WO2022007834A1 - 用于镜片的加热装置、镜头及其制造方法 - Google Patents

用于镜片的加热装置、镜头及其制造方法 Download PDF

Info

Publication number
WO2022007834A1
WO2022007834A1 PCT/CN2021/104935 CN2021104935W WO2022007834A1 WO 2022007834 A1 WO2022007834 A1 WO 2022007834A1 CN 2021104935 W CN2021104935 W CN 2021104935W WO 2022007834 A1 WO2022007834 A1 WO 2022007834A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
heating
heating device
conductive
structural member
Prior art date
Application number
PCT/CN2021/104935
Other languages
English (en)
French (fr)
Inventor
黄虎钧
叶雷洪
胡敏波
张弘扬
Original Assignee
宁波舜宇车载光学技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010646602.XA external-priority patent/CN113905472B/zh
Priority claimed from CN202011433498.2A external-priority patent/CN114624839B/zh
Priority claimed from CN202121374019.4U external-priority patent/CN214795363U/zh
Application filed by 宁波舜宇车载光学技术有限公司 filed Critical 宁波舜宇车载光学技术有限公司
Publication of WO2022007834A1 publication Critical patent/WO2022007834A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/08Waterproof bodies or housings

Definitions

  • the present application relates to the technical field of optical equipment, and more particularly, to a heating device for a lens, a lens with the heating device, and a method for manufacturing the lens with the heating device.
  • the current commonly used methods are mainly to set heating elements in the vehicle lens to heat and evaporate the moisture attached to the surface of the lens or to prevent fogging or frosting.
  • the electric heating wire needs to be embedded in the interior of the lens to keep it fixed, the original structure of the corresponding lens is changed, which not only increases the difficulty and cost of the overall manufacturing process of the lens, but also destroys the strength of the corresponding lens.
  • the lens is easily broken especially after heating up, and the image quality deteriorates and cannot be repaired.
  • the electric heating wire itself will also have problems such as low heating efficiency, poor heating uniformity, and complicated installation.
  • the heating material is directly embedded in the lens structure, the overall stability of the lens will be weak, and the weather resistance in bad weather will be poor. Therefore, it is of great significance to develop a lens defogging product with simple structure, high thermal efficiency, uniform heating, safe use and strong weather resistance.
  • the present application provides a heating device that at least solves or partially solves at least one of the above disadvantages of the prior art.
  • the lens includes a lens body, the lens body has a first face and a second face opposite to each other, and an edge connecting the first face and the second face, characterized in that the heating
  • the device includes: a heating unit, which is adapted to be arranged on the edge of the lens body and used for transferring heat to the lens body after being powered.
  • a heating device for a lens comprising a lens body, the lens body having opposite first and second surfaces, and connecting the first and second surfaces The edge of the surface, wherein the heating device is arranged on the edge of the lens body, and includes: a ceramic heating ring or a polyimide heating film provided with a heating element.
  • the heating device further includes a fixing element for fixing the heating device to the edge of the lens body.
  • the fixing element is thermally conductive glue or thermally conductive tape.
  • the fixing element is an elastic member, and the ceramic heating ring or the polyimide heating film is fixed to the edge by the elastic force of the elastic element.
  • the fixing element is a conductive glue or a conductive tape.
  • the heating element is disposed between the double layers of the polyimide films, and the heating element and each of the polyimide films pass through thermally conductive glue, thermally conductive tape, conductive glue and conductive tape. at least one of the connections.
  • the polyimide heating film is a rigid carrier polyimide heating film.
  • the heating element is an electric heating wire.
  • the ceramic heating ring or the polyimide heating film has a ring-like structure.
  • the heating device further includes a conductive unit and an energy supply unit, and the conductive unit includes at least two lead wires for electrically connecting the heating element and the energy supply unit.
  • the conductive unit and the heating element are connected by one or more of welding, conductive glue, conductive tape, heat-conductive glue, heat-conductive tape and compression connection.
  • the heating device further includes a structural member
  • the structural member includes: a structural member main body for fixedly connecting with the lens; a first terminal fixedly connected to the structural member main body for rigidly and fixedly connecting with an external power supply and electrically connection; and a second terminal electrically connected to the first terminal through the structural member body and used to electrically connect to the heating unit through at least two lead wires.
  • the heating unit includes a first film layer, a heating element and a second film layer which are arranged in sequence.
  • a structural member for transmitting a command generated by a first device to a second device disposed on a lens body comprising: a structural member body for fixing with the lens body connection; a first terminal, fixedly connected with the main body of the structural member, used for rigidly fixed connection with the first device, and used for communication connection with the first device; a second terminal, communicated with the first terminal through the main body of the structural member, and used for in communication with the second device.
  • the main body of the structural member includes an electrical contact area; the first terminal is a first conductive terminal, which is electrically connected to the first electrical contact area and is rigidly electrically connected to the output terminal of the first device; the second terminal is the first conductive terminal. Two conductive terminals are fixed at positions corresponding to the second device in the first electrical contact area.
  • the first conductive end is used for positioning when the structural member is connected with the first device.
  • the first conductive end is disposed at a position of the main body of the structural member corresponding to the output end of the first device.
  • the shape of the first electrical contact region is a point shape, a closed ring shape or a broken ring shape.
  • the first conductive end and the second conductive end respectively include a positive electrode and a negative electrode
  • the first electrical contact area includes a first positive electrode area and a first negative electrode area
  • the positive electrode of the first conductive end and the first The positive electrode area is electrically connected
  • the positive electrode of the second conductive end is arranged in the position of the first positive electrode area corresponding to the positive power supply line of the second device
  • the negative electrode of the first conductive end is electrically connected to the first negative electrode area
  • the second conductive end is electrically connected to the first negative electrode area.
  • the negative electrode is disposed in the first negative electrode region at a position corresponding to the negative power supply line of the second device.
  • the main body of the structural member has an installation axis, and the main body of the structural member is adapted to be fixedly connected to the lens main body by making the installation axis coincide with the optical axis of the lens main body;
  • the main body of the structural member includes a first end face opposite in the direction of the installation axis and at least one of the second end surface, the inner peripheral surface surrounding the mounting axis, and the outer peripheral surface, wherein the second end surface faces the second device;
  • the first positive electrode region is located on the second end surface, the inner peripheral surface or the outer peripheral surface;
  • the first negative The electrode region is located on the second end surface, the inner peripheral surface or the outer peripheral surface.
  • the included angle between the positive electrode and the negative electrode of the first conductive end in the circumferential direction of the installation axis ranges from 0° to 360°.
  • the included angle between the positive electrode and the negative electrode of the second conductive end in the circumferential direction of the installation axis ranges from 0° to 360°.
  • connection method between the main body of the structural member and the main body of the lens includes: interference fit of the hole and shaft, hot riveting fixation, snap-ring fixing, snap-hook fitting, screw locking, hole-shaft clearance fit, or dispensing fixation at least one of.
  • the shape of the main body of the structural member includes at least one of a circular ring shape, a rectangular ring shape, a tangential shape or a broken ring shape.
  • the shape of the first terminal includes: a polygonal needle shape, a rectangular sheet shape, or a combination of a polygonal needle shape and a rectangular sheet shape.
  • the first terminal includes a rigid pin header.
  • the second terminal is the second conductive end, and is connected to the second device by means of soldering and piercing the connection.
  • the second conductive end has a groove for accommodating the power supply line of the second device, and when the second conductive end is connected to the second device by piercing the connection, the groove pierces the insulating sheath of the power supply line, Make electrical contact with the wire of the power supply line.
  • a lens with a heating device comprising a lens body having opposite first and second surfaces, and an edge connecting the first and second surfaces , and the lens further comprises: a heating device, arranged on the edge of the lens body, for transferring heat to the lens body after power is supplied, wherein the heating device is configured as a ceramic with a heating element arranged inside Heating ring or polyimide PI heating film.
  • the heating device is disposed on the end face and/or the side face of the lens body at the edge.
  • the heating device has a ring-like structure, and the contour of the ring-like structure matches the contour of the edge.
  • the edge is provided with a notch groove, and the heating device is arranged in the notch groove.
  • the heating device further includes a fixing element for fixing the heating device to the edge.
  • the fixing element is an elastic element and is arranged on the edge in a compressed state.
  • the fixing element is a conductive glue or a conductive tape.
  • the fixing element is thermally conductive glue or thermally conductive tape.
  • the heating element is disposed between the double-layer polyimide films, and the heating element and each of the polyimide films pass through the thermal conductive glue, the thermal conductive adhesive tape, the conductive adhesive and the conductive adhesive tape. at least one connection.
  • the polyimide heating film is a rigid carrier polyimide heating film.
  • the heating element is an electric heating wire.
  • the heating device further includes a conductive unit and an energy supply unit, and the conductive unit includes at least two lead wires for electrically connecting the heating element and the energy supply unit.
  • the conductive unit and the heating element are connected by one or more of welding, conductive glue, conductive tape, heat-conductive glue, heat-conductive tape and compression connection.
  • such a lens comprising: a lens barrel; a lens, the lens includes a lens body, the lens body has opposite first and second surfaces, and an edge connecting the first and second surfaces, Wherein, the edge is connected with the lens barrel to fix the lens; the aforementioned heating device.
  • a lens including a lens having a heating device, comprising: a lens barrel having a side wall; and a plurality of lenses fixed by the side wall of the lens barrel, wherein among the plurality of lenses At least one of them is a lens with heating means according to the above.
  • the heating device is disposed between the end face of the lens body and the sealing member of the lens.
  • the heating device is disposed between the edge of the lens body and the side wall of the lens.
  • the heating device is disposed between the edge of the lens body and the edge of the adjacent lens.
  • the heating device is disposed between the edge of the lens body and the sealing member of the lens and the edge of the adjacent lens.
  • Such a lens is provided according to another aspect of the present application.
  • the lens includes: a lens part; a lens barrel connected to a non-optical area of the lens component to fix the lens component; a heating module disposed in the non-optical area; and a connecting part passing through the lens barrel connected to the heating module, wherein the connecting part is adapted to be connected to an external power source to supply power to the heating module.
  • the heating module includes a first film layer, a heating layer and a second film layer which are arranged in sequence.
  • the first film layer and the second film layer are made of polyimide material; and the heating layer is made of rolled copper foil, electrolytic copper foil, constantan copper foil and stainless steel. Made of at least one metal foil material.
  • the heating layer is disposed in the non-optical area in a wire shape, wherein the distance and width of the wires are greater than or equal to 0.02 mm.
  • the wire shape includes at least one shape of a circle, an arcuate shape, a broken line shape, and a circular ring shape.
  • connection part includes a first connection part and a second connection part, wherein the first connection part and the second connection part are respectively connected to the heating module near the non-optical area s position.
  • connection part includes a first connection part and a second connection part, wherein the first connection part and the second connection part are respectively connected to the heating module and away from the non-optical area s position.
  • connection part includes a first connection part and a second connection part, wherein the first connection part and the second connection part are respectively connected to the heating module near the non-optical area one end and one end away from the non-optical area.
  • connection part includes a first connection part and a second connection part, wherein the first connection part and the second connection part are respectively connected to the inside of the heating module.
  • the heating module is disposed in the non-optical area in a folded manner, wherein the folded heating layers are connected in series.
  • the heating modules are disposed in the non-optical area in a superimposed manner, wherein the superimposed connecting members are electrically connected.
  • the heating module is provided with at least one of a hole-shaped mark and a notch mark.
  • a first reinforcing plate is provided on the surface of the first film layer.
  • a second reinforcing plate is provided on the surface of the second film layer.
  • At least one of the first reinforcing plate and the second reinforcing plate is formed of a thermally conductive material.
  • the thermally conductive material includes: aluminum, stainless steel, and copper.
  • At least one of the first reinforcing plate and the second reinforcing plate is formed of a heat insulating material.
  • the heat insulating material includes: FR4, asbestos, vacuum board, and aerogel felt.
  • the heating modules arranged in a folded manner are greater than or equal to two layers.
  • the heating modules arranged in a superimposed manner are greater than or equal to two layers.
  • the outline shape of the heating module includes at least one of a circular ring shape, a square shape, an arc shape and an S shape.
  • an optical device includes the above-mentioned lens.
  • an optical device may be a lens module.
  • the lens module includes a lens body, and the lens module further includes: a heater for generating heat for heating the lens body; a controller for generating a control command for controlling the operation of the heater to generate heat; and a structural member, fixed with the lens body Connected and rigidly fixedly connected to the controller for transmitting control commands generated by the controller to the heater.
  • the structural member includes: a structural member body fixedly connected to the lens body; a first conductive end rigidly electrically connected to the controller to receive a control command from the controller; and a second conductive end connected to the heater It is electrically connected and electrically connected with the first conductive end through the main body of the structural member, and is used for transmitting a control command to the heater.
  • the first conductive end is disposed at a position of the main body of the structural member corresponding to the output end of the controller.
  • the structural member body includes a first electrical contact area; the second conductive end is fixed at a position corresponding to the heater in the first electrical contact area; and the first conductive end is electrically connected to the first electrical contact area.
  • the first conductive end is used for positioning when the structural member is connected with the controller.
  • the shape of the first electrical contact region is a point shape, a closed ring shape or a broken ring shape.
  • the first conductive end and the second conductive end respectively include a positive electrode and a negative electrode
  • the first electrical contact area includes a first positive electrode area and a first negative electrode area
  • the positive electrode of the first conductive end is a first positive electrode
  • the electrode area is electrically connected
  • the positive electrode of the second conductive end is arranged in the first positive electrode area at a position corresponding to the positive power supply line of the second device
  • the negative electrode of the first conductive end is electrically connected to the first negative electrode area
  • the second conductive end is The negative electrode is disposed in the first negative electrode region at a position corresponding to the negative power supply line of the second device.
  • the lens body has an optical axis; in the vertical plane of the optical axis, the included angle between the positive electrode and the negative electrode of the first conductive end in the circumferential direction of the optical axis ranges from 0° to 360°.
  • the lens body has an optical axis; in the vertical plane of the optical axis, the included angle between the positive electrode and the negative electrode of the second conductive end in the circumferential direction of the optical axis ranges from 0° to 360°.
  • the structural member body includes at least one of a first end surface and a second end surface opposite in the optical axis direction of the lens body, an inner peripheral surface and an outer peripheral surface surrounding the installation axis, wherein the second end surface faces the first end surface.
  • Two devices the first positive electrode region is located on the second end surface, inner peripheral surface or outer peripheral surface; the first negative electrode region is located on the second end surface, inner peripheral surface or outer peripheral surface.
  • the lens body includes a lens barrel for accommodating at least one lens, and the structural member body is disposed on an outer side wall of the lens barrel.
  • the lens body includes a lens barrel for accommodating at least one lens, the outer side of the lens barrel has at least one protruding portion, and the structural member body is disposed on the protruding portion.
  • the lens body includes a lens barrel for accommodating at least one lens, and the structural member body is disposed on the outer wall surface or bottom surface of the bottom of the lens barrel.
  • the lens body includes a lens barrel for accommodating at least one lens, and the structural member body is disposed in an inner hole at the bottom of the lens barrel.
  • connection method between the main body of the structural member and the main body of the lens includes: interference fit of the hole and shaft, hot riveting fixation, snap-ring fixing, snap-hook fitting, screw locking, hole-shaft clearance fit, or dispensing fixation at least one of.
  • the second conductive end is connected to the heater by means of welding interconnection and piercing connection.
  • the second conductive end has a groove for accommodating the power supply wire of the heater.
  • the groove pierces the insulating sheath of the power supply wire, and is connected to the power supply wire.
  • the wires of the wire are in electrical contact.
  • the heater includes a sensor and a heating element, and the sensor is used to collect the ambient temperature of the lens body; the controller generates a command to control the heating element to generate heat according to the ambient temperature detected by the sensor, or when the controller detects The ambient temperature generates a command that controls the heating element to stop generating heat.
  • Another aspect of the present application provides a method for preparing a lens including a lens with a heating device, the method comprising: preparing the above-mentioned heating device; disposing the heating device on the lens to form the lens with a heating device a lens of the device; and a plurality of lenses included in the lens are arranged on the lens barrel.
  • the lens includes a lens body, the lens body has a first surface and a second surface opposite to each other, and an edge connecting the first surface and the second surface; disposing the heating device On the lens, forming the lens with the heating device includes: disposing the heating device on the edge of the lens body to form the lens with the heating device.
  • disposing the heating device on the edge of the lens body includes: disposing the heating device on at least one of an end surface and a side surface of the lens body on the edge.
  • disposing the heating device on the edge of the lens body includes: disposing the heating device between the end face of the lens body and the sealing member of the lens.
  • disposing the heating device on the edge of the lens body includes: disposing a notch groove on the edge; and disposing the heating device in the notch groove.
  • disposing the heating device on the edge of the lens body includes: disposing the heating device between the edge of the lens body and the side wall of the lens.
  • disposing the heating device on the edge of the lens body includes: disposing the heating device between the edge of the lens body and the edge of an adjacent lens.
  • disposing the heating device on the edge of the lens body includes: disposing the heating device between the edge of the lens body and the sealing member of the lens and the edge of the adjacent lens between.
  • Another aspect of the present application provides a method for manufacturing a lens module, comprising: setting a heater for generating heat for heating a lens body; setting a controller for generating a control command for controlling the heater to generate heat; setting A structural member fixedly connected with the lens body; the controller is rigidly and fixedly connected with the structural member, wherein the structural member is used for transmitting the control command generated by the controller to the heater.
  • the structural member includes: a structural member body, a first conductive end and a second conductive end, wherein the structural member body includes a first electrical contact area and the second conductive end is electrically connected to the first electrical contact area; setting The steps of the structural member include: fixing the main body of the structural member and the lens main body; electrically connecting the second conductive end with the heater; and fixing the second conductive end at a position corresponding to the heater in the first electrical contact area, wherein the second conductive end is The conductive end is electrically connected to the first conductive end through the main body of the structural member; the first conductive end is rigidly and electrically connected to the output end of the controller to receive control commands from the controller.
  • the structural member includes: a structural member main body, a first conductive end and a second conductive end; through the hole shaft interference fit, heat riveting fixation, snap ring fixing, snap fit, screw locking, hole At least one of shaft clearance fit or glue dispensing is used to connect the structural member body and the lens body.
  • the structural member includes: a structural member main body, a first conductive end and a second conductive end; the second conductive end is connected to the heater by means of welding interconnection and puncturing connection.
  • the ceramic heating ring heating device can make corresponding dimensions according to the use requirements of the lens; in addition, in the polyimide PI heating film heating device, the polyimide PI film is a translucent metal flexible The electric heating film can change the shape on some uneven lens surfaces to ensure a better fit;
  • the ceramic heating ring heating device can customize the appearance according to the use requirements of the lens to ensure that the heating device can contact the lens to be heated in a large area to improve the heating performance; in addition, the flexible polyimide PI heating film heats The device can change the shape on the uneven lens surface to ensure that the heating device can contact the body of the lens to be heated in a large area, and the heat conduction efficiency of the polyimide PI film itself is high, which can greatly improve the heating performance of the heating device;
  • the ceramic heating ring heating device uses ceramic materials, so its properties are stable, resistant to various external environments, and high reliability.
  • the overall film thickness of the polyimide PI heating film heating device can be reduced, the occupied space is small, and the applicability is wide.
  • the structural component is used to transmit the control command generated by the second device to the first device.
  • the arrangement of the structural parts provides convenience for the assembly of the first device and the second device, and also ensures the stability of the first device and the second device after assembly.
  • the heater is communicated with the controller, which reduces the difficulty of assembling the heater and the controller, and also avoids the power supply line of the heater.
  • the uncontrollability ensures the stability of the heater and the controller after assembly.
  • the heater is communicated with the controller by adding a structural member that can adjust the position of the conductive end.
  • the first conductive end of the structural member is accurately positioned according to the position of the output end of the controller, and the second conductive end of the structural member is positioned according to the position of the power supply wire of the heater. Precise positioning is performed, and the heater and the controller are connected through the structural member, which avoids the situation in the prior art that cannot be assembled due to the mismatch between the position of the heater power supply line and the position of the output end of the controller, thereby reducing the number of heating lenses and the controller. It reduces the assembly difficulty and improves the assembly efficiency and productivity of the heating lens and the controller.
  • the heater is communicated with the controller, which reduces the difficulty of assembling the heater and the controller, and also avoids the heater
  • the uncontrollability of the power supply line ensures the stability of the heater and the controller after assembly.
  • Setting the heating module inside the lens can control the overall structure of the lens and reduce the installation space of the lens
  • the present application can flexibly design the position and shape of the heating module to improve the diversity of heating modules and the actual processing requirements.
  • FIGS. 1A-1H are cross-sectional views of lenses with heating devices according to embodiments of the present application.
  • 2A-2F are cross-sectional views of a notch groove of a lens with a heating device according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of the position of a fixing element in a lens according to another embodiment of the present application.
  • 4A to 4I are cross-sectional views and partial enlarged views of a lens having a polyimide heating film heating device according to another embodiment of the present application;
  • 5A is a cross-sectional view of a lens with a polyimide heating film heating device according to another embodiment of the present application.
  • 5B is an enlarged partial cross-sectional view of part Y in FIG. 5A;
  • 6A-6C are cross-sectional views of conductive units in a lens with a ceramic heating ring heating device according to embodiments of the present application;
  • FIG. 7A is a cross-sectional view of a conductive unit in a lens with a polyimide heating film heating device according to another embodiment of the present application.
  • FIG. 7B is a cross-sectional view of a conductive unit in a lens with a polyimide heating film heating device according to another embodiment of the present application.
  • Figure 7C is an enlarged partial cross-sectional view of part Z in Figure 7B;
  • FIG. 7D is a cross-sectional view of a conductive unit in a lens with a polyimide heating film heating device according to another embodiment of the present application.
  • FIG. 7E is an enlarged partial cross-sectional view of part A in FIG. 7D;
  • FIG. 7F is an enlarged partial cross-sectional view of part B in FIG. 7D;
  • FIG. 8A is a cross-sectional view of a conductive unit in a lens with a polyimide heating film heating device according to another embodiment of the present application;
  • FIG. 8B is a cross-sectional view of a conductive unit in a lens with a polyimide heating film heating device according to another embodiment of the present application;
  • FIG. 8C is an enlarged partial cross-sectional view of part C in FIG. 8B;
  • 8D is a cross-sectional view of a conductive unit in a lens with a polyimide heating film heating device according to another embodiment of the present application.
  • Fig. 8E is a partial cross-sectional enlarged view of part D in Fig. 8D;
  • FIG. 8F is an enlarged partial cross-sectional view of part E in FIG. 8D;
  • 8G is a cross-sectional view of a conductive unit in a lens with a polyimide heating film heating device according to another embodiment of the present application.
  • FIG. 8H is an enlarged partial cross-sectional view of part F in FIG. 8G;
  • FIG. 9 is a schematic structural diagram of a lens module according to an exemplary embodiment of the present application.
  • FIG. 10 is an enlarged view of the area A1 of FIG. 9;
  • FIG. 11 is a schematic structural diagram of a structural member in a lens module according to an exemplary embodiment of the present application.
  • FIG. 12 is a schematic diagram of the shape of a first conductive end in a lens module according to an exemplary embodiment of the present application
  • FIG. 13 is a schematic diagram of the shape of a first conductive end in a lens module according to another exemplary embodiment of the present application.
  • FIG. 14 is a structural diagram of a main body of a structural member in a lens module according to an exemplary embodiment of the present application.
  • Figure 15 is a top view of Figure 14;
  • 16 is a structural diagram of a main body of a structural member in a lens module according to another exemplary embodiment of the present application.
  • Figure 17 is a top view of Figure 16;
  • FIG. 18 is a structural diagram of a main body of a structural member in a lens module according to an exemplary embodiment of the present application.
  • Figure 19 is a top view of Figure 18;
  • FIG. 20 is a schematic diagram of a connection mode between a structural member and a power supply line in a lens module according to an exemplary embodiment of the present application
  • Figure 21 is a partial enlarged view of Figure 20;
  • 22 to 25 are schematic views showing that the structural members in the lens module according to the exemplary embodiments of the present application are fixed at different positions of the lens body;
  • 26 to 29 are schematic diagrams of the shape of the main body of the structural member in the lens module according to the exemplary embodiment of the present application.
  • FIG. 30 is a schematic diagram of the position of the second conductive end on the main body of the structural member in the lens module according to the exemplary embodiment of the present application.
  • 31 is a schematic diagram of the position of the first conductive end on the main body of the structural member in the lens module according to the exemplary embodiment of the present application;
  • FIG. 32 is a flowchart of a method for manufacturing a lens module according to an exemplary embodiment of the present application.
  • FIG. 33 is a schematic diagram of a lens according to an embodiment of the present application.
  • 34A to 34D are schematic diagrams of arrangements of heating filaments according to embodiments of the present application.
  • 35A to 38B are schematic diagrams of the positional settings of the first connecting member and the second connecting member according to an embodiment of the present application
  • 39A to 39C are schematic diagrams of a folding manner of a heating module according to an embodiment of the present application.
  • 40A to 40C are schematic diagrams of a stacking manner of heating modules according to an embodiment of the present application.
  • 41A and 41B are schematic diagrams of a heating module according to another embodiment of the present application.
  • 42A-42D are schematic diagrams of the shape of a heating module according to an embodiment of the present application.
  • 43A to 43C are schematic diagrams showing the positional relationship between a heating module and a reinforcing plate according to an embodiment of the present application.
  • first, second, third etc. are only used to distinguish one feature from another feature and do not imply any limitation on the feature. Accordingly, the first lens discussed below could also be referred to as a second lens without departing from the teachings of the present application. vice versa.
  • FIG. 1A-1C are cross-sectional views of a lens with a heating device according to an embodiment of the present application.
  • the first lens 1000 is disposed in the overall structure of the lens, and the overall structure of the lens further includes a lens barrel and other lenses, such as the second lens 2000 .
  • the number of lenses with heating devices or other related elements included in the lens can be changed to obtain the various components described in this specification. Results and advantages.
  • the above-mentioned lens barrel may include a side wall for fixing the lens, each lens in the lens is sequentially arranged in the lens barrel along the axial direction of the lens, and the edge of each lens is mounted on the side wall of the lens barrel.
  • the above-mentioned lenses are fixed in the above-mentioned lens barrels in various ways, such as grooving the side walls and placing the lens edges.
