WO2011062349A1 - Heat pump - Google Patents

Heat pump Download PDF

Info

Publication number
WO2011062349A1
WO2011062349A1 PCT/KR2010/004791 KR2010004791W WO2011062349A1 WO 2011062349 A1 WO2011062349 A1 WO 2011062349A1 KR 2010004791 W KR2010004791 W KR 2010004791W WO 2011062349 A1 WO2011062349 A1 WO 2011062349A1
Authority
WO
WIPO (PCT)
Prior art keywords
booster
compressor
refrigerant
heat exchanger
expansion mechanism
Prior art date
Application number
PCT/KR2010/004791
Other languages
French (fr)
Korean (ko)
Other versions
WO2011062349A4 (en
Inventor
진심원
장용희
김범석
류병진
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2011062349A1 publication Critical patent/WO2011062349A1/en
Publication of WO2011062349A4 publication Critical patent/WO2011062349A4/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/003Indoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Definitions

  • the present invention relates to a heat pump, and more particularly, to a heat pump having a compressor, a first heat exchanger, an expansion mechanism, and a second heat exchanger, through which a refrigerant is circulated, wherein the first heat exchanger can supply heat to a heat source.
  • a heat pump is a device for cooling / heating a room using a refrigeration cycle unit including a compressor, a first heat exchanger, an expansion mechanism, and a second heat exchanger to create a more comfortable indoor environment for a user.
  • the heat pump as described above heats / cools the room by discharging the air in the room by the first heat exchanger or the second heat exchanger and then discharging the air into the room.
  • the heat pump according to the prior art may not be able to achieve sufficient cooling / heating capability due to temperature change or changes in the surrounding environment, and the user may replace the existing installed heat pump with a larger capacity heat pump or replace a new one. There is a problem of installing an additional heat pump.
  • an object of the present invention is to provide a heat pump that is connected to the booster module to enhance the performance of the refrigeration cycle unit.
  • Another object of the present invention is to provide a heat pump capable of injecting refrigerant gas into a booster compressor of a booster module to increase heating performance at low temperature conditions.
  • a heat pump includes: a compressor in which a refrigerant is compressed, a first heat exchanger in which a refrigerant compressed in the compressor is condensed, and an expansion mechanism in which the refrigerant condensed in the first heat exchanger is expanded; A refrigeration cycle unit having a second heat exchanger through which the refrigerant expanded in the expansion mechanism is evaporated; The refrigerant connected to the refrigeration cycle unit is separated and compressed from the refrigerant flowing from the first heat exchanger to the expansion mechanism, and then flows between the compressor and the first heat exchanger or evaporates the refrigerant evaporated in the second heat exchanger. It includes a booster module for compressing and flowing between the compressor and the first heat exchanger.
  • the booster module includes a first booster expansion mechanism for expanding the refrigerant flowing in the first heat exchanger, a gas-liquid separator for separating a liquid refrigerant and a gaseous refrigerant among the refrigerants expanded in the first booster expansion mechanism, and the gas-liquid separator in And a second booster expansion mechanism for expanding the separated gaseous refrigerant, and a booster compressor for compressing the refrigerant expanded in the second booster expansion mechanism.
  • the booster module further includes a booster suction pipe for guiding the refrigerant evaporated in the second heat exchanger to be sucked into the booster compressor.
  • the booster module includes a gas-liquid separator suction pipe connecting the first booster expansion mechanism and the gas-liquid separator, a gaseous-phase refrigerant discharge pipe through which the gaseous refrigerant separated from the gas-liquid separator is guided to the second booster expansion mechanism, and the second booster. And a booster compressor suction pipe through which a refrigerant expanded by an expansion mechanism is sucked into the booster compressor, and a booster compressor discharge pipe through which the refrigerant discharged from the booster compressor is guided between the compressor and the first heat exchanger.
  • the pipe connects the booster compressor suction pipe between the second heat exchanger and the compressor.
  • the booster module further includes a check valve installed in the booster suction pipe to prevent refrigerant of the booster compressor suction pipe from being sucked into the compressor through the booster suction pipe.
  • the first booster expansion mechanism is connected to the first heat exchanger and the first booster expansion mechanism suction pipe.
  • the gas-liquid separator is connected to the expansion mechanism and the gas-liquid separator outlet pipe.
  • the compressor is a variable displacement compressor, and the booster compressor is a constant speed compressor.
  • the booster compressor has a smaller capacity than the compressor.
  • the heat pump includes a control unit for controlling the compressor, the booster compressor, and the second booster expansion mechanism according to an operation mode.
  • the control unit drives the compressor in the normal load mode, stops the booster compressor, and seals the second booster expansion mechanism.
  • the control unit turns off the compressor in the partial load mode, drives the booster compressor, and seals the second booster expansion mechanism.
  • the control unit drives the compressor and the booster compressor in the multi operation mode, and seals the second booster expansion mechanism.
  • the control unit drives the compressor and the booster compressor in the gas injection mode, and opens the second booster expansion mechanism.
  • the first heat exchanger is a water refrigerant heat exchanger for exchanging refrigerant and water, and is connected to a heating unit for heating a room and a hot water supply unit for supplying hot water and a water circulation passage.
  • the heat pump according to the present invention configured as described above can be further coupled to the booster module refrigeration cycle unit, the heating capacity is insufficient or can easily increase the heating capacity in the cold district, a variety of difficult to cope only with the compressor of the refrigeration cycle unit It can cope with the load conditions to achieve the best performance, and there is an advantage to improve the performance at a minimum cost.
  • FIG. 1 is a configuration diagram before a booster module is installed in a refrigeration cycle unit of an embodiment of a heat pump according to the present invention
  • FIG. 2 is a configuration diagram after the booster module is installed in the refrigeration cycle unit of the heat pump according to the embodiment of the present invention
  • FIG. 3 is a configuration diagram in which a hot water supply unit and a heating unit are connected to a refrigeration cycle unit of an embodiment of a heat pump according to the present invention
  • FIG. 4 is a front view when the booster module of one embodiment of the heat pump according to the present invention is installed to be separated from a refrigeration cycle unit
  • FIG. 5 is a front view when the booster module of one embodiment of the heat pump according to the present invention is mounted on a refrigeration cycle unit
  • FIG. 6 is a P-h diagram comparing a time when a booster module is not installed and a booster module of an embodiment of the heat pump according to the present invention
  • FIG. 7 is a control block diagram of an embodiment of a heat pump according to the present invention.
  • FIG. 8 is a schematic structural diagram showing a refrigerant flow in a normal load mode of a heat pump according to an embodiment of the present invention
  • FIG. 9 is a schematic structural diagram showing a refrigerant flow in a partial load mode of an embodiment of a heat pump according to the present invention.
  • FIG. 10 is a schematic configuration diagram showing a refrigerant flow in a multi-operation mode of a heat pump according to an embodiment of the present invention
  • FIG. 11 is a schematic configuration diagram showing a refrigerant flow in the gas injection mode of an embodiment of a heat pump according to the present invention.
  • FIG. 12 is a configuration diagram after the booster module is installed in a refrigeration cycle unit according to another embodiment of the heat pump according to the present invention.
  • FIG. 13 is a schematic configuration diagram showing a refrigerant flow in a normal load mode of another embodiment of a heat pump according to the present invention.
  • FIG. 14 is a schematic configuration diagram showing a refrigerant flow in the gas injection mode of another embodiment of the heat pump according to the present invention.
  • 15 is a configuration diagram before the booster module is installed in the refrigeration cycle unit according to another embodiment of the heat pump according to the present invention.
  • 16 is a configuration diagram after the booster module is installed in the refrigeration cycle unit according to another embodiment of the heat pump according to the present invention.
  • FIG. 1 is a configuration diagram before the booster module is installed in a refrigeration cycle unit of a heat pump according to an embodiment of the present invention
  • Figure 2 is a configuration diagram after the booster module is installed in a refrigeration cycle unit of a heat pump according to an embodiment of the present invention
  • 3 is a configuration diagram in which a hot water supply unit and a heating unit are connected to a refrigeration cycle unit of an embodiment of a heat pump according to the present invention
  • the heat pump according to the present embodiment includes a refrigeration cycle unit 1 and a booster module 2.
  • the refrigeration cycle unit 1 may be used for indoor cooling / heating and hot water supply.
  • the booster module 2 may be configured such that the refrigeration cycle unit 1 does not sufficiently correspond to the indoor cooling / heating and hot water supply capacity, or the user wishes to increase the indoor cooling / heating capacity and hot water supply capacity. It can be installed to further increase heating capacity and hot water capacity.
  • the refrigeration cycle unit 1 includes a compressor 10 for compressing a refrigerant as shown in FIGS. 1 to 3, a first heat exchanger 14 for condensing the refrigerant compressed in the compressor 10, and a first heat exchanger.
  • the expansion mechanism 16 may expand the refrigerant condensed in the air 14, and the second heat exchanger 18 in which the refrigerant expanded in the expansion mechanism 16 is evaporated.
  • the refrigeration cycle unit 1 may be installed for cooling, may be installed for heating, or may be installed for both cooling and heating.
  • the refrigeration cycle unit 1 is capable of heating the room by being discharged back to the room after the indoor air is blown into the first heat exchanger 14, and after the indoor air is blown into the second heat exchanger 18 It is possible to cool the room by being discharged back to the room.
  • the refrigeration cycle unit 1 is capable of directly exchanging indoor air with one of the first heat exchanger 14 and the second heat exchanger 18, in which case the refrigeration cycle unit 1 is the first heat exchanger.
  • One of the 14 and the second heat exchanger 18 may include an indoor fan for circulating the indoor air.
  • the refrigeration cycle unit 1 is composed of a water refrigerant heat exchanger in which one of the first heat exchanger 14 and the second heat exchanger 18 exchanges refrigerant and water, and a mixed air of indoor air and outdoor air is heated or cooled.
  • the cooling / heating coil is connected to the water refrigerant heat exchanger and the water circulation flow path, and the water cools / heats the cooling / heating coil while circulating the water refrigerant heat exchanger and the cooling / heating coil, and the mixed air of indoor air and outdoor air is cooled. It is possible to be discharged into the room after being cooled / heated by a heating coil.
  • the water heat-exchanged with the refrigerant in the refrigeration cycle unit 1 may be used in an air handling unit (AHU) that is discharged to the room after cooling / heating the mixed air of the indoor air and the outdoor air.
  • AHU air handling unit
  • the refrigeration cycle unit 1 is composed of a water refrigerant heat exchanger in which one of the first heat exchanger 14 and the second heat exchanger 18 exchanges refrigerant and water, and the water heated or cooled in the water refrigerant heat exchanger is indoors. It can be used for cooling, heating, and hot water supply.
  • the second heat exchanger 18 is composed of a water refrigerant heat exchanger, and a cooling unit for cooling the room is connected to the water refrigerant heat exchanger and the water circulation flow path, so that water is It is possible to cool the cooling unit while circulating the refrigerant heat exchanger and the cooling unit, and the cooling unit can cool the room.
  • the first heat exchanger 14 is composed of a water refrigerant heat exchanger, the heating unit for heating the room is connected to the water refrigerant heat exchanger and the water circulation passage, and the water is refrigerant It is possible to heat the heating unit while circulating the heat exchanger and the heating unit and the heating unit to heat the room.
  • the first heat exchanger 14 is composed of a water refrigerant heat exchanger
  • the hot water supply unit for supplying hot water to the room is connected to the water refrigerant heat exchanger and the water circulation flow path, It is possible to heat the hot water supply unit while circulating the water refrigerant heat exchanger and the hot water supply unit, and the hot water supply unit to supply hot water to the room.
  • the first heat exchanger 14 is configured as a water refrigerant heat exchanger, and the water / cooling unit and the water circulation flow path where the water refrigerant heat exchanger cools / heats the room.
  • Water is circulated in the water refrigerant heat exchanger and the cooling / heating unit to cool / heat the cooling / heating unit, and the water refrigerant heat exchanger is connected to the hot water supply unit that supplies the hot water to the room and the water circulation passage, so that the water is the water refrigerant heat exchanger. It is possible to heat the hot water supply unit while the gas circulates in the hot water supply unit.
  • the water heat exchanged with the refrigerant in the refrigerating cycle unit 1 may be used in a heating unit for heating the room, may be used in a cooling unit for cooling the room, and may be used in a hot water supply unit for supplying hot water to the room. Can be.
  • the first heat exchanger 14 is configured as a water refrigerant heat exchanger, the water heated in the first heat exchanger 14 is used in the hot water supply unit 4, and the first heat exchanger ( It will be described that the water heated or cooled in 14 can be used in the cooling / heating unit 5.
  • the compressor 10, the first heat exchanger 14, the expansion mechanism 16, and the second heat exchanger 18 may be installed in the refrigeration cycle unit 1, and the refrigeration cycle unit (1) may further include a cooling / heating switching valve 12 capable of switching cooling / heating.
  • the cooling / heating switching valve 12 allows the refrigerant compressed in the compressor 10 to flow to the first heat exchanger 14 in the heating mode, and the refrigerant evaporated in the second heat exchanger 18 to the compressor 10. The flow causes the refrigerant to condense in the first heat exchanger 14 and the refrigerant to evaporate in the second heat exchanger 18.
  • the refrigerant compressed by the compressor 10 flows to the second heat exchanger 18, and the refrigerant evaporated in the first heat exchanger 14 is compressed by the compressor 10. ) To allow the refrigerant to evaporate in the first heat exchanger 14 and to condense the refrigerant in the second heat exchanger 18.
  • the refrigeration cycle unit 1 may be constituted by one unit or may be constituted by an indoor unit 6 and an outdoor unit 7.
  • the compressor 10 When the refrigeration cycle unit 1 is composed of one unit, the compressor 10, the cooling / heating switching valve 12, the condenser 14, the expansion mechanism 16, and the second heat exchanger 18 are one case. It can be installed inside.
  • the outdoor unit 7 includes a compressor 10, a cooling / heating switching valve 12, an expansion mechanism 16, and a second heat exchanger ( 18)
  • the indoor unit 6 may include the first heat exchanger 14, and the outdoor unit 7 and the indoor unit 6 may be connected to the refrigerant pipe.
  • the compressor 10 may be connected to the cooling / heating switching valve 12 and the compressor discharge pipe 11.
  • the compressor discharge pipe 11 may be provided with a check valve 11 ′ that prevents refrigerant discharged from the booster compressor 90, which will be described later, from entering the compressor 10.
  • the cooling / heating switching valve 12 may be connected to the first heat exchanger 14 and the first heat exchanger-cooling / heating switching valve connecting pipe 13, and may be connected to the compressor 10 and the compressor suction pipe 20. have.
  • the first heat exchanger 14 may be connected to the expansion mechanism 16 and the first heat exchanger-expansion mechanism connecting pipe 15.
  • the first heat exchanger 14 may be configured as a water refrigerant heat exchanger in which the refrigerant and water are heat-exchanged, and a heat dissipation passage for radiating heat while the refrigerant passes, and an endothermic passage for absorbing water as the refrigerant passes therethrough may be formed between the heat transfer members. .
  • the first heat exchanger 14 may be connected to the water circulation channel 22 forming a closed circuit with the hot water supply unit 4 and the heating unit 5.
  • the expansion mechanism 16 may be connected to the second heat exchanger 18 and the expansion mechanism-second heat exchanger connecting pipe 17.
  • the expansion mechanism 16 may be made of an electronic expansion valve.
  • the second heat exchanger 18 may be connected to the cooling / heating switching valve 12 and the second heat exchanger-cooling / heating switching valve connecting pipe 19.
  • the second heat exchanger 18 is composed of an air-cooled heat exchanger in which outdoor air is blown to the second heat exchanger 18 so that the refrigerant is evaporated by the outdoor air, and the refrigeration cycle unit 1 supplies the outdoor air to the second heat exchanger ( 18) may further include an outdoor fan (not shown) for blowing to.
  • the water circulation passage 22 is configured such that the water heat-exchanged with the refrigerant in the first heat exchanger 14 is recovered to the first heat exchanger 14 after passing through at least one of the hot water supply unit 4 and the heating unit 5. 1
  • the heat exchanger 14 and the hot water supply unit 4 and the heating unit 5 can be connected.
  • the water circulation passage 22 includes a refrigeration cycle unit pipe 23 positioned inside the refrigeration cycle unit 1, and a hot water supply pipe 24 through which the water heated in the first heat exchanger 14 passes through the hot water supply unit 4. ), A cooling / heating pipe 25 through which water heated in the first heat exchanger 14 passes through the cooling / heating unit 5, and a refrigeration cycle unit pipe 23. It may include a connection pipe 27 for connecting to the heating pipe 25.
  • connection pipe 27 is provided with a water control valve 28 for guiding water heated or cooled in the first heat exchanger 14 to at least one of the hot water supply pipe 24 and the cooling / heating pipe 25. 24 and the heating pipe 25 may be connected to the water control valve 28 through the connection pipe (27).
  • the refrigeration cycle unit 1 is an air to water heat pump (AWHP), a flow switch 32 for detecting the flow of water passing through the refrigeration cycle unit piping 23, and the refrigeration cycle unit
  • An expansion tank 33 installed at a position spaced apart from the flow switch 31 in the pipe 23, a water collecting tank 34 to which the refrigeration cycle unit pipe 23 is connected, and an auxiliary heater 35 is installed therein, and a refrigeration tank. It may include a circulation pump 36 installed in the cycle unit pipe 23 to pump the water to circulate.
  • AWHP air to water heat pump
  • the expansion tank 33 is a type of buffer that absorbs when the volume of heated water passes through the first heat exchanger 14 when it is expanded to an appropriate level or more, and is filled with nitrogen and moves in response to the volume of water. Flam may be installed.
  • the collecting tank 34 is water collected, and the auxiliary heater 35 may be selectively operated when the defrosting operation or the heat amount of the first heat exchanger 14 does not reach the required heat amount.
  • the water pump 36 causes water to circulate in the refrigeration cycle unit 1, the hot water supply unit 4, and the heating unit 5, which is to be installed after the water collection tank 34 in the refrigeration cycle unit piping 23. Can be.
  • the hot water supply unit 4 supplies hot water required for washing the face, bathing or washing dishes, etc., and may include a hot water tank 41 in which water is contained and an auxiliary heater 42 for hot water installed in the hot water tank 41. have.
  • the hot water supply tank 41 may be connected to a cold water inlet 43 in which cold water is supplied to the hot water supply tank 41, and a hot water outlet 44 in which hot water from the hot water tank 41 is discharged.
  • the hot water supply tank 41 is provided with a hot water supply pipe 24 to heat the water in the hot water tank 41.
  • the hot water outlet 44 may be connected to a hot water outlet 45 such as a shower.
  • the cold water inlet unit 46 may be connected to the hot water outlet unit 44 so that the cold water may be withdrawn from the hot water outlet unit 45.
  • the heating unit 5 may include a floor cooling / heating unit 51 for cooling / heating the floor of the room, and an air cooling / heating unit 52 for cooling / heating the air of the room.
  • the floor cooling / heating unit 51 may be buried in a meander line on the indoor floor.
  • the air cooling / heating unit 52 may be configured as a fan coil unit or a radiator.
  • water control valves 53 and 54 for guiding water to at least one of the floor cooling / heating unit 51 and the air cooling / heating unit 52 may be installed.
  • the heating unit 51 is connected to the water control valves 53 and 54 and the air cooling / heating piping 55
  • the floor cooling / heating unit 51 is the water control valves 53 and 54 and the floor cooling / It may be connected to the heating pipe 56.
  • the water heated in the first heat exchanger 14 passes through the refrigeration cycle unit pipe 23 and the connection pipe 27 in order to supply the hot water. After flowing into the pipe 24, the water in the hot water tank 41 may be heated, and then sequentially passed through the connection pipe 27 and the refrigeration cycle unit pipe 23 to be recovered to the first heat exchanger 14.
  • the circulation pump 36 When the circulation pump 36 is driven, if the water control valve 28 is in the cooling / heating mode, the water heated or cooled in the first heat exchanger 14 is connected to the refrigeration cycle unit pipe 23 and the connection pipe 27. Passed in order to flow into the cooling / heating pipe (25), heating or cooling at least one of the floor cooling / heating unit (51) and the air cooling / heating unit (52), and then connected to the cooling / heating pipe (25) After passing through the 27 and the refrigeration cycle unit pipe 23, the first heat exchanger 14 may be recovered.
  • the water heated or cooled in the first heat exchanger 14 is air cooled / heated pipe 25 and air cooled / heated unit 52.
  • the air cooling / heating pipe (55) pass in order to exit the cooling / heating pipe (25), and in the bottom cooling / heating mode, the water heated in the first heat exchanger (14) is the bottom cooling / heating pipe (56).
  • the water After passing through the bottom cooling / heating unit 51 and the bottom cooling / heating pipe 56, the water may be discharged to the cooling / heating pipe 25.
  • the booster module 2 may be additionally installed in the refrigeration cycle unit 1 as needed after the refrigeration cycle unit 1 is installed.
  • the booster module 2 is connected to the refrigeration cycle unit 1 to separate and compress the gaseous refrigerant from the refrigerant flowing from the first heat exchanger 14 to the expansion mechanism 16, and then compresses the compressor 10 and the first heat exchanger. It can flow between (14).
  • the booster module 2 has a booster compressor 90, which will be described later, compresses the refrigerant separately from the compressor 10 of the refrigeration cycle unit 1, and is higher than the condensing pressure of the first heat exchanger 14 and the second heat exchanger 18.
  • the gaseous refrigerant having a medium pressure lower than the evaporation pressure may be injected into the booster compressor 90 to increase operating efficiency.
  • the booster module 2 separates the first booster expansion mechanism 62 that expands the refrigerant condensed in the first heat exchanger 14, and the liquid refrigerant and the gaseous refrigerant among the refrigerants expanded by the first booster expansion mechanism 62.
