WO2022008413A1 - Verfahren zum betreiben eines elektrischen antriebssystems - Google Patents

Verfahren zum betreiben eines elektrischen antriebssystems Download PDF

Info

Publication number
WO2022008413A1
WO2022008413A1 PCT/EP2021/068461 EP2021068461W WO2022008413A1 WO 2022008413 A1 WO2022008413 A1 WO 2022008413A1 EP 2021068461 W EP2021068461 W EP 2021068461W WO 2022008413 A1 WO2022008413 A1 WO 2022008413A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
power
route
trajectory
limit value
Prior art date
Application number
PCT/EP2021/068461
Other languages
English (en)
French (fr)
Inventor
Ottmar Gehring
Christian Ballarin
Steffen Maus
Original Assignee
Cellcentric Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cellcentric Gmbh & Co. Kg filed Critical Cellcentric Gmbh & Co. Kg
Priority to EP21754699.3A priority Critical patent/EP4178824A1/de
Priority to CN202180048130.0A priority patent/CN115812048A/zh
Priority to KR1020237003317A priority patent/KR20230028544A/ko
Priority to US18/004,465 priority patent/US20240092186A1/en
Priority to JP2022580348A priority patent/JP2023532481A/ja
Publication of WO2022008413A1 publication Critical patent/WO2022008413A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/75Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using propulsion power supplied by both fuel cells and batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2045Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for optimising the use of energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/62Monitoring or controlling charging stations in response to charging parameters, e.g. current, voltage or electrical charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L55/00Arrangements for supplying energy stored within a vehicle to a power network, i.e. vehicle-to-grid [V2G] arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/40Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for controlling a combination of batteries and fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • H01M16/003Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers
    • H01M16/006Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers of fuel cells with rechargeable batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • H01M8/04611Power, energy, capacity or load of the individual fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • H01M8/04626Power, energy, capacity or load of auxiliary devices, e.g. batteries, capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/46Drive Train control parameters related to wheels
    • B60L2240/463Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/64Road conditions
    • B60L2240/642Slope of road
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/70Interactions with external data bases, e.g. traffic centres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/42Control modes by adaptive correction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • B60L2260/54Energy consumption estimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the invention relates to a method for operating an electric drive system of a motor vehicle, according to the type defined in more detail in the preamble of claim 1.
  • Electric drive systems for motor vehicles in particular also for commercial vehicles, with a backup battery and at least one fuel cell are known from the general prior art. Furthermore, it is known that fuel cells react disadvantageously to very rapid and dynamic changes in the fuel cell power with regard to their performance and with regard to their service life. It is therefore also known for such electric drive systems to optimize them in such a way that these problems can be remedied.
  • the generic DE 102017213 088 A1 describes a method for operating an electric drive system of a motor vehicle with at least one fuel tank for a fuel cell and at least one traction battery.
  • navigation data are read in and processed in order to use route information to predict consumption data and thereby define phases for the operation of the fuel cell and phases without operation of the fuel cell.
  • the aim of the optimization can be, for example, an optimization of the overall range, an optimization of the performance, an optimization of the number of refueling stops or the like.
  • the object of the present invention is to further improve such a method.
  • the method according to the invention provides that route data is determined, after which consumption data is predicted based on this route data and the operation of the fuel cell is optimized using this data.
  • route data is determined, after which consumption data is predicted based on this route data and the operation of the fuel cell is optimized using this data.
  • a total energy requirement for the planned route is determined, based on the forecast consumption data.
  • An average fuel cell output is then determined, which is required to provide this total energy requirement together with the energy stored in the backup battery at the time of starting, so that the vehicle can cover the route.
  • An average fuel cell power or below also terms such as areas and phases, which can relate to the journey, mean mean values in each case with regard to time units or distance units. In essence, these units are dependent on each other, so that it does not play a significant role whether the considerations are made over the path or over the time required for this path.
  • the average fuel cell power which is required to cover the entire route together with the energy that may still be stored in the buffer battery, is assumed to be the constant average fuel cell power over the entire route and is set in a corresponding constant power trajectory for the power required from the fuel cell .
  • the fuel cell is then operated using this trajectory.
  • limit values of the buffer battery are violated when covering the route with precisely this power trajectory.
  • limit values can be, for example, temperatures that are too high, currents that are too high, a dynamic load on the backup battery that is too high, or the like.
  • its state of charge in particular is used as a limit value, possibly in addition to other of the variables mentioned, as a limit value for the backup battery. This is also used below for the exemplary description of the method, which, however, is not intended to be limited to just this state of charge.
  • the process is already completed at this point so that operation can take place with this constant power trajectory corresponding to the average fuel cell power. If, on the other hand, a limit value is violated, then the power of the fuel cell is changed by a constant amount in the area, and here again either in the temporal or in the distance-related area, in which this violation of the limit value occurs. The power is thus increased or decreased, for example. If the limit value is, for example, the state of charge of the battery and this falls below a critical limit value, then the power of the fuel cell would be increased accordingly in order to have energy to recharge the buffer battery and thus prevent the state of charge from falling below the critical limit value.
  • the power of the fuel cell is now adjusted in the chronological sequence, reduced in the example just described by an average provide the average fuel cell power again over the entire route. This actually results in a new power trajectory for the power from the fuel cell, which in the example described above would look like this: it first starts constantly at the value of the average fuel cell power, then is temporarily increased in the area where the exemplary limit value of the state of charge is violated, to then continue to run constantly below the previously determined average fuel cell output.
  • This new power trajectory is now checked again in the manner described, with these steps being repeated until a power trajectory without violation of limit values of the buffer battery has been determined, which is then used to operate the fuel cell.
  • the size of the phase during which the power of the fuel cell is adjusted is greater than the range in which the limit value is violated.
  • the start of the phase is before the onset of the injury. This is possible because the optimization is based on a forecast and therefore does not have to wait until the limit value is actually violated. It can therefore already counteract such a violation of the limit value before it actually occurs in order to avoid it and thus in particular to protect the backup battery and to optimize its service life. Above all, however, a dynamic load on the fuel cell is dispensed with.
  • the power trajectory includes at least one phase with constant power in the respective phase.
  • the power trajectory can therefore consist of a single phase, which is as long as the entire route or the time required for the route, for example in the event that no violation of a limit value of the backup battery is detected during the first check. It is then correspondingly constant at the average fuel cell power level, so that the fuel cell is continuously operated at steady-state power. If there are several phases, the output of the individual phases can deviate from one another, but it remains constant within the respective phase in order to allow the fuel cell to switch to having to expect the performance, which would be very disadvantageous in terms of the service life of the fuel cell.
  • Another very advantageous embodiment of this method also provides that, in the case of several phases, the transitions between the phases of constant power are specified in the form of ramps and/or curves.
  • ramps or possibly also curves can be specified, which are based in particular on a permitted rate of change in the power of the fuel cell, in order to further phlegmatize the operation of the fuel cell through "smooth" transitions between the individual phases of constant power and to correspondingly protect the fuel cell operate.
  • An extraordinarily favorable development of the method according to the invention can also provide for the check to take place from the start of the route to the first violation of a limit value.
  • the test is therefore carried out iteratively, from the start of the route to the first violation of a limit value.
  • the fuel cell performance is then adjusted to no longer violate this limit, which means that if the test is repeated, it starts again at the start and then tests from left to right in a distance or time diagram, so to speak, until a limit violation occurs again, if necessary, which then represents the new “first” violation for this review.
  • the performance of the fuel cell is then also adjusted again and, if necessary, this is repeated until no more limit values are violated over the entire route.
  • the method can carry out the prognosis of the consumption values on the basis of a modeling of the vehicle with a calculation of drive and braking torques on the route.
  • Such modeling of the vehicle which can be "fed” with corresponding parameters such as the curb weight, the vehicle load and other vehicle-specific boundary conditions that remain the same or that change over time, allows a relatively good forecast of the consumption values in order to be able to use the to improve the method according to the invention even further.
  • the route data can originate from a navigation device of the vehicle, as is the case in the generic prior art mentioned at the outset.
  • the method has its particular advantages when the route planning is carried out in a very forward-looking manner and over a large route area or period of time and is typically also adhered to relatively strictly.
  • it can in particular use route data from a vehicle-external server, which can be designed, for example, as part of a navigation system in the cloud or, according to the advantageous variant just described, as a transport management system for logistics planning.
  • a logistics planning using a transport management system provides a very long-term and reliable route forecast with stopping points, refueling points, rest periods and the like.
  • the driver, the moving load, its weight and other vehicle parameters are also stored in the transport management systems typically used, so that the forecast can be made extremely efficiently and reliably. Due to the relatively large period of time over which the route is planned in advance, a further optimization with regard to the most economical operation of the fuel cell is also achieved by the method according to the invention.
  • the state of charge of the buffer battery can be used as a limit value.
  • a starting value of the state of charge of the backup battery which is required for considering the total energy required, can be measured accordingly, so that the actual state of charge of the backup battery is used.
  • a strategic charge can be made by recharging the buffer battery or by discharging and feeding electricity back into the power grid optimized state of charge before the start. The same applies if recharging takes place on the way from the power grid, for example when a commercial vehicle is being loaded or unloaded.
  • the actual state of charge can be checked cyclically, with the power trajectory being redetermined for the remaining route if it leaves a tolerance band around the predicted state of charge.
  • the reaction can be such that the area between the forecast curve and the respective limit value is integrated accordingly in order to obtain an energy content, which is then correspondingly represented by a Increasing or reducing the power of the fuel cell by a constant value for a corresponding period of time, if possible before the limit value is violated, can be compensated accordingly.
  • the route data within the meaning of the present invention can also include inclines, declines and other events that are permanently present on the route in addition to the pure route.
  • the route data can also contain information that can come from third-party providers, for example. This can include, for example, weather data, traffic data, data about current construction sites, traffic jams, the forecast of traffic density distributions on the route and the like.
  • FIG. 1 shows a schematic block diagram of a system with which the method according to the invention can be carried out; and FIG. 2 shows various diagrams of the battery state of charge and the nominal power value of the fuel cell, which result in an exemplary application of the method according to the invention.
  • a first step is a logistics planning in the box labeled 1 here, which is carried out by a fleet operator of a fleet of vehicles, in particular commercial vehicles.
  • this logistics planning 1 is carried out in a so-called transport management system (TMS).
  • Transport orders are linked to individual vehicles 2 and their drivers.
  • a time and route planning for the respective vehicle 2 is carried out.
  • the data package created in this way in logistics planning 1 typically contains the route data, ie the coordinates of the individual sections, a schedule with departure times, loading and unloading times, break times and the like.
  • information about the vehicle 2 for example various vehicle parameters, its equipment, its vehicle identification number and the like, is stored in the data packet.
  • the data packet also contains data on the driver and on the vehicle's load, and here in particular on its weight.
  • This data packet can be transmitted via the communication labeled 1a to a driving strategy module 3 and received there via a data interface 3.1. It is then further processed in a driving prediction module 3.3. Matching the information about vehicle 2 from the data packet transmitted via communication 1a, data about vehicle 2 is requested via communication 2a/2b via a further interface module 3.2 or read out using a communication module 2.1 of vehicle 2.
  • a communication module 2.1 of vehicle 2. include, for example, physical measured values of the tank 2.3, such as pressure, temperature and filling quantity, which are recorded by a tank control module 2.4, and the state of charge of a backup battery 2.8 and, for example, their thermal load, which can come from a battery management module 2.7.
  • the driving prediction module 3.3 of the driving strategy module 3 uses the logistics planning data and the vehicle data to calculate the energy requirement and other vehicle states on the planned route with the planned vehicle.
  • the influences of the traffic, if necessary the driver, the topography, the weather and the traffic infrastructure are also taken into account accordingly.
  • This information can be requested via additional modules 4, for example in the form of weather information 4.1 and/or traffic information 4.2 as data packets via route 4b and/or retrieved via route 4a.
  • An operating strategy module 3.4 can use the calculated results of the driving prediction module 3.3 to determine an optimized power requirement for a fuel cell 2.6.
  • the necessary drive and braking torques for the entire route are now calculated using a vehicle model, into which the vehicle data of vehicle 2 flow. These are then converted into a power requirement or into a recuperation power from the electric drive machine. From this, an average power requirement based on the respective route section or the respective time unit can be calculated for the entire route. There is therefore an average constant value of the power requirement over the entire route. An average power to be supplied by the fuel cell 2.8 can then be calculated on the basis of the energy in the backup battery 2.6 and this average power requirement or the total energy requirement on the route.
  • the state of charge of the buffer battery 2.8 As a starting value for the state of charge of the buffer battery 2.8, either the actual value that has been recorded via the battery management module 2.7 can be used or, if there is a possibility of connecting the vehicle 2 or its buffer battery 2.8 to a power grid, it can be done by charging the Buffer battery 2.8 or feeding back energy from the buffer battery 2.8 into the network, an optimal starting value for the state of charge (SOC) of the buffer battery 2.8 can be set.
  • SOC state of charge
  • the strategic planning is already complete and the fuel cell 2.6 is operated with this mean value, i.e. a constant power trajectory.
  • a new power trajectory for the fuel cell 2.6 is created with a correspondingly adapted power in the last section shown here, so that the sum total of the average power and thus the total energy from the fuel cell 2.6 for the route, which was determined at the beginning, get.
  • a renewed check no longer results in violations of the limit values of the backup battery 2.8, so that the optimal operating strategy has been found in which the limit values of the backup battery 2.8 are within the permissible limits .
  • the power trajectory for the fuel cell 2.6 now consists of different phases with different power levels of the fuel cell 2.6, with the power remaining constant within each of the phases, however. This enables a very gentle operation of the fuel cell 2.6. This can be further improved by optionally using ramps or other curves instead of a sudden change in performance, as shown here with a solid line, which are based on the maximum rate of change that can be used for the fuel cell 2.6 without a loss service life and performance is possible. In the representation of FIG. 2d), these ramps are drawn in as dashed lines in the power trajectory.
  • this data is calculated after the calculation, which as here shown, preferably in a cloud, displayed to the fleet operator or dispatcher in the logistics planning 1 on the path designated 1b and at the same time transmitted to the vehicle 2 on the path designated 2b.
  • this calculation could also be carried out completely in the vehicle, which does not further affect the method described, but only changes the communication paths in a manner that is self-evident to the person skilled in the art.
  • the calculated operating strategy is then forwarded in the form of a location- or time-dependent power target value for the fuel cell 2.6, i.e. its power trajectory and an assumed precalculated course of the state of charge of the buffer battery 2.8 via the communication module 2.1 to a central drive control module 2.2 of the vehicle 2, which then Operating strategy in the vehicle 2 implemented accordingly.
  • the drive control module 2.2 uses the precalculated power trajectory for the fuel cell 2.6 to specify desired values in the vehicle 2 via the control module 2.5 of the fuel cell 2.6. At the same time, the drive control module 2.2 checks whether there are any deviations between the planned course of the state of charge of the buffer battery 2.8 and the real course during the journey, which can be called up from the battery management module 2.7. If there are deviations between the planned and the actual course of the state of charge of the backup battery 2.8 or if thermal load limits are reached,
  • the drive control module 2.2 can make corrections in the power requirement of the fuel cell 2.6. Up to a certain predefined threshold or a tolerance range around the calculated planned state of charge, this can also remain unnoticed. However, if such a tolerance band is exceeded, it can make sense if the further calculation is not only carried out in the vehicle 2, but is also reflected back to the corresponding driving strategy module 3 in order to carry out the planning process described above again for the remainder of the route ahead and thus the Optimizing planning, even if deviations occurred on the way, for example due to unforeseeable external events such as a sudden traffic jam due to an accident, an unplanned deviation from the route due to a short-term detour or the like.
  • route data can also be updated, in particular with additional information, e.g. updated traffic data, traffic flow data, weather information or the like.