  • the outermost first lens near the object side of the lens is most susceptible to the influence of temperature and climate in external environments such as rain and snow environment, low temperature environment, high temperature environment, etc., moisture condenses on the surface of the lens. Therefore, optionally, the first lens located on the object side in the lens, such as the first lens 1000 in this embodiment, is provided as a lens with a heating device, and the other lens, such as the second lens in this embodiment In 2000, due to the small influence of the external environment, it is not easy to condense moisture on the surface of the lens, and ordinary lenses or lenses with heating devices can be selected.
  • the first lens 1000 is composed of a lens body made of a transparent material, and the lens body has opposite first and second surfaces 1100 and 1200, and the first and second surfaces 1100 and 1200 are used for imaging light passes through.
  • the first side 1100 and the second side 1200 may have a generally arcuate profile, and the radius of the first side 1100 is larger than the radius of the second side and separated by a predetermined distance.
  • the portion connecting the first face 1100 and the second face 1200 is referred to as the edge 1300
  • the edge 1300 including the face 1310a extending cut from the first face 1100 is referred to as the "upper face” 1310a
  • the second face 1200 extending
  • the cut and extended face 1310b is referred to as the "lower end face” 1310b (hereinafter, the upper end face 1310a and the lower end face 1310b are referred to by the end face 1310), and is substantially perpendicular to the upper end face 1310a and the lower end face 1310b and extends to the second face 1200
  • the faces 1320 are referred to as "sides" 1320.
  • a heating device 1400 may be provided on the end face 1310 at the edge 1300 .
  • the heating device 1400 may be a ceramic heating ring heating device 1410 (as shown in FIG. 1A ) or a polyimide PI heating film heating device 1420 (as shown in FIG. 4A ).
  • the type of heating device in the lens containing the heating device can be changed to obtain the various results and advantages described in this specification, such as
  • the heating device 1400 may be one or more of different devices such as cast aluminum heaters, electric heating cables, mica heating sheets, and the like.
  • the lens When the lens is affected by the external environment, such as high temperature environment, low temperature environment, high temperature environment, rain and snow environment, etc., moisture will condense on the surface of the lens, and the lens with the first lens 1000 having the heating device 1400 is installed, and the heating device 1400 can Heat is transferred to the first lens 1000 by means of thermal conduction or thermal radiation, and moisture is evaporated or dissipated, thereby effectively improving the overall weather resistance and reliability of the lens.
  • the external environment such as high temperature environment, low temperature environment, high temperature environment, rain and snow environment, etc.
  • the ceramic heating ring heating device 1410 (hereinafter referred to as the heating device 1410 ) can be arranged on the end face 1310 of the edge 1300 , that is, the heating device 1410 can be arranged on the upper end face 1310a of the edge 1300 (as shown in FIG. 1A ) or the lower end face 1310b (as shown in Figure 1B).
  • the heating device 1410 can also be disposed on the side surface 1320 of the first lens 1000 at the edge 1300; For example, as shown in FIG. 1D, the heating device 1410 is arranged at the upper end surface 1310a and the side surface 1320 at the same time, as shown in FIG. 1E, the heating device 1410 is simultaneously arranged at the lower end surface 1310b and the side surface 1320, or As shown in FIG. 1F , the heating device 1410 is simultaneously disposed at the upper end surface 1310 a , the lower end surface 1310 b and the side surface 1320 .
  • the heating device 1400 may include a heating element, and the heating element may be an electric heating wire.
  • the temperature-sensing resistance of the electric heating wire has a relatively large temperature coefficient of resistance (TCR). After power is supplied, the temperature-sensing resistance value of the heating element will vary with the ambient temperature. Under the same voltage input, when the ambient temperature is low, the power of the heating device 1400 is large, which can achieve rapid temperature rise; when the ambient temperature is high, the temperature-sensing resistance value of the heating element increases, heating The power of the device 1400 is reduced, so that it can be ensured that the temperature of the heating device 1400 will not be too high.
  • TCR temperature coefficient of resistance
  • the heating device 1400 can heat the first lens 1000 to increase the temperature of the first lens 1000, thereby accelerating evaporation or accelerating the dispersal of the moisture attached to the first surface 1100 and the second surface 1200 of the first lens 1000 Such as fog, frost, water droplets or ice.
  • the first lens 1000 can also be heated by the heating device 1400 after power supply to prevent the first surface 1100 and the second surface 1200 of the first lens 1000 from condensing moisture, preventing the lens from being unclear or blind, and ensuring the first lens 1000 imaging reliability.
  • the heat generated by the heating device 1400 may be transferred to the first lens 1000 through direct or indirect contact.
  • the edge 1300 of the first lens 1000 that is closely fixed with the heating device 1400 receives the heat generated by the heating device 1400 evenly through heat conduction, and then the above heat is uniformly transmitted from the edge 1300 to the first lens through heat conduction and heat radiation.
  • the center of a lens 1000 is diffused. In this way, the heat spreads more evenly, which can effectively eliminate moisture on the first surface 1100 and the second surface 1200 of the first lens 1000 and avoid local overheating of the first lens 1000 .
  • the heating device 1400 may be a ring-like structure whose contour matches the contour of the edge 1300 of the first lens 1000 so that the heating device 1400 can be tightly fixed to the edge 1300 of the first lens 1000 .
  • the shape and structure of the heating device 1400 can be changed to obtain the various results and advantages described in this specification without departing from the technical solutions claimed in the application.
  • the cross-sectional shape of the ring-like structure of the heating device 1400 can be a circle, a rectangle, a trapezoid, a stepped shape, etc., and the heating device can be changed according to actual needs without departing from the technical solution claimed in the application. 1400 to obtain the various results and advantages described in this specification.
  • the heating element (not shown) in the heating device 1400 is used to generate the heat required by the device 1400 to provide the first lens 1000 to which the heating device 1400 is fixed. It can be a metal heating wire, such as nickel iron wire, iron chromium aluminum wire, nickel chromium wire, and the like. Optionally, the heating element may comprise one or more of the above-described electrical heating wires. That is, the shape, structure or material of the heating element can be changed to obtain the various results and advantages described in this specification.
  • a mechanism member 1500 may also be included between the respective lenses, for example, the mechanism member 1500 can ensure a safety gap in the lens, such as between the first lens 1000 and the second lens 2000, to maintain a constant distance.
  • it can be directly set as a ceramic heating ring heating device.
  • the heating device 1410 can also be disposed adjacent to the mechanism member 1500, that is, between the lower end surface 1310b of the first lens 1000 and the sealing member 1600 in the overall structure of the lens; or as shown in FIG. 1C, The heating device 1410 can be disposed between the first lens 1000 and the side wall of the lens; or as shown in FIG. 1H , the heating device 1410 can directly replace the mechanical component 1500 to play the role of spacing adjacent lenses, and is disposed on the first lens 1000 between the lower end surface 1310b of the lens and the sealing member 1600 in the overall structure of the lens.
  • FIGS. 2A to 2F are cross-sectional views of the notch groove 1330 of the edge 1300 of the first lens 1000 having the heating device 1400 according to an embodiment of the present application.
  • a notch groove 1330 for accommodating the heating device 1400 may be provided on the outer side of the edge 1300 of the first lens 1000 .
  • the heating device 1400 is arranged in the notched groove 1330 and fixed on the inner wall of the notched groove 1330.
  • the notched groove 1330 can be a rectangular notched groove, a triangular notched groove or a circular arc notched groove, which is not limited here, as long as the heating device can be enlarged
  • the contact area between 1400 and the first lens 1000 is within the protection scope of the present invention.
  • a notch groove 1330 may be provided at the end surface 1310 of the edge 1300 of the first lens 1000 .
  • the notch groove 1330 may be provided at the lower end surface 1310 b , as shown in FIG. 2B .
  • 1330 is arranged at the lower end face 1310b, and is arranged as a rectangular groove with a step shape.
  • the notch slot 1330 is arranged at the upper end face 1310a; as shown in FIGS. 2D and 2E, when the heating device 1400 is arranged at the end face 1310 When inside the notch groove 1330, it can extend along the direction of the side surface 1320.
  • FIG. 2A the notch groove 1330 may be provided at the lower end surface 1310 b , as shown in FIG. 2B .
  • 1330 is arranged at the lower end face 1310b, and is arranged as a rectangular groove with a step shape.
  • the notch slot 1330 is arranged at the upper end face 1310a; as shown in FIGS. 2D and
  • a notch groove 1330 may be provided at the side 1320 of the first lens 1000 at the edge 1300 .
  • the notched groove 1330 is a rectangular notched groove as an example, however, those skilled in the art should understand that the shape and shape of the notched groove 1330 can be changed without departing from the technical solution claimed in the application. structure to achieve the various results and advantages described in this specification.
  • FIG. 3 is a schematic diagram of the position of the fixing element 1402 in the lens according to an embodiment of the present application.
  • the heating device 1400 may further include a fixing element 1402 .
  • the fixing element 1402 may be any element capable of fixing the heating device 1400 for fixing the heating device 1400 into the first lens 1000 in the lens.
  • the heating device 1400 can be tightly fixed on the inner wall of the notch groove 1330, so as not to be separated from the edge 1300 of the first lens 1000, and can transfer heat to the edge 1300 in constant contact.
  • the fixing element 1402 may be a double-sided adhesive tape with good thermal conductivity, that is, the fixing element 1402 may be one or more of thermally conductive glue or thermally conductive tape.
  • the fixing element 1402 is a thermally conductive glue or thermally conductive tape with good thermal conductivity, it is bonded between the heating device 1400 and the edge 1300 of the first lens 1000 , so that the heating device 1400 can be tightly fixed to the edge 1300 of the first lens 1000 .
  • the fixing element 1402 can also be an elastic element, which can be placed at the edge 1300 in a compressed state.
  • the elastic The element can tightly fix the heating device 1400 to the edge 1300 of the first lens 1000 by means of the elastic force generated by the supporting force of the sidewall, so that the heating device 1400 can directly transfer heat to the edge 1300 of the first lens 1000 by heat conduction.
  • the elastic element may be provided between the first lens 1000 and the second lens 2000 .
  • the fixing element 1402 may also be a double-sided adhesive tape with good electrical conductivity, that is, the fixing element 1402 may be one or more of conductive glue or conductive tape.
  • the fixing element 1402 is conductive glue or conductive tape, it is bonded between the heating device 1400 and the edge 1300 of the lens 100 , so that the heating device 1400 can be tightly fixed to the edge 1300 of the first lens 1000 .
  • the above-mentioned fixing element 1402 may also be a locking element of the lens itself, such as an outer pressing ring.
  • the heating device 1400 can be fixed between the lens and the wall of the lens barrel or between adjacent lenses, for example, between the first lens 1000 and the second lens 2000 or between the lens and the spacer, through the fixing element 1402 between.
  • the heating device 1400 may be a ceramic heating ring heating device 1410 .
  • the material of the ceramic itself is stable and can withstand various external environments.
  • the ceramic heating ring heating device 1410 made of the ceramic material has high reliability as a whole.
  • the ceramic itself has good thermal conductivity and insulation, which can perfectly protect the heating element, and because of its low production cost and easy processing, the ceramic heating ring heating device 1410 can be customized according to the use requirements.
  • the external shape of the first lens 1000 can be determined according to the actual shape of the first lens 1000 to ensure that the ceramic heating ring heating device 1410 can have a larger area of contact with the first lens 1000 to be heated, thereby effectively improving the utilization rate of thermal energy.
  • the heating device 1400 may be a polyimide PI heating film heating device 1420 .
  • the polyimide film is a kind of translucent metal flexible electric heating film. Because it can change shape on some uneven surfaces, the polyimide film can not only ensure the contact with the end surface 1310 or the side surface of the first lens 1000 1320 fits better; at the same time, it can also ensure that the contact area with the first lens 1000 to be heated is large enough. Moreover, the polyimide film itself has high heat conduction efficiency, so it can largely transfer the heat generated by the heating element to the tightly fixed first lens 1000 while protecting the heating element. In addition, the thickness of the polyimide film can be as low as, for example, 0.1 mm, taking up very little space.
  • FIGS. 4A to 4I are cross-sectional views of a first lens 1000 having a polyimide heating film heating device according to another embodiment of the present application.
  • FIGS. 4A to 4I there are partial schematic structural diagrams of lens parts G, H, I, J, K, L, M, and N that are magnified ten times (10:1), respectively.
  • the internal structure of the polyimide (PI) heating film heating device 1420 (hereinafter referred to as the heating device 1420 ) can be distributed as PI film 1421 + double-sided tape 1422 + heating element + double-sided tape 1422 + Sandwich structure of PI film 1421.
  • the heating element is disposed between the double-layer polyimide PI films 1421, and the heating element and each polyimide PI film 1421 are bonded by double-sided tape 1422.
  • the double-sided adhesive tape 1422 can be selected from one or more of thermally conductive glue, thermally conductive adhesive tape, conductive adhesive, and conductive adhesive tape.
  • the heating device 1420 may be disposed at the upper end surface 1310a of the edge 1300 of the first lens 1000 ; as shown in FIG. 4B , the heating device 1420 may be disposed at the lower end surface 1310b ;
  • the heating device 1420 shown in 4C is arranged at the side 1320 at the edge 1300, and can be located between the edge 1300 and the side wall of the lens; as shown in FIG. 4D, the heating device 1420 is simultaneously arranged on the upper end surface 1310a and the side 1320 of the edge 1300 As shown in FIG.
  • the heating device 1420 is simultaneously arranged at the lower end surface 1310b and the side surface 1320 at the edge 1300; the heating device 1420 shown in FIG. As shown in FIG. 4G, the heating device 1420 is arranged between the edge 1300 of the first lens 1000 and the edge of the second lens 2000; as shown in FIG. Between the sealing members 1600; and as shown in FIG.
  • FIG. 5A is a cross-sectional view of a lens having a polyimide heating film heating device according to another embodiment of the present application.
  • FIG. 5B is a partial schematic structural view of the lens part Y in FIG. 5A after ten times (10:1) enlargement.
  • the internal structure of the heating device 1420 can be distributed It is a sandwich structure of PI film 1421 + double-sided tape 1422 + heating element + double-sided tape 1422 + PI film 1421 + heat-resistant hard carrier 1423.
  • the PI film 1421 and the heat-resistant hard carrier 1423 can be combined into a hard carrier polyimide film, so that the protection unit 1405 including the hard carrier polyimide film has good rigidity, and it is convenient to install the heating device 1400 At the time of the first lens 1000, the alignment can be accurate and automatic production can be realized.
  • the used double-sided adhesive tape 1422 can also be selected from one or more of thermally conductive glue, thermally conductive adhesive tape, conductive adhesive and conductive adhesive tape.
  • the heating device 1420 may be disposed at the end face 1310 of the first lens 1000 at the edge 1300 (the upper end face 1310a or the lower end face 1310b ); the first lens 1000 is at the edge 1300 at the side 1320 (Fig. 4C); at the same time at the end face 1310 (the upper end face 1310a or the lower end face 1310b) of the first lens 1000 at the edge 1300 and the side face 1320 (as shown in Figs. 4D, 4E and 4F) ; between the edge 1300 of the first lens 1000 and the edge of the second lens 2000 (as shown in FIG.
  • the heating device 1400 may further include an energy supply unit (not shown).
  • the power supply unit may be an electrical device, such as a battery or a power supply, for supplying electrical energy to the heating element.
  • the heating device 1400 may further include a conductive element 1403, and the design structure of the conductive element 1403 is slightly different according to whether the protection unit 1405 is a ceramic ring or a polyimide PI film.
  • FIGS. 6A to 6C are cross-sectional views of the conductive unit 1403 in the first lens 1000 having the ceramic heating ring heating device 1410 according to an embodiment of the present application.
  • the conductive unit 1403 thereof may have at least two lead wires 1403 a for connecting the heating element and the power supply unit. Both ends of the heating element are connected to the conductive units 1403 respectively, and the conductive units 1403 are respectively connected to the positive and negative electrodes of the energy supply unit, so that the heating element is turned on, converts electrical energy into heat energy, and transmits it to the fixed first lens 1000 middle.
  • At least two leads 1403a are designed to be mounted on the same side of the heating device 1410; in Figure 6B, at least two leads 1403a are designed to be mounted on both sides of the heating device 1410; in Figure 6C, at least two leads 1403a It is designed to be installed in a specific position of the heating device 1410, and the specific position can be set by the special requirements of the structural design of the lens including the first lens 1000, or by the resistance value of the temperature-sensing resistor of the heating element actually used.
  • the connection between the conductive unit 1403 and the heating device 1410 can be selected from one or more of welding, conductive glue, conductive tape, thermally conductive glue, thermally conductive tape, and compression connection.
  • FIG. 7A , 7B and 7D are respectively cross-sectional views of the conductive unit 1403 in the first lens 1000 having the polyimide heating film heating device 1420 according to another embodiment of the present application.
  • the conductive unit 1403 may have at least two leads 1403b for connecting the heating element and the power supply unit.
  • the heating device 1420 can be directly extended to be used as a power supply wire, and the heating wire inside the polyimide heating film as part of the power supply wire will be drawn out. Relatively wide to reduce the resistance value and ensure that the supply wire will not be divided (supply voltage).
  • the two ends of the heating element are respectively connected to the conductive unit 1403, and the conductive unit 1403 is respectively connected to the positive and negative electrodes of the energy supply unit, so that the heating element is turned on, the electrical energy is converted into heat energy, and transmitted to the tightly fixed first lens out of 1000.
  • FIG. 7A at least two leads 1403b are designed to be mounted on the outer end face of the polyimide film 1405 in the heating device 1420; in FIG. 7C, it is also shown that the position Z of the lens is magnified ten times (10:1) 7B, at least two lead wires 1403b are designed to be installed on the outer end surface 1405a and the outer side surface 1405b of the polyimide film 1405 in the heating device 1420; in FIG. 7E and FIG. 7F, respectively The partial schematic structure after ten times (10:1) magnification of the parts A and B of the lens is shown. As shown in FIG. 7D, at least two leads 1403b are designed to be installed on the outer side of the polyimide film 1405 in the heating device 1420.
  • the positions in the above figures are only examples, and the actual positions of the at least two leads 1403b can be set by the special requirements of the structural design of the lens including the first lens 1000, or by the resistance value of the temperature-sensing resistor of the heating element actually used.
  • the end face (both inside and outside) or the side face (both inside and outside) of the polyimide film 1405 is set, or a combination thereof.
  • the connection between the conductive unit 1403 and the heating device 1420 can be selected from one or more of welding, conductive glue, conductive tape, heat-conductive glue, heat-conductive tape, and compression connection.
  • FIG. 8A , 8B, 8D and 8G are respectively cross-sectional views of the conductive unit 1403 in the first lens 1000 having the polyimide heating film heating device 1420 according to another embodiment of the present application.
  • the conductive unit 1403 thereof may have at least two lead wires 1403c for connecting the heating element and the power supply energy unit. Both ends of the heating element are connected to the conductive units 1403 respectively, and the conductive units 1403 are respectively connected to the positive and negative electrodes of the energy supply unit, so that the heating element is turned on, converts electrical energy into heat energy, and transmits it to the fixed first lens 1000 middle.
  • a heat-resistant hard carrier is added to the polyimide PI heating film, so the designed installation positions of the at least two leads 1403c are different from the above-mentioned at least two leads 1403a and 1403b.
  • Fig. 8A at least two leads 1403c are designed to be mounted on the outer end face 1405a of the polyimide film 1405 in the heating device 1420;
  • Fig. 8C also shows a tenfold (10:1) magnification of the portion C of the lens
  • FIG. 8B at least two lead wires 1403c are designed to be installed on the outer side surface 1405b of the polyimide film 1405 in the heating device 1420; in FIG. 8E and FIG. 8F, the pair of lenses are also shown respectively.
  • the partial schematic structure after ten times (10:1) magnification of the parts D and E of as shown in FIG.
  • At least two lead wires 1403c are designed to be installed on the outer end face 1405a and the inner end face of the polyimide film 1405 in the heating device 1420.
  • the extension line is extended to various positions of the heating device 1420, and then electrically connected to the heating element and the energy supply unit.
  • the positions in the above figures are only examples, and the actual positions of the at least two leads 1403c can be set by the special requirements of the structural design of the lens including the first lens 1000, or by the resistance value of the temperature-sensing resistor of the heating element actually used
  • the end face (both inside and outside) or the side face (both inside and outside) of the polyimide film 1405 is set, or a combination thereof.
  • the connection between the conductive unit 1403 and the heating device 1420 can be selected from one or more of welding, conductive glue, conductive tape, heat-conductive glue, heat-conductive tape, and compression connection.
  • the lens module according to the exemplary embodiment of the present application may include a lens body 11 , a heater 12 and a structural member 13 , and a controller 14 .
  • the lens main body 11 is equivalent to the aforementioned overall structure of the lens.
  • the heater 12 is used to generate heat for heating the lens body 11 .
  • the controller 14 is used to generate control commands that control the operation of the heater 12 to generate heat.
  • the structural member 13 is fixedly connected with the lens body 11 and is used for transmitting the control command generated by the controller 14 to the heater 12 .
  • the structural member 13 and the lens body 11 can be rigidly connected.
  • the lens body 11 is composed of at least one lens 112 and a lens barrel 111 capable of accommodating at least one lens, and is usually fixed on the vehicle body to assist the driver to obtain a clear field of vision, and can also be used for the determination of traffic accidents. Provide reliable credentials. Therefore, the imaging quality of the lens body 11 is very important. In order to enable the lens body 11 to automatically remove fog and ice in a cold and humid environment and ensure image quality, a heater 12 is fixedly installed on the lens body 11 in this embodiment.
  • the lens barrel 111 of the lens body 11 is provided with a protruding portion
  • the protruding portion is an annular platform circumferentially disposed around the lens barrel 111
  • the diameter of the protruding portion is slightly larger than the diameter of the lens barrel 111 .
  • the protruding portion may be a flange, which may be used to limit or fix when the lens body 11 is connected with the controller 14 .
  • the heater 12 may be disposed within the lens barrel and act directly on the lens.
  • the heater 12 may include a heating unit 123 and a conductive unit.
  • the heating unit 123 is disposed at the edge or non-optical area of the lens 122 ; the conductive unit includes at least two power supply wires 120 .
  • the heating unit 123 may be constituted by a temperature sensor (not shown) and a heating element (not shown).
  • the temperature sensor detects the temperature of the environment where the lens body 11 is located in real time, and transmits the detected temperature value to the controller 14 in the form of an electrical signal.
  • the controller 14 compares the received temperature value to a predetermined threshold value. When the ambient temperature is lower than the first preset threshold, the controller 14 sends a heating command to the heater 12 in the form of an electrical signal.
  • the heating elements in the heater 12 start heating operation to generate heat.
  • the controller 14 sends the heater 12 to the heater 12 . Issue a command to stop heating.
  • the heater 12 receives the command to stop heating from the controller 14, the heating element stops heating.
  • the heater 12 and the controller 14 need to be electrically connected to realize the above-mentioned interaction of electrical signals, so the power supply line 120 of the heater 12 must be connected to the output end 141 of the controller 14 .
  • the position of the power supply wire 120 of the heater 12 is constrained by the structure and positional relationship between the heater 12 and the lens body 11, and cannot be adjusted according to the position of the output end 141 of the controller 14, and the position of the output end 141 of the controller 14 is not fixed.
  • the present embodiment provides a structural member 13 for connecting the heater 12 and the controller 14 .
  • FIG. 10 is an enlarged view of the area A1 of FIG. 9 ;
  • FIG. 11 is a schematic structural diagram of a structural member in a lens module according to an exemplary embodiment of the present application.
  • the structural member 13 includes a first conductive end 131 , a second conductive end 132 and a structural member body 133 .
  • the first conductive end 131 can be disposed on one side of the structure body 133, for example, and has a positive electrode 1311 or a negative electrode 1312 electrically connected to the controller 14;
  • the second conductive end 132 can be disposed on the other side of the structure body 133 , and has a positive electrode 1321 or a negative electrode 1322 electrically connected to the heater 12 .
  • the positive electrode 1311 or the negative electrode 1312 of the first conductive end 131 is a rigid rod, such as a copper rod.
  • the first conductive terminal 131 is provided at a position matching the position of the output terminal 141 of the controller 14 .
  • the controller 14 includes a printed circuit board (PCB). Since the position of the output end 141 of the controller 14 is randomly set according to the specific model, it is necessary to accurately determine the position of the output end 141 of the controller 14 first, and find the position matching the position of the output end 141 of the controller 14 on the main body 133 of the structural component. position, and then the first conductive end 131 is fixedly connected to the structural member main body 133 by, for example, welding.
  • PCB printed circuit board
  • the first conductive end 131 can be used for positioning when the structural member 13 is connected to the controller 14 .
  • the assembly of the lens module is more accurate and convenient.
  • the connection between the first conductive end 131 and the output end 141 of the controller 14 may include: welding interconnection, puncturing connection.
  • the first conductive end 131 is connected to the output end 141 of the controller 14 by welding.
  • the first conductive end 131 penetrates the output end 141 of the controller 14 and is fixed by welding to ensure the stability of the connection.
  • the controller 14 can be regarded as a first device, and the heater 12 provided on the lens body 11 can be regarded as a second device.
  • the first device and the lens body 11 need to be installed together, wherein, due to the different types and models of the first device, the positions of the output ends 141 on the first device are different.
  • the structural member 13 provided in the present application accurate positioning of the first device and the second device during installation can be achieved.
  • the first terminal (the first conductive end 131 ), the structural member main body 133 and the second terminal (the second conductive end 132 ) are fixedly connected.
  • the fixed connection may be rigid.
  • the position of the first terminal is set in response to the fixed position of the structural member main body 133 and the first device
  • the position of the second terminal is set in response to the fixed position of the structural member main body 133 and the second device
  • the first terminal and the second terminal It is communicatively connected through the structural member body 133 .
  • the controller 14 may be used as an external power source for the heater 12 , thereby supplying power to the heater 12 .
  • the structural member 13 is used to transmit the command output by the first device to the second device.
  • the first device may transmit signals, such as electrical or optical signals, to the second device.
  • the structural member 13 is also beneficial to enhance the firmness of the first device and the second device after installation.
  • the first terminal has rigidity, and its material may be a conductive material.
  • the first terminal may also be a conductive channel provided with a conductive material in the matrix of a dielectric material, or an optical channel provided with a refractive material. Further, the first terminal and the first device are electrically connected or communicated in other ways.
  • the second terminal is communicatively connected to the second device.
  • the structural member body 13 has a mounting axis L.
  • the structural member body 13 may have a plurality of positions rotated along the mounting axis L, and may be used to connect with the lens body 11 .
  • the structural member main body 13 may also have only one installation position. After the structural member main body 13 is fixedly connected to the lens main body 11 , the installation axis L may coincide with the optical axis of the lens main body 11 .
  • the first terminal is a rigid pin header.
  • Rigid pin headers can be solid or hollow.
  • the rigid pin headers have good positioning when mounted to the first device.
  • the output terminal of the first device may be a pad hole.
  • the rigid pin header is rigidly connected to the pad hole and can be electrically connected. Further, rigid pin headers and pad holes can be soldered.
  • FIG. 12 is a schematic diagram of the shape of the first conductive end in the lens module according to an exemplary embodiment of the present application
  • FIG. 13 is a schematic diagram of the shape of the first conductive end in the lens module according to another exemplary embodiment of the present application.
  • the first conductive end 131 is set in a polygonal needle shape.
  • the first conductive end 131 is provided in a rectangular sheet shape.
  • the shape of the first conductive end 131 may be a combination of a rectangular sheet shape and a polygonal needle shape.
  • the protruding length of the first conductive end 131 is relatively short.
  • the polygonal needle shape may be a circular needle shape, a rectangular needle shape, a hexagonal needle shape, or the like.
  • the first conductive end 131 must be made of metal material. Compared with the power supply line 120 , the short needle-shaped or sheet metal connection end has stronger rigidity, and is easy to communicate with and fix with the output end 141 of the controller 14 .
  • the second conductive end 132 is disposed on one side of the structural member body 133 and is located on a different side from the first conductive end 131 .
  • the shape of the first electrical contact area between the second conductive end 132 and the structural member body may be at least one of a point shape, a closed ring shape or a broken ring shape. Since the electrodes of the second conductive terminal 132 include a positive electrode 1321 and a negative electrode 1322 , the first electrical contact area between the structure body and the second conductive terminal 132 is also divided into a first positive electrode area 1331 and a first negative electrode area 1332 .
  • FIG. 14 is a structural diagram of a main body of a structural member in a lens module according to an exemplary embodiment of the present application
  • FIG. 15 is a top view of FIG. 14
  • FIG. 16 is a structure of a main body of a structural member in a lens module according to another exemplary embodiment of the present application
  • 17 is a top view of FIG. 16
  • FIG. 18 is a structural view of a main body of a structural member in a lens module according to an exemplary embodiment of the present application
  • FIG. 19 is a top view of FIG. 18 .
  • the shapes of the first electrical contact regions 1331 to 1332 of the second conductive end 132 and the structural member main body 133 are closed loops.
  • the first electrical contact regions 1331 to 1332 of the structure body 133 and the second conductive end 132 are disposed on the second end surface 1333 of the structure body 133 itself.
  • the second end surface 1333 of this embodiment may be the end surface facing away from the controller.
  • the second conductive end 132 is also fixed on the second end surface 1333 of the structural member main body 133 when it is in electrical contact with the structural member main body 133 .
  • any position on the second end face 1333 of the structural member 13 can be electrically connected to the power supply wire 120 and fixed.
