WO2022009300A1 - Substrate with insulating heat dissipation block and method for producing same - Google Patents

Substrate with insulating heat dissipation block and method for producing same Download PDF

Info

Publication number
WO2022009300A1
WO2022009300A1 PCT/JP2020/026533 JP2020026533W WO2022009300A1 WO 2022009300 A1 WO2022009300 A1 WO 2022009300A1 JP 2020026533 W JP2020026533 W JP 2020026533W WO 2022009300 A1 WO2022009300 A1 WO 2022009300A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
insulating
substrate
block
electronic component
Prior art date
Application number
PCT/JP2020/026533
Other languages
French (fr)
Japanese (ja)
Inventor
徹 松本
Original Assignee
株式会社メイコー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社メイコー filed Critical 株式会社メイコー
Priority to PCT/JP2020/026533 priority Critical patent/WO2022009300A1/en
Publication of WO2022009300A1 publication Critical patent/WO2022009300A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks

Definitions

  • the present invention relates to a substrate with an insulating heat radiating block having insulating and heat radiating properties, and a method for manufacturing the same.
  • a component-embedded board containing heat-generating electronic components such as power devices is known. Further, such an electronic component may be mounted on the outside of the substrate by using solder reflow or the like (component mounting board). In order to release the heat generated from these electronic components that are heating elements, heat is dissipated on the substrate by various methods.
  • the heat-dissipating resin material which is highly filled with a ceramic filler and has heat-dissipating properties, has insulation and heat-dissipating properties by itself, so that it is possible to secure insulation to the outside of the circuit of the substrate and further heat-dissipating properties. Therefore, it is useful in such a case (see, for example, Patent Document 1).
  • the heat-dissipating resin material having the insulating property which is highly filled with the above-mentioned ceramic filler, is formed over the entire surface of the substrate. Since this heat-dissipating resin material is very hard, there is a problem in workability. In particular, the wear of the drill bit becomes remarkable due to the influence of the ceramic filler when forming the through hole, and when trying to form an appropriate through hole, the bit life must be set extremely short. Similarly, the same problem occurs in external router processing.
  • the present invention takes into consideration the above-mentioned prior art, and can arrange a heat radiating body having necessary heat radiating characteristics according to a necessary place, and can also improve the processability of a substrate. It is an object of the present invention to provide a substrate with a block and a method for manufacturing the same.
  • an insulating layer made of an insulating resin material, a conductive layer arranged on both sides of the insulating layer, a substrate main body composed of the conductive layer and the insulating layer, and the substrate.
  • a heat-generating electronic component disposed on one surface or inside of the main body, a heat dissipation path thermally connected to the electronic component and extending toward the other surface of the substrate body, and the most of the heat dissipation path.
  • Insulation having an insulating region defined by the outer edge and an outer edge outside the heat dissipation region and inside the edge of the board body and attached to the other surface of the board body.
  • a substrate with an insulating heat radiating block which is characterized by having a sexual heat radiating block.
  • the insulating heat dissipation block has an outer edge on the outer side of the outer edge of the electronic component.
  • a method for manufacturing a substrate with an insulating heat radiating block which comprises a substrate main body manufacturing step and a mounting step of mounting the insulating block on the other surface of the board main body.
  • the insulating heat dissipation block since the outer edge of the insulating heat dissipation block is formed outside the heat dissipation area and inside the edge of the substrate main body, the insulating heat dissipation block is arranged at a position corresponding to this for each electronic component. be able to. For this reason, since the insulating heat radiating block of the required shape is arranged at the required place, waste of resources can be saved, and the insulating heat radiating block is also processed when machining by forming a through hole or the like. It is no longer necessary and the workability of the substrate body is improved.
  • the outer edge of the insulating heat dissipation block is formed outside the outer edge of the electronic component, the area where heat is generated can be reliably captured and the heat dissipation is improved.
  • the insulating heat dissipation block in order to determine the thickness of the insulating heat dissipation block in consideration of the rated voltage of the electronic component, if the insulating heat dissipation block is arranged by changing the thickness for each electronic component, appropriate insulation and heat dissipation are provided. Can realize sex. Further, since the insulating heat dissipation block is mounted on the other surface of the board body, even if the heat dissipation characteristics of the insulating heat dissipation block prepared in the block preparation process are different from the heat dissipation characteristics required by the electronic components, it is easy to do so. Since it can be replaced, there is no need to review the structure of the board body.
  • an insulating heat radiating block 5 having an insulating property is attached to the surface of a substrate main body 4 composed of an insulating layer 2 and a conductive layer 3.
  • the insulating layer 2 is made of an insulating resin material, and is, for example, a prepreg which is an adhesive sheet semi-cured by impregnating a glass cloth as a reinforcing material with an uncured thermosetting resin.
  • the conductive layer 3 is formed of a conductive material such as copper and is arranged on both sides of the insulating layer 2.
  • the substrate main body 4 may be a multilayer board in which the insulating layer 2 and the conductive layer 3 are composed of a plurality of layers.
  • the board body 4 has an electronic component 6.
  • the electronic component 6 shows an example of a component built-in board arranged inside the substrate main body 4.
  • the electronic component 6 is accompanied by heat generation, and includes, for example, passive components such as resistors, capacitors, and inductors, and active components such as ICs, LSIs, and power devices.
  • the electronic component 6 may be a component mounting board mounted and mounted on one surface of the board body 4.
  • the electronic component 6 is thermally connected to the heat dissipation path 7 in order to release the generated heat.
  • the heat dissipation path 7 is formed of vias and extends from the electronic component 6 toward the other surface of the substrate body 4. As shown in FIG. 2, when a plurality of heat dissipation paths 7 are provided, the region defined by the outermost edges thereof is the heat dissipation region 8.
  • the above-mentioned insulating heat dissipation block 5 is attached to the surface on the side where the heat dissipation path 7 extends with respect to the substrate main body 4, that is, the other surface. Specifically, vias forming a heat dissipation path 7 are thermally connected to the metal foil 12 formed on the surface of the electronic component 6, and a plurality of heat dissipation paths 7 are formed on the other surface of the substrate body 4. All of them are connected to the conductive portion 13 formed of a part of the conductive layer 3. The insulating heat dissipation block 5 is thermally connected to the conductive portion 13.
