WO2022009558A1 - 近赤外線吸収ガラスおよび近赤外線カットフィルタ - Google Patents
近赤外線吸収ガラスおよび近赤外線カットフィルタ Download PDFInfo
- Publication number
- WO2022009558A1 WO2022009558A1 PCT/JP2021/020579 JP2021020579W WO2022009558A1 WO 2022009558 A1 WO2022009558 A1 WO 2022009558A1 JP 2021020579 W JP2021020579 W JP 2021020579W WO 2022009558 A1 WO2022009558 A1 WO 2022009558A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- ion
- content
- glass
- ions
- Prior art date
Links
- 239000011521 glass Substances 0.000 title claims abstract description 442
- 150000002500 ions Chemical class 0.000 claims abstract description 335
- 239000000203 mixture Substances 0.000 claims abstract description 102
- 150000001768 cations Chemical class 0.000 claims abstract description 96
- 150000001450 anions Chemical class 0.000 claims abstract description 88
- 229910001416 lithium ion Inorganic materials 0.000 claims abstract description 22
- 229910001415 sodium ion Inorganic materials 0.000 claims abstract description 16
- 229910001422 barium ion Inorganic materials 0.000 claims abstract description 14
- 229910001424 calcium ion Inorganic materials 0.000 claims abstract description 14
- 229910001425 magnesium ion Inorganic materials 0.000 claims abstract description 14
- 229910001427 strontium ion Inorganic materials 0.000 claims abstract description 14
- 238000002834 transmittance Methods 0.000 claims description 165
- 229910018068 Li 2 O Inorganic materials 0.000 claims description 88
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 60
- 229910052760 oxygen Inorganic materials 0.000 claims description 47
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 36
- 239000001301 oxygen Substances 0.000 claims description 36
- 229910021193 La 2 O 3 Inorganic materials 0.000 claims description 28
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 17
- 229910007541 Zn O Inorganic materials 0.000 claims description 16
- 229910052802 copper Inorganic materials 0.000 claims description 15
- 239000006096 absorbing agent Substances 0.000 claims description 5
- 238000011049 filling Methods 0.000 claims description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 6
- FUJCRWPEOMXPAD-UHFFFAOYSA-N Li2O Inorganic materials [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 abstract 2
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 abstract 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract 2
- 229910052681 coesite Inorganic materials 0.000 abstract 2
- 229910052593 corundum Inorganic materials 0.000 abstract 2
- 229910052906 cristobalite Inorganic materials 0.000 abstract 2
- XUCJHNOBJLKZNU-UHFFFAOYSA-M dilithium;hydroxide Chemical compound [Li+].[Li+].[OH-] XUCJHNOBJLKZNU-UHFFFAOYSA-M 0.000 abstract 2
- 239000000377 silicon dioxide Substances 0.000 abstract 2
- 229910052682 stishovite Inorganic materials 0.000 abstract 2
- 229910052905 tridymite Inorganic materials 0.000 abstract 2
- 229910001845 yogo sapphire Inorganic materials 0.000 abstract 2
- 238000010521 absorption reaction Methods 0.000 description 29
- 230000007423 decrease Effects 0.000 description 28
- 230000005540 biological transmission Effects 0.000 description 20
- 230000001965 increasing effect Effects 0.000 description 19
- 238000000034 method Methods 0.000 description 19
- 238000002844 melting Methods 0.000 description 18
- 230000008018 melting Effects 0.000 description 18
- 230000006872 improvement Effects 0.000 description 17
- 238000006243 chemical reaction Methods 0.000 description 13
- 238000011156 evaluation Methods 0.000 description 13
- 230000003595 spectral effect Effects 0.000 description 11
- 229910006404 SnO 2 Inorganic materials 0.000 description 10
- 238000004364 calculation method Methods 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 9
- 230000005484 gravity Effects 0.000 description 9
- 239000002994 raw material Substances 0.000 description 9
- 239000006060 molten glass Substances 0.000 description 8
- 238000000465 moulding Methods 0.000 description 8
- 230000003287 optical effect Effects 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 7
- 239000002244 precipitate Substances 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 230000002708 enhancing effect Effects 0.000 description 6
- 230000009477 glass transition Effects 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000008395 clarifying agent Substances 0.000 description 5
- 239000000470 constituent Substances 0.000 description 5
- 238000005520 cutting process Methods 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- -1 Gd 2 O 3 Inorganic materials 0.000 description 4
- 238000000137 annealing Methods 0.000 description 4
- 125000002091 cationic group Chemical group 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 241000239290 Araneae Species 0.000 description 3
- 125000000129 anionic group Chemical group 0.000 description 3
- 238000005352 clarification Methods 0.000 description 3
- 238000004040 coloring Methods 0.000 description 3
- 238000007496 glass forming Methods 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 239000000075 oxide glass Substances 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 231100000331 toxic Toxicity 0.000 description 3
- 230000002588 toxic effect Effects 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- 229910016287 MxOy Inorganic materials 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- 239000013626 chemical specie Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000001095 inductively coupled plasma mass spectrometry Methods 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 238000004445 quantitative analysis Methods 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000010583 slow cooling Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 238000007088 Archimedes method Methods 0.000 description 1
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N CuO Inorganic materials [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 229910001260 Pt alloy Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 206010040925 Skin striae Diseases 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 229910052776 Thorium Inorganic materials 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000004031 devitrification Methods 0.000 description 1
- 238000000113 differential scanning calorimetry Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- AHKZTVQIVOEVFO-UHFFFAOYSA-N oxide(2-) Chemical compound [O-2] AHKZTVQIVOEVFO-UHFFFAOYSA-N 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000005365 phosphate glass Substances 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 229910052705 radium Inorganic materials 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C4/00—Compositions for glass with special properties
- C03C4/08—Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/12—Silica-free oxide glass compositions
- C03C3/16—Silica-free oxide glass compositions containing phosphorus
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/12—Silica-free oxide glass compositions
- C03C3/16—Silica-free oxide glass compositions containing phosphorus
- C03C3/17—Silica-free oxide glass compositions containing phosphorus containing aluminium or beryllium
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C4/00—Compositions for glass with special properties
- C03C4/08—Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths
- C03C4/082—Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths for infrared absorbing glass
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/16—Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L83/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
- C08L83/04—Polysiloxanes
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/208—Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/22—Absorbing filters
Definitions
- the present invention relates to a near-infrared absorbing glass and a near-infrared cut filter.
- the obtained image information is not only digitized, but the image is reconstructed by performing various computer processing on the image information. For example, it is becoming mainstream to extract a specific object and adjust the color and contrast of the image. At that time, if color information that does not originally exist is input to the image sensor due to the reflection of light in the optical element, the information must be removed, which is not desirable.
- the near-infrared cut filter has a function of cutting unnecessary near-infrared light (wavelength 700 to 1200 nm) in the sensitivity wavelength range of the image sensor.
- the near-infrared cut filter is generally provided immediately before the image sensor.
- the near-infrared cut filter a filter made of near-infrared absorbing glass as a base material and polished on a flat plate is widely used.
- Near-infrared absorbing glass generally contains Cu ions.
- FIG. 1 shows an example of the spectral transmission characteristics of the near-infrared absorbing glass. Note that FIG. 1 does not limit the present invention in any way.
- the light absorption characteristics around the wavelength of 700 to 1200 nm are expressed by Cu ions (Cu 2+) in the glass.
- glass containing P ions together with Cu ions is useful as a glass for a near-infrared cut filter because it can exhibit the near-infrared absorption characteristics of Cu ions (Cu 2+) in a wide wavelength range (for example, patent). See Document 1).
- the wavelength at which the transmittance is 50% is called "half value" and is one of the main standards of the near-infrared cut filter.
- the half value varies depending on the specifications of the filter, but is often set in the wavelength range of 600 nm to 650 nm.
- As a general method for reducing the half value to a desired value there is a method of adjusting either the plate thickness of the glass substrate or the Cu ion (Cu 2+) concentration in the glass according to the Lambert-Beer law.
- the near-infrared cut filter has excellent ability to cut near-infrared rays (that is, it has a desired half value but low transmittance of near-infrared light), and also has a transmittance in the visible region (purple region to red region). Is also required to be high.
- the image sensor module mounted on a smartphone or the like is required to have both miniaturization and high performance, and the thickness of the near-infrared cut filter is required to be thin. Therefore, it is also desired that the thickness of the near-infrared absorbing glass is reduced from the conventional 1 mm to about 0.45 mm, 0.3 mm or 0.2 mm in recent years, and further reduced to the 0.1 mm level. ..
- the optical density (number of moles x thickness) of CuO required for near-infrared absorption decreases, and the near-infrared absorption efficiency decreases.
- the absorption of CuO reaches the visible region (that is, the red region) near the wavelength of 600 nm, and the transmittance on the short wavelength side tends to decrease, so that the visible region (purple region to red) tends to decrease. It is difficult to maintain both the transmittance of the region) and the absorption of near infrared rays.
- one aspect of the present invention is near-infrared absorption that has high transmittance in the visible region (purple region to red region) even by thinning, has excellent near-infrared cut ability, and can suppress deterioration of weather resistance. It is an object of the present invention to provide a near-infrared cut filter comprising glass and such near-infrared absorbing glass.
- One aspect of the present invention is Major cations selected from the group consisting of P ion, Li ion, Cu ion, Al ion, Ba ion, Sr ion, Ca ion, Mg ion, Zn ion, K ion, Na ion, La ion, Gd ion and Y ion.
- Including 4 or more types Contains P, Li and Cu ions as essential cations Contains at least O ions as anions, The ratio of the O ion content to the P ion content (O ion / P ion) is 3.15 or less. In the glass composition indicated by anion%, the content of O ions is 90.0 anion% or more.
- the total content of oxides of the above major cations is 90.0% or more.
- the total content of MgO and Al 2 O 3 (MgO + Al 2 O 3) is not more than 8.0%,
- the ratio of the total of Na 2 O content, K 2 O content and Zn O content to the Li 2 O content ((Na 2 O + K 2 O + ZnO) / Li 2 O) is 2.4 or less.
- the total content of B 2 O 3 and SiO 2 (B 2 O 3 + SiO 2 ) is 3.0% or less.
- ⁇ 1 70400 ⁇ exp (-2.855 ⁇ R) It is a value calculated by In the above formula 1, R is the above ratio (O ion / P ion).
- Glass 1 Near-infrared absorbing glass
- one aspect of the present invention is Major cations selected from the group consisting of P ion, Li ion, Cu ion, Al ion, Ba ion, Sr ion, Ca ion, Mg ion, Zn ion, K ion, Na ion, La ion, Gd ion and Y ion.
- Including 4 or more types Contains P, Li and Cu ions as essential cations Contains at least O ions as anions, The ratio of the O ion content to the P ion content (O ion / P ion) is 3.15 or less. In the glass composition indicated by anion%, the content of O ions is 90.0 anion% or more.
- the total content of oxides of the above major cations is 90.0% or more.
- the total content of MgO and Al 2 O 3 (MgO + Al 2 O 3) is not more than 8.0%,
- the ratio of the total of Na 2 O content, K 2 O content and Zn O content to the Li 2 O content ((Na 2 O + K 2 O + ZnO) / Li 2 O) is 2.4 or less.
- the total content of B 2 O 3 and SiO 2 (B 2 O 3 + SiO 2 ) is 3.0% or less.
- Equation 2 (Equation 2) C-3200 x exp (-2.278 x R) ⁇ 0
- C is the CuO content (unit: mmol / cc) per molar volume of glass.
- R is the above ratio (O ion / P ion).
- Glass 2 Near-infrared absorbing glass
- one aspect of the present invention is A group consisting of P ion, Li ion, Cu ion, Al ion, Ba ion, Sr ion, Ca ion, Mg ion, Zn ion, K ion, Na ion, La ion, Gd ion, Y ion, B ion and Si ion.
- Contains 4 or more major cations selected from Contains P, Li and Cu ions as essential cations Contains at least O ions as anions, The ratio of the O ion content to the P ion content (O ion / P ion) is 3.15 or less.
- the content of O ions is 90.0 anion% or more.
- the total content of oxides of the above major cations is 90.0% or more.
- the total content of MgO and Al 2 O 3 (MgO + Al 2 O 3) is not more than 8.0%,
- the ratio of the total of Na 2 O content, K 2 O content and Zn O content to the Li 2 O content ((Na 2 O + K 2 O + ZnO) / Li 2 O) is 2.4 or less.
- O (P) indicates the amount of oxygen constituting the oxide of P ion in the oxide-based glass composition.
- O (others) indicates the amount of oxygen obtained by subtracting the above O (P) from the amount of oxygen constituting the oxide of the above major cation in the oxide-based glass composition.
- Cu is a near-infrared absorbing glass (hereinafter, also referred to as “glass 3”), which indicates a molar-based CuO content in an oxide-based glass composition.
- one aspect of the present invention is A group consisting of P ion, Li ion, Cu ion, Al ion, Ba ion, Sr ion, Ca ion, Mg ion, Zn ion, K ion, Na ion, La ion, Gd ion, Y ion, B ion and Si ion.
- Contains 4 or more major cations selected from Contains P, Li and Cu ions as essential cations Contains at least O ions as anions, The ratio of the O ion content to the P ion content (O ion / P ion) is 3.15 or less.
- the content of O ions is 90.0 anion% or more.
- the total content of oxides of the above major cations is 90.0% or more.
- the total content of MgO and Al 2 O 3 (MgO + Al 2 O 3) is not more than 8.0%,
- the ratio of the total of Na 2 O content, K 2 O content and Zn O content to the Li 2 O content ((Na 2 O + K 2 O + ZnO) / Li 2 O) is 2.4 or less.
- C is the CuO content (unit: mmol / cc) per molar volume of glass.
- O (P) indicates the amount of oxygen constituting the oxide of P ion in the oxide-based glass composition.
- O (others) is a near-infrared absorbing glass showing the amount of oxygen obtained by subtracting the above O (P) from the amount of oxygen constituting the oxide of the main cation in the glass composition based on the oxide. (Hereafter, also referred to as "glass 4"), Regarding.
- One aspect of the present invention is Major cations selected from the group consisting of P ion, Li ion, Cu ion, Al ion, Ba ion, Sr ion, Ca ion, Mg ion, Zn ion, K ion, Na ion, La ion, Gd ion and Y ion.
- Including 4 or more types Contains P, Li and Cu ions as essential cations Contains at least O ions as anions, The ratio of the content of O ions to the content of P ions (O ion / P ion) is 3.15 or less. In the glass composition indicated by anion%, the content of O ions is 90.0 anion% or more.
- the total content of oxides of the above major cations is 90.0% or more.
- the total content of MgO and Al 2 O 3 (MgO + Al 2 O 3) is not more than 8.0%,
- the ratio of the total of Na 2 O content, K 2 O content and Zn O content to the Li 2 O content ((Na 2 O + K 2 O + ZnO) / Li 2 O) is 2.4 or less.
- Glass 5" Near-infrared absorbing glass
- one aspect of the present invention is Major cations selected from the group consisting of P ion, Li ion, Cu ion, Al ion, Ba ion, Sr ion, Ca ion, Mg ion, Zn ion, K ion, Na ion, La ion, Gd ion and Y ion.
- Including 4 or more types Contains P, Li and Cu ions as essential cations Contains at least O ions as anions, The ratio of the O ion content to the P ion content (O ion / P ion) is 3.15 or less. In the glass composition indicated by anion%, the content of O ions is 90.0 anion% or more.
- a near-infrared absorbing glass having high transmittance in the visible region (purple region to red region) even by thinning, excellent near-infrared cut ability, and capable of suppressing deterioration of weather resistance can be provided. Further, according to one aspect of the present invention, it is possible to provide a near-infrared ray cut filter made of such a near-infrared ray absorbing glass.
- Glass Near infrared absorber glass
- glass near-infrared absorbing glass
- the near-infrared absorbing glass is a glass having a property of absorbing light having a wavelength of at least the entire region or a part of the near-infrared wavelength range (wavelength 700 to 1200 nm).
- the near-infrared absorbing glass according to one aspect of the present invention contains O ions as constituent ions, it can be an oxide glass.
- Oxide glass is glass in which the main network-forming component of glass is oxide.
- the near-infrared absorbing glass according to one aspect of the present invention can be a phosphate glass because it contains P ions (cations) as well as O ions (anions) as constituent ions.
- the O ion is an anion of an oxygen atom and is generally also called an oxide ion.
- the various components constituting the glass contain elements contained in the glass by known methods such as inductively coupled plasma emission spectroscopic analysis (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS).
- the amount (% by mass of the element) can be quantified.
- the anion component contained in the glass can be identified and quantified by a known analytical method, for example, an ion chromatography method, a non-dispersed infrared absorption method (ND-IR), or the like.
- the content of the constituent component is 0% or not contained or introduced, which means that the constituent component is substantially not contained, and the constituent component is at an unavoidable impurity level. It is permissible to be included.
- the content (unit: mol%) of each component in the oxide-based glass composition can be calculated.
- the n 'i n i / x .
- the number of moles n i of said corresponding elements are referred to as subsequent m i.
- the content in the oxide-based glass composition can also be referred to as an oxide-based fraction.
- .SIGMA.n 'i is the total number of moles of oxide A i xOy of cationic components contained in the glass. However, depending on the significant figures of the content, ignoring trace components does not affect the calculation results.
- Anion% is a value calculated by "(content of anion i of interest in mol% indication) / (total number of anions contained in glass in mol% indication) x 100" and is of interest. It means the molar percentage of the amount of anions to the total amount of anions.
- ⁇ O i is the total number of moles of O ions in the glass composition based on the oxide
- ⁇ (N k / 2) B k represents the number of moles of O ions substituted by the anion component B k.
- Expression of the numerator ( ⁇ O i - ⁇ (N k / 2) B k) becomes the number of moles of O ions contained in the glass.
- the oxygen content in the present invention and the present specification when an anion component other than oxygen is not detected by analysis by a known method, all of the anion components (that is, 100 anion%) are O ions. Suppose there is.
- the formal valence of each cation is used.
- the formal value of the cation Ai contained in the oxide AixOy is "+ 2y / x". Therefore, when analyzing the glass composition, it is not necessary to analyze the valence of the cation.
- the valence of the anion (for example, the valence of the O ion is -2) is also a formal valence based on the idea that the O ion accepts two electrons and has a closed shell structure. Therefore, when analyzing the glass composition, it is not necessary to analyze the valence of the anion. Further, a part of Cu 2+ can become Cu + at the time of melting, but since the amount thereof is usually small, the valence of Cu can be all +2.
- the glass contains at least O ion as an anion, and the content thereof is 90.0 anion% or more in the glass composition indicated by anion%.
- O ion content in the glass composition indicated by anion% is 90.0% or more, preferably 95.0% or more, more preferably 98.0% or more, and 99.0% or more. It is more preferable to have.
- a high proportion of O ions in the anion component is also preferable in order to suppress volatilization during glass melting.
- Suppressing volatilization during glass melting is preferable from the viewpoint of suppressing the generation of veins.
- the content of O ions is preferably 100%.
- the formal valence of O ion is -2.
- the glass can contain only O ions in one form as anions, and can contain one or more other anions together with O ions in another form.
- examples of other anions include F ion, Cl ion, Br ion, I ion and the like.
- the formal valence of F ion, Cl ion, Br ion, and I ion is -1.
- the content of F ions is preferably 15.0 anion% or less, and more preferably 10.0 anion% or less in the glass composition indicated by% anion. , 5.0 anion% or less, more preferably 2.0 anion% or less, and even more preferably 1.0 anion% or less.
- the glass may be a glass that does not contain F ions.
- the molar ratio of the cation content and the anion content is the ratio of the contents of the components of interest (expressed in mol%) when the total amount of all the cation components and all the anion components is 100 mol%. Therefore, the ratio of the content of O ion to the content of P ion (O ion / P ion) is the content of P ion when the total amount of all cation components and all anion components is 100 mol% (O ion / P ion). It is the ratio of the content of O ion (indicated by mol%) to the content of O ion (indicated by mol%).