  • the arrangement of the structural member 13 makes the connection between the heater 12 and the controller 14 more convenient.
  • the first conductive end 131 may be disposed on the first end surface 1336 and electrically connected to the second conductive end 133 .
  • the structural member body 133 may include an outer peripheral surface 1334 and an inner peripheral surface 1335 .
  • the installation position of the structural member main body 133 on the lens main body 11 can be adjusted.
  • the structural member main body 133 is arranged on the radially outer side of the optical axis of the lens main body 11 and is integrally formed with the lens main body 11. At this time, the structural member main body 133 may have no inner Circumferential 1335.
  • the shapes of the first electrical contact regions 1331 to 1332 between the second conductive end 132 and the structural member main body 133 are closed loops.
  • the first electrical contact regions 1331 to 1332 of the structural member main body 133 and the second conductive end 132 are disposed on the inner peripheral surface 1335 of the structural member main body 133 itself, in order to match the positions of the first electrical contact regions 1331 to 1332 of the structural member main body 133 .
  • the second conductive end 132 is also fixed on the inner peripheral surface 1335 of the structural part main body 133 when it is in electrical contact with the structural part main body 133 .
  • any position on the inner peripheral surface 1335 of the structural member 13 can be electrically connected to the power supply wire 120 and fixed.
  • the arrangement of the structural member 13 makes the connection between the heater 12 and the controller 14 more convenient.
  • the first conductive end 131 may be disposed on the first end surface 1336 and electrically connected to the second conductive end 133 .
  • the shape of the first electrical contact area between the second conductive end 132 and the structural member main body 133 is a closed loop.
  • the first positive electrode region 1331 of the structural member main body 133 is disposed on the second end surface 1333 of the structural member main body 133
  • the first negative electrode region 1332 is disposed on the inner peripheral surface 1335 of the structural member main body 133 .
  • the positive electrode 1321 is also disposed on the second end face 1333 of the structural member main body 133, and is connected to the positive electrode 1321. Electrode regions 1331 are fixedly connected.
  • the negative electrode 1322 of the second conductive end 132 will be disposed on the inner peripheral surface 1335 of the structural member main body 133 and fixedly connected to the first negative electrode region 1332 .
  • any position on the inner peripheral surface 1335 of the structural member 13 can be electrically connected to the negative electrode for power supply wire and fix; any position on the second end face 1333 of the structural member 13 can be electrically connected to the positive electrode power supply wire and fixed.
  • the arrangement of the structural member 13 makes the connection between the heater 12 and the controller 14 more convenient.
  • the first conductive end 131 may be disposed on the first end surface 1336 and electrically connected to the second conductive end 133 .
  • the positions of the first positive electrode region 1331 and the first negative electrode region 1332 of the structural member body 133 can be replaced according to requirements.
  • the positions of the positive electrode 1321 and the negative electrode 1322 of the second conductive end 132 are also replaced, which is not limited herein.
  • the form of the first electrical contact regions 1331 - 1332 of the structural member main body 133 is limited by the structural shape of the structural member main body 133 , so that the number and the shape of each electrode of the second conductive end 132 are also limited by The structural shape of the structural member main body 133 .
  • the shape of the second conductive end 132 includes: a polygonal needle shape, a rectangular sheet shape, or a combination of a polygonal needle shape and a rectangular sheet shape.
  • the first conductive end 131 is disposed at the first end face 1336 of the structural member body 133 . Specifically, it is fixed to a position corresponding to the output terminal 141 of the controller 14 .
  • the first conductive end 131 may be a pin header or the like, and is electrically connected to the first electrical contact area through electrical contact and dark lines.
  • the structural member main body 133 includes a conductive portion, and two ends of the conductive portion along the installation axis respectively serve as the first electrical connection area and the second electrical connection area.
  • the structural member body 133 is provided with a second electrical contact area, and the second electrical contact area may include a second positive electrode area and a second negative electrode area.
  • the positive electrode 1311 of the first conductive end 131 may be disposed in the second positive electrode region, and the negative electrode of the first conductive end 131 may be disposed in the second negative electrode region.
  • FIG. 20 is a schematic diagram of the connection between the second conductive end and the power supply line in the lens module according to the exemplary embodiment of the present application
  • FIG. 21 is a schematic diagram of the connection between the second conductive end and the heater power supply line.
  • the second conductive end 132 is provided with a groove capable of making electrical contact with the power supply wire 120 of the heater 12 .
  • the second conductive end 132 is disposed on the structural member body 133 and is located on a different side from the first conductive end 131 .
  • the second conductive end 132 can be connected to the heater by means of soldering and piercing the connection.
  • the diameter of the groove of the second conductive end 132 is slightly smaller than the diameter of the power supply wire 120 .
  • the power supply line 120 is composed of a metal wire 121 and an insulating sheath 122 surrounding the metal wire 121 .
  • the insulating sheath 122 is soft and easy to be pierced, when the power supply wire 120 is connected to the second conductive end 132, the insulating sheath 122 of the power supply wire 120 is pierced by the second conductive end 132, so that the metal wire 121 is exposed to the second conductive end 132. into the groove of the conductive end 132, and is clamped by the groove.
  • the second conductive end 132 is made of metal material. After the second conductive end 132 clamps the metal wire 121 tightly, the fixed connection between the structural member 13 and the heater 12 is achieved. Further, the structural member 13 and the heater 12 can exchange information through electrical signals, which prevents the heater 12 from pulling the power supply wire 120 out of the lens body 11 in an open wire manner, thereby causing confusion in the wires of the lens module and affecting assembly efficiency.
  • the present application disposes the main body 133 of the structural member between the first conductive end 131 and the second conductive end 132 for integrating electrical signal transmission lines, and disposing the electrical signal transmission lines on the structural member in the form of dark lines
  • the inside of the main body 133 prevents the heater 12 from pulling the power supply wire 120 out of the lens main body 11 in an open wire manner, thereby causing confusion of the wires of the lens module and affecting the assembly efficiency.
  • the structural member 13 is fixed on the lens body 11 through the structural member body 133 .
  • FIG. 22 to FIG. 25 are schematic diagrams illustrating that the structural members in the lens module according to the exemplary embodiments of the present application are fixed at different positions of the lens body.
  • 22 is a schematic diagram of the structural member body 133 embedded in the outer wall surface of the lens body 11 .
  • FIG. 23 is a schematic view of the structure body 133 embedded in the bottom surface of the lens body 11 .
  • FIG. 24 is a schematic view of the side edge of the protruding portion of the protruding portion of the lens body 11 in which the structural member main body 133 is fitted.
  • FIG. 25 is a schematic view of the structure body 133 embedded in the inner hole of the lens body 11 .
  • the structural member main body 133 can be disposed on the outer wall surface, bottom surface of the lens barrel of the lens main body 11 , the side edge of the protruding part of the protruding part, or the inner hole.
  • the fixed position is not limited, which is more convenient for producers to choose according to their needs.
  • the shape of the structural member body 133 may also be set in various styles.
  • FIG. 26 to FIG. 29 are schematic diagrams showing the shape of the main body of the structural member in the lens module according to the exemplary embodiment of the present application.
  • 26 is a schematic view of the structure in which the main body 133 of the structural member is annular.
  • FIG. 27 is a schematic view of the structure in which the main body 133 of the structural member is a rectangular ring.
  • FIG. 28 is a schematic view of the structure of the main body 133 of the structural member in a combination of a circular ring shape and a tangential shape.
  • FIG. 29 is a schematic view of the structure in which the main body 133 of the structural member is a broken ring.
  • the shape of the structural member body 133 may be set as a circular ring, a rectangular ring, a combination of a circular ring and a tangential shape, or a broken ring.
  • the shape of the structural member body 133 needs to be determined according to the shape of the lens body 11 , so that the structural member 13 and the lens body 11 can be firmly connected to avoid increasing the difficulty of assembly due to the mismatch of shapes.
  • the shape of the main body 133 of the structural member In order to ensure that the structural member 13 can match the position of the power supply line 120 of the heater 13 and the position of the output end of the controller 14, the shape of the main body 133 of the structural member must be set in a ring shape, so that the conductive end of the structural member 13 can be placed in the ring shape.
  • the structural member main body 133 is fixed at any position in the circumferential direction.
  • the specific annular shape of the structural member body 133 can also be set accordingly, which is not limited here.
  • the fixing method of the lens body 11 and the structural member body 133 may be: hole-shaft interference fit, heat riveting fixation, snap ring fixation, hook fit, glue dispensing fixation, screw locking fixation, and the like. As long as the lens main body 11 and the structural member main body 133 can be firmly fixed, the manufacturer can assemble according to their own conditions, and the specific fixing method is not limited.
  • both sides of the structural member main body 133 are also used for fixing the conductive terminals. Since the lead-out position of the power supply line 120 of the heater 12 is randomly set, and the position of the output end of the controller 14 is also randomly set according to its different models, in order to match the lead-out position of the power supply line 120 of the heater 12 and the output end position of the controller 14 In this embodiment, the position of the conductive end of the main body 133 of the structural member can be fixedly installed according to the actual situation.
  • FIG. 30 is a schematic diagram of the position of the second conductive end on the main body of the structural member in the lens module according to the exemplary embodiment of the present application
  • FIG. 31 is the first conductive end on the main body of the structural member in the lens module according to the exemplary embodiment of the present application Schematic diagram of the location.
  • the first angle ⁇ is the angle between the positive and negative electrodes of the second conductive ends 132 .
  • the first angle ⁇ is the included angle between the two electrodes relative to the optical axis in the vertical plane of the optical axis.
  • the degree of the first angle ⁇ is adjusted between 0° and 360°, so that the communication between the structural member 13 and the heater 12 is not affected by the position of the connecting end. constraint.
  • the second angle ⁇ is the angle between the positive and negative electrodes of the first conductive terminal 131.
  • the degree of the second angle ⁇ is 0 degrees. It can be adjusted to 360 degrees, so that the communication between the structural member 13 and the controller 14 is not restricted by the position of the connection end.
  • the main body 133 of the structural member can be selected from a material with a relatively small mass such as plastic, so that after the structural member 13 is added to the lens module, the overall weight of the lens module does not increase significantly.
  • the lens module provided in this embodiment belongs to an optical device, and other types of optical devices including the structural member 13 can also be obtained without departing from the teaching of this embodiment.
  • FIG. 32 is a flowchart of a method for manufacturing a lens module according to an exemplary embodiment of the present application.
  • the present application also provides a preparation method 1000 of a lens module, including:
  • Step S1 setting a heater for generating heat for heating the lens body.
  • Step S2 setting a controller for generating a control command for controlling the heater to generate heat.
  • Step S3 setting a structural member that is fixedly connected to the lens body.
  • step S4 the controller is rigidly connected to the structural member.
  • the structural member is used to transmit the control command generated by the controller to the heater.
  • the preparation method 1000 of the lens module is applied to the preparation of the lens module in the above-mentioned embodiment, wherein the specific implementation of each component of the lens module can be found in the specific description of the above-mentioned embodiment of the lens module, which is not repeated here. Repeat.
  • the structural member includes: a structural member body, a first conductive end and a second conductive end.
  • the main body of the structural member includes a first electrical contact area and the second conductive end is electrically connected to the first electrical contact area.
  • Step S3 includes:
  • the main body of the structural component is fixedly connected to the main body of the lens.
  • the second conductive end is electrically connected to the heater. Specifically, the position of the second conductive end is determined according to the position of the power supply line of the heater. Further, the second conductive end is fixedly connected to the power supply line, and the second conductive end is electrically connected to the heater.
  • the second conductive end is fixed at a position corresponding to the heater in the first electrical contact area.
  • the first conductive terminal is rigidly electrically connected to the output terminal of the controller to receive control commands from the controller.
  • the main body of the structural member when the main body of the structural member is fixed, the main body of the structural member may be fixed in response to the fixed connection position of the lens main body and the heater, so that the second conductive end corresponds to the position of the power supply line.
  • the first conductive end when fixed, it can be fixed at the aforementioned position in response to the fixed connection position of the lens body and the controller.
  • the structure body, the first conductive end and the second conductive end, the structure body and the lens body and the second conductive end and the heater can be connected in corresponding different ways.
  • the first conductive end of the structural member is precisely positioned according to the position of the output end of the controller, and the second conductive end of the structural member is accurately positioned according to the position of the power supply line of the heater, and then
  • the heater and the controller are connected through the structural member, which avoids the situation in the prior art that the heater cannot be assembled due to the mismatch between the position of the heater power supply line and the position of the output end of the controller, thereby reducing the difficulty of assembling the heating lens and the controller, and improving the Assembly efficiency and productivity of heated lenses and controllers.
  • FIG. 33 a schematic diagram of a lens 1000 according to an embodiment of yet another aspect of the present application is shown.
  • the lens 1000 may include a lens part 1100 , a lens barrel 1200 , a heating unit 1300 , and a connecting part 1400 .
  • the connection part 1400 may be a conductive unit.
  • the lens component 1100 may include at least one lens for adjusting and transmitting light, thereby facilitating the imaging or projection effect of the lens.
  • the lens component 1100 may include a first lens 1110 and a second lens 1120 disposed oppositely, wherein the first lens 1110 and the second lens 1120 may be bonded together by a bonding substance.
  • the light rays may be incident to the second mirror 1120 along the first mirror 1110 , or may be incident to the first mirror 1110 along the second mirror 1120 .
  • the lens barrel 1200 may be connected to the non-optical area of the lens part 1100 to fix the lens part 1100 .
  • the lens barrel 1200 may be connected to the non-optical areas of the first lens 1110 and the second lens 1120 to fix the first lens 1110 and the second lens 1120 .
  • the heating module 1300 may be disposed in the non-optical area of the lens component 1100 . Specifically, the heating module 1300 may be disposed in the non-optical area of the lens closest to the external environment in the lens component 1100 . For example, in the lens 1000 shown in FIG. 33 , the heating module 1300 may be disposed in the non-optical area of the first lens 1110 close to the external environment. Disposing the heating module 1300 in the non-optical area of the lens component 1100 is beneficial to realize the defogging and defrosting effect on the lens without affecting the light transmission. In addition, disposing the heating module 1300 in the non-optical area of the lens component 1100 can effectively avoid problems such as the overall structure of the lens 1000 being too large and the installation space being limited.
  • connection part 1400 can be connected to the heating module 1300 through the lens barrel 1200 , wherein the connection part 1400 is adapted to be connected with an external power source to supply power to the heating module 1300 .
  • the connecting part 1400 may pass through the lens barrel 1200 and be connected to the heating module 1300 by welding.
  • the connection part 1400 may include a first connection part 1410 and a second connection part 1420, and the first connection part 1410 and the second connection part 1420 may be connected to the heating module 1300 through both sides of the lens barrel 1200, wherein the first connection part 1410
  • the second connection part 1420 is connected to an external power source, so as to supply power to the heating module 1300 so that the heating module 1300 generates heat to remove fog or ice crystals generated on the surface of the lens.
  • the first connection part 1410 and the second connection part 1420 may be wires with protective sheaths.
  • the heating module 1300 may include a first film layer 1310 , a heating layer 1320 and a second film layer 1330 which are arranged in sequence.
  • the first film layer 1310 and the second film layer 1330 may be made of polyimide (PI) material.
  • the first film layer 1310 and the second film layer 1330 may be PI films made of polyimide (PI) material.
  • the heating layer 1320 can serve as the aforementioned heating element.
  • the heating layer 1320 may be made of at least one metal foil material selected from rolled copper foil (RA copper foil), electrolytic copper foil, constantan copper foil (copper-nickel alloy) and stainless steel.
  • the heating layer 1320 may be a wire-shaped heating wire made of at least one metal foil material selected from rolled copper foil, electrolytic copper foil, constantan copper foil and stainless steel.
  • the heating layer 1320 may be a heating wire formed by at least one wire shape of a circle, an arcuate shape, a zigzag line, and a circular shape, which is disposed in the non-optical area of the first lens 1110 . It should be understood that the present application does not specifically limit the setting shape of the heating layer, and any shape that meets the requirements can be designed according to the actual situation. Both the pitch H1 and the width H2 of the wire-shaped heating wires may be greater than or equal to 0.02 mm.
  • the metal foil may be etched to form a wire-shaped heating wire through an etching process.
  • the metal foil can be etched into circular heater wire loops.
  • the metal foil is etched into arcuate heating wire loops.
  • the metal foil is etched into a zig-zag heating wire loop.
  • the metal foil is etched into a circular ring of heating wire loops.
  • the resistivity of the heating layer
  • L the length of the heating wire
  • the first film layer 1310 and the second film layer 1330 in the heating module 1300 may be PI films, and the heating layer 1320 may be a heating wire formed by etching a metal foil.
  • the first connection part 1410 and the second connection part 1420 may be wires with protective sheaths.
  • the first connection part 1410 and the second connection part 1420 may pass through the lens barrel 1200 and be connected to the heating module 1300 by welding.
  • the electrodes of the first connection part 1410 and the second connection part 1420 can be etched at the lead-out end of the heating wire, and the electrode positions are partially not covered with the PI film to form electrodes that can be externally connected.
  • the present application does not specifically limit the lead-out manner of the electrodes and the wires, and any electrode and lead-out manners that meet the requirements can be designed according to the actual situation. Due to the excellent solderability of gold, in this application, gold treatment can be performed on the surface of the electrode, that is, a thick layer of nickel-gold alloy with good electrical properties can be wrapped on the copper surface by chemical methods. The nickel-gold alloy is quickly melted into the molten solder, and the solder and Ni form a Ni/Sn metal compound for soldering the connection part 1400 and the heating module 1300 .
  • the first connection part 1410 and the second connection part 1420 provided by the present application can be respectively connected to the heating module 1300 in the interval of 0°-180°, away from The position of the non-optical area of the first lens, that is, the position of the heating module 1300 that is close to the optical area of the first lens.
  • the first connection part 1410 and the second connection part 1420 may be connected to the inner side of the ring where the non-optical area of the heating module 1300 is disposed, respectively.
  • 35A and 35B only exemplarily show that the first connection part 1410 and the second connection part 1420 are connected to the inner side of the ring with the non-optical area of the heating module 1300 at intervals of 0° and 180°, respectively. It should be understood that the positions of the first connection part 1410 and the second connection part 1420 can be adjusted in the interval of 0°-180° according to the specific arrangement of the heating wire.
  • the first connection part 1410 and the second connection part 1420 provided by the present application can be respectively connected to the heating module 1300 in the range of 0°-180°, close to The position of the non-optical area of the first lens, that is, the position of the heating module 1300 away from the optical area of the first lens.
  • the first connection part 1410 and the second connection part 1420 may be respectively connected to the outer side of the ring where the non-optical area of the heating module 1300 is provided.
  • first connection part 1410 and the second connection part 1420 are connected to the outside of the ring with the non-optical area of the heating module 1300 at intervals of 0° and 180°, respectively. It should be understood that the positions of the first connection part 1410 and the second connection part 1420 can be adjusted in the interval of 0°-180° according to the specific arrangement of the heating wire.
  • the first connecting part 1410 and the second connecting part 1420 provided in the present application can be respectively connected to the heating module 1300 in the range of 0°-180°, close to the first lens one end of the non-optical area of and one end of the non-optical area away from the first lens.
  • the first connection part 1410 and the second connection part 1420 may be connected to the outer and inner sides of the ring where the non-optical area of the heating module 1300 is disposed, respectively.
  • first connection part 1410 and the second connection part 1420 are respectively connected to the outer and inner sides of the ring having the non-optical area of the heating module 1300 at intervals of 0° and 180°, respectively. It should be understood that the positions of the first connection part 1410 and the second connection part 1420 can be adjusted in the interval of 0°-180° according to the specific arrangement of the heating wire.
  • the first connection part 1410 and the second connection part 1420 provided in the present application can be respectively connected to the inside of the heating module 1300 in the interval of 0°-180°.
  • 38A and 38B only exemplarily show that the first connection part 1410 and the second connection part 1420 are respectively connected to the inside of the heating module 1300 at intervals of 0° and 180°, respectively. It should be understood that the positions of the first connection part 1410 and the second connection part 1420 can be adjusted in the interval of 0°-180° according to the specific arrangement of the heating wire.
  • the lead-out positions of the first connecting part and the second connecting part in the heating layer depend on the pattern arrangement design of the heating wires inside the heating layer.
  • the position where the first connecting part and the second connecting part are drawn out from the heating layer can either be set at the end of the heating layer, that is, the heating layer is close to the outer end of the non-optical area of the lens or is far away from the inner end of the non-optical area of the lens , and can be arranged inside the heating layer.
  • the first connection part and the second connection part can be used as two leads of the conductive unit, and further, respectively, as a positive power supply line and a negative power supply line.
  • the heating module 1300 provided by the present application may be arranged in a non-optical area of the lens in a folded manner.
  • the first film layer 1310 and the second film layer 1330 can be films made of PI material, which can be arbitrarily folded to form a multi-layer heating module. By connecting multiple layers of heating wires in series, the resistance of the heating layer 1320 can be increased.
  • the multi-layer folded heating modules can be connected by means of glue, tape and the like. As shown in FIG.
  • the heating module 1300 includes a PI film, a heating wire and a PI film arranged in sequence, wherein the PI film, the heating wire and the PI film are bonded together by glue 10 or the like.
  • the heating module 1300 is formed by folding the first heating module 100 and the second heating module 200 relative to each other along the X axis, wherein the heating wire of the first heating module 100 and the heating wire of the second heating module 200 are connected in series. The first heating module 100 and the second heating module 200 are bonded together using glue 10 or other adhesives. As shown in FIG.
  • the heating module 1300 is formed by folding the first heating module 100 , the second heating module 200 and the third heating module 300 in turn along the X axis and the Y axis.
  • the heating wires of the second heating module 200 and the heating wires of the third heating module 300 are connected in series.
  • the first heating module 100 and the second heating module 200 are bonded together using glue or other adhesives, and the second heating module 200 and the third heating module 300 are bonded together using glue or other adhesives. It should be noted that when bending the multi-layer heating wire in the present application, the bending positions are connected, so that the multi-layer heating wire is conductive. It should be understood that the heating modules provided in this application are not only heating modules with less than three layers.
  • the above description is only an example, and does not strictly limit the number of layers of the heating module.
  • the layers of the heating module can be reasonably set according to specific conditions. number.
  • the layout width (area) of the heating module is often limited, and the actual requirements cannot be met only by controlling the resistance of the heating wire. area to meet the resistance requirements.
  • the heating module 1300 provided by the present application may be disposed on the non-optical area of the lens in a superimposed manner.
  • the heating module 1300 includes a first film layer 1310 , a heating layer 1320 and a second film layer 1330 arranged in sequence, wherein the first film layer 1310 does not completely cover the heating layer 1320 .
  • the heating module 2300 includes a first film layer 2310 , a heating layer 2320 and a second film layer 2330 arranged in sequence, wherein the second film layer 2330 does not completely cover the heating layer 2320 .
  • FIG. 40A the heating module 1300 includes a first film layer 1310 , a heating layer 1320 and a second film layer 1330 arranged in sequence, wherein the second film layer 2330 does not completely cover the heating layer 2320 .
  • the heating module 3300 is formed by stacking the heating module 1300 and the heating module 2300 .
  • the first film layer 1310 and the second film layer 2330 can be bonded together by glue.
  • the electrodes of the heating layer 1320 and the heating layer 2320 can be electrically connected in series through conductive glue and conductive tape, etc.
  • the first film layer 2310 and the second film layer 2330 provided in the present application may be thin films of PI material, which may be stacked arbitrarily to form a multi-layer heating module.
  • the multi-layer superimposed heating modules can be connected by means of glue, tape, etc.
  • the electrodes of the multi-layer heating module can be electrically connected through conductive adhesives and conductive tapes.
  • the heating module 1300 may have at least one of a hole-shaped mark and a notch mark on the heating module 1300 .
  • multiple heating modules are usually integrated on a single material, and then multiple heating modules are cut out through stamping, laser cutting and other processes, which is easy to confuse multiple heating modules.
  • the heating module provided by the present application can identify the required heating module by designing different marks on the heating module. Specifically, as shown in FIG. 41A , one or more round hole mark 1 marks may be designed on the heating module 1300 . It should be understood that the description of the shape and number of marks in this application is only an example, not strictly limited. The shape and number of marks can be any shape and number that meet actual needs. holes and other irregular holes.
  • one or more triangular notch marks 2 can be designed on the heating module 1300, wherein the notch can also be a semicircle, a rectangle and other irregular shapes.
  • the number of gaps can be one or more.
  • the notch can be on the inside of the heating module or on the outside of the heating module.
  • the identification mark on the heating module can be used as a positioning match for assembly, and can also be used as an identification mark in automated vision for identification and detection.
  • the outline of the heating module 1300 may be a circular ring. As shown in FIG. 42B, the outline of the heating module 1300 may be square. As shown in Figure 42C, the profile of the heating module 1300 may be arcuate. As shown in Figure 42D, the profile of the heating module 1300 may be a snake (S) shape. It should be understood that the description of the outline of the heating module 1300 in the present application is only an example and not strictly limited, and the outline of the heating module 1300 may be any shape that meets actual needs.
  • the heating module 1300 includes a first reinforcing plate 1311 disposed on the surface of the first film layer 1310 .
  • the heating module 1300 may further include a second reinforcing plate 1331 disposed on the surface of the second film layer 1330 .
  • the first reinforcing plate 1311 and the second reinforcing plate 1331 can be made of at least one material selected from aluminum, stainless steel, copper, FR4, asbestos, vacuum plate, and aerogel felt.
  • the first reinforcing plate 1311 may be disposed on the surface of the first film layer 1310 according to the shape of the first film layer 1310
  • the second reinforcing plate 1331 may be disposed on the surface of the second film layer 1330 according to the shape of the second film layer 1330 .
  • the first reinforcing plate 1311 and the second reinforcing plate 1331 can be used to strengthen the stress of the heating module 1300 locally or as a whole, so as to cope with some processes that require force, such as riveting, printing, and the like.
  • the first reinforcing plate 1311 and the second reinforcing plate 1331 provided by yourself can be made of materials with good thermal conductivity, such as aluminum, stainless steel, copper, etc., or materials with good heat insulation, such as FR4, asbestos, vacuum board, aerogel felt, etc.
  • a first reinforcing plate 1311 that completely covers the surface of the first film layer 1310 is provided on the surface of the first film layer 1310 .
  • the first reinforcing plate 1311 may be a material with good thermal conductivity, so that the heating module 1300 generates even heat.
  • a first reinforcing plate 1311 and a second reinforcing plate that completely cover the surfaces of the first film layer 1310 and the second film layer 1330 are provided on the surfaces of the first film layer 1310 and the second film layer 1330 1331.
  • the first reinforcing plate 1311 and the second reinforcing plate 1331 are respectively provided on the two surfaces of the heating module 1300 that are in contact with the outside world.
  • the first reinforcing plate 1311 may be a material with good thermal conductivity, so that the heating module 1300 generates even heat.
  • the second reinforcing plate 1331 may be a material with good heat insulation, so that the heat dissipation of the heating module 1300 is reduced, the loss is reduced, and the heat utilization rate is improved.
  • a first reinforcing plate 1311 is provided in a local area on the surface of the first film layer 1310 .
  • the first reinforcing plate 1311 can be a material with better thermal conductivity or a material with better heat insulation, which can form the effect of local heat transfer or local heat insulation.
  • optical device comprising the above-mentioned lens with a heating function. Because the optical device has a lens with a heating function, it can be used normally in a cold and humid external environment, and can also be installed in a limited space.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Resistance Heating (AREA)