  • a copper foil (or other metal foil) 10 is formed on the insulating heat dissipation block 5 by spattering, joining, or the like.
  • the insulating heat radiating block 5 is mounted on the conductive portion 13 of the substrate main body 4 with solder 11 via the copper foil 10. If the copper foil 10 is provided in this way, the insulating heat dissipation block 5 can be mounted by a simple method of using the solder 11. Instead of the copper foil 10, copper plating, tin plating, or NiAu plating may be used. Even if the insulating heat dissipation block 5 is not provided with the copper foil 10, it may be adhered to the conductive portion 13 by using a conductive adhesive such as Ag paste.
  • the outer edge of the insulating heat dissipation block 5 is located outside the heat dissipation area 8 and inside the edge of the substrate main body 4. That is, the insulating heat radiating block 5 is arranged corresponding to each electronic component 6.
  • the heat dissipation block is made of a material that has insulating properties and also has heat dissipation properties.
  • AIN aluminum nitride
  • Si3N4 silicon nitride
  • High heat dissipation prepreg material can also be used.
  • the insulating heat radiating block 5 With this insulating heat radiating block 5, the insulating property to the outside of the substrate main body 4 can be ensured, and heat dissipation can be further realized.
  • the insulating heat dissipation block 5 is not arranged at the position of the opening of the through hole 9 exposed on the surface of the substrate body 4 (the substrate body). 4 has a through hole 9, and the insulating heat dissipation block 5 is not arranged with respect to the opening of the through hole 9). This eliminates the need to process the insulating heat radiating block 5 when processing the through hole 9, and improves workability.
  • through-hole plating is formed in the through-hole 9, and electrical connection is made between both sides of the substrate main body 4.
  • the insulating heat radiating block 5 is located at a position corresponding to the outer edge of the insulating heat radiating block 5 for each electronic component 6. Can be arranged. For this reason, since the insulating heat radiating block 5 having the required shape is arranged at the required place, waste of resources can be eliminated, and the insulating heat radiating block 5 can be machined by forming a through hole 9 or the like. There is no need to process it, and the workability of the substrate body 4 is improved.
  • the insulating heat radiating block 5 may have an outer edge outside the outer edge of the electronic component 6. That is, even when the heat dissipation region 8 defined by the outer edges of the plurality of heat dissipation paths 7 is inside the outer edge of the electronic component 6, the outer edge of the insulating heat dissipation block 5 is outside the outer edge of the electronic component 6.
  • the heat-generating region 8 can be reliably captured regardless of the position of the heat-dissipating region 8, and the heat-dissipating property can be improved.
  • the present invention can be applied to the substrate main body 4 having various structures by arranging the insulating heat radiating block 5 in the right place in the right material.
  • it can be applied to a thick copper substrate as shown in FIG. 3 (mainly a conductive layer 3 having a thickness of 105 ⁇ m or more).
  • the electronic component 6 is mounted on one surface of the substrate body 4 (connected to the conductive layer 3 by the lead wire 14), and the heat dissipation path 7 extends from the electronic component 6 to the opposite surface of the substrate body 4. It is a through-hole plating formed in the through-hole 9. It can also be applied to the thermal via thickening structure of a thick copper substrate as shown in FIG.
  • the substrate body is provided with a through hole for heat dissipation provided on a package substrate such as BGA, and the through hole for heat dissipation is the heat dissipation path 7.
  • the heat dissipation path 7 is the heat dissipation pin 15 and the metal film 16 formed around the heat dissipation pin 15. Therefore, the insulating heat dissipation block 5 has an outer edge thereof outside the outer edge of the metal film 16 including the heat dissipation pin 15.
  • a solder resist 17 for insulation is arranged on the surface of the substrate main body 4. Further, as shown in FIG. 6, it can be applied to the substrate main body 4 in which the copper block 17 is built for heat dissipation.
  • the copper block 17 and a plurality of vias 18 extending from the copper block 17 toward the other surface of the substrate body 4 (two vias 18 via the conductive layer 3 in the figure) serve as the heat dissipation path 7.
  • the outer edge of the insulating heat dissipation block 5 is located outside the heat dissipation region 8 defined by the outer edge of the heat dissipation path 7 (located outside the outer edge of the electronic component 6). ..
  • a block preparation step is performed (step S1).
  • This step is a step of preparing an insulating heat radiating block 5 having a thickness having required heat radiating characteristics in consideration of the rated voltage of the electronic component 6.
  • the substrate main body manufacturing process is performed (step S2).
  • This step is a step of forming the substrate main body 4 including the electronic component 6. Whether the electronic component 6 is built in or mounted on the board body 4, the board body 4 is manufactured by a manufacturing process corresponding to the electronic component 6.
  • the mounting step is performed (step S3).
  • This step is a step of attaching the insulating block 5 to the other surface (radiation path 7 side) of the substrate main body 4.
  • various electronic components 6 are arranged on the substrate main body 4, so that the thickness of the insulating heat dissipation block 5 is determined in consideration of the rated voltage of the electronic components 6, and each electronic component 6 is determined.
  • Appropriate heat dissipation can be realized by arranging the insulating heat dissipation block 5 by changing the thickness.
  • the present invention is characterized in that it can realize the insulating property required by the thickness of the insulating heat radiating block 5. It is known that the larger the thickness, the higher the insulation. It is also known that the heat dissipation is enhanced by increasing the contact area of the insulating heat dissipation block 5 with the substrate main body 4.
  • the block preparation step it is preferable to consider not only the thickness of the insulating heat dissipation block 5 but also the heat dissipation due to the size of the contact area with the substrate main body 4.
  • a plurality of insulating heat radiating blocks 5 having a thickness corresponding to each of the electronic components 6 are arranged on the substrate main body 4. Further, since the insulating heat dissipation block 5 is mounted on the other surface of the substrate main body 4, it is assumed that the heat dissipation characteristics of the insulating heat dissipation block 5 prepared in the block preparation step are different from the heat dissipation characteristics required by the electronic component 6. However, since it can be easily replaced, it is not necessary to review the structure of the substrate body 4. In this way, by preparing each block 5 in consideration of the thickness and contact area of the insulating heat radiating block 5, appropriate heat insulating property and heat radiating property can be realized, and in combination with this, depending on the location. The block 5 can be easily replaced.
  • Substrate with insulating heat dissipation block 2 Insulation layer 3: Conductive layer 4: Board body 5: Insulation heat dissipation block, 6: Electronic components, 7: Heat dissipation path, 8: Heat dissipation area, 9: Through hole 10,: Copper foil, 11: Solder, 12: Metal foil, 13: Conductive part, 14: Lead wire, 15: Heat dissipation pin, 16: Metal film, 17: Copper block, 18: Via