- R2 P ion oxide (ie P 2 O 5 ) reference fraction (mol%) x 2
- the number of O contained in the molecular formula is 5 for P 2 O 5 , 1 for Li 2 O, and 1 for Cu O.
- the number of moles of O contained in the molecular formula is 267.95 for P 2 O 5 , 19.30 for Li 2 O, and 27.11 for Cu O.
- the O / P ratio of the glass in this example can be obtained as follows.
- Glass molecular formula: 53.59P 2 O 5 -19.30Li obtain the number N S of O ions in 2 O-27.11CuO.
- the oxygen content is (1) the valence of the cation component contained in the glass and the mol% of the element.
- calculation example 1 and calculation example 2 are shown as calculation examples of the calculation method 2.
- (O / P ratio) is 3.15 or less.
- the O / P ratio is preferably 3.14 or less, 3.13 or less, 3.12 or less, 3.11 or less, 3.10 or less, 3.09 or less, 3. It is more preferable in the order of 08 or less, 3.07 or less, 3.06 or less, 3.05 or less, 3.04 or less, 3.03 or less, 3.02 or less, 3.01 or less, and 3.00 or less.
- the glass 1 to the glass 6 have a large O / P ratio.
- the O / P ratio is preferably 2.50 or more, 2.60 or more, 2.65 or more, 2.70 or more, 2.73 or more, 2.75. 2.77 or more, 2.80 or more, 2.81 or more, 2.82 or more, 2.83, 2.84 or more, 2.85 or more, 2.86 or more, 2.87 or more, 2. It is more preferable in the order of 88 or more, 2.89 or more, and 2.90 or more.
- Glasses 1 to 6 are a group consisting of P ion, Li ion, Cu ion, Al ion, Ba ion, Sr ion, Ca ion, Mg ion, Zn ion, K ion, Na ion, La ion, Gd ion and Y ion. It contains 4 or more major cations selected from the above, and contains P ion, Li ion and Cu ion as essential cations. In the glass composition (molar standard) of the glass 1 to 6 based on the oxide, the total content of the oxides of the main cations is 90.0% or more.
- the total content of the oxides of the major cations in the glasses 1 to 6 is 90.0% or more, which can contribute to the improvement of the thermal stability of the glass and / or the striae, volatilization and the like. By suppressing it, it can contribute to improving the optical homogeneity of the glass. From the above points, the total content of the oxides of the main cations in the glasses 1 to 6 is preferably 92.0% or more, 93.0% or more, 95.1% or more, and 96.1% or more. , 97.1% or more, 98.1 or more, 98.6% or more, 99.1% or more, 99.6% or more, more preferably 100%. In one form, the total content of oxides of the major cations in glasses 1-6 is 100% or less or 99.5% or less, 99% or less, 98.5% or less, 98.0% or less, 97.5. It can be less than or equal to%.
- the content of the cation component will be described as the content in the oxide-based glass composition (molar-based).
- glasses 1 to 6 contain Cu ions as essential cations.
- the CuO content is ⁇ 1 % or more.
- ⁇ 1 is a value calculated by the following equation 1.
- Equation 1 R is the O / P ratio.
- the lower limit of the CuO content is defined by the following formula 2 according to the CuO content per molar volume of the glass.
- C is the CuO content (unit: mmol / cc) per molar volume of the glass, and R is the O / P ratio.
- Equation 2 the above C is obtained by the following method.
- C measures the specific gravity value D (g / cc) of the glass, and based on the glass composition obtained by the analysis as described above, the mass corresponding to 1 mol of the glass composition, that is, the molar molecular weight M (g). / Mol), and by determining the molar volume M / D (unit: cc / mol) of the glass.
- C mol% of CuO / (M / D) ⁇ 1000 (unit: mmol / cc) Can be calculated as.
- the molar molecular weight M is Based on the above description of the notation of the glass composition based on the oxide, when the atomic weight of the corresponding oxide of the above-mentioned cation component Ai is MA i , the atomic weight of the anion component B k is MB k , and the atomic weight of oxygen is Mo.
- M ⁇ (PA i x MA i ) + ⁇ (PB k x MB k ) - ⁇ (N k / 2) Mo ⁇ / ⁇ PA i Can be obtained as.
- a 2 formula weight of O component M a g / mol
- the formula weight of BO component M B g / mol
- atomic weight M F g / mol
- the atomic weight of oxygen is M O (g / mol )
- M (s ⁇ M A + t ⁇ M B + u ⁇ M F -u / 2 ⁇ M O) / (s + t) Will be.
- the present inventor reduced the O / P ratio in glass mainly composed of O ions as anions, and the absorption in the red region of CuO was shifted to the long wavelength side, so that the transmittance in the red region was increased. It was newly found that the CuO content can be increased while suppressing the decrease in the amount of CuO. Furthermore, the present inventor has newly found that there is a good correlation between the O / P ratio and the CuO content for achieving the predetermined half value at the predetermined wall thickness, and the O / P ratio is in the range described above.
- the lower limit of the CuO content ( ⁇ 1 , ⁇ 2 ) has been defined by the formula 1 for the glass 1 and the formula 5 for the glass 5. Further, the CuO content per molar volume of the glass is specified by the formula 2 for the glass whose O / P ratio is in the range described above and by the formula 6 for the glass 6.
- the CuO content is defined based on A 1 calculated by the following formula 3, and A 1 is 2500 or more.
- O (P) indicates the amount of oxygen constituting the oxide of P ion in the oxide-based glass composition
- O (others) indicates the amount of oxygen constituting the oxide in the oxide-based glass composition.
- the amount of oxygen obtained by subtracting the above O (P) from the amount of oxygen constituting the oxide of the main cation is shown
- Cu indicates the CuO content on a molar basis in the oxide-based glass composition.
- O (P) in Equation 3 is calculated as follows.
- P 2 O 5 content in the oxide-based glass composition (molar standard) M mol%
- the number of oxygen contained in the chemical formula of P 2 O 5 : 5 is used, and O (P) is "O".
- (P) M ⁇ 5 ”.
- the value of the content as an oxide in the oxide-based glass composition (molar standard) and the oxygen contained in the oxide formed by each cation in the state of formal valence is calculated using the number of.
- O (others) is calculated as a value obtained by subtracting O (P) from the total amount of oxygen calculated for the oxide of the main cation.
- the absorption in the red region of CuO is shifted to the long wavelength side, so that the decrease in the transmittance in the red region is suppressed and CuO is suppressed.
- the content can be increased.
- the visible region results from the following 1) and 2).
- the transmittance in the (red region) can be increased.
- the CuO content is defined based on A calculated by the formula 3 based on such findings.
- the transmittance in the red region can be increased by lengthening the wavelength of absorption derived from Cu 2+. 2) By making it possible to bring the glass into a liquid phase state at a low temperature, it is possible to suppress the generation of Cu + that causes absorption in the purple region near a wavelength of 400 nm.
- a 1 is preferably 2500 or more, preferably 2800 or more, and 2900 or more, 3000 or more, 3100 or more, 3200 or more. 3,300 or more, 3400 or more, 3500 or more, 3600 or more, 3700 or more, 3800 or more, 3900 or more, 4000 or more, 4100 or more, 4200 or more, 4300 or more, 4400 or more, 4500 or more, 4600 or more, 4700 or more, 4800 or more, 4900 or more.
- the thermal stability of the glass is lowered due to the large amount of Cu and O, the transmittance is lowered at the desired half wavelength, and / or the thermal stability of the glass is reduced due to the excessive O (others).
- A is preferably 20000 or less, 19000 or less, 18000 or less, 17000 or less, 16000 or less, 150,000 or less, 14000 or less, 13000 or less, 12000 or less. More preferably, it is 11000 or less, 10000 or less, 9000 or less, and 8000 or less. In addition, in order to achieve the desired half value with a thinner wall thickness, it tends to be preferable that this value is large.
- the CuO content is defined based on A 2 calculated by the following formula 4, and A 2 is 700 or more.
- C is the CuO content (unit: mmol / cc) per molar volume of glass.
- O (P) indicates the amount of oxygen constituting the oxide of P ion in the oxide-based glass composition
- O (others) indicates the amount of oxygen constituting the oxide of the above-mentioned major cation in the oxide-based glass composition. The amount of oxygen excluding the above O (P) is shown.
- a 2 is preferably 700 or more, preferably 800 or more, and 850 or more, 890 or more, 1000 or more, 1100 or more. More preferably, 1200 or more, 1300 or more, 1400 or more, 1500 or more, 1600 or more, 1700 or more, and 1800 or more.
- the thermal stability of the glass is lowered due to the large amount of Cu and O, the transmittance is lowered at the desired half wavelength, and / or the thermal stability of the glass is reduced due to the excessive O (others).
- a 2 is preferably 5000 or less, more preferably 4000 or less, 3500 or less, 3000 or less, 2500 or less, and 2000 or less.
- this value is large.
- the CuO content is ⁇ 2 % or more.
- ⁇ 2 is a value calculated from the following equation 5.
- Equation 5 R is the O / P ratio.
- the lower limit of the CuO content is defined by the following formula 6 according to the CuO content per molar volume of the glass.
- C is the CuO content (unit: mmol / cc) per molar volume of the glass, and R is the O / P ratio.
- the CuO content of the glasses 1 to 6 is preferably 4.0% or more, preferably 5.0% or more, 6.0% or more, and 7.0% or more in the oxide-based glass composition (molar standard). , 7.5% or more, 8.0% or more, 8.5% or more, 9.0% or more, 9.5% or more, 10.0% or more, 10.5% or more, 11.0% or more, 11 5.5% or more, 12.0% or more, 12.5% or more, 13.0% or more, 13.5% or more, 14.0% or more, 14.5% or more, 15.0% or more, 15.5 % Or more, 16.0% or more, 16.5% or more, 17.0% or more, 17.5% or more, 18.0% or more, 18.5% or more, 19.0% or more, 19.5% or more. 2, 0.0% or more is more preferable.
- the CuO content is preferably 48.0% or less, more preferably 47.0% or less, 46.0 from the viewpoint of maintaining the thermal stability of the glass while leaving room for introducing the glass forming component. % Or less, 45.0% or less, 44.0% or less, 43.5% or less, 43.0% or less, 42.5% or less, 42.0% or less, 41.5% or less, 41.0% or less 40.5% or less, 40.0% or less, 39.5% or less, 39.0% or less, 38.5% or less, 38.0% or less, 37.5% or less, 37.0% or less, 36 5.5% or less, 36.0% or less, 35.5% or less, 35.0% or less, 34.5% or less, 34.0% or less, 33.5% or less, 33.0% or less, 32.5 % Or less, 32.0% or less, 31.5% or less, 31.0% or less, more preferably.
- the CuO content is the oxide-based glass composition so that the wavelength ⁇ T 50 at which the external transmittance including reflection loss is 50% is in the range of 600 nm to 650 nm.
- it is preferably 15.0% or more, 15.5% or more, 16.0% or more, 16.5% or more, 17.0% or more, 17.5% or more, 18.0. % Or more, 18.5% or more, 19.0% or more, 19.5% or more, and 20.0% or more are more preferable.
- the CuO content is an oxide-based glass so that the wave length ⁇ T 50, which includes reflection loss and has an external transmission of 50%, is in the range of 600 nm to 650 nm.
- it is preferably 10.0% or more, 10.5% or more, 11.0% or more, 11.5% or more, 12.0% or more, 12.5% or more, 13. 0% or more, 13.5% or more, 14.0% or more, 14.5% or more, 15.0% or more, 15.5% or more, 16.0% or more, 16.5% or more, 17.0%
- 17.5% or more, 18.0% or more, 18.5% or more, 19.0% or more, 19.5% or more, 20.0% or more are preferable in this order.
- the CuO content is the oxide-based glass composition so that the wavelength ⁇ T 50 at which the external transmission including reflection loss is 50% is in the range of 600 nm to 650 nm.
- it is preferably 10.0% or more, 10.5% or more, 11.0% or more, 11.5% or more, 12.0% or more, 12.5% or more, 13.0. % Or more, 13.5% or more, 14.0% or more, 14.5% or more, 15.0% or more, 15.5% or more, 16.0% or more, 16.5% or more, 17.0% or more. , 17.5% or more, 18.0% or more, 18.5% or more, 19.0% or more, 19.5% or more, 20.0% or more, in that order.
- the transmission characteristic in terms of thickness 0.25 mm is such that when the CuO content is large, the wavelength ⁇ T 50 at which the external transmission including reflection loss is 50% may be less than 600 nm. Is preferably 35.0% or less, 34.0% or less, 33.0% or less, 32.0% or less, 31.0% or less, 30.0% or less, 29.5% or less, 29.
- the CuO content is the glass composition based on the oxide (CuO content).
- the molar standard it is preferably 10.0% or more, 10.5% or more, 11.0% or more, 11.5% or more, 12.0% or more, 12.5% or more, 13.0%. 13.5% or more, 14.0% or more, 14.5% or more, 15.0% or more, 15.5% or more, 16.0% or more, 16.5% or more, 17.0% or more, 17.5% or more, 18.0% or more, 18.5% or more, 19.0% or more, 19.5% or more, 20.0% or more are preferable in this order.
- the CuO content is the glass composition based on the oxide. In terms of molar standard), it is preferably 10.5% or more, 11.0% or more, 11.5% or more, 12.0% or more, 12.5% or more, 13.0% or more, 13.5%. 14.0% or more, 14.5% or more, 15.0% or more, 15.5% or more, 16.0% or more, 16.5% or more, 17.0% or more, 17.5% or more, 18.0% or more, 18.5% or more, 19.0% or more, 19.5% or more, 20.0% or more are preferable in this order.
- the value of C is preferably 3.0 or more, 3.1 or more, 3.3 or more, 3.5 or more, 3.7 or more, 3.9 or more, 4.0. 4.1 or more, 4.2 or more, 4.3 or more, 4.4 or more, 4.5 or more, 4.6 or more, 4,7 or more, 4.8 or more, 4.9 or more, 5.0 It is more preferable in the order of 5.1 or more, 5.2 or more, 5.3 or more, 5, 4 or more and 5.5 or more.
- the value of C is preferably 16.0 or less, more preferably 15.0 or less, 14.0 or less, and 13 from the viewpoint of maintaining the thermal stability of the glass while leaving room for introducing the glass forming component.
- the CuO content can be ⁇ 3 % or more.
- ⁇ 3 is a value calculated from the following equation 7.
- R is the O / P ratio.
- d can take a value of more than 0 and 0.25 or less.
- d is 0.25, 0.25, 0.23, 0.22, 0.21, 0.20, 0.19, 0.18, 0.17, 0.16, 0.15, 0. .14, 0.13, 0.12, 0.11, 0.10, 0.09, 0.08, 0.07, 0.06, 0.05, 0.04, 0.03, 0.02 , 0.01 and so on.
- the value of d is not limited to these. In order to achieve the desired transmittance half value with a thinner wall thickness, it tends to be preferable that the value of d is small.
- d D can be set in the above formula 7.
- ⁇ 3 (70400 ⁇ 0.25 / D) ⁇ exp (-2.855 ⁇ R)
- the lower limit of the CuO content can be a value specified by the following formula 8 according to the CuO content per molar volume of the glass.
- d can take a value greater than 0 and 0.25 or less.
- d is 0.25, 0.25, 0.23, 0.22, 0.21, 0.20, 0.19, 0.18, 0.17, 0.16, 0.15, 0. .14, 0.13, 0.12, 0.11, 0.10, 0.09, 0.08, 0.07, 0.06, 0.05, 0.04, 0.03, 0.02 , 0.01 and so on.
- the value of d is not limited to these. In order to achieve the desired transmittance half value with a thinner wall thickness, it tends to be preferable that the value of d is small.
- Equation 8 is the following equation. C-3300 ⁇ 0.25 / 0.11 ⁇ exp (-2.855 ⁇ R) ⁇ 0
- Equation 8 is the following equation.
- each of the glasses 1-6 can also satisfy one or more of the equations for other glasses.
- Glasses 1 to 6 contain P ions as essential cations. As described above, it is preferable that the O / P ratio is low from the viewpoint of achieving both the improvement of the transmittance in the visible region and the improvement of the near-infrared cut ability. In order to reduce the O / P ratio, it is preferable to increase the P 2 O 5 Gan'yu Ryo.
- P 2 O 5 content in the glass composition of the oxide basis preferably at least 33.0% 34.0% or higher, 35.0% or higher, 36.0% 37.0% or more, 38.0% or more, 39.0% or more, 40.0% or more, 40.5% or more, 41.0% or more, 41.5% or more, 42.0% or more, 42.5% or more, 43.0% or more, 43.5% or more, 44.0% or more, 44.5% or more, 45.0% or more, 45.5% or more, 46.0% or more, 46.
- the P 2 O 5 content should be 72.0% or less from the viewpoint of increasing the CuO content having near-infrared absorption capacity. 71.0% or less, 70.0% or less, 69.5% or less, 69.0% or less, 68.5% or less, 68.0% or less, 67.5% or less, 67.0% or less.
- the P 2 O 5 content is not more than the above value from the viewpoint of further suppressing the decrease in weather resistance and / or from the viewpoint of suppressing the decrease in meltability.
- the glass composition based on the oxide is mainly composed of P 2 O 5 , Li 2 O and Cu O in order to obtain the desired transmittance characteristics.
- the total content of P 2 O 5 , Li 2 O and Cu O is preferably 50.0% or more, preferably 55.0% or more, 60.0%. 65.0% or more, 70.0% or more, 75.0% or more, 80.0% or more, 83.0% or more, 86.0% or more, 88.0% or more, 90.0% or more More preferred in order.
- the glass contains P, Li and Cu ions as essential cations and is one or more cations selected from the group of major cations to obtain thermal stability and / or chemical durability of the glass. Further includes. Therefore, the total content (P 2 O 5 + Li 2 O + CuO) is less than 100%, preferably 9.9% or less, and 99.8% or less, 99.7% or less, 99.6% or less.
- the wavelength ⁇ T 50 at which the external transmittance including the reflection loss is 50% is in the range of 600 nm to 650 nm, so that P 2 O 5 and Li 2 are used.
- the total content of O and CuO (P 2 O 5 + Li 2 O + CuO) is preferably 84.0% or more, 85.0% or more, 86.0 in the oxide-based glass composition (molar-based). % Or more, 87.0% or more, 88.0% or more, 89.0% or more, and 90.0% or more are more preferable.
- P 2 O 5, Li 2 O and Cu O are used.
- the total content (P 2 O 5 + Li 2 O + CuO) is preferably 80.0% or more, 81.0% or more, 82.0% or more, 83 in the oxide-based glass composition (molar standard). 9.0% or more, 84.0% or more, 85.0% or more, 86.0% or more, 87.0% or more, 88.0% or more, 89.0% or more, 90.0% or more are preferable in this order. ..
- P 2 O 5 , Li 2 O and Cu O are used.
- the total content (P 2 O 5 + Li 2 O + CuO) is preferably 75.0% or more, 76.0% or more, 77.0% or more, 78 in the oxide-based glass composition (molar standard).
- the total content (P 2 O 5 + Li 2 O + CuO) is preferably 80.0% or more, 81.0% or more, 82.0% or more in the oxide-based glass composition (molar standard). 83.0% or more, 84.0% or more, 85.0% or more, 86.0% or more, 87.0% or more, 88.0% or more, 89.0% or more, 90.0% or more in that order preferable.
- the total of P 2 O 5 , Li 2 O and Cu O is preferably 81.0% or more, 82.0% or more, 83.0% or more, 84. It is more preferably 0% or more, 85.0% or more, 86.0% or more, 87.0% or more, 88.0% or more, 89.0% or more, and 90.0% or more in this order.
- Examples of the glass corresponding to the above embodiment include the glasses of Examples 1 to 60 described later.
- the total content of MgO, CaO, SrO, BaO and ZnO (MgO + CaO + SrO + BaO + ZnO) with respect to the total content of Li 2 O, Na 2 O and K 2 O (Li 2 O + Na 2 O + K 2 O).
- the external transmission rate including reflection loss is 50% as the transmission rate characteristic in terms of thickness 0.11 mm.
- the total content of P 2 O 5 , Li 2 O and Cu O is an oxide-based glass composition (molar-based). ), It is preferably 65.0% or more, and more preferably 66.0% or more, 67.0% or more, 68.0% or more, 69.0% or more, and 70.0% or more.
- a transmittance characteristic in terms of thickness 0.21 mm in order for the wavelength ⁇ T 50 at which the external transmittance including the reflection loss is 50% to be in the range of 600 nm to 650 nm, P 2 O 5.
- the total content of Li 2 O and Cu O is preferably 60.0% or more, preferably 61.0% or more in the oxide-based glass composition (molar standard). , 62.0% or more, 63.0% or more, 64.0% or more, and 65.0% or more are more preferable.
- a transmittance characteristic in terms of thickness of 0.25 mm in order for the wavelength ⁇ T 50 at which the external transmittance including the reflection loss is 50% to be in the range of 600 nm to 650 nm, P 2 O 5.
- the total content of Li 2 O and Cu O is preferably 55.0% or more, preferably 56.0% or more in the oxide-based glass composition (molar standard). , 57.0% or more, 58.0% or more, 59.0% or more, and 60.0% or more are more preferable.
- the thickness of the glass which is the wavelength lambda T 50 external transmittance is 50% including reflection loss at higher wavelength 550nm becomes 645nm is 0.25mm or less
- P 2 The total content of O 5 , Li 2 O and Cu O is preferably 60.0% or more, preferably 61.0%, in the oxide-based glass composition (molar-based).
- 62.0% or more, 63.0% or more, 64.0% or more, and 65.0% or more are more preferable in this order.
- P 2 O 5 , Li 2 O and CuO total content is preferably 61.0% or more, preferably 62.0% or more in the oxide-based glass composition (molar-based). , 63.0% or more, 64.0% or more, 65.0% or more, and 66.0% or more are more preferable.
- Examples of the glass corresponding to the other form described above include Examples 61 to 66 described later.
- the group of major cations described above for glasses 3 and 4 includes B and Si ions.
- the group of major cations described above for glasses 1, 2, 5 and 6 does not contain B ions and Si ions that easily increase the dissolution temperature.
- the glasses 1 to 6 are one of B ions and Si ions that tend to shift the half value to the short wavelength side from the viewpoint of enhancing the near-infrared cut ability of the glass and improving the transmittance in the visible region. It can be a glass containing both, and in another form, it can be a glass containing neither B ions nor Si ions.
- the total content of B 2 O 3 and SiO 2 (B 2 O 3 + SiO 2 ) from the viewpoint of improving the transmittance in the visible region in the oxide-based glass composition (molar standard). Is 3.0% or less, preferably 2.5% or less, and more preferably 2.0% or less, 1.5% or less, 1.0% or less, and 0.5% or less.
- the total content of B 2 O 3 and SiO 2 (B 2 O 3 + SiO 2) from the viewpoint of further improving the transmittance in the visible region in the oxide-based glass composition (molar standard).
- the total content of B 2 O 3 and SiO 2 can be 0%, 0% or more or more than 0%.
- the content with B 2 O 3 is preferably 3.0% or less, and 2.5% or less and 2.0% or less. , 1.5% or less, 1.0% or less, 0.5% or less, in that order.
- the B 2 O 3 content can also be 0%.
- the SiO 2 content is preferably more than 0%, preferably 0.01% or more. It is more preferable in the order of 0.02% or more, 0.03% or more, 0.04% or more, 0.05% or more, 0.1% or more, 0.2% or more, and 0.3% or more.
- the SiO 2 content in the glasses 1 to 6 is preferably 2.0% or less, preferably 1.4% or less, 0.9% or less, 0.8% or less, 0.6% or less. , 0.4% or less, more preferable.
- Li 2 O content is preferably 0.1% or more, 0.5% or more, 1.0% or more, 1.5% or more, 2.0% or more, 2.5% 3.0% or more, 3.5% or more, 4.0% or more, 4.5% or more, 5.0% or more, 5.5% or more, 6.0% or more, 6.5% or more, It is more preferable in the order of 7.0% or more, 7.5% or more, and 8.0% or more.
- Li 2 O content is preferably at most 35.0%, 34. 0% or less, 33.0% or less, 32.0% or less, 31.0% or less, 30.0% or less, 29.5% or less, 29.0% or less, 28.5% or less, 28.0% Below, 27.5% or less, 27.0% or less, 26.5% or less, 26.0% or less, 25.5% or less, 25.0% or less, 24.5% or less, 24.0% or less, 23.5% or less, 23.0% or less, 22.5% or less, 22.0% or less, 21.5% or less, 21.0% or less, 20.5% or less, 20.0% or less, in that order. preferable.
- the total content of MgO and Al 2 O 3 (MgO + Al 2 O 3) , from the viewpoint of increasing the transmittance in the melting properties improved and the visible region is not more than 8.0%, 7.5 % Or less, preferably 7.0% or less, 6.5% or less, 6.0% or less, 5.5% or less, 5.0% or less, 4.5% or less, 4.0% or less, 3.5% or less, 3.0% or less, 2.5% or less, 2.0% or less, 1.8% or less, 1.6% or less, 1.5% or less, 1.4% or less in that order
- it can be 0%.
- the total content of MgO and Al 2 O 3 increases the weather resistance of the glass, from the viewpoint of improving the mechanical strength of the glass may be 0 percent, It is preferably 0.1% or more, 0.2% or more, 0.3% or more, 0.4% or more, 0.5% or more, 0.6% or more, 0.7% or more, 0.8. % Or more, 0.9% or more, 1.0% or more, 1.1% or more, and 1.3% or more are more preferable.
- Al 2 O 3 is a component that can contribute to particularly enhancing weather resistance.
- the Al 2 O 3 content can be 0%, 0% or more, or more than 0%, preferably 0.1% or more, and 0.2% or more, 0 from the viewpoint of improving weather resistance. .3% or more, 0.4% or more, 0.5% or more, 0.6% or more, 0.7% or more, 0.9% or more, 1.1% or more, 1.3% or more, 1.5 More preferred in order of% or more.
- the Al 2 O 3 content is preferably 8.0% or less, 7.5% or less, 7.0% or less, and 6.
- the improvement of near-infrared absorption characteristics is prioritized over the maintenance of weather resistance of glass, and by suppressing the shift of CuO absorption to the short wavelength side, the transmittance in the visible region is further enhanced and the near-infrared absorption characteristics are improved.
- the Al 2 O 3 content is preferably less than 2.0%, 1.9% or less, 1.8% or less, 1.7% or less, 1.6% or less, 1.
- the MgO is a component that can be appropriately added for the reason of adjusting the thermal stability of the glass, but since the absorption of CuO is shifted to the short wavelength side, it tends to be difficult to increase the CuO content. Further, as the MgO content increases, the meltability of the glass tends to decrease. From these viewpoints, the MgO content is preferably 9.0% or less, 8.0% or less, 7.0% or less, 6.0% or less, 5.0% or less, 4.0% or less. , 3.0% or less, and more preferably 2.0% or less. The MgO content can also be 0%. In one embodiment, from the viewpoint of improving the mechanical strength of the glass, the MgO content can be more than 0%, preferably 0.5% or more, and more preferably 1.0% or more. ..
- La 2 O 3 is a component that can contribute to enhancing weather resistance without impairing the near-infrared absorption characteristics of glass.
- the La 2 O 3 content is preferably 0.10% or more, more preferably 0.15% or more, 0.18% or more, and 0.21% or more in that order.
- the La 2 O 3 content is preferably 8.0% or less, 7.0% or less, 6.5% or less, and 6. 0% or less, 5.5% or less, 5.0% or less, 4.5% or less, 4.0% or less, 3.5% or less, 3.0% or less, 2.5% or less, 2.0%
- Y 2 O 3 is also a component that can contribute to enhancing the weather resistance without impairing the near-infrared absorption characteristics of the glass.
- the Y 2 O 3 content is preferably 0.10% or more, 0.15% or more, 0.20% or more, 0.25% or more, 0.30% or more, 0.35% or more, 0. It is more preferable in the order of .40% or more, 0.45% or more, and 0.50% or more.
- Y 2 O 3 content is preferably at most 8.0%, 7.0% or less, 6.5% or less, 6.
- the Gd 2 O 3 is also a component that can contribute to enhancing weather resistance.
- the Gd 2 O 3 content is preferably 0.10% or more, more preferably 0.15% or more, 0.18% or more, and 0.21% or more in that order.
- the Gd 2 O 3 content is preferably 8.0% or less, 7.0% or less, 6.5% or less, and 6. 0% or less, 5.5% or less, 5.0% or less, 4.5% or less, 4.0% or less, 3.5% or less, 3.0% or less, 2.5% or less, 2.0%
- the oxide-based glass composition may or may not contain one or more rare earth oxides other than the above, such as Lu 2 O 3 and Sc 2 O 3. Since these components are generally expensive, the content of rare earth oxides other than La 2 O 3 , Y 2 O 3 and Gd 2 O 3 (the total content of two or more of them) is 2.5. % Or less, preferably 1.5% or less, 1.0%, 0.5% or less, and may be 0%.
- the total content of Al 2 O 3 , La 2 O 3 , Y 2 O 3 and Gd 2 O 3 is weather resistant. From the viewpoint of improving the sex, it is preferably 0.1% or more, 0.15% or more, 0.20% or more, 0.25% or more, 0.30% or more, 0.35% or more, 0. It is more preferable in the order of 40% or more, 0.45% or more, and 0.50% or more.
- the total content (Al 2 O 3 + La 2 O 3 + Y 2 O 3 + Gd 2 O 3 ) is 8.0% or less from the viewpoint of ensuring the thermal stability of the glass and / or lowering the melting temperature. It is preferably 7.0% or less, 6.5% or less, 6.0% or less, 5.5% or less, 5.0% or less, 4.5% or less, 4.0% or less, 3. It is more preferably 5% or less, 3.0% or less, 2.5% or less, 2.0% or less, 1.5% or less, and 1.0% or less in this order.
- MgO format valence is an oxide of the cation in the +2, CaO, for the total content of SrO and BaO, the molar ratio with respect to the content of the oxide Li 2 O of Li ions is essential cations ((MgO + CaO + SrO + BaO) / is preferably Li 2 O) is 2.0 or less, 1.5 or less, 1.3 or less, 1.2 or less, 1.1 or less, 1.0 or less, 0.9 or less, 0.8 or less , 0.7 or less, 0.6 or less, 0.5 or less, 0.4 or less, 0.3 or less, 0.2 or less is more preferable.
- the above component is an optional component that can be used when adjusting the half price together with some alkaline components.
- the molar ratio ((MgO + CaO + SrO + BaO + ZnO) / Li 2 O) to the content of the substance Li 2 O is preferably 2.0 or less, and 1.5 or less, 1.3 or less, 1.2 or less, 1.1 or less, More preferably, it is 1.0 or less, 0.9 or less, 0.8 or less, 0.7 or less, 0.6 or less, 0.5 or less, 0.4 or less, 0.3 or less, and 0.2 or less.
- (MgO + CaO + SrO + BaO + ZnO) / Li 2 O) is 2.0 or more, 2.5 or more, 3.0 or more, 3.5 or more, 4.0 or more More preferred in order.
- the above component is an optional component that can be used when adjusting the half price together with some alkaline components.
- BaO content is 0%. It can be 0% or more or more than 0%. BaO is a component whose weather resistance can be enhanced by introducing a certain amount, and the change in T600 due to introduction is small. The T600 will be described later. BaO can be added for the purpose of increasing the thermal stability of the glass and adjusting the meltability. BaO can also be used to adjust the concentration of CuO.
- the BaO content is preferably 0.5% or more, 1.0% or more, 1.5% or more, 2.0% or more, 2.5% or more, 3.0% or more, 3.5%. More preferably, the order is 4.0% or more, 4.5% or more, 5.0% or more, 5.5% or more, 6.0% or more, 6.5% or more, and 7.0% or more.
- the BaO content is preferably 36.0% or less, 35.0% or less, 34.0% or less, 33.0% or less, 32.0% or less, 31.0% or less.
- SrO content is 0%. It can be 0% or more or more than 0%. Like BaO, SrO is a component whose weather resistance is relatively difficult to decrease, and is a component that can be appropriately added for reasons such as adjusting the thermal stability of glass. SrO can also be used to adjust the concentration of CuO.
- the SrO content is preferably 0.5% or more, 1.0% or more, 1.5% or more, 2.0% or more, 2.5% or more, 3.0% or more, 3.5%. More preferably, the order is 4.0% or more, 4.5% or more, 5.0% or more, 5.5% or more, 6.0% or more, 6.5% or more, and 7.0% or more.
- the SrO content is preferably 30.0% or less, 29.0% or less, 28.0% or less, 27.0% or less, 26. 0.0% or less, 26.0% or less, 25.0% or less, 24.0% or less, 23.0% or less, 22.0% or less, 21.0% or less, 20.0% or less, 19.0 % Or less, 18.0% or less, 17.0% or less, 16.0% or less, 15.0% or less, 14.0% or less, 13.0% or less, 12.0% or less, 11.0% or less It is more preferable in the order of 10.0% or less and 9.0% or less.
- CaO content is 0%. It can be 0% or more or more than 0%. CaO is a component that does not easily lower the weather resistance, and is a component that can be appropriately added for reasons such as adjusting the thermal stability of glass. CaO can also be used to adjust the concentration of CuO.
- the CaO content is preferably 0.5% or more, 1.0% or more, 1.5% or more, 2.0% or more, 2.5% or more, 3.0% or more, 3.5%. It is preferable that it is 4.0% or more, 4.5% or more, 5.0% or more, 5.5% or more, 6.0% or more, 6.5% or more, and 7.0% or more.
- the CaO content is preferably 30.0% or less, 29.0% or less, 28.0% or less, 27.0% or less, 26. 0.0% or less, 26.0% or less, 25.0% or less, 24.0% or less, 23.0% or less, 22.0% or less, 21.0% or less, 20.0% or less, 19.0 % Or less, 18.0% or less, 17.0% or less, 16.0% or less, 15.0% or less, 14.0% or less, 13.0% or less, 12.0% or less, 11.0% or less It is more preferable in the order of 10.0% or less and 9.0% or less.
- Na ion, K ion and Zn ion tend to deteriorate the weather resistance of glass, so they can be freely used in place of Li ion, which is an essential cation. It's difficult to do.
- the sum of the Na 2 O content, the K 2 O content and the Zn O content with respect to the Li 2 O content in the glasses 1 to 6. is preferably 2.4 or less, more preferably 2.3 or less, 2.2 or less, 2.1 or less, 2.0 or less.
- the molar ratio ((Na 2 O + K 2 O + ZnO) / Li 2 O) can be 0, 0 or more or more than 0, and a plurality of components are mixed.
- the content is preferably 0.05 or more, and may be 0.1 or more, 0.2 or more, or 0.3 or more.
- the total content of Na 2 O, K 2 O and Zn O is preferably 30.0% or less, 25 0.0% or less, 20.0% or less, 15.0% or less, 12.0% or less, 10.0% or less, 9.0% or less, 8.0% or less, 7.0% or less, 6.0% or less % Or less, 5.0% or less, 4.0% or less, 3.0% or less, 2.0% or less, and 1.0% or less are more preferable.
- the total content may be 0%.
- the total content (Na 2 O + K 2 O + ZnO) is 1.0% or more, 2.0% or more, 3.0% or more, 5.0% or more. You can also do it.
- the Na 2 O content can be 0%, 0% or more or more than 0%. Na 2 O tends to have reduced weather resistance due to over-introduction. Therefore, the Na 2 O content is preferably 20.0% or less, 19.0% or less, 18.0% or less, 17.0% or less, 16.0% or less, 15.0% or less, It is more preferable in the order of 14.0% or less, 13.0% or less, 12.0% or less, 11.0% or less, 10.0% or less, 9.0% or less, and 8.0% or less.
- Na 2 O is an easily available and inexpensive raw material, and can be appropriately added to improve the meltability. Therefore, the Na 2 O content can be, for example, 0.5% or more, and further. Is 1.0% or more, 1.5% or more, 2.0% or more, 2.5% or more, 3.0% or more, 3.5% or more, 4.0% or more, 5.0% or more. You can also do it.
- K 2 O may be 0%, and 0% or more, or 0 percent. K 2 O also tend to weather resistance is lowered due to excessive introduction. Further, there is a tendency to shorten the wavelength of absorption of CuO, and it is desirable not to actively introduce it. From these viewpoints, K 2 O content is preferably at most 20.0%, 19.0% or less 18.0% or less, 17.0 percent or less, 16.0% less, 15.0 % Or less, 14.0% or less, 13.0% or less, 12.0% or less, 11.0% or less, 10.0% or less, 9.0% or less, 8.0% or less, in that order. On the other hand, K 2 O can be appropriately added to improve the meltability of the glass.
- K 2 O content is preferably 0.2% or more, 0.5% or more, 1.0% or more, 1.5% or more, 2.0% or more, 2.5% Above, 3.0% or more, 3.5% or more, 4.0% or more, 5.0% or more are more preferable.
- Cs 2 O content can be 0%, and 0% or more, or 0 percent. Since Cs 2 O also tends to reduce the weather resistance, it is desirable not to actively introduce it.
- Cs 2 O content is 15.0% or less, 14.0% or less, 13.0% or less, 12.0% or less, 11.0% or less, 10.0% or less, 9.0% or less, 8 It is more preferable in the order of 0.0% or less, 7.0% or less, and 6.0% or less.
- Cs 2 O content may be 0.5% or more, 1.0% or more, 1.5% or more, 2.0% or more , 2.5% or more, 3.0% or more, 3.5% or more, 4.0% or more.
- the total content of Li 2 O, Na 2 O and K 2 O is preferably 1.8% or more, preferably 2.1. % Or more, 2.3% or more, 2.5% or more, 3.5% or more, 4.5% or more, 5.5% or more, 6.5% or more, 7.5% or more, 8.5% or more , 9.5% or more, 10.0% or more, 10.5% or more, more preferable.
- the total content (Li 2 O + Na 2 O + K 2 O) is preferably 35.0% or less, preferably 33.5% or less, 32.5.
- % Or less 31.5% or less, 30.5% or less, 29.5% or less, 28.5% or less, 27.5% or less, 26.5% or less, 25.5% or less, 24.5% or less , 23.5% or less, 21.5% or less, 20.5% or less, 19.5% or less, 18.5% or less, 17.5% or less, 16.6% or less, 15.5% or less, 14 It is more preferable in the order of 5.5% or less and 13.5% or less.
- the total content Li 2 O + Na 2 O + K 2 O
- the amount of expansion and contraction of the glass increases due to the increase in the coefficient of thermal expansion, and the volume change of the glass is regulated by other members. It is also preferable from the viewpoint of preventing the glass from being chipped or cracked due to stress applied to the glass.
- the total content of Na 2 O and K 2 O is preferably 30.0% or less, preferably 29.0% or less, 28. 0% or less, 27.0% or less, 26.0% or less, 25.0% or less, 24.0% or less, 23.0% or less, 22.0% or less, 21.0% or less, 20.0% 19.0% or less, 18.0% or less, 17.0% or less, 16.0% or less, 15.0% or less, 14.0% or less, 13.0% or less, 12.0% or less, 11.0% or less, 10.0% or less, 9.0% or less, 8.0% or less, 7.0% or less, 6.0% or less, 5.0% or less, 4.0% or less, 3.
- the total content (Na 2 O + K 2 O) can be 1.0% or more from the viewpoint of suppressing the melting property of the glass and suppressing the decrease of T600 while suppressing the raw material cost of the glass.
- CuO can be replaced with another component, but in that case, the total content of Na 2 O, K 2 O, CaO, SrO and BaO (Na 2 O + K 2 O + CaO + SrO + BaO) ) Is set to 0% or more of glass, so that the CuO concentration can be adjusted without significantly changing the position of near-infrared absorption.
- the total content (Na 2 O + K 2 O + CaO + SrO + BaO) is preferably 0.5% or more, 1.0% or more, 1.5% or more, 2.0% or more, 2.5% or more, 3.0.
- the total content (Na 2 O + K 2 O + CaO + SrO + BaO) is preferably 36.0% or less, 35.0% or less, 34.0% or less, 33.0% or less, 32.0% or less, 31.0% or less, 30.0% or less, 29.0% or less, 28.0% or less, 27.0% or less, 26.0% or less, 26.
- the total content (Na 2 O + K 2 O + CaO + SrO + BaO) is 8.0% or less, 7.0% or less, 6.0% or less, 5.0% or less or It can be 4.0% or less.
- the suppression of the deliquescent of the glass and the suppression of the generation of precipitates on the glass surface under high temperature and high humidity can be used as an index of the weather resistance. This point will be further described later.
- the introduction of Al 2 O 3 is more preferable, and then the introduction of one or more of Y 2 O 3 , La 2 O 3 and Gd 2 O 3 is preferable.
- BaO can improve the above-mentioned weather resistance by introducing a relatively large amount, and SrO and CaO require more introduction from the viewpoint of improving the weather resistance, "(3 x Al 2 O 3 + Y 2)".
- the value (unit: mol%) calculated as "O 3 + La 2 O 3 + Gd 2 O 3 + BaO / 3 + (CaO + SrO) / 6)" is preferably 0% or more, and more preferably more than 0%. Preferably, 0.5% or more, 1.0% or more, 2.0% or more, 3.0% or more, 4.0% or more, 5.0% or more, 6.0% or more, 7.0% or more, It is preferably 8.0% or more. When the weather resistance and mechanical strength of glass are more important, 9.0% or more, 10.0% or more, 11.0% or more, 12.0% or more, 13.0% or more, 14.0% or more.
- the components selected from the group consisting of Al 2 O 3 , Y 2 O 3 , La 2 O 3 , Gd 2 O 3 , BaO, CaO and SrO are relative to the essential components P 2 O 5 , Li 2 O and Cu O. It is desirable to introduce a certain amount or more. Therefore, the above ratio is preferably 0.01 or more, 0.02 or more, 0.03 or more, 0.04 or more, 0.05 or more, 0.06 or more, 0.07 or more, 0.08 or more. , 0.09 or more is more preferable.
- the above ratio is more preferably 0.10 or more, 0.11 or more, 0.12 or more, 0.13 or more, 0.14 or more, 0.15 or more, 0.16 or more, 0.17 or more, 0.18 or more, 0.19 or more, 0.20 or more, 0.21 or more, 0.22 or more, 0.23 or more, 0.24 or more or 0.25 or more More preferred in order.
- the ratio is preferably 0.36 or less, preferably 0.35.
- it is more preferable in the order of 0.34 or less, 0.33 or less, 0.32 or less, 0.31 or less, 0.30 or less, 0.29 or less, and 0.28 or less.
- the ZnO content can be 0%, 0% or more or more than 0%.
- ZnO is a component that can be appropriately added for reasons such as adjusting the thermal stability of the glass, but it tends to reduce the weather resistance of the glass and secures a sufficient amount of P2O5, which is an essential component.
- the upper limit of the content is preferably 20.0% or less, 19.0% or less, 18.0% or less, 17.0% or less, 16.0% or less, 15.0% or less, 14.0% or less, 13.0% or less, 12.0% or less, 11.0% or less, 10.0% or less, 9.0% or less, 8.0% or less, 7.0% or less, 6. It is more preferable in the order of 0% or less and 5.0% or less.
- the ZnO content may be 4.0% or less, 3.0% or less, 2.0% or less, 1.0% or less.
- ZnO is introduced to adjust the thermal stability of the glass and reduce Tg and / or Tm, 0.4% or more, 0.6% or more, 0.8% or more, 1.0% or more. , 1.2% or more, 1.4% or more, 1.6% or more, 1.8% or more, and 2.0% or more are more preferable.
- the glass is basically composed of the above components, but it is also possible to contain other components within a range that does not interfere with the action and effect of the above components. Further, the above glass does not exclude the inclusion of unavoidable impurities.
- Nb 2 O 5 and ZrO 2 are components other than the above components, which are more than 0% and 0.1%, respectively, for adjusting the weather resistance and mechanical strength of glass or improving thermal stability, respectively.
- the above or 0.2% or more can be appropriately introduced, but the respective contents are preferably 5.0% or less, 4.0% or less, 3.0% or less, 2.0% or less, 1. It is more desirable in the order of 0% or less, 0.5% or less, and 0.3% or less.
- the content of each of these components can also be 0%.
- TiO 2 , WO 3 , and Bi 2 O 3 are also components other than the above components for adjusting the weather resistance and mechanical strength of glass or improving thermal stability to the extent that they do not affect the permeability of glass.
- 0% or more, 0.1% or more, or 0.2% or more can be appropriately introduced, respectively, but the respective contents are preferably 4.0% or less, and 3.0% or less and 2.0, respectively.
- % Or less, 1.0% or less, 0.5% or less, and 0.3% or less are more desirable.
- the content of each of these components can also be 0%.
- the glass does not contain these as a glass component.
- the glass does not contain these as a glass component.
- the content of these elements based on the oxide glass standard is preferably 10 mass ppm or less in total, and it is more preferable that these elements are not contained as a glass component.
- the glasses 1 to 6 are preferably glasses containing no V ion, and the V 2 O 5 content is 1.0% or less in the oxide-based glass composition (molar-based). It is preferably 0.3% or less, 0.1% or less, 0.01% or less, and more preferably V 2 O 5 is not contained.
- the ratio of V 2 O 5 to Li 2 O which is an essential component is 0.0080. It is preferably 0.0048 or less, 0.0028 or less, 0.0018 or less, and 0.0014 or less in that order.
- the glasses 1 to 6 are preferably glasses that do not contain Co ions, and preferably do not contain CoO in the oxide-based glass composition.
- Raw materials for introducing Ge and Ta into glass are expensive. Therefore, it is preferable that the glass does not contain these as a glass component.
- Sb (Sb 2 O 3 ), Sn (SnO 2 ), Ce (CeO 2 ), and SO 3 are optional addable elements that act as clarifying agents.
- Sb (Sb 2 O 3 ) is a clarifying agent having a large clarifying effect.
- Sn (SnO 2 ) and Ce (CeO 2 ) have a smaller clarification effect than Sb (Sb 2 O 3).
- Sb (Sb 2 O 3) it is preferable to add Sb (Sb 2 O 3) while considering the influence of coloring due to the addition.
- the Sb 2 O 3 content shall be indicated by external division. That is, the Sb 2 O 3 content is 2.0 mass when the total content as an oxide of all the glass components other than Sb 2 O 3 , SnO 2 , CeO 2 and SO 3 is 100.0% by mass. It is preferably less than%, 1.5% by mass or less, 1.2% by mass or less, 1.0% by mass or less, 0.9% by mass or less, 0.8% by mass or less, 0.7% by mass or less, It is more preferable in the order of 0.6% by mass or less, 0.5% by mass or less, 0.4% by mass or less, 0.3% by mass or less, 0.2% by mass or less, and less than 0.1% by mass.
- the content of Sb 2 O 3 may be 0% by mass.
- the Sb 2 O 3 content can be 0.01% by mass or more, 0.02% by mass or more, and 0.03% by mass or more. , 0.04% by mass or more, 0.05% by mass or more, 0.06% by mass or more, or 0.08% by mass or more.
- the SnO 2 content is also indicated by external division. That is, when the total content of all glass components other than SnO 2 , Sb 2 O 3 , CeO 2 and SO 3 as an oxide is 100.0% by mass, the content of SnO 2 is 2.0% by mass. It is preferably less than 1.0% by mass, more preferably 0.9% by mass or less, 0.8% by mass or less, 0.7% by mass or less, 0.6% by mass or less, 0.5% by mass. Hereinafter, it is more preferable in the order of 0.4% by mass or less, 0.3% by mass or less, 0.2% by mass or less, and 0.1% by mass.
- the content of SnO 2 may be 0% by mass. By setting the SnO 2 content in the above range, the clarity of the glass can be improved.
- the CeO 2 content is also indicated by external division. That is, the CeO 2 content is less than 2.0% by mass when the total content as an oxide of all the glass components other than CeO 2 , Sb 2 O 3 , SnO 2 and SO 3 is 100.0% by mass. It is preferably less than 1.0% by mass, more preferably 0.9% by mass or less, 0.8% by mass or less, 0.7% by mass or less, 0.6% by mass or less, 0.5% by mass or less. , 0.4% by mass or less, 0.3% by mass or less, 0.2% by mass or less, and less than 0.1% by mass, in that order.
- the CeO 2 content may be 0% by mass. By setting the CeO 2 content in the above range, the clarity of the glass can be improved.
- the SO 3 content is also indicated by external division. That is, the SO 3 content is preferably 2.0 mass when the total content as an oxide of all the glass components other than SO 3, Sb 2 O 3 , SnO 2 , and CeO 2 is 100.0% by mass. %, More preferably less than 1.0% by mass, still more preferably less than 0.5% by mass, still more preferably less than 0.1% by mass.
- the SO 3 content may be 0% by weight.
- Transmittance characteristics The above glass is suitable as a glass for a near-infrared cut filter. Unless otherwise specified, in the present invention and the present specification, "transmittance" means external transmittance including reflection loss.
- the half value ⁇ T 50 which is a wavelength at which the transmittance becomes 50% at a wavelength of 550 nm or more, can be used as an index, and the transmittance T1200 at a wavelength of 1200 nm can be used as an index, from a wavelength of 1100 nm.
- the average value of the transmittance in the range of 800 nm (described as “Ave.
- the transmittance T1100-800 can be used as an index, or the transmittance T750 in the wavelength range of 750 nm can be used as an index.
- the glass can also exhibit high transmittance in the visible region.
- the transmittance T400 at a wavelength of 400 nm can be used as an index
- the transmittance T600 at a wavelength of 600 nm can also be used as an index.
- the transmittance characteristic of glass is a value obtained by the following method. Glass samples are processed to have planes parallel to each other and optically polished, and the external transmittance at a wavelength of 200 to 1200 nm is measured. The external transmittance also includes the reflection loss of light rays on the sample surface. The spectral transmittance B / A including the reflection loss is calculated, where the intensity of the light beam perpendicularly incident on one of the optically polished planes is the intensity A and the intensity of the light rays emitted from the other plane is the intensity B.
- the wavelength at which the spectral transmittance becomes 50% at a wavelength of 550 nm or more is defined as a half value ⁇ T 50.
- the spectral transmittance at a wavelength of 400 nm is T400
- the spectral transmittance at a wavelength of 600 nm is T600
- the spectral transmittance at a wavelength of 1200 nm is T1200.
- the average value of the spectral transmittance in the wavelength range of 1100 nm to 800 nm is defined as Ave.
- the spectral transmittance at T1100-800 and a wavelength of 750 nm is T750. If the glass to be measured is not a glass of a conversion thickness, the transmittance at each wavelength ⁇ is converted by the following formula A, where d is the thickness of the glass, and the transmittance obtained by the conversion is calculated. Various conversion values can be obtained from the rate characteristics.
- T ( ⁇ ) (1-R ( ⁇ )) 2 ⁇ exp (log e ((T 0 ( ⁇ ) / 100) / (1-R ( ⁇ )) 2 ) ⁇ d / d 0 ) ⁇ 100
- T ( ⁇ ) converted transmittance (%) at wavelength ⁇
- T 0 ( ⁇ ) measured transmittance (%) at wavelength ⁇
- d converted thickness (mm)
- d 0 of glass.
- n ( ⁇ ) the refractive index at a wavelength lambda Is.
- the high value of T600 which is the transmittance in the red region
- the low value of T1200 which is the transmittance in the near-infrared region
- T600 which is the transmittance in the red region
- T1200 which is the transmittance in the near-infrared region
- T400 which is the transmittance in the purple region
- the preferable ranges for T400, T600 and T1200 are as follows.
- T400 it is preferably 70% or more, and further, 71% or more, 72% or more, 73% or more, 74% or more, 75% or more, 76% or more, 77% or more, 78% or more, 79%. As mentioned above, it is more preferable in the order of 80% or more.
- the T400 can be, for example, 98% or less, 97% or less, or 96% or less, but a higher T400 can be said to mean better in visible light transmission, and thus exceeds the above exemplified values. It is also preferable.
- T600 it is preferably 50% or more, and further, 55% or more, 56%, 57% or more, 58% or more, 59% or more, 60% or more, 61% or more, 62% or more, 63% or more. , 64% or more, 65% or more, 66% or more, 67% or more, 68% or more, 69% or more, 70% or more, 71% or more, 72% or more, 73% or more, 74% or more, 75% or more in that order. More preferred.
- the T600 can be, for example, 90% or less, 85% or less, or 80% or less, but a higher T600 can be said to mean better in visible light transmission, and thus exceeds the above exemplified values. It is also preferable.
- T1200 it is preferably 30% or less, 29% or less, 28% or less, 27% or less, 26% or less, 25% or less, 24% or less, 23% or less, 22% or less, 21% or less, 20. % Or less, 19% or less, 18% or less, 17% or less, 16% or less, 15% or less, 14% or less, 13% or less, 12% or less, 11% or less, 10% or less, 9% or less, 8% or less , 7% or less, 6% or less, 5% or less, 4% or less, 3% or less, 2% or less, 1% or less, in that order.
- the T1200 can be, for example, 1% or more, 3% or more, 5% or more or 7% or more for the purpose of achieving compatibility with visible light transmittance, but the lower T1200 is superior to the near-infrared ray cutting ability. Therefore, it is also preferable that the value is lower than the above-exemplified value.
- T1200 can be ⁇ 1% or less.
- Equation B1 64 ⁇ R-170
- T1200 may be equal to or less than the numerical values shown in ⁇ 2, ⁇ 3, ⁇ 4, ⁇ 5, and ⁇ 6 represented by the following formulas B2 to B6 (unit:%).
- the half value ⁇ T 50 which is a wavelength at which the spectral transmittance becomes 50% at a wavelength of 550 nm or more, is preferably 600 nm or more, preferably 610 nm or more, 613 nm or more, 615 nm or more, 617 nm or more, 620 nm or more, 623 nm or more, 625 nm or more, and 628 nm or more. More preferred in order.
- the half value ⁇ T 50 is preferably 650 nm or less, and more preferably 647 nm or less, 645 nm or less, 643 nm or less, 641 nm or less, 640 nm or less, 639 nm or less, and 638 nm or less. It is preferable that the half value ⁇ T 50, which is a wavelength at which the spectral transmittance becomes 50% at a wavelength of 550 nm or more, can be achieved with a glass thickness of a predetermined value or less from the viewpoint of achieving both thinning of the glass and improvement of the near-infrared ray cutting ability.
- the glass thickness of a predetermined value or less is preferably 0.25 mm or less.
- “Ave. T1100-800” can be suppressed to 15% or less.
- “Ave.T1100-800” is preferably 14% or less, 13% or less, 12% or less, 11% or less, 10% or less, 9% or less, 8% or less, 7% or less, 6% or less, 5% or less, 4% or less, 3% or less, 2% or less, 1.3% or less, 1.0% or less, 0.3% or less, 0.1% or less, 0.03% or less, 0.01% The following order is more preferable.
- T750 can be suppressed to 25% or less.
- the T750 is preferably 24% or less, preferably 23% or less, 22% or less, 21% or less, 20% or less, 19% or less, 18% or less, 17% or less, 16% or less, 15% or less, 14%.
- the glass can be used as a near-infrared cut filter glass having a thickness of 0.25 mm or less in one form.
- the following (a) to (h) can be mentioned as preferable transmittance characteristics as the thinned near-infrared cut filter glass having a thickness of 0.25 mm or less.
- the glass preferably satisfies one or more of the following (a) to (h), and may satisfy two or more. By adjusting the glass composition described above, a glass having preferable transmittance characteristics can be obtained.
- the thickness of the glass having a wavelength ⁇ T 50 of 633 nm and having an external transmittance of 50% including reflection loss at a wavelength of 550 nm or more is 0.25 mm or less.
- the external transmittance T600 including the reflection loss at the wavelength of 600 nm is 50% or more
- the external transmittance T1200 including the reflection loss at the wavelength of 1200 nm is 30% or less.
- the thickness of the glass having a wavelength ⁇ T 50 of 633 nm, which has an external transmittance of 50% including reflection loss at a wavelength of 550 nm or more, is 0.25 mm or less, and the thickness of the near infrared cut filter will be described later. It is more preferable that the thickness is in the range of thickness. This point is the same for the following (b), (e) and (f).
- the thickness of the glass having a wavelength of 550 nm or more and an external transmittance of 50% including reflection loss having a wavelength of 633 nm is 0.25 mm or less.
- the external transmittance T600 including the reflection loss at the wavelength of 600 nm is 50% or more
- the external transmittance T1200 including the reflection loss at the wavelength of 1200 nm is ⁇ 1% or less.
- ⁇ is a value calculated from the following equation B1.
- R is the O / P ratio of the glass.
- T1200 can also be ⁇ 2% or less, ⁇ 3% or less, ⁇ 4% or less, ⁇ 5% or less, or ⁇ 6% or less.
- the wavelength ⁇ T 50 at which the external transmittance including the reflection loss is 50% is in the range of 600 nm to 650 nm, and the external transmittance T1200 including the reflection loss at the wavelength of 1200 nm. Is 30% or less, and the external transmittance T400 including the reflection loss at a wavelength of 400 nm is 70% or more.
- the wavelength ⁇ T 50 at which the external transmittance including reflection loss is 50% is in the range of 600 nm to 650 nm, and the external transmittance T1200 including reflection loss at a wavelength of 1200 nm. Is 25% or less, and the external transmittance T400 including the reflection loss at a wavelength of 400 nm is 70% or more.
- the thickness of the glass having a wavelength of 545 nm or more and having an external transmittance of 50% including reflection loss at a wavelength of 645 nm is 0.25 mm or less.
- the external transmittance T600 including the reflection loss at the wavelength of 600 nm is 50% or more
- the external transmittance T1200 including the reflection loss at the wavelength of 1200 nm is 30% or less.
- the thickness of the glass having a wavelength ⁇ T 50 of 645 nm or less and having an external transmittance of 50% including reflection loss at a wavelength of 550 nm or more is 0.25 mm or less.
- the external transmittance T600 including the reflection loss at the wavelength of 600 nm is 50% or more
- the external transmittance T1200 including the reflection loss at the wavelength of 1200 nm is ⁇ 1% or less. It is a calculated value.
- the wavelength ⁇ T 50 at which the external transmittance including the reflection loss is 50% is in the range of 600 nm to 650 nm, and the external transmittance T1200 including the reflection loss at the wavelength of 1200 nm. Is 18% or less, and the external transmittance T400 including the reflection loss at a wavelength of 400 nm is 70% or more.
- the wavelength ⁇ T 50 at which the external transmittance including the reflection loss is 50% is in the range of 600 nm to 650 nm, and the external transmittance T1200 including the reflection loss at the wavelength of 1200 nm. Is 16% or less, and the external transmittance T400 including the reflection loss at a wavelength of 400 nm is 70% or more.
- the glass can exhibit excellent weather resistance by having the composition described above.
- the evaluation result of the weather resistance visually evaluated by the method described in Examples described later can be used as an index, and the evaluation result is preferably any one of S to D. It is more preferably any one of S to C, further preferably any one of S to B, further preferably S or A, and even more preferably S.
- a haze value measured by a haze meter can be used as an index.
- a glass having further excellent weather resistance a glass having a haze value of 15% or less can be mentioned.
- the above-mentioned visually evaluated evaluation result is S or A (preferably S) and the haze value measured by the haze meter is 15% or less. preferable.
- the glass transition temperature of the glass is not particularly limited, but from the viewpoint of increasing the transmittance in the short wavelength region of the glass by improving the meltability of the glass and reducing the burden on the annealing furnace and the molding apparatus, Tg. Is preferably 450 ° C. or lower, and more preferably 440 ° C. or lower, 430 ° C. or lower, 420 ° C. or lower, 410 ° C. or lower, and 400 ° C. or lower in that order. From the viewpoint of increasing the chemical durability and / or heat resistance of the glass, Tg is preferably 250 ° C. or higher, and further, 260 ° C. or higher, 270 ° C. or higher, 280 ° C. or higher, 290 ° C. or higher, and 300 ° C. or higher in that order. More preferred.
- the Tg value of the glass depends on the content of Li 2 O, Na 2 O, K 2 O and the total content thereof, the ZnO content, the MgO content, the Al 2 O 3 content and the total content thereof. Can be controlled.
- Tm is preferably 890 ° C. or lower, and further, 880 ° C. or lower, 870 ° C. or lower, 860 ° C. or lower, 850 ° C. or lower, 840 ° C. or lower, 830 ° C. or lower, 820 ° C. or lower, 810.
- Tm is not particularly limited, but since the weather resistance of the glass tends to decrease when Tm is too low, Tm is 500 ° C. or higher, 580 ° C. or higher, 600 ° C. or higher, 620 ° C. or higher. It can also be above 640 ° C.
- the Tm value of glass depends on the content of Li 2 O, Na 2 O, K 2 O and their total content, ZnO content, MgO content, Al 2 O 3 content and their total content, etc. Can be controlled.
- the specific gravity of the glass is preferably 3.40 or less, more preferably 3.35 or less, 3.30 or less, 3.25 or less, 3.20 or less, 3.15 or less, 3. 10 or less, 3.05 or less, 3.00 or less, 2.95 or less, 2.90 or less, 2.85 or less, 2.80 or less, 2.75 or less, 2.70 or less, 2.65 or less, 2. It is more preferable in the order of 60 or less.
- the specific gravity can be, for example, 2.0 or more or 2.4 or more, but it is preferable that the specific gravity is low from the above viewpoint, and therefore it is also preferable that the specific gravity is lower than the value exemplified here.
- the molar volume M / D of the glass is not particularly limited, but the molar volume of the glass is preferably smaller from the viewpoint of increasing the near-infrared absorption capacity by increasing the amount of CuO per unit volume.
- the molar volume can be reduced by replacing P 2 O 5 , La 2 O 3 , Y 2 O 3 , Gd 2 O 3 , BaO, K 2 O, etc. with Li 2 O, and Al 2 O 3 or CuO, Substituting Na 2 O with Li 2 O can make it slightly smaller.
- the molar volume of the glass can be adjusted.
- the molar volume is preferably 45 cc / mol or less, 43 cc / mol or less, 42 cc / mol or less, 41 cc / mol or less, 40 cc / mol or less, 39.5 cc / mol or less, 39.0 cc / mol or less, 38.
- the molar volume can be increased, and from this point, the molar volume of the glass can be 34.0 cc / mol or more, and 35.0 cc / mol.
- the glass can be obtained by blending, melting and molding various glass raw materials. The description below can also be referred to for the manufacturing method.
- the near-infrared absorbing glass is suitable as a glass for a near-infrared cut filter. Further, the near-infrared absorbing glass can be applied to optical elements (lenses, etc.) other than the near-infrared cut filter, and can be applied to various glass products and various deformations. It is possible.
- Near infrared cut filter One aspect of the present invention relates to a near-infrared cut filter (hereinafter, also simply referred to as “filter”) made of the near-infrared absorbing glass.
- the glass constituting the above filter is as described above.
- the molten glass is appropriately used with glass raw materials such as phosphates, oxides, carbonates, nitrates, sulfates, and fluorides, and the raw materials are weighed and mixed so as to have a desired composition. Melt in a melting vessel, for example, at 800 ° C to 1100 ° C. At that time, a lid such as platinum can also be used to suppress the volatilization of the volatile component. Further, the melting can be performed in the atmosphere, and in order to suppress the change in the valence of Cu, an oxygen atmosphere can be created or oxygen can be bubbled in the molten glass.
- the molten glass is a homogenized molten glass with reduced bubbles (preferably bubble-free) by stirring and clarification.
- the glass after clarifying the glass at 900 ° C. to 1100 ° C. and then lowering the temperature of the glass to 800 ° C. to 1000 ° C. in order to promote the oxidation of the glass.
- the melting temperature and the clarification temperature be lower than the liquid phase temperature of the glass for a long time.
- the glass After stirring and clarifying the molten glass, the glass is poured out, slowly cooled, and then molded into a desired shape.
- a rate between ⁇ 50 ° C./hr and -1 ° C./hr can be selected, and ⁇ 30 ° C./hr and ⁇ 10 ° C./hr can also be selected.
- a glass forming method known methods such as casting, pipe outflow, roll, and pressing can be used.
- the molded glass is transferred to an annealing furnace heated in advance near the transition point of the glass and slowly cooled to room temperature. In this way, the near-infrared cut filter can be manufactured.
- a mold composed of a flat and horizontal bottom surface, a pair of side walls that oppose each other in parallel across the bottom surface, and a weir plate that closes one opening located between the pair of side walls is prepared.
- a platinum alloy pipe homogenized molten glass is cast into this mold at a constant outflow speed.
- the cast molten glass spreads in the mold and is formed into a glass plate restricted to a certain width by a pair of side walls.
- the molded glass plate is continuously pulled out from the opening of the mold.
- molding conditions such as the shape and dimensions of the mold and the outflow speed of the molten glass, a large-sized and thick glass block can be molded.
- the molded glass molded body is transferred to an annealing furnace heated in advance near the glass transition temperature and slowly cooled to room temperature.
- the glass molded body whose strain has been removed by slow cooling is subjected to machining such as slicing, grinding, and polishing.
- machining such as slicing, grinding, and polishing.
- a near-infrared cut filter having a shape suitable for the application such as a plate shape and a lens shape.
- a method of forming a preform made of the above glass, heating and softening the preform, and press-molding (particularly, a precision press for press-molding the final product without performing machining such as grinding or polishing on the optical functional surface). Molding method) etc. can also be used.
- An optical multilayer film may be formed on the surface of the filter, if necessary.
- the near-infrared cut filter can have both excellent near-infrared cut ability and high transmittance in the visible range. According to such a near-infrared cut filter, the color sensitivity of the semiconductor image sensor can be satisfactorily corrected.
- the near-infrared cut filter can be applied to an image pickup device by combining it with a semiconductor image sensor.
- the semiconductor image sensor has a semiconductor image sensor such as a CCD or CMOS mounted in a package, and the light receiving portion is covered with a translucent member.
- the translucent member can also serve as a near-infrared cut filter, or the translucent member can be separate from the near-infrared cut filter.
- the image pickup device may also be provided with an optical element such as a lens or a prism for forming an image of a subject on a light receiving surface of a semiconductor image sensor.
- an optical element such as a lens or a prism for forming an image of a subject on a light receiving surface of a semiconductor image sensor.
- the near-infrared cut filter it is possible to provide an image pickup device capable of obtaining an image with excellent image quality by improving the color sensitivity correction.
- the near-infrared cut filter can be a near-infrared cut filter having a thickness of 0.25 mm or less.
- the near-infrared cut filter is also suitable as such a near-infrared cut filter.
- the thickness of the near-infrared cut filter is 0.24 mm or less, 0.23 mm or less, 0.22 mm or less, 0.21 mm or less, 0.20 mm or less, 0.19 mm or less, 0.18 mm or less, 0.17 mm or less, 0.
- the thickness of the near-infrared cut filter can be, for example, 0.21 mm or 0.11 mm. Further, the thickness of the near-infrared cut filter can be, for example, 0.50 mm or more, but is not limited thereto.
- the "thickness" means the thickness of the sample in the region where the transmittance is measured, and can be measured by a thickness gauge, a micrometer, or the like. For example, the thickness of the substantially central portion of the position through which the transmitted light passes may be measured, or the thickness of a plurality of points in the spot of the transmitted light may be measured and the average value thereof may be taken.
- the above description regarding glasses 1 to 6 can be referred to. Further, regarding the physical properties of the near-infrared cut filter, the above-mentioned description regarding the glasses 1 to 6 can be referred to.
- Examples 1 to 66, Comparative Examples X, A to D As a glass raw material, phosphate, fluoride, carbonate, nitrate, oxide, etc. are weighed and mixed so that 150 g to 300 g of glass having the composition shown in Table 1 can be obtained, and the mixture is placed in a platinum crucible or a quartz crucible. It was charged, melted at 800 ° C. to 1000 ° C. for 80 to 100 minutes, stirred to defoam and homogenize, and then poured into a preheated mold to form a predetermined shape. The obtained glass molded product was transferred to an annealing furnace heated to near the glass transition temperature and slowly cooled to room temperature. A test piece was cut out from the obtained glass, and both sides were mirror-polished to a thickness of about 0.2 mm, and then various evaluations were performed by the following methods.
- the glasses of Examples 1 to 66 have high transmittance in the visible region (purple region to red region) even by thinning, have excellent near-infrared cut ability, and suppress the decrease in weather resistance. It can be confirmed that it has been done.
- Regarding weather resistance calculated as "(3 x Al 2 O 3 + Y 2 O 3 + La 2 O 3 + Gd 2 O 3 + BaO / 3 + (CaO + SrO) / 6)" from the comparison between Examples 1 to 58 and Example 59. It can be confirmed that the weather resistance of Examples 1 to 58 having a larger value is better than that of Example 59 in which the value is 0.
- Example 60 which is larger than Example 59 in that the value of “(Na 2 O + K 2 O + ZnO) / Li 2 O” is more than 1.4, has a higher degree of deliquescent than Example 59 and is weather resistant. Slightly inferior in terms of.
- Comparative Example X the value calculated as "(3 x Al 2 O 3 + Y 2 O 3 + La 2 O 3 + Gd 2 O 3 + BaO / 3 + (CaO + SrO) / 6)" is more than 0, but "(Na 2)".
- the value of "O + K 2 O + ZnO) / Li 2 O” is as large as 11 or more, and the weather resistance is low.
- Comparative Example A, Comparative Example B, and Comparative Example C are glasses composed of only three components, P 2 O 5 , Li 2 O, and Cu O, and have extremely low weather resistance.
- Comparative Example D the O / P ratio exceeded 3.2, and the desired transmittance characteristics could not be obtained.
- the haze value was also obtained by the haze meter.
- the obtained haze values are shown in Table 8.
- the evaluation categories of the visual weather resistance evaluation were S as compared with Examples 25 and 33 in which the evaluation category of the visual weather resistance evaluation was A, Examples 56 and 61 to The haze value of 66 was low, below 15%.
- the O / P ratio is in the range of 3.00 to 3.15 in order to achieve both the improvement of the transmittance in the visible region and the improvement of the near-infrared cut ability while further reducing the haze value to 15% or less.
- the value (unit: mol%) calculated as "(3 x Al 2 O 3 + Y 2 O 3 + La 2 O 3 + Gd 2 O 3 + BaO / 3 + (CaO + SrO) / 6)" is 10.0%. It can be confirmed that the range is preferably in the range of ⁇ 40.0%.
- the glasses 1 to 6 described in detail above are provided.
- the Al 2 O 3 content in the glasses 1-6 can be less than 2.0 mol%.
- the total content of Al 2 O 3 , La 2 O 3 , Y 2 O 3 and Gd 2 O 3 in the glasses 1 to 6 (Al 2 O 3 + La 2 O 3 + Y 2 O 3 + Gd 2 O 3). ) Can be 0.1 mol% or more.
- the glasses 1 to 6 can have the following transmittance characteristics.
- the thickness of the glass having a half value ⁇ T 50 of 633 nm, which is a wavelength at which the external transmittance including reflection loss is 50% at a wavelength of 550 nm or more, is 0.25 mm or less.
- the external transmittance T600 including the reflection loss at the wavelength of 600 nm is 50% or more
- the external transmittance T1200 including the reflection loss at the wavelength of 1200 nm is 30% or less.
- the thickness of the glass having a half value ⁇ T 50 of 633 nm, which is a wavelength at which the external transmittance including reflection loss is 50% at a wavelength of 550 nm or more, is 0.25 mm or less.
- the external transmittance T600 including the reflection loss at the wavelength of 600 nm is 50% or more
- the external transmittance T1200 including the reflection loss at the wavelength of 1200 nm is ⁇ 1% or less.
- the half value ⁇ T 50 which is a wavelength at which the external transmittance including reflection loss is 50%, is in the range of 600 nm to 650 nm, and the external transmittance T1200 including reflection loss at a wavelength of 1200 nm. Is 30% or less, and the external transmittance T400 including the reflection loss at a wavelength of 400 nm is 70% or more.
- the half value ⁇ T 50 which is a wavelength at which the external transmittance including reflection loss is 50%, is in the range of 600 nm to 650 nm, and the external transmittance T1200 including reflection loss at a wavelength of 1200 nm. Is 25% or less, and the external transmittance T400 including the reflection loss at a wavelength of 400 nm is 70% or more.
- the thickness of the glass having a half value ⁇ T 50 of 645 nm, which is a wavelength at which the external transmittance including reflection loss is 50% at a wavelength of 550 nm or more, is 0.25 mm or less.
- the external transmittance T600 including the reflection loss at the wavelength of 600 nm is 50% or more
- the external transmittance T1200 including the reflection loss at the wavelength of 1200 nm is 30% or less.
- the thickness of the glass having a half value ⁇ T 50 of 645 nm, which is a wavelength at which the external transmittance including reflection loss is 50% at a wavelength of 550 nm or more, is 0.25 mm or less.
- the external transmittance T600 including the reflection loss at the wavelength of 600 nm is 50% or more
- the external transmittance T1200 including the reflection loss at the wavelength of 1200 nm is ⁇ 1% or less.
- a near-infrared cut filter made of the above-mentioned near-infrared absorbing glass is provided.
- the embodiments disclosed this time are exemplary in all respects and not restrictive.
- the scope of the present invention is shown by the scope of claims rather than the above description, and is intended to include all modifications within the meaning and scope of the claims.
- the near-infrared absorbing glass according to one aspect of the present invention can be obtained by adjusting the composition described in the specification with respect to the above-exemplified glass composition.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Toxicology (AREA)
- Glass Compositions (AREA)
Abstract
Description
Pイオン、Liイオン、Cuイオン、Alイオン、Baイオン、Srイオン、Caイオン、Mgイオン、Znイオン、Kイオン、Naイオン、Laイオン、GdイオンおよびYイオンからなる群から選ばれる主要カチオンを4種以上含み、
Pイオン、LiイオンおよびCuイオンを必須カチオンとして含み、
アニオンとして少なくともOイオンを含み、
Pイオンの含有量に対するOイオンの含有量の比率(Oイオン/Pイオン)が3.15以下であり、
アニオン%表示のガラス組成において、Oイオンの含有量が90.0アニオン%以上であり、
酸化物基準のガラス組成において、
モル基準で、
上記主要カチオンの酸化物の合計含有量が90.0%以上であり、
MgOとAl2O3との合計含有量(MgO+Al2O3)が8.0%以下であり、
Li2O含有量に対する、Na2O含有量、K2O含有量およびZnO含有量の合計の比率((Na2O+K2O+ZnO)/Li2O)が2.4以下であり、
B2O3とSiO2との合計含有量(B2O3+SiO2)が3.0%以下であり、
CuO含有量がα1%以上であり、
α1は下記式1:
(式1)
α1=70400×exp(-2.855×R)
により算出される値であり、
上記式1中、
Rは上記比率(Oイオン/Pイオン)である、
近赤外線吸収ガラス(以下、「ガラス1」とも呼ぶ。)、
に関する。
Pイオン、Liイオン、Cuイオン、Alイオン、Baイオン、Srイオン、Caイオン、Mgイオン、Znイオン、Kイオン、Naイオン、Laイオン、GdイオンおよびYイオンからなる群から選ばれる主要カチオンを4種以上含み、
Pイオン、LiイオンおよびCuイオンを必須カチオンとして含み、
アニオンとして少なくともOイオンを含み、
Pイオンの含有量に対するOイオンの含有量の比率(Oイオン/Pイオン)が3.15以下であり、
アニオン%表示のガラス組成において、Oイオンの含有量が90.0アニオン%以上であり、
酸化物基準のガラス組成において、
モル基準で、
上記主要カチオンの酸化物の合計含有量が90.0%以上であり、
MgOとAl2O3との合計含有量(MgO+Al2O3)が8.0%以下であり、
Li2O含有量に対する、Na2O含有量、K2O含有量およびZnO含有量の合計の比率((Na2O+K2O+ZnO)/Li2O)が2.4以下であり、
B2O3とSiO2との合計含有量(B2O3+SiO2)が3.0%以下であり、
下記式2:
(式2)
C-3200×exp(-2.278×R)≧0
を満たし、
上記式2中、
Cは、ガラスのモル体積あたりのCuO含有量(単位:ミリモル/cc)であり、
Rは上記比率(Oイオン/Pイオン)である、
近赤外線吸収ガラス(以下、「ガラス2」とも呼ぶ。)、
に関する。
Pイオン、Liイオン、Cuイオン、Alイオン、Baイオン、Srイオン、Caイオン、Mgイオン、Znイオン、Kイオン、Naイオン、Laイオン、Gdイオン、Yイオン、BイオンおよびSiイオンからなる群から選ばれる主要カチオンを4種以上含み、
Pイオン、LiイオンおよびCuイオンを必須カチオンとして含み、
アニオンとして少なくともOイオンを含み、
Pイオンの含有量に対するOイオンの含有量の比率(Oイオン/Pイオン)が3.15以下であり、
アニオン%表示のガラス組成において、Oイオンの含有量が90.0アニオン%以上であり、
酸化物基準のガラス組成において、
モル基準で、
上記主要カチオンの酸化物の合計含有量が90.0%以上であり、
MgOとAl2O3との合計含有量(MgO+Al2O3)が8.0%以下であり、
Li2O含有量に対する、Na2O含有量、K2O含有量およびZnO含有量の合計の比率((Na2O+K2O+ZnO)/Li2O)が2.4以下であり、
下記式3:
(式3)
A1={O(P)-O(others)}×Cu
によって算出されるAが2500以上であり、
上記式3中、
O(P)は、酸化物基準のガラス組成においてPイオンの酸化物を構成する酸素量を示し、
O(others)は、酸化物基準のガラス組成において上記主要カチオンの酸化物を構成する酸素量から上記O(P)を除いた酸素量を示し、
Cuは、酸化物基準のガラス組成におけるモル基準のCuO含有量を示す、近赤外線吸収ガラス(以下、「ガラス3」とも呼ぶ。)、
に関する。
Pイオン、Liイオン、Cuイオン、Alイオン、Baイオン、Srイオン、Caイオン、Mgイオン、Znイオン、Kイオン、Naイオン、Laイオン、Gdイオン、Yイオン、BイオンおよびSiイオンからなる群から選ばれる主要カチオンを4種以上含み、
Pイオン、LiイオンおよびCuイオンを必須カチオンとして含み、
アニオンとして少なくともOイオンを含み、
Pイオンの含有量に対するOイオンの含有量の比率(Oイオン/Pイオン)が3.15以下であり、
アニオン%表示のガラス組成において、Oイオンの含有量が90.0アニオン%以上であり、
酸化物基準のガラス組成において、
モル基準で、
上記主要カチオンの酸化物の合計含有量が90.0%以上であり、
MgOとAl2O3との合計含有量(MgO+Al2O3)が8.0%以下であり、
Li2O含有量に対する、Na2O含有量、K2O含有量およびZnO含有量の合計の比率((Na2O+K2O+ZnO)/Li2O)が2.4以下であり、
下記式4:
(式4)
A2={O(P)-O(others)}×C
によって算出されるA2が700以上であり、
上記式4中、
Cは、ガラスのモル体積当たりのCuO含有量(単位:ミリモル/cc)であり、
O(P)は、酸化物基準のガラス組成においてPイオンの酸化物を構成する酸素量を示し、
O(others)は、酸化物基準のガラス組成において上記主要カチオンの酸化物を構成する酸素量から上記O(P)を除いた酸素量を示す、近赤外線吸収ガラス。(以下、「ガラス4」とも呼ぶ。)、
に関する。
Pイオン、Liイオン、Cuイオン、Alイオン、Baイオン、Srイオン、Caイオン、Mgイオン、Znイオン、Kイオン、Naイオン、Laイオン、GdイオンおよびYイオンからなる群から選ばれる主要カチオンを4種以上含み、
Pイオン、LiイオンおよびCuイオンを必須カチオンとして含み、
アニオンとして少なくともOイオンを含み、
Pイオンの含有量に対するOイオンの含有量の比率(Oイオン/Pイオン)が3.15以下であり、
アニオン%表示のガラス組成において、Oイオンの含有量が90.0アニオン%以上であり、
酸化物基準のガラス組成において、
モル基準で、
上記主要カチオンの酸化物の合計含有量が90.0%以上であり、
MgOとAl2O3との合計含有量(MgO+Al2O3)が8.0%以下であり、
Li2O含有量に対する、Na2O含有量、K2O含有量およびZnO含有量の合計の比率((Na2O+K2O+ZnO)/Li2O)が2.4以下であり、
CuO含有量がα2%以上であり、
α2は下記式5:
(式5)
α2=(76522)×exp(-2.855×R)
により算出される値であり、
上記式5中、
Rは上記比率(Oイオン/Pイオン)である、
近赤外線吸収ガラス(以下、「ガラス5」とも呼ぶ。)、
に関する。
Pイオン、Liイオン、Cuイオン、Alイオン、Baイオン、Srイオン、Caイオン、Mgイオン、Znイオン、Kイオン、Naイオン、Laイオン、GdイオンおよびYイオンからなる群から選ばれる主要カチオンを4種以上含み、
Pイオン、LiイオンおよびCuイオンを必須カチオンとして含み、
アニオンとして少なくともOイオンを含み、
Pイオンの含有量に対するOイオンの含有量の比率(Oイオン/Pイオン)が3.15以下であり、
アニオン%表示のガラス組成において、Oイオンの含有量が90.0アニオン%以上であり、
酸化物基準のガラス組成において、
モル基準で、
上記主要カチオンの酸化物の合計含有量が90.0%以上であり、
MgOとAl2O3との合計含有量(MgO+Al2O3)が8.0%以下であり、
Li2O含有量に対する、Na2O含有量、K2O含有量およびZnO含有量の合計の比率((Na2O+K2O+ZnO)/Li2O)が2.4以下であり、
下記式6:
(式6)
C-(3478)×exp(-2.278×R)≧0
を満たし、
上記式6中、
Cは、ガラスのモル体積当たりのCuO含有量(単位:ミリモル/cc)であり、
Rは上記比率(Oイオン/Pイオン)である、
近赤外線吸収ガラス(以下、「ガラス6」とも呼ぶ。)、
に関する。
以下において、ガラス1~6をまとめて単に「ガラス」または「近赤外線吸収ガラス」とも呼ぶ。特記しない限り、ガラス組成および物性に関する記載は、ガラス1~6のすべてに適用されるものとする。
(分析方法)
ガラスを構成する各種成分については、公知の方法、例えば、誘導結合プラズマ発光分光分析法(ICP-AES)、誘導結合プラズマ質量分析法(ICP-MS)等により、ガラス中に含まれる元素の含有量(元素の質量%)を定量することができる。
アニオン成分については、公知の分析法、例えばイオンクロマトグラフィー法、非分散赤外線吸収法(ND-IR)等によって、ガラスに含まれるアニオン成分を同定および定量することができる。
なお、本発明および本明細書において、構成成分の含有量が0%または含まないもしくは導入しないとは、この構成成分を実質的に含まないことを意味し、この構成成分が不可避的不純物レベルで含まれることは許容される。
上記の分析で得られた結果をもとに、酸化物基準のガラス組成における各成分の含有量(単位:モル%)を算出することができる。具体的方法は以下の通りである。
上記の分析方法で得られた元素iの含有量(元素の質量%Pi)を元素iの原子量Miで除することにより、各元素のモル数ni=Pi/Miを求める。
上記の元素iがカチオン成分Aiである場合は、上記で得られた元素のモル数niを、対応する酸化物のモル数n’iに置き換える。具体的には元素iに対応するカチオン成分Aiの酸化物の組成式がAixOyで表されるとき、n’i=ni/xとなる。
上記の元素iがOイオン以外のアニオン成分Biである場合の、対応する上記の元素のモル数niは以降miと表記する。
酸化物基準のガラス組成における、カチオン成分Aiの酸化物AixOyとしての含有量PAi(モル%)は、
PAi=n’i/(Σn’i+Σmi)×100
で表される。酸化物基準のガラス組成における含有量は、酸化物基準分率ということもできる。
PBi=mi/(Σn’i+Σmi)×100
で表される。
「アニオン%」とは、「(注目するアニオンiの、モル%表示の含有量)/(ガラスに含まれるアニオンのモル%表示の総数)×100」で算出される値であって、注目するアニオン量のアニオンの総量に対するモル百分率を意味する。
上記の酸化物基準のガラス組成の表記の説明に基づくOイオンのアニオン%は、
元素iに対応するカチオン成分Aiの酸化物の組成式がAixOyで表され、カチオン成分Aiの酸化物に含まれるOの個数を、カチオン成分Aiの酸化物基準分率PAi(モル%)を用いてOi=PAi×y、アニオン成分Bkの価数をNk、としたときに
(ΣOi-Σ(Nk/2)Bk)/(ΣOi-Σ(Nk/2)Bk+ΣBk)×100
として計算できる。
ここでΣOiは、酸化物基準のガラス組成のOイオンのモル数の総和であり、Σ(Nk/2)Bkは、アニオン成分Bkによって置換されたOイオンのモル数を表す。式の分子(ΣOi-Σ(Nk/2)Bk)が、ガラス中に含まれるOイオンのモル数となる。
一方、本発明および本明細書において、酸素の含有量については、公知の方法による分析によって酸素以外のアニオン成分が検出されない場合には、アニオン成分中のすべて(即ち100アニオン%)がOイオンであるものとする。
カチオン成分の価数については、各カチオンの形式価数を用いる。形式価数とは、注目するカチオンの酸化物について、酸化物を構成するOイオンの価数を-2としたときに酸化物が電気的中性を保つために必要な価数であり、酸化物の化学式から一義的に求めることができる。
例えば、Cuイオンについては、酸化物CuOの化学式に含まれるO2-とCuとの電気的中性を保つためにCuの価数は+2となる。また、例えばPイオンについては、酸化物P2O5の化学式に含まれるO2-とPとの電気的中性を保つためにPの価数は、+2×5/2=+5となる。これを一般化すると、酸化物AixOyに含まれるカチオンAiの形式価数は「+2y/x」となる。したがって、ガラス組成を分析する際、カチオンの価数まで分析しなくてよい。
また、アニオンの価数(例えばOイオンの価数が-2)についても、Oイオンが2つの電子を受容し閉殻構造を取るという考えに基づいた形式価数である。したがって、ガラス組成を分析する際、アニオンの価数まで分析しなくてよい。また、Cu2+の一部は熔解時にCu+となり得るが、通常、その量はわずかであるので、Cuの価数はすべて+2として差支えない。
上記ガラスは、アニオンとして少なくともOイオンを含み、その含有量は、アニオン%表示のガラス組成において90.0アニオン%以上である。このようにアニオンとしてOイオンを主体とするガラスにおいてO/P比率を低くすることにより、CuOの赤色領域の吸収を長波長側にシフトさせることができ、それにより赤色領域の透過率を低下させることなくCuOの含有率を高めて近赤外線カット能力を向上させることが可能になると本発明者は考えている。アニオン%表示のガラス組成におけるOイオン含有量は、90.0%以上であり、95.0%以上であることが好ましく、98.0%以上であることがより好ましく、99.0%以上であることが更に好ましい。アニオン成分に占めるOイオンの割合が高いことは、ガラス熔融時の揮発を抑えるうえでも好ましい。ガラス熔融時の揮発を抑えることは、脈理の発生を抑制する観点から好ましい。特にガラス熔融時の揮発を抑え、生産性を高めると共に製造時の有害ガスの発生を抑える観点からは、Oイオンの含有量が100%であることが好ましい。尚、Oイオンの形式価数は、-2である。
カチオンの含有量とアニオンの含有量のモル比は、すべてのカチオン成分とすべてのアニオン成分の総量を100モル%としたときの注目する成分同士の含有量(モル%表示)の比率である。したがって、Pイオンの含有量に対するOイオンの含有量の比率(Oイオン/Pイオン)は、すべてのカチオン成分とすべてのアニオン成分の総量を100モル%としたときのPイオンとの含有量(モル%表示)に対するOイオンの含有量(モル%表示)の比率である。
O/P比率(Rとも表記する。)について、上記の酸化物基準のガラス組成の表記の説明に基づくO/P比率は、
元素iに対応するカチオン成分Aiの酸化物の組成式がAixOyで表され、カチオン成分Aiの酸化物に含まれるOの個数を、カチオン成分Aiの酸化物基準分率PAi(モル%)を用いてOi=PAi×y、アニオン成分Bkの価数をNk、としたときに
式D1: R1=ΣOi-Σ(Nk/2)Bk
式D2: R2=Pイオンの酸化物(すなわちP2O5)基準分率(モル%)×2
O/P比率(R)は
式D3: R=R1/R2
から求めることができる。
例えば、後述の比較例Aを例にとり説明すると、比較例Aの酸化物基準のガラス組成における含有量は、モル%表示の値として、P2O5=53.59,Li2O=19.30、CuO=27.11である。分子式に含まれるOの数は、P2O5は5個、Li2Oは1個、CuOは1個である。分子式に含まれるOのモル数は、P2O5は267.95、Li2Oは19.30、CuOは27.11である。
この例のガラスのO/P比率は、以下のように求めることができる。
ガラスの分子式:53.59P2O5-19.30Li2O-27.11CuOにおけるOイオンの数NSを求める。ガラスの分子式とは、ガラスに含まれる分子の合計が100となるように示されたガラスの組成式である。
すなわち各酸化物の分子式MxOyに含まれるOイオンの個数(P2O5:5、Li2O:1、CuO:1)を用いて、
NS=53.59×5+19.30×1+27.11×2=314.36
としてNSを算出する。
上記の例のガラスは、ガラスの分子式中、他のアニオンにより置換されたOイオンがゼロ個であるため、このNS=314.36を、P2O5に含まれるPのモル数53.59×2で除することで、O/P比率=314.36/(53.59×2)=2.93…が求められる。
公知の方法による分析によって酸素に加えて一種以上の他のアニオン成分が検出された場合には、酸素の含有量としては、(1)ガラスに含まれるカチオン成分の価数および元素のモル%を基準としたカチオンの含有量と(2)酸素以外のアニオン成分の価数および元素のモル%を基準としたアニオンの含有量から、以下の(3)の方法によって算出される含有量(単位:アニオン%)を採用することができる。
即ち、公知の方法による同定および定量分析の結果から、
(1)ガラスに含まれるカチオン成分について、「酸化物MxOyの酸素の数yとカチオンの数xから成る、カチオン1個あたりの酸素数y/x×元素のモル%を基準としたカチオン含有量」の合計Uを算出する。
(2)酸素を除くアニオン成分についても、公知の方法による同定および定量分析の結果と、アニオンの価数zから、「元素のモル%を基準としたアニオンの含有量×アニオン1個当たり置換される酸素数z/2」の合計Vを算出する。
(3)U-Vを、Pイオンの含有率に対するOイオンの含有率として採用することもできる。
U=22×2.5+8×0.5+5.5×1.0=64.5と求められ、
V=0となる。
したがって、元素のモル百分率を基準としたOイオンのモル百分率は64.5(元素のモル%表示の含有量)となる。
このように求めたOイオンの値と、分析されたPイオンのモル百分率の比率から、O/P比率=64.5/22=2.93… を求めることができる。
U=22×2.5+8×0.5+5.5×1.0=64.5と求められ、
V=4×1/2=2となる。
したがって、元素のモル百分率を基準としたOイオンのモル百分率は62.5(元素のモル%表示の含有量)となる。
このように求めたOイオンの値と、分析されたPイオンのモル百分率の比率から、O/P比率=62.5/22=2.84… を求めることができる。
ガラス1~ガラス6において、O/P比率は、3.14以下であることが好ましく、3.13以下、3.12以下、3.11以下、3.10以下、3.09以下、3.08以下、3.07以下、3.06以下、3.05以下、3.04以下、3.03以下、3.02以下、3.01以下、3.00以下の順により好ましい。
一方、耐候性の向上、および/または、熔解性の低下を抑制する観点からは、ガラス1~ガラス6において、O/P比率は大きいことが好ましい。この点から、ガラス1~ガラス6において、O/P比率は、2.50以上であることが好ましく、2.60以上、2.65以上、2.70以上、2.73以上、2.75以上、2.77以上、2.80以上、2.81以上、2.82以上、2.83、2.84以上、以上、2.85以上、2.86以上、2.87以上、2.88以上、2.89以上、2.90以上の順により好ましい。
ガラス1~6は、Pイオン、Liイオン、Cuイオン、Alイオン、Baイオン、Srイオン、Caイオン、Mgイオン、Znイオン、Kイオン、Naイオン、Laイオン、GdイオンおよびYイオンからなる群から選ばれる主要カチオンを4種以上含み、Pイオン、LiイオンおよびCuイオンを必須カチオンとして含む。ガラス1~6の酸化物基準のガラス組成(モル基準)において、上記主要カチオンの酸化物の合計含有量は90.0%以上である。
ガラス1~6において、主要カチオンの酸化物の合計含有量が90.0%以上であることは、ガラスの熱的安定性向上に寄与することができ、および/または、脈理や揮発等を抑制することによってガラスの光学的な均質性を向上させることに寄与し得る。上記の点から、ガラス1~6における上記主要カチオンの酸化物の合計含有量は、92.0%以上であることが好ましく、93.0%以上、95.1%以上、96.1%以上、97.1%以上、98.1以上、98.6%以上、99.1%以上、99.6%以上の順により好ましく、100%であることもできる。一形態では、ガラス1~6における上記主要カチオンの酸化物の合計含有量は、100%以下または99.5%以下、99%以下、98.5%以下、98.0%以下、97.5%以下であることができる。
α1=70400×exp(-2.855×R)
C-3200×exp(-2.278×R)≧0
Cは、ガラスの比重値D(g/cc)を測定し、先に記載したように分析して得られたガラス組成をもとに、ガラス組成1モル相当の質量、すなわちモル分子量M(g/モル)を求め、ガラスのモル体積M/D(単位:cc/モル)を求めることにより、
C=CuOのモル%/(M/D)×1000(単位:ミリモル/cc)
として算出することができる。
上記モル分子量Mは、
上記の酸化物基準のガラス組成の表記の説明に基づき、上記のカチオン成分Aiの対応する酸化物の式量MAi、アニオン成分Bkの原子量をMBk、酸素の原子量をMoとするとき、
M={Σ(PAi×MAi)+Σ(PBk×MBk)-Σ(Nk/2)Mo}/ΣPAi
として求めることができる。
例えば、ガラス組成が、酸化物基準でsモル%のA2O成分、酸化物基準でtモル%のBO成分、およびuモル%のF成分から構成され、s+t+u=100(%)、A2O成分の式量がMA(g/モル)、BO成分の式量がMB(g/モル)、Fの原子量がMF(g/モル)、酸素の原子量がMO(g/モル)、であるとき、
M=(s×MA+t×MB+u×MF-u/2×MO)/(s+t)
となる。
例えば、後述の比較例A(酸化物基準のガラス組成におけるモル%表示の含有量は、P2O5=53.59、Li2O=19.30、CuO=27.11)のモル分子量Mは、
P2O5の式量:141.94(g/モル)
Li2Oの式量:29.88(g/モル)
CuOの式量:79.55(g/モル)
を用いて、M=(53.59×141.94+19.30×29.88+27・11×79.55)/(53.59+19.30+27.11)=103.40(g/モル)と計算できる。
A1={O(P)-O(others)}×Cu
酸化物基準のガラス組成(モル基準)におけるP2O5含有量がMモル%の場合、P2O5の化学式に含まれる酸素の数:5を使用し、O(P)は、「O(P)=M×5」として算出される。
同様に、Pイオン以外の主要カチオンについても、酸化物基準のガラス組成(モル基準)における酸化物としての含有量の値と、各カチオンが形式価数の状態で形成する酸化物に含まれる酸素の数を使用して各カチオンの酸化物を構成する酸素量が算出される。
こうして主要カチオンの酸化物について算出された酸素量の合計からO(P)を差し引いた値として、「O(others)」が算出される。
酸化物基準のガラス組成(モル基準)におけるCuO含有量がNモル%の場合、「A」は、A1={O(P)-O(others)}×Nとして算出される。
1)Cu2+に由来する吸収をより長波長化することにより赤色領域の透過率を高めることができる。
2)ガラスを低温で液相状態にすることが可能になることによって、波長400nm付近の紫色領域の吸収をもたらすCu+の発生を抑えることができる。
A2={O(P)-O(others)}×C
α2=76522×exp(-2.855×R)
C-3478×exp(-2.278×R)≧0
厚み0.21mm換算の透過率特性として、反射損失を含む外部透過率が50%となる波 長λT50が600nm~650nmの範囲であるためには、CuO含有量は、酸化物基準のガラス組成(モル基準)において、10.0%以上であることが好ましく、10.5%以上、11.0%以上、11.5%以上、12.0%以上、12.5%以上、13.0%以上、13.5%以上、14.0%以上、14.5%以上、15.0%以上、15.5%以上、16.0%以上、16.5%以上、17.0%以上、17.5%以上、18.0%以上、18.5%以上、19.0%以上、19.5%以上、20.0%以上の順により好ましい。
厚み0.25mm換算の透過率特性として、反射損失を含む外部透過率が50%となる波長λT50が600nm~650nmの範囲であるためには、CuO含有量は、酸化物基準のガラス組成(モル基準)において、10.0%以上であることが好ましく、10.5%以上、11.0%以上、11.5%以上、12.0%以上、12.5%以上、13.0%以上、13.5%以上、14.0%以上、14.5%以上、15.0%以上、15.5%以上、16.0%以上、16.5%以上、17.0%以上、17.5%以上、18.0%以上、18.5%以上、19.0%以上、19.5%以上、20.0%以上の順により好ましい。
一方、厚み0.25mm換算の透過率特性は、CuO含有量が多量になると、反射損失を含む外部透過率が50%となる波長λT50が600nmを下回る可能性があるため、CuO含有量は、35.0%以下であることが好ましく、34.0%以下、33.0%以下、32.0%以下、31.0%以下、30.0%以下、29.5%以下、29.0%以下、28.5%以下、28.0%以下、27.5%以下、27.0%以下、26.5%以下、26.0%以下、25.5%以下、25.0%以下、24.5%以下、24.0%以下、23.5%以下、23.0%以下、22.5%以下、22.0%以下、21.5%以下、21.0%以下、20.5%以下、20.0%以下の順により好ましい。
波長550nm以上で反射損失を含む外部透過率が50%となる波長λT50が645nmとなるガラスの厚みが0.25mm以下であるためには、CuO含有量は、酸化物基準のガラス組成(モル基準)において、10.0%以上であることが好ましく、10.5%以上、11.0%以上、11.5%以上、12.0%以上、12.5%以上、13.0%以上、13.5%以上、14.0%以上、14.5%以上、15.0%以上、15.5%以上、16.0%以上、16.5%以上、17.0%以上、17.5%以上、18.0%以上、18.5%以上、19.0%以上、19.5%以上、20.0%以上の順により好ましい。
波長550nm以上で反射損失を含む外部透過率が50%となる波長λT50が633nmとなるガラスの厚みが0.25mm以下であるためには、CuO含有量は、酸化物基準のガラス組成(モル基準)において、10.5%以上であることが好ましく、11.0%以上、11.5%以上、12.0%以上、12.5%以上、13.0%以上、13.5%以上、14.0%以上、14.5%以上、15.0%以上、15.5%以上、16.0%以上、16.5%以上、17.0%以上、17.5%以上、18.0%以上、18.5%以上、19.0%以上、19.5%以上、20.0%以上の順により好ましい。
α3=(70400×0.25/d)×exp(-2.855×R)
α3=(70400×0.25/0.11)×exp(-2.855×R)
α3=(70400×0.25/D)×exp(-2.855×R)
C-3200×0.25/d×exp(-2.855×R)≧0
C-3300×0.25/0.11×exp(-2.855×R)≧0
厚み0.21mm換算の透過率特性として、反射損失を含む外部透過率が50%となる波長λT50が600nm~650nmの範囲であるためには、P2O5、Li2OおよびCuOの合計含有量(P2O5+Li2O+CuO)は、酸化物基準のガラス組成(モル基準)において、80.0%以上であることが好ましく、81.0%以上、82.0%以上、83.0%以上、84.0%以上、85.0%以上、86.0%以上、87.0%以上、88.0%以上、89.0%以上、90.0%以上の順により好ましい。
厚み0.25mm換算の透過率特性として、反射損失を含む外部透過率が50%となる波長λT50が600nm~650nmの範囲であるためには、P2O5、Li2OおよびCuOの合計含有量(P2O5+Li2O+CuO)は、酸化物基準のガラス組成(モル基準)において、75.0%以上であることが好ましく、76.0%以上、77.0%以上、78.0%以上、79.0%以上、80.0%以上、81.0%以上、82.0%以上、83.0%以上、84.0%以上、85.0%以上、86.0%以上、87.0%以上、88.0%以上、89.0%以上、90.0%以上の順により好ましい。
波長550nm以上で反射損失を含む外部透過率が50%となる波長λT50が645nmとなるガラスの厚みが0.25mm以下であるためには、また、P2O5、Li2OおよびCuOの合計含有量(P2O5+Li2O+CuO)は、酸化物基準のガラス組成(モル基準)において、80.0%以上であることが好ましく、81.0%以上、82.0%以上、83.0%以上、84.0%以上、85.0%以上、86.0%以上、87.0%以上、88.0%以上、89.0%以上、90.0%以上の順により好ましい。
波長550nm以上で反射損失を含む外部透過率が50%となる波長λT50が633nmとなるガラスの厚みが0.25mm以下であるためには、P2O5、Li2OおよびCuOの合計含有量(P2O5+Li2O+CuO)は、酸化物基準のガラス組成(モル基準)において、81.0%以上であることが好ましく、82.0%以上、83.0%以上、84.0%以上、85.0%以上、86.0%以上、87.0%以上、88.0%以上、89.0%以上、90.0%以上の順により好ましい。
上記の一形態に該当するガラスとしては、後述の実施例1~60のガラスを挙げることができる。
上記の他の一形態について、厚み0.21mm換算の透過率特性として、反射損失を含む外部透過率が50%となる波長λT50が600nm~650nmの範囲であるためには、P2O5、Li2OおよびCuOの合計含有量(P2O5+Li2O+CuO)は、酸化物基準のガラス組成(モル基準)において、60.0%以上であることが好ましく、61.0%以上、62.0%以上、63.0%以上、64.0%以上、65.0%以上の順により好ましい。
上記の他の一形態について、厚み0.25mm換算の透過率特性として、反射損失を含む外部透過率が50%となる波長λT50が600nm~650nmの範囲であるためには、P2O5、Li2OおよびCuOの合計含有量(P2O5+Li2O+CuO)は、酸化物基準のガラス組成(モル基準)において、55.0%以上であることが好ましく、56.0%以上、57.0%以上、58.0%以上、59.0%以上、60.0%以上の順により好ましい。
上記の他の一形態について、波長550nm以上で反射損失を含む外部透過率が50%となる波長λT50が645nmとなるガラスの厚みが0.25mm以下であるためには、また、P2O5、Li2OおよびCuOの合計含有量(P2O5+Li2O+CuO)は、酸化物基準のガラス組成(モル基準)において、60.0%以上であることが好ましく、61.0%以上、62.0%以上、63.0%以上、64.0%以上、65.0%以上の順により好ましい。
上記の他の一形態について、波長550nm以上で反射損失を含む外部透過率が50%となる波長λT50が633nmとなるガラスの厚みが0.25mm以下であるためには、P2O5、Li2OおよびCuOの合計含有量(P2O5+Li2O+CuO)は、酸化物基準のガラス組成(モル基準)において、で61.0%以上であることが好ましく、62.0%以上、63.0%以上、64.0%以上、65.0%以上、66.0%以上の順により好ましい。
上記の他の一形態に該当するガラスとしては、後述の実施例61~66を挙げることができる。
他方で、ガラス1~6について、ガラスの均質化を促進させるためにガラスの粗熔解を石英製るつぼで行う場合、SiO2含有量は0%超であることが好ましく、0.01%以上、0.02%以上、0.03%以上、0.04%以上、0.05%以上、0.1%以上、0.2%以上、0.3%以上の順により好ましい。ただしガラス中への過剰なSiO2の導入は、ガラスの光学的な均質性を低下させる傾向がある。この点から、ガラス1~6において、SiO2含有量は、2.0%以下であることが好ましく、1.4%以下、0.9%以下、0.8%以下、0.6%以下、0.4%以下の順により好ましい。
他方で、耐候性の低下をより一層抑制する観点からは、合計含有量(Li2O+Na2O+K2O)は、35.0%以下であることが好ましく、33.5%以下、32.5%以下、31.5%以下、30.5%以下、29.5%以下、28.5%以下、27.5%以下、26.5%以下、25.5%以下、24.5%以下、23.5%以下、21.5%以下、20.5%以下、19.5%以下、18.5%以下、17.5%以下、16.6%以下、15.5%以下、14.5%以下、13.5%以下の順により好ましい。合計含有量(Li2O+Na2O+K2O)が上記の値以下であることは、熱膨張係数が増大することによってガラスの膨張収縮量が増加し、ガラスの体積変化が他の部材によって規制された際にガラスに応力が加わってガラスに欠けや割れが生じることを回避する観点からも好ましい。
他方で「(3×Al2O3+Y2O3+La2O3+Gd2O3+BaO/3+(CaO+SrO)/6)」の値を大きくしすぎるとガラスの熔解性が悪化する傾向があること、近赤外線吸収の位置が可視光側にシフトする傾向があること等から、「(3×Al2O3+Y2O3+La2O3+Gd2O3+BaO/3+(CaO+SrO)/6)」として算出される値は 40.0%以下であることが好ましく、37.0%以下、35.0%以下、33.0%以下、32.0%以下、30.0%以下、28.0%以下、26.0%以下、25.0%以下、24.0%以下、23.0%以下、22.0%以下、21.0%以下の順により好ましい。
他方で、上記比率を大きくしすぎるとガラスの透過率特性が低下し、更にはガラスの安定性が低下する傾向も強まるため、上記比率は、0.36以下であることが好ましく、0.35以下、0.34以下、0.33以下、0.32以下、0.31以下、0.30以下、0.29以下、0.28以下の順により好ましい。
Sn(SnO2)、Ce(CeO2)は、Sb(Sb2O3)と比較し、清澄効果が小さい。これら清澄剤は、多量に添加するとガラスの着色が強まる傾向がある。したがって、清澄剤を添加する場合は、添加による着色の影響を考慮しつつ、Sb(Sb2O3)を添加することが好ましい。
(透過率特性)
上記ガラスは、近赤外線カットフィルタ用ガラスとして好適である。本発明および本明細書において、特記しない限り、「透過率」とは、反射損失を含む外部透過率をいうものとする。
近赤外線カット能力については、波長550nm以上で透過率が50%になる波長である半値λT50を指標とすることができ、波長1200nmにおける透過率T1200を指標とすることもでき、波長1100nmから800nmの範囲における透過率の平均値(「Ave.T1100-800」と記載する。)を指標とすることもでき、波長750nmにおける透過率T750を指標とすることもできる。
また、上記ガラスは、可視域において高い透過率を示すこともできる。可視域における透過率については、波長400nmにおける透過率T400を指標とすることができ、波長600nmにおける透過率T600を指標とすることもできる。
ガラスサンプルを、互いに平行かつ光学研磨された平面を有するように加工し、波長200~1200nmにおける外部透過率を測定する。外部透過率には、試料表面における光線の反射損失も含まれる。
光学研磨された一方の平面に垂直に入射する光線の強度を強度Aとし、他方の平面から出射する光線の強度を強度Bとして、反射損失を含む分光透過率B/Aを算出する。波長550nm以上で分光透過率が50%になる波長を半値λT50とする。波長400nmにおける分光透過率をT400、波長600nmにおける分光透過率をT600、また、波長1200nmにおける分光透過率をT1200とする。波長1100nmから800nmの範囲における分光透過率の平均値をAve.T1100-800、波長750nmにおける分光透過率をT750とする。
また、測定対象のガラスが換算される厚みのガラスでない場合には、そのガラスの厚みをdとして、以下の式Aによって、各波長λにおける透過率を換算するものとし、換算により得られた透過率特性から、各種換算値を求めることができる。
以上の観点から、T400、T600およびT1200について、それぞれ、好ましい範囲は以下の通りである。
T400については、70%以上であることが好ましく、更には、71%以上、72%以上、73%以上、74%以上、75%以上、76%以上、77%以上、78%以上、79%以上、80%以上の順により好ましい。T400は、例えば98%以下、97%以下または96%以下であることができるが、T400がより高いことは可視光透過性により優れることを意味するということができるため、上記例示した値を上回ることも好ましい。
T600については、50%以上であることが好ましく、更には、55%以上、56%、57%以上、58%以上、59%以上、60%以上、61%以上、62%以上、63%以上、64%以上、65%以上、66%以上、67%以上、68%以上、69%以上、70%以上、71%以上、72%以上、73%以上、74%以上、75%以上の順により好ましい。T600は、例えば90%以下、85%以下または80%以下であることができるが、T600がより高いことは可視光透過性により優れることを意味するということができるため、上記例示した値を上回ることも好ましい。
T1200については、30%以下であることが好ましく、29%以下、28%以下、27%以下、26%以下、25%以下、24%以下、23%以下、22%以下、21%以下、20%以下、19%以下、18%以下、17%以下、16%以下、15%以下、14%以下、13%以下、12%以下、11%以下、10%以下、9%以下、8%以下、7%以下、6%以下、5%以下、4%以下、3%以下、2%以下、1%以下の順により好ましい。T1200は、可視光透過率との両立を目的として、例えば1%以上、3%以上、5%以上または7%以上であることができるが、T1200がより低いことは近赤外線カット能力により優れることを意味するということができるため、上記例示した値を下回ることも好ましい。
(式B1)
β1=64×R-170
式B2:β2=64×R-175
式B3:β3=64×R-180
式B4:β4=80×R-220
式B5:β5=80×R-224
式B6:β6=80×R-228
上記厚みにおいて、波長600nmにおける反射損失を含む外部透過率T600が50%以上であり、かつ波長1200nmにおける反射損失を含む外部透過率T1200が30%以下である。
上記厚みにおいて、波長600nmにおける反射損失を含む外部透過率T600が50%以上であり、かつ波長1200nmにおける反射損失を含む外部透過率T1200がβ1%以下である。βは下記式B1より算出される値である。式B1中、Rは、上記ガラスのO/P比率である。
β1=64×R-170
上記厚みにおいて、波長600nmにおける反射損失を含む外部透過率T600が50%以上であり、かつ波長1200nmにおける反射損失を含む外部透過率T1200が30%以下である。
上記厚みにおいて、波長600nmにおける反射損失を含む外部透過率T600が50%以上であり、かつ波長1200nmにおける反射損失を含む外部透過率T1200がβ1%以下であり、β1は先に記載の式4により算出される値である。
上記ガラスは、先に説明した組成を有することにより、優れた耐候性を示すことができる。耐候性については、例えば、後述の実施例に記載の方法により目視で評価される耐候性の評価結果を指標とすることができ、かかる評価結果がS~Dのいずれかであることが好ましく、S~Cのいずれかであることがより好ましく、S~Bのいずれかであることが更に好ましく、SまたはAであることが一層好ましく、Sであることがより一層好ましい。
更に、耐候性については、ヘーズメーターによって測定されるヘーズ(Haze)値を指標とすることもできる。より一層耐候性に優れるガラスとしては、ヘーズ値が15%以下のガラスを挙げることができる。
耐候性については、上記の目視で評価される評価結果がSまたはAであって(好ましくはSであって)、かつヘーズメーターによって測定されるヘーズ値が15%以下であることが、なお一層好ましい。
上記ガラスのガラス転移温度は、特に限定されないが、ガラスの熔融性を改善することによってガラスの短波長域の透過率を高める観点、およびアニール炉や成形装置への負担軽減の観点からは、Tgは、450℃以下であることが好ましく、更には、440℃以下、430℃以下、420℃以下、410℃以下、400℃以下の順により好ましい。ガラスの化学的耐久性および/または耐熱性を高める観点から、Tgは250℃以上であることが好ましく、更には260℃以上、270℃以上、280℃以上、290℃以上、300℃以上の順により好ましい。
近赤外線カットフィルタが軽量であることは、このフィルタが組み込まれる素子や装置の軽量化につながるため好ましい。この点から、上記ガラスの比重は、3.40以下であることが好ましく、更には、3.35以下、3.30以下、3.25以下、3.20以下、3.15以下、3.10以下、3.05以下、3.00以下、2.95以下、2.90以下、2.85以下、2.80以下、2.75以下、2.70以下、2.65以下、2.60以下の順により好ましい。
比重は、例えば2.0以上または2.4以上であることができるが、上記観点から比重が低いことは好ましいため、ここに例示した値を下回ることも好ましい。
ガラスのモル体積M/Dについては、特に限定されないが、単位体積当たりのCuO量を多くすることによって近赤外線吸収能力を高める観点からは、ガラスのモル体積は、より小さいことが好ましい。モル体積は、P2O5、La2O3、Y2O3、Gd2O3,BaO、K2O等をLi2Oに置換すると小さくすることができ、Al2O3やCuO、Na2OをLi2Oに置換すると、やや小さくすることができる。他方でCaO,ZnO、SrOをLi2Oに置換してもモル体積は大きく変化せず、MgOをLi2Oに置換するとモル体積が増加する傾向にある。これらの傾向を勘案してガラス組成を調整することにより、ガラスのモル体積を調整することができる。モル体積は、45cc/モル以下であることが好ましく、43cc/モル以下、42cc/モル以下、41cc/モル以下、40cc/モル以下、39.5cc/モル以下、39.0cc/モル以下、38.5cc/モル以下、38.0cc/モル以下、37.5cc/モル以下の順により好ましい。
他方で、ガラスの耐候性を維持する観点からはモル体積を大きくすることもでき、この点から、上記ガラスのモル体積は、34.0cc/モル以上であることができ、35.0cc/モル以上、36.0cc/モル以上、36.5cc/モル以上、37.0cc/モル以上、37.5cc/モル以上、38.0モル以上、38.5cc/モル以上、39.0cc/モル以上、39.5cc/モル以上であることもできる。
上記ガラスは、各種ガラス原料を調合、熔融、成形することにより得ることができる。製造方法については、後述の記載も参照できる。
本発明の一態様は、上記近赤外線吸収ガラスからなる近赤外線カットフィルタ(以下、単に「フィルタ」とも記載する。)に関する。
ガラス原料として、燐酸塩、フッ化物、炭酸塩、硝酸塩、酸化物等を、表1に示されている組成のガラスが150g~300g得られるよう秤量混合し、白金製坩堝中または石英坩堝中に投入し、800℃~1000℃で、80分~100分熔解し、撹拌して脱泡、均質化を行った後、予熱した金型に流し出し、所定形状に成形した。得られたガラス成形体をガラス転移温度付近に加熱したアニール炉に移し、室温まで徐冷した。得られたガラスからテストピースを切り出し、両面を鏡面研磨して厚み約0.2mmとした後、以下の方法により各種評価を行った。
<透過率特性>
各テストピースの波長200~1200nmの透過率を分光光度計を使用して測定した。測定結果から、半値645nm換算、半値633nm換算、厚み0.11mm換算、厚み0.21mm換算、厚み0.23mm換算および厚み0.25mm換算の値として、半値(単位:nm)、T400、T600、T1200、Ave.T1100-800(単位:%)を求めた。
Rigaku社製の示差走査熱量分析装置(DSC8270)を使用し、昇温速度10℃/分にしてガラス転移温度Tgおよび融解による吸熱反応が収束する温度Tmを測定した。測定温度範囲は室温から1050℃の範囲とした。
アルキメデス法により比重を測定した。
測定された比重の値から、先に記載の方法によってモル体積を算出した。
各テストピースを、温度85℃相対湿度85%の恒温恒湿槽内に3.5時間保持した。その後、各テストピースを蛍光灯下の目視による外観評価に付した。評価結果から、以下の基準により耐候性を評価した。
S:表面に認められるクモリおよび/または析出物はごく軽度である。
A:表面に認められるクモリおよび/または析出物は軽度である。
B:表面にやや強いクモリが認められる、および/または、析出物が生じている。
C:潮解を示す表面の濡れが認められるが軽度である、および/または 厚みを帯びた析出物が生じている。
D:明らかな板厚減少は認められない程度の潮解、および/または 素ガラスを覆う析出物が生じている。
E:明らかな板厚減少を認められる程の潮解、および/または 素ガラスが見えなくなる程の析出物が生じている。
耐候性に関して、実施例1~58と実施例59との対比から、「(3×Al2O3+Y2O3+La2O3+Gd2O3+BaO/3+(CaO+SrO)/6)」として算出される値が0である実施例59に対して、この値がより大きい実施例1~58の耐候性がより良好であることが確認できる。
実施例59と実施例60との対比に関して、「(3×Al2O3+Y2O3+La2O3+Gd2O3+BaO/3+(CaO+SrO)/6)」として算出される値が0であり、かつ「(Na2O+K2O+ZnO)/Li2O」の値が1.4超と、実施例59と比べて大きい実施例60は、実施例59より潮解の度合いが大きく、耐候性の面でやや劣る。
比較例Xは「(3×Al2O3+Y2O3+La2O3+Gd2O3+BaO/3+(CaO+SrO)/6)」として算出される値は0超であるが、「(Na2O+K2O+ZnO)/Li2O」の値が11超と大きく、耐候性が低い。
比較例A、比較例B、比較例Cは、P2O5、Li2OおよびCuOの3成分のみからなるガラスであり、耐候性が極めて低い。
比較例Dは、O/P比率が3.2を超えており、所望の透過率特性が得られなかった。
上記厚みにおいて、波長600nmにおける反射損失を含む外部透過率T600が50%以上であり、かつ波長1200nmにおける反射損失を含む外部透過率T1200が30%以下である。
上記厚みにおいて、波長600nmにおける反射損失を含む外部透過率T600が50%以上であり、かつ波長1200nmにおける反射損失を含む外部透過率T1200がβ1%以下であり、
β1は下記式B1:
(式B1)
β1=64×R-170
により算出される値であり、
上記式B1中、
Rは上記比率(Oイオン/Pイオン)である。
上記厚みにおいて、波長600nmにおける反射損失を含む外部透過率T600が50%以上であり、かつ波長1200nmにおける反射損失を含む外部透過率T1200が30%以下である。
上記厚みにおいて、波長600nmにおける反射損失を含む外部透過率T600が50%以上であり、かつ波長1200nmにおける反射損失を含む外部透過率T1200がβ1%以下であり、
上記β1は下記式B1:
(式B1)
β1=64×R-170
により算出される値であり、
上記式B1中、
Rは上記比率(Oイオン/Pイオン)である。
例えば、上記の例示されたガラス組成に対し、明細書に記載の組成調整を行うことにより、本発明の一態様にかかる近赤外線吸収ガラスを得ることができる。
また、明細書に例示または好ましい範囲として記載した事項の2つ以上を任意に組み合わせることは、もちろん可能である。
Claims (16)
- Pイオン、Liイオン、Cuイオン、Alイオン、Baイオン、Srイオン、Caイオン、Mgイオン、Znイオン、Kイオン、Naイオン、Laイオン、GdイオンおよびYイオンからなる群から選ばれる主要カチオンを4種以上含み、
Pイオン、LiイオンおよびCuイオンを必須カチオンとして含み、
アニオンとして少なくともOイオンを含み、
Pイオンの含有量に対するOイオンの含有量の比率(Oイオン/Pイオン)が3.15以下であり、
アニオン%表示のガラス組成において、Oイオンの含有量が90.0アニオン%以上であり、
酸化物基準のガラス組成において、
モル基準で、
前記主要カチオンの酸化物の合計含有量が90.0%以上であり、
MgOとAl2O3との合計含有量(MgO+Al2O3)が8.0%以下であり、
Li2O含有量に対する、Na2O含有量、K2O含有量およびZnO含有量の合計の比率((Na2O+K2O+ZnO)/Li2O)が2.4以下であり、
B2O3とSiO2との合計含有量(B2O3+SiO2)が3.0%以下であり、
CuO含有量がα1%以上であり、
α1は下記式1:
(式1)
α1=70400×exp(-2.855×R)
により算出される値であり、
前記式1中、
Rは前記比率(Oイオン/Pイオン)である、
近赤外線吸収ガラス。 - Pイオン、Liイオン、Cuイオン、Alイオン、Baイオン、Srイオン、Caイオン、Mgイオン、Znイオン、Kイオン、Naイオン、Laイオン、GdイオンおよびYイオンからなる群から選ばれる主要カチオンを4種以上含み、
Pイオン、LiイオンおよびCuイオンを必須カチオンとして含み、
アニオンとして少なくともOイオンを含み、
Pイオンの含有量に対するOイオンの含有量の比率(Oイオン/Pイオン)が3.15以下であり、
アニオン%表示のガラス組成において、Oイオンの含有量が90.0アニオン%以上であり、
酸化物基準のガラス組成において、
モル基準で、
前記主要カチオンの酸化物の合計含有量が90.0%以上であり、
MgOとAl2O3との合計含有量(MgO+Al2O3)が8.0%以下であり、
Li2O含有量に対する、Na2O含有量、K2O含有量およびZnO含有量の1/2の合計の比率((Na2O+K2O+ZnO)/Li2O)が2.4以下であり、
B2O3とSiO2との合計含有量(B2O3+SiO2)が3.0%以下であり、
下記式2:
(式2)
C-3200×exp(-2.278×R)≧0
を満たし、
前記式2中、
Cは、ガラスのモル体積あたりのCuO含有量(単位:ミリモル/cc)であり、
Rは前記比率(Oイオン/Pイオン)である、
近赤外線吸収ガラス。 - Pイオン、Liイオン、Cuイオン、Alイオン、Baイオン、Srイオン、Caイオン、Mgイオン、Znイオン、Kイオン、Naイオン、Laイオン、Gdイオン、Yイオン、BイオンおよびSiイオンからなる群から選ばれる主要カチオンを4種以上含み、
Pイオン、LiイオンおよびCuイオンを必須カチオンとして含み、
アニオンとして少なくともOイオンを含み、
Pイオンの含有量に対するOイオンの含有量の比率(Oイオン/Pイオン)が3.15以下であり、
アニオン%表示のガラス組成において、Oイオンの含有量が90.0アニオン%以上であり、
酸化物基準のガラス組成において、
モル基準で、
前記主要カチオンの酸化物の合計含有量が90.0%以上であり、
MgOとAl2O3との合計含有量(MgO+Al2O3)が8.0%以下であり、
Li2O含有量に対する、Na2O含有量、K2O含有量およびZnO含有量の合計の比率((Na2O+K2O+ZnO)/Li2O)が2.4以下であり、
下記式3:
(式3)
A1={O(P)-O(others)}×Cu
によって算出されるA1が2500以上であり、
前記式3中、
O(P)は、酸化物基準のガラス組成においてPイオンの酸化物を構成する酸素量を示し、
O(others)は、酸化物基準のガラス組成において前記主要カチオンの酸化物を構成する酸素量から前記O(P)を除いた酸素量を示し、
Cuは、酸化物基準のガラス組成におけるモル基準のCuO含有量を示す、近赤外線吸収ガラス。 - Pイオン、Liイオン、Cuイオン、Alイオン、Baイオン、Srイオン、Caイオン、Mgイオン、Znイオン、Kイオン、Naイオン、Laイオン、Gdイオン、Yイオン、BイオンおよびSiイオンからなる群から選ばれる主要カチオンを4種以上含み、
Pイオン、LiイオンおよびCuイオンを必須カチオンとして含み、
アニオンとして少なくともOイオンを含み、
Pイオンの含有量に対するOイオンの含有量の比率(Oイオン/Pイオン)が3.15以下であり、
アニオン%表示のガラス組成において、Oイオンの含有量が90.0アニオン%以上であり、
酸化物基準のガラス組成において、
モル基準で、
前記主要カチオンの酸化物の合計含有量が90.0%以上であり、
MgOとAl2O3との合計含有量(MgO+Al2O3)が8.0%以下であり、
Li2O含有量に対する、Na2O含有量、K2O含有量およびZnO含有量の合計の比率((Na2O+K2O+ZnO)/Li2O)が2.4以下であり、
下記式4:
(式4)
A2={O(P)-O(others)}×C
によって算出されるA2が700以上であり、
前記式4中、
Cは、ガラスのモル体積あたりのCuO含有量(単位:ミリモル/cc)であり、
O(P)は、酸化物基準のガラス組成においてPイオンの酸化物を構成する酸素量を示し、
O(others)は、酸化物基準のガラス組成において前記主要カチオンの酸化物を構成する酸素量から前記O(P)を除いた酸素量を示す、近赤外線吸収ガラス。 - Pイオン、Liイオン、Cuイオン、Alイオン、Baイオン、Srイオン、Caイオン、Mgイオン、Znイオン、Kイオン、Naイオン、Laイオン、GdイオンおよびYイオンからなる群から選ばれる主要カチオンを4種以上含み、
Pイオン、LiイオンおよびCuイオンを必須カチオンとして含み、
アニオンとして少なくともOイオンを含み、
Pイオンの含有量に対するOイオンの含有量の比率(Oイオン/Pイオン)が3.15以下であり、
アニオン%表示のガラス組成において、Oイオンの含有量が90.0アニオン%以上であり、
酸化物基準のガラス組成において、
モル基準で、
前記主要カチオンの酸化物の合計含有量が90.0%以上であり、
MgOとAl2O3との合計含有量(MgO+Al2O3)が8.0%以下であり、
Li2O含有量に対する、Na2O含有量、K2O含有量およびZnO含有量の合計の比率((Na2O+K2O+ZnO)/Li2O)が2.4以下であり、
CuO含有量がα2%以上であり、
α2は下記式5:
(式5)
α2=76522×exp(-2.855×R)
により算出される値であり、
前記式5中、
Rは前記比率(Oイオン/Pイオン)である、
近赤外線吸収ガラス。 - Pイオン、Liイオン、Cuイオン、Alイオン、Baイオン、Srイオン、Caイオン、Mgイオン、Znイオン、Kイオン、Naイオン、Laイオン、GdイオンおよびYイオンからなる群から選ばれる主要カチオンを4種以上含み、
Pイオン、LiイオンおよびCuイオンを必須カチオンとして含み、
アニオンとして少なくともOイオンを含み、
Pイオンの含有量に対するOイオンの含有量の比率(Oイオン/Pイオン)が3.15以下であり、
アニオン%表示のガラス組成において、Oイオンの含有量が90.0アニオン%以上であり、
酸化物基準のガラス組成において、
モル基準で、
前記主要カチオンの酸化物の合計含有量が90.0%以上であり、
MgOとAl2O3との合計含有量(MgO+Al2O3)が8.0%以下であり、
Li2O含有量に対する、Na2O含有量、K2O含有量およびZnO含有量の1/2の合計の比率((Na2O+K2O+ZnO)/Li2O)が2.4以下であり、
下記式6:
(式6)
C-3478×exp(-2.278×R)≧0
を満たし、
前記式6中、
Cは、ガラスのモル体積あたりのCuO含有量(単位:ミリモル/cc)であり、
Rは前記比率(Oイオン/Pイオン)である、
近赤外線吸収ガラス。 - Na2O含有量、K2O含有量の合計含有量が15.0モル%未満である、請求項1~6のいずれか1項に記載の近赤外線吸収ガラス。
- Al2O3含有量が2.0モル%未満である、請求項1~7のいずれか1項に記載の近赤外線吸収ガラス。
- Al2O3、La2O3、Y2O3およびGd2O3の合計含有量(Al2O3+La2O3+Y2O3+Gd2O3)が0.1モル%以上である、請求項1~8のいずれか1項に記載の近赤外線吸収ガラス。
- 波長550nm以上で反射損失を含む外部透過率が50%となる波長である半値λT50が633nmとなるガラスの厚みが0.25mm以下であり、
前記厚みにおいて、波長600nmにおける反射損失を含む外部透過率T600が50%以上であり、かつ波長1200nmにおける反射損失を含む外部透過率T1200が30%以下である、請求項1~9のいずれか1項に記載の近赤外線吸収ガラス。 - 波長550nm以上で反射損失を含む外部透過率が50%となる波長である半値λT50が633nmとなるガラスの厚みが0.25mm以下であり、
前記厚みにおいて、波長600nmにおける反射損失を含む外部透過率T600が50%以上であり、かつ波長1200nmにおける反射損失を含む外部透過率T1200がβ1%以下であり、
β1は下記式B1:
(式B1)
β1=64×R-170
により算出される値であり、
前記式B1中、
Rは前記比率(Oイオン/Pイオン)である、請求項1~9のいずれか1項に記載の近赤外線吸収ガラス。 - 厚み0.11mm換算の透過率特性として、反射損失を含む外部透過率が50%となる波長である半値λT50が600nm~650nmの範囲にあり、波長1200nmにおける反射損失を含む外部透過率T1200が30%以下であり、かつ波長400nmにおける反射損失を含む外部透過率T400が70%以上である、請求項1~9のいずれか1項に記載の近赤外線吸収ガラス。
- 厚み0.21mm換算の透過率特性として、反射損失を含む外部透過率が50%となる波長である半値λT50が600nm~650nmの範囲にあり、波長1200nmにおける反射損失を含む外部透過率T1200が25%以下であり、かつ波長400nmにおける反射損失を含む外部透過率T400が70%以上である、請求項1~9のいずれか1項に記載の近赤外線吸収ガラス。
- 波長550nm以上で反射損失を含む外部透過率が50%となる波長である半値λT50が645nmとなるガラスの厚みが0.25mm以下であり、
前記厚みにおいて、波長600nmにおける反射損失を含む外部透過率T600が50%以上であり、かつ波長1200nmにおける反射損失を含む外部透過率T1200が30%以下である、請求項1~9のいずれか1項に記載の近赤外線吸収ガラス。 - 波長550nm以上で反射損失を含む外部透過率が50%となる波長である半値λT50が645nmとなるガラスの厚みが0.25mm以下であり、
前記厚みにおいて、波長600nmにおける反射損失を含む外部透過率T600が50%以上であり、かつ波長1200nmにおける反射損失を含む外部透過率T1200がβ1%以下であり、
前記β1は下記式B1:
(式B1)
β1=64×R-170
により算出される値であり、
前記式B1中、
Rは前記比率(Oイオン/Pイオン)である、請求項1~9のいずれか1項に記載の近赤外線吸収ガラス。 - 請求項1~15のいずれか1項に記載の近赤外線吸収ガラスからなる近赤外線カットフィルタ。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020237000639A KR20230022221A (ko) | 2020-07-10 | 2021-05-31 | 근적외선 흡수 유리 및 근적외선 컷 필터 |
US18/013,977 US20230322609A1 (en) | 2020-07-10 | 2021-05-31 | Near-infrared absorbing glass and near-infrared cut filter |
CN202180049196.1A CN115803295A (zh) | 2020-07-10 | 2021-05-31 | 近红外线吸收玻璃及近红外线截止滤光片 |
JP2022534948A JPWO2022009558A1 (ja) | 2020-07-10 | 2021-05-31 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-119553 | 2020-07-10 | ||
JP2020119553 | 2020-07-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022009558A1 true WO2022009558A1 (ja) | 2022-01-13 |
Family
ID=79552329
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/020579 WO2022009558A1 (ja) | 2020-07-10 | 2021-05-31 | 近赤外線吸収ガラスおよび近赤外線カットフィルタ |
Country Status (6)
Country | Link |
---|---|
US (1) | US20230322609A1 (ja) |
JP (1) | JPWO2022009558A1 (ja) |
KR (1) | KR20230022221A (ja) |
CN (1) | CN115803295A (ja) |
TW (1) | TW202206391A (ja) |
WO (1) | WO2022009558A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114455836A (zh) * | 2022-03-24 | 2022-05-10 | 成都光明光电股份有限公司 | 近红外光吸收玻璃、元件及滤光器 |
WO2024106186A1 (ja) * | 2022-11-18 | 2024-05-23 | Agc株式会社 | フツリン酸ガラス、近赤外線カットフィルタ及び撮像装置 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115598823B (zh) * | 2022-12-12 | 2023-05-23 | 中国科学院长春光学精密机械与物理研究所 | 太阳空间望远镜的对日滤光镜组件及其热分析方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5438311A (en) * | 1977-08-31 | 1979-03-22 | Hoya Glass Works Ltd | Low temperature melting coating glass capable of highly absorbing laser |
WO2012018026A1 (ja) * | 2010-08-03 | 2012-02-09 | 旭硝子株式会社 | 近赤外線カットフィルタガラスおよびその製造方法 |
JP2016506350A (ja) * | 2012-11-30 | 2016-03-03 | コーニング インコーポレイテッド | ガラスフリット抗菌コーティング |
CN110255897A (zh) * | 2019-06-25 | 2019-09-20 | 成都光明光电股份有限公司 | 一种玻璃、玻璃制品及其制造方法 |
CN110255886A (zh) * | 2019-06-25 | 2019-09-20 | 成都光明光电股份有限公司 | 一种玻璃、玻璃制品及其制造方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4169545B2 (ja) * | 2002-07-05 | 2008-10-22 | Hoya株式会社 | 近赤外光吸収ガラス、近赤外光吸収素子、近赤外光吸収フィルターおよび近赤外光吸収ガラス成形体の製造方法 |
JP3965352B2 (ja) * | 2002-10-16 | 2007-08-29 | Hoya株式会社 | 銅含有ガラス、近赤外光吸収素子および近赤外光吸収フィルター |
DE102012210552B4 (de) | 2012-06-22 | 2014-06-05 | Schott Ag | Farbgläser, Verfahren zu ihrer Herstellung und Verwendung |
KR20170139010A (ko) * | 2015-04-24 | 2017-12-18 | 아사히 가라스 가부시키가이샤 | 근적외선 컷 필터 유리 |
CN107561613A (zh) * | 2016-06-30 | 2018-01-09 | 旭硝子株式会社 | 紫外线透射滤波器 |
-
2021
- 2021-05-31 CN CN202180049196.1A patent/CN115803295A/zh active Pending
- 2021-05-31 US US18/013,977 patent/US20230322609A1/en active Pending
- 2021-05-31 JP JP2022534948A patent/JPWO2022009558A1/ja active Pending
- 2021-05-31 TW TW110119635A patent/TW202206391A/zh unknown
- 2021-05-31 KR KR1020237000639A patent/KR20230022221A/ko not_active Application Discontinuation
- 2021-05-31 WO PCT/JP2021/020579 patent/WO2022009558A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5438311A (en) * | 1977-08-31 | 1979-03-22 | Hoya Glass Works Ltd | Low temperature melting coating glass capable of highly absorbing laser |
WO2012018026A1 (ja) * | 2010-08-03 | 2012-02-09 | 旭硝子株式会社 | 近赤外線カットフィルタガラスおよびその製造方法 |
JP2016506350A (ja) * | 2012-11-30 | 2016-03-03 | コーニング インコーポレイテッド | ガラスフリット抗菌コーティング |
CN110255897A (zh) * | 2019-06-25 | 2019-09-20 | 成都光明光电股份有限公司 | 一种玻璃、玻璃制品及其制造方法 |
CN110255886A (zh) * | 2019-06-25 | 2019-09-20 | 成都光明光电股份有限公司 | 一种玻璃、玻璃制品及其制造方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114455836A (zh) * | 2022-03-24 | 2022-05-10 | 成都光明光电股份有限公司 | 近红外光吸收玻璃、元件及滤光器 |
CN114455836B (zh) * | 2022-03-24 | 2023-07-18 | 成都光明光电股份有限公司 | 近红外光吸收玻璃、元件及滤光器 |
WO2024106186A1 (ja) * | 2022-11-18 | 2024-05-23 | Agc株式会社 | フツリン酸ガラス、近赤外線カットフィルタ及び撮像装置 |
Also Published As
Publication number | Publication date |
---|---|
CN115803295A (zh) | 2023-03-14 |
JPWO2022009558A1 (ja) | 2022-01-13 |
US20230322609A1 (en) | 2023-10-12 |
KR20230022221A (ko) | 2023-02-14 |
TW202206391A (zh) | 2022-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022009558A1 (ja) | 近赤外線吸収ガラスおよび近赤外線カットフィルタ | |
JP7320100B2 (ja) | 光学ガラスおよび光学素子 | |
TWI545098B (zh) | Optical glass, prefabricated and optical components | |
CN111892297B (zh) | 磷酸盐光学玻璃、压制成型用玻璃材料及光学元件 | |
WO2019017205A1 (ja) | 光学ガラスおよび光学素子 | |
KR20160111842A (ko) | 광학 유리 및 광학 소자 | |
JP7003198B2 (ja) | ガラス、プレス成形用ガラス素材、光学素子ブランク、および光学素子 | |
JP6537781B2 (ja) | 光学ガラス、光学素子及びプリフォーム | |
JP6812147B2 (ja) | 光学ガラス、光学素子ブランク、および光学素子 | |
CN105985017B (zh) | 光学玻璃及光学元件 | |
TWI735451B (zh) | 玻璃、光學玻璃、抛光用玻璃材料、壓製成型用玻璃材料及光學元件 | |
JP6812148B2 (ja) | 光学ガラス、光学素子ブランク、および光学素子 | |
WO2022260037A1 (ja) | 近赤外線吸収ガラスおよび近赤外線カットフィルタ | |
JP6961547B2 (ja) | 光学ガラスおよび光学素子 | |
WO2021132645A1 (ja) | 近赤外線吸収ガラスおよび近赤外線カットフィルタ | |
TWI707834B (zh) | 磷酸鹽光學玻璃、壓製成型用玻璃材料及光學元件 | |
JP2022189704A (ja) | 近赤外線吸収ガラスおよび近赤外線カットフィルタ | |
WO2017002956A1 (ja) | 光学ガラスおよび光学素子 | |
JP7169870B2 (ja) | 光学ガラス、レンズプリフォーム及び光学素子 | |
CN117425628A (zh) | 近红外线吸收玻璃及近红外线截止滤光片 | |
JP2023181083A (ja) | 光学ガラスおよび光学素子 | |
JP2022021586A (ja) | 光学ガラスおよび光学素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21836840 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022534948 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20237000639 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21836840 Country of ref document: EP Kind code of ref document: A1 |