Abstract

一种用于镜片的加热装置、光学镜头及其制造方法,其中,该镜片(1000)包括镜片本体,镜片本体具有相对的第一面(1100)和第二面(1200),以及连接第一面(1100)和第二面(1200)的边缘(1300),其中,加热装置(1400)包括:加热单元,适于设置于镜片本体的边缘(1300)并在被供电后用于向镜片本体传递热量。该加热装置(1400)能实现结构简单、热效率高、加热均匀,使用安全、耐候性强等至少一种有益效果。

Description

用于镜片的加热装置、镜头及其制造方法
相关申请的交叉引用
本申请要求于2020年07月07日递交于中国国家知识产权局(CNIPA)的、申请号为202010646602.X、发明名称为“具有加热装置的镜片以及包括该镜片的镜头”的中国发明专利申请、于2020年12月10日递交于中国国家知识产权局(CNIPA)的、申请号为202011433498.2、发明名称为“结构件、镜头模组及其制造方法”的中国发明专利申请以及于2021年06月21日递交于中国国家知识产权局(CNIPA)的、申请号为202121374019.4、发明名称为“光学镜头、光学装置”的中国实用新型专利申请的优先权和权益;这三项申请通过引用整体并入本文。
技术领域
本申请涉及光学设备技术领域,更具体地,涉及一种用于镜片的加热装置、具有加热装置的镜头以及制造具有加热装置的镜头的方法。
背景技术
随着科学技术的发展,光学装置如车载镜头、光学镜头、光学灯罩等被越来越多的应用于人们的日常生活中。例如,为了提供汽车驾驶的舒适度和安全度,车载镜头在汽车的前视、后视、环视、内视、侧视等领域得到广泛的应用。同时,随着汽车技术的不断发展,汽车上所需的车载镜头的数量和性能得到大幅度的提高,对车载镜头的耐候性的要求也更加严苛。当车辆行驶在连续阴雨、冰霜或者冷热交替的环境下时,车载镜头的近物侧镜片的内外表面极易出现起雾或者结霜等现象,严重影响车载镜头的光学性能,危害人们的行车安全。
为保证行车安全,目前常用的手段主要是采用在车载镜头内设置发热元件的方式来加热蒸发镜片表面附着的水分或者预防起雾或者结霜等。例如直接使用电加热丝给镜头产品加热,达到除雾除霜的功能。
但是,由于电加热丝需要埋入镜片的内部以保持固定,因此,改变了相应镜片的原有结构,不仅导致镜头整体制造工艺难度加大,成本变高,而且破坏了相应镜片的强度,使得该镜片特别是在升温后容易碎裂,成像质量变差,无法维修。而且电加热丝本身也会出现发热效率低下,加热均匀性较差,安装复杂等问题。并且直接采用加热材质埋入镜片的结构,会出现镜头整体稳定性较弱,恶劣天气下耐候性较差等问题。因此,开发一种结构简单、热效率高、加热均匀,使用安全、耐候性强的镜头用除雾产品具有十分重要的意义。
发明内容
本申请提供了一种可至少解决或部分解决现有技术中上述至少一个缺点的加热装置。
本申请一方面提供了一种用于镜片的加热装置,镜片包括镜片本体,镜片本体具有相对的第一面和第二面,以及连接第一面和第二面的边缘,其特征在于,加热装置包括:加热单元,适于设置于镜片本体的边缘并在被供电后用于向镜片本体传递热量。
本申请另一方面提供了一种用于镜片的加热装置,所述镜片包括镜片本体,所述镜片本体具有相对的第一面和第二面,以及连接所述第一面和所述第二面的边缘,其中,所述加热装置设置于所述镜片本体的所述边缘,并包括:设置有发热元件的陶瓷加热环或聚酰亚胺加热膜。
根据本申请实施方式,所述加热装置还包括固定元件,用于将所述加热装置固定到所述镜片 本体的所述边缘。根据本申请实施方式,所述固定元件是导热胶水或导热胶带。
根据本申请实施方式,所述固定元件是弹性部件,所述陶瓷加热环或聚酰亚胺加热膜通过所述弹性元件的弹力被固定于所述边缘。
根据本申请实施方式,所述固定元件是导电胶水或导电胶带。
根据本申请实施方式,所述发热元件设置在双层所述聚酰亚胺膜之间,所述发热元件与每个所述聚酰亚胺膜通过导热胶水、导热胶带、导电胶水以及导电胶带中的至少一种连接。
根据本申请实施方式,所述聚酰亚胺加热膜是硬质载体聚酰亚胺加热膜。
根据本申请实施方式,所述发热元件是电加热丝。
根据本申请实施方式,所述陶瓷加热环或所述聚酰亚胺加热膜具有类环形结构。
根据本申请实施方式,所述加热装置还包括导电单元和供能单元,所述导电单元包括至少两个引线,用于电连接所述发热元件和所述供能单元。
根据本申请实施方式,所述导电单元与所述发热元件之间通过焊接、导电胶水、导电胶带、导热胶水、导热胶带以及压紧连接中的一种或几种连接。
根据本申请实施方式,加热装置还包括结构件,结构件包括:结构件主体,用于与镜片固定连接;第一端子,与结构件主体固定连接,用于与外部电源刚性地固定连接并电连接;以及第二端子,通过结构件主体与第一端子电连接,并用于通过至少两个引线与加热单元电连接。
根据本申请实施方式,加热单元包括依序设置的第一膜层、发热元件以及第二膜层。
根据本申请的另一个方面,提供了一种结构件,其用于将第一器件产生的命令传给设置在镜头主体上的第二器件,其包括:结构件主体,用于与镜头主体固定连接;第一端子,与结构件主体固定连接,用于与第一器件刚性地固定连接,并用于与第一器件通信连接;第二端子,通过结构件主体与第一端子通信连接,并用于与第二器件通信连接。
根据本申请实施方式,结构件主体包括电接触区域;第一端子是第一导电端,与第一电接触区域电连接,并与第一器件的输出端刚性地电连接;第二端子是第二导电端,固定于第一电接触区域中对应第二器件的位置。
根据本申请实施方式,第一导电端用于在结构件与第一器件连接时定位。
根据本申请实施方式,第一导电端设置在结构件主体的对应第一器件的输出端的位置。
根据本申请实施方式,第一电接触区域的形状为点状、闭环状或断环状。
根据本申请实施方式,第一导电端和第二导电端分别包括正电极和负电极,第一电接触区域包括第一正电极区域和第一负电极区域;第一导电端的正电极与第一正电极区域电连接,第二导电端的正电极设置于第一正电极区域中对应第二器件的正极供电线的位置;第一导电端的负电极与第一负电极区域电连接,第二导电端的负电极设置于第一负电极区域中对应第二器件的负极供电线的位置。
根据本申请实施方式,结构件主体具有安装轴线,结构件主体适于通过使安装轴线与镜头主体的光轴重合而与镜头主体固定连接;结构件主体包括在安装轴线方向上相对的第一端面和第二端面、环绕安装轴线的内周面以及外周面中的至少一个,其中,第二端面朝向第二器件;第一正电极区域位于第二端面、内周面或外周面;第一负电极区域位于第二端面、内周面或外周面。
根据本申请实施方式,在安装轴线的垂面内,第一导电端的正电极和负电极之间在安装轴线的周向上的夹角的范围是0°至360°。
根据本申请实施方式,在安装轴线的垂面内,第二导电端的正电极和负电极之间在安装轴线的周向上的夹角的范围是0°至360°。
根据本申请实施方式,结构件主体与镜头主体的连接方式包括:孔轴过盈配合、热铆固定、断环卡扣固定、卡勾配合、螺钉锁紧、孔轴间隙配合或者点胶固定中的至少之一。
根据本申请实施方式,结构件主体的形状包括:圆环形、矩环形、切边形或者断环形中的至少之一。
根据本申请实施方式,第一端子的形状包括:多边形针状、矩形片状或多边形针状与矩形片状的组合。
根据本申请实施方式,第一端子包括刚性排针。
根据本申请实施方式,第二端子是第二导电端,通过焊接互通、刺破连接的方式与第二器件连接。
根据本申请实施方式,第二导电端具有容纳第二器件的供电线的凹槽,当第二导电端通过刺破连接的方式与第二器件连接时,凹槽刺破供电线的绝缘外皮,与供电线的金属丝电接触。
根据本申请另一方面提供了一种具有加热装置的镜片,包括镜片本体,所述镜片本体具有相对的第一面和第二面,以及连接所述第一面和所述第二面的边缘,以及所述镜片还包括:加热装置,设置在所述镜片本体的所述边缘,在供电后用于向所述镜片本体传递热量,其中,所述加热装置被构造为内部设置发热元件的陶瓷加热环或聚酰亚胺PI加热膜。
根据本申请实施方式,所述加热装置设置于所述镜片本体在所述边缘的端面和/或侧面。
根据本申请实施方式,所述加热装置具有类环形结构,所述类环形结构的轮廓与所述边缘的轮廓相匹配。
根据本申请实施方式,所述边缘设置有缺口槽,所述加热装置设置在所述缺口槽中。
根据本申请实施方式,所述加热装置还包括固定元件,所述固定元件用于将所述加热装置固定于所述边缘。
根据本申请实施方式,所述固定元件是弹性元件,以压缩状态设置在所述边缘。
根据本申请实施方式,所述固定元件是导电胶水或导电胶带。
根据本申请实施方式,所述固定元件是导热胶水或导热胶带。
根据本申请实施方式,在各个所述镜片之间具有机构件,所述陶瓷加热环被形成为所述机构件。
根据本申请实施方式,所述发热元件设置在双层聚酰亚胺膜之间,所述发热元件与每个所述聚酰亚胺膜通过导热胶水、导热胶带、导电胶水以及导电胶带中的至少一种连接。
根据本申请实施方式,所述聚酰亚胺加热膜是硬质载体聚酰亚胺加热膜。
根据本申请实施方式,所述发热元件是电加热丝。
根据本申请实施方式,所述加热装置还包括导电单元和供能单元,所述导电单元包括至少两个引线,用于电连接所述发热元件和所述供能单元。
根据本申请实施方式,所述导电单元与所述发热元件之间通过焊接、导电胶水、导电胶带、导热胶水、导热胶带以及压紧连接中的一种或几种连接。
根据本申请另一方面提供了这样一种镜头,包括:镜筒;镜片,镜片包括镜片本体,镜片本体具有相对的第一面和第二面,以及连接第一面和第二面的边缘,其中,边缘与镜筒连接以固定所述镜片;前述的加热装置。
本申请另一方面提供了一种包括具有加热装置的镜片的镜头,包括:镜筒,具有侧壁;以及通过所述镜筒的所述侧壁固定的多个镜片,其中,多个镜片中的至少之一为根据上述的具有加热 装置的镜片。
根据本申请实施方式,所述加热装置设置于所述镜片本体的端面与所述镜头的密封件之间。
根据本申请实施方式,所述加热装置设置于所述镜片本体的边缘与所述镜头的侧壁之间。
根据本申请实施方式,所述加热装置设置于所述镜片本体的边缘与相邻镜片的边缘之间。
根据本申请实施方式,所述加热装置设置于所述镜片本体的边缘与所述镜头的密封件和相邻镜片的边缘之间。
根据本申请另一方面提供了这样一种镜头。所述镜头包括:镜片部件;镜筒,连接于所述镜片部件的非光学区域,以固定所述镜片部件;加热模块,设置于所述非光学区域;以及连接部件,穿过所述镜筒连接于所述加热模块,其中所述连接部件适于与外部电源连接,从而为所述加热模块供电。
根据本申请实施方式,所述加热模块包括依序设置的第一膜层、加热层以及第二膜层。
根据本申请实施方式,所述第一膜层和所述第二膜层由聚酰亚胺材质制成;以及所述加热层由压延铜箔、电解铜箔、康铜铜箔以及不锈钢中的至少一种金属箔材质制成。
根据本申请实施方式,所述加热层以丝线形状设置于所述非光学区域,其中所述丝线的间距和宽度大于或等于0.02mm。
根据本申请实施方式,所述丝线形状包括圆形、弓字形、折线形以及圆环形中的至少一种形状。
根据本申请实施方式,所述连接部件包括第一连接部件和第二连接部件,其中所述第一连接部件和所述第二连接部件分别连接于所述加热模块的、靠近所述非光学区域的位置。
根据本申请实施方式,所述连接部件包括第一连接部件和第二连接部件,其中所述第一连接部件和所述第二连接部件分别连接于所述加热模块的、远离所述非光学区域的位置。
根据本申请实施方式,所述连接部件包括第一连接部件和第二连接部件,其中所述第一连接部件和所述第二连接部件分别连接于所述加热模块的、靠近所述非光学区域的一端和远离所述非光学区域的一端。
根据本申请实施方式,所述连接部件包括第一连接部件和第二连接部件,其中所述第一连接部件和所述第二连接部件分别连接于所述加热模块的内部。
根据本申请实施方式,所述加热模块呈折叠方式设置于所述非光学区域,其中折叠的所述加热层串联连接。
根据本申请实施方式,所述加热模块呈叠加方式设置于所述非光学区域,其中叠加的所述连接部件导电连接。
根据本申请实施方式,所述加热模块上具有孔状标记和缺口标记中的至少一种标记。
根据本申请实施方式,在所述第一膜层的表面上设置第一补强板。
根据本申请实施方式,在所述第二膜层的表面上设置第二补强板。
根据本申请实施方式,所述第一补强板和所述第二补强板中的至少之一由导热性的材料形成。
根据本申请实施方式,所述导热性的材料包括:铝、不锈钢、铜。
根据本申请实施方式,所述第一补强板和所述第二补强板中的至少之一由隔热性的材料形成。
根据本申请实施方式,所述隔热性的材料包括:FR4、石棉、真空板、气凝胶毡。
根据本申请实施方式,呈折叠方式设置的所述加热模块大于或等于2层。
根据本申请实施方式,呈叠加方式设置的所述加热模块大于或等于2层。
根据本申请实施方式,所述加热模块的轮廓形状包括圆环形、方形、弓字形以及S形中的至 少一种。
根据本申请的另一方面提供了一种光学装置。该光学装置包括上述镜头。
根据本申请的另一方面提供一种光学装置,该光学装置可以是镜头模组。镜头模组包括镜头主体,镜头模组还包括:加热器,用于生成加热镜头主体的热量;控制器,用于生成控制加热器操作以产生热量的控制命令;以及结构件,与镜头主体固定连接并与控制器刚性地固定连接,用于将控制器生成的控制命令传输给加热器。
根据本申请实施方式,结构件包括:结构件主体,与镜头主体固定连接;第一导电端,与控制器刚性地电连接,以从控制器接收控制命令;以及第二导电端,与加热器电连接并通过结构件主体与第一导电端电连接,用于将控制命令传递给加热器。
根据本申请实施方式,第一导电端设置在结构件主体的对应控制器的输出端的位置。根据本申请实施方式,结构件主体包括第一电接触区域;第二导电端固定于第一电接触区域中对应加热器的位置;第一导电端与第一电接触区域电连接。
根据本申请实施方式,第一导电端用于在结构件与控制器连接时定位。
根据本申请实施方式,第一电接触区域的形状为点状、闭环状或断环状。
根据本申请实施方式,第一导电端和第二导电端分别包括正电极和负电极,第一电接触区域包括第一正电极区域和第一负电极区域;第一导电端的正电极第一正电极区域电连接,与第二导电端的正电极设置于第一正电极区域中对应第二器件的正极供电线的位置;第一导电端的负电极与第一负电极区域电连接,第二导电端的负电极设置于第一负电极区域中对应第二器件的负极供电线的位置。
根据本申请实施方式,镜头主体具有光轴;在光轴的垂面内,第一导电端的正电极和负电极之间在光轴的周向上的夹角的范围是0°至360°。
根据本申请实施方式,镜头主体具有光轴;在光轴的垂面内,第二导电端的正电极和负电极之间在光轴的周向上的夹角的范围是0°至360°。
根据本申请实施方式,结构件主体包括在镜头主体的光轴方向上相对的第一端面和第二端面、环绕安装轴线的内周面以及外周面中的至少一个,其中,第二端面朝向第二器件;第一正电极区域位于第二端面、内周面或外周面;第一负电极区域位于第二端面、内周面或外周面。
根据本申请实施方式,镜头主体包括用于容纳至少一个镜片的镜筒,结构件主体设置在镜筒的外侧壁。
根据本申请实施方式,镜头主体包括用于容纳至少一个镜片的镜筒,镜筒的外侧面具有至少一个突出部,结构件主体设置在突出部。
根据本申请实施方式,镜头主体包括用于容纳至少一个镜片的镜筒,结构件主体设置在镜筒的底部的外壁面或底面。
根据本申请实施方式,镜头主体包括用于容纳至少一个镜片的镜筒,结构件主体设置在镜筒的底部的内孔。
根据本申请实施方式,结构件主体与镜头主体的连接方式包括:孔轴过盈配合、热铆固定、断环卡扣固定、卡勾配合、螺钉锁紧、孔轴间隙配合或者点胶固定中的至少之一。
根据本申请实施方式,第二导电端通过焊接互通、刺破连接的方式与加热器连接。
根据本申请实施方式,第二导电端具有容纳加热器的供电线的凹槽,当第二导电端通过刺破连接的方式与加热器连接时,凹槽刺破供电线的绝缘外皮,与供电线的金属丝电接触。
根据本申请实施方式,加热器包括传感器和发热元件,传感器用于采集镜头主体的环境温度; 控制器根据传感器检测到的环境温度生成控制发热元件生成热量的命令,或者当控制器根据传感器检测到的环境温度生成控制发热元件停止生成热量的命令。
本申请另一方面提供了一种用于制备包括具有加热装置的镜片的镜头的方法,所述方法包括:制备上述加热装置;将所述加热装置设置于所述镜片,以形成所述具有加热装置的镜片;以及将所述镜头包括的多个镜片设置于所述镜筒。
根据本申请实施方式,所述镜片包括镜片本体,所述镜片本体具有相对的第一面和第二面,以及连接所述第一面和所述第二面的边缘;将所述加热装置设置于所述镜片,以形成所述具有加热装置的镜片包括:将所述加热装置设置于所述镜片本体的所述边缘,以形成所述具有加热装置的镜片。
根据本申请实施方式,将所述加热装置设置于所述镜片本体的所述边缘包括:将所述加热装置设置于所述镜片本体在所述边缘的端面和侧面中的至少之一。
根据本申请实施方式,将所述加热装置设置于所述镜片本体的所述边缘包括:将所述加热装置设置于所述镜片本体的端面与所述镜头的密封件之间。
根据本申请实施方式,在各个所述镜片之间具有机构件,所述陶瓷加热环被形成为所述机构件。根据本申请实施方式,将所述加热装置设置于所述镜片本体的所述边缘包括:在所述边缘设置缺口槽;以及将所述加热装置设置在所述缺口槽中。
根据本申请实施方式,将所述加热装置设置于所述镜片本体的所述边缘包括:将所述加热装置设置于所述镜片本体的边缘与所述镜头的侧壁之间。
根据本申请实施方式,将所述加热装置设置于所述镜片本体的所述边缘包括:将所述加热装置设置在所述镜片本体的边缘与相邻镜片的边缘之间。
根据本申请实施方式,将所述加热装置设置于所述镜片本体的所述边缘包括:将所述加热装置设置在所述镜片本体的边缘与所述镜头的密封件和相邻镜片的边缘之间。
本申请的另一方面提供一种用于制造镜头模组的方法,其包括:设置用于生成加热镜头主体热量的加热器;设置用于生成控制加热器生成热量的控制命令的控制器;设置与镜头主体固定连接的结构件;将控制器与结构件刚性地固定连接,其中,结构件用于将控制器生成的控制命令传输给加热器。
根据本申请实施方式,结构件包括:结构件主体、第一导电端和第二导电端,其中,结构件主体包括第一电接触区域且第二导电端与第一电接触区域电连接;设置结构件的步骤包括:将结构件主体与镜头主体固定连接;将第二导电端与加热器电连接;将第二导电端固定于第一电接触区域中对应加热器的位置,其中,第二导电端通过结构件主体与第一导电端电连接;将第一导电端与控制器的输出端刚性地电连接,以从控制器接收控制命令。
根据本申请实施方式,结构件包括:结构件主体、第一导电端和第二导电端;通过孔轴过盈配合、热铆固定、断环卡扣固定、卡勾配合、螺钉锁紧、孔轴间隙配合或者点胶固定中的至少之一将结构件主体与镜头主体的连接。
根据本申请实施方式,结构件包括:结构件主体、第一导电端和第二导电端;通过焊接互通、刺破连接的方式将第二导电端与加热器连接。
根据上述的实施方式的技术方案可至少获得以下至少一个有益效果。
1.安装方便:陶瓷加热环加热装置可根据镜头的使用要求制定相应的外形尺寸;另外,在聚 酰亚胺PI加热膜加热装置中,聚酰亚胺PI膜是一种半透明的金属柔性电热膜,在一些不平整的镜片表面上可改变形状,保证较好的贴合;
2.热利用率高:陶瓷加热环加热装置可根据镜头的使用要求定制外观,保证加热装置能够大面积地与待加热镜片接触,提升加热性能;另外,柔性的聚酰亚胺PI加热膜加热装置在不平整的镜片表面上可改变形状,保证加热装置能够大面积地与待加热镜片的本体接触,且聚酰亚胺PI膜本身的热传导效率较高,可以大幅提升加热装置的加热性能;
3.智能加热:不论是陶瓷加热环加热装置的内部发热元件还是聚酰亚胺PI加热膜加热装置的内部发热元件都具有较大的TCR(电阻温度系数),其阻值随着环境温度的上升变大,在同样的电压输入下,低温下发热元件的功率较大,达到快速升温;高温下发热元件的阻值增大,功率减小,保证加热装置的使用温度不会过高;同时,还可通过改变发热元件的制作材料,使TCR(电阻温度系数)减小接近于零,保证发热元件能够以恒定功率输出;
4.材质稳定:陶瓷加热环加热装置由于本身使用陶瓷材料,所以其性质稳定,耐受各类外部环境,可靠性高。
5.体积小:聚酰亚胺PI加热膜加热装置的整体膜厚可降低,占用空间小,适用性较广。
6.结构件用于将第二器件生成的控制命令传输给第一器件。结构件的设置为第一器件和第二器件的组装提供了便捷性,也保障了第一器件和第二器件组装后的稳固性。
7.根据本申请一实施方式的镜头模组,通过增设具有刚性导电端的结构件,将加热器与控制器连通,降低了加热器和控制器组装的难度,同时也避免了加热器供电线的不可控性,保障了加热器和控制器组装后的稳固性。
8.根据本申请一实施方式的镜头模组,通过增设可调节导电端位置的结构件,将加热器与控制器连通。避免了现有技术中由于加热器供电线引出位置与控制器输出端位置不匹配而无法组装的情况,进而降低加热镜头与控制器的组装难度,提升加热镜头与控制器的组装效率和产能。
9.根据本申请一实施方式的镜头模组的制备方法,根据控制器的输出端位置对结构件的第一导电端进行精准定位,以及根据加热器的供电线位置对结构件第二导电端进行精准定位,进而通过结构件将加热器和控制器连通,避免了现有技术中由于加热器供电线引出位置与控制器输出端位置不匹配而无法组装的情况,进而降低加热镜头与控制器的组装难度,提升加热镜头与控制器的组装效率和产能。
10.根据本申请一实施方式的镜头模组的制备方法,通过增设具有刚性导电端的结构件,将加热器与控制器连通,降低了加热器和控制器组装的难度,同时也避免了加热器供电线的不可控性,保障了加热器和控制器组装后的稳固性。根据本申请上述提供的具有加热装置的镜片中的至少一个方案,可达到以下至少一个有益效果:
11.在镜头中设置加热模块,可以有效去除镜头上产生的雾气和冰晶;
12.将加热模块设置在镜头内部,可以控制镜头的整体架构,减小镜头的安装空间;以及
13.本申请可以灵活设计加热模块的位置和形状,提高加热模块的多样性和实际加工需求。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更明显:
图1A至图1H是根据本申请实施方式的具有加热装置的镜片的剖面图;
图2A至图2F是根据本申请实施方式的具有加热装置的镜片的缺口槽的剖面图;
图3是根据本申请另一实施方式的固定元件在镜头中的位置示意图;
图4A至图4I是根据本申请另一实施方式的具有聚酰亚胺加热膜加热装置的镜片的剖面图以及局部放大图;
图5A是根据本申请另一实施方式的具有聚酰亚胺加热膜加热装置的镜片的剖面图;
图5B是图5A中部位Y的局部剖面放大图;
图6A至图6C是根据本申请实施方式的具有陶瓷加热环加热装置的镜片中的导电单元的剖面图;
图7A是根据本申请另一实施方式的具有聚酰亚胺加热膜加热装置的镜片中的导电单元的剖面图;
图7B是根据本申请另一实施方式的具有聚酰亚胺加热膜加热装置的镜片中的导电单元的剖面图;
图7C是图7B中部位Z的局部剖面放大图;
图7D是根据本申请另一实施方式的具有聚酰亚胺加热膜加热装置的镜片中的导电单元的剖面图;
图7E是图7D中部位A的局部剖面放大图;
图7F是图7D中部位B的局部剖面放大图;
图8A根据本申请另一实施方式的具有聚酰亚胺加热膜加热装置的镜片中的导电单元的剖面图;
图8B根据本申请另一实施方式的具有聚酰亚胺加热膜加热装置的镜片中的导电单元的剖面图;
图8C是图8B中部位C的局部剖面放大图;
图8D根据本申请另一实施方式的具有聚酰亚胺加热膜加热装置的镜片中的导电单元的剖面图;
图8E是图8D中部位D的局部剖面放大图;
图8F是图8D中部位E的局部剖面放大图;
图8G根据本申请另一实施方式的具有聚酰亚胺加热膜加热装置的镜片中的导电单元的剖面图;
图8H是图8G中部位F的局部剖面放大图;
图9为本申请示例性实施方式的镜头模组的结构示意图;
图10为图9的区域A1的放大图;
图11为本申请示例性实施方式的镜头模组中结构件的结构示意图;
图12为本申请示例性实施方式的镜头模组中第一导电端的形状示意图;
图13为本申请另一种示例性实施方式的镜头模组中第一导电端的形状示意图;
图14为本申请示例性实施方式的镜头模组中结构件主体的结构图;
图15是图14的俯视图;
图16为本申请另一示例性实施方式的镜头模组中结构件主体的结构图;
图17是图16的俯视图;
图18为本申请示例性实施方式的镜头模组中结构件主体的结构图;
图19是图18的俯视图;
图20为本申请示例性实施方式的镜头模组中结构件与供电线的连接方式示意图;
图21是图20的局部放大图;
图22至图25为本申请示例性实施方式的镜头模组中结构件固定于镜头主体不同位置的示意图;
图26至图29为本申请示例性实施方式的镜头模组中结构件主体形状示意图;
图30为本申请示例性实施方式的镜头模组中第二导电端在结构件主体上的位置示意图;以及
图31为本申请示例性实施方式的镜头模组中第一导电端在结构件主体上的位置示意图;
图32为本申请示例性实施方式的用于制造镜头模组的方法流程图;
图33是根据本申请实施方式的镜头的示意图;
图34A至图34D是根据本申请实施方式的加热丝的排布的示意图;
图35A至图38B是根据本申请实施方式的第一连接部件和第二连接部件的位置设置的示意图;
图39A至图39C是根据本申请实施方式的加热模块的折叠方式的示意图;
图40A至图40C是根据本申请实施方式的加热模块的叠加方式的示意图;
图41A和图41B是根据本申请另一实施方式的加热模块的示意图;
图42A至图42D是根据本申请实施方式的加热模块的形状的示意图;以及
图43A至图43C是根据本申请实施方式的加热模块和补强板的位置关系示意图。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一镜片也可被称作第二镜片。反之亦然。
在附图中,为了便于说明,已稍微调整了部件的厚度、尺寸和形状。附图仅为示例而并非严格按比例绘制。如在本文中使用的用语“大致”、“大约”以及类似的用语用作表近似的用语,而不用作表程度的用语,并且旨在说明将由本领域普通技术人员认识到的、测量值或计算值中的固有偏差。
还应理解的是,诸如“包括”、“包括有”、“具有”、“包含”和/或“包含有”等表述在本说明书中是开放性而非封闭性的表述,其表示存在所陈述的特征、元件和/或部件,但不排除一个或多个其它特征、元件、部件和/或它们的组合的存在。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,其修饰整列特征,而非仅仅修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有措辞(包括工程术语和科技术语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,除非本申请中有明确的说明,否则在常用词典中定义的词语应被解释为具有与它们在相关技术的上下文中的含义一致的含义,而不应以理想化或过于形式化的意义解释。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。另外,除非明确限定或与上下文相矛盾,否则本申请所记载的方法中包含的具体步骤不必限 于所记载的顺序,而可以任意顺序执行或并行地执行。下面将参考附图并结合实施例来详细说明本申请。