Abstract

This substrate (1) with an insulating heat dissipation block is provided with: an insulating layer (2) that is formed of an insulating resin material; conductive layers (3) that are arranged on both surfaces of the insulating layer (2); a substrate main body (4) that is composed of the conductive layers (3) and the insulating layer (2); an electronic component (6) that is arranged on one surface of or within the substrate main body (4), said electronic component generating heat; a heat dissipation path (7) that is thermally connected with the electronic component (6) and extends toward the other surface of the substrate main body (4); a heat dissipation region (8) that is defined by the outermost edge of the heat dissipation path (7); and an insulating heat dissipation block (5) which has insulating properties and is fitted to the other surface of the substrate main body (4) so that the outer edge thereof is outside the heat dissipation region (8), while being inside the edge of the substrate main body (4).

Description

絶縁性放熱ブロック付き基板及びその製造方法Substrate with insulating heat dissipation block and its manufacturing method
 本発明は、絶縁性且つ放熱性を備えた絶縁性放熱ブロック付き基板及びその製造方法に関する。 The present invention relates to a substrate with an insulating heat radiating block having insulating and heat radiating properties, and a method for manufacturing the same.
 パワーデバイス等の発熱する電子部品を内蔵した部品内蔵基板が知られている。また、このような電子部品は基板の外側にもはんだリフロー等を用いて実装されることもある(部品搭載基板)。これら発熱体たる電子部品から発された熱を放出するため、種々の方法で放熱が基板には図られている。特にセラミックフィラーが高充填された絶縁性を有する放熱樹脂材は、それ単体で絶縁性と放熱性を備えていることから、基板の回路外への絶縁性を確保でき、さらに放熱性も確保できるためこのような場合に有用である(例えば特許文献1参照)。 A component-embedded board containing heat-generating electronic components such as power devices is known. Further, such an electronic component may be mounted on the outside of the substrate by using solder reflow or the like (component mounting board). In order to release the heat generated from these electronic components that are heating elements, heat is dissipated on the substrate by various methods. In particular, the heat-dissipating resin material, which is highly filled with a ceramic filler and has heat-dissipating properties, has insulation and heat-dissipating properties by itself, so that it is possible to secure insulation to the outside of the circuit of the substrate and further heat-dissipating properties. Therefore, it is useful in such a case (see, for example, Patent Document 1).
特開2020-87989号公報Japanese Unexamined Patent Publication No. 2020-87989
 しかしながら、上述したセラミックフィラーが高充填された絶縁性を有する放熱樹脂材は、基板の全面に亘って形成されている。この放熱樹脂材は非常に硬いため、加工性に問題がある。特に、スルーホール形成時にセラミックフィラーの影響でドリルビットの摩耗が顕著となり、適正なスルーホールを形成しようとすると、ビットライフが極端に短く設定しなければならない。同様に、外形ルーター加工でも同じ問題が発生する。また、発熱部品ごとに発熱度合いが異なるため、基板に複数の部品が配されている場合、最も高い放熱性を要求する特性に応じた厚みの放熱樹脂材を基板の全面に亘って形成する必要があった。これは、発熱があまり高くない領域にも必要以上の放熱樹脂材が配されていることになり、資源の無駄となっている。 However, the heat-dissipating resin material having the insulating property, which is highly filled with the above-mentioned ceramic filler, is formed over the entire surface of the substrate. Since this heat-dissipating resin material is very hard, there is a problem in workability. In particular, the wear of the drill bit becomes remarkable due to the influence of the ceramic filler when forming the through hole, and when trying to form an appropriate through hole, the bit life must be set extremely short. Similarly, the same problem occurs in external router processing. Further, since the degree of heat generation differs for each heat-generating component, when a plurality of components are arranged on the substrate, it is necessary to form a heat-dissipating resin material having a thickness corresponding to the characteristic requiring the highest heat dissipation over the entire surface of the substrate. was there. This means that more heat-dissipating resin material is arranged than necessary even in areas where heat generation is not so high, which is a waste of resources.
 本発明は、上記従来技術を考慮したものであり、必要な箇所に応じて必要な放熱特性を有する放熱体を配することができ、基板の加工性も併せて向上させることができる絶縁性放熱ブロック付き基板及びその製造方法を提供することを目的とする。 INDUSTRIAL APPLICABILITY The present invention takes into consideration the above-mentioned prior art, and can arrange a heat radiating body having necessary heat radiating characteristics according to a necessary place, and can also improve the processability of a substrate. It is an object of the present invention to provide a substrate with a block and a method for manufacturing the same.
 前記目的を達成するため、本発明では、絶縁樹脂材料からなる絶縁層と、該絶縁層の両面側に配されている導電層と、該導電層及び前記絶縁層からなる基板本体と、該基板本体の一方の表面又は内部に配設されている発熱を伴う電子部品と、該電子部品と熱的に接続されて前記基板本体の他方の表面に向けて延びる放熱経路と、該放熱経路の最も外側の縁にて規定される放熱領域と、該放熱領域よりも外側且つ前記基板本体の縁よりも内側に外縁を有して前記基板本体の他方の表面に取付けられている絶縁性を有する絶縁性放熱ブロックとを備えたことを特徴とする絶縁性放熱ブロック付き基板を提供する。 In order to achieve the above object, in the present invention, an insulating layer made of an insulating resin material, a conductive layer arranged on both sides of the insulating layer, a substrate main body composed of the conductive layer and the insulating layer, and the substrate. A heat-generating electronic component disposed on one surface or inside of the main body, a heat dissipation path thermally connected to the electronic component and extending toward the other surface of the substrate body, and the most of the heat dissipation path. Insulation having an insulating region defined by the outer edge and an outer edge outside the heat dissipation region and inside the edge of the board body and attached to the other surface of the board body. Provided is a substrate with an insulating heat radiating block, which is characterized by having a sexual heat radiating block.
 好ましくは、前記絶縁性放熱ブロックは、前記電子部品の外縁よりも外側に外縁を有している。 Preferably, the insulating heat dissipation block has an outer edge on the outer side of the outer edge of the electronic component.
 また、本発明では、前記電子部品の定格電圧を考慮して必要な絶縁且つ放熱特性を有する厚みの前記絶縁性放熱ブロックを準備するブロック準備工程と、前記電子部品を含む前記基板本体を形成する基板本体製造工程と、前記絶縁性ブロックを前記基板本体の他方の表面に取付ける取付け工程とを備えたことを特徴とする絶縁性放熱ブロック付き基板の製造方法を提供する。 Further, in the present invention, a block preparation step of preparing the insulating heat radiating block having a thickness having necessary insulation and heat dissipation characteristics in consideration of the rated voltage of the electronic component, and forming the substrate main body including the electronic component. Provided is a method for manufacturing a substrate with an insulating heat radiating block, which comprises a substrate main body manufacturing step and a mounting step of mounting the insulating block on the other surface of the board main body.