  • the gas-liquid separator 70, the second booster expansion mechanism 80 for expanding the gaseous phase refrigerant separated by the gas-liquid separator 70, and the booster compressor 90 for compressing the refrigerant expanded in the second booster expansion mechanism 80. ) May be included.
  • each of the first heat exchanger-cooling / heating switching valve connection pipe 13 and the first heat exchanger-expansion mechanism connection pipe 15 are separated.
  • the booster module 2 is connected to the separated first heat exchanger-cooling / heating switching valve connecting pipe 13A, 13B, and connected to the separated first heat exchanger-expansion mechanism connecting pipe 15A, 15B. Can be.
  • the first booster expansion device 62 may be connected to the first heat exchanger 14 and the first booster expansion device suction pipe 64, and the first booster expansion device suction pipe 64 may be separated from the first heat exchanger. It may be connected to any one 15A of the expansion mechanism connecting pipe (15A) (15B).
  • the first booster expansion mechanism 62 may be an electronic expansion valve.
  • the gas-liquid separator 70 separates the gaseous refrigerant from the refrigerant condensed in the first heat exchanger 14 with the liquid refrigerant, and may be connected to the expansion mechanism 16 and the gas-liquid separator outlet pipe 72, and the gas-liquid separator outlet pipe. 72 may be connected to the other one 15B of the separated first heat exchanger-expansion mechanism connecting pipes 15A and 15B.
  • the second booster expansion mechanism 80 allows the gaseous refrigerant of the gas-liquid separator 70 to flow into the booster compressor 90 when opened, and prevents the gaseous refrigerant of the gas-liquid separator 70 from flowing to the booster compressor 90 when closed. do.
  • the second booster expansion mechanism 80 may expand the gaseous refrigerant flowing from the gas-liquid separator 70 toward the booster compressor 90 when the opening degree is adjusted.
  • the second booster expansion mechanism 80 may be made of an electronic expansion valve.
  • the booster module 2 may include a gas-liquid separator suction pipe 74 connecting the first booster expansion mechanism 62 and the gas-liquid separator 70.
  • the first heat exchanger 14 and the expansion mechanism 16 may be connected through the first heat exchanger-expansion mechanism connecting pipe 15 before the booster module 2 is installed, and the booster module 2 is installed.
  • any one of the first heat exchanger-expansion mechanism connecting pipes 15A and 15B, 15A, the first booster expansion device suction pipe 64, the first booster expansion device 62, and the gas-liquid separator suction pipe 74 ) the gas-liquid separator 70, the gas-liquid separator outlet pipe 72 and the other one 15B of the first heat exchanger-expansion mechanism connecting pipe 15A, 15B.
  • the booster module 2 includes a gaseous refrigerant discharge pipe 76 through which the gaseous phase refrigerant separated by the gas-liquid separator 70 is guided to the second booster expansion mechanism 80, and a refrigerant expanded by the second booster expansion mechanism 80.
  • the booster compressor suction pipe 92 sucked into the booster compressor 90 and the refrigerant discharged from the booster compressor 90 are guided between the compressor 10 of the refrigeration cycle unit 1 and the first heat exchanger 14.
  • the compressor discharge pipe (94, 95) may further include.
  • the booster compressor discharge pipe (94, 95) is a first booster compressor for connecting any one (13A) and the other (13B) of the separated first heat exchanger-cooling / heating switching valve connecting pipe (13A) (13B)
  • the discharge pipe 94 and the second booster compressor discharge pipe 95 for guiding the refrigerant discharged from the booster compressor 90 to the first booster compressor discharge pipe 94 may be included.
  • the cooling / heating switching valve 12 and the first heat exchanger 14 are connected to the first heat exchanger-cooling / heating switching valve connecting pipe 13 as shown in FIG. 1 before the booster module 2 is installed. 2) after the booster module 2 is installed, as shown in FIG. 2, either the first heat exchanger-cooling / heating switching valve connecting pipe 13A or 13B (13A) and the first booster compressor
  • the discharge pipe 94 may be connected to the other one 13B of the first heat exchanger-cooling / heating switching valve connecting pipe 13A and 13B.
  • the booster compressor discharge pipes 94 and 95 are provided with a check valve 95 'that prevents the refrigerant compressed by the compressor 10 from flowing into the booster compressor 90.
  • the check valve 95' is a second booster. It may be installed in the compressor discharge pipe (95).
  • the booster module 2 further includes a bypass pipe 99 for allowing the refrigerant flowing from the gas-liquid separator 70 to the gas-liquid separator outlet pipe 72 to flow into the first booster expansion mechanism suction pipe 64.
  • the bypass pipe 99 is provided with a check valve 99 'that prevents the refrigerant of the first booster expansion mechanism suction pipe 64 from flowing through the bypass pipe 99 to the gas-liquid separator outlet pipe 72, and the gas-liquid solution.
  • the gaseous refrigerant flowing from the separator 70 to the booster compressor suction pipe 92 may be maximized.
  • the booster module 2 may compress the refrigerant evaporated in the second heat exchanger 18 in the booster compressor 90 and then flow between the compressor 10 and the first heat exchanger 14.
  • the booster module 2 may have a structure in which the gaseous refrigerant separated in the gas-liquid separator 70 and the refrigerant evaporated in the second heat exchanger 18 are together or selectively sucked into the booster compressor 90.
  • the booster module 2 connects the booster compressor suction pipe 92 between the second heat exchanger 18 and the compressor 10 and the booster suction pipe 96 so that the booster module 2 of the refrigerant evaporated in the second heat exchanger 18 is reduced. A portion may be directed to the booster compressor suction line 92.
  • booster suction pipe 96 may be connected to the compressor suction pipe 20, and the other end thereof may be connected to the booster compressor suction pipe 92.
  • the booster suction pipe 96 is connected to the first booster suction pipe 97 installed in the refrigeration cycle unit 1 to be connected to the compressor suction pipe 20 and to the booster module 2 to be connected to the booster compressor suction pipe 92.
  • the second booster suction pipe 98 may be installed, and the third booster suction pipe 99 may be connected to the first booster suction pipe 97 and the second booster suction pipe 98.
  • the booster module 2 further includes a check valve 96 'installed in the booster suction pipe 96 to prevent refrigerant from the booster compressor suction pipe 92 from being sucked into the compressor 10 through the booster suction pipe 96. It may include.
  • the check valve 96 ′ may be installed in the second booster suction pipe 98.
  • FIG. 4 is a front view when the booster module of one embodiment of the heat pump according to the present invention is installed to be separated from the refrigeration cycle unit
  • FIG. 5 is the booster module of the embodiment of the heat pump according to the present invention to the refrigeration cycle unit. Front view.
  • the booster module 2 may be installed to be spaced apart from the refrigeration cycle unit 1 or fastened to the refrigeration cycle unit 1.
  • the booster module 2 may be installed to be spaced apart from the indoor unit 6 and the outdoor unit 7 or the indoor unit 6 and the outdoor unit 7. It can be installed to be fastened to either.
  • the refrigeration cycle unit 1 may be installed to be separated from the refrigeration cycle unit 1 by being spaced apart from the outdoor unit 7, and as shown in FIG. 5, the outdoor unit 7. It may be integrated with the outdoor unit 7 and integrally formed with the refrigeration cycle unit 1.
  • the booster module 5 may be selectively mounted to the outdoor unit O, as shown in FIGS. 4 and 5.
  • Figure 6 is a P-h diagram comparing the time when the booster module is not installed when the booster module of the heat pump according to an embodiment of the present invention.
  • the refrigerant undergoes a typical compression, condensation, expansion, and evaporation process, as shown by a dotted line in FIG. 4, where a-> b '> c-> f-> a is performed. This is going on.
  • the heat pump may reduce the compression work while increasing the overall efficiency than when the booster module 2 is not installed.
  • the total power consumption supplied to the compressor 10 and the booster compressor 90 is reduced, and in particular, the low-temperature heating capability of the outdoor is low.
  • the maximum management temperature of the compressor 10 may be relatively lower than when the booster module 2 is not installed, and the reliability of the compressor 10 may be improved.
  • Figure 7 is a control block diagram of one embodiment of a heat pump according to the present invention
  • Figure 8 is a schematic block diagram showing the refrigerant flow in the normal load mode of an embodiment of the heat pump according to the present invention
  • Figure 9 is in accordance with the present invention 10 is a schematic configuration diagram showing a refrigerant flow in a partial load mode of a heat pump according to one embodiment
  • FIG. 10 is a schematic configuration diagram showing a refrigerant flow in a multi operation mode according to an embodiment of the present invention
  • FIG. The heat pump according to the embodiment is a schematic block diagram showing the refrigerant flow in the gas injection mode.
  • the heat pump includes an operation unit 100 for inputting various commands such as operation / stop of the heat pump, a load detection sensor 110 for detecting a load of the heat pump, and an operation of the operation unit 100.
  • the control unit 120 may further include a control unit.
  • the load sensor 110 may include a water temperature sensor that detects a load of the hot water supply unit 4 and the heating unit 5.
  • the water temperature sensor may be installed at one side of the water circulation passage 22 to sense a temperature of water circulating at least one of the hot water supply unit 4 and the heating unit 5 and the first heat exchanger 14.
  • the water temperature sensor is installed to detect the temperature of the water recovered to the first heat exchanger 14 after passing through at least one of the hot water supply unit 4 and the heating unit 5, and is installed in the refrigeration cycle unit piping 23 It is preferable.
  • the load sensor 110 may include an outdoor temperature sensor for detecting whether the outdoor temperature is low.
  • the outdoor temperature sensor may be installed in the second heat exchanger 18 to sense a temperature of outdoor air blown toward the second heat exchanger 18 outdoors.
  • the control unit 120 controls the partial load mode, the normal load mode, and the multi-operation mode, and when the load detection sensor 110 detects the outdoor low temperature load, the gas injection mode. Can be controlled by
  • the controller 120 determines the load of the heat pump as a partial load, and the temperature of the water detected by the load sensor 110 is set to the first value. If the temperature is greater than the predetermined temperature higher than the first predetermined temperature and less than the second predetermined temperature, the load of the heat pump is determined as a normal load, and if the temperature of the water detected by the load detection sensor 110 is greater than or equal to the second predetermined temperature, the heat pump Can be determined as a multi-operation load (ie, overload).
  • the controller 120 may determine the load of the heat pump as the outdoor low temperature load when the outdoor temperature detected by the load detection sensor 110 is less than or equal to the set temperature.
  • the controller 120 may control the compressor 10, the booster compressor 90, and the second booster expansion mechanism 80 together according to the driving mode, and may configure various driving modes according to the load. Is smaller than the normal load, the compressor 10, the booster compressor 90 and the second booster expansion mechanism 80 is operated in the partial load mode, and if the load is a normal load, the compressor 10 and the booster compressor 90 and The second booster expansion mechanism 80 is operated in the normal load mode, and when the load is greater than the normal load, the compressor 10, the booster compressor 90, and the second booster expansion mechanism 80 are operated in the multi operation mode, In the case of a low temperature load, the compressor 10, the booster compressor 90, and the second booster expansion mechanism 80 may be operated in the gas injection mode.
  • the compressor 10 is a variable-capacity compressor
  • the booster compressor 90 is a constant speed compressor
  • the booster compressor 90 is more compact than the compressor 10 in order to efficiently cope with various loads. It is preferable that the capacity is formed small.
  • the controller 120 turns off the compressor 10 in the partial load mode, drives the booster compressor 90, and seals the second booster expansion mechanism 80.
  • the controller 120 may fully open the first booster expansion mechanism 62 and adjust the opening degree of the expansion mechanism 16 to a set opening degree so that the expansion mechanism 16 expands the refrigerant.
  • the controller 120 may control the opening degree of the expansion mechanism 16 such that the suction superheat degree of the booster compressor 90 reaches the set superheat degree.
  • the refrigerant of the compressor suction pipe 19 is not introduced into the compressor 10, and the booster suction pipe 96 and the booster compressor suction pipe 92 are sequentially turned on. After passing through, it is sucked into the booster compressor 90 and compressed, and then passes through the booster compressor discharge pipe 94 and the compressor discharge pipe 13 in order to flow to the first heat exchanger 14.
  • the refrigerant flowing into the first heat exchanger 14 condenses in the first heat exchanger 14 and heats the water passing through the first heat exchanger 14, and then the first booster expansion mechanism 62 and the gas-liquid separator ( 70, which in turn may be expanded in the expansion mechanism 16 and then flow to the second heat exchanger 18.
  • the refrigerant flowing into the second heat exchanger 18 may be evaporated by the outdoor air blown by the outdoor fan 22, and then recovered into the compressor suction pipe 19.
  • the heat pump is compressed, condensed, expanded, and evaporated while the refrigerant circulates through the booster compressor 90, the first heat exchanger 14, the expansion mechanism 16, and the second heat exchanger 18, and the compressor 10.
  • the compressor 90 In the case of driving, it is possible to cope with the partial load with less power consumption.
  • the controller 120 drives the compressor 10 in the normal load mode, stops the booster compressor 90, and closes the second booster expansion mechanism 80.
  • the controller 120 may fully open the first booster expansion mechanism 62 and adjust the opening degree of the expansion mechanism 16 to a set opening degree so that the expansion mechanism 16 expands the refrigerant.
  • the controller 120 may control the opening degree of the expansion mechanism 16 such that the suction superheat degree of the compressor 10 reaches the set superheat degree.
  • the refrigerant in the compressor suction pipe 19 is not introduced into the booster compressor 90, but is sucked into the compressor 10 and compressed, and then the compressor discharge pipe ( 13) in order to flow to the first heat exchanger (14).
  • the refrigerant flowing into the first heat exchanger 14 condenses in the first heat exchanger 14 and heats the water passing through the first heat exchanger 14, and then the first booster expansion mechanism 62 and the gas-liquid separator ( 70, which in turn may be expanded in the expansion mechanism 16 and then flow to the second heat exchanger 18.
  • the refrigerant flowing into the second heat exchanger 18 may be evaporated by the outdoor air blown by the outdoor fan 22, and then recovered into the compressor suction pipe 19.
  • the heat pump is compressed, condensed, expanded, and evaporated while the refrigerant circulates through the compressor 10, the first heat exchanger 14, the expansion mechanism 16, and the second heat exchanger 18, and the booster compressor 90.
  • the compressor 10 the first heat exchanger 14, the expansion mechanism 16, and the second heat exchanger 18, and the booster compressor 90.
  • the controller 120 drives the compressor 10 and the booster compressor 90 in the multi-operation mode, and seals the second booster expansion mechanism 80.
  • the controller 120 may fully open the first booster expansion mechanism 62 and adjust the opening degree of the expansion mechanism 16 to a set opening degree so that the expansion mechanism 16 expands the refrigerant.
  • the controller 120 may control the opening degree of the expansion mechanism 16 such that the suction superheat degree of the compressor 10 reaches the set superheat degree.
  • the refrigerant in the compressor suction pipe 19 is partially sucked into the compressor 10, compressed, and then discharged into the compressor discharge pipe 13, and the rest is booster suction.
  • the suction is compressed into the booster compressor 90 and then compressed into the compressor discharge pipe 13 to be combined with the refrigerant discharged from the compressor 10.
  • the refrigerant discharged into the compressor discharge pipe 13 flows to the first heat exchanger 14 to condense in the first heat exchanger 14 and heat the water passing through the first heat exchanger 14, and then the first booster. Passes through the expansion mechanism 62 and the gas-liquid separator 70 in order, and may be expanded in the expansion mechanism 16 and then flow to the second heat exchanger 18.
  • the refrigerant flowing into the second heat exchanger 18 may be evaporated by the outdoor air blown by the outdoor fan 22, and then recovered into the compressor suction pipe 19.
  • the heat pump is compressed, condensed, expanded, and evaporated while the refrigerant circulates through the compressor 10, the booster compressor 90, the first heat exchanger 14, the expansion mechanism 16, and the second heat exchanger 18.
  • the single drive of the booster compressor 90 and the single drive of the compressor 10 it is possible to cope with a larger heavy load.
  • the controller 120 may drive the compressor 10 and the booster compressor 90 in the gas injection mode, and open the second booster expansion mechanism 80. In addition, the controller 120 may open the first booster expansion mechanism 62 and adjust the opening degree of the expansion mechanism 16 to a set opening degree so that the expansion mechanism 16 expands the refrigerant.
  • control unit 120 is a first pressure such that the pressure of the refrigerant sucked into the booster compressor 90 is lower than the evaporation pressure of the second heat exchanger 18, and the intermediate pressure is higher than the condensation pressure of the first heat exchanger 14.
  • the opening degree of the booster expansion mechanism 80 and the opening degree of the second booster expansion mechanism 80 can be controlled, and the opening degree of the expansion mechanism 16 can be controlled so that the suction superheat degree of the compressor 10 reaches the set superheat degree.
  • the refrigerant in the compressor suction pipe 19 is sucked into the compressor 10, compressed, discharged into the compressor discharge pipe 13, and then the first heat exchanger ( 14 to the water flowing through the first heat exchanger 14 while condensing in the first heat exchanger 14, and then expanded in the first booster expansion mechanism 62 and then introduced into the gas-liquid separator 70 Can be.
  • the refrigerant introduced into the gas-liquid separator 70 separates the gaseous refrigerant and the liquid refrigerant, and the gaseous refrigerant discharges the gaseous refrigerant discharge pipe 76, and the liquid refrigerant expands the expansion mechanism 16 through the expansion mechanism inlet pipe 72. Can be expanded to expand.
  • the refrigerant expanded in the expansion mechanism (16) flows to the second heat exchanger (18), is evaporated, and then recovered to the compressor suction pipe (19), compressed in the compressor (10) and then discharged to the compressor discharge pipe (13). Can be.
  • the refrigerant discharged into the gaseous phase refrigerant discharge pipe 76 is expanded in the second booster expansion mechanism 80 and then flows into the booster compressor suction pipe 92, and is then compressed in the booster compressor 90.
  • the refrigerant compressed by the booster compressor 90 is discharged into the booster compressor discharge pipe 94 and then flows into the press discharge pipe 13 to be mixed with the refrigerant discharged from the compressor 10.
  • the heat pump is compressed, condensed while the refrigerant circulates the compressor 10, the first heat exchanger 14 and the first booster expansion mechanism 62, the expansion mechanism 16 and the second heat exchanger 18, Expansion, expansion, evaporation, gaseous refrigerant in the condensed refrigerant in the first heat exchanger 14 is expanded and then gas injected into the booster compressor 90, the heat pump is a booster compressor 90 and the compressor (10) without gas injection ),
  • the compression work is reduced with higher efficiency.
  • the low temperature heating ability of the outdoor low temperature can be improved.
  • FIG. 12 is a configuration diagram after a booster module is installed in a refrigeration cycle unit of another embodiment of a heat pump according to the present invention
  • FIG. 13 is a schematic configuration diagram showing a refrigerant flow in a normal load mode of another embodiment of the heat pump according to the present invention
  • 14 is a schematic block diagram showing a refrigerant flow in the gas injection mode of another embodiment of the heat pump according to the present invention.
  • the booster suction pipe 96 and the check valve 96 'of one embodiment of the present invention are not installed, and other configurations may be the same as or similar to the embodiment of the present invention.
  • the heat pump according to the present embodiment has a general load mode in which the compressor 10 is driven, the booster compressor 90 is not driven, and the second booster expansion mechanism 80 does not pass the gaseous refrigerant.
  • the compressor 10 and the booster compressor 90 may be driven, and the second booster expansion mechanism 80 may have a gas injection mode through which the gaseous refrigerant passes.
  • the compressor 10 and the booster compressor 90 are driven and the second booster expansion mechanism 80 is controlled to pass the gaseous refrigerant, so that the compressor 10
  • the refrigerant evaporated in the evaporator 18 may be compressed, and the booster compressor 90 may compress the gaseous refrigerant separated in the gas-liquid separator 70.
  • the compressor 10 when the low temperature load is not detected by the load sensor 110, the compressor 10 is driven, the booster compressor 90 is not driven, and the second booster expansion mechanism 80 is controlled not to pass the gaseous refrigerant.
  • the compressor 10 may compress the refrigerant evaporated from the evaporator 10.
  • Figure 16 is a configuration diagram after the booster module is installed in the refrigeration cycle unit of another embodiment of the heat pump according to the present invention to be.
  • the heat pump according to the present embodiment is for heating purposes only, and does not include the cooling / heating switching valve 12 of one embodiment of the present invention, and other configurations may be the same as or similar to the embodiment of the present invention.
  • the compressor 10 is connected to the first heat exchanger 14 and the compressor discharge pipe 11, and the first heat exchanger 14 is expanded to the expansion mechanism 16 and the first heat exchanger-expansion. It is connected to the instrument connecting pipe 15, the expansion mechanism 16 is connected to the second heat exchanger 18 and the expansion mechanism-second heat exchanger connecting pipe 17, the second heat exchanger 18 is a compressor ( 10) and the compressor suction pipe 20 '.
  • each of the compressor discharge pipe 11 and the first heat exchanger-expansion mechanism connecting pipe 15 is separated, and the booster module 2 is separated. It may be connected to the compressor discharge pipe (11A) (11B), it may be connected to the separated first heat exchanger-expansion mechanism connecting pipe (15A) 15B.
  • the booster module 2 includes a first booster compressor discharge pipe connecting one 11A and the other 11B of the compressor discharge pipes 11A and 11B from which the booster compressor discharge pipes 94 and 95 are separated. 94 and a second booster compressor discharge pipe 95 for guiding the refrigerant discharged from the booster compressor 90 to the first booster compressor discharge pipe 94.
  • the compressor 10 and the first heat exchanger 14 are connected to the compressor discharge pipe 11 as shown in FIG. 14 before the booster module 2 is installed, and after the booster module 2 is installed.
  • one of 11A of the compressor discharge pipe 11, the first booster compressor discharge pipe 94, and the other 11B of the compressor discharge pipe 11 may be connected.
  • booster suction pipe 96 may be connected to the compressor suction pipe 20 ′ and the other end may be connected to the booster compressor suction pipe 92.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)