图1A至图1C是根据本申请实施方式的具有加热装置的镜片的剖面图。如图1A至图1C所示,在本发明的一个实施方式中,第一镜片1000设置在镜头整体结构中,镜头整体结构中还包括镜筒以及其它的镜片,例如第二镜片2000。然而,本领域的技术人员应理解,在未背离本申请要求保护的技术方案的情况下,可改变镜头中包含的具有加热装置的镜片的数量或其他相关元件,来获得本说明书中描述的各个结果和优点。在上述镜筒中可包括用于固定镜片的侧壁,镜头中的每个镜片沿着镜头的轴向排列依次安装于镜筒内,每个镜片的边缘安装于镜筒的侧壁,其中可采用诸如在侧壁开槽搁置镜片边缘等多种方式,固定上述镜片于上述镜筒中。
考虑到镜头中靠近物侧的最外侧的第一镜片最容易受到诸如雨雪环境、低温环境、高温环境等外界环境中温度、气候的影响,在镜片表面凝聚水分。因此,可选地,在镜头中位于物侧方的第一镜片,例如本实施方式中的第一镜片1000,设置为具有加热装置的镜片,而其他镜片,例如本实施方式中的第二镜片2000,由于受到外界环境的影响小,不易在镜片表面凝聚水分,可选择普通镜片或者具有加热装置的镜片。
如图1A所示,第一镜片1000由透明材料制成的镜片本体构成,镜片本体具有相对的第一面1100和第二面1200,第一面1100和第二面1200用于使得用于成像的光线穿过。如图1A所示,第一面1100和第二面1200可具有大致为弧形的轮廓,并且第一面1100的半径大于第二面的半径并且隔开预定的距离。在本文中,连接第一面1100和第二面1200的部分被称为边缘1300,边缘1300包括从第一面1100延切割延伸的面1310a被称为“上端面”1310a,第二面1200延切割延伸的面1310b被称为“下端面”1310b(在下文中,用端面1310指代上端面1310a和下端面1310b),以及大致与上端面1310a和下端面1310b垂直并延伸连接至第二面1200的面1320被称为“侧面”1320。
在边缘1300处的端面1310可设置加热装置1400。其中,加热装置1400可以是陶瓷加热环加热装置1410(如图1A所示)也可以是聚酰亚胺PI加热膜加热装置1420(如图4A所示)。然而,本领域的技术人员应理解,在未背离本申请要求保护的技术方案的情况下,可改变包含加热装置的镜片中加热装置的类型,来获得本说明书中描述的各个结果和优点,例如加热装置1400可以是铸铝加热器、电伴热带、云母加热片等不同的装置中的一种或几种。
当镜头受到外界环境的影响,如高温环境、低温环境、高温环境、雨雪环境等,会在镜片的表面凝结水分,安装了具有加热装置1400的第一镜片1000的镜头,其加热装置1400可通过热传导或者热辐射的方式向第一镜片1000传递热量,蒸发或者驱散水分,有效地提高镜头整体的耐候性和可靠性。
在图1A至图1H中,以陶瓷加热环加热装置1410为例详细描述加热装置1400的结构和工作过程。陶瓷加热环加热装置1410(以下简称加热装置1410)可设置于边缘1300的处的端面1310,即加热装置1410可设置于边缘1300的处的上端面1310a处(如图1A所示)或下端面1310b处(如图1B所示)。
如图1C所示,加热装置1410还可设置在第一镜片1000在边缘1300处的侧面1320;或者加热装置1410还可同时设置在第一镜片1000在边缘1300处的端面1310处(上端面1310a处或下端面1310b处)和侧面1320处,例如图1D所示加热装置1410同时设置在上 端面1310a和侧面1320处,如图1E所示加热装置1410同时设置在下端面1310b和侧面1320处,或者如图1F所示加热装置1410同时设置在上端面1310a、下端面1310b以及侧面1320处。
加热装置1400可包括发热元件,发热元件可以是电加热丝,该电加热丝的温感电阻拥有较大的电阻温度系数(TCR),供电后,发热元件的温感电阻值会随着环境温度的上升变大,在同样的电压输入下,当环境温度较低时,加热装置1400的功率较大,可以实现快速升温;当环境温度较高时,发热元件的温感电阻值增大,加热装置1400的功率减小,如此,可保证加热装置1400的温度不会过高。因此,在供电后,加热装置1400可加热第一镜片1000,使得第一镜片1000的温度升高,从而加速蒸发或者加速驱散附着于第一镜片1000中第一面1100和第二面1200的水分如雾、霜、水滴或者冰等。同时,第一镜片1000还可通过供电后的加热装置1400加热,预防第一镜片1000中第一面1100和第二面1200凝聚水分,防止对镜头出现不清晰或者盲区等情况,保证第一镜片1000成像的可靠性。
进一步地,加热装置1400产生的热量可通过直接或间接接触的方式传递到第一镜片1000。首先,与加热装置1400紧密固定的第一镜片1000的边缘1300通过热传导的方式均匀地接受到加热装置1400产生的热量,然后,上述热量通过热传导和热辐射的方式被均匀地从边缘1300向第一镜片1000的中心扩散,通过这种方式,热量扩散的更均匀,可有效地消除第一镜片1000中第一面1100和第二面1200的水分,避免第一镜片1000出现局部过热的情况。
加热装置1400可以是类环形结构,该类环形结构的轮廓与第一镜片1000的边缘1300的轮廓相匹配,以使加热装置1400能够紧密地固定于第一镜片1000的边缘1300。然而,本领域的技术人员应理解,在未背离申请要求保护的技术方案的情况下,可改变加热装置1400的形状和结构,来获得本说明书中描述的各个结果和优点。
值得一提的是,加热装置1400的类环形结构的截面形状可以是圆形、长方形、梯形、台阶形等,可根据实际需要,在未背离申请要求保护的技术方案的情况下,改变加热装置1400的截面形状,以获得本说明书中描述的各个结果和优点。
加热装置1400中的发热元件(未示出)用于产生装置1400所需的热量,以提供给固定加热装置1400的第一镜片1000。其可以是金属加热丝,如镍铁丝、铁铬铝丝、镍铬丝等。可选地,发热元件可包含一个或多个上述电加热丝。即,可改变发热元件的形状、结构或材质,来获得本说明书中描述的各个结果和优点。
进一步地,在各个镜片之间还可包括机构件1500,例如,机构件1500可保证镜头中例如第一镜片1000与第二镜片2000之间保持相距不变的安全间隙。在本申请中,其可直接设置为陶瓷加热环加热装置。如图1G所示,加热装置1410还可邻近于机构件1500进行设置,即,设置于第一镜片1000的下端面1310b与镜头整体结构中的密封件1600之间;或者如图1C所示,加热装置1410可设置于第一镜片1000与镜头的侧壁之间;或者如图1H所示,加热装置1410可直接替代机构件1500,起到间隔相邻镜片的作用,设置于第一镜片1000的下端面1310b与镜头整体结构中的密封件1600之间。
图2A至图2F是根据本申请实施方式的具有加热装置1400的第一镜片1000的边缘1300的缺口槽1330的剖面图。如图2A至图2F所示,为了更方便有效地安装加热装置1400,可在第一镜片1000的边缘1300的外侧设置容纳加热装置1400的缺口槽1330。加热装置1400设置于缺口槽1330内,并固定在缺口槽1330的内壁,缺口槽1330可以是矩形缺口槽、三角形缺口槽或者圆弧形缺口槽,在此不受限制,只要能增大加热装置1400与第一镜片1000 的接触面积均在本发明的保护范围之内。
此外,如图2A至图2E所示,缺口槽1330可设置在第一镜片1000在边缘1300的端面1310处,如图2A所示缺口槽1330设置在下端面1310b处,如图2B所示缺口槽1330设置在下端面1310b处,并设置为具有台阶状的矩形槽,如图2C所示缺口槽1330设置在上端面1310a处;如图2D和图2E所示,当加热装置1400设置在端面1310处的缺口槽1330内时,可沿着侧面1320的方向延伸。如图2F所示,缺口槽1330可设置在第一镜片1000在边缘1300的侧面1320处。如图2A至图2F所示,缺口槽1330以矩形缺口槽为例,然而,本领域的技术人员应理解,在未背离申请要求保护的技术方案的情况下,可改变缺口槽1330的形状和结构,来获得本说明书中描述的各个结果和优点。
图3是根据本申请实施方式的固定元件1402在镜头中的位置示意图。如图3所示,在本申请的一个实施方式中,加热装置1400还可包括固定元件1402。固定元件1402可以是任何能够使得加热装置1400固定的元件,用于将加热装置1400固定到镜头中的第一镜片1000中。通过固定元件1402,加热装置1400能够紧密地固定在缺口槽1330的内壁,从而不会脱离第一镜片1000的边缘1300,能够始终接触地传递热量至边缘1300。
在本申请的一个实施方式中,固定元件1402可以是一种具有良好导热性能的双面胶,既固定元件1402可以是导热胶水或导热胶带的一种或多种。当固定元件1402是导热性能良好的导热胶水或导热胶带的时候,其粘结于加热装置1400与第一镜片1000的边缘1300之间,使得加热装置1400能够紧密固定于第一镜片1000的边缘1300。在本申请的另一实施方式中,固定元件1402也可以是一种弹性元件,其可在压缩状态下放置在边缘1300处,当第一镜片1000被固定于镜头中的侧壁时,该弹性元件可依靠侧壁支撑力产生的弹力将加热装置1400紧密的固定于第一镜片1000的边缘1300,从而使加热装置1400能够直接接触地利用热传导向第一镜片1000的边缘1300传递热量。然而,本领域的技术人员应理解,在未背离申请要求保护的技术方案的情况下,可改变弹性元件的设置位置,来获得本说明书中描述的各个结果和优点。例如,可以在第一镜片1000与第二镜片2000之间设置该弹性元件。
在本申请的一个实施方式中,固定元件1402也可以是一种具有良好导电性能的双面胶,既固定元件1402可以是导电胶水或导电胶带的一种或多种。当固定元件1402是导电胶水或导电胶带的时候,其粘结于加热装置1400与镜片100的边缘1300之间,使得加热装置1400能够紧密固定于第一镜片1000的边缘1300。
上述固定元件1402还可以是镜头本身的锁紧元件,例如外压圈。
在镜头系统中,加热装置1400通过固定元件1402可固定在镜片与镜筒壁之间或固定于相邻的镜片之间,例如第一镜片1000与第二镜片2000之间或固定于镜片与隔圈之间。
在本申请的实施方式中,加热装置1400可选用陶瓷加热环加热装置1410。陶瓷本身的材质稳定,可耐受各种外部环境,由陶瓷材料制成的陶瓷加热环加热装置1410,整体具有较高的可靠性。另外,陶瓷本身具有良好的导热性和绝缘性,可对发热元件起到完善的保护作用,并且由于其制作成本低廉、外观易加工,因此陶瓷加热环加热装置1410可根据使用需求制定其外形尺寸,又可根据第一镜片1000的实际形状,制定其外部形状,以保证陶瓷加热环加热装置1410能够和待加热的第一镜片1000具有较大面积的接触,有效地提高热能的利用率。
在本申请的另外一个实施方式中,加热装置1400可以是聚酰亚胺PI加热膜加热装置1420。聚酰亚胺膜是是一种半透明的金属柔性电热膜,由于其在一些不平整的面上可改变形状,因此,聚酰亚胺膜不但可以保证与第一镜片1000的端面1310或侧面1320较好的贴合; 同时,还能保证其与待加热第一镜片1000的接触面积足够大。而且,聚酰亚胺膜本身的热传导效率很高,所以其能够在保护发热元件的同时,大幅度地将发热元件产生的热量传递到紧密固定的第一镜片1000。另外,聚酰亚胺膜的厚度可以低至例如0.1mm,占用空间非常小。
图4A至图4I是根据本申请另一实施方式的具有聚酰亚胺加热膜加热装置的第一镜片1000的剖面图。在图4A至图4I中分别有对镜片部位G、H、I、J、K、L、M和N进行十倍(10:1)放大后的局部示意结构图,如图4A所示,在本申请的一个实施方式中,聚酰亚胺(PI)加热膜加热装置1420(以下简称加热装置1420)的内部结构可分布为PI膜1421+双面胶1422+发热元件+双面胶1422+PI膜1421的三明治结构。即,发热元件设置在双层聚酰亚胺PI膜1421之间,发热元件与每个聚酰亚胺PI膜1421通过双面胶1422粘结。双面胶1422可选用导热胶水、导热胶带、导电胶水、以及导电胶带中的一种或多种。
相同地,在本实施方式中,如图4A所示,加热装置1420可设置于第一镜片1000在边缘1300的上端面1310a处;如图4B所示加热装置1420设置在下端面1310b处;如图4C所示加热装置1420设置于边缘1300处的侧面1320处,且可位于边缘1300与镜头的侧壁之间;如图4D所示加热装置1420同时设置于边缘1300处的上端面1310a和侧面1320处;如图4E所示加热装置1420同时设置于边缘1300处的下端面1310b和侧面1320处;图4F所示加热装置1420同时设置于边缘1300处的上端面1310a、下端面1310b和侧面1320处;如图4G所示加热装置1420设置于第一镜片1000的边缘1300与第二镜片2000的边缘之间;如图4H所示加热装置1420设置于第一镜片1000的边缘1300的下端面1310b与密封件1600之间;以及如图4I所示加热装置1420设置于第一镜片1000的边缘1300的下端面1310b与密封件1600和第二镜片2000的边缘之间。
图5A是根据本申请另一实施方式的具有聚酰亚胺加热膜加热装置的镜片的剖面图。图5B是对图5A中镜片的部位Y进行十倍(10:1)放大后的局部示意结构视图,如图5B所示,在本申请的一个实施方式中,加热装置1420的内部结构可分布为PI膜1421+双面胶1422+发热元件+双面胶1422+PI膜1421+耐热硬质载体1423的夹层结构。即,PI膜1421和耐热硬质载体1423可组合成硬质载体聚酰亚胺膜,使得包括该硬质载体聚酰亚胺膜的保护单元1405具有良好的刚性,便于将加热装置1400安装在第一镜片1000的时候,能够对位准确,实现自动化生产。而该多层结构中,使用到的双面胶1422同样可以选用导热胶水、导热胶带、导电胶水以及导电胶带中的一种或多种。
相同地,在本实施方式中,如图5A所示,加热装置1420可设置于第一镜片1000在边缘1300的端面1310处(上端面1310a处或下端面1310b处);第一镜片1000在边缘1300的侧面1320处(如图4C);同时设置在第一镜片1000在边缘1300的端面1310(上端面1310a处或下端面1310b处)和侧面1320处(如图4D、4E和4F所示);第一镜片1000的边缘1300与第二镜片2000的边缘之间(如图4G);第一镜片1000的边缘1300的下端面1310b与密封件1600之间(如图4H所示);以及第一镜片1000的边缘1300的下端面1310b与密封件1600和第二镜片2000的边缘之间(如图4I所示)。
进一步地,在本申请的另一实施方式中,加热装置1400还可包括供能单元(未示出)。供能单元可以是如电池或电源等的电力设备,用以向发热元件提供电能。
进一步地,在本申请的另一实施方式中,加热装置1400还可包括导电元件1403,根据保护单元1405是陶瓷环还是聚酰亚胺PI膜,导电元件1403的设计结构略有不同。
图6A至图6C是根据本申请实施方式的具有陶瓷加热环加热装置1410的第一镜片1000 中导电单元1403的剖面图。如图6A至图6C所示,当加热装置1400是陶瓷加热环加热装置1410时,其导电单元1403可具有至少2个引线1403a,用以连通发热元件和供能单元。发热元件的两端分别连接导电单元1403,而导电单元1403又分别地接入供能单元的正负极,以使得发热元件被导通,将电能转化为热能,传递到固定的第一镜片1000中。
在图6A中,至少两个引线1403a设计安装在加热装置1410的同侧;在图6B中,至少两个引线1403a设计安装在加热装置1410的两侧;在图6C中,至少两个引线1403a设计安装在加热装置1410的特定位置,该特定位置可由包括第一镜片1000的镜头的结构设计的特殊需求设定,也可由实际使用的发热元件的温感电阻的阻值来设定。导电单元1403与加热装置1410的连接方式可选焊接、导电胶水、导电胶带、导热胶水、导热胶带以及压紧连接中的一种或多种。
图7A、图7B和图7D分别是根据本申请另一实施方式的具有聚酰亚胺加热膜加热装置1420的第一镜片1000中导电单元1403的剖面图。如图7A、图7B和图7D所示,当加热装置1400是聚酰亚胺加热膜加热装置1420时,其导电单元1403可具有至少2个引线1403b,用以连通发热元件和供能单元。或者,当加热装置1400是聚酰亚胺加热膜加热装置1420时,加热装置1420可直接被延伸引出,用作供电导线,引出作为供电导线部分的聚酰亚胺加热膜其内部的加热丝会相对较宽,以减小阻值,保证该供电导线不会被分压(供电电压)。
发热元件的两端分别连接导电单元1403,而导电单元1403又分别地接入供能单元的正负极,以使得发热元件被导通,将电能转化为热能,传递到紧密固定的第一镜片1000中。
在图7A中,至少两个引线1403b设计安装在加热装置1420中聚酰亚胺膜1405的外端面;在图7C中还示出了对镜片的部位Z进行十倍(10:1)放大后的局部示意结构,如图7B所示,至少两个引线1403b设计安装在加热装置1420中聚酰亚胺膜1405的外端面1405a和外侧面1405b;在图7E和图7F中,还分别示出了对镜片的部位A和B进行十倍(10:1)放大后的局部示意结构,如图7D所示,至少两个引线1403b设计安装在加热装置1420中聚酰亚胺膜1405的外侧面1405b和内侧面1405c。另外,上述图中的位置仅为示例,实际至少两个引线1403b的位置可由包括第一镜片1000的镜头的结构设计的特殊需求设定,也可由实际使用的发热元件的温感电阻的阻值设定,例如聚酰亚胺膜1405的端面(内外均可)或侧面(内外均可)或它们的组合。导电单元1403与加热装置1420的连接方式可选焊接、导电胶水导电胶带、导热胶水、导热胶带以及压紧连接中的一种或多种。
图8A、图8B、图8D和8G分别是根据本申请另一实施方式的具有聚酰亚胺加热膜加热装置1420的第一镜片1000中的导电单元1403的剖面图。如图8A、图8B、图8D和图8G所示,当加热装置1400是聚酰亚胺加热膜加热装置1420时,其导电单元1403可具有至少2个引线1403c,用以连通发热元件和供能单元。发热元件的两端分别连接导电单元1403,而导电单元1403又分别地接入供能单元的正负极,以使得发热元件被导通,将电能转化为热能,传递到固定的第一镜片1000中。在本实施方式中,聚酰亚胺PI加热膜中加入了耐热硬质载体,因此至少2个引线1403c的设计安装位置又与上述至少2个引线1403a和至少2个引线1403b不同。
在图8A中,至少两个引线1403c设计安装在加热装置1420中聚酰亚胺膜1405的外端面1405a;在图8C中还示出了对镜片的部位C进行十倍(10:1)放大后的局部示意结构,如图8B所示,至少两个引线1403c设计安装在加热装置1420中聚酰亚胺膜1405的外侧面1405b;在图8E和图8F中,还分别示出了对镜片的部位D和E进行十倍(10:1)放大后的局部示意结构,如图8D所示,至少两个引线1403c设计安装在加热装置1420中聚酰亚胺 膜1405的外端面1405a和内侧面1405c;在图8H中还示出了对镜片的部位F进行十倍(10:1)放大后的局部示意结构,如图所示,通过将聚酰亚胺加热膜作为至少两个引线1403c的延伸线,使其延伸至加热装置1420的各个位置,再与发热元件和供能单元电连接。另外,上述图中的位置仅为示例,实际至少两个引线1403c的位置可由包括第一镜片1000的镜头的结构设计的特殊需求设定,也可由实际使用的发热元件的温感电阻的阻值设定,例如聚酰亚胺膜1405的端面(内外均可)或侧面(内外均可)或它们的组合。导电单元1403与加热装置1420的连接方式可选焊接、导电胶水导电胶带、导热胶水、导热胶带以及压紧连接中的一种或多种。以上描述仅为本申请的实施方式以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的保护范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离技术构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。
参考图9,其中示出了本申请另一方面实施方式的镜头模组的结构示意图。如图9所示,根据本申请示例性实施方式的镜头模组可包括镜头主体11、加热器12和结构件13、控制器14。镜头主体11相当于前述的镜头整体结构。加热器12用于生成加热镜头主体11的热量。控制器14用于生成控制加热器12操作以产生热量的控制命令。结构件13与镜头主体11固定连接并用于将控制器14生成的控制命令传输给加热器12。具体地,结构件13与镜头主体11可刚性地连接。
在一些实施方式中,镜头主体11由至少一个透镜112以及能够容纳至少一个透镜的镜筒111构成,通常固定于汽车车体上,辅助驾驶员获得清晰的视野,同时也可为交通事故的判定提供可靠的凭证。因此,镜头主体11的成像质量至关重要。为了使镜头主体11在寒冷潮湿的环境中能够自动去雾除冰,保证成像质量,本实施方式在镜头主体11上固定安装有加热器12。
在一些实施方式中,镜头主体11的镜筒111上设置有突出部,突出部为一个围绕镜筒111周向设置的环形平台,且突出部的直径略大于镜筒111的直径。突出部可以是法兰,可以用于在镜头主体11与控制器14连接时限位或者固定。
在一些实施方式中,加热器12可设置于镜筒内,并直接作用于透镜。加热器12可包括加热单元123和导电单元。示例性地,加热单元123设置于透镜122的边缘或非光学区;导电单元包括至少两个供电线120。加热单元123可由温度传感器(未示出)和发热元件(未示出)构成。温度传感器实时检测镜头主体11所处的环境的温度,并将检测到的温度值以电信号的形式传递到控制器14。控制器14将接收到的温度值与预定的阈值进行比较。当环境温度低于第一预设阈值时,控制器14以电信号的形式向加热器12发出加热命令。响应于接收到控制器14发出的加热命令,加热器12中的发热元件开始加热工作以生成热量。
进一步地,温度传感器实时感应镜头主体11的环境温度超过第二预设阈值时,即,证明透镜112在当前环境温度下不会存在起雾或结冰的现象时,控制器14向加热器12发出停止加热的命令。当加热器12接收到控制器14发出的停止加热的命令时,发热元件停止加热。
加热器12与控制器14需要通过电连接的方式实现上述电信号的交互,那么必然需要将加热器12的供电线120与控制器14的输出端141进行连接。然而,加热器12的供电线120位置受加热器12和镜头主体11的结构和位置关系的约束,无法根据控制器14输出端141 的位置进行调整,而且控制器14的输出端141位置不固定,为了避免由于加热器12供电线120引出位置和控制器14输出端141位置不匹配造成的安装困难,本实施方式提供了用于连通加热器12和控制器14的结构件13。
图10为图9的区域A1的放大图;图11为本申请示例性实施方式的镜头模组中结构件的结构示意图。如图10和图11所示,结构件13包括第一导电端131、第二导电端132和结构件主体133。第一导电端131可例如设置于结构件主体133的一侧,并具与控制器14电连接的正电极1311或负电极1312;第二导电端132可设置于结构件主体133的另一侧,并具有与加热器12电连接的正电极1321或负电极1322。示例性地,第一导电端131的正电极1311或负电极1312是刚性杆,例如铜杆。
具体地,为了使控制器14与加热器12能够连通,第一导电端131设置在与控制器14输出端141位置匹配的位置处。示例性地,控制器14包括印制电路板(Printed Circuit Board,PCB)。由于控制器14的输出端141位置根据具体型号的不同而随机设置,因此需要先精准确定控制器14输出端141的位置,并在结构件主体133上找到与控制器14输出端141位置匹配的位置,继而将第一导电端131通过例如焊接等方式固定连接在结构件主体133上。
第一导电端131可用于在结构件13与控制器14连接时定位。使得镜头模组的组装更加准确、方便。
在一些实施方式中,第一导电端131与控制器14输出端141的连接方式可包括:焊接互通、刺破连接。如图9所示,第一导电端131与控制器14输出端141焊接互通,第一导电端131贯穿控制器14输出端141,并焊接固定,保证其连通的稳定性。
参考图9和图11,控制器14可视为第一器件,镜头主体11上设置的加热器12可视为第二器件。第一器件和镜头主体11需要安装到一起,其中,由于第一器件的种类、型号等不同,第一器件上的输出端141的位置不同。借助本申请提供的结构件13,可以实现第一器件和第二器件在安装时准确定位。
第一端子(第一导电端131)、结构件主体133和第二端子(第二导电端132)固定连接。具体地,固定连接可以是刚性的。第一端子的位置响应于结构件主体133与第一器件的固定位置而设置,第二端子的位置响应于结构件主体133与第二器件的固定位置而设置,并且第一端子和第二端子通过结构件主体133通信连接。进一步地,控制器14可用作加热器12的外部电源,进而向加热器12供电。
结构件13用于将第一器件输出的命令传输给第二器件。第一器件可以向第二器件传输信号,例如电信号或光信号。结构件13还有利于增强第一器件和第二器件安装后的牢固性。其中,第一端子具有刚性,其材料可以是导电材料。第一端子也可以是介电材料的基体中设置导电材料的导电通道,或者设置折光材料的光通道。进而第一端子与第一器件实现电连接或其他方式的通信连接。同时第二端子与第二器件通信连接。
示例性地,结构件主体13具有安装轴线L。结构件主体13可以具有沿安装轴线L转动后的多个位置,并可用于与镜头主体11连接。结构件主体13也可以只有一个安装位置,当结构件主体13与镜头主体11固定连接后,安装轴线L可以与镜头主体11的光轴重合。
示例性地,第一端子是刚性排针。刚性排针可以是实心的也可以是中空的。刚性排针在安装至第一器件时具有良好的位置度。当刚性排针用于导电时,第一器件的输出端可以是焊盘孔。刚性排针与焊盘孔刚性连接并可电连接。进一步地,可以将刚性排针与焊盘孔焊接。
图12为本申请示例性实施方式的镜头模组中第一导电端的形状示意图;图13为本申请另一种示例性实施方式的镜头模组中第一导电端的形状示意图。
在一些实施方式中,为了使第一导电端131与控制器14输出端141更易于固定连接,如图12所示,将第一导电端131设置为多边形针状。或者如图13所示,将第一导电端131设置为矩形片状。可选地,第一导电端131的形状可为矩形片状和多边形针状的组合。当然,第一导电端131的伸出长度较短。多边形针状可为圆形针状、矩形针状、六边形针状等。另外,第一导电端131必然为金属材质。这种较短的针状或者片状金属材质连接端与供电线120相比,具备较强的刚性,易于与控制器14输出端141连通及固定。
在一些实施方式中,第二导电端132设置在结构件主体133的一侧,且位于与第一导电端131不同的一侧。第二导电端132与结构件主体的第一电接触区域的形状可为:点状、闭环状或断环状中的至少之一。由于第二导电端132的电极包括正电极1321和负电极1322,因此结构件主体与第二导电端132的第一电接触区域也分为第一正电极区域1331和第一负电极区域1332。
图14为本申请示例性实施方式的镜头模组中结构件主体的结构图;图15是图14的俯视图;图16为本申请另一示例性实施方式的镜头模组中结构件主体的结构图;图17是图16的俯视图;图18为本申请示例性实施方式的镜头模组中结构件主体的结构图;以及图19是图18的俯视图。
如图14和图15所示,第二导电端132与结构件主体133的第一电接触区域1331~1332的形状为闭环状。结构件主体133与第二导电端132的第一电接触区域1331~1332设置在结构件主体133自身的第二端面1333上。本实施例的第二端面1333可以是背离控制器的端面。为了配合结构件主体133的第一电接触区域1331~1332的位置,第二导电端132与结构件主体133电接触时,也固定在结构件主体133的第二端面1333上。当镜头主体11中设置的加热器12的位置根据不同的型号而具有不确定的位置,进而供电线120的位置不同时,结构件13的第二端面1333上任何位置都可用来电连接供电线120并固定。该结构件13的设置使得加热器12与控制器14的连接更加便利。第一导电端131可设置于第一端面1336,并与第二导电端133电连接。
进一步地,结构件主体133可包括外周面1334和内周面1335。结构件主体133在镜头主体11上的安装位置可以调整,例如结构件主体133设置在镜头主体11的光轴的径向外侧、并与镜头主体11一体成型,此时结构件主体133可以没有内周面1335。
如图16和图17所示,第二导电端132与结构件主体133的第一电接触区域1331~1332的形状为闭环状。结构件主体133与第二导电端132的第一电接触区域1331~1332设置在结构件主体133自身的内周面1335上,为了配合结构件主体133的第一电接触区域1331~1332的位置,第二导电端132与结构件主体133电接触时,也固定在结构件主体133的内周面1335上。当镜头主体11中设置的加热器12的位置根据不同的型号而具有不确定的位置,进而供电线120的位置不同时,结构件13的内周面1335上任何位置都可用来电连接供电线120并固定。该结构件13的设置使得加热器12与控制器14的连接更加便利。第一导电端131可设置于第一端面1336,并与第二导电端133电连接。
如图18和图19所示,第二导电端132与结构件主体133的第一电接触区域的形状为闭环状。结构件主体133的第一正电极区域1331设置在结构件主体133的第二端面1333上,第一负电极区域1332设置在结构件主体133的内周面1335上。为了配合结构件主体133的第一电接触区域的位置,第二导电端132与结构件主体133电接触时,也将正电极1321 设置在结构件主体133的第二端面1333上,并与正电极区域1331固定连接。同样地,第二导电端132的负电极1322将设置在结构件主体133的内周面1335上,并与第一负电极区域1332固定连接。当镜头主体11中设置的加热器12的位置根据不同的型号而具有不确定的位置,进而供电线120的位置不同时,结构件13的内周面1335上任何位置都可用来电连接负电极供电线并固定;结构件13的第二端面1333上任何位置都可用来电连接正电极供电线并固定。该结构件13的设置使得加热器12与控制器14的连接更加便利。第一导电端131可设置于第一端面1336,并与第二导电端133电连接。
结构件主体133的第一正电极区域1331和第一负电极区域1332的位置可以根据需求进行置换。对应地,第二导电端132的正电极1321和负电极1322的位置也随之置换,在此不做限定。
当然,结构件主体133的第一电接触区域1331~1332的形式受限于结构件主体133的结构形状,以致第二导电端132的每个电极的设置个数及构成的形状也受限于结构件主体133的结构形状。示例性地,第二导电端132的形状包括:多边形针状、矩形片状或多边形针状与矩形片状的组合。
示例性地,第一导电端131设置在结构件主体133的第一端面1336处。具体地,固定于对应于控制器14的输出端141的位置。第一导电端131可以是排针等,通过电接触、暗线与第一电接触区域电连接。示例性地,结构件主体133包括导电部,导电部沿安装轴线的两端分别作为第一电连接区域和第二电连接区域。
在示例性实施方式中,结构件主体133上设置有第二电接触区域,第二电接触区域可包括第二正电极区域和第二负电极区域。第一导电端131的正电极1311可以设置在第二正电极区域,第一导电端131的负电极可以设置在第二负电极区域。
图20为本申请示例性实施方式的镜头模组中第二导电端与供电线的连接方式示意图;图21为第二导电端与加热器供电线连接示意图。
如图20所示,第二导电端132上设置有能够与加热器12的供电线120电接触的凹槽。在一些实施方式中,第二导电端132设置在结构件主体133上,且位于与第一导电端131不同的一侧。第二导电端132可通过焊接互通、刺破连接的方式与加热器连接。如图21所示,第二导电端132的凹槽直径略小于供电线120直径。具体地,供电线120由金属丝121和包裹金属丝121的绝缘外皮122构成。由于绝缘外皮122质地较软,易于刺破,因此当供电线120与第二导电端132连接时,供电线120的绝缘外皮122被第二导电端132刺破,使金属丝121暴露于第二导电端132的凹槽中,并被凹槽卡紧。必然地,第二导电端132为金属材质,当第二导电端132将金属丝121卡紧后,实现了结构件13和加热器12的固定连接。进一步地,结构件13和加热器12可通过电信号进行信息交互,避免了加热器12将供电线120以明线的方式引出镜头主体11外部,进而导致镜头模组的导线混乱,影响组装效率。
在一些实施方式中,本申请将结构件主体133设置在第一导电端131和第二导电端132之间,用于整合电信号传递线路,将电信号传递线路以暗线的方式设置在结构件主体133的内部,避免加热器12将供电线120以明线的方式引出镜头主体11外部,进而导致镜头模组的导线混乱,影响组装效率。
在一些实施方式中,结构件13通过结构件主体133固定于镜头主体11的上。
图22至图25为本申请示例性实施方式的镜头模组中结构件固定于镜头主体不同位置的示意图。其中,图22为结构件主体133嵌在镜头主体11外侧壁面的示意图。图23为结构件主体133嵌在镜头主体11底面的示意图。图24为结构件主体133嵌在镜头主体11突出 部的突出部分的侧边缘的示意图。图25为结构件主体133嵌在镜头主体11内孔的示意图。也就是说,结构件主体133可设置在镜头主体11的镜筒外壁面、底面、突出部的突出部分侧边缘或者内孔中,具体的设置位置根据其与控制器14的相对位置等进行选择,固定位置不受限制,更便于生产者根据需求进行选择。
在一些实施方式中,由于不同的镜头主体11的结构存在差异,为了配合不同镜头主体11的形状,结构件主体133的形状也可设置为多种样式。
图26至图29为本申请示例性实施方式的镜头模组中结构件主体形状示意图。其中,图26为结构件主体133为圆环形的结构示意图。图27为结构件主体133为矩环形的结构示意图。图28为结构件主体133为圆环形和切边形组合的结构示意图。图29为结构件主体133为断环形的结构示意图。也就是说,结构件主体133的形状可设置为圆环形、矩环形、圆环形和切边形组合、或断环形。当然结构件主体133的形状,需要根据镜头主体11的形状进行确定,使得结构件13与镜头主体11能够进行较为牢固的连接,避免由于形状的不切合,增大组装的难度。为了保证结构件13能够配合加热器13的供电线120位置、以及控制器14的输出端位置,结构件主体133的形状必然需要设置成环状,使得结构件13的导电端可在环状的结构件主体133周向任意位置进行固定。当然,若镜头主体11为其余形状,那么结构件主体133具体的环状形状也可随之设定,在此不做限制。
在一些实施方式中,镜头主体11与结构件主体133的固定方式可为:孔轴过盈配合、热铆固定、断环卡扣固定、卡勾配合、点胶固定和螺钉锁紧固定等。只要能够使得镜头主体11与结构件主体133固定牢靠,生产者可根据自身条件进行组装,具体固定方式不做限制。
进一步地,结构件主体133的两侧还用于固定导电端。由于加热器12的供电线120引出位置随机设定,同时控制器14的输出端位置也根据其不同型号随机设定,为了配合加热器12的供电线120引出位置和控制器14的输出端位置,本实施方式中,结构件主体133的导电端位置可根据实际情况进行固定安装。
图30为本申请示例性实施方式的镜头模组中第二导电端在结构件主体上的位置示意图;图31为本申请示例性实施方式的镜头模组中第一导电端在结构件主体上的位置示意图。具体地,如图30所示,第一角α为第二导电端132正负极之间的夹角。具体地,第一角α是两电极在光轴的垂面内相对光轴的夹角。为了配合处于不同位置的加热器12的供电线120引出位置,第一角α的度数在0度至360度之间调整,使得结构件13与加热器12之间的连通不受连接端位置的约束。
同样地,如图31所示,第二角β为第一导电端131正负极之间的夹角,为了配合处于不同位置的控制器14的输出端,第二角β的度数在0度至360度之间调整,使得结构件13与控制器14之间的连通不受连接端位置的约束。
在一些实施方式中,结构件主体133可选择塑料等质量较小的材质,使得在镜头模组中加入该结构件13后,镜头模组的整体重量没有明显增加。本实施方式提供的镜头模组属于一种光学装置,在不脱离本实施方式的教导下,也可获得其他类型的包括结构件13的光学装置。
图32为本申请示例性实施方式的镜头模组的制备方法流程图。
如图32所示,基于上述镜头模组,本申请还提供了一种镜头模组的制备方法1000,包括:
步骤S1,设置用于生成加热镜头主体热量的加热器。
步骤S2,设置用于生成控制加热器生成热量的控制命令的控制器。
步骤S3,设置与镜头主体固定连接的结构件。
步骤S4,将控制器与结构件刚性地连接。其中,结构件用于将控制器生成的控制命令传输给加热器。
该镜头模组的制备方法1000应用于对上述实施方式中的镜头模组的制备,其中镜头模组的各个部件的具体实施方式详见上述对镜头模组实施方式的具体描述,在此不再赘述。
在一个实施方式中,结构件包括:结构件主体、第一导电端和第二导电端。其中,结构件主体包括第一电接触区域且第二导电端与第一电接触区域电连接。步骤S3包括:
将结构件主体与镜头主体固定连接。
将第二导电端与加热器电连接。具体地,根据加热器的供电线的位置,确定第二导电端的位置。进而将第二导电端与供电线固定连接并使第二导电端与加热器电连接。
将第二导电端固定于第一电接触区域中对应加热器的位置。
将第一导电端固定于第二电接触区域中对应控制器的输出端的位置,其中,第二导电端通过结构件主体与第一导电端电连接;
将第一导电端与控制器的输出端刚性地电连接,以从控制器接收控制命令。
示例性地,固定结构件主体时,可响应于镜头主体与加热器的固定连接位置而固定结构件主体,使第二导电端对应于供电线的位置。
示例性地,固定第一导电端时,可响应于镜头主体与控制器的固定连接位置而固定于前述的位置。
进一步地,可根据结构件主体、第一导电端和第二导电端的具体样式,通过对应的不同方式将结构件主体与镜头主体的连接、将第二导电端与加热器连接。
本申请的镜头模组的制备方法1000,根据控制器的输出端位置对结构件的第一导电端进行精准定位,以及根据加热器的供电线位置对结构件第二导电端进行精准定位,进而通过结构件将加热器和控制器连通,避免了现有技术中由于加热器供电线引出位置与控制器输出端位置不匹配而无法组装的情况,进而降低加热镜头与控制器的组装难度,提升加热镜头与控制器的组装效率和产能。另外,通过设置具有刚性导电端的结构件,将加热器与控制器连通,降低了加热器和控制器组装的难度,同时也避免了加热器供电线的不可控性,保障了加热器和控制器组装后的稳固性。
参考图33,其中示出了根据本申请又一方面实施方式的镜头1000的示意图。
镜头1000可包括镜片部件1100、镜筒1200、加热单元1300以及连接部件1400。连接部件1400可以是导电单元。
镜片部件1100可包括至少一个镜片,用于调整和传播光线,进而有利于实现镜头的成像或投影作用。例如,镜片部件1100可包括相对设置的第一镜片1110和第二镜片1120,其中,第一镜片1110和第二镜片1120可通过粘结物质粘结在一起。光线可沿第一镜片1110入射至第二镜片1120,或者可沿第二镜片1120入射至第一镜片1110。
镜筒1200可连接于镜片部件1100的非光学区域,以固定镜片部件1100。例如,镜筒1200可连接于第一镜片1110和第二镜片1120的非光学区域,以固定第一镜片1110和第二镜片1120。
加热模块1300可设置于镜片部件1100的非光学区域。具体地,加热模块1300可设置于镜片部件1100中最靠近外界环境的镜片的非光学区域。例如,在图33所示的镜头1000中,加热模块1300可设置于靠近外界环境的第一镜片1110的非光学区域。将加热模块1300 设置于镜片部件1100的非光学区域,有利于在不影响光线传播的基础上,实现对镜头的除雾除霜作用。此外,将加热模块1300设置于镜片部件1100的非光学区域,可以有效避免镜头1000的整体结构过大,安装空间受限等问题。
连接部件1400可穿过镜筒1200连接于加热模块1300,其中连接部件1400适于与外部电源连接,从而为加热模块1300供电。例如,连接部件1400可穿过镜筒1200通过焊接方式与加热模块1300连接。连接部件1400可包括第一连接部件1410和第二连接部件1420,第一连接部件1410和第二连接部件1420可穿过镜筒1200的两侧连接于加热模块1300,其中,第一连接部件1410和第二连接部件1420与外部电源连接,从而为加热模块1300供电以使加热模块1300产生热量除去镜头表面产生的雾气或冰晶。示例性地,第一连接部件1410和第二连接部件1420可以是具有保护套的导线。
在示例性实施方式中,加热模块1300可包括依序设置的第一膜层1310、加热层1320以及第二膜层1330。示例性地,第一膜层1310和第二膜层1330可由聚酰亚胺(PI)材质制成。例如,第一膜层1310和第二膜层1330可以是由聚酰亚胺(PI)材质制成的PI薄膜。加热层1320可作为前述的发热元件。示例性地,加热层1320可由压延铜箔(RA铜箔)、电解铜箔、康铜铜箔(铜镍合金)以及不锈钢中的至少一种金属箔材质制成。例如,加热层1320可以是由压延铜箔、电解铜箔、康铜铜箔以及不锈钢中的至少一种金属箔材质制成的丝线形状的加热丝。加热层1320可以是由圆形、弓字形、折线形以及圆环形中的至少一种丝线形状设置于第一镜片1110的非光学区域形成的加热丝。应理解,本申请并未具体限定加热层的设置形状,可以根据实际情况,设计任意符合需求的形状。丝线形状的加热丝的间距H1和宽度H2均可大于或等于0.02mm。在本申请中,可通过蚀刻工艺将金属箔蚀刻形成丝线形状的加热丝。如图34A所示的,金属箔可以被蚀刻成圆形的加热丝回路。如图35B所示的,金属箔被蚀刻成弓字形的加热丝回路。如图35C所示的,金属箔被蚀刻成折线形的加热丝回路。如图35D所示的,金属箔被蚀刻成圆环形的加热丝回路。应理解,本申请提供的加热模块1300可通过合理设置加热层1320的形状,以满足实际应用中对加热层1320的阻值的需求,进而可以保证加热模块1300的加热均匀性。加热层1320的阻值R=ρL/S,ρ是加热层的电阻率,L是加热丝的长度,S是加热丝的截面积,即S=宽度W×厚度T。在实际设计加热层的线路时,需要综合考虑制成加热层的金属箔材料的电阻率ρ、厚度T、宽度W以及加热丝长度L,进而控制阻值R的大小以及将加热丝设置成的图案的形状。根据公式P=U2/R,在外接电源提供的电压一定时,可通过控制阻值R实现对加热层发热功率的控制。
加热模块1300中的第一膜层1310和第二膜层1330可以是PI薄膜,加热层1320可以是通过对金属箔进行蚀刻工艺形成加热丝。第一连接部件1410和第二连接部件1420可以是具有保护套的导线。第一连接部件1410和第二连接部件1420可穿过镜筒1200通过焊接方式与加热模块1300连接。具体地,可在加热丝引出端蚀刻出第一连接部件1410和第二连接部件1420的电极,电极位置局部不覆盖PI薄膜,以形成可以外接的电极。应理解,本申请并未具体限定电极以及导线的引出方式,可以根据实际情况,设计任意符合需求的电极以及导线的引出方式。由于化金可焊性极佳,在本申请中,可以在电极表面进行化金处理即通过化学方法在铜面上包裹一层较厚的、电性能良好的镍金合金。镍金合金会迅速融入融化的焊锡里面,焊锡与Ni形成Ni/Sn金属化合物,以用于焊接连接部件1400和加热模块1300。
在示例性实施方式中,如图35A和图35B所示的,本申请提供的第一连接部件1410和第二连接部件1420可以在0°-180°区间内分别连接于加热模块1300的、远离第一镜片的 非光学区域的位置,即加热模块1300的、靠近第一镜片的光学区域的位置。换言之,第一连接部件1410和第二连接部件1420可以分别连接于设置有加热模块1300的非光学区域的环内侧。图35A和图35B仅示例性示出了第一连接部件1410和第二连接部件1420分别以间隔0°和180°分别连接于具有加热模块1300的非光学区域的环内侧。应理解,第一连接部件1410和第二连接部件1420的位置可以根据加热丝的具体布置在0°-180°区间内调整。
在示例性实施方式中,如图36A和图36B所示的,本申请提供的第一连接部件1410和第二连接部件1420可以在0°-180°区间内分别连接于加热模块1300的、靠近第一镜片的非光学区域的位置,即加热模块1300的、远离第一镜片的光学区域的位置。换言之,第一连接部件1410和第二连接部件1420可以分别连接于设置有加热模块1300的非光学区域的环外侧。图36A和图36B仅示例性示出了第一连接部件1410和第二连接部件1420分别以间隔0°和180°分别连接于在具有加热模块1300的非光学区域的环外侧。应理解,第一连接部件1410和第二连接部件1420的位置可以根据加热丝的具体布置在0°-180°区间内调整。
在示例性实施方式中,如图37所示的,本申请提供的第一连接部件1410和第二连接部件1420可以在0°-180°区间内分别连接于加热模块1300的、靠近第一镜片的非光学区域的一端和远离第一镜片的非光学区域的一端。换言之,第一连接部件1410和第二连接部件1420可以分别连接于设置有加热模块1300的非光学区域的环外侧和环内侧。图37仅示例性示出了第一连接部件1410和第二连接部件1420分别以间隔0°和180°分别连接于具有加热模块1300的非光学区域的环外侧和环内侧。应理解,第一连接部件1410和第二连接部件1420的位置可以根据加热丝的具体布置在0°-180°区间内调整。
在示例性实施方式中,如图38A和图38B所示的,本申请提供的第一连接部件1410和第二连接部件1420可以在0°-180°区间内分别连接于加热模块1300的内部。图38A和图38B仅示例性示出了第一连接部件1410和第二连接部件1420分别以间隔0°和180°分别连接于加热模块1300的内部。应理解,第一连接部件1410和第二连接部件1420的位置可以根据加热丝的具体布置在0°-180°区间内调整。
应理解,在实际应用中,第一连接部件和第二连接部件在加热层中引出的位置取决于加热层内部加热丝的图形排布设计。第一连接部件和第二连接部件在加热层中引出的位置既可以设置在加热层的端部,即加热层靠近镜片的非光学区域的外端部或者远离镜片的非光学区域的内端部,又可以设置在加热层的内部。示例性地,第一连接部件和第二连接部件可作为导电单元的两个引线,进一步地,分别作为正极供电线和负极供电线。
在示例性实施方式中,如图39A至图39C所示的,本申请提供的加热模块1300可呈折叠方式设置于镜片的非光学区域。具体地,第一膜层1310和第二膜层1330可以是PI材质的薄膜,其可以任意折叠形成多层加热模块。通过串联多层加热丝,可以增大加热层1320的阻值。此外,多层折叠的加热模块之间可以用胶水、胶带等方式进行连接。如图39A所示的,加热模块1300包括依序设置的PI薄膜、加热丝以及PI薄膜,其中,利用胶水10等将PI薄膜、加热丝以及PI薄膜粘合在一起。如图39B所示,加热模块1300是由第一加热模块100和第二加热模块200沿X轴线相对折形成的,其中,第一加热模块100的加热丝和第二加热模块200的加热丝为串联连接。利用胶水10或其它粘合物将第一加热模块100和第二加热模块200粘合在一起。如图39C所示,加热模块1300由第一加热模块100、第二加热模块200以及第三加热模块300沿X轴线和Y轴线依次对折形成的,其中,第一加热模块100的加热丝、第二加热模块200的加热丝以及第三加热模块300的加热丝为串联连 接。利用胶水或其它粘合物将第一加热模块100和第二加热模块200粘合在一起,并利用胶水或其它粘合物将第二加热模块200和第三加热模块300粘合在一起。应注意,本申请在弯折多层加热丝时,弯折位置是连通的,以实现多层加热丝是导通的。应理解,本申请提供的加热模块并不仅为小于三层的加热模块,上述介绍仅为示例,并非严格限定加热模块的层数,在实际应用中,可根据具体情况,合理设置加热模块的层数。例如,在实际使用中,经常会出现加热模块的布置宽度(面积)受限的情况,仅通过控制加热丝的阻值无法达到实际要求,此时,可以通过多次叠加来增加加热丝可以布置的面积,从而达到阻值要求。
在示例性实施方式中,如图40A至图40C所示的,本申请提供的加热模块1300可呈叠加方式设置于镜片的非光学区域。具体地,如图40A所示的,加热模块1300包括依序设置的第一膜层1310、加热层1320以及第二膜层1330,其中,第一膜层1310未完全覆盖加热层1320。如图40B所示的,加热模块2300包括依序设置的第一膜层2310、加热层2320以及第二膜层2330,其中,第二膜层2330未完全覆盖加热层2320。如图40C所示的,加热模块1300和加热模块2300叠加形成的加热模块3300。具体地,第一膜层1310和第二膜层2330可通过胶水粘合在一起,此时,加热层1320和加热层2320的电极可以通过如导电胶和导电胶带等实现串联导电连接,进而实现多层加热层的叠加效果。本申请提供的第一膜层2310和第二膜层2330可以是PI材质的薄膜,其可以任意叠加形成多层加热模块。多层叠加的加热模块之间可以用胶水、胶带等方式连接。多层加热模块的电极可以通过如导电胶和导电胶带等实现导电连接。
在示例性实施方式中,加热模块1300上可具有孔状标记和缺口标记中的至少一种标记。在实际生产加热模块的过程中,通常将多个加热模块集成在一张材质上,后续通过冲压、激光切割等工序将多个加热模块裁剪出来,这样容易混淆多个加热模块。本申请提供的加热模块,通过在加热模块上设计不同的标记,可识别需求的加热模块。具体地,如图41A所示的,可以在加热模块1300上设计一个或多个圆孔标记1标记。应理解,本申请对标记的形状和个数的介绍仅为示例,并非严格限定,标记的形状和个数可以是任何满足实际需求的形状和个数,例如标记还可以是如三角孔、花孔以及其他不规则的孔。如图41B所示的,可以在加热模块1300上设计一个或多个三角缺口标记2,其中,缺口还可以是半圆、矩形以及其他不规则形状。缺口数量可以是一个,也可以是多个。缺口可以在加热模块的内侧,也可以在加热模块的外侧。示例性地,加热模块上的识别标记既可以作为组装的定位配合,又可以在自动化视觉上作为识别标记,进行识别探测。
在示例性实施方式中,如图42A所示的,加热模块1300的轮廓可以是圆环形。如图42B所示的,加热模块1300的轮廓可以是方形。如图42C所示的,加热模块1300的轮廓可以是弓字形。如图42D所示的,加热模块1300的轮廓可以是蛇(S)形。应理解,本申请对加热模块1300的轮廓的介绍仅为示例,并非严格限定,加热模块1300的轮廓可以是任何满足实际需求的形状。
在示例性实施方式中,加热模块1300包括设置于第一膜层1310表面的第一补强板1311。示例性地,加热模块1300还可包括设置于第二膜层1330表面的第二补强板1331。第一补强板1311和第二补强板1331可由铝、不锈钢、铜、FR4、石棉、真空板、气凝胶毡中的至少一种材质制成。第一补强板1311可根据第一膜层1310的形状设置在第一膜层1310的表面,第二补强板1331可根据第二膜层1330的形状设置在第二膜层1330的表面。第一补强板1311和第二补强板1331可用于局部加强或者整体加强加热模块1300的应力,以应对一些需要受力的工序,如铆接、印刷等。本身请提供的第一补强板1311和第二补强板1331 可以采用导热性较好的材料,如铝、不锈钢、铜等,还可以采用隔热性较好材料,如FR4、石棉、真空板、气凝胶毡等。
如图43A所示的,在第一膜层1310表面上设置了完全覆盖第一膜层1310表面的第一补强板1311。第一补强板1311可以是导热性较好的材料,以使加热模块1300发热均匀。如图43B所示的,在第一膜层1310和第二膜层1330表面上设置了完全覆盖第一膜层1310和第二膜层1330表面的第一补强板1311和第二补强板1331。换言之,加热模块1300的两个与外界接触的表面上分别设置了第一补强板1311和第二补强板1331。第一补强板1311可以是导热性较好的材料,以使加热模块1300发热均匀。第二补强板1331可以是隔热性较好的材料,以使加热模块1300散热减小,降低损耗,提升热利用率。如图43C所示的,在第一膜层1310表面上的局部区域设置了第一补强板1311。第一补强板1311可以是导热性较好的材料,也可以是隔热性较好的材料,可以形成局部传热或局部隔热的效果。
本申请另一方面提供了一种光学装置(未示出),该光学装置包括上述具有加热功能的镜头。该光学装置因具有加热功能的镜头,可以实现在严寒、潮湿的外界环境中的正常使用,还可以安装在有限的空间内。
以上描述仅为本申请的实施方式以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的保护范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述技术构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (102)

  1. 一种用于镜片的加热装置,所述镜片包括镜片本体,所述镜片本体具有相对的第一面和第二面,以及连接所述第一面和所述第二面的边缘,其特征在于,所述加热装置包括:
    加热单元,适于设置于所述镜片本体的边缘并在被供电后用于向所述镜片本体传递热量。
  2. 根据权利要求1所述的加热装置,其特征在于,所述加热单元包括设置有发热元件的陶瓷加热环或聚酰亚胺加热膜。
  3. 根据权利要求1所述的加热装置,其特征在于,所述加热装置还包括固定元件,用于将所述加热单元固定到所述镜片本体的所述边缘。
  4. 根据权利要求3所述的加热装置,其特征在于,所述固定元件是导热胶水或导热胶带。
  5. 根据权利要求3所述的加热装置,其特征在于,所述固定元件是导电胶水或导电胶带。
  6. 根据权利要求3所述的加热装置,其特征在于,所述固定元件为弹性部件,所述陶瓷加热环或所述聚酰亚胺加热膜通过所述弹性元件的弹力被固定于所述边缘。
  7. 根据权利要求2所述的加热装置,其特征在于,所述发热元件设置在双层所述聚酰亚胺膜之间,所述发热元件与每个所述聚酰亚胺膜通过导热胶水、导热胶带、导电胶水以及导电胶带中的至少一种连接。
  8. 根据权利要求2所述的加热装置,其特征在于,所述聚酰亚胺加热膜是硬质载体聚酰亚胺加热膜。
  9. 根据权利要求2所述的加热装置,其特征在于,所述发热元件是电加热丝。
  10. 根据权利要求2所述的加热装置,其特征在于,所述陶瓷加热环或所述聚酰亚胺加热膜具有类环形结构。
  11. 根据权利要求1-10中任一项所述的加热装置,其特征在于,所述加热装置还包括与所述加热单元电连接的导电单元,所述导电单元包括至少两个引线。
  12. 根据权利要求11所述的加热装置,其特征在于,所述加热装置还包括:供能单元;以及
    所述导电单元用于电连接所述发热元件和所述供能单元。
  13. 根据权利要求11所述的加热装置,其特征在于,所述导电单元与所述发热元件之间通过焊接、导电胶水、导电胶带、导热胶水、导热胶带以及压紧连接中的一种或几种连接。
  14. 根据权利要求11所述的加热装置,其特征在于,还包括结构件,所述结构件包括:
    结构件主体,用于与所述镜片固定连接;
    第一端子,与所述结构件主体固定连接,用于与所述外部电源刚性地固定连接并电连接;以 及
    第二端子,通过所述结构件主体与所述第一端子电连接,并用于通过所述至少两个引线与所述加热单元电连接。
  15. 根据权利要求14所述的加热装置,其特征在于,所述结构件主体包括第一电接触区域;
    所述第一端子是第一导电端,与所述第一电接触区域电连接,并与所述外部电源的输出端刚性地电连接;
    所述第二端子是第二导电端,固定于所述第一电接触区域中对应所述至少两个引线的位置。
  16. 根据权利要求15所述的加热装置,其特征在于,所述第一导电端用于在所述结构件与所述外部电源连接时定位。
  17. 根据权利要求15所述的加热装置,其特征在于,所述第一导电端设置在所述结构件主体的对应所述外部电源的输出端的位置。
  18. 根据权利要求15所述的加热装置,其特征在于,所述第一电接触区域的形状为点状、闭环状或断环状。
  19. 根据权利要求15所述的加热装置,其特征在于,所述第一导电端和所述第二导电端分别包括正电极和负电极,所述第一电接触区域包括第一正电极区域和第一负电极区域;
    所述第一导电端的正电极与所述第一正电极区域电连接,所述第二导电端的正电极设置于所述第一正电极区域中对应所述至少两个引线的正极供电线的位置;
    所述第一导电端的负电极与所述第一负电极区域电连接,所述第二导电端的负电极设置于所述第一负电极区域中对应所述至少两个引线的负极供电线的位置。
  20. 根据权利要求19所述的加热装置,其特征在于,所述结构件主体具有安装轴线,所述结构件主体适于通过使所述安装轴线与所述镜片的光轴重合而与所述镜片固定连接;
    所述结构件主体包括在所述安装轴线方向上相对的第一端面和第二端面、环绕所述安装轴线的内周面以及外周面中的至少一个,其中,所述第二端面朝向所述至少两个引线;
    所述第一正电极区域位于所述第二端面、所述内周面或所述外周面;
    所述第一负电极区域位于所述第二端面、所述内周面或所述外周面。
  21. 根据权利要求20所述的加热装置,其特征在于,在所述安装轴线的垂面内,所述第一导电端的正电极和负电极之间在所述安装轴线的周向上的夹角的范围是0°至360°。
  22. 根据权利要求20所述的加热装置,其特征在于,在所述安装轴线的垂面内,所述第二导电端的正电极和负电极之间在所述安装轴线的周向上的夹角的范围是0°至360°。
  23. 根据权利要求14所述的加热装置,其特征在于,所述结构件主体与所述镜片的连接方式包括:孔轴过盈配合、热铆固定、断环卡扣固定、卡勾配合、螺钉锁紧、孔轴间隙配合或者点胶固定中的至少之一。
  24. 根据权利要求14所述的加热装置,其特征在于,所述结构件主体的形状包括:圆环形、矩环形、切边形或者断环形中的至少之一。
  25. 根据权利要求14所述的加热装置,其特征在于,所述第一端子的形状包括:多边形针状、矩形片状或所述多边形针状与所述矩形片状的组合。
  26. 根据权利要求25所述的加热装置,其特征在于,所述第一端子包括刚性排针。
  27. 根据权利要求14所述的加热装置,其特征在于,所述第二端子是第二导电端,通过焊接互通、刺破连接的方式与所述至少两个引线连接。
  28. 根据权利要求15所述的加热装置,其特征在于,所述第二导电端具有容纳所述引线的凹槽,当所述第二导电端通过刺破连接的方式与所述引线连接时,所述凹槽刺破所述引线的绝缘外皮,与所述引线的金属丝电接触。
  29. 根据权利要求1所述的加热装置,其特征在于,所述加热单元包括依序设置的第一膜层、发热元件以及第二膜层。
  30. 根据权利要求29所述的加热装置,其特征在于,
    所述第一膜层和所述第二膜层由聚酰亚胺材质制成;以及
    所述发热元件由压延铜箔、电解铜箔、康铜铜箔以及不锈钢中的至少一种金属箔材质制成。
  31. 根据权利要求29所述的加热装置,其特征在于,所述发热元件以丝线形状设置于所述边缘,其中所述丝线的间距和宽度大于或等于0.02mm。
  32. 根据权利要求31所述的加热装置,其特征在于,所述丝线形状包括圆形、弓字形、折线形以及圆环形中的至少一种形状。
  33. 根据权利要求29-32中任一项所述的加热装置,其特征在于,所述加热装置还包括与所述加热单元电连接的导电单元;以及
    其中,所述导电单元包括至少两个引线,所述两个引线中的任意一个连接于所述加热单元的靠近所述边缘的一端、所述加热单元的远离所述边缘的一端或者所述加热单元的内部。
  34. 根据权利要求29所述的加热装置,其特征在于,所述加热单元呈折叠方式设置于所述边缘,其中折叠的所述发热元件串联连接。
  35. 根据权利要求29所述的加热装置,其特征在于,所述加热装置还包括与所述加热单元电连接的导电单元;以及
    其中,所述加热单元呈叠加方式设置于所述边缘,其中叠加的所述导电单元导电连接。
  36. 根据权利要求1所述的加热装置,其特征在于,所述加热单元上具有孔状标记和缺口标记中的至少一种标记。
  37. 根据权利要求29所述的加热装置,其特征在于,在所述第一膜层的表面上设置第一补强板。
  38. 根据权利要求37所述的加热装置,其特征在于,在所述第二膜层的表面上设置第二补强板。
  39. 根据权利要求37或38所述的加热装置,其特征在于,所述第一补强板和所述第二补强板中的至少之一由导热性的材料形成。
  40. 根据权利要求39所述的加热装置,其特征在于,所述导热性的材料包括:铝、不锈钢、铜。
  41. 根据权利要求37或38所述的加热装置,其特征在于,所述第一补强板和所述第二补强板中的至少之一由隔热性的材料形成。
  42. 根据权利要求41所述的加热装置,其特征在于,所述隔热性的材料包括:FR4、石棉、真空板、气凝胶毡。
  43. 根据权利要求34所述的加热装置,其特征在于,呈折叠方式设置的所述加热单元大于或等于2层。
  44. 根据权利要求35所述的加热装置,其特征在于,呈叠加方式设置的所述加热单元大于或等于2层。
  45. 根据权利要求1所述的加热装置,其特征在于,所述加热单元的轮廓形状包括圆环形、方形、弓字形以及S形中的至少一种。
  46. 一种具有加热装置的镜片,包括镜片本体,所述镜片本体具有相对的第一面和第二面,以及连接所述第一面和所述第二面的边缘,其特征在于,所述镜片还包括:
    加热装置,设置在所述镜片本体的所述边缘,在供电后用于向所述镜片本体传递热量,
    其中,所述加热装置被构造为内部设置发热元件的陶瓷加热环或聚酰亚胺加热膜。
  47. 根据权利要求46所述的镜片,其特征在于,所述加热装置设置于所述镜片本体在所述边缘的端面和侧面中的至少之一。
  48. 根据权利要求46或47所述的镜片,其特征在于,所述镜片设置有缺口槽,所述加热装置设置在所述缺口槽中。
  49. 根据权利要求46所述的镜片,其特征在于,所述加热装置还包括固定元件,所述固定元件用于将所述加热装置固定于所述边缘。
  50. 根据权利要求49所述的镜片,其特征在于,所述固定元件是弹性元件,以压缩状态设置在所述边缘。
  51. 根据权利要求49所述的镜片,其特征在于,所述固定元件是导电胶水或导电胶带。
  52. 根据权利要求49所述的镜片,其特征在于,所述固定元件是导热胶水或导热胶带。
  53. 根据权利要求46所述的镜片,其特征在于,所述加热装置具有类环形结构,所述类环形结构的轮廓与所述边缘的轮廓相匹配。
  54. 根据权利要求46所述的镜片,其特征在于,在各个所述镜片之间具有机构件,所述陶瓷加热环被形成为所述机构件。
  55. 根据权利要求46所述的镜片,其特征在于,所述发热元件设置在双层聚酰亚胺膜之间,所述发热元件与每个所述聚酰亚胺膜通过导热胶水、导热胶带、导电胶水以及导电胶带中的至少一种连接。
  56. 根据权利要求46所述的镜片,其特征在于,所述聚酰亚胺加热膜是硬质载体聚酰亚胺加热膜。
  57. 根据权利要求46所述的镜片,其特征在于,所述发热元件是电加热丝。
  58. 根据权利要求46-57任一项所述的镜片,其特征在于,所述加热装置还包括导电单元和供能单元,所述导电单元包括至少两个引线,用于电连接所述发热元件和所述供能单元。
  59. 根据权利要求58所述的镜片,其特征在于,所述导电单元与所述发热元件之间通过焊接、导电胶水、导电胶带、导热胶水、导热胶带以及压紧连接中的一种或几种连接。
  60. 一种镜头,其特征在于,包括:
    镜筒,具有侧壁;以及
    通过所述镜筒的所述侧壁固定的多个镜片,其中,多个镜片中的至少之一为如权利要求46-59中至少一项所述的具有加热装置的镜片。
  61. 根据权利要求60所述的镜头,其特征在于,所述加热装置设置于所述镜片本体的端面与所述镜头的密封件之间。
  62. 根据权利要求60所述的镜头,其特征在于,所述加热装置设置于所述镜片本体的边缘与所述镜头的侧壁之间。
  63. 根据权利要求60或62所述的镜头,其特征在于,所述加热装置设置于所述镜片本体的边缘与相邻镜片的边缘之间。
  64. 根据权利要求60所述的镜头,其特征在于,所述加热装置设置于所述镜片本体的边缘与所述镜头的密封件和相邻镜片的边缘之间。
  65. 一种镜头,其特征在于,包括:
    镜筒;
    镜片,所述镜片包括镜片本体,所述镜片本体具有相对的第一面和第二面,以及连接所述第一面和所述第二面的边缘,其中,所述边缘与所述镜筒连接以固定所述镜片;
    如权利要求1至45中任一项所述的加热装置。
  66. 根据权利要求65所述的镜头,其特征在于,所述加热装置还包括穿过所述镜筒而与所述加热单元电连接的导电单元,其中所述导电单元适于与外部电源连接,从而为所述加热单元供电。
  67. 一种光学装置,其特征在于,包括根据权利要求60-64中任一项所述的镜头。
  68. 一种光学装置,其特征在于,包括根据权利要求65或66所述的镜头。
  69. 一种光学装置,包括镜头主体,其特征在于,所述光学装置还包括:
    加热器,用于生成加热所述镜头主体的热量;
    控制器,用于生成控制所述加热器操作以产生所述热量的控制命令;以及
    结构件,与所述镜头主体固定连接并与所述控制器刚性地固定连接,用于将所述控制器生成的所述控制命令传输给所述加热器。
  70. 根据权利要求69所述的光学装置,其特征在于,所述结构件包括:
    结构件主体,与所述镜头主体固定连接;
    第一导电端,与所述控制器刚性地电连接,以从所述控制器接收所述控制命令;以及
    第二导电端,与所述加热器电连接并通过所述结构件主体与所述第一导电端电连接,用于将所述控制命令传递给所述加热器。
  71. 根据权利要求70所述的光学装置,其特征在于,所述第一导电端设置在所述结构件主体的对应所述控制器的输出端的位置。
  72. 根据权利要求70所述的光学装置,其特征在于,所述结构件主体包括第一电接触区域;
    所述第二导电端固定于所述第一电接触区域中对应所述加热器的位置;
    所述第一导电端与所述第一电接触区域电连接。
  73. 根据权利要求72所述的光学装置,其特征在于,所述第一导电端用于在所述结构件与 所述控制器连接时定位。
  74. 根据权利要求72所述的光学装置,其特征在于,所述第一电接触区域的形状为点状、闭环状或断环状。
  75. 根据权利要求72所述的光学装置,其特征在于,所述第一导电端和所述第二导电端分别包括正电极和负电极,所述第一电接触区域包括第一正电极区域和第一负电极区域;
    所述第一导电端的正电极所述第一正电极区域电连接,与所述第二导电端的正电极设置于所述第一正电极区域中对应所述第二器件的正极供电线的位置;
    所述第一导电端的负电极与所述第一负电极区域电连接,所述第二导电端的负电极设置于所述第一负电极区域中对应所述第二器件的负极供电线的位置。
  76. 根据权利要求75所述的光学装置,其特征在于,所述镜头主体具有光轴;
    在所述光轴的垂面内,所述第一导电端的正电极和负电极之间在所述光轴的周向上的夹角的范围是0°至360°。
  77. 根据权利要求75所述的光学装置,其特征在于,所述镜头主体具有光轴;
    在所述光轴的垂面内,所述第二导电端的正电极和负电极之间在所述光轴的周向上的夹角的范围是0°至360°。
  78. 根据权利要求75所述的光学装置,其特征在于,所述结构件主体包括在所述镜头主体的光轴方向上相对的第一端面和第二端面、环绕所述安装轴线的内周面以及外周面中的至少一个,其中,所述第二端面朝向所述第二器件;
    所述第一正电极区域位于所述第二端面、所述内周面或所述外周面;
    所述第一负电极区域位于所述第二端面、所述内周面或所述外周面。
  79. 根据权利要求70所述的光学装置,其中,所述镜头主体包括用于容纳至少一个镜片的镜筒,其特征在于,所述结构件主体设置在所述镜筒的外侧壁。
  80. 根据权利要求70所述的光学装置,其中,所述镜头主体包括用于容纳至少一个镜片的镜筒,所述镜筒的外侧面具有至少一个突出部,其特征在于,所述结构件主体设置在所述突出部。
  81. 根据权利要求70所述的光学装置,其中,所述镜头主体包括用于容纳至少一个镜片的镜筒,其特征在于,所述结构件主体设置在所述镜筒的底部的外壁面或底面。
  82. 根据权利要求70所述的光学装置,其中,所述镜头主体包括用于容纳至少一个镜片的镜筒,其特征在于,所述结构件主体设置在所述镜筒的底部的内孔。
  83. 根据权利要求70所述的光学装置,其特征在于,所述结构件主体与所述镜头主体的连接方式包括:孔轴过盈配合、热铆固定、断环卡扣固定、卡勾配合、螺钉锁紧、孔轴间隙配合或者点胶固定中的至少之一。
  84. 根据权利要求70所述的光学装置,其特征在于,所述结构件主体的形状包括:圆环形、矩环形、切边形或者断环形中的至少之一。
  85. 根据权利要求70所述的光学装置,其特征在于,所述第一导电端的形状包括:多边形针状、矩形片状或所述多边形针状与所述矩形片状的组合。
  86. 根据权利要求85所述的光学装置,其特征在于,所述第一导电端包括刚性排针。
  87. 根据权利要求70所述的光学装置,其特征在于,所述第二导电端通过焊接互通、刺破连接的方式与所述加热器连接。
  88. 根据权利要求87所述的光学装置,其特征在于,所述第二导电端具有容纳所述加热器的供电线的凹槽,当所述第二导电端通过刺破连接的方式与所述加热器连接时,所述凹槽刺破所述供电线的绝缘外皮,与所述供电线的金属丝电接触。
  89. 根据权利要求70所述的光学装置,其特征在于,所述加热器包括传感器和发热元件,所述传感器用于采集所述镜头主体的环境温度;
    所述控制器根据所述传感器检测到的所述环境温度生成控制所述发热元件生成所述热量的命令,或者当所述控制器根据所述传感器检测到的所述环境温度生成控制所述发热元件停止生成所述热量的命令。
  90. 一种用于制备包括加热装置的镜头的方法,其特征在于,所述方法包括:
    制备如权利要求1-45中至少一项所述的加热装置;
    将所述加热装置设置于所述镜片,以形成具有加热装置的镜片;以及
    将所述镜头包括的多个镜片设置于镜筒。
  91. 根据权利要求90所述的方法,其中,所述镜片包括镜片本体,所述镜片本体具有相对的第一面和第二面,以及连接所述第一面和所述第二面的边缘;
    其特征在于,将所述加热装置设置于所述镜片,以形成所述具有加热装置的镜片包括:
    将所述加热装置设置于所述镜片本体的所述边缘,以形成所述具有加热装置的镜片。
  92. 根据权利要求90所述的方法,其特征在于,将所述加热装置设置于所述镜片本体的所述边缘包括:
    将所述加热装置设置于所述镜片本体在所述边缘的端面和侧面中的至少之一。
  93. 根据权利要求90所述的方法,其特征在于,将所述加热装置设置于所述镜片本体的所述边缘包括:
    将所述加热装置设置于所述镜片本体的端面与所述镜头的密封件之间。
  94. 根据权利要求90所述的方法,其特征在于,在各个所述镜片之间具有机构件,将所述 陶瓷加热环形成为所述机构件。
  95. 根据权利要求90所述的方法,其特征在于,将所述加热装置设置于所述镜片本体的所述边缘包括:
    在所述边缘设置缺口槽;以及
    将所述加热装置设置在所述缺口槽中。
  96. 根据权利要求90所述的方法,其特征在于,将所述加热装置设置于所述镜片本体的所述边缘包括:
    将所述加热装置设置于所述镜片本体的边缘与所述镜头的侧壁之间。
  97. 根据权利要求90或96所述的方法,其特征在于,将所述加热装置设置于所述镜片本体的所述边缘包括:
    将所述加热装置设置在所述镜片本体的边缘与相邻镜片的边缘之间。
  98. 根据权利要求90所述的方法,其特征在于,将所述加热装置设置于所述镜片本体的所述边缘包括:
    将所述加热装置设置在所述镜片本体的边缘与所述镜头的密封件和相邻镜片的边缘之间。
  99. 一种用于制造光学装置的方法,其特征在于,包括:
    设置用于生成加热镜头主体热量的加热器;
    设置用于生成控制所述加热器生成所述热量的控制命令的控制器;
    设置与所述镜头主体固定连接的结构件;
    将所述控制器与所述结构件刚性地固定连接,其中,所述结构件用于将所述控制器生成的所述控制命令传输给所述加热器。
  100. 根据权利要求99所述的方法,其特征在于,所述结构件包括:结构件主体、第一导电端和第二导电端,其中,所述结构件主体包括第一电接触区域且所述第二导电端与所述第一电接触区域电连接;
    所述设置结构件的步骤包括:
    将所述结构件主体与所述镜头主体固定连接;
    将所述第二导电端与所述加热器电连接;
    将所述第二导电端固定于所述第一电接触区域中对应所述加热器的位置,其中,所述第二导电端通过所述结构件主体与所述第一导电端电连接;
    将所述第一导电端与所述控制器的输出端刚性地电连接,以从所述控制器接收所述控制命令。
  101. 根据权利要求99所述的方法,其特征在于,所述结构件包括:结构件主体、第一导电端和第二导电端;
    通过孔轴过盈配合、热铆固定、断环卡扣固定、卡勾配合、螺钉锁紧、孔轴间隙配合或者点胶固定中的至少之一将所述结构件主体与所述镜头主体的连接。
  102. 根据权利要求99所述的方法,其特征在于,所述结构件包括:结构件主体、第一导电端和第二导电端;
    通过焊接互通、刺破连接的方式将所述第二导电端与所述加热器连接。
PCT/CN2021/104935 2020-07-07 2021-07-07 用于镜片的加热装置、镜头及其制造方法 WO2022007834A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202010646602.XA CN113905472B (zh) 2020-07-07 2020-07-07 具有加热装置的镜片以及包括该镜片的镜头
CN202010646602.X 2020-07-07
CN202011433498.2A CN114624839B (zh) 2020-12-10 2020-12-10 结构件、镜头模组及其制造方法
CN202011433498.2 2020-12-10
CN202121374019.4 2021-06-21
CN202121374019.4U CN214795363U (zh) 2021-06-21 2021-06-21 光学镜头、光学装置