 本発明によれば、絶縁性放熱ブロックの外縁が放熱領域よりも外側且つ基板本体の縁よりも内側に形成されているので、電子部品毎にこれに対応する位置に絶縁性放熱ブロックを配することができる。このため、必要な箇所に必要な形状の絶縁性放熱ブロックが配されるので、資源の無駄を省くことができ、スルーホールの形成等で機械加工する際にも絶縁性放熱ブロックもろとも加工する必要がなくなり、基板本体の加工性も向上する。 According to the present invention, since the outer edge of the insulating heat dissipation block is formed outside the heat dissipation area and inside the edge of the substrate main body, the insulating heat dissipation block is arranged at a position corresponding to this for each electronic component. be able to. For this reason, since the insulating heat radiating block of the required shape is arranged at the required place, waste of resources can be saved, and the insulating heat radiating block is also processed when machining by forming a through hole or the like. It is no longer necessary and the workability of the substrate body is improved.
 また、絶縁性放熱ブロックの外縁が電子部品の外縁よりも外側に形成されることで、発熱する領域を確実に捉えることができ、放熱性が向上する。 In addition, since the outer edge of the insulating heat dissipation block is formed outside the outer edge of the electronic component, the area where heat is generated can be reliably captured and the heat dissipation is improved.
 また、本発明によれば、電子部品の定格電圧を考慮して絶縁性放熱ブロックの厚みを決定するため、電子部品毎に厚みを変えて絶縁性放熱ブロックを配すれば適切な絶縁性且つ放熱性を実現できる。また、絶縁性放熱ブロックは基板本体の他方の表面に実装されるので、ブロック準備工程にて準備した絶縁性放熱ブロックの放熱特性が電子部品が要求する放熱特性と異なっていたとしても、容易に交換することができるので、基板本体の構造見直しが不要となる。 Further, according to the present invention, in order to determine the thickness of the insulating heat dissipation block in consideration of the rated voltage of the electronic component, if the insulating heat dissipation block is arranged by changing the thickness for each electronic component, appropriate insulation and heat dissipation are provided. Can realize sex. Further, since the insulating heat dissipation block is mounted on the other surface of the board body, even if the heat dissipation characteristics of the insulating heat dissipation block prepared in the block preparation process are different from the heat dissipation characteristics required by the electronic components, it is easy to do so. Since it can be replaced, there is no need to review the structure of the board body.
本発明に係る絶縁性放熱ブロック付き基板の概略断面図である。It is the schematic sectional drawing of the substrate with the insulating heat dissipation block which concerns on this invention. 本発明に係る絶縁性放熱ブロック付き基板の概略底面図である。It is a schematic bottom view of the substrate with an insulating heat dissipation block which concerns on this invention. 本発明に係る別の絶縁性放熱ブロック付き基板の概略断面図である。It is a schematic sectional drawing of another substrate with an insulating heat dissipation block which concerns on this invention. 本発明に係るさらに別の絶縁性放熱ブロック付き基板の概略断面図である。It is the schematic sectional drawing of the substrate with the insulating heat dissipation block which concerns on this invention. 本発明に係るさらに別の絶縁性放熱ブロック付き基板の概略断面図である。It is the schematic sectional drawing of the substrate with the insulating heat dissipation block which concerns on this invention. 本発明に係るさらに別の絶縁性放熱ブロック付き基板の概略断面図である。It is the schematic sectional drawing of the substrate with the insulating heat dissipation block which concerns on this invention. 本発明に係る絶縁性放熱ブロック付き基板の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the substrate with the insulating heat dissipation block which concerns on this invention.
 図1及び図2に示すように、本発明に係る絶縁性放熱ブロック付き基板1は、絶縁層2と導電層3とからなる基板本体4の表面に絶縁性を有する絶縁性放熱ブロック5が取付けられているものである。絶縁層2は絶縁樹脂材料からなり、例えば補強材のガラス布に未硬化の熱硬化性樹脂を含浸させて半硬化にした接着シートたるプリプレグである。一方で導電層3は銅などの導電材料で形成されて絶縁層2の両面側に配されている。なお、基板本体4は絶縁層2と導電層3とが複数層からなる多層板であってもよい。 As shown in FIGS. 1 and 2, in the substrate 1 with an insulating heat radiating block according to the present invention, an insulating heat radiating block 5 having an insulating property is attached to the surface of a substrate main body 4 composed of an insulating layer 2 and a conductive layer 3. It is what has been done. The insulating layer 2 is made of an insulating resin material, and is, for example, a prepreg which is an adhesive sheet semi-cured by impregnating a glass cloth as a reinforcing material with an uncured thermosetting resin. On the other hand, the conductive layer 3 is formed of a conductive material such as copper and is arranged on both sides of the insulating layer 2. The substrate main body 4 may be a multilayer board in which the insulating layer 2 and the conductive layer 3 are composed of a plurality of layers.
 基板本体4は電子部品6を有している。図の例では、電子部品6は基板本体4の内部に配設されている部品内蔵基板の例を示している。電子部品6は発熱を伴うものであり、例えば抵抗、コンデンサ、インダクタ等の受動部品やIC、LSI、パワーデバイス等の能動部品を含む。なお、後述するように電子部品6は基板本体4の一方の表面に実装されて搭載されている部品搭載基板であってもよい。電子部品6は発熱した熱を逃がすため、放熱経路7と熱的に接続されている。図の例では放熱経路7はビアにて形成されていて、電子部品6から基板本体4の他方の表面に向けて延びている。図2に示すように、複数の放熱経路7を有する場合はこれらの最も外側の縁にて規定されている領域が放熱領域8となる。 The board body 4 has an electronic component 6. In the example of the figure, the electronic component 6 shows an example of a component built-in board arranged inside the substrate main body 4. The electronic component 6 is accompanied by heat generation, and includes, for example, passive components such as resistors, capacitors, and inductors, and active components such as ICs, LSIs, and power devices. As will be described later, the electronic component 6 may be a component mounting board mounted and mounted on one surface of the board body 4. The electronic component 6 is thermally connected to the heat dissipation path 7 in order to release the generated heat. In the example shown in the figure, the heat dissipation path 7 is formed of vias and extends from the electronic component 6 toward the other surface of the substrate body 4. As shown in FIG. 2, when a plurality of heat dissipation paths 7 are provided, the region defined by the outermost edges thereof is the heat dissipation region 8.