Abstract

The present invention relates to a heat pump comprising a refrigerating cycle unit and a booster module. The refrigerating cycle unit comprises: a compressor in which a refrigerant is compressed; a first heat exchanger in which the refrigerant compressed by the compressor is condensed; an expansion device in which the refrigerant condensed by the first heat exchanger expands; and a second heat exchanger in which the refrigerant expanded by the expansion device evaporates. The booster module is connected to the refrigerating cycle to separate a refrigerant vapor from the refrigerant flowing from the first heat exchanger to the expansion device, compress the separated refrigerant vapor, and enable the compressed refrigerant to flow between the compressor and the first heat exchanger, or to compress the refrigerant evaporated in the second heat exchanger and enable the compressed refrigerant to flow between the compressor and the first heat exchanger. The heat pump of the present invention is advantageous in that heating ability can be conveniently improved, and optimum performance can be achieved in accordance with a variety of load conditions which might not be handled by a compressor of a refrigerating cycle unit alone.

Description

히트 펌프Heat pump
본 발명은 히트 펌프에 관한 것으로서, 특히 냉매가 순환되는 압축기와 제 1 열교환기와 팽창기구와 제 2 열교환기로 갖고 제 1 열교환기가 열수요처로 열을 공급할 수 있는 히트 펌프에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat pump, and more particularly, to a heat pump having a compressor, a first heat exchanger, an expansion mechanism, and a second heat exchanger, through which a refrigerant is circulated, wherein the first heat exchanger can supply heat to a heat source.
일반적으로 히트 펌프는 사용자에게 보다 쾌적한 실내 환경을 조성하기 위해 압축기, 제 1 열교환기, 팽창기구, 제 2 열교환기로 이루어지는 냉동 사이클 유닛을 이용하여 실내를 냉/난방시키는 기기이다.In general, a heat pump is a device for cooling / heating a room using a refrigeration cycle unit including a compressor, a first heat exchanger, an expansion mechanism, and a second heat exchanger to create a more comfortable indoor environment for a user.
상기와 같은 히트 펌프는 실내의 공기를 제 1 열교환기나 제 2 열교환기에 의해 가열/냉각시킨 후 실내로 토출하는 것에 의해 실내를 난방/냉방시킨다. The heat pump as described above heats / cools the room by discharging the air in the room by the first heat exchanger or the second heat exchanger and then discharging the air into the room.
그러나, 종래 기술에 따른 히트 펌프는 기온 변화나 주변 환경의 변화로 인해 히트 펌프가 충분한 냉/난방 능력을 발휘하지 못하는 경우가 있고, 사용자는 기존 설치된 히트 펌프를 보다 대용량의 히트 펌프로 교체하거나 새로운 히트 펌프를 추가로 설치하는 문제점이 있다. However, the heat pump according to the prior art may not be able to achieve sufficient cooling / heating capability due to temperature change or changes in the surrounding environment, and the user may replace the existing installed heat pump with a larger capacity heat pump or replace a new one. There is a problem of installing an additional heat pump.
본 발명은 상기한 종래 기술의 문제점을 해결하기 위하여 안출된 것으로서, 냉동 사이클 유닛에 성능을 보강하는 부스터 모듈이 연결되는 히트 펌프를 제공하는데 그 목적이 있다.The present invention has been made to solve the above problems of the prior art, an object of the present invention is to provide a heat pump that is connected to the booster module to enhance the performance of the refrigeration cycle unit.
본 발명의 다른 목적은 부스터 모듈의 부스터 압축기로 냉매 가스가 인젝션 되어 저온 조건에서의 난방 성능을 높일 수 있는 히트 펌프를 제공하는데 있다. Another object of the present invention is to provide a heat pump capable of injecting refrigerant gas into a booster compressor of a booster module to increase heating performance at low temperature conditions.
본 발명이 또 다른 목적은 부하에 따른 다양한 운전이 가능하여 소비전력을 최소화하면서 부하에 효율적으로 대응할 수 있는 히트 펌프를 제공하는데 있다.It is another object of the present invention to provide a heat pump capable of efficiently responding to a load while minimizing power consumption by enabling various operations according to the load.
상기한 과제를 해결하기 위한 본 발명에 따른 히트 펌프는 냉매가 압축되는 압축기와, 상기 압축기에서 압축된 냉매가 응축되는 제 1 열교환기와, 상기 제 1 열교환기에서 응축된 냉매가 팽창되는 팽창기구와, 상기 팽창기구에서 팽창된 냉매가 증발되는 제 2 열교환기를 갖는 냉동 사이클 유닛과; 상기 냉동 사이클 유닛에 연결되어 상기 제 1 열교환기에서 팽창기구로 유동되는 냉매 중 기상 냉매를 분리하여 압축한 후 상기 압축기와 제 1 열교환기의 사이로 유동시키거나 상기 제 2 열교환기에서 증발된 냉매를 압축한 후 상기 압축기와 제 1 열교환기의 사이로 유동시키는 부스터 모듈을 포함한다.According to an aspect of the present invention, a heat pump includes: a compressor in which a refrigerant is compressed, a first heat exchanger in which a refrigerant compressed in the compressor is condensed, and an expansion mechanism in which the refrigerant condensed in the first heat exchanger is expanded; A refrigeration cycle unit having a second heat exchanger through which the refrigerant expanded in the expansion mechanism is evaporated; The refrigerant connected to the refrigeration cycle unit is separated and compressed from the refrigerant flowing from the first heat exchanger to the expansion mechanism, and then flows between the compressor and the first heat exchanger or evaporates the refrigerant evaporated in the second heat exchanger. It includes a booster module for compressing and flowing between the compressor and the first heat exchanger.
상기 부스터 모듈은 상기 제 1 열교환기에서 유동된 냉매를 팽창하는 제 1 부스터 팽창기구와, 상기 제 1 부스터 팽창기구에서 팽창된 냉매 중 액냉매와 기상 냉매를 분리하는 기액 분리기와, 상기 기액 분리기에서 분리된 기상 냉매를 팽창하는 제 2 부스터 팽창기구와, 상기 제 2 부스터 팽창기구에서 팽창된 냉매를 압축하는 부스터 압축기를 포함한다. The booster module includes a first booster expansion mechanism for expanding the refrigerant flowing in the first heat exchanger, a gas-liquid separator for separating a liquid refrigerant and a gaseous refrigerant among the refrigerants expanded in the first booster expansion mechanism, and the gas-liquid separator in And a second booster expansion mechanism for expanding the separated gaseous refrigerant, and a booster compressor for compressing the refrigerant expanded in the second booster expansion mechanism.
상기 부스터 모듈은 상기 제 2 열교환기에서 증발된 냉매가 상기 부스터 압축기로 흡입되게 안내하는 부스터 흡입배관을 더 포함한다. The booster module further includes a booster suction pipe for guiding the refrigerant evaporated in the second heat exchanger to be sucked into the booster compressor.
상기 부스터 모듈은 제 1 부스터 팽창기구와 상기 기액 분리기를 연결하는 기액 분리기 흡입배관과, 상기 기액 분리기에서 분리된 기상 냉매가 상기 제 2 부스터 팽창기구로 안내되는 기상 냉매 토출배관과, 상기 제 2 부스터 팽창기구에서 팽창된 냉매가 상기 부스터 압축기로 흡입되는 부스터 압축기 흡입배관과, 상기 부스터 압축기에서 토출된 냉매가 상기 압축기와 제 1 열교환기의 사이로 안내되는 부스터 압축기 토출배관을 더 포함하고, 상기 부스터 흡입배관은 상기 제 2 열교환기와 압축기의 사이와 상기 부스터 압축기 흡입배관을 연결한다. The booster module includes a gas-liquid separator suction pipe connecting the first booster expansion mechanism and the gas-liquid separator, a gaseous-phase refrigerant discharge pipe through which the gaseous refrigerant separated from the gas-liquid separator is guided to the second booster expansion mechanism, and the second booster. And a booster compressor suction pipe through which a refrigerant expanded by an expansion mechanism is sucked into the booster compressor, and a booster compressor discharge pipe through which the refrigerant discharged from the booster compressor is guided between the compressor and the first heat exchanger. The pipe connects the booster compressor suction pipe between the second heat exchanger and the compressor.
상기 부스터 모듈은 상기 부스터 흡입배관에 설치되어 상기 부스터 압축기 흡입배관의 냉매가 상기 부스터 흡입배관을 통해 상기 압축기로 흡입되는 것을 막는 체크밸브를 더 포함한다. The booster module further includes a check valve installed in the booster suction pipe to prevent refrigerant of the booster compressor suction pipe from being sucked into the compressor through the booster suction pipe.
상기 제 1 부스터 팽창기구는 상기 제 1 열교환기와 제 1 부스터 팽창기구 흡입배관으로 연결된다. The first booster expansion mechanism is connected to the first heat exchanger and the first booster expansion mechanism suction pipe.
상기 기액 분리기는 상기 팽창기구와 기액분리기 출구배관으로 연결된다. The gas-liquid separator is connected to the expansion mechanism and the gas-liquid separator outlet pipe.
상기 압축기는 용량 가변 압축기이고, 상기 부스터 압축기는 정속 압축기이다. The compressor is a variable displacement compressor, and the booster compressor is a constant speed compressor.
상기 부스터 압축기는 상기 압축기 보다 용량이 작다. The booster compressor has a smaller capacity than the compressor.
상기 히트 펌프는 운전 모드에 따라 상기 압축기와 부스터 압축기와 제 2 부스터 팽창기구를 제어하는 제어부를 포함한다. The heat pump includes a control unit for controlling the compressor, the booster compressor, and the second booster expansion mechanism according to an operation mode.
상기 제어부는 일반 부하 모드시 상기 압축기를 구동시키고, 상기 부스터 압축기를 정지시키며, 상기 제 2 부스터 팽창기구를 밀폐시킨다. The control unit drives the compressor in the normal load mode, stops the booster compressor, and seals the second booster expansion mechanism.
상기 제어부는 부분 부하 모드시 상기 압축기를 오프시키고, 상기 부스터 압축기를 구동시키며, 상기 제 2 부스터 팽창기구를 밀폐시킨다.  The control unit turns off the compressor in the partial load mode, drives the booster compressor, and seals the second booster expansion mechanism.
상기 제어부는 멀티 운전 모드시 상기 압축기와 부스터 압축기를 구동시키고, 상기 제 2 부스터 팽창기구를 밀폐시킨다.  The control unit drives the compressor and the booster compressor in the multi operation mode, and seals the second booster expansion mechanism.
상기 제어부는 가스 인젝션 모드시 상기 압축기와 부스터 압축기를 구동시키고, 상기 제 2 부스터 팽창기구를 개방시킨다.  The control unit drives the compressor and the booster compressor in the gas injection mode, and opens the second booster expansion mechanism.
상기 제 1 열교환기는 냉매와 물을 열교환시키는 수냉매 열교환기이고, 실내를 난방시키는 난방 유닛 및 온수를 공급하는 급탕 유닛과 물 순환 유로로 연결된다. The first heat exchanger is a water refrigerant heat exchanger for exchanging refrigerant and water, and is connected to a heating unit for heating a room and a hot water supply unit for supplying hot water and a water circulation passage.
상기와 같이 구성되는 본 발명에 따른 히트 펌프는 부스터 모듈이 냉동 사이클 유닛에 추가로 결합 가능하므로, 난방 능력이 부족하거나 한랭지에서 난방능력을 간편하게 높일 수 있고, 냉동 사이클 유닛의 압축기만으로 대응하기 어려운 다양한 부하 조건에 대응할 수 있어 최적의 성능을 발휘할 수 있으며, 최소한의 비용으로 성능을 향상시킬 수 있어 이점이 있다.The heat pump according to the present invention configured as described above can be further coupled to the booster module refrigeration cycle unit, the heating capacity is insufficient or can easily increase the heating capacity in the cold district, a variety of difficult to cope only with the compressor of the refrigeration cycle unit It can cope with the load conditions to achieve the best performance, and there is an advantage to improve the performance at a minimum cost.
도 1은 본 발명에 따른 히트 펌프 일실시예의 냉동 사이클 유닛에 부스터 모듈이 설치되기 전의 구성도,1 is a configuration diagram before a booster module is installed in a refrigeration cycle unit of an embodiment of a heat pump according to the present invention;
도 2는 본 발명에 따른 히트 펌프 일실시예의 냉동 사이클 유닛에 부스터 모듈이 설치된 후의 구성도, 2 is a configuration diagram after the booster module is installed in the refrigeration cycle unit of the heat pump according to the embodiment of the present invention;
도 3은 본 발명에 따른 히트 펌프 일실시예의 냉동 사이클 유닛에 급탕 유닛과 난방 유닛이 연결된 구성도, 3 is a configuration diagram in which a hot water supply unit and a heating unit are connected to a refrigeration cycle unit of an embodiment of a heat pump according to the present invention;
도 4는 본 발명에 따른 히트 펌프 일실시예의 부스터 모듈이 냉동 사이클 유닛과 분리되게 설치 되었을 때의 정면도,4 is a front view when the booster module of one embodiment of the heat pump according to the present invention is installed to be separated from a refrigeration cycle unit,
도 5는 본 발명에 따른 히트 펌프 일실시예의 부스터 모듈이 냉동 사이클 유닛에 장착 되었을 때의 정면도,5 is a front view when the booster module of one embodiment of the heat pump according to the present invention is mounted on a refrigeration cycle unit,
도 6은 본 발명에 따른 히트 펌프 일실시예의 부스터 모듈이 설치되지 않을 때와 부스터 모듈이 설치되었을 때를 비교한 P-h 선도, 6 is a P-h diagram comparing a time when a booster module is not installed and a booster module of an embodiment of the heat pump according to the present invention;
도 7는 본 발명에 따른 히트 펌프 일실시예의 제어 블록도, 7 is a control block diagram of an embodiment of a heat pump according to the present invention;
도 8은 본 발명에 따른 히트 펌프 일실시예의 일반 부하 모드시 냉매 흐름이 도시된 개략 구성도, 8 is a schematic structural diagram showing a refrigerant flow in a normal load mode of a heat pump according to an embodiment of the present invention;
도 9는 본 발명에 따른 히트 펌프 일실시예의 부분 부하 모드시 냉매 흐름이 도시된 개략 구성도, 9 is a schematic structural diagram showing a refrigerant flow in a partial load mode of an embodiment of a heat pump according to the present invention;
도 10은 본 발명에 따른 히트 펌프 일실시예의 멀티 운전 모드시 냉매 흐름이 도시된 개략 구성도, 10 is a schematic configuration diagram showing a refrigerant flow in a multi-operation mode of a heat pump according to an embodiment of the present invention;
도 11은 본 발명에 따른 히트 펌프 일실시예의 가스 인젝션 모드시 냉매 흐름이 도시된 개략 구성도, 11 is a schematic configuration diagram showing a refrigerant flow in the gas injection mode of an embodiment of a heat pump according to the present invention;
도 12는 본 발명에 따른 히트 펌프 다른 실시예의 냉동 사이클 유닛에 부스터 모듈이 설치된 후의 구성도, 12 is a configuration diagram after the booster module is installed in a refrigeration cycle unit according to another embodiment of the heat pump according to the present invention;
도 13은 본 발명에 따른 히트 펌프 다른 실시예의 일반 부하 모드시 냉매 흐름이 도시된 개략 구성도,  13 is a schematic configuration diagram showing a refrigerant flow in a normal load mode of another embodiment of a heat pump according to the present invention;
도 14는 본 발명에 따른 히트 펌프 다른 실시예의 가스 인젝션 모드시 냉매 흐름이 도시된 개략 구성도, 14 is a schematic configuration diagram showing a refrigerant flow in the gas injection mode of another embodiment of the heat pump according to the present invention;
도 15는 본 발명에 따른 히트 펌프 또 다른 실시예의 냉동 사이클 유닛에 부스터 모듈이 설치되기 전의 구성도, 15 is a configuration diagram before the booster module is installed in the refrigeration cycle unit according to another embodiment of the heat pump according to the present invention;
도 16은 본 발명에 따른 히트 펌프 또 다른 실시예의 냉동 사이클 유닛에 부스터 모듈이 설치된 후의 구성도이다. 16 is a configuration diagram after the booster module is installed in the refrigeration cycle unit according to another embodiment of the heat pump according to the present invention.
도 1은 본 발명에 따른 히트 펌프 일실시예의 냉동 사이클 유닛에 부스터 모듈이 설치되기 전의 구성도이고, 도 2는 본 발명에 따른 히트 펌프 일실시예의 냉동 사이클 유닛에 부스터 모듈이 설치된 후의 구성도이며, 도 3은 본 발명에 따른 히트 펌프 일실시예의 냉동 사이클 유닛에 급탕 유닛과 난방 유닛이 연결된 구성도이고, 1 is a configuration diagram before the booster module is installed in a refrigeration cycle unit of a heat pump according to an embodiment of the present invention, Figure 2 is a configuration diagram after the booster module is installed in a refrigeration cycle unit of a heat pump according to an embodiment of the present invention. 3 is a configuration diagram in which a hot water supply unit and a heating unit are connected to a refrigeration cycle unit of an embodiment of a heat pump according to the present invention;
본 실시예에 따른 히트 펌프는 냉동 사이클 유닛(1)과, 부스터 모듈(2)을 포함한다. The heat pump according to the present embodiment includes a refrigeration cycle unit 1 and a booster module 2.
냉동 사이클 유닛(1)은 실내의 냉/난방과 급탕 등에 이용될 수 있다. The refrigeration cycle unit 1 may be used for indoor cooling / heating and hot water supply.
부스터 모듈(2)은 냉동 사이클 유닛(1)이 실내의 냉/난방과 급탕 용량에 충분히 대응되지 못하거나, 사용자 등이 실내의 냉/난방 용량과 급탕 용량을 높이기를 희망할 경우 실내의 냉/난방 용량과 급탕 용량을 추가로 높이기 위해 설치될 수 있다. The booster module 2 may be configured such that the refrigeration cycle unit 1 does not sufficiently correspond to the indoor cooling / heating and hot water supply capacity, or the user wishes to increase the indoor cooling / heating capacity and hot water supply capacity. It can be installed to further increase heating capacity and hot water capacity.
냉동 사이클 유닛(1)은 도 1 내지 도 3에 도시된 바와 같이 냉매를 압축하는 압축기(10)와, 압축기(10)에서 압축된 냉매가 응축되는 제 1 열교환기(14)와, 제 1 열교환기(14)에서 응축된 냉매가 팽창되는 팽창기구(16)와, 팽창기구(16)에서 팽창된 냉매가 증발되는 제 2 열교환기(18)를 포함할 수 있다.The refrigeration cycle unit 1 includes a compressor 10 for compressing a refrigerant as shown in FIGS. 1 to 3, a first heat exchanger 14 for condensing the refrigerant compressed in the compressor 10, and a first heat exchanger. The expansion mechanism 16 may expand the refrigerant condensed in the air 14, and the second heat exchanger 18 in which the refrigerant expanded in the expansion mechanism 16 is evaporated.
냉동 사이클 유닛(1)은 냉방용으로 설치되는 것도 가능하고, 난방용으로 설치되는 것도 가능하며, 냉/난방 겸용으로 설치되는 것도 가능하다.The refrigeration cycle unit 1 may be installed for cooling, may be installed for heating, or may be installed for both cooling and heating.
냉동 사이클 유닛(1)은 실내 공기가 제 1 열교환기(14)로 송풍된 후 실내로 다시 토출되는 것에 의해 실내를 난방시키는 것이 가능하고, 실내 공기가 제 2 열교환기(18)로 송풍된 후 실내로 다시 토출되는 것에 의해 실내를 냉방시키는 것이 가능하다. The refrigeration cycle unit 1 is capable of heating the room by being discharged back to the room after the indoor air is blown into the first heat exchanger 14, and after the indoor air is blown into the second heat exchanger 18 It is possible to cool the room by being discharged back to the room.
즉, 냉동 사이클 유닛(1)은 실내 공기를 제 1 열교환기(14)와 제 2 열교환기(18) 중 하나와 직접 열교환시키는 것이 가능하고, 이 경우 냉동 사이클 유닛(1)은 제 1 열교환기(14)와 제 2 열교환기(18) 중 하나로 실내 공기를 순환시키는 실내 팬을 포함할 수 있다.That is, the refrigeration cycle unit 1 is capable of directly exchanging indoor air with one of the first heat exchanger 14 and the second heat exchanger 18, in which case the refrigeration cycle unit 1 is the first heat exchanger. One of the 14 and the second heat exchanger 18 may include an indoor fan for circulating the indoor air.
냉동 사이클 유닛(1)은 제 1 열교환기(14)와 제 2 열교환기(18) 중 하나가 냉매와 물을 열교환시키는 수냉매 열교환기로 구성되고, 실내 공기와 실외 공기의 혼합 공기가 가열 또는 냉각되는 냉각/가열 코일이 수냉매 열교환기와 물 순환 유로로 연결되어, 물이 수냉매 열교환기와 냉각/가열 코일을 순환하면서 냉각/가열 코일을 냉각/가열시키고, 실내 공기와 실외 공기의 혼합 공기가 냉각/가열 코일에 의해 냉각/가열된 후 실내로 토출되는 것이 가능하다. The refrigeration cycle unit 1 is composed of a water refrigerant heat exchanger in which one of the first heat exchanger 14 and the second heat exchanger 18 exchanges refrigerant and water, and a mixed air of indoor air and outdoor air is heated or cooled. The cooling / heating coil is connected to the water refrigerant heat exchanger and the water circulation flow path, and the water cools / heats the cooling / heating coil while circulating the water refrigerant heat exchanger and the cooling / heating coil, and the mixed air of indoor air and outdoor air is cooled. It is possible to be discharged into the room after being cooled / heated by a heating coil.
즉, 냉동 사이클 유닛(1)에서 냉매와 열교환된 물은 실내 공기와 실외 공기의 혼합 공기를 냉각/가열시킨 후 실내로 토출되는 에어 핸들링 유닛(AHU: Air Handling Unit)에서 이용될 수 있다.That is, the water heat-exchanged with the refrigerant in the refrigeration cycle unit 1 may be used in an air handling unit (AHU) that is discharged to the room after cooling / heating the mixed air of the indoor air and the outdoor air.
냉동 사이클 유닛(1)은 제 1 열교환기(14)와 제 2 열교환기(18) 중 하나가 냉매와 물이 열교환되는 수냉매 열교환기로 구성되고, 수냉매 열교환기에서 가열 또는 냉각된 물이 실내의 냉/난방/급탕에 이용되는 것이 가능하다. The refrigeration cycle unit 1 is composed of a water refrigerant heat exchanger in which one of the first heat exchanger 14 and the second heat exchanger 18 exchanges refrigerant and water, and the water heated or cooled in the water refrigerant heat exchanger is indoors. It can be used for cooling, heating, and hot water supply.
냉동 사이클 유닛(1)은 냉방용으로 설치되는 경우, 제 2 열교환기(18)가 수냉매 열교환기로 구성되고, 실내를 냉방시키는 냉방 유닛이 수냉매 열교환기와 물 순환 유로로 연결되어, 물이 수냉매 열교환기와 냉방 유닛을 순환하면서 냉방 유닛을 냉각시키고, 냉방 유닛이 실내를 냉각시키는 것이 가능하다.When the refrigeration cycle unit 1 is installed for cooling, the second heat exchanger 18 is composed of a water refrigerant heat exchanger, and a cooling unit for cooling the room is connected to the water refrigerant heat exchanger and the water circulation flow path, so that water is It is possible to cool the cooling unit while circulating the refrigerant heat exchanger and the cooling unit, and the cooling unit can cool the room.
냉동 사이클 유닛(1)은 난방용으로 설치되는 경우, 제 1 열교환기(14)가 수냉매 열교환기로 구성되고, 실내를 난방시키는 난방유닛이 수냉매 열교환기와 물 순환 유로로 연결되어, 물이 수냉매 열교환기와 난방유닛을 순환하면서 난방유닛을 가열시키고 난방유닛이 실내를 난방시키는 것이 가능하다.When the refrigeration cycle unit 1 is installed for heating, the first heat exchanger 14 is composed of a water refrigerant heat exchanger, the heating unit for heating the room is connected to the water refrigerant heat exchanger and the water circulation passage, and the water is refrigerant It is possible to heat the heating unit while circulating the heat exchanger and the heating unit and the heating unit to heat the room.