Publications (1)

Publication Number Publication Date
WO2022007834A1 true WO2022007834A1 (zh) 2022-01-13

Family

ID=79552776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/104935 WO2022007834A1 (zh) 2020-07-07 2021-07-07 用于镜片的加热装置、镜头及其制造方法

Country Status (1)

Country Link
WO (1) WO2022007834A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114609847A (zh) * 2022-03-19 2022-06-10 广东弘景光电科技股份有限公司 自动感温锥面加热摄像模组
CN117092871A (zh) * 2023-10-17 2023-11-21 江西联创电子有限公司 一种加热镜头
TWI860757B (zh) 2023-06-21 2024-11-01 佳凌科技股份有限公司 除霧鏡頭鏡筒結構

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206990881U (zh) * 2017-07-25 2018-02-09 宁波舜宇车载光学技术有限公司 密封圈组装结构
US20180256399A1 (en) * 2011-11-25 2018-09-13 Abominable Labs, Llc Modular anti-fog goggle system
CN109270653A (zh) * 2017-07-18 2019-01-25 宁波舜宇车载光学技术有限公司 镜头模组及其密封方法
CN208548960U (zh) * 2018-08-13 2019-02-26 杭州海康威视数字技术股份有限公司 一种摄像机镜头以及摄像机
CN209231633U (zh) * 2019-01-30 2019-08-09 广州直通车眼镜有限公司 一种恒温防雾眼镜
CN209767834U (zh) * 2018-11-27 2019-12-10 宁波舜宇车载光学技术有限公司 一种防护装置及其制造系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180256399A1 (en) * 2011-11-25 2018-09-13 Abominable Labs, Llc Modular anti-fog goggle system
CN109270653A (zh) * 2017-07-18 2019-01-25 宁波舜宇车载光学技术有限公司 镜头模组及其密封方法
CN206990881U (zh) * 2017-07-25 2018-02-09 宁波舜宇车载光学技术有限公司 密封圈组装结构
CN208548960U (zh) * 2018-08-13 2019-02-26 杭州海康威视数字技术股份有限公司 一种摄像机镜头以及摄像机
CN209767834U (zh) * 2018-11-27 2019-12-10 宁波舜宇车载光学技术有限公司 一种防护装置及其制造系统
CN209231633U (zh) * 2019-01-30 2019-08-09 广州直通车眼镜有限公司 一种恒温防雾眼镜

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114609847A (zh) * 2022-03-19 2022-06-10 广东弘景光电科技股份有限公司 自动感温锥面加热摄像模组
TWI860757B (zh) 2023-06-21 2024-11-01 佳凌科技股份有限公司 除霧鏡頭鏡筒結構
CN117092871A (zh) * 2023-10-17 2023-11-21 江西联创电子有限公司 一种加热镜头
CN117092871B (zh) * 2023-10-17 2024-02-13 江西联创电子有限公司 一种加热镜头

Similar Documents

Publication Publication Date Title
WO2022007834A1 (zh) 用于镜片的加热装置、镜头及其制造方法
US7335855B2 (en) Electric PCB heating component, electronic circuit board and heating method
EP1029425B1 (en) Quartz substrate heater
US11152557B2 (en) Thermoelectric module with integrated printed circuit board
US8779444B2 (en) LED light engine with applied foil construction
US9511648B2 (en) Vehicle heater
WO2018155003A1 (ja) 熱交換ラミネートシート
KR20120053476A (ko) 방열과 발열 기능을 가지는 전지 조립체
US20130306622A1 (en) Heater for vehicles
US9539881B2 (en) Insulated heating module for a supplemental heating device
TW201213706A (en) Replaceable light emitting diode module with high optical precision
JP2532502Y2 (ja) 発熱ユニット
WO2012117704A1 (ja) 電池ユニット、伝熱板、および伝熱板の製造方法
CN113632000B (zh) 加热装置和相机模块
US20120121940A1 (en) Battery pack
CN113905472B (zh) 具有加热装置的镜片以及包括该镜片的镜头
US20230161232A1 (en) Heating apparatus for lens, and lens assembly and method for manufacturing same
CN207364799U (zh) Led灯的基板以及基板装置
JP2021157937A (ja) フレキシブルプリント配線板を用いたヒータ及びその製造方法
US20060219286A1 (en) Thermoelectric transducer and manufacturing method for the same
EP3800452A1 (en) Temperature sensor device for a windshield of a vehicle
JP2001310709A (ja) ドアミラー用ヒーター
CN214795363U (zh) 光学镜头、光学装置
CN111586907A (zh) 加热器组件和ptc加热器
CN214540337U (zh) 摄像头和具有其的车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21838527

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21838527

Country of ref document: EP

Kind code of ref document: A1