 上述した絶縁性放熱ブロック5は、基板本体4に対して放熱経路7が延びている側の表面、すなわち他方の表面に対して取付けられている。具体的には、電子部品6の表面に形成された金属箔12に対して放熱経路7を形成するビアが熱的に接続され、複数の放熱経路7は基板本体4の他方の表面に形成されている導電層3の一部からなる導電部13に全て接続されている。この導電部13に対して絶縁性放熱ブロック5は熱的に接続される。絶縁性放熱ブロック5には銅箔(若しくは他の金属箔)10がスパッタや接合等で形成されている。そして、絶縁性放熱ブロック5はこの銅箔10を介してはんだ11にて基板本体4の導電部13に実装されている。このように銅箔10を設ければ、はんだ11を用いるという簡便な方法で絶縁性放熱ブロック5を実装できる。銅箔10の代わりに銅めっきや錫めっき、NiAuめっきを用いてもよい。なお、絶縁性放熱ブロック5に銅箔10を設けずとも、Agペースト等の導電性接着剤を用いて導電部13に接着してもよい。 The above-mentioned insulating heat dissipation block 5 is attached to the surface on the side where the heat dissipation path 7 extends with respect to the substrate main body 4, that is, the other surface. Specifically, vias forming a heat dissipation path 7 are thermally connected to the metal foil 12 formed on the surface of the electronic component 6, and a plurality of heat dissipation paths 7 are formed on the other surface of the substrate body 4. All of them are connected to the conductive portion 13 formed of a part of the conductive layer 3. The insulating heat dissipation block 5 is thermally connected to the conductive portion 13. A copper foil (or other metal foil) 10 is formed on the insulating heat dissipation block 5 by spattering, joining, or the like. The insulating heat radiating block 5 is mounted on the conductive portion 13 of the substrate main body 4 with solder 11 via the copper foil 10. If the copper foil 10 is provided in this way, the insulating heat dissipation block 5 can be mounted by a simple method of using the solder 11. Instead of the copper foil 10, copper plating, tin plating, or NiAu plating may be used. Even if the insulating heat dissipation block 5 is not provided with the copper foil 10, it may be adhered to the conductive portion 13 by using a conductive adhesive such as Ag paste.
 図2を参照すれば明らかなように、この絶縁性放熱ブロック5の外縁は、放熱領域8よりも外側に位置し、基板本体4の縁よりも内側に位置している。すなわち、絶縁性放熱ブロック5は電子部品6毎に対応して配置されることになる。放熱ブロックは絶縁性を有しさらに放熱性も有している材料にて形成されている。例えばセラミックス材料であり、窒化アルミニウム(AIN):180W/m・K、窒化ケイ素(Si3N4):85W/m・Kが利用できる。高放熱プリプレグ材も利用できる。この絶縁性放熱ブロック5により、基板本体4外への絶縁性を担保でき、さらに放熱も実現することができる。なお、絶縁性放熱ブロック5は基板本体4の全体を貫通するスルーホール9が形成されている場合、基板本体4の表面に露出するスルーホール9の開口の位置には配されていない(基板本体4はスルーホール9を有し、絶縁性放熱ブロック5はスルーホール9の開口に対して非配置)。これにより、スルーホール9の加工時に絶縁性放熱ブロック5を加工する必要がなくなり、加工性が向上する。図の例ではスルーホール9内にスルーホールめっきが形成されていて、基板本体4の両面間に電気的接続が施されている。 As is clear from FIG. 2, the outer edge of the insulating heat dissipation block 5 is located outside the heat dissipation area 8 and inside the edge of the substrate main body 4. That is, the insulating heat radiating block 5 is arranged corresponding to each electronic component 6. The heat dissipation block is made of a material that has insulating properties and also has heat dissipation properties. For example, as a ceramic material, aluminum nitride (AIN): 180 W / m · K and silicon nitride (Si3N4): 85 W / m · K can be used. High heat dissipation prepreg material can also be used. With this insulating heat radiating block 5, the insulating property to the outside of the substrate main body 4 can be ensured, and heat dissipation can be further realized. When the through hole 9 penetrating the entire substrate body 4 is formed, the insulating heat dissipation block 5 is not arranged at the position of the opening of the through hole 9 exposed on the surface of the substrate body 4 (the substrate body). 4 has a through hole 9, and the insulating heat dissipation block 5 is not arranged with respect to the opening of the through hole 9). This eliminates the need to process the insulating heat radiating block 5 when processing the through hole 9, and improves workability. In the example of the figure, through-hole plating is formed in the through-hole 9, and electrical connection is made between both sides of the substrate main body 4.
 このように、絶縁性放熱ブロック5の外縁が放熱領域8よりも外側且つ基板本体4の縁よりも内側に形成されているので、電子部品6毎にこれに対応する位置に絶縁性放熱ブロック5を配することができる。このため、必要な箇所に必要な形状の絶縁性放熱ブロック5が配されるので、資源の無駄を省くことができ、スルーホール9の形成等で機械加工する際にも絶縁性放熱ブロック5もろとも加工する必要がなくなり、基板本体4の加工性も向上する。また、絶縁性放熱ブロック5の位置から、電子部品6が内蔵されている場合には基板本体4のどこに電子部品6が配されているかを予測できる。特に電子部品6からの発熱を効率よく放熱する方法としては様々考えられるが、本発明では放熱経路7の外縁で規定される放熱領域8に着目し、これを基に絶縁性放熱ブロック5の外縁を規定したことに特徴を有する。このような思想にて絶縁性放熱ブロック5を配することが、上記種々の効果を効率よく得ることに寄与している。 As described above, since the outer edge of the insulating heat radiating block 5 is formed outside the heat radiating region 8 and inside the edge of the substrate main body 4, the insulating heat radiating block 5 is located at a position corresponding to the outer edge of the insulating heat radiating block 5 for each electronic component 6. Can be arranged. For this reason, since the insulating heat radiating block 5 having the required shape is arranged at the required place, waste of resources can be eliminated, and the insulating heat radiating block 5 can be machined by forming a through hole 9 or the like. There is no need to process it, and the workability of the substrate body 4 is improved. Further, from the position of the insulating heat dissipation block 5, when the electronic component 6 is built in, it is possible to predict where the electronic component 6 is arranged in the substrate main body 4. In particular, various methods for efficiently dissipating heat generated from the electronic component 6 can be considered, but in the present invention, attention is paid to the heat dissipation region 8 defined by the outer edge of the heat dissipation path 7, and the outer edge of the insulating heat dissipation block 5 is based on this. It is characterized by the fact that it is specified. Arranging the insulating heat radiating block 5 based on such an idea contributes to efficiently obtaining the above-mentioned various effects.
 ここで、絶縁性放熱ブロック5は、電子部品6の外縁よりも外側に外縁を有していてもよい。すなわち、複数の放熱経路7の外側の縁で規定される放熱領域8が電子部品6の外縁よりも内側にあった場合でも、絶縁性放熱ブロック5の外縁が電子部品6の外側よりも外側に位置することで、放熱領域8の位置に関係なく、発熱する領域を確実に捉えることができ、放熱性を向上させることができる。 Here, the insulating heat radiating block 5 may have an outer edge outside the outer edge of the electronic component 6. That is, even when the heat dissipation region 8 defined by the outer edges of the plurality of heat dissipation paths 7 is inside the outer edge of the electronic component 6, the outer edge of the insulating heat dissipation block 5 is outside the outer edge of the electronic component 6. By locating the heat-generating region 8, the heat-generating region can be reliably captured regardless of the position of the heat-dissipating region 8, and the heat-dissipating property can be improved.
