CN110173779B (en) * 2019-05-29 2024-05-17 中国科学院广州能源研究所 Combined type large-temperature-difference cooling system and control method thereof
CN112240615A (en) * 2020-05-19 2021-01-19 青岛腾远设计事务所有限公司 Cold and heat accumulation system
CN114938611A (en) * 2022-06-08 2022-08-23 中国矿业大学 Multi-energy complementary disaster recovery backup data center thermal management system
CN114938611B (en) * 2022-06-08 2023-02-21 中国矿业大学 Multi-energy complementary disaster recovery backup data center thermal management system

Also Published As

Publication number Publication date
PH12020500437A1 (en) 2021-01-25

Similar Documents

Publication Publication Date Title
WO2015111847A1 (en) Heat pump system for vehicle
WO2020145527A1 (en) Thermal management system
WO2020080760A1 (en) Heat management system
WO2011149152A1 (en) Hot water supply device associated with heat pump
WO2020130518A1 (en) Heat management system
WO2018012818A1 (en) Heat pump system for vehicle
WO2016114557A1 (en) Air conditioning system
WO2021215695A1 (en) Heat pump system for vehicle
WO2011062348A1 (en) Heat pump
WO2020071803A1 (en) Heat management system
WO2020040418A1 (en) Heat management system
WO2011145779A1 (en) Hot water supply device associated with heat pump
WO2017069472A1 (en) Air conditioner and control method therefor
WO2021015483A1 (en) Heat management device for vehicle, and heat management method for vehicle
WO2021172752A1 (en) Vapor injection module and heat pump system using same
WO2019050077A1 (en) Multiple heat source multi-heat pump system having air heat source cold storage operation or heat storage operation and water heat source cold storage and heat storage concurrent operation or heat storage and cold storage concurrent operation, and control method
WO2010098607A2 (en) Cooling and heating system using a cascade heat exchanger
WO2019160294A1 (en) Vehicle heat management system
WO2022014900A1 (en) Vapor injection module and heat pump system using same
WO2011062349A1 (en) Heat pump
WO2022050586A1 (en) Vapor injection module and heat pump system using same
WO2020197044A1 (en) Air conditioning apparatus
WO2014030884A1 (en) Vehicle heat pump system
WO2016163771A1 (en) Vehicle air-conditioning system
WO2020197052A1 (en) Air conditioning apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17924735

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17924735

Country of ref document: EP

Kind code of ref document: A1