Abstract

Die Erfindung betrifft ein Verfahren zum Betreiben eines elektrischen Antriebssystems eines Kraftfahrzeugs (2) mit Pufferbatterie (2.8) und Brennstoffzelle (2.6) zum Bereitstellen von elektrischer Antriebsleistung. Dabei werden Streckendaten ermittelt und danach, basierend auf diesen Streckendaten, Verbrauchsdaten prognostiziert. Die Erfindung ist dadurch gekennzeichnet, dass zur Optimierung des Betriebs der Brennstoffzelle (2.6) basierend auf den prognostizierten Verbrauchsdaten ein Gesamtenergiebedarf für die Strecke prognostiziert wird, wonach eine mittlere Brennstoffzellenleistung ermittelt wird, welche benötigt wird, um zusammen mit der zum Startzeitpunkt der Strecke in der Pufferbatterie (2.8) gespeicherten Energie den Gesamtenergiebedarf über eine konstante Leistungstrajektorie für die Brennstoffzelle (2.6) festzulegen. Danach erfolgt eine Prüfung, ob beim Abfahren der Strecke mit der Leistungstrajektorie Grenzwerte der Pufferbatterie (2.8) verletzt werden: falls kein Grenzwert verletzt wird, erfolgt der Betrieb der Brennstoffzelle (2.6) mit der festgelegten Leistungstrajektorie; falls ein Grenzwert verletzt wird, dann wird im Bereich der Verletzung des Grenzwerts die Leistung der Brennstoffzelle (2.6) verändert, und in der Folge angepasst, um über die Gesamtstrecke wieder die mittlere Brennstoffzellenleistung zu erreichen, womit eine neue Leistungstrajektorie festgelegt wird. Danach wird die Prüfung mit der neuen Leistungstrajektorie erneut durchlaufen, solange bis eine Leistungstrajektorie ohne Verletzung von Grenzwerten der Pufferbatterie (2.6) ermittelt wurde, nach welcher dann der Betrieb der Brennstoffzelle (2.6) erfolgt.