 上述したように、適材適所に絶縁性放熱ブロック5を配すれば、種々の構造の基板本体4に本発明は適用可能である。例えば、図3のような厚銅基板(主として導電層3として105μm以上の厚さをもつもの)にも適用できる。この例では電子部品6は基板本体4の一方の表面に搭載されていて(リード線14にて導電層3に接続)、放熱経路7は電子部品6から基板本体4の反対側の表面に延びるスルーホール9に形成されたスルーホールめっきである。また、図4のような厚銅基板のサーマルビア厚付け構造にも適用可能である。この例では、BGA等のパッケージ基板に設けた放熱用のスルーホールが設けられている基板本体であり、この放熱用のスルーホールが放熱経路7となっている。また、図5のように電子部品6が内蔵されていて、銅などの放熱ピン15により放熱が図られている基板本体4にも適用可能である。この場合は、放熱経路7は放熱ピン15及びこの放熱ピン15の周囲に形成された金属膜16となる。したがって、絶縁性放熱ブロック5は放熱ピン15を含む金属膜16の外縁よりも外側にその外縁を有する。この例では基板本体4の表面に絶縁のためのソルダレジスト17が配されている。また、図6のように放熱のために銅ブロック17が内蔵されている基板本体4にも適用可能である。この例では銅ブロック17及びこの銅ブロックか17から基板本体4の他方の表面に向かって延びる複数のビア18(図では導電層3を介した2層のビア18)が放熱経路7となる。いずれの例でも、絶縁性放熱ブロック5の外縁は放熱経路7の外側の縁で規定される放熱領域8よりも外側に位置している(電子部品6の外縁よりも外側に位置している)。 As described above, the present invention can be applied to the substrate main body 4 having various structures by arranging the insulating heat radiating block 5 in the right place in the right material. For example, it can be applied to a thick copper substrate as shown in FIG. 3 (mainly a conductive layer 3 having a thickness of 105 μm or more). In this example, the electronic component 6 is mounted on one surface of the substrate body 4 (connected to the conductive layer 3 by the lead wire 14), and the heat dissipation path 7 extends from the electronic component 6 to the opposite surface of the substrate body 4. It is a through-hole plating formed in the through-hole 9. It can also be applied to the thermal via thickening structure of a thick copper substrate as shown in FIG. In this example, the substrate body is provided with a through hole for heat dissipation provided on a package substrate such as BGA, and the through hole for heat dissipation is the heat dissipation path 7. Further, as shown in FIG. 5, it can be applied to a substrate main body 4 in which an electronic component 6 is built in and heat is dissipated by a heat dissipation pin 15 made of copper or the like. In this case, the heat dissipation path 7 is the heat dissipation pin 15 and the metal film 16 formed around the heat dissipation pin 15. Therefore, the insulating heat dissipation block 5 has an outer edge thereof outside the outer edge of the metal film 16 including the heat dissipation pin 15. In this example, a solder resist 17 for insulation is arranged on the surface of the substrate main body 4. Further, as shown in FIG. 6, it can be applied to the substrate main body 4 in which the copper block 17 is built for heat dissipation. In this example, the copper block 17 and a plurality of vias 18 extending from the copper block 17 toward the other surface of the substrate body 4 (two vias 18 via the conductive layer 3 in the figure) serve as the heat dissipation path 7. In each example, the outer edge of the insulating heat dissipation block 5 is located outside the heat dissipation region 8 defined by the outer edge of the heat dissipation path 7 (located outside the outer edge of the electronic component 6). ..
 次に、本発明に係る絶縁性放熱ブロック付き基板1の製造方法を説明する。まず、ブロック準備工程を行う(ステップS1)。この工程は、電子部品6の定格電圧を考慮して必要な放熱特性を有する厚みの絶縁性放熱ブロック5を準備する工程である。次に、基板本体製造工程を行う(ステップS2)。この工程は、電子部品6を含む基板本体4を形成する工程である。電子部品6が基板本体4に対して内蔵であっても搭載であっても、それに応じた製造プロセスにより基板本体4が製造される。そして、取付け工程を行う(ステップS3)。この工程は、絶縁性ブロック5を基板本体4の他方の表面(放熱経路7側)に取付ける工程である。 Next, a method for manufacturing the substrate 1 with an insulating heat dissipation block according to the present invention will be described. First, a block preparation step is performed (step S1). This step is a step of preparing an insulating heat radiating block 5 having a thickness having required heat radiating characteristics in consideration of the rated voltage of the electronic component 6. Next, the substrate main body manufacturing process is performed (step S2). This step is a step of forming the substrate main body 4 including the electronic component 6. Whether the electronic component 6 is built in or mounted on the board body 4, the board body 4 is manufactured by a manufacturing process corresponding to the electronic component 6. Then, the mounting step is performed (step S3). This step is a step of attaching the insulating block 5 to the other surface (radiation path 7 side) of the substrate main body 4.
 このような製造工程によれば、基板本体4には種々の電子部品6が配されるので、電子部品6の定格電圧を考慮して絶縁性放熱ブロック5の厚みを決定し、電子部品6毎に厚みを変えて絶縁性放熱ブロック5を配すれば適切な放熱を実現できる。本発明は、この絶縁性放熱ブロック5の厚みによって求める絶縁性を実現できることに着目した点に特徴がある。厚みが大きければ絶縁性は高まることが分かっている。なお、絶縁性放熱ブロック5の基板本体4との接触面積を大きくすれば放熱性が高まることも分かっている。したがって、ブロック準備工程にて、絶縁性放熱ブロック5の厚みだけでなく、基板本体4との接触面積の大きさによる放熱性も考慮することが好ましい。電子部品6毎にそれに応じた厚みの絶縁性放熱ブロック5が基板本体4には複数配されることになる。また、絶縁性放熱ブロック5は基板本体4の他方の表面に実装されるので、ブロック準備工程にて準備した絶縁性放熱ブロック5の放熱特性が電子部品6が要求する放熱特性と異なっていたとしても、容易に交換することができるので、基板本体4の構造見直しが不要となる。このように、絶縁性放熱ブロック5の厚みや接触面積を考慮して各ブロック5を準備することで、適切な絶縁性及び放熱性を実現できるとともに、これと相俟ってその場所に応じたブロック5の交換も容易となる。 According to such a manufacturing process, various electronic components 6 are arranged on the substrate main body 4, so that the thickness of the insulating heat dissipation block 5 is determined in consideration of the rated voltage of the electronic components 6, and each electronic component 6 is determined. Appropriate heat dissipation can be realized by arranging the insulating heat dissipation block 5 by changing the thickness. The present invention is characterized in that it can realize the insulating property required by the thickness of the insulating heat radiating block 5. It is known that the larger the thickness, the higher the insulation. It is also known that the heat dissipation is enhanced by increasing the contact area of the insulating heat dissipation block 5 with the substrate main body 4. Therefore, in the block preparation step, it is preferable to consider not only the thickness of the insulating heat dissipation block 5 but also the heat dissipation due to the size of the contact area with the substrate main body 4. A plurality of insulating heat radiating blocks 5 having a thickness corresponding to each of the electronic components 6 are arranged on the substrate main body 4. Further, since the insulating heat dissipation block 5 is mounted on the other surface of the substrate main body 4, it is assumed that the heat dissipation characteristics of the insulating heat dissipation block 5 prepared in the block preparation step are different from the heat dissipation characteristics required by the electronic component 6. However, since it can be easily replaced, it is not necessary to review the structure of the substrate body 4. In this way, by preparing each block 5 in consideration of the thickness and contact area of the insulating heat radiating block 5, appropriate heat insulating property and heat radiating property can be realized, and in combination with this, depending on the location. The block 5 can be easily replaced.
1:絶縁性放熱ブロック付き基板、2:絶縁層、3:導電層、4:基板本体、5:絶縁性放熱ブロック、6:電子部品、7:放熱経路、8:放熱領域、9:スルーホール、10:銅箔、11:はんだ、12:金属箔、13:導電部、14:リード線、15:放熱ピン、16:金属膜、17:銅ブロック、18:ビア 1: Substrate with insulating heat dissipation block 2: Insulation layer 3: Conductive layer 4: Board body 5: Insulation heat dissipation block, 6: Electronic components, 7: Heat dissipation path, 8: Heat dissipation area, 9: Through hole 10,: Copper foil, 11: Solder, 12: Metal foil, 13: Conductive part, 14: Lead wire, 15: Heat dissipation pin, 16: Metal film, 17: Copper block, 18: Via