냉동 사이클 유닛(1)은 급탕용으로 설치되는 경우, 제 1 열교환기(14)가 수냉매 열교환기로 구성되고, 실내에 온수를 공급하는 급탕유닛이 수냉매 열교환기와 물 순환 유로로 연결되어, 물이 수냉매 열교환기와 급탕유닛을 순환하면서 급탕유닛을 가열시키고 급탕유닛이 실내로 온수를 공급시키는 것이 가능하다.When the refrigeration cycle unit 1 is installed for hot water supply, the first heat exchanger 14 is composed of a water refrigerant heat exchanger, the hot water supply unit for supplying hot water to the room is connected to the water refrigerant heat exchanger and the water circulation flow path, It is possible to heat the hot water supply unit while circulating the water refrigerant heat exchanger and the hot water supply unit, and the hot water supply unit to supply hot water to the room.
냉동 사이클 유닛(1)은 냉/난방/급탕으로 설치되는 경우, 제 1 열교환기(14)가 수냉매 열교환기로 구성되고, 수냉매 열교환기가 실내를 냉/난방 시키는 냉/난방 유닛과 물 순환 유로로 연결되어 물이 수냉매 열교환기와 냉/난방 유닛을 순환하면서 냉/난방 유닛을 냉각/가열시키며, 수냉매 열교환기가 실내로 온수를 공급하는 급탕 유닛과 물 순환 유로로 연결되어 물이 수냉매 열교환기가 급탕유닛를 순환하면서 급탕 유닛을 가열시키는 것이 가능하다.When the refrigeration cycle unit 1 is installed by cooling / heating / hot water supply, the first heat exchanger 14 is configured as a water refrigerant heat exchanger, and the water / cooling unit and the water circulation flow path where the water refrigerant heat exchanger cools / heats the room. Water is circulated in the water refrigerant heat exchanger and the cooling / heating unit to cool / heat the cooling / heating unit, and the water refrigerant heat exchanger is connected to the hot water supply unit that supplies the hot water to the room and the water circulation passage, so that the water is the water refrigerant heat exchanger. It is possible to heat the hot water supply unit while the gas circulates in the hot water supply unit.
즉, 냉동 사이클 유닛(1)에서 냉매와 열교환된 물은 실내를 난방시키는 난방 유닛에서 이용될 수 있고, 실내를 냉방시키는 냉방 유닛에서 이용될 수 있으며, 실내로 온수를 공급하는 급탕 유닛에서 이용될 수 있다. That is, the water heat exchanged with the refrigerant in the refrigerating cycle unit 1 may be used in a heating unit for heating the room, may be used in a cooling unit for cooling the room, and may be used in a hot water supply unit for supplying hot water to the room. Can be.
이하, 냉동 사이클 장치(1)는 제 1 열교환기(14)가 수냉매 열교환기로 구성되고, 제 1 열교환기(14)에서 가열된 물이 급탕 유닛(4)에서 이용되며, 제 1 열교환기(14)에서 가열 되거나 냉각된 물이 냉/난방 유닛(5)에서 이용될 수 있는 것으로 설명한다.Hereinafter, in the refrigeration cycle apparatus 1, the first heat exchanger 14 is configured as a water refrigerant heat exchanger, the water heated in the first heat exchanger 14 is used in the hot water supply unit 4, and the first heat exchanger ( It will be described that the water heated or cooled in 14 can be used in the cooling / heating unit 5.
본 실시예에 따른 히트 펌프는 압축기(10)와 제 1 열교환기(14)와 팽창기구(16)와 제 2 열교환기(18)가 냉동 사이클 유닛(1)에 설치될 수 있고, 냉동 사이클 유닛(1)은 냉/난방을 절환할 수 있는 냉/난방 절환 밸브(12)를 더 포함할 수 있다.In the heat pump according to the present embodiment, the compressor 10, the first heat exchanger 14, the expansion mechanism 16, and the second heat exchanger 18 may be installed in the refrigeration cycle unit 1, and the refrigeration cycle unit (1) may further include a cooling / heating switching valve 12 capable of switching cooling / heating.
냉/난방 절환 밸브(12)는 난방 모드시 압축기(10)에서 압축된 냉매를 제 1 열교환기(14)로 유동시킴과 아울러 제 2 열교환기(18)에서 증발된 냉매를 압축기(10)로 유동시켜 제 1 열교환기(14)에서 냉매가 응축되고 제 2 열교환기(18)에서 냉매가 증발되게 한다. The cooling / heating switching valve 12 allows the refrigerant compressed in the compressor 10 to flow to the first heat exchanger 14 in the heating mode, and the refrigerant evaporated in the second heat exchanger 18 to the compressor 10. The flow causes the refrigerant to condense in the first heat exchanger 14 and the refrigerant to evaporate in the second heat exchanger 18.
냉/난방 절환 밸브(12)는 냉방 모드이거나 제상 모드시 압축기(10)에서 압축된 냉매를 제 2 열교환기(18)로 유동됨과 아울러 제 1 열교환기(14)에서 증발된 냉매가 압축기(10)로 유동시켜 제 1 열교환기(14)에서 냉매가 증발되고, 제 2 열교환기(18)에서 냉매가 응축되게 한다.In the cooling / heating switching valve 12, in the cooling mode or the defrost mode, the refrigerant compressed by the compressor 10 flows to the second heat exchanger 18, and the refrigerant evaporated in the first heat exchanger 14 is compressed by the compressor 10. ) To allow the refrigerant to evaporate in the first heat exchanger 14 and to condense the refrigerant in the second heat exchanger 18.
냉동 사이클 유닛(1)은 하나의 유닛으로 구성되는 것도 가능하고, 실내기(6)와 실외기(7)로 구성되는 것도 가능하다.The refrigeration cycle unit 1 may be constituted by one unit or may be constituted by an indoor unit 6 and an outdoor unit 7.
냉동 사이클 유닛(1)은 하나의 유닛으로 구성될 경우 압축기(10)와 냉/난방 절환 밸브(12)와 응축기(14)와 팽창기구(16)와 제 2 열교환기(18)가 하나의 케이스 내부에 설치될 수 있다.When the refrigeration cycle unit 1 is composed of one unit, the compressor 10, the cooling / heating switching valve 12, the condenser 14, the expansion mechanism 16, and the second heat exchanger 18 are one case. It can be installed inside.
냉동 사이클 유닛(1)은 실내기(6)와 실외기(7)로 구성될 경우 실외기(7)가 압축기(10)와 냉/난방 절환 밸브(12)와 팽창기구(16)와 제 2 열교환기(18)를 포함하고, 실내기(6)가 제 1 열교환기(14)를 포함하며, 실외기(7)와 실내기(6)가 냉매 배관으로 연결될 수 있다. When the refrigeration cycle unit 1 is composed of an indoor unit 6 and an outdoor unit 7, the outdoor unit 7 includes a compressor 10, a cooling / heating switching valve 12, an expansion mechanism 16, and a second heat exchanger ( 18), the indoor unit 6 may include the first heat exchanger 14, and the outdoor unit 7 and the indoor unit 6 may be connected to the refrigerant pipe.
압축기(10)는 냉/난방 절환 밸브(12)와 압축기 토출배관(11)으로 연결될 수 있다.The compressor 10 may be connected to the cooling / heating switching valve 12 and the compressor discharge pipe 11.
압축기 토출배관(11)에는 후술하는 부스터 압축기(90)에서 토출된 냉매가 압축기(10)로 유입되는 것을 막는 체크밸브(11')가 설치될 수 있다.The compressor discharge pipe 11 may be provided with a check valve 11 ′ that prevents refrigerant discharged from the booster compressor 90, which will be described later, from entering the compressor 10.
냉/난방 절환밸브(12)는 제 1 열교환기(14)와 제 1 열교환기-냉/난방 절환밸브 연결배관(13)으로 연결되고, 압축기(10)와 압축기 흡입배관(20)으로 연결될 수 있다.The cooling / heating switching valve 12 may be connected to the first heat exchanger 14 and the first heat exchanger-cooling / heating switching valve connecting pipe 13, and may be connected to the compressor 10 and the compressor suction pipe 20. have.
제 1 열교환기(14)는 팽창기구(16)와 제 1 열교환기-팽창기구 연결배관(15)으로 연결될 수 있다.The first heat exchanger 14 may be connected to the expansion mechanism 16 and the first heat exchanger-expansion mechanism connecting pipe 15.
제 1 열교환기(14)는 냉매와 물이 열교환되는 수냉매 열교환기로 구성되고, 냉매가 통과하면서 방열되는 방열 유로와, 물이 통과하면서 흡열되는 흡열 유로가 열전달부재를 사이에 두고 형성될 수 있다.The first heat exchanger 14 may be configured as a water refrigerant heat exchanger in which the refrigerant and water are heat-exchanged, and a heat dissipation passage for radiating heat while the refrigerant passes, and an endothermic passage for absorbing water as the refrigerant passes therethrough may be formed between the heat transfer members. .
제 1 열교환기(14)에는 급탕 유닛(4) 및 난방 유닛(5)과 폐회로를 형성하는 물 순환 유로(22)가 연결될 수 있다. The first heat exchanger 14 may be connected to the water circulation channel 22 forming a closed circuit with the hot water supply unit 4 and the heating unit 5.
팽창기구(16)는 제 2 열교환기(18)와 팽창기구-제 2 열교환기 연결배관(17)으로 연결될 수 있다. The expansion mechanism 16 may be connected to the second heat exchanger 18 and the expansion mechanism-second heat exchanger connecting pipe 17.
팽창기구(16)는 전자 팽창밸브로 이루어질 수 있다. The expansion mechanism 16 may be made of an electronic expansion valve.
제 2 열교환기(18)는 냉/난방 절환밸브(12)와 제 2 열교환기-냉/난방 절환밸브 연결배관(19)로 연결될 수 있다. The second heat exchanger 18 may be connected to the cooling / heating switching valve 12 and the second heat exchanger-cooling / heating switching valve connecting pipe 19.
제 2 열교환기(18)는 실외 공기를 제 2 열교환기(18)로 송풍시켜 냉매가 실외 공기에 의해 증발되는 공랭식 열교환기로 구성되고, 냉동 사이클 유닛(1)은 실외 공기를 제 2 열교환기(18)로 송풍시키는 실외팬(미도시)을 더 포함할 수 있다. The second heat exchanger 18 is composed of an air-cooled heat exchanger in which outdoor air is blown to the second heat exchanger 18 so that the refrigerant is evaporated by the outdoor air, and the refrigeration cycle unit 1 supplies the outdoor air to the second heat exchanger ( 18) may further include an outdoor fan (not shown) for blowing to.
물 순환 유로(22)는 제 1 열교환기(14)에서 냉매와 열교환된 물이 급탕 유닛(4)과 난방 유닛(5) 중 적어도 하나를 통과한 후 제 1 열교환기(14)로 회수되도록 제 1 열교환기(14)와 급탕 유닛(4)과 난방 유닛(5)을 연결할 수 있다.The water circulation passage 22 is configured such that the water heat-exchanged with the refrigerant in the first heat exchanger 14 is recovered to the first heat exchanger 14 after passing through at least one of the hot water supply unit 4 and the heating unit 5. 1 The heat exchanger 14 and the hot water supply unit 4 and the heating unit 5 can be connected.
물 순환 유로(22)는 냉동 사이클 유닛(1) 내부에 위치하는 냉동 사이클 유닛 배관(23)과, 제 1 열교환기(14)에서 가열된 물이 급탕 유닛(4)을 통과하는 급탕 배관(24)과, 제 1 열교환기(14)에서 가열된 물이 냉/난방 유닛(5)을 통과하는 냉/난방 배관(25)과, 냉동 사이클 유닛 배관(23)을 급탕 배관(24) 및 냉/난방 배관(25)에 연결하는 연결 배관(27)을 포함할 수 있다. The water circulation passage 22 includes a refrigeration cycle unit pipe 23 positioned inside the refrigeration cycle unit 1, and a hot water supply pipe 24 through which the water heated in the first heat exchanger 14 passes through the hot water supply unit 4. ), A cooling / heating pipe 25 through which water heated in the first heat exchanger 14 passes through the cooling / heating unit 5, and a refrigeration cycle unit pipe 23. It may include a connection pipe 27 for connecting to the heating pipe 25.
연결 배관(27)에는 제 1 열교환기(14)에서 가열되거나 냉각된 물을 급탕 배관(24)과 냉/난방 배관(25) 중 적어도 하나로 안내하는 물 조절밸브(28)가 설치되고, 급탕 배관(24)과 난방 배관(25)은 연결배관(27)을 통해 물 조절밸브(28)에 연결될 수 있다. The connection pipe 27 is provided with a water control valve 28 for guiding water heated or cooled in the first heat exchanger 14 to at least one of the hot water supply pipe 24 and the cooling / heating pipe 25. 24 and the heating pipe 25 may be connected to the water control valve 28 through the connection pipe (27).
이하, 냉동 사이클 유닛(1)과, 급탕 유닛(4)과, 난방 유닛(5)에 대해 상세히 설명한다. Hereinafter, the refrigeration cycle unit 1, the hot water supply unit 4, and the heating unit 5 will be described in detail.
냉동 사이클 유닛(1)은 공기열원 히트펌프 냉/난방기(AWHP: air to water heat pump )로서, 냉동 사이클 유닛 배관(23)을 통과하는 물의 흐름을 감지하는 플로우 스위치(32)와, 냉동 사이클 유닛 배관(23) 중 플로우 스위치(31)와 이격된 위치에 설치된 팽창탱크(33)와, 냉동 사이클 유닛 배관(23)이 연결되고 내부에 보조 히터(35)가 설치된 집수 탱크(34)와, 냉동 사이클 유닛 배관(23)에 설치되어 물이 순환되게 펌핑시키는 순환 펌프(36)를 포함할 수 있다.The refrigeration cycle unit 1 is an air to water heat pump (AWHP), a flow switch 32 for detecting the flow of water passing through the refrigeration cycle unit piping 23, and the refrigeration cycle unit An expansion tank 33 installed at a position spaced apart from the flow switch 31 in the pipe 23, a water collecting tank 34 to which the refrigeration cycle unit pipe 23 is connected, and an auxiliary heater 35 is installed therein, and a refrigeration tank. It may include a circulation pump 36 installed in the cycle unit pipe 23 to pump the water to circulate.
팽창 탱크(33)는 제 1 열교환기(14)를 통과하면서 가열된 물의 부피가 적정 수준이상으로 팽창되었을 때 이를 흡수하는 일종의 완충기로서, 그 내부에는 질소가 충전됨과 아울러 물의 부피에 대응하여 움직이는 다이어플램이 설치될 수 있다.The expansion tank 33 is a type of buffer that absorbs when the volume of heated water passes through the first heat exchanger 14 when it is expanded to an appropriate level or more, and is filled with nitrogen and moves in response to the volume of water. Flam may be installed.
집수 탱크(34)는 물이 집수되는 것으로서, 제상 운전이나 제 1 열교환기(14)의 열량이 요구되는 열량에 미치지 못하는 경우 보조 히터(35)가 선택적으로 작동될 수 있다.The collecting tank 34 is water collected, and the auxiliary heater 35 may be selectively operated when the defrosting operation or the heat amount of the first heat exchanger 14 does not reach the required heat amount.
워터 펌프(36)는 물이 냉동 사이클 유닛(1)와 급탕 유닛(4)과 난방 유닛(5)을 순환되게 하는 것으로서, 냉동 사이클 유닛 배관(23) 중 집수 탱크(34)의 이후에 설치될 수 있다.The water pump 36 causes water to circulate in the refrigeration cycle unit 1, the hot water supply unit 4, and the heating unit 5, which is to be installed after the water collection tank 34 in the refrigeration cycle unit piping 23. Can be.
급탕 유닛(4)은 사용자가 세면, 목욕 또는 설거지 등에 필요한 온수를 공급하는 것으로서, 물이 담겨지는 급탕 탱크(41)와, 급탕 탱크(41)에 설치된 급탕용 보조 히터(42)를 포함할 수 있다.The hot water supply unit 4 supplies hot water required for washing the face, bathing or washing dishes, etc., and may include a hot water tank 41 in which water is contained and an auxiliary heater 42 for hot water installed in the hot water tank 41. have.
급탕 탱크(41)에는 냉수가 급탕 탱크(41)로 급수되는 냉수 입수부(43)와, 급탕 탱크(41)의 온수가 출수되는 온수가 출수되는 온수 출수부(44)가 연결될 수 있다.The hot water supply tank 41 may be connected to a cold water inlet 43 in which cold water is supplied to the hot water supply tank 41, and a hot water outlet 44 in which hot water from the hot water tank 41 is discharged.
급탕 탱크(41)에는 급탕 배관(24)이 설치되어 급탕 탱크(41) 내의 물을 가열할 수 있다.The hot water supply tank 41 is provided with a hot water supply pipe 24 to heat the water in the hot water tank 41.
온수 출수부(44)에는 샤워기와 같은 온수 출수기구(45)가 연결될 수 있다.The hot water outlet 44 may be connected to a hot water outlet 45 such as a shower.
온수 출수부(44)에는 온수 출수기구(45)로 냉수가 출수될 수 있게 냉수 입수부(46)가 연결될 수 있다. The cold water inlet unit 46 may be connected to the hot water outlet unit 44 so that the cold water may be withdrawn from the hot water outlet unit 45.
난방 유닛(5)은 실내의 바닥을 냉/난방시키는 바닥 냉/난방 유닛(51)과, 실내의 공기를 냉/난방시키는 공기 냉/난방 유닛(52)을 포함할 수 있다. The heating unit 5 may include a floor cooling / heating unit 51 for cooling / heating the floor of the room, and an air cooling / heating unit 52 for cooling / heating the air of the room.
바닥 냉/난방 유닛(51)은 실내 바닥에 미앤더라인(meander line)으로 매설될 수 있다.The floor cooling / heating unit 51 may be buried in a meander line on the indoor floor.
공기 냉/난방 유닛(52)은 팬 코일 유닛(Fan coil unit) 또는 라디에이터(Radiator) 등으로 구성될 수 있다.The air cooling / heating unit 52 may be configured as a fan coil unit or a radiator.
냉/난방 배관(25)에는 물을 바닥 냉/난방 유닛(51)과 공기 냉/난방 유닛(52) 중 적어도 하나로 안내하는 물 조절밸브(53)(54)가 설치될 수 있고, 바닥 냉/난방 유닛(51)은 물 조절밸브(53)(54)와 공기 냉/난방 배관(55)으로 연결되며, 바닥 냉/난방 유닛(51)은 물 조절밸브(53)(54)와 바닥 냉/난방 배관(56)으로 연결될 수 있다. In the cooling / heating pipe 25, water control valves 53 and 54 for guiding water to at least one of the floor cooling / heating unit 51 and the air cooling / heating unit 52 may be installed. The heating unit 51 is connected to the water control valves 53 and 54 and the air cooling / heating piping 55, and the floor cooling / heating unit 51 is the water control valves 53 and 54 and the floor cooling / It may be connected to the heating pipe 56.
순환 펌프(36)의 구동시, 물 조절밸브(28)가 급탕 모드이면, 제 1 열교환기(14)에서 가열된 물은 냉동 사이클 유닛 배관(23)과 연결 배관(27)을 차례로 통과하여 급탕 배관(24)으로 유입되고, 급탕 탱크(41) 내의 물을 가열시킨 후 연결배관(27)과 냉동 사이클 유닛 배관(23)을 차례로 통과하여 제 1 열교환기(14)로 회수될 수 있다.  When the water control valve 28 is in the hot water supply mode when the circulation pump 36 is driven, the water heated in the first heat exchanger 14 passes through the refrigeration cycle unit pipe 23 and the connection pipe 27 in order to supply the hot water. After flowing into the pipe 24, the water in the hot water tank 41 may be heated, and then sequentially passed through the connection pipe 27 and the refrigeration cycle unit pipe 23 to be recovered to the first heat exchanger 14.
순환 펌프(36)의 구동시, 물 조절밸브(28)가 냉/난방 모드이면, 제 1 열교환기(14)에서 가열되거나 냉각된 물은 냉동 사이클 유닛 배관(23)과 연결 배관(27)을 차례로 통과하여 냉/난방 배관(25)으로 유입되고, 바닥 냉/난방 유닛(51)과 공기 냉/난방 유닛(52) 중 적어도 하나를 가열시거나 냉각시킨 후 냉/난방 배관(25)과 연결배관(27)과 냉동 사이클 유닛 배관(23)을 차례로 통과하여 제 1 열교환기(14)로 회수될 수 있다.  When the circulation pump 36 is driven, if the water control valve 28 is in the cooling / heating mode, the water heated or cooled in the first heat exchanger 14 is connected to the refrigeration cycle unit pipe 23 and the connection pipe 27. Passed in order to flow into the cooling / heating pipe (25), heating or cooling at least one of the floor cooling / heating unit (51) and the air cooling / heating unit (52), and then connected to the cooling / heating pipe (25) After passing through the 27 and the refrigeration cycle unit pipe 23, the first heat exchanger 14 may be recovered.
이때, 물 조절밸브(55)(56)가 공기 냉/난방 모드이면, 제 1 열교환기(14)에서 가열되거나 냉각된 물은 공기 냉/난방 배관(25)과 공기 냉/난방 유닛(52)과 공기 냉/난방 배관(55) 차례로 통과하여 냉/난방 배관(25)으로 출수되고, 바닥 냉/난방 모드이면, 제 1 열교환기(14)에서 가열된 물은 바닥 냉/난방 배관(56)과 바닥 냉/난방 유닛(51)과 바닥 냉/난방 배관(56) 차례로 통과하여 냉/난방 배관(25)으로 출수될 수 있다.  At this time, when the water control valves 55 and 56 are in the air cooling / heating mode, the water heated or cooled in the first heat exchanger 14 is air cooled / heated pipe 25 and air cooled / heated unit 52. And the air cooling / heating pipe (55) pass in order to exit the cooling / heating pipe (25), and in the bottom cooling / heating mode, the water heated in the first heat exchanger (14) is the bottom cooling / heating pipe (56). After passing through the bottom cooling / heating unit 51 and the bottom cooling / heating pipe 56, the water may be discharged to the cooling / heating pipe 25.
부스터 모듈(2)은 냉동 사이클 유닛(1)이 설치된 후 필요에 따라 냉동 사이클 유닛(1)에 부가적으로 설치될 수 있다.  The booster module 2 may be additionally installed in the refrigeration cycle unit 1 as needed after the refrigeration cycle unit 1 is installed.
부스터 모듈(2)은 냉동 사이클 유닛(1)에 연결되어 제 1 열교환기(14)에서 팽창기구(16)로 유동되는 냉매 중 기상 냉매를 분리하여 압축한 후 압축기(10)와 제 1 열교환기(14)의 사이로 유동시킬 수 있다.  The booster module 2 is connected to the refrigeration cycle unit 1 to separate and compress the gaseous refrigerant from the refrigerant flowing from the first heat exchanger 14 to the expansion mechanism 16, and then compresses the compressor 10 and the first heat exchanger. It can flow between (14).
부스터 모듈(2)은 후술하는 부스터 압축기(90)가 냉동 사이클 유닛(1)의 압축기(10)와 별도로 냉매를 압축하고 제 1 열교환기(14)의 응축압 보다 높고 제 2 열교환기(18)의 증발압 보다 낮은 중간압의 기상 냉매를 부스터 압축기(90)로 인젝션하여 운전 효율을 높일 수 있다.  The booster module 2 has a booster compressor 90, which will be described later, compresses the refrigerant separately from the compressor 10 of the refrigeration cycle unit 1, and is higher than the condensing pressure of the first heat exchanger 14 and the second heat exchanger 18. The gaseous refrigerant having a medium pressure lower than the evaporation pressure may be injected into the booster compressor 90 to increase operating efficiency.
부스터 모듈(2)은 제 1 열교환기(14)에서 응축된 냉매를 팽창하는 제 1 부스터 팽창기구(62)와, 제 1 부스터 팽창기구(62)에서 팽창된 냉매 중 액냉매와 기상 냉매를 분리하는 기액 분리기(70)와, 기액 분리기(70)에서 분리된 기상 냉매를 팽창하는 제 2 부스터 팽창기구(80)와, 제 2 부스터 팽창기구(80)에서 팽창된 냉매를 압축하는 부스터 압축기(90)를 포함할 수 있다.  The booster module 2 separates the first booster expansion mechanism 62 that expands the refrigerant condensed in the first heat exchanger 14, and the liquid refrigerant and the gaseous refrigerant among the refrigerants expanded by the first booster expansion mechanism 62. The gas-liquid separator 70, the second booster expansion mechanism 80 for expanding the gaseous phase refrigerant separated by the gas-liquid separator 70, and the booster compressor 90 for compressing the refrigerant expanded in the second booster expansion mechanism 80. ) May be included.
본 실시예에 따른 히트 펌프는 부스터 모듈(2)의 설치시, 제 1 열교환기-냉/난방 절환밸브 연결배관(13)과 제 1 열교환기-팽창기구 연결배관(15)의 각각이 분리되고, 부스터 모듈(2)은 분리된 제 1 열교환기-냉/난방 절환밸브 연결배관(13A)(13B)과 연결되며, 분리된 제 1 열교환기-팽창기구 연결배관(15A)(15B)과 연결될 수 있다.  In the heat pump according to the present embodiment, when the booster module 2 is installed, each of the first heat exchanger-cooling / heating switching valve connection pipe 13 and the first heat exchanger-expansion mechanism connection pipe 15 are separated. , The booster module 2 is connected to the separated first heat exchanger-cooling / heating switching valve connecting pipe 13A, 13B, and connected to the separated first heat exchanger-expansion mechanism connecting pipe 15A, 15B. Can be.