Description

Verfahren zum Betreiben eines elektrischen Antriebssystems
Die Erfindung betrifft ein Verfahren zum Betreiben eines elektrischen Antriebssystems eines Kraftfahrzeugs, nach der im Oberbegriff von Anspruch 1 näher definierten Art.
Elektrische Antriebssysteme für Kraftfahrzeuge, insbesondere auch für Nutzfahrzeuge, mit einer Pufferbatterie und wenigstens einer Brennstoffzelle sind aus dem allgemeinen Stand der Technik bekannt. Ferner ist es bekannt, dass Brennstoffzellen hinsichtlich ihrer Leistungsfähigkeit und bezüglich ihrer Lebensdauer nachteilig auf sehr schnelle und dynamische Wechsel der Brennstoffzellenleistung reagieren. Daher ist es für derartige elektrische Antriebssysteme ferner bekannt, diese so zu optimieren, dass diesen Problemen abgeholfen werden kann.
Die gattungsgemäße DE 102017213 088 A1 beschreibt in diesem Zusammenhang ein Verfahren zum Betreiben eines elektrischen Antriebssystems eines Kraftfahrzeugs mit mindestens einem Brennstofftank für eine Brennstoffzelle und mindestens einer Traktionsbatterie. Dabei werden Navigationsdaten eingelesen und verarbeitet, um anhand von Streckeninformationen Verbrauchsdaten vorherzusagen und hierdurch Phasen für den Betrieb der Brennstoffzelle und Phasen ohne einen Betrieb der Brennstoffzelle festzulegen. Ziel der Optimierung kann beispielsweise eine Optimierung der Gesamtreichweite, eine Optimierung der Leistung, eine Optimierung der Anzahl der Tankstopps oder dergleichen sein.
Die Aufgabe der hier vorliegenden Erfindung besteht nun darin, ein derartiges Verfahren weiter zu verbessern.
Erfindungsgemäß wird dies durch ein Verfahren mit den Merkmalen im kennzeichnenden Teil des Anspruchs 1 gelöst. Vorteilhafte Ausgestaltungen und Weiterbildungen ergeben sich aus den hiervon abhängigen Unteransprüchen. Das erfindungsgemäße Verfahren sieht es, vergleichbar wie das Verfahren im gattungsgemäßen Stand der Technik, vor, dass Streckendaten ermittelt werden, wonach basierend auf diesen Streckendaten Verbrauchsdaten prognostiziert und anhand dieser Daten der Betrieb der Brennstoffzelle optimiert wird. Erfindungsgemäß ist es nun vorgesehen, dass zur Optimierung des Betriebs der Brennstoffzelle ein Gesamtenergiebedarf für die geplante Strecke ermittelt wird, und zwar basierend auf den prognostizierten Verbrauchsdaten. Im Anschluss wird eine mittlere Brennstoffzellenleistung ermittelt, welche benötigt wird, um zusammen mit der zum Startzeitpunkt in der Pufferbatterie gespeicherten Energie diesen Gesamtenergiebedarf bereitzustellen, sodass das Fahrzeug die Strecke bewältigen kann.
Unter einer mittleren Brennstoffzellenleistung oder nachfolgend auch unter Begriffen wie Bereiche und Phasen, welche sich auf die Fahrt beziehen können sind, dabei Mittelwerte jeweils bezüglich von Zeiteinheiten oder von Streckeneinheiten gemeint. Im Wesentlichen sind diese Einheiten voneinander abhängig, sodass es keine nennenswerte Rolle spielt, ob die Betrachtungen über dem Weg oder über der Zeit, welche für diesen Weg benötigt wird, durchgeführt werden.
Die mittlere Brennstoffzellenleistung, welche benötigt wird, um die gesamte Strecke zusammen mit der gegebenenfalls noch in der Pufferbatterie gespeicherten Energie bewältigen zu können, wird als konstante mittlere Brennstoffzellenleistung über die gesamte Strecke angenommen und in eine dementsprechende konstante Leistungstrajektorie für die aus der Brennstoffzelle benötigte Leistung festgesetzt. Die Brennstoffzelle wird dann anhand dieser Trajektorie betrieben.
Nach dem Festlegen dieser ersten konstanten Leistungstrajektorie erfolgt dann eine Überprüfung dahingehend, ob beim Bewältigen der Strecke mit ebendieser Leistungstrajektorie Grenzwerte der Pufferbatterie verletzt werden. Solche Grenzwerte können beispielsweise zu hohe Temperaturen, zu hohe Ströme, eine zu hohe dynamische Belastung der Pufferbatterie oder dergleichen sein. Gemäß einer besonders vorteilhaften Ausgestaltung des erfindungsgemäßen Verfahrens wird, gegebenenfalls neben anderen der genannten Größen als Grenzwert für die Pufferbatterie insbesondere ihr Ladezustand als Grenzwert verwendet. Dieser dient nachfolgend auch zur beispielhaften Beschreibung des Verfahrens, welches dadurch jedoch nicht auf ebendiesen Ladezustand beschränkt sein soll. Falls die Prognose für die Strecke mit der festgelegten im ersten Anlauf konstanten Leistungstrajektorie für die Brennstoffzelle keinen Grenzwert der Pufferbatterie verletzt, dann ist das Verfahren an dieser Stelle bereits soweit abgeschlossen, dass der Betrieb mit dieser konstanten der mittleren Brennstoffzellenleistung entsprechenden Leistungstrajektorie erfolgen kann. Kommt es dagegen dazu, dass ein Grenzwert verletzt wird, dann wird im Bereich, und auch hier wieder entweder im zeitlichen oder im streckenmäßigen Bereich, in dem diese Verletzung des Grenzwerts auftritt, die Leistung der Brennstoffzelle um einen konstanten Betrag verändert. Die Leistung wird also beispielsweise erhöht oder erniedrigt. Ist der Grenzwert beispielsweise der Ladezustand der Batterie und dieser fällt unter einen kritischen Grenzwert, dann würde die Leistung der Brennstoffzelle entsprechend erhöht werden, um Energie zum Nachladen der Pufferbatterie zu haben, und so einen Abfall des Ladezustands unter dem kritischen Grenzwert zu vermeiden.
Da nun durch die Erhöhung der Leistung in diesem beispielhaften Szenario die von der Brennstoffzelle gelieferte Gesamtleistung bis zu diesem Zeitpunkt oder Ort der Strecke erhöht worden ist, wird nun in der zeitlichen Folge die Leistung der Brennstoffzelle angepasst, im eben beschriebenen Beispiel erniedrigt, um im Mittel über die Gesamtstrecke wieder die mittlere Brennstoffzellenleistung bereitzustellen. Damit ergibt sich faktisch eine neue Leistungstrajektorie für die Leistung aus der Brennstoffzelle, welche in dem oben beschriebenen Beispiel so aussehen würde, dass diese zuerst konstant auf dem Wert der mittleren Brennstoffzellenleistung startet, dann im Bereich der Verletzung des beispielhaften Grenzwerts des Ladezustands vorübergehend erhöht wird, um dann konstant unterhalb der zuvor ermittelten mittleren Brennstoffzellenleistung weiterzulaufen.
Diese neue Leistungstrajektorie wird nun erneut in der beschriebenen Art und Weise geprüft, wobei diese Schritte so lange wiederholt werden, bis eine Leistungstrajektorie ohne eine Verletzung von Grenzwerten der Pufferbatterie ermittelt wurde, welche danach zum Betrieb der Brennstoffzelle genutzt wird. Damit wird also einfach und effizient anhand des mittleren benötigten Energiebedarfs je Strecken- oder Zeiteinheit bzw. anhand des für die gesamte Strecke benötigten Gesamtenergiebedarfs eine mittlere Brennstoffzellenleistung ermittelt und hinsichtlich der Verletzung von Grenzwerten der Pufferbatterie optimiert. Dies ist einfach und effizient. Es schont die Pufferbatterie, da es im Vorfeld bereits über die Prognose ermittelte kritische Zustände abfedern kann und gleichzeitig wird die Leistungsregelung der Brennstoffzelle durch diese Trajektorie phlegmatisiert, sodass die Brennstoffzelle weitestgehend bei konstanter Leistung betrieben wird, was einerseits ihrem Wirkungsgrad und andererseits der Lebensdauer der Brennstoffzelle nutzt.
Gemäß einer außerordentlich günstigen Weiterbildung des erfindungsgemäßen Verfahrens ist es dabei so, dass die Größe der Phase, während welcher die Leistung der Brennstoffzelle angepasst wird, größer ist als der Bereich der Verletzung des Grenzwerts. Dabei liegt der Start der Phase vor dem Beginn der Verletzung. Dies ist möglich, da die Optimierung von einer Prognose ausgeht und damit nicht bis zu der tatsächlich auftretenden Verletzung des Grenzwerts warten muss. Sie kann einer solchen Verletzung des Grenzwerts also bereits gegensteuern, bevor diese tatsächlich auftritt, um diese zu vermeiden und damit insbesondere die Pufferbatterie zu schonen und deren Lebensdauer zu optimieren. Vor allem wird dabei aber auf eine dynamische Belastung der Brennstoffzelle verzichtet. Eine solche wäre nämlich dann nötig, wenn die Verletzung des Grenzwerts, beispielsweise eine Unterschreitung eines kritischen Ladezustands, erst nachdem sie gemessen worden ist, „bekämpft“ werden würde, indem die Brennstoffzelle dann sehr stark und dynamisch bezüglich ihrer Leistung hochgefahren werden würde. Genau das wäre für die Brennstoffzelle jedoch schlecht. Dadurch, dass die Phase des Ausgleichs größer als der Bereich der Verletzung gewählt wird, lässt sich der benötige Leistungssprung in seinem Betrag verringern. Auch dies ist für die Lebensdauer und den Wrkungsgrad der Brennstoffzelle von Vorteil.
Eine weitere sehr vorteilhafte Ausgestaltung des erfindungsgemäßen Verfahrens sieht es ferner vor, dass die Leistungstrajektorie wenigstens eine Phase mit in der jeweiligen Phase konstanter Leistung umfasst. Die Leistungstrajektorie kann also beispielsweise für den Fall, dass bei der ersten Prüfung keine Verletzung eines Grenzwerts der Pufferbatterie festgestellt wird, aus einer einzigen Phase bestehen, welche so lange wie die gesamte Strecke bzw. die für die Strecke benötigte Zeitdauer ist. Sie ist dann entsprechend konstant auf dem mittleren Brennstoffzellenleistungsniveau, sodass die Brennstoffzelle durchgehend mit stationärer Leistung gefahren wird. Bei mehreren Phasen kann die Leistung der einzelnen Phasen voneinander abweichen, innerhalb der jeweiligen Phase bleibt sie jedoch konstant, um der Brennstoffzelle möglichst Wechsel in der Leistung zumuten zu müssen, was hinsichtlich der Lebensdauer der Brennstoffzelle sehr nachteilig wäre.
Eine weitere sehr vorteilhafte Ausgestaltung dieses Verfahrens sieht es ferner vor, dass bei mehreren Phasen die Übergänge zwischen den Phasen konstanter Leistungen in Form von Rampen und/oder Kurven vorgegeben werden. In dieser besonders günstigen Ausgestaltung der Idee wird also auf einen abrupten Wechsel in der von der Brennstoffzelle geforderten Leistung verzichtet. Vielmehr können Rampen oder gegebenenfalls auch Kurven vorgegeben werden, welche sich insbesondere an einer erlaubten Änderungsrate der Leistung der Brennstoffzelle orientieren, um so durch „sanfte“ Übergänge zwischen den einzelnen Phasen konstanter Leistungen den Betrieb der Brennstoffzelle noch weiter zu phlegmatisieren und die Brennstoffzelle dementsprechend schonend zu betreiben.
Eine außerordentlich günstige Weiterbildung des erfindungsgemäßen Verfahrens kann es ferner vorsehen, dass die Prüfung jeweils vom Start der Strecke bis zur ersten Verletzung eines Grenzwerts erfolgt. Die Prüfung wird also iterativ ausgeführt, indem sie vom Start der Strecke bis zur ersten Verletzung eines Grenzwerts erfolgt. Die Brennstoffzellenleistung wird dann angepasst, um diesen Grenzwert nicht mehr zu verletzen, wodurch im Falle einer erneuten Prüfung wieder beim Start begonnen wird und dann in einem Strecken- oder Zeitdiagramm quasi von links nach rechts geprüft wird, bis gegebenenfalls erneut die Verletzung eines Grenzwerts auftritt, welche dann für diese Überprüfung die neue „erste“ Verletzung darstellt. Auch dann wird die Leistung der Brennstoffzelle wieder angepasst und gegebenenfalls wird dies so lange wiederholt, bis über die gesamte Strecke hinweg keine Grenzwerte mehr verletzt werden.
Das Verfahren kann dabei gemäß einer sehr vorteilhaften Weiterbildung der Idee die Prognose der Verbrauchswerte auf Basis einer Modellierung des Fahrzeugs mit einer Berechnung von Antriebs- und Bremsmomenten auf der Strecke durchführen. Eine solche Modellierung des Fahrzeugs, welche mit entsprechenden Parametern wie dem Leergewicht, der Beladung des Fahrzeugs und weiteren fahrzeugspezifischen gleichbleibenden oder auch im Laufe der Zeit wechselnden Randbedingungen „gefüttert“ werden kann, erlaubt eine relativ gute Prognose der Verbrauchswerte, um so den Betrieb anhand des erfindungsgemäßen Verfahrens noch weiter zu verbessern. Die Streckendaten können dabei prinzipiell, wie es im eingangs genannten gattungsgemäßen Stand der Technik der Fall ist, von einem Navigationsgerät des Fahrzeugs stammen. Das Verfahren hat seine besonderen Vorteile jedoch dann, wenn die Streckenplanung sehr vorausschauend und über einen großen Streckenbereich oder Zeitabschnitt durchgeführt wird und typischerweise auch relativ streng eingehalten wird. Sie kann dazu insbesondere Streckendaten von einem fahrzeugexternen Server nutzen, dieser kann beispielsweise als Teil eines Navigationssystems in der Cloud oder gemäß der eben beschriebenen vorteilhaften Variante als Transportmanagementsystem einer Logistikplanung ausgebildet sein. Eine solche Logistikplanung über ein Transportmanagementsystem, wie sie vor allem im Bereich des Transports von Waren mit Nutzfahrzeugen vorkommt, liefert eine sehr langfristige und zuverlässige Streckenprognose mit Haltepunkten, Tankpunkten, Ruhezeiten und dergleichen. In den typischerweise eingesetzten Transportmanagementsystemen sind außerdem der Fahrer, die bewegte Ladung, deren Gewicht und weitere Parameter des Fahrzeugs hinterlegt, sodass die Prognose außerordentlich effizient und zuverlässig erfolgen kann. Durch den relativ großen Zeitabschnitt, über den die Strecke vorausgeplant ist, wird außerdem eine weitere Optimierung hinsichtlich eines möglichst schonenden Betriebs der Brennstoffzelle durch das erfindungsgemäße Verfahren erreicht.
Wie bereits angesprochen kann als Grenzwert der Ladezustand der Pufferbatterie verwendet werden. In diesem Fall kann gemäß einer vorteilhaften Weiterbildung der Verwendung des Ladezustands als Grenzwert ein Startwert des Ladezustandes der Pufferbatterie, welcher für die Betrachtung der benötigten Gesamtenergie erforderlich ist, entsprechend gemessen werden, sodass also der tatsächliche Ladezustand der Pufferbatterie verwendet wird. Besteht die Möglichkeit, die Pufferbatterie aus einem stationären Stromnetz nachzuladen, handelt es sich bei dem Fahrzeug also um ein sogenanntes Plug-in-Fahrzeug, dann kann durch ein Nachladen der Pufferbatterie oder auch durch ein Entladen und Rückspeisen von Strom in das Stromnetz ein jeweils strategisch optimierter Ladezustand vor dem Start eingestellt werden. Vergleichbares gilt auch dann, wenn unterwegs ein Nachladen am Stromnetz stattfindet, beispielsweise im Rahmen einer Ent- oder Beladung eines Nutzfahrzeugs. Kommt beispielsweise im Anschluss an einen solchen Ladestopp oder im Anschluss an den Start und den damit verbundenen Ladestopp eine Gefällstrecke, dann kann es sinnvoll sein, elektrische Energie von der Batterie in das Stromnetz zurückzuspeisen, geht es dagegen bergauf, kann die Pufferbatterie nach Möglichkeit vollgeladen werden. Dabei kann gemäß einer sehr vorteilhaften Weiterbildung dieser Idee eine zyklische Überprüfung des tatsächlichen Ladezustands erfolgen, wobei für den Fall, dass dieser ein Toleranzband um den prognostizierten Ladezustand verlässt, eine Neuermittlung der Leistungstrajektorie für die restliche Strecke erfolgt. Dies hat den Vorteil, dass für den Fall, dass die anhand einer reinen Modellierung und Prognose erstellte Leistungstrajektorie zu mehr oder weniger erheblichen Abweichungen während des realen Betriebs führt, eine entsprechende Neuberechnung bzw. Nachjustierung möglich wird, um die Planung wieder hinsichtlich des Energieverbrauchs und der Lebensdauer der Brennstoffzelle und/oder der Pufferbatterie zu optimieren.
Für den Fall des Ladezustands kann bei einer Überschreitung oder Unterschreitung des Grenzwerts in der modellierten Prognose darauf in der Art reagiert werden, dass die Fläche zwischen der prognostizierten Kurve und dem jeweiligen Grenzwert entsprechend aufintegriert wird, um einen Energieinhalt zu bekommen, welcher dann entsprechend durch eine Erhöhung oder Verringerung der Leistung der Brennstoffzelle um einen konstanten Wert für einen entsprechenden Zeitraum, nach Möglichkeit vor dem Eintreten der Verletzung des Grenzwerts, entsprechend ausgeglichen werden kann.
Die Streckendaten im Sinne der hier vorliegenden Erfindung können neben der reinen Fahrstrecke auch Steigungen, Gefälle und andere auf der Strecke permanent vorliegende Ereignisse umfassen. Daneben können die Streckendaten auch Informationen, welche beispielsweise von Drittanbietern stammen können, beinhalten. Dies können beispielsweise Wetterdaten, Verkehrsdaten, Daten über aktuelle Baustellen, Staus, die Vorhersage von Verkehrsdichteverteilungen auf der Strecke und dergleichen umfassen.
Weitere vorteilhafte Ausgestaltungen des erfindungsgemäßen Verfahrens ergeben sich auch aus dem Ausführungsbeispiel, welches nachfolgend unter Bezugnahme auf die Figuren näher beschrieben ist. Dabei zeigen:
Fig. 1 ein schematisches Blockschaltbild eines Systems, mit welchem das erfindungsgemäße Verfahren durchgeführt werden kann; und Fig. 2 verschiedene Diagramme des Batterieladezustands und des Leistungssollwerts der Brennstoffzelle, welche sich in einer beispielhaften Anwendung des erfindungsgemäßen Verfahrens ergeben.
Ein möglicher detaillierter Ablauf, welcher unter anderem das erfindungsgemäße Verfahren in einer bevorzugten Weiterbildung umfasst, wird nachfolgend anhand eines schematischen Blockschaltbildes in Fig. 1 beschrieben.
Ein erster Schritt ist dabei eine Logistikplanung in der hier mit 1 bezeichneten Box, die bei einem Flottenbetreiber einer Flotte von Fahrzeugen, insbesondere Nutzfahrzeugen, erfolgt. Im Allgemeinen wird diese Logistikplanung 1 in einem sogenannten Transportmanagementsystem (TMS) durchgeführt. Dabei werden Transportaufträge mit einzelnen Fahrzeugen 2 und ihren Fahrern verknüpft. Ferner wird eine Zeit- und Streckenplanung für das jeweilige Fahrzeug 2 durchgeführt. Das so in der Logistikplanung 1 entstandene Datenpaket enthält typischerweise die Streckendaten, also die Koordinaten der einzelnen Abschnitte, eine Zeitplanung mit Abfahrtszeiten, Be- und Entladezeiten, Pausenzeiten und dergleichen. Außerdem sind in dem Datenpaket Angaben zum Fahrzeug 2, beispielsweise verschiedene Fahrzeugparameter, seine Ausstattung, seine Fahrzeugidentifikationsnummer und dergleichen, hinterlegt. Ferner enthält das Datenpaket Daten zum Fahrer sowie zur Ladung des Fahrzeugs, und hier insbesondere zu deren Gewicht.
Dieses Datenpaket kann über die mit 1a bezeichnete Kommunikation zu einem Fahrstrategiemodul 3 übertragen und dort über eine Datenschnittstelle 3.1 empfangen werden. Es wird dann in einem Fahrprädiktionsmodul 3.3 weiterverarbeitet. Passend zu den Angaben über das Fahrzeug 2 aus dem über die Kommunikation 1a übertragenen Datenpaket werden über ein weiteres Schnittstellenmodul 3.2 Daten über das Fahrzeug 2 über die Kommunikation 2a/ 2b angefordert bzw. mit Hilfe eines Kommunikationsmoduls 2.1 des Fahrzeugs 2 ausgelesen. Dazu gehören beispielsweise physikalische Messwerte des Tanks 2.3, beispielsweise Druck, Temperatur und Füllmenge, die von einem Tanksteuermodul 2.4 erfasst werden, sowie der Ladezustand einer Pufferbatterie 2.8 sowie z.B. deren themische Belastung, welche aus einem Batteriemanagementmodul 2.7 stammen können. Mit Hilfe der Logistikplanungsdaten und der Fahrzeugdaten berechnet dann das Fahrprädiktionsmodul 3.3 des Fahrstrategiemoduls 3 den Energiebedarf sowie weitere Fahrzeugzustände auf der geplanten Fahrstrecke mit dem geplanten Fahrzeug. Dabei werden auch Einflüsse des Verkehrs, gegebenenfalls des Fahrers, der Topografie, des Wetters und der Verkehrsinfrastruktur entsprechend berücksichtigt. Diese Informationen können über zusätzliche Module 4 beispielsweise in Form von Wetterinformationen 4.1 und/oder Verkehrsinformationen 4.2 als Datenpakete über den Weg 4b angefordert und/oder über den Weg 4a abgerufen werden.
Mit den berechneten Ergebnissen des Fahrprädiktionsmoduls 3.3 kann ein Betriebsstrategiemodul 3.4 eine optimierte Leistungsanforderung an eine Brennstoffzelle 2.6 ermitteln.
Dafür kommt der nachfolgend beschriebene Ablauf zum Einsatz. Auf Basis der bereits ermittelten Streckendaten aus der Logistikplanung 1 werden nun mit einem Fahrzeugmodell, in welches die Fahrzeugdaten des Fahrzeugs 2 einfließen, die notwendigen Antriebs- und Bremsmomente auf der gesamten Strecke berechnet. Diese werden dann in einen Leistungsbedarf bzw. in eine Rekuperationsleistung von der elektrischen Antriebsmaschine umgerechnet. Hieraus lässt sich dann ein mittlerer Leistungsbedarf bezogen auf den jeweiligen Streckenabschnitt oder die jeweilige Zeiteinheit auf der gesamten Strecke berechnen. Es liegt also ein im Mittel konstanter Wert des Leistungsbedarfs über die gesamte Strecke vor. Anhand der in der Pufferbatterie 2.6 befindlichen Energie und dieses mittleren Leistungsbedarfs bzw. des Gesamtenergiebedarfs auf der Strecke lässt sich dann eine mittlere von der Brennstoffzelle 2.8 zu liefernde Leistung berechnen. Als Startwert für den Ladezustand der Pufferbatterie 2.8 kann entweder der real vorliegende Wert, welcher über das Batteriemanagementmodul 2.7 erfasst worden ist, verwendet werden oder, wenn eine Möglichkeit zum Anschluss des Fahrzeugs 2 bzw. seiner Pufferbatterie 2.8 an ein Stromnetz besteht, kann durch Laden der Pufferbatterie 2.8 oder Rückspeisen von Energie aus der Pufferbatterie 2.8 in das Netz ein optimaler Startwert für den Ladezustand (SOC) der Pufferbatterie 2.8 eingestellt werden.
Basierend auf der oben bereits beschriebenen Modellierung wird nun bei einer angenommenen mittleren Brennstoffzellenleistung, welche über die gesamte Strecke konstant bleibt, geprüft, ob Grenzwerte des Ladezustands der Pufferbatterie 2.8 mit einer solchen Leistungstrajektorie der Brennstoffzelle 2.6 überschritten werden oder nicht. In Fig. 2a) ist dafür oben der Leistungssollwert der Brennstoffzelle 2.6 in Kilowatt und unten der Ladezustand der Pufferbatterie 2.8 in Prozent angegeben. Dabei sind mit gestrichelter Linie zwei Grenzwerte eines nicht zu unterschreitenden unteren Ladezustands und eines nicht zu überschreitenden oberen Ladezustands eingezeichnet. Die Leistungstrajektorie der Brennstoffzelle 2.6 ist als konstanter der mittleren Leistung, welche von der Brennstoffzelle 2.6 benötigt wird, entsprechender Wert dargestellt. Die Überprüfung auf eine Verletzung eines Grenzwerts der Pufferbatterie 2.8 kann neben dem Ladezustand auch andere Werte ergänzen oder alternativ berücksichtigen, beispielsweise Temperaturen, Stromstärken, Stromdichten oder dergleichen.
Wird nun bei dem konstanten mittleren Leistungswert der Brennstoffzelle 2.6 als Leistungstrajektorie keine Verletzung von Grenzwerten der Pufferbatterie 2.8 erkannt, dann ist die strategische Planung bereits abgeschlossen und die Brennstoffzelle 2.6 wird ebendiesem Mittelwert, also einer konstanten Leistungstrajektorie betrieben.
Kommt es, wie in der Darstellung der Fig. 2a) zu einem Unterschreiten des minimalen Ladezustands, dann muss entsprechend reagiert werden. Die Prüfung erfolgt dabei in den Diagrammen der Fig. 2 immer von links nach rechts und beginnt jeweils wieder beim Startzeitpunkt bzw. Startpunkt der Strecke bis zu einer entsprechenden Unter- oder Überschreitung eines Grenzwerts. In dem Fall kommt es zu einer Unterschreitung des minimalen Ladezustands der Pufferbatterie 2.8, welche in den Figuren 2a und Fig. 2b entsprechend zu erkennen ist. Um dieser Unterschreitung entgegenzuwirken, wird die graue Fläche unterhalb des unteren Grenzwerts, also eine Energiemenge identifiziert, beispielsweise durch eine Integration der Fläche zwischen der Kurve und dem Grenzwert. Dieser Wert entspricht dann einer Energiemenge, welche zusätzlich durch die Brennstoffzelle 2.6 bereitgestellt werden muss. In der Darstellung der Fig. 2b) wird dies durch ein Erhöhen der Leistung der Brennstoffzelle 2.6 bewirkt, und zwar um die Energiemenge, die zuvor als unterhalb der Grenze der Pufferbatterie 2.8 liegend identifiziert worden ist. Um die Leistungsänderung der Brennstoffzelle einerseits möglichst gering zu halten und einen möglichst langen Zeitraum bei konstanter Leistung im Betrieb der Brennstoffzelle 2.6 zu verharren, wird der Zeit- oder Streckenabschnitt, während dem die Leistung entsprechend erhöht wird, gegenüber dem Zeit- oder Streckenabschnitt, während welchem der untere Grenzwert unterschritten war, vergrößert, z.B. verdoppelt, wie es aus der Darstellung der Fig. 2b) zu erkennen ist. Um letztlich die mittlere Gesamtleistung der Brennstoffzelle 2.6 und damit die von der Brennstoffzelle 2.6 erzeugte Gesamtenergie auf der Strecke einzuhalten, wird im Anschluss, wiederum bezogen auf die Zeit oder die Strecke, der Verlauf der Brennstoffzellenleistung entsprechend abgesenkt, sodass im Mittel wieder dieselbe mittlere Leistung wie in Fig. 2a erreicht wird.
Auf diese Art ist nun also eine neue Leistungstrajektorie für den Betrieb der Brennstoffzelle 2.6 entstanden. Auch diese wird dann einer erneuten Prüfung unterzogen, was analog zur Darstellung in Fig. 2a) in Fig. 2c) entsprechend dargestellt ist. Die Prüfung läuft jetzt ohne eine Verletzung des unteren Grenzwerts beim Ladezustand der Pufferbatterie 2.8 so lange, bis diese den oberen Grenzwert ihrer Ladung entsprechend überschreitet. Hier wird nun analog reagiert, indem die Leistung, welche durch die Brennstoffzelle 2.6 bereitgestellt wird, abgesenkt wird, und zwar zumindest für den Zeitraum, während dem der obere Grenzwert überschritten war. Dies ist in der Darstellung der Fig. 2d) entsprechend dargestellt. Auch hier entsteht dann wieder eine neue Leistungstrajektorie für die Brennstoffzelle 2.6 mit einer entsprechend angepassten Leistung in dem hier dargestellten letzten Abschnitt, um so in Summe auf die mittlere Leistung und damit die Gesamtenergie aus der Brennstoffzelle 2.6 für die Strecke, welche eingangs ermittelt worden ist, zu kommen. Bei einer erneuten Prüfung ergeben sich nun basierend auf der Leistungstrajektorie, welche in Fig. 2d) dargestellt ist, keine Verletzungen von Grenzwerten der Pufferbatterie 2.8 mehr, sodass die optimale Betriebsstrategie gefunden worden ist, bei welcher die Grenzwerte der Pufferbatterie 2.8 innerhalb der zulässigen Grenzen liegen.
Wie es in der Darstellung der Fig. 2d) dargestellt ist, besteht die Leistungstrajektorie für die Brennstoffzelle 2.6 nun aus verschiedenen Phasen mit unterschiedlichen Leistungen der Brennstoffzelle 2.6, wobei innerhalb jeder der Phasen die Leistung jedoch konstant bleibt. Dies ermöglicht einen sehr schonenden Betrieb der Brennstoffzelle 2.6. Dieser lässt sich noch weiter verbessern, indem anstelle einer sprunghaften Änderung der Leistung, wie es hier mit durchgezogener Linie dargestellt ist, optional Rampen oder gegebenenfalls auch andere Kurven verwendet werden, welche sich an der maximalen Änderungsrate, welche für die Brennstoffzelle 2.6 ohne eine Einbuße an Lebensdauer und Leistungsfähigkeit möglich ist, orientieren. In der Darstellung der Fig. 2d) sind diese Rampen gestrichelt in die Leistungstrajektorie eingezeichnet. Wurde nun in dem Betriebsstrategiemodul 3.4 eine optimale Betriebsstrategie in Form einer Leistungstrajektorie für die Brennstoffzelle 2.6 über der gesamten geplanten Strecke sowie ein zugehöriger Verlauf des Ladezustands der Pufferbatterie 2.8, welcher keine Grenzwerte verletzt, ermittelt, dann werden diese Daten nach der Berechnung, welche wie hier dargestellt, vorzugsweise in einer Cloud erfolgen kann, dem Flottenbetreiber bzw. Disponenten in der Logistikplanung 1 auf dem mit 1b bezeichneten Weg angezeigt und gleichzeitig auf dem mit 2b bezeichneten Weg an das Fahrzeug 2 übermittelt. Alternativ dazu könnte anstelle der Berechnung in dem Fahrstrategiemodul 3 in der Cloud, diese Berechnung auch komplett im Fahrzeug erfolgen, was das beschriebene Verfahren nicht weiter beeinflusst, sondern lediglich die Kommunikationswege in einer für den Fachmann selbstverständlichen Art und Weise ändert.
Es erfolgt dann eine Weiterleitung der berechneten Betriebsstrategie in Form eines orts- oder zeitabhängigen Leistungssollwerts für die Brennstoffzelle 2.6, also ihrer Leistungstrajektorie und eines angenommenen vorausberechneten Verlaufs des Ladezustands der Pufferbatterie 2.8 über das Kommunikationsmodul 2.1 zu einem zentralen Antriebssteuermodul 2.2 des Fahrzeugs 2, welches dann die Betriebsstrategie in dem Fahrzeug 2 entsprechend umsetzt.
Das Antriebssteuermodul 2.2 verwendet dabei die vorausberechnete Leistungstrajektorie für die Brennstoffzelle 2.6 zur Vorgabe von Sollwerten im Fahrzeug 2 über das Steuermodul 2.5 der Brennstoffzelle 2.6. Gleichzeitig überprüft das Antriebssteuermodul 2.2, ob es zu Abweichungen zwischen dem geplanten Verlauf des Ladezustands der Pufferbatterie 2.8 und dem realen Verlauf während der Fahrt, welcher aus dem Batteriemanagementmodul 2.7 abgerufen werden kann, kommt. Kommt es zu Abweichungen zwischen dem geplanten und dem realen Verlauf des Ladezustands der Pufferbatterie 2.8 oder zum Erreichen von thermischen Belastungsgrenzen,
Stromgrenzen, Stromdichtegrenzen oder dergleichen, dann kann das Antriebssteuermodul 2.2 Korrekturen in der Leistungsanforderung an die Brennstoffzelle 2.6 vornehmen. Bis zu einer gewissen vordefinierten Schwelle bzw. einem Toleranzband um den errechneten geplanten Ladezustand kann dies auch unbeachtet bleiben. Wird ein solches Toleranzband jedoch überschritten, kann es sinnvoll sein, wenn die weitere Berechnung nicht nur in dem Fahrzeug 2 erfolgt, sondern wieder an das entsprechende Fahrstrategiemodul 3 zurückgespiegelt wird, um für den Rest der noch bevorstehenden Strecke den oben beschriebenen Planungsablauf nochmals durchzuführen und somit die Planung zu optimieren, auch wenn es unterwegs zu Abweichungen kam, beispielsweise durch nicht vorhersehbare externe Ereignisse wie einen schlagartig auftretenden Stau aufgrund eines Unfalls, einer nicht geplanten Routenabweichung aufgrund einer kurzfristigen Umleitung oder dergleichen.
Auch beim Erkennen einer Abweichung von der Routenwahl durch den Fahrer des Fahrzeugs 2 kann eine entsprechende Neuplanung angestoßen werden, welche dann wiederum in der oben beschriebenen Art und Weise erfolgen und deren Ergebnis an die beteiligten Systeme 1, 2 verteilt werden kann. Im Rahmen dessen lassen sich auch Streckendaten aktualisieren, insbesondere mit weiteren Informationen, z.B. wie aktualisierten Verkehrsdaten, Verkehrsflussdaten, Wetterinformationen oder dergleichen.

Claims

Patentansprüche
1. Verfahren zum Betreiben eines elektrischen Antriebssystems eines Kraftfahrzeugs (2), welches zumindest eine Pufferbatterie (2.8) und wenigstens eine Brennstoffzelle (2.6) zum Bereitstellen von elektrischer Antriebsleistung umfasst, wobei Streckendaten ermittelt und danach, basierend auf diesen Streckendaten, Verbrauchsdaten prognostiziert werden, um den Betrieb der Brennstoffzelle (2.6) zu optimieren, dadurch gekennzeichnet, dass zur Optimierung des Betriebs der Brennstoffzelle (2.6) basierend auf den prognostizierten Verbrauchsdaten ein Gesamtenergiebedarf für die Strecke prognostiziert wird, wonach eine mittlere Brennstoffzellenleistung ermittelt wird, welche benötigt wird, um zusammen mit der zum Startzeitpunkt der Strecke in der Pufferbatterie (2.8) gespeicherten Energie den Gesamtenergiebedarf bereitzustellen, womit eine konstante Leistungstrajektorie für die dafür benötigte Leistung aus der Brennstoffzelle (2.6) festgelegt wird, wonach eine Prüfung erfolgt, ob beim Abfahren der Strecke mit der Leistungstrajektorie Grenzwerte der Pufferbatterie (2.8) verletzt werden: falls kein Grenzwert verletzt wird, erfolgt der Betrieb der Brennstoffzelle (2.6) mit der festgelegten Leistungstrajektorie; falls ein Grenzwert verletzt wird, dann wird im Bereich der Verletzung des Grenzwerts die Leistung der Brennstoffzelle (2.6) um einen zeitlich konstant bleibenden Betrag verändert, und in der Folge angepasst, um über die Gesamtstrecke wieder die mittlere Brennstoffzellenleistung zu erreichen, womit eine neue Leistungstrajektorie festgelegt wird, wonach die Prüfung mit der neuen Leistungstrajektorie erneut durchlaufen wird, bis eine Leistungstrajektorie ohne Verletzung von Grenzwerten der Pufferbatterie (2.6) ermittelt wurde, nach welcher dann der Betrieb der Brennstoffzelle (2.6) erfolgt.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Größe der Phase, während welcher die Leistung der Brennstoffzelle (2.6) angepasst wird, größer als der Bereich der Verletzung des Grenzwerts vorgegeben wird, wobei der Start der Phase vor dem Beginn der Verletzung liegt.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Leistungstrajektorie wenigstens eine Phasen mit in der jeweiligen Phase konstanter Leitung umfasst.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass bei mehreren Phasen die Übergänge zwischen den Phasen konstanter Leistungen in Form von Rampen und/oder Kurven vorgegeben werden.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Prüfung jeweils vom Start der Strecke bis zur ersten Verletzung eines Grenzwerts erfolgt.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Prognose der Verbrauchswerte auf Basis einer Modellierung des Kraftfahrzeugs (2) mit einer Berrechnung von Antriebs- und Bremsmomenten auf der Strecke erfolgt.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Streckendaten von einem fahrzeugexternen Server, insbesondere aus einem Transport Management System einer Logistikplanung (1), abgefragt werden.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass als Grenzwert der Ladezustand der Pufferbatterie (2.8) verwendet wird.
9. Verfahren nach Anspruch 8, , dadurch gekennzeichnet, dass als Startwert des Ladezustandes der tatsächliche Ladezustand der Pufferbatterie (2.8) oder im Falle einer Möglichkeit zum Nachladen der Pufferbatterie aus einem stationären Stromnetz ein strategisch optimierter Ladezustand verwendet wird, der dann durch laden/entladen am Stromnetz vor dem Start eingestellt wird.
10. Verfahren nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass ein zyklische Überprüfung des tatsächlichen Ladezustandes erfolgt, wobei für den Fall, dass dieser ein Toleranzband um den prognostizierten Ladezustand verlässt, eine Neuermittlung der Leistungstrajektorie für die restliche Strecke erfolgt.
PCT/EP2021/068461 2020-07-08 2021-07-05 Verfahren zum betreiben eines elektrischen antriebssystems WO2022008413A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP21754699.3A EP4178824A1 (de) 2020-07-08 2021-07-05 Verfahren zum betreiben eines elektrischen antriebssystems
CN202180048130.0A CN115812048A (zh) 2020-07-08 2021-07-05 用于运行电动驱动系统的方法
KR1020237003317A KR20230028544A (ko) 2020-07-08 2021-07-05 전기 구동 시스템을 작동하기 위한 방법
US18/004,465 US20240092186A1 (en) 2020-07-08 2021-07-05 Method for operating an electric drive system
JP2022580348A JP2023532481A (ja) 2020-07-08 2021-07-05 電気駆動システムを作動させるための方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020004102.7 2020-07-08
DE102020004102.7A DE102020004102A1 (de) 2020-07-08 2020-07-08 Verfahren zum Betreiben eines elektrischen Antriebssystems

Publications (1)

Publication Number Publication Date
WO2022008413A1 true WO2022008413A1 (de) 2022-01-13

Family

ID=77316969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/068461 WO2022008413A1 (de) 2020-07-08 2021-07-05 Verfahren zum betreiben eines elektrischen antriebssystems

Country Status (7)

Country Link
US (1) US20240092186A1 (de)
EP (1) EP4178824A1 (de)
JP (1) JP2023532481A (de)
KR (1) KR20230028544A (de)
CN (1) CN115812048A (de)
DE (1) DE102020004102A1 (de)
WO (1) WO2022008413A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2601224A (en) * 2020-09-29 2022-05-25 Hitachi Ltd Vehicle control device and vehicle control method
EP4328075A1 (de) 2022-08-22 2024-02-28 Stadler Rail AG Verfahren zur optimierung der fahrstrategie eines schienenfahrzeuges, datenverarbeitungsvorrichtung, computerprogrammprodukt, computerlesbares medium sowie schienenfahrzeug mit einer energiespeichervorrichtung, einer energieerzeugungsvorrichtung und einer datenverarbeitungsvorrichtung

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023199043A1 (en) * 2022-04-11 2023-10-19 Hydrogen Vehicle Systems Ltd A system and method for the management of regenerative-braking for battery recharging in a hybrid electric vehicle
EP4339005A1 (de) * 2022-09-15 2024-03-20 Iveco S.P.A. System und verfahren zur verwaltung der brennstoffzellenleistung in einem schwerfahrzeug
CN116101130B (zh) * 2023-04-15 2023-06-23 北京重塑风光氢能科技有限公司 一种燃料电池汽车能量管理的方法及系统
SE2350983A1 (en) * 2023-08-18 2024-02-20 Volvo Truck Corp A computer-implemented method for controlling a power producing assembly of a vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5631532A (en) * 1994-02-24 1997-05-20 Kabushikikaisha Equos Research Fuel cell/battery hybrid power system for vehicle
US20150295293A1 (en) * 2012-09-28 2015-10-15 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Power controlling apparatus
US20150298555A1 (en) * 2012-12-12 2015-10-22 Tevva Motors Limited Range extender control
EP3207585B1 (de) * 2014-10-13 2019-01-23 ThyssenKrupp Marine Systems GmbH Verfahren zum betrieb eines stromnetzes, insbesondere eines stromnetzes eines wasserfahrzeugs
DE102017213088A1 (de) 2017-07-28 2019-01-31 Audi Ag Energiemanagement eines Brennstoffzellenfahrzeugs
US20200083550A1 (en) * 2018-09-06 2020-03-12 Industrial Technology Research Institute Power supply device, flying tool using same and power supply method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5631532A (en) * 1994-02-24 1997-05-20 Kabushikikaisha Equos Research Fuel cell/battery hybrid power system for vehicle
US20150295293A1 (en) * 2012-09-28 2015-10-15 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Power controlling apparatus
US20150298555A1 (en) * 2012-12-12 2015-10-22 Tevva Motors Limited Range extender control
EP3207585B1 (de) * 2014-10-13 2019-01-23 ThyssenKrupp Marine Systems GmbH Verfahren zum betrieb eines stromnetzes, insbesondere eines stromnetzes eines wasserfahrzeugs
DE102017213088A1 (de) 2017-07-28 2019-01-31 Audi Ag Energiemanagement eines Brennstoffzellenfahrzeugs
US20200083550A1 (en) * 2018-09-06 2020-03-12 Industrial Technology Research Institute Power supply device, flying tool using same and power supply method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2601224A (en) * 2020-09-29 2022-05-25 Hitachi Ltd Vehicle control device and vehicle control method
GB2601224B (en) * 2020-09-29 2022-11-23 Hitachi Ltd Vehicle control device and vehicle control method
EP4328075A1 (de) 2022-08-22 2024-02-28 Stadler Rail AG Verfahren zur optimierung der fahrstrategie eines schienenfahrzeuges, datenverarbeitungsvorrichtung, computerprogrammprodukt, computerlesbares medium sowie schienenfahrzeug mit einer energiespeichervorrichtung, einer energieerzeugungsvorrichtung und einer datenverarbeitungsvorrichtung

Also Published As

Publication number Publication date
KR20230028544A (ko) 2023-02-28
EP4178824A1 (de) 2023-05-17
CN115812048A (zh) 2023-03-17
US20240092186A1 (en) 2024-03-21
DE102020004102A1 (de) 2022-01-13
JP2023532481A (ja) 2023-07-28

Similar Documents

Publication Publication Date Title
WO2022008413A1 (de) Verfahren zum betreiben eines elektrischen antriebssystems
DE10005581B4 (de) Verfahren zum Steuern eines Hybridfahrzeugs
EP1753637B1 (de) Energiemanagementsystem einer transporteinrichtung
DE102008056858B4 (de) Verfahren zum Betreiben eines Hybridfahrzeugs
DE102010029743B4 (de) Smarter Energie-Netzübergang zur optimierten Energie-Flussteuerung
WO2013034729A1 (de) Verfahren zum steuern von energieverteilungsprozessen in einem fahrzeug
EP2692604B1 (de) Verfahren zum Steuern des Ladezustands eines Energiespeichers eines Hybridfahrzeugs
EP2714482B1 (de) Hybridfahrzeug sowie verfahren zum betreiben einer einrichtung zum aufladen einer batterie in einem hybridfahrzeug
EP3533660B1 (de) Verfahren zur laststeuerung einer ladestation für ein elektrofahrzeug
WO2017109218A1 (de) Verfahren zum betreiben eines kraftfahrzeugs, steuerungseinheit für ein antriebssystem und ein antriebssystem
EP3785978B1 (de) Fahrzeug und verfahren zu dessen betrieb
EP2043897B1 (de) Verfahren zur regelung des ladezustandes eines energiespeichers für ein fahrzeug mit hybridantrieb
DE102011085454A1 (de) Verfahren zur Steuerung eines Hybridantriebs mit einer Brennkraftmaschine und einem Elektromotor und einem elektrischen Energiespeicher, insbesondere für ein Schienenfahrzeug, Steuereinrichtung und Hybridantrieb
WO2022122820A1 (de) Verfahren und vorrichtung zur bereitstellung einer speicherkapazitätsreserve in einer traktionsbatterie für eine bevorstehende gefällefahrt
WO2019162264A1 (de) Verfahren und steuervorrichtung zum anpassen eines elektrischen leistungsangebots an einen elektrischen leistungsbedarf in einem elektrischen netzwerk
WO2023194024A1 (de) Verfahren für elektrisch antreibbares fahrzeug, insbesondere nutzfahrzeug, verfahren für fahrzeugexternen server, computerprogramm, computerlesbares medium, steuergerät, elektrisch antreibbares fahrzeug, fahrzeugexterner server
WO2022012986A1 (de) Verfahren zur vorbereitung der betankung eines fahrzeugs
EP3770009A1 (de) Vorrausschauender betrieb einer nachladeinfrastruktur für elektrofahrzeuge
DE102011004357A1 (de) Verfahren zum Betreiben eines Energiespeichers und Steuergerät
DE102016214997A1 (de) Verfahren zum Betrieb eines Kraftfahrzeugs mit einem Brennstoffzellensystem und mit mindestens einer Energiespeichereinrichtung
DE102019127054A1 (de) Verfahren zum Bereitstellen einer elektrischen Versorgungsgröße in einem elektrischen Versorgungssystem und Vorrichtung zur Durchführung des Verfahrens
WO2022268552A1 (de) Verfahren und vorrichtung zur bestimmung einer betriebsstrategie eines elektrisch angetriebenen fahrzeugs, vorzugsweise eines brennstoffzellen-fahrzeugs
DE102010042297A1 (de) Rekuperatorsystem und Verfahren zur Steuerung desselben
DE102014222073A1 (de) Verfahren und Vorrichtung zum Betreiben eines Kraftfahrzeugs mit einem elektrischen Energiespeicher
EP1972484A1 (de) Elektro-Flurförderzeug mit mobiler Ladeeinheit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21754699

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022580348

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18004465

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021754699

Country of ref document: EP

Effective date: 20230208