Claims (3)

  1.  絶縁樹脂材料からなる絶縁層と、
     該絶縁層の両面側に配されている導電層と、
     該導電層及び前記絶縁層からなる基板本体と、
     該基板本体の一方の表面又は内部に配設されている発熱を伴う電子部品と、
     該電子部品と熱的に接続されて前記基板本体の他方の表面に向けて延びる放熱経路と、
     該放熱経路の最も外側の縁にて規定される放熱領域と、
     該放熱領域よりも外側且つ前記基板本体の縁よりも内側に外縁を有して前記基板本体の他方の表面に取付けられている絶縁性を有する絶縁性放熱ブロックとを備えたことを特徴とする絶縁性放熱ブロック付き基板。
    An insulating layer made of an insulating resin material and
    The conductive layers arranged on both sides of the insulating layer and
    A substrate body composed of the conductive layer and the insulating layer,
    Electronic components with heat generated on one surface or inside of the substrate body,
    A heat dissipation path that is thermally connected to the electronic component and extends toward the other surface of the substrate body.
    The heat dissipation area defined by the outermost edge of the heat dissipation path,
    It is characterized by having an insulating heat radiating block having an outer edge outside the heat radiating region and inside the rim of the board body and having an insulating property attached to the other surface of the board body. Board with insulating heat dissipation block.
  2.  前記絶縁性放熱ブロックは、前記電子部品の外縁よりも外側に外縁を有していることを特徴とする請求項1に記載の絶縁性放熱ブロック付き基板。 The substrate with an insulating heat radiating block according to claim 1, wherein the insulating heat radiating block has an outer edge outside the outer edge of the electronic component.
  3.  請求項1に記載の絶縁性放熱ブロック付き基板の製造方法であって、
     前記電子部品の定格電圧を考慮して必要な絶縁且つ放熱特性を有する厚みの前記絶縁性放熱ブロックを準備するブロック準備工程と、
     前記電子部品を含む前記基板本体を形成する基板本体製造工程と、
     前記絶縁性ブロックを前記基板本体の他方の表面に取付ける取付け工程とを備えたことを特徴とする絶縁性放熱ブロック付き基板の製造方法。
    The method for manufacturing a substrate with an insulating heat dissipation block according to claim 1.
    A block preparation step for preparing the insulating heat dissipation block having a thickness having necessary insulation and heat dissipation characteristics in consideration of the rated voltage of the electronic component, and
    A substrate body manufacturing process for forming the board body including the electronic components,
    A method for manufacturing a substrate with an insulating heat dissipation block, which comprises a mounting step of mounting the insulating block on the other surface of the board body.
PCT/JP2020/026533 2020-07-07 2020-07-07 Substrate with insulating heat dissipation block and method for producing same WO2022009300A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/026533 WO2022009300A1 (en) 2020-07-07 2020-07-07 Substrate with insulating heat dissipation block and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/026533 WO2022009300A1 (en) 2020-07-07 2020-07-07 Substrate with insulating heat dissipation block and method for producing same