제 1 부스터 팽창기구(62)는 제 1 열교환기(14)와 제 1 부스터 팽창기구 흡입배관(64)으로 연결될 수 있고, 제 1 부스터 팽창기구 흡입배관(64)는 분리된 제 1 열교환기-팽창기구 연결배관(15A)(15B) 중 어느 하나(15A)와 연결될 수 있다.  The first booster expansion device 62 may be connected to the first heat exchanger 14 and the first booster expansion device suction pipe 64, and the first booster expansion device suction pipe 64 may be separated from the first heat exchanger. It may be connected to any one 15A of the expansion mechanism connecting pipe (15A) (15B).
제 1 부스터 팽창기구(62)는 전자 팽창밸브로 이루어질 수 있다.  The first booster expansion mechanism 62 may be an electronic expansion valve.
기액 분리기(70)는 제 1 열교환기(14)에서 응축된 냉매 중 기상 냉매를 액 냉매와 분리하는 것으로서, 팽창기구(16)와 기액분리기 출구배관(72)으로 연결될 수 있고, 기액분리기 출구배관(72)는 분리된 제 1 열교환기-팽창기구 연결배관(15A)(15B) 중 다른 하나(15B)와 연결될 수 있다.    The gas-liquid separator 70 separates the gaseous refrigerant from the refrigerant condensed in the first heat exchanger 14 with the liquid refrigerant, and may be connected to the expansion mechanism 16 and the gas-liquid separator outlet pipe 72, and the gas-liquid separator outlet pipe. 72 may be connected to the other one 15B of the separated first heat exchanger-expansion mechanism connecting pipes 15A and 15B.
제 2 부스터 팽창기구(80)는 개방시 기액 분리기(70)의 기상 냉매가 부스터 압축기(90)로 유동되게 하고, 밀폐시 기액 분리기(70)의 기상 냉매가 부스터 압축기(90)로 유동되지 않게 한다. 제 2 부스터 팽창기구(80)는 개도 조절시 기액 분리기(70)에서 부스터 압축기(90)를 향해 유동되는 기상 냉매를 팽창시킬 수 있다.  The second booster expansion mechanism 80 allows the gaseous refrigerant of the gas-liquid separator 70 to flow into the booster compressor 90 when opened, and prevents the gaseous refrigerant of the gas-liquid separator 70 from flowing to the booster compressor 90 when closed. do. The second booster expansion mechanism 80 may expand the gaseous refrigerant flowing from the gas-liquid separator 70 toward the booster compressor 90 when the opening degree is adjusted.
제 2 부스터 팽창기구(80)는 전자 팽창밸브로 이루어질 수 있다.  The second booster expansion mechanism 80 may be made of an electronic expansion valve.
부스터 모듈(2)은 제 1 부스터 팽창기구(62)와 기액 분리기(70)를 연결하는 기액 분리기 흡입배관(74)을 포함할 수 있다.   The booster module 2 may include a gas-liquid separator suction pipe 74 connecting the first booster expansion mechanism 62 and the gas-liquid separator 70.
즉, 제 1 열교환기(14)와 팽창기구(16)는 부스터 모듈(2)이 설치되기 전에 제 1 열교환기-팽창기구 연결배관(15)을 통해 연결될 수 있고, 부스터 모듈(2)의 설치된 후에 제 1 열교환기-팽창기구 연결배관(15A)(15B) 중 어느 하나(15A)와 제 1 부스터 팽창기구 흡입배관(64)과 제 1 부스터 팽창기구(62)와, 기액 분리기 흡입배관(74)과, 기액 분리기(70)와, 기액분리기 출구배관(72)과 제 1 열교환기-팽창기구 연결배관(15A)(15B) 중 다른 하나(15B)를 통해 연결될 수 있다.  That is, the first heat exchanger 14 and the expansion mechanism 16 may be connected through the first heat exchanger-expansion mechanism connecting pipe 15 before the booster module 2 is installed, and the booster module 2 is installed. After that, any one of the first heat exchanger-expansion mechanism connecting pipes 15A and 15B, 15A, the first booster expansion device suction pipe 64, the first booster expansion device 62, and the gas-liquid separator suction pipe 74 ), The gas-liquid separator 70, the gas-liquid separator outlet pipe 72 and the other one 15B of the first heat exchanger-expansion mechanism connecting pipe 15A, 15B.
부스터 모듈(2)은 기액 분리기(70)에서 분리된 기상 냉매가 제 2 부스터 팽창기구(80)로 안내되는 기상 냉매 토출배관(76)과, 제 2 부스터 팽창기구(80)에서 팽창된 냉매가 부스터 압축기(90)로 흡입되는 부스터 압축기 흡입배관(92)과, 부스터 압축기(90)에서 토출된 냉매가 냉동 사이클 유닛(1)의 압축기(10)와 제 1 열교환기(14) 사이로 안내되는 부스터 압축기 토출배관(94)(95)을 더 포함할 수 있다. The booster module 2 includes a gaseous refrigerant discharge pipe 76 through which the gaseous phase refrigerant separated by the gas-liquid separator 70 is guided to the second booster expansion mechanism 80, and a refrigerant expanded by the second booster expansion mechanism 80. The booster compressor suction pipe 92 sucked into the booster compressor 90 and the refrigerant discharged from the booster compressor 90 are guided between the compressor 10 of the refrigeration cycle unit 1 and the first heat exchanger 14. The compressor discharge pipe (94, 95) may further include.
부스터 압축기 토출배관(94)(95)은 분리된 제 1 열교환기-냉/난방 절환밸브 연결배관(13A)(13B)의 어느 하나(13A)와 다른 하나(13B)를 연결하는 제 1 부스터 압축기 토출 배관(94)과, 부스터 압축기(90)에서 토출된 냉매를 제 1 부스터 압축기 토출 배관(94)으로 안내하는 제 2 부스터 압축기 토출 배관(95)를 포함할 수 있다.  The booster compressor discharge pipe (94, 95) is a first booster compressor for connecting any one (13A) and the other (13B) of the separated first heat exchanger-cooling / heating switching valve connecting pipe (13A) (13B) The discharge pipe 94 and the second booster compressor discharge pipe 95 for guiding the refrigerant discharged from the booster compressor 90 to the first booster compressor discharge pipe 94 may be included.
즉, 냉/난방 절환 밸브(12)와 제 1 열교환기(14)는 부스터 모듈(2)이 설치되기 전에 도 1에 도시된 바와 같이, 제 1 열교환기-냉/난방 절환밸브 연결배관(13)으로 연결되고, 부스터 모듈(2)의 설치된 후에 도 2에 도시된 바와 같이, 제 1 열교환기-냉/난방 절환밸브 연결배관(13A)(13B)의 어느 하나(13A)와 제 1 부스터 압축기 토출 배관(94)와 제 1 열교환기-냉/난방 절환밸브 연결배관(13A)(13B)의 다른 하나(13B)로 연결될 수 있다.  That is, the cooling / heating switching valve 12 and the first heat exchanger 14 are connected to the first heat exchanger-cooling / heating switching valve connecting pipe 13 as shown in FIG. 1 before the booster module 2 is installed. 2) after the booster module 2 is installed, as shown in FIG. 2, either the first heat exchanger-cooling / heating switching valve connecting pipe 13A or 13B (13A) and the first booster compressor The discharge pipe 94 may be connected to the other one 13B of the first heat exchanger-cooling / heating switching valve connecting pipe 13A and 13B.
부스터 압축기 토출배관(94)(95)에는 압축기(10)에서 압축된 냉매가 부스터 압축기(90)로 흐르는 것을 막는 체크 밸브(95')가 설치되는 바, 체크 밸브(95')는 제 2 부스터 압축기 토출 배관(95)에 설치될 수 있다.  The booster compressor discharge pipes 94 and 95 are provided with a check valve 95 'that prevents the refrigerant compressed by the compressor 10 from flowing into the booster compressor 90. The check valve 95' is a second booster. It may be installed in the compressor discharge pipe (95).
부스터 모듈(2)은 기액 분리기(70)에서 기액 분리기 출구 배관(72)으로 유동된 냉매가 제 1 부스터 팽창기구 흡입배관(64)으로 흐르게 하는 바이패스 배관(99)을 더 포함한다. 바이패스 배관(99)에는 제 1 부스터 팽창기구 흡입배관(64)의 냉매가 바이패스 배관(99)을 통해 기액 분리기 출구 배관(72)으로 흐르지 않게 막는 체크밸브(99')가 설치되고, 기액분리기(70)에서 부스터 압축기 흡입배관(92)으로 유동되는 기상 냉매는 최대화될 수 있다.  The booster module 2 further includes a bypass pipe 99 for allowing the refrigerant flowing from the gas-liquid separator 70 to the gas-liquid separator outlet pipe 72 to flow into the first booster expansion mechanism suction pipe 64. The bypass pipe 99 is provided with a check valve 99 'that prevents the refrigerant of the first booster expansion mechanism suction pipe 64 from flowing through the bypass pipe 99 to the gas-liquid separator outlet pipe 72, and the gas-liquid solution. The gaseous refrigerant flowing from the separator 70 to the booster compressor suction pipe 92 may be maximized.
부스터 모듈(2)은 제 2 열교환기(18)에서 증발된 냉매를 부스터 압축기(90)에서 압축한 후 압축기(10)와 제 1 열교환기(14)의 사이로 유동시킬 수 있다.  The booster module 2 may compress the refrigerant evaporated in the second heat exchanger 18 in the booster compressor 90 and then flow between the compressor 10 and the first heat exchanger 14.
부스터 모듈(2)은 기액 분리기(70)에서 분리된 기상 냉매와 제 2 열교환기(18)에서 증발된 냉매가 부스터 압축기(90)로 함께 혹은 선택적으로 흡입되는 구조로 이루어질 수 있다. The booster module 2 may have a structure in which the gaseous refrigerant separated in the gas-liquid separator 70 and the refrigerant evaporated in the second heat exchanger 18 are together or selectively sucked into the booster compressor 90.
부스터 모듈(2)은 제 2 열교환기(18)와 압축기(10)의 사이와 부스터 압축기 흡입배관(92)을 부스터 흡입배관(96)으로 연결하여 제 2 열교환기(18)에서 증발된 냉매 중 일부를 부스터 압축기 흡입배관(92)으로 안내할 수 있다.  The booster module 2 connects the booster compressor suction pipe 92 between the second heat exchanger 18 and the compressor 10 and the booster suction pipe 96 so that the booster module 2 of the refrigerant evaporated in the second heat exchanger 18 is reduced. A portion may be directed to the booster compressor suction line 92.
부스터 흡입배관(96)은 일단이 압축기 흡입배관(20)에 연결되고 타단이 부스터 압축기 흡입배관(92)으로 연결될 수 있다. One end of the booster suction pipe 96 may be connected to the compressor suction pipe 20, and the other end thereof may be connected to the booster compressor suction pipe 92.
부스터 흡입배관(96)은 압축기 흡입배관(20)에 연결되게 냉동 사이클 유닛(1)에 설치된 제 1 부스터 흡입배관(97)과, 부스터 압축기 흡입배관(92)에 연결되게 부스터 모듈(2)에 설치된 제 2 부스터 흡입배관(98)과, 제 1 부스터 흡입배관(97)과 제 2 부스터 흡입배관(98)를 연결하는 제 3 부스터 흡입배관(99)을 포함할 수 있다.  The booster suction pipe 96 is connected to the first booster suction pipe 97 installed in the refrigeration cycle unit 1 to be connected to the compressor suction pipe 20 and to the booster module 2 to be connected to the booster compressor suction pipe 92. The second booster suction pipe 98 may be installed, and the third booster suction pipe 99 may be connected to the first booster suction pipe 97 and the second booster suction pipe 98.
부스터 모듈(2)은 부스터 흡입배관(96)에 설치되어 부스터 압축기 흡입배관(92)의 냉매가 부스터 흡입배관(96)을 통해 압축기(10)로 흡입되는 것을 막는 체크밸브(96')를 더 포함할 수 있다.  The booster module 2 further includes a check valve 96 'installed in the booster suction pipe 96 to prevent refrigerant from the booster compressor suction pipe 92 from being sucked into the compressor 10 through the booster suction pipe 96. It may include.
체크밸브(96')는 제 2 부스터 흡입배관(98)에 설치될 수 있다. The check valve 96 ′ may be installed in the second booster suction pipe 98.
도 4는 본 발명에 따른 히트 펌프 일실시예의 부스터 모듈이 냉동 사이클 유닛과 분리되게 설치되었을 때의 정면도이며, 도 5는 본 발명에 따른 히트 펌프 일실시예의 부스터 모듈이 냉동 사이클 유닛에 장착 되었을 때의 정면도이다. 4 is a front view when the booster module of one embodiment of the heat pump according to the present invention is installed to be separated from the refrigeration cycle unit, and FIG. 5 is the booster module of the embodiment of the heat pump according to the present invention to the refrigeration cycle unit. Front view.
냉동 사이클 유닛(1)이 하나의 유닛으로 구성되는 경우, 부스터 모듈(2)은 냉동 사이클 유닛(1)과 이격되게 설치되거나 냉동 사이클 유닛(1)에 체결되게 설치될 수 있다. When the refrigeration cycle unit 1 is composed of one unit, the booster module 2 may be installed to be spaced apart from the refrigeration cycle unit 1 or fastened to the refrigeration cycle unit 1.
냉동 사이클 유닛(1)이 실내기(6)와 실외기(7)로 구성될 경우, 부스터 모듈(2)은 실내기(6)와 실외기(7)와 이격되게 설치되거나 실내기(6)와 실외기(7) 중 하나에 체결되게 설치될 수 있다. When the refrigeration cycle unit 1 is composed of an indoor unit 6 and an outdoor unit 7, the booster module 2 may be installed to be spaced apart from the indoor unit 6 and the outdoor unit 7 or the indoor unit 6 and the outdoor unit 7. It can be installed to be fastened to either.
냉동 사이클 유닛(1)이 도 4에 도시된 바와 같이, 실외기(7)와 이격되게 설치되어 냉동 사이클 유닛(1)과 분리형으로 구성될 수 있고, 도 5에 도시된 바와 같이, 실외기(7)와 일체화되게 실외기(7)에 장착되어 냉동 사이클 유닛(1)과 일체형으로 구성될 수 있다. As shown in FIG. 4, the refrigeration cycle unit 1 may be installed to be separated from the refrigeration cycle unit 1 by being spaced apart from the outdoor unit 7, and as shown in FIG. 5, the outdoor unit 7. It may be integrated with the outdoor unit 7 and integrally formed with the refrigeration cycle unit 1.
즉, 부스터 모듈(5)은 도 4 및 도 5에 도시된 바와 같이, 실외기(O)에 선택적으로 장착될 수 있다. That is, the booster module 5 may be selectively mounted to the outdoor unit O, as shown in FIGS. 4 and 5.
도 6은 본 발명에 따른 히트 펌프 일실시예의 부스터 모듈이 설치되지 않을 때와 부스터 모듈이 설치되었을 때를 비교한 P-h 선도이다.  Figure 6 is a P-h diagram comparing the time when the booster module is not installed when the booster module of the heat pump according to an embodiment of the present invention.
부스터 모듈(2)이 설치되지 않은 경우 냉매는 통상적인 압축,응축,팽창,증발 과정을 거치면서 도 4에 점선으로 도시된 바와 같이, a->b'>c ->f ->a의 과정이 진행된다. When the booster module 2 is not installed, the refrigerant undergoes a typical compression, condensation, expansion, and evaporation process, as shown by a dotted line in FIG. 4, where a-> b '> c-> f-> a is performed. This is going on.
반면에, 냉매는 부스터 모듈(2)이 추가 설치된 경우 냉매는 압축,응축,팽창,팽창,증발 과정을 거치면서 도 6에 실선으로 도시된 바와 같이, 냉a->b->c->d->e->f->a의 과정으로 진행되고, 제 1 열교환기(14)에서 유출된 냉매 중 일부가 부스터 모듈(2)에서 팽창, 압축 과정을 거치면서 도 6의 d->g->h->b의 과정으로 진행되며, 히트 펌프는 부스터 모듈(2)이 설치되지 않는 경우 보다 전체적으로 효율이 상승되면서 압축일이 감소될 수 있다. On the other hand, when the booster module 2 is additionally installed, the refrigerant undergoes the compression, condensation, expansion, expansion, and evaporation processes, as shown by the solid line in FIG. 6, where the cooling a-> b-> c-> d -> e-> f-> a, and part of the refrigerant flowing out of the first heat exchanger 14 is expanded and compressed in the booster module 2, d-> g- of FIG. In the process of> h-> b, the heat pump may reduce the compression work while increasing the overall efficiency than when the booster module 2 is not installed.
즉, 압축기(10)와 부스터 압축기(90)로 공급되는 전체 소비전력은 감소되고, 특히 실외가 저온인 저온 난방 능력이 향상된다. 그리고, 부스터 모듈(2)의 설치된 경우는 부스터 모듈(2)이 설치되지 않는 경우 보다 압축기(10)의 최대 관리 온도는 상대적으로 낮게 되고, 압축기(10)의 신뢰성은 향상될 수 있다. That is, the total power consumption supplied to the compressor 10 and the booster compressor 90 is reduced, and in particular, the low-temperature heating capability of the outdoor is low. In addition, when the booster module 2 is installed, the maximum management temperature of the compressor 10 may be relatively lower than when the booster module 2 is not installed, and the reliability of the compressor 10 may be improved.
도 7은 본 발명에 따른 히트 펌프 일실시예의 제어 블록도이고, 도 8은 본 발명에 따른 히트 펌프 일실시예의 일반 부하 모드시 냉매 흐름이 도시된 개략 구성도이며, 도 9는 본 발명에 따른 히트 펌프 일실시예의 부분 부하 모드시 냉매 흐름이 도시된 개략 구성도이고, 도 10은 본 발명에 따른 히트 펌프 일실시예의 멀티 운전 모드시 냉매 흐름이 도시된 개략 구성도이며, 도 11은 본 발명에 따른 히트 펌프 일실시예의 가스 인젝션 모드시 냉매 흐름이 도시된 개략 구성도이다. Figure 7 is a control block diagram of one embodiment of a heat pump according to the present invention, Figure 8 is a schematic block diagram showing the refrigerant flow in the normal load mode of an embodiment of the heat pump according to the present invention, Figure 9 is in accordance with the present invention 10 is a schematic configuration diagram showing a refrigerant flow in a partial load mode of a heat pump according to one embodiment, and FIG. 10 is a schematic configuration diagram showing a refrigerant flow in a multi operation mode according to an embodiment of the present invention, and FIG. The heat pump according to the embodiment is a schematic block diagram showing the refrigerant flow in the gas injection mode.
본 실시예에 따른 히트 펌프는, 히트 펌프의 운전/정지 등의 각종 명령을 입력하는 조작부(100)와, 히트 펌프의 부하를 감지하는 부하 감지 센서(110)와, 조작부(100)의 조작과 부하 감지 센서(110)의 감지 결과에 따라 압축기(10)와 팽창기구(16)와 실외팬(22)과 제 1 부스터 팽창기구(62)와 제 2 부스터 팽창기구(80)와 부스터 압축기(90) 등을 제어하는 제어부(120)를 더 포함할 수 있다. The heat pump according to the present embodiment includes an operation unit 100 for inputting various commands such as operation / stop of the heat pump, a load detection sensor 110 for detecting a load of the heat pump, and an operation of the operation unit 100. The compressor 10, the expansion device 16, the outdoor fan 22, the first booster expansion device 62, the second booster expansion device 80, and the booster compressor 90 according to the detection result of the load detection sensor 110. The control unit 120 may further include a control unit.
부하 감지 센서(110)는 급탕 유닛(4)과 난방 유닛(5)의 부하를 감지하는 물 온도 센서를 포함할 수 있다. The load sensor 110 may include a water temperature sensor that detects a load of the hot water supply unit 4 and the heating unit 5.
물 온도 센서는 급탕 유닛(4)과 난방 유닛(5) 중 적어도 하나와 제 1 열교환기(14)를 순환하는 물의 온도를 감지하도록 물 순환 유로(22) 일측에 설치될 수 있다.  The water temperature sensor may be installed at one side of the water circulation passage 22 to sense a temperature of water circulating at least one of the hot water supply unit 4 and the heating unit 5 and the first heat exchanger 14.
물 온도 센서는 급탕 유닛(4)과 난방 유닛(5) 중 적어도 하나를 통과한 후 제 1 열교환기(14)로 회수되는 물의 온도를 감지하게 설치되고, 냉동 사이클 유닛 배관(23)에 설치되는 것이 바람직하다. The water temperature sensor is installed to detect the temperature of the water recovered to the first heat exchanger 14 after passing through at least one of the hot water supply unit 4 and the heating unit 5, and is installed in the refrigeration cycle unit piping 23 It is preferable.
부하 감지 센서(110)는 실외의 저온 여부를 감지하는 실외 온도 센서를 포함할 수 있다.  The load sensor 110 may include an outdoor temperature sensor for detecting whether the outdoor temperature is low.
실외 온도 센서는 실외에서 제 2 열교환기(18)를 향해 송풍되는 실외 공기의 온도를 감지하도록 제 2 열교환기(18)에 설치될 수 있다. The outdoor temperature sensor may be installed in the second heat exchanger 18 to sense a temperature of outdoor air blown toward the second heat exchanger 18 outdoors.
제어부(120)는 부하 감지 센서(110)에서 부하를 감지하면, 부분 부하 모드와, 일반 부하 모드와, 멀티 운전 모드로 제어하고, 부하 감지 센서(110)에서 실외 저온 부하를 감지하면 가스 인젝션 모드로 제어할 수 있다.  When the load detection sensor 110 detects the load, the control unit 120 controls the partial load mode, the normal load mode, and the multi-operation mode, and when the load detection sensor 110 detects the outdoor low temperature load, the gas injection mode. Can be controlled by
제어부(120)는 부하 감지 센서(110)에서 감지된 물의 온도가 제 1 설정온도 미만이면, 히트 펌프의 부하를 부분 부하로 판단하고, 부하 감지 센서(110)에서 감지된 물의 온도가 제 1 설정온도 이상이고 제 1 설정 온도 보다 소정온도 높은 제 2 설정 온도 미만이면, 히트 펌프의 부하를 일반 부하로 판단하며, 부하 감지 센서(110)에서 감지된 물의 온도가 제 2 설정 온도 이상이면, 히트 펌프의 부하를 멀티 운전 부하(즉, 과부하)로 판단할 수 있다.  If the temperature of the water detected by the load sensor 110 is less than the first set temperature, the controller 120 determines the load of the heat pump as a partial load, and the temperature of the water detected by the load sensor 110 is set to the first value. If the temperature is greater than the predetermined temperature higher than the first predetermined temperature and less than the second predetermined temperature, the load of the heat pump is determined as a normal load, and if the temperature of the water detected by the load detection sensor 110 is greater than or equal to the second predetermined temperature, the heat pump Can be determined as a multi-operation load (ie, overload).
제어부(120)는 부하 감지 센서(110)에서 감지된 실외의 온도가 설정 온도 이하이면, 히트 펌프의 부하를 실외 저온 부하로 판단할 수 있다. The controller 120 may determine the load of the heat pump as the outdoor low temperature load when the outdoor temperature detected by the load detection sensor 110 is less than or equal to the set temperature.
제어부(120)는 운전 모드에 따라 압축기(10)와 부스터 압축기(90)와 제 2 부스터 팽창기구(80)를 함께 제어할 수 있는 바, 부하에 따라 운전 모드를 다양하게 구성할 수 있고, 부하가 일반 부하 보다 작은 경우 압축기(10)와 부스터 압축기(90)와 제 2 부스터 팽창기구(80)를 부분 부하 모드로 운전시키고, 부하가 일반 부하인 경우 압축기(10)와 부스터 압축기(90)와 제 2 부스터 팽창기구(80)를 일반 부하 모드로 운전시키며, 부하가 일반 부하 보다 큰 경우 압축기(10)와 부스터 압축기(90)와 제 2 부스터 팽창기구(80)를 멀티 운전 모드로 운전시키고, 저온 부하인 경우 압축기(10)와 부스터 압축기(90)와 제 2 부스터 팽창기구(80)를 가스 인젝션 모드로 운전할 수 있다.  The controller 120 may control the compressor 10, the booster compressor 90, and the second booster expansion mechanism 80 together according to the driving mode, and may configure various driving modes according to the load. Is smaller than the normal load, the compressor 10, the booster compressor 90 and the second booster expansion mechanism 80 is operated in the partial load mode, and if the load is a normal load, the compressor 10 and the booster compressor 90 and The second booster expansion mechanism 80 is operated in the normal load mode, and when the load is greater than the normal load, the compressor 10, the booster compressor 90, and the second booster expansion mechanism 80 are operated in the multi operation mode, In the case of a low temperature load, the compressor 10, the booster compressor 90, and the second booster expansion mechanism 80 may be operated in the gas injection mode.
본 실시예에 따른 히트 펌프는 보다 다양한 부하에 효율적으로 대응하기 위해 압축기(10)가 용량 가변 압축기이고, 부스터 압축기(90)가 정속 압축기로 이루어지며, 부스터 압축기(90)는 압축기(10) 보다 용량이 작게 형성되는 것이 바람직하다.    In the heat pump according to the present embodiment, the compressor 10 is a variable-capacity compressor, the booster compressor 90 is a constant speed compressor, and the booster compressor 90 is more compact than the compressor 10 in order to efficiently cope with various loads. It is preferable that the capacity is formed small.
제어부(120)는 부분 부하 모드시 압축기(10)를 오프시키고, 부스터 압축기(90)를 구동시키며, 제 2 부스터 팽창기구(80)를 밀폐시킨다. 그리고, 제어부(120)는 제 1 부스터 팽창기구(62)를 풀 오픈시키고, 팽창기구(16)가 냉매를 팽창시키게 팽창기구(16)를 설정 개도로 개도 조절할 수 있다.    The controller 120 turns off the compressor 10 in the partial load mode, drives the booster compressor 90, and seals the second booster expansion mechanism 80. In addition, the controller 120 may fully open the first booster expansion mechanism 62 and adjust the opening degree of the expansion mechanism 16 to a set opening degree so that the expansion mechanism 16 expands the refrigerant.
이때, 제어부(120)는 부스터 압축기(90)의 흡입과열도가 설정과열도에 이르게 팽창기구(16)의 개도를 제어할 수 있다. In this case, the controller 120 may control the opening degree of the expansion mechanism 16 such that the suction superheat degree of the booster compressor 90 reaches the set superheat degree.
상기와 같은 제어시 압축기 흡입 배관(19)의 냉매는 도 2 및 도 8에 도시된 바와 같이, 압축기(10)로 유입되지 않고, 부스터 흡입배관(96)과 부스터 압축기 흡입배관(92)을 차례로 통과한 후 부스터 압축기(90)로 흡입되어 압축되고, 이후 부스터 압축기 토출배관(94)과 압축기 토출배관(13)을 차례로 통과하여 제 1 열교환기(14)로 유동될 수 있다. 2 and 8, the refrigerant of the compressor suction pipe 19 is not introduced into the compressor 10, and the booster suction pipe 96 and the booster compressor suction pipe 92 are sequentially turned on. After passing through, it is sucked into the booster compressor 90 and compressed, and then passes through the booster compressor discharge pipe 94 and the compressor discharge pipe 13 in order to flow to the first heat exchanger 14.
제 1 열교환기(14)로 유동된 냉매는 제 1 열교환기(14)에서 응축되면서 제 1 열교환기(14)를 통과하는 물을 가열하고, 이후 제 1 부스터 팽창기구(62)와 기액 분리기(70)를 차례로 통과하며, 팽창기구(16)에서 팽창된 후 제 2 열교환기(18)로 유동될 수 있다. The refrigerant flowing into the first heat exchanger 14 condenses in the first heat exchanger 14 and heats the water passing through the first heat exchanger 14, and then the first booster expansion mechanism 62 and the gas-liquid separator ( 70, which in turn may be expanded in the expansion mechanism 16 and then flow to the second heat exchanger 18.
제 2 열교환기(18)로 유동된 냉매는 실외 팬(22)에서 송풍되는 실외 공기에 의해 증발되고, 이후 압축기 흡입 배관(19)으로 회수될 수 있다. The refrigerant flowing into the second heat exchanger 18 may be evaporated by the outdoor air blown by the outdoor fan 22, and then recovered into the compressor suction pipe 19.
즉, 히트 펌프는 냉매가 부스터 압축기(90)와 제 1 열교환기(14)와 팽창기구(16)와 제 2 열교환기(18)를 순환하면서 압축,응축,팽창,증발되고, 압축기(10)를 구동하는 경우 보다 적은 소비전력으로 부분 부하에 대응할 수 있게 된다. That is, the heat pump is compressed, condensed, expanded, and evaporated while the refrigerant circulates through the booster compressor 90, the first heat exchanger 14, the expansion mechanism 16, and the second heat exchanger 18, and the compressor 10. In the case of driving, it is possible to cope with the partial load with less power consumption.
제어부(120)는 일반 부하 모드시 압축기(10)를 구동시키고, 부스터 압축기(90)를 정지시키며, 제 2 부스터 팽창기구(80)를 밀폐시킨다. 그리고, 제어부(120)는 제 1 부스터 팽창기구(62)를 풀 오픈시키고, 팽창기구(16)가 냉매를 팽창시키게 팽창기구(16)를 설정 개도로 개도 조절할 수 있다.   The controller 120 drives the compressor 10 in the normal load mode, stops the booster compressor 90, and closes the second booster expansion mechanism 80. In addition, the controller 120 may fully open the first booster expansion mechanism 62 and adjust the opening degree of the expansion mechanism 16 to a set opening degree so that the expansion mechanism 16 expands the refrigerant.
이때, 제어부(120)는 압축기(10)의 흡입과열도가 설정과열도에 이르게 팽창기구(16)의 개도를 제어할 수 있다. In this case, the controller 120 may control the opening degree of the expansion mechanism 16 such that the suction superheat degree of the compressor 10 reaches the set superheat degree.
상기와 같은 제어시 압축기 흡입 배관(19)의 냉매는 도 2 및 도 9에 도시된 바와 같이, 부스터 압축기(90)로 유입되지 않고, 압축기(10)로 흡입되어 압축되고, 이후 압축기 토출배관(13)을 차례로 통과하여 제 1 열교환기(14)로 유동될 수 있다. 2 and 9, the refrigerant in the compressor suction pipe 19 is not introduced into the booster compressor 90, but is sucked into the compressor 10 and compressed, and then the compressor discharge pipe ( 13) in order to flow to the first heat exchanger (14).
제 1 열교환기(14)로 유동된 냉매는 제 1 열교환기(14)에서 응축되면서 제 1 열교환기(14)를 통과하는 물을 가열하고, 이후 제 1 부스터 팽창기구(62)와 기액 분리기(70)를 차례로 통과하며, 팽창기구(16)에서 팽창된 후 제 2 열교환기(18)로 유동될 수 있다. The refrigerant flowing into the first heat exchanger 14 condenses in the first heat exchanger 14 and heats the water passing through the first heat exchanger 14, and then the first booster expansion mechanism 62 and the gas-liquid separator ( 70, which in turn may be expanded in the expansion mechanism 16 and then flow to the second heat exchanger 18.
제 2 열교환기(18)로 유동된 냉매는 실외 팬(22)에서 송풍되는 실외 공기에 의해 증발되고, 이후 압축기 흡입 배관(19)으로 회수될 수 있다. The refrigerant flowing into the second heat exchanger 18 may be evaporated by the outdoor air blown by the outdoor fan 22, and then recovered into the compressor suction pipe 19.
즉, 히트 펌프는 냉매가 압축기(10)와 제 1 열교환기(14)와 팽창기구(16)와 제 2 열교환기(18)를 순환하면서 압축,응축,팽창,증발되고, 부스터 압축기(90)의 구동의 경우 보다 큰 일반 부하에 대응할 수 있게 된다. That is, the heat pump is compressed, condensed, expanded, and evaporated while the refrigerant circulates through the compressor 10, the first heat exchanger 14, the expansion mechanism 16, and the second heat exchanger 18, and the booster compressor 90. In the case of driving of larger general loads can be coped with.
제어부(120)는 멀티 운전 모드시 압축기(10)와 부스터 압축기(90)를 구동시키고, 제 2 부스터 팽창기구(80)를 밀폐시킨다. 그리고, 제어부(120)는 제 1 부스터 팽창기구(62)를 풀 오픈시키고, 팽창기구(16)가 냉매를 팽창시키게 팽창기구(16)를 설정 개도로 개도 조절할 수 있다. The controller 120 drives the compressor 10 and the booster compressor 90 in the multi-operation mode, and seals the second booster expansion mechanism 80. In addition, the controller 120 may fully open the first booster expansion mechanism 62 and adjust the opening degree of the expansion mechanism 16 to a set opening degree so that the expansion mechanism 16 expands the refrigerant.
이때, 제어부(120)는 압축기(10)의 흡입과열도가 설정과열도에 이르게 팽창기구(16)의 개도를 제어할 수 있다.  In this case, the controller 120 may control the opening degree of the expansion mechanism 16 such that the suction superheat degree of the compressor 10 reaches the set superheat degree.
상기와 같은 제어시 압축기 흡입 배관(19)의 냉매는 도 2 및 도 10에 도시된 바와 같이, 일부가 압축기(10)로 흡입되어 압축된 후 압축기 토출배관(13)으로 토출되고 나머지가 부스터 흡입배관(96)과 부스터 압축기 흡입배관(92)을 차례로 통과한 후 부스터 압축기(90)로 흡입되어 압축된 후 압축기 토출배관(13)으로 토출되어 압축기(10)에서 토출된 냉매와 합쳐진다. As shown in FIGS. 2 and 10, the refrigerant in the compressor suction pipe 19 is partially sucked into the compressor 10, compressed, and then discharged into the compressor discharge pipe 13, and the rest is booster suction. After passing through the pipe 96 and the booster compressor suction pipe 92 in sequence, the suction is compressed into the booster compressor 90 and then compressed into the compressor discharge pipe 13 to be combined with the refrigerant discharged from the compressor 10.
압축기 토출배관(13)으로 토출된 냉매는 제 1 열교환기(14)로 유동되어 제 1 열교환기(14)에서 응축되면서 제 1 열교환기(14)를 통과하는 물을 가열하고, 이후 제 1 부스터 팽창기구(62)와 기액 분리기(70)를 차례로 통과하며, 팽창기구(16)에서 팽창된 후 제 2 열교환기(18)로 유동될 수 있다.  The refrigerant discharged into the compressor discharge pipe 13 flows to the first heat exchanger 14 to condense in the first heat exchanger 14 and heat the water passing through the first heat exchanger 14, and then the first booster. Passes through the expansion mechanism 62 and the gas-liquid separator 70 in order, and may be expanded in the expansion mechanism 16 and then flow to the second heat exchanger 18.
제 2 열교환기(18)로 유동된 냉매는 실외 팬(22)에서 송풍되는 실외 공기에 의해 증발되고, 이후 압축기 흡입 배관(19)으로 회수될 수 있다. The refrigerant flowing into the second heat exchanger 18 may be evaporated by the outdoor air blown by the outdoor fan 22, and then recovered into the compressor suction pipe 19.
즉, 히트 펌프는 냉매가 압축기(10) 및 부스터 압축기(90)와 제 1 열교환기(14)와 팽창기구(16)와 제 2 열교환기(18)를 순환하면서 압축,응축,팽창,증발되고, 부스터 압축기(90)의 단독 구동과 압축기(10)의 단독 구동의 경우 보다 큰 대부하에 대응할 수 있게 된다. That is, the heat pump is compressed, condensed, expanded, and evaporated while the refrigerant circulates through the compressor 10, the booster compressor 90, the first heat exchanger 14, the expansion mechanism 16, and the second heat exchanger 18. In the case of the single drive of the booster compressor 90 and the single drive of the compressor 10, it is possible to cope with a larger heavy load.
제어부(120)는 가스 인젝션 모드시 압축기(10)와 부스터 압축기(90)를 구동시키고, 제 2 부스터 팽창기구(80)를 개방시킬 수 있다. 그리고, 제어부(120)는 제 1 부스터 팽창기구(62)를 개방시키고, 팽창기구(16)가 냉매를 팽창시키게 팽창기구(16)를 설정 개도로 개도 조절할 수 있다.  The controller 120 may drive the compressor 10 and the booster compressor 90 in the gas injection mode, and open the second booster expansion mechanism 80. In addition, the controller 120 may open the first booster expansion mechanism 62 and adjust the opening degree of the expansion mechanism 16 to a set opening degree so that the expansion mechanism 16 expands the refrigerant.
이때, 제어부(120)는 부스터 압축기(90)로 흡입되는 냉매의 압력이 제 2 열교환기(18)의 증발압 보다 낮고, 제 1 열교환기(14)의 응축압보다 높은 중간압이 되게 제 1 부스터 팽창기구(80)의 개도와 제 2 부스터 팽창기구(80)의 개도를 제어하고, 압축기(10)의 흡입과열도가 설정과열도에 이르게 팽창기구(16)의 개도를 제어할 수 있다. At this time, the control unit 120 is a first pressure such that the pressure of the refrigerant sucked into the booster compressor 90 is lower than the evaporation pressure of the second heat exchanger 18, and the intermediate pressure is higher than the condensation pressure of the first heat exchanger 14. The opening degree of the booster expansion mechanism 80 and the opening degree of the second booster expansion mechanism 80 can be controlled, and the opening degree of the expansion mechanism 16 can be controlled so that the suction superheat degree of the compressor 10 reaches the set superheat degree.
상기와 같은 제어시 압축기 흡입 배관(19)의 냉매는 도 2 및 도 11에 도시된 바와 같이, 압축기(10)로 흡입되어 압축된 후 압축기 토출배관(13)으로 토출되고 이후 제 1 열교환기(14)로 유동되어 제 1 열교환기(14)에서 응축되면서 제 1 열교환기(14)를 통과하는 물을 가열하고, 이후 제 1 부스터 팽창기구(62)에서 팽창된 후 기액 분리기(70)로 유입될 수 있다. 기액 분리기(70)로 유입된 냉매는 기상 냉매와 액냉매가 분리되어, 기상 냉매가 기상 냉매 토출배관(76)을 토출되고, 액냉매가 팽창기구 입구배관(72)을 통해 팽창기구(16)로 유동되어 팽창될 수 있다.  As shown in FIGS. 2 and 11, the refrigerant in the compressor suction pipe 19 is sucked into the compressor 10, compressed, discharged into the compressor discharge pipe 13, and then the first heat exchanger ( 14 to the water flowing through the first heat exchanger 14 while condensing in the first heat exchanger 14, and then expanded in the first booster expansion mechanism 62 and then introduced into the gas-liquid separator 70 Can be. The refrigerant introduced into the gas-liquid separator 70 separates the gaseous refrigerant and the liquid refrigerant, and the gaseous refrigerant discharges the gaseous refrigerant discharge pipe 76, and the liquid refrigerant expands the expansion mechanism 16 through the expansion mechanism inlet pipe 72. Can be expanded to expand.
팽창기구(16)에서 팽창된 냉매는 제 2 열교환기(18)로 유동되어 증발되고, 이후 압축기 흡입 배관(19)으로 회수되며, 압축기(10)에서 압축된 후 압축기 토출 배관(13)으로 토출될 수 있다. The refrigerant expanded in the expansion mechanism (16) flows to the second heat exchanger (18), is evaporated, and then recovered to the compressor suction pipe (19), compressed in the compressor (10) and then discharged to the compressor discharge pipe (13). Can be.
한편, 기상 냉매 토출배관(76)으로 토출된 냉매는 제 2 부스터 팽창기구(80)에서 팽창된 후 부스터 압축기 흡입배관(92)으로 유동되고, 이후 부스터 압축기(90)에서 압축된다. 부스터 압축기(90)에서 압축된 냉매는 부스터 압축기 토출배관(94)으로 토출된 후 압추기 토출 배관(13)으로 유동되어 압축기(10)에서 토출된 냉매와 혼합된다. Meanwhile, the refrigerant discharged into the gaseous phase refrigerant discharge pipe 76 is expanded in the second booster expansion mechanism 80 and then flows into the booster compressor suction pipe 92, and is then compressed in the booster compressor 90. The refrigerant compressed by the booster compressor 90 is discharged into the booster compressor discharge pipe 94 and then flows into the press discharge pipe 13 to be mixed with the refrigerant discharged from the compressor 10.
즉, 히트 펌프는 냉매가 압축기(10) 및 제 1 열교환기(14)와 제 1 부스터 팽창기구(62)와, 팽창기구(16)와 제 2 열교환기(18)를 순환하면서 압축,응축,팽창,팽창, 증발되고, 제 1 열교환기(14)에서 응축된 냉매 중 기상 냉매가 팽창된 후 부스터 압축기(90)로 가스 인젝션되며, 히트 펌프는 가스 인젝션 없이 부스터 압축기(90)와 압축기(10)를 구동하는 경우 보다 효율이 상승되면서 압축일이 감소된다. 특히 실외가 저온인 저온 난방 능력이 향상될 수 있다. That is, the heat pump is compressed, condensed while the refrigerant circulates the compressor 10, the first heat exchanger 14 and the first booster expansion mechanism 62, the expansion mechanism 16 and the second heat exchanger 18, Expansion, expansion, evaporation, gaseous refrigerant in the condensed refrigerant in the first heat exchanger 14 is expanded and then gas injected into the booster compressor 90, the heat pump is a booster compressor 90 and the compressor (10) without gas injection ), The compression work is reduced with higher efficiency. In particular, the low temperature heating ability of the outdoor low temperature can be improved.
도 12는 본 발명에 따른 히트 펌프 다른 실시예의 냉동 사이클 유닛에 부스터 모듈이 설치된 후의 구성도이고, 도 13은 본 발명에 따른 히트 펌프 다른 실시예의 일반 부하 모드시 냉매 흐름이 도시된 개략 구성도, 도 14는 본 발명에 따른 히트 펌프 다른 실시예의 가스 인젝션 모드시 냉매 흐름이 도시된 개략 구성도이다. 12 is a configuration diagram after a booster module is installed in a refrigeration cycle unit of another embodiment of a heat pump according to the present invention, and FIG. 13 is a schematic configuration diagram showing a refrigerant flow in a normal load mode of another embodiment of the heat pump according to the present invention; 14 is a schematic block diagram showing a refrigerant flow in the gas injection mode of another embodiment of the heat pump according to the present invention.
본 실시예에 따른 히트 펌프는 본 발명 일실시예의 부스터 흡입배관(96)과 체크 밸브(96')가 설치되지 않고, 기타의 구성은 본 발명 일실시예와 동일하거나 유사하게 구성될 수 있다. In the heat pump according to the present embodiment, the booster suction pipe 96 and the check valve 96 'of one embodiment of the present invention are not installed, and other configurations may be the same as or similar to the embodiment of the present invention.
본 실시예에 따른 히트 펌프는 도 12에 도시된 바와 같이 압축기(10)가 구동되고 부스터 압축기(90)가 구동되지 않으며 제 2 부스터 팽창기구(80)가 기상 냉매를 통과시키지 않는 일반 부하 모드를 갖고, 도 14에 도시된 바와 같이 압축기(10)와 부스터 압축기(90)가 구동되고 제 2 부스터 팽창기구(80)가 기상 냉매를 통과시키는 가스 인젝션 모드를 갖을 수 있다. As shown in FIG. 12, the heat pump according to the present embodiment has a general load mode in which the compressor 10 is driven, the booster compressor 90 is not driven, and the second booster expansion mechanism 80 does not pass the gaseous refrigerant. 14, the compressor 10 and the booster compressor 90 may be driven, and the second booster expansion mechanism 80 may have a gas injection mode through which the gaseous refrigerant passes.
즉, 부하 감지 센서(110)에서 저온 부하가 감지되면, 압축기(10)와 부스터 압축기(90)가 구동되고 제 2 부스터 팽창기구(80)가 기상 냉매를 통과시키게 제어되어, 압축기(10)는 증발기(18)에서 증발된 냉매를 압축하고, 부스터 압축기(90)는 기액 분리기(70)에서 분리된 기상 냉매를 압축할 수 있다.   That is, when the low temperature load is detected by the load detection sensor 110, the compressor 10 and the booster compressor 90 are driven and the second booster expansion mechanism 80 is controlled to pass the gaseous refrigerant, so that the compressor 10 The refrigerant evaporated in the evaporator 18 may be compressed, and the booster compressor 90 may compress the gaseous refrigerant separated in the gas-liquid separator 70.
반면에, 부하 감지 센서(110)에서 저온 부하가 감지되지 않으면, 압축기(10)가 구동되고 부스터 압축기(90)가 구동되지 않으며 제 2 부스터 팽창기구(80)가 기상 냉매를 통과시키지 않게 제어되어, 압축기(10)는 증발기(10)에서 증발된 냉매를 압축할 수 있다.  On the other hand, when the low temperature load is not detected by the load sensor 110, the compressor 10 is driven, the booster compressor 90 is not driven, and the second booster expansion mechanism 80 is controlled not to pass the gaseous refrigerant. The compressor 10 may compress the refrigerant evaporated from the evaporator 10.
도 15는 본 발명에 따른 히트 펌프 또 다른 실시예의 냉동 사이클 유닛에 부스터 모듈이 설치되기 전의 구성도이고, 도 16은 본 발명에 따른 히트 펌프 다른 실시예의 냉동 사이클 유닛에 부스터 모듈이 설치된 후의 구성도이다. 15 is a configuration diagram before the booster module is installed in the refrigeration cycle unit of another embodiment of the heat pump according to the present invention, Figure 16 is a configuration diagram after the booster module is installed in the refrigeration cycle unit of another embodiment of the heat pump according to the present invention to be.
본 실시예에 따른 히트 펌프는 난방 전용으로서, 본 발명 일실시예의 냉/난방 절환밸브(12)을 포함하지 않고, 기타의 구성은 본 발명 일실시예와 동일하거나 유사하게 구성될 수 있다. The heat pump according to the present embodiment is for heating purposes only, and does not include the cooling / heating switching valve 12 of one embodiment of the present invention, and other configurations may be the same as or similar to the embodiment of the present invention.
냉동 사이클 유닛(1)은 압축기(10)가 제 1 열교환기(14)와 압축기 토출배관(11)으로 연결되고, 제 1 열교환기(14)가 팽창기구(16)와 제 1 열교환기-팽창기구 연결배관(15)으로 연결되며, 팽창기구(16)가 제 2 열교환기(18)와 팽창기구-제 2 열교환기 연결배관(17)으로 연결되며, 제 2 열교환기(18)가 압축기(10)와 압축기 흡입배관(20')으로 연결될 수 있다.  In the refrigeration cycle unit 1, the compressor 10 is connected to the first heat exchanger 14 and the compressor discharge pipe 11, and the first heat exchanger 14 is expanded to the expansion mechanism 16 and the first heat exchanger-expansion. It is connected to the instrument connecting pipe 15, the expansion mechanism 16 is connected to the second heat exchanger 18 and the expansion mechanism-second heat exchanger connecting pipe 17, the second heat exchanger 18 is a compressor ( 10) and the compressor suction pipe 20 '.
본 실시예에 따른 히트 펌프는 부스터 모듈(2)의 설치시, 압축기 토출배관(11)과, 제 1 열교환기-팽창기구 연결배관(15) 각각이 분리되고, 부스터 모듈(2)은 분리된 압축기 토출배관(11A)(11B)과 연결되며, 분리된 제 1 열교환기-팽창기구 연결배관(15A)(15B)과 연결될 수 있다.  In the heat pump according to the present embodiment, when the booster module 2 is installed, each of the compressor discharge pipe 11 and the first heat exchanger-expansion mechanism connecting pipe 15 is separated, and the booster module 2 is separated. It may be connected to the compressor discharge pipe (11A) (11B), it may be connected to the separated first heat exchanger-expansion mechanism connecting pipe (15A) 15B.
부스터 모듈(2)은 부스터 압축기 토출배관(94)(95)이 분리된 압축기 토출배관(11A)(11B)의 어느 하나(11A)와 다른 하나(11B)를 연결하는 제 1 부스터 압축기 토출 배관(94)과, 부스터 압축기(90)에서 토출된 냉매를 제 1 부스터 압축기 토출 배관(94)으로 안내하는 제 2 부스터 압축기 토출 배관(95)를 포함할 수 있다.  The booster module 2 includes a first booster compressor discharge pipe connecting one 11A and the other 11B of the compressor discharge pipes 11A and 11B from which the booster compressor discharge pipes 94 and 95 are separated. 94 and a second booster compressor discharge pipe 95 for guiding the refrigerant discharged from the booster compressor 90 to the first booster compressor discharge pipe 94.
즉, 압축기(10)와 제 1 열교환기(14)는 부스터 모듈(2)이 설치되기 전에 도 14에 도시된 바와 같이, 압축기 토출배관(11)으로 연결되고, 부스터 모듈(2)의 설치된 후에 도 15에 도시된 바와 같이, 압축기 토출배관(11)의 어느 하나(11A)와 제 1 부스터 압축기 토출 배관(94)와 압축기 토출배관(11)의 다른 하나(11B)로 연결될 수 있다.  That is, the compressor 10 and the first heat exchanger 14 are connected to the compressor discharge pipe 11 as shown in FIG. 14 before the booster module 2 is installed, and after the booster module 2 is installed. As shown in FIG. 15, one of 11A of the compressor discharge pipe 11, the first booster compressor discharge pipe 94, and the other 11B of the compressor discharge pipe 11 may be connected.
부스터 흡입배관(96)은 일단이 압축기 흡입배관(20')에 연결되고 타단이 부스터 압축기 흡입배관(92)에 연결될 수 있다.  One end of the booster suction pipe 96 may be connected to the compressor suction pipe 20 ′ and the other end may be connected to the booster compressor suction pipe 92.

Claims (20)

  1. 냉매가 압축되는 압축기와, 상기 압축기에서 압축된 냉매가 응축되는 제 1 열교환A compressor in which the refrigerant is compressed and a first heat exchanger in which the refrigerant compressed in the compressor is condensed
    기와, 상기 제 1 열교환기에서 응축된 냉매가 팽창되는 팽창기구와, 상기 팽창기구An expansion mechanism to expand the refrigerant condensed in the first heat exchanger;
    에서 팽창된 냉매가 증발되는 제 2 열교환기를 갖는 냉동 사이클 유닛과; A refrigeration cycle unit having a second heat exchanger for evaporating the refrigerant expanded therein;
    상기 냉동 사이클 유닛에 연결되어 상기 제 1 열교환기에서 팽창기구로 유동 Is connected to the refrigeration cycle unit and flows from the first heat exchanger to an expansion mechanism
    되는 냉매 중 기상 냉매를 분리하여 압축한 후 상기 압축기와 제 1 열교환기의 사After separating and compressing the gaseous refrigerant from the refrigerant to be used between the compressor and the first heat exchanger
    이로 유동시키거나 상기 제 2 열교환기에서 증발된 냉매를 압축한 후 상기 압축기The compressor after flowing to or compressing the refrigerant evaporated in the second heat exchanger.
    와 제 1 열교환기의 사이로 유동시키는 부스터 모듈을 포함하는 히트 펌프.And a booster module for flowing between the first heat exchanger.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 부스터 모듈은 상기 제 1 열교환기에서 유동된 냉매를 팽창하는 제 1 The booster module expands the refrigerant flowing in the first heat exchanger.
    부스터 팽창기구와,With booster inflator,
    상기 제 1 부스터 팽창기구에서 팽창된 냉매 중 액냉매와 기상 냉매를 분리Separation of the liquid refrigerant and the gaseous refrigerant from the refrigerant expanded by the first booster expansion mechanism
    하는 기액 분리기와,With gas-liquid separator made,
    상기 기액 분리기에서 분리된 기상 냉매를 팽창하는 제 2 부스터 팽창기구Second booster expansion mechanism for expanding the gaseous refrigerant separated by the gas-liquid separator
    와,Wow,
    상기 제 2 부스터 팽창기구에서 팽창된 냉매를 압축하는 부스터 압축기를 포A booster compressor for compressing the refrigerant expanded in the second booster expansion mechanism;
    함하는 히트 펌프.With heat pump.
  3. 제 2 항에 있어서,The method of claim 2,
    상기 부스터 모듈은 상기 제 2 열교환기에서 증발된 냉매가 상기 부스터 압The booster module is a refrigerant evaporated from the second heat exchanger is the booster pressure
    축기로 흡입되게 안내하는 부스터 흡입배관을 더 포함하는 히트 펌프.And a booster suction pipe for guiding suction to the accumulator.
  4. 제 3 항에 있어서,The method of claim 3, wherein
    상기 부스터 모듈은 제 1 부스터 팽창기구와 상기 기액 분리기를 연결하는 The booster module connects the first booster expansion mechanism and the gas-liquid separator.
    기액 분리기 흡입배관과,Gas-liquid separator suction piping,
    상기 기액 분리기에서 분리된 기상 냉매가 상기 제 2 부스터 팽창기구로 안The gaseous refrigerant separated in the gas-liquid separator does not reach the second booster expansion mechanism.
    내되는 기상 냉매 토출배관과,Internal gaseous refrigerant discharge pipe,
    상기 제 2 부스터 팽창기구에서 팽창된 냉매가 상기 부스터 압축기로 흡입되The refrigerant expanded in the second booster expansion mechanism is sucked into the booster compressor.
    는 부스터 압축기 흡입배관과,The booster compressor suction pipe,
    상기 부스터 압축기에서 토출된 냉매가 상기 압축기와 제 1 열교환기의 사이The refrigerant discharged from the booster compressor is between the compressor and the first heat exchanger.
    로 안내되는 부스터 압축기 토출배관을 더 포함하고,Further comprising a booster compressor discharge pipe is guided to,
    상기 부스터 흡입배관은 상기 제 2 열교환기와 압축기의 사이와 상기 부스터 The booster suction pipe is between the second heat exchanger and the compressor and the booster
    압축기 흡입배관을 연결하는 히트 펌프.Heat pump connecting compressor suction line.
  5. 제 4 항에 있어서,The method of claim 4, wherein
    상기 부스터 모듈은 상기 부스터 흡입배관에 설치되어 상기 부스터 압축기  The booster module is installed in the booster suction pipe and the booster compressor
    흡입배관의 냉매가 상기 부스터 흡입배관을 통해 상기 압축기로 흡입되는 것을 막Prevents the refrigerant in the suction pipe from being sucked into the compressor through the booster suction pipe.
    는 체크밸브를 더 포함하는 히트 펌프.The heat pump further comprises a check valve.
  6. 제 4 항에 있어서,The method of claim 4, wherein
    상기 제 1 부스터 팽창기구는 상기 제 1 열교환기와 제 1 부스터 팽창기구  The first booster expansion mechanism includes the first heat exchanger and the first booster expansion mechanism.
    흡입배관으로 연결되는 히트 펌프.Heat pump connected to suction line.
  7. 제 4 항에 있어서,The method of claim 4, wherein
    상기 기액 분리기는 상기 팽창기구와 기액분리기 출구배관으로 연결되는 히 The gas-liquid separator is connected to the expansion mechanism and the gas-liquid separator outlet pipe.
    트 펌프.Pump.
  8. 제 3 항에 있어서,The method of claim 3, wherein
    상기 압축기는 용량 가변 압축기이고, 상기 부스터 압축기는 정속 압축기인  The compressor is a variable displacement compressor, the booster compressor is a constant speed compressor
    히트 펌프.Heat pump.
  9. 제 3 항에 있어서,The method of claim 3, wherein
    상기 부스터 압축기는 상기 압축기 보다 용량이 작은 히트 펌프. Said booster compressor having a smaller capacity than said compressor.
  10. 제 3 항에 있어서,The method of claim 3, wherein
    상기 히트 펌프는 운전 모드에 따라 상기 압축기와 부스터 압축기와 제 2 부 The heat pump may include the compressor and the booster compressor according to an operation mode.
    스터 팽창기구를 제어하는 제어부를 포함하는 히트 펌프.A heat pump comprising a control unit for controlling the stuffer expansion mechanism.
  11. 제 10 항에 있어서,The method of claim 10,
    상기 제어부는 일반 부하 모드시 상기 압축기를 구동시키고, 상기 부스터 압 The control unit drives the compressor in the normal load mode, the booster pressure
    축기를 정지시키며, 상기 제 2 부스터 팽창기구를 밀폐시키는 히트 펌프.A heat pump for stopping the accumulator and sealing the second booster expansion mechanism.
  12. 제 10 항에 있어서,The method of claim 10,
    상기 제어부는 부분 부하 모드시 상기 압축기를 오프시키고, 상기 부스터 압 The control unit turns off the compressor in the partial load mode, the booster pressure
    축기를 구동시키며, 상기 제 2 부스터 팽창기구를 밀폐시키는 히트 펌프.A heat pump driving the accumulator and sealing the second booster expansion mechanism.
  13. 제 10 항에 있어서,The method of claim 10,
    상기 제어부는 멀티 운전 모드시 상기 압축기와 부스터 압축기를 구동시키 The control unit may drive the compressor and the booster compressor in a multi operation mode.
    고, 상기 제 2 부스터 팽창기구를 밀폐시키는 히트 펌프.And sealing the second booster expansion mechanism.
  14. 제 10 항에 있어서,The method of claim 10,
    상기 제어부는 가스 인젝션 모드시 상기 압축기와 부스터 압축기를 구동시키 The control unit may drive the compressor and the booster compressor in the gas injection mode.
    고, 상기 제 2 부스터 팽창기구를 개방시키는 히트 펌프.And open the second booster expansion mechanism.
  15. 제 1 항에 있어서,The method of claim 1,
    상기 제 1 열교환기는 냉매와 물을 열교환시키는 수냉매 열교환기이고, 실내 The first heat exchanger is a water refrigerant heat exchanger for heat exchange between the refrigerant and water, and indoors
    를 난방시키는 난방 유닛 및 온수를 공급하는 급탕 유닛과 물 순환 유로로 연결된 Connected to a water circulation passage and a heating unit for heating the
    히트 펌프.Heat pump.
  16. 냉매가 압축되는 압축기와, 상기 압축기에서 압축된 냉매가 응축되는 제 1 열교환A compressor in which the refrigerant is compressed and a first heat exchanger in which the refrigerant compressed in the compressor is condensed
    기와, 상기 제 1 열교환기에서 응축된 냉매가 팽창되는 팽창기구와, 상기 팽창기구An expansion mechanism to expand the refrigerant condensed in the first heat exchanger;
    에서 팽창된 냉매가 증발되는 제 2 열교환기를 갖는 냉동 사이클 유닛과;A refrigeration cycle unit having a second heat exchanger for evaporating the refrigerant expanded therein;
    상기 냉동 사이클 유닛에 선택적으로 장착되는 부스터 모듈을 포함하고, A booster module selectively mounted to the refrigeration cycle unit,
    상기 부스터 모듈은 상기 제 1 열교환기에서 유동된 냉매를 팽창하는 제 1  The booster module expands the refrigerant flowing in the first heat exchanger.
    부스터 팽창기구와,With booster inflator,
    상기 제 1 부스터 팽창기구에서 팽창된 냉매 중 액냉매와 기상 냉매를 분리 Separation of the liquid refrigerant and the gaseous refrigerant from the refrigerant expanded by the first booster expansion mechanism
    하는 기액 분리기와,With gas-liquid separator made,
    상기 기액 분리기에서 분리된 기상 냉매를 팽창하는 제 2 부스터 팽창기구 Second booster expansion mechanism for expanding the gaseous refrigerant separated by the gas-liquid separator
    와,Wow,
    상기 제 2 부스터 팽창기구에서 팽창된 냉매를 압축하는 부스터 압축기를 포 A booster compressor for compressing the refrigerant expanded in the second booster expansion mechanism;
    함하고, 실내 부하에 대응되어 선택적으로 운전되는 히트 펌프.And a heat pump selectively operated in response to the indoor load.
  17. 제 16 항에 있어서,The method of claim 16,
    상기 부스터 모듈은 제 1 부스터 팽창기구와 상기 기액 분리기를 연결하는  The booster module connects the first booster expansion mechanism and the gas-liquid separator.
    기액 분리기 흡입배관과,Gas-liquid separator suction piping,
    상기 기액 분리기에서 분리된 기상 냉매가 상기 제 2 부스터 팽창기구로 안 The gaseous refrigerant separated in the gas-liquid separator does not reach the second booster expansion mechanism.
    내되는 기상 냉매 토출배관과,Internal gaseous refrigerant discharge pipe,
    상기 제 2 부스터 팽창기구에서 팽창된 냉매가 상기 부스터 압축기로 흡입되 The refrigerant expanded in the second booster expansion mechanism is sucked into the booster compressor.
    는 부스터 압축기 흡입배관과,The booster compressor suction pipe,
    상기 부스터 압축기에서 토출된 냉매가 상기 압축기와 제 1 열교환기의 사이 The refrigerant discharged from the booster compressor is between the compressor and the first heat exchanger.
    로 안내되는 부스터 압축기 토출배관을 더 포함하는 히트 펌프.The heat pump further comprises a booster compressor discharge pipe is guided to.
  18. 제 17 항에 있어서,The method of claim 17,
    상기 제 1 부스터 팽창기구는 상기 제 1 열교환기와 제 1 부스터 팽창기구  The first booster expansion mechanism includes the first heat exchanger and the first booster expansion mechanism.
    흡입배관으로 연결되는 히트 펌프.Heat pump connected to suction line.
  19. 제 18 항에 있어서,The method of claim 18,
    상기 기액 분리기는 상기 팽창기구와 기액분리기 출구배관으로 연결되는 히 The gas-liquid separator is connected to the expansion mechanism and the gas-liquid separator outlet pipe.
    트 펌프.Pump.
  20. 제 17 항에 있어서,The method of claim 17,
    상기 압축기는 용량 가변 압축기이고, The compressor is a variable displacement compressor,
    상기 부스터 압축기는 상기 압축기 보다 용량이 작은 정속 압축기인 히트 펌 The booster compressor is a heat pump which is a constant speed compressor having a smaller capacity than the compressor.
    프.F.
PCT/KR2010/004791 2009-11-20 2010-07-21 Heat pump WO2011062349A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020090112739A KR101321549B1 (en) 2009-11-20 2009-11-20 Heat pump
KR10-2009-0112739 2009-11-20

Publications (2)

Publication Number Publication Date
WO2011062349A1 true WO2011062349A1 (en) 2011-05-26
WO2011062349A4 WO2011062349A4 (en) 2011-07-28

Family

ID=43769240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/004791 WO2011062349A1 (en) 2009-11-20 2010-07-21 Heat pump

Country Status (5)

Country Link
US (1) US20110120180A1 (en)
EP (1) EP2325579B1 (en)
KR (1) KR101321549B1 (en)
CN (1) CN102072590B (en)
WO (1) WO2011062349A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101329509B1 (en) * 2008-08-04 2013-11-13 엘지전자 주식회사 Hot water circulation system associated with heat pump and method for controlling the same
KR101581395B1 (en) 2014-05-16 2015-12-30 우양에이치씨(주) Heatpump system using Booster and Method for operating the Heatpump system
KR101658185B1 (en) 2016-03-23 2016-09-21 천두황 Heat-pump Type thermo-hygrostate system
CN111189259B (en) * 2018-08-20 2022-07-22 李华玉 Combined cycle heat pump device
DE102020120772A1 (en) * 2019-09-17 2021-03-18 Hanon Systems Compressor module
CN112629020B (en) * 2020-12-17 2023-04-14 青岛海尔新能源电器有限公司 Heat pump water heater and control method thereof
USD1029211S1 (en) * 2021-10-01 2024-05-28 Bootbox Labs, Inc. Window mountable heat pump

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS602257U (en) * 1983-06-15 1985-01-09 三洋電機株式会社 Compressor operation control device
JPS6325388A (en) * 1986-05-15 1988-02-02 コ−プランド コ−ポレ−シヨン Cooling apparatus
JP2005214492A (en) * 2004-01-29 2005-08-11 Sanyo Electric Co Ltd Refrigerating system
EP1650508A2 (en) * 2004-10-25 2006-04-26 Matsushita Electric Industrial Co., Ltd. Heat-pump type hot water supply system

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH234315A (en) * 1943-07-13 1944-09-30 Escher Wyss Maschf Ag Heat pump.
US3301002A (en) * 1965-04-26 1967-01-31 Carrier Corp Conditioning apparatus
US5095712A (en) * 1991-05-03 1992-03-17 Carrier Corporation Economizer control with variable capacity
JPH06137615A (en) * 1992-10-26 1994-05-20 Matsushita Electric Ind Co Ltd Cold accumulation apparatus
IL116764A (en) * 1996-01-15 2001-01-11 Acclim Line Ltd Central air conditioning system
JP2001056156A (en) * 1999-06-11 2001-02-27 Daikin Ind Ltd Air conditioning apparatus
US6276148B1 (en) * 2000-02-16 2001-08-21 David N. Shaw Boosted air source heat pump
KR100567491B1 (en) * 2002-02-12 2006-04-03 마츠시타 덴끼 산교 가부시키가이샤 Heat pump water heater
JP4214021B2 (en) * 2003-08-20 2009-01-28 ヤンマー株式会社 Engine heat pump
US6931871B2 (en) * 2003-08-27 2005-08-23 Shaw Engineering Associates, Llc Boosted air source heat pump
US20080098760A1 (en) * 2006-10-30 2008-05-01 Electro Industries, Inc. Heat pump system and controls
US7654104B2 (en) * 2005-05-27 2010-02-02 Purdue Research Foundation Heat pump system with multi-stage compression
JP4899489B2 (en) * 2006-01-19 2012-03-21 ダイキン工業株式会社 Refrigeration equipment
KR101387478B1 (en) * 2007-03-13 2014-04-24 엘지전자 주식회사 Compression system and Air-conditioning system using the same
EP2203693B1 (en) * 2007-09-24 2019-10-30 Carrier Corporation Refrigerant system with bypass line and dedicated economized flow compression chamber
EP2232169B1 (en) * 2007-12-28 2018-04-04 Johnson Controls Technology Company Vapor compression system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS602257U (en) * 1983-06-15 1985-01-09 三洋電機株式会社 Compressor operation control device
JPS6325388A (en) * 1986-05-15 1988-02-02 コ−プランド コ−ポレ−シヨン Cooling apparatus
JP2005214492A (en) * 2004-01-29 2005-08-11 Sanyo Electric Co Ltd Refrigerating system
EP1650508A2 (en) * 2004-10-25 2006-04-26 Matsushita Electric Industrial Co., Ltd. Heat-pump type hot water supply system

Also Published As

Publication number Publication date
EP2325579B1 (en) 2017-08-30
CN102072590A (en) 2011-05-25
EP2325579A3 (en) 2015-01-14
EP2325579A2 (en) 2011-05-25
KR101321549B1 (en) 2013-10-30
WO2011062349A4 (en) 2011-07-28
US20110120180A1 (en) 2011-05-26
KR20110056060A (en) 2011-05-26
CN102072590B (en) 2013-06-12

Similar Documents

Publication Publication Date Title
WO2011062348A1 (en) Heat pump
WO2011062349A1 (en) Heat pump
WO2011149152A1 (en) Hot water supply device associated with heat pump
WO2017069472A1 (en) Air conditioner and control method therefor
WO2011145779A1 (en) Hot water supply device associated with heat pump
WO2011145780A1 (en) Hot water supply device associated with heat pump
WO2018012818A1 (en) Heat pump system for vehicle
WO2015111847A1 (en) Heat pump system for vehicle
WO2021215695A1 (en) Heat pump system for vehicle
WO2016017939A1 (en) Automotive heat pump system
WO2011149151A1 (en) Hot water supply device associated with heat pump
WO2016114557A1 (en) Air conditioning system
WO2019147085A1 (en) Air conditioner and control method therefor
WO2021172752A1 (en) Vapor injection module and heat pump system using same
WO2020071803A1 (en) Heat management system
WO2022014900A1 (en) Vapor injection module and heat pump system using same
WO2015194891A1 (en) Refrigerator
WO2020040418A1 (en) Heat management system
WO2017057860A1 (en) Air conditioner and control method therefor
WO2019160294A1 (en) Vehicle heat management system
WO2022050586A1 (en) Vapor injection module and heat pump system using same
WO2014030884A1 (en) Vehicle heat pump system
WO2020209474A1 (en) Air conditioning apparatus
WO2021040427A1 (en) Air conditioner and control method thereof
CN100458312C (en) Refrigerating device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10831716

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10831716

Country of ref document: EP

Kind code of ref document: A1