Publications (1)

Publication Number Publication Date
WO2022009300A1 true WO2022009300A1 (en) 2022-01-13

Family

ID=79552302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/026533 WO2022009300A1 (en) 2020-07-07 2020-07-07 Substrate with insulating heat dissipation block and method for producing same

Country Status (1)

Country Link
WO (1) WO2022009300A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0955459A (en) * 1995-06-06 1997-02-25 Seiko Epson Corp Semiconductor device
JP2000340896A (en) * 1999-05-27 2000-12-08 Kyocera Corp Wiring board module
JP2016207743A (en) * 2015-04-17 2016-12-08 新光電気工業株式会社 Wiring board and manufacturing method therefor, and semiconductor device
JP2019029395A (en) * 2017-07-26 2019-02-21 日本シイエムケイ株式会社 Printed wiring board and manufacturing method of the same
JP6716045B1 (en) * 2019-06-14 2020-07-01 株式会社メイコー Component-embedded substrate and method for manufacturing component-embedded substrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0955459A (en) * 1995-06-06 1997-02-25 Seiko Epson Corp Semiconductor device
JP2000340896A (en) * 1999-05-27 2000-12-08 Kyocera Corp Wiring board module
JP2016207743A (en) * 2015-04-17 2016-12-08 新光電気工業株式会社 Wiring board and manufacturing method therefor, and semiconductor device
JP2019029395A (en) * 2017-07-26 2019-02-21 日本シイエムケイ株式会社 Printed wiring board and manufacturing method of the same
JP6716045B1 (en) * 2019-06-14 2020-07-01 株式会社メイコー Component-embedded substrate and method for manufacturing component-embedded substrate

Similar Documents

Publication Publication Date Title
TWI437949B (en) Wiring wiring provided with an electronic component, and a heat dissipation method of a wiring board provided with an electronic component
US8926714B2 (en) Heat dissipating substrate and method of manufacturing the same
JP5480722B2 (en) Heat dissipation component and semiconductor package provided with the same
JP2009021627A (en) Metal core multilayer printed wiring board
US9173290B2 (en) Wiring board having an engineered metallization layer
JPH1154939A (en) Wiring board
JP2006270065A (en) Circuit device
JP6228851B2 (en) Wiring board, method for manufacturing wiring board
JP2010062199A (en) Circuit board
JP6587795B2 (en) Circuit module
WO2022009300A1 (en) Substrate with insulating heat dissipation block and method for producing same
WO2019181428A1 (en) Insulated circuit board and method for producing insulated circuit board
JP6251420B1 (en) Electronic module and method for manufacturing electronic module
JP4283753B2 (en) Multi-layer printed wiring board with built-in electrical components and method for manufacturing the same
JP5411174B2 (en) Circuit board and manufacturing method thereof
KR101092945B1 (en) Package substrate, electronic component package having the same and method of manufacturing package substrate
JP6686467B2 (en) Electronic component heat dissipation structure
JP6633151B2 (en) Circuit module
JP4761200B2 (en) controller
KR102496718B1 (en) Metal PCB having multilayer structure and Manufacturing Method thereof
JP2006310806A (en) Heat dissipation member, substrate for mounting electronic component, package for housing electronic component and electronic apparatus
JP6127852B2 (en) Power module substrate with heat sink and manufacturing method thereof
JP2004289006A (en) Carbon aluminum core substrate
JP2001332827A (en) Circuit board and circuit board for mounting electronic component using the same
KR20100015124A (en) Printed circuit board and the manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20943853

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20943853

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP