WO2022007711A1 - 一种车辆的蓄电池检测的方法以及电池检测设备 - Google Patents

一种车辆的蓄电池检测的方法以及电池检测设备 Download PDF

Info

Publication number
WO2022007711A1
WO2022007711A1 PCT/CN2021/104100 CN2021104100W WO2022007711A1 WO 2022007711 A1 WO2022007711 A1 WO 2022007711A1 CN 2021104100 W CN2021104100 W CN 2021104100W WO 2022007711 A1 WO2022007711 A1 WO 2022007711A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
scheme
detection
candidate
battery detection
Prior art date
Application number
PCT/CN2021/104100
Other languages
English (en)
French (fr)
Inventor
瞿松松
冯光文
唐新光
Original Assignee
深圳市道通科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通科技股份有限公司 filed Critical 深圳市道通科技股份有限公司
Priority to EP21838073.1A priority Critical patent/EP4180827A4/en
Publication of WO2022007711A1 publication Critical patent/WO2022007711A1/zh
Priority to US18/150,764 priority patent/US20230152389A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/26Measuring noise figure; Measuring signal-to-noise ratio
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/371Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with remote indication, e.g. on external chargers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/386Arrangements for measuring battery or accumulator variables using test-loads
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC
    • G01R31/388Determining ampere-hour charge capacity or SoC involving voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane

Definitions

  • the present application relates to the technical field of automotive electronics, and in particular, to a method for detecting a battery of a vehicle and a battery detecting device.
  • the core of vehicle battery detection is to be able to quickly and accurately detect the battery, so as to evaluate the health status of the battery, and then evaluate whether the battery needs to be replaced.
  • the battery of the vehicle is usually tested using a battery testing device, such as a battery tester.
  • the current battery testing equipment on the market uses two methods: conductance measurement and load test.
  • the inventor of the present invention found that: the general conductance measurement uses a load current of 100 Hz and a load current of about 1 A. Because the signal is weak, it is necessary to measure the signal error of the millivolt level, which is easy to measure. Due to environmental interference, the measurement is unstable, so generally this solution requires the battery to be in a stable state. However, with the rapid development of vehicles, there are more and more high-tech functions, resulting in more and more electrical and electronic units on the vehicle. Even when the engine is turned off, some intelligent devices are still working, which causes the battery to remain in In the external power supply state, and there are noise signals of different frequencies, it is easy to misjudgment when using conductance measurement at this time.
  • the load test requires high current discharge, generally more than 100 amps, and requires the battery to be in a fully charged state. It cannot be detected for a battery in a depleted state.
  • embodiments of the present invention provide a method for detecting a battery of a vehicle and a battery detecting device, which overcome the above problems or at least partially solve the above problems.
  • a method for detecting a battery of a vehicle applied to a battery detection device, including: acquiring the noise intensity of the battery, and battery information of the battery; according to the noise intensity With the battery information, a battery detection scheme is selected from the preset at least two candidate battery detection schemes; wherein, the battery detection scheme includes at least one of a discharge load value, a detection frequency, a duty cycle and a detection time, The discharge load value and the detection frequency are respectively related to the noise intensity, and the duty cycle and the detection time are respectively related to the battery information; the battery is detected according to the battery detection scheme.
  • the method further includes: detecting the open-circuit voltage of the battery; determining the load capacity of the battery according to the open-circuit voltage; and, according to the noise intensity and the battery information, Select a battery detection solution from at least two preset candidate battery detection solutions, including:
  • a battery detection scheme is selected from at least two preset candidate battery detection schemes.
  • the selecting a battery detection solution from at least two preset candidate battery detection solutions according to the noise intensity and the battery information includes: according to the noise intensity, Determine at least one first candidate battery detection scheme from the set at least two candidate battery detection schemes; determine at least one second candidate battery detection scheme from the preset at least two candidate battery detection schemes according to the battery information; One battery detection scheme is selected from the at least one first candidate battery detection scheme and the at least one second candidate battery detection scheme.
  • the selecting a battery detection solution from the at least one first candidate battery detection solution and the at least one second candidate battery detection solution includes: judging the at least one battery detection solution. Whether there is a same candidate battery detection solution in one of the first candidate battery detection solutions and the at least one of the second candidate detection solutions; if so, determine a battery detection solution from the same candidate battery detection solutions ; if it does not exist, determining a battery detection scheme from the at least one of the second candidate battery detection schemes.
  • the battery information includes the nominal capacity of the battery and the current capacity of the battery, and the duty cycle and the detection time are respectively related to the nominal capacity of the battery and the current capacity of the battery.
  • the current capacity of the battery is related.
  • the acquiring the noise intensity of the battery includes: acquiring the voltage jump amplitude and the maximum noise voltage amplitude of the battery; according to the voltage jump amplitude and the maximum noise voltage Amplitude to determine the noise intensity of the battery.
  • the battery information includes open circuit voltage and/or temperature
  • the detecting the battery according to the battery detection scheme includes: calculating the battery according to the battery detection scheme according to the internal resistance of the battery, determine the CCA value of the battery; according to the open circuit voltage and/or the temperature, at least one of the battery detection scheme, the internal resistance and the CCA value One, to detect the state of health of the battery
  • a device for detecting a battery of a vehicle including: an acquisition module for acquiring the noise intensity of the battery and battery information of the battery; a selection module for acquiring the battery according to the For the noise intensity and the battery information, a battery detection scheme is selected from at least two preset candidate battery detection schemes; wherein, the battery detection scheme includes a discharge load value, a detection frequency, a duty cycle, and a detection time. At least one of , the discharge load value and the detection frequency are respectively related to the noise intensity, and the duty cycle and the detection time are respectively related to the battery information; the first detection module is used for according to the The battery detection scheme detects the storage battery.
  • the device further includes: a second detection module for detecting the open-circuit voltage of the battery; a determination module for determining the load capacity of the battery according to the open-circuit voltage;
  • the selection module includes: a first selection unit, configured to select a battery detection scheme from at least two preset candidate battery detection schemes according to the noise intensity, the battery information and the load capacity of the battery.
  • the selection module includes: a first determination unit, configured to determine at least one first candidate battery detection scheme from at least two preset candidate battery detection schemes according to the noise intensity; a second a determination unit, configured to determine at least one second candidate battery detection solution from the preset at least two candidate battery detection solutions according to the battery information; a second selection unit, configured to select from the at least one of the first candidate battery detection solutions One battery detection scheme is selected from the battery detection scheme and the at least one second candidate battery detection scheme.
  • the second selection unit is specifically configured to: determine whether the at least one first candidate battery detection scheme and the at least one second candidate detection scheme have the same candidate battery detection scheme solution; if it exists, determine a battery detection solution from the same candidate battery detection solutions; if it does not exist, determine a battery detection solution from the at least one second candidate battery detection solution.
  • the battery information includes the nominal capacity of the battery and the current capacity of the battery, and the duty cycle and the detection time are respectively related to the nominal capacity of the battery and the current capacity of the battery.
  • the current capacity of the battery is related.
  • the obtaining module includes: an obtaining unit, configured to obtain the voltage jump amplitude and the maximum noise voltage amplitude of the battery; and a third determining unit, configured to obtain the voltage jump amplitude and the maximum noise voltage according to the voltage jump amplitude.
  • the maximum noise voltage amplitude is used to determine the noise intensity of the battery.
  • the battery information includes open circuit voltage and/or temperature
  • the first detection module includes: a calculation unit, configured to calculate the internal resistance of the battery according to the battery detection scheme; the fourth determination a unit for determining the CCA value of the battery according to the internal resistance of the battery; a detection unit for detecting the battery detection scheme, the internal resistance and the temperature according to the open circuit voltage and/or the temperature At least one of the CCA values detects the state of health of the battery.
  • a battery detection device comprising: at least one processor, and a memory, the memory being communicatively connected to the at least one processor, and the memory storing data that can be used by the at least one processor. Instructions executed by one processor, the instructions being executed by the at least one processor to enable the at least one processor to perform the method as described above.
  • the beneficial effects of the embodiments of the present invention are: different from the existing methods for detecting the battery of the vehicle, the embodiments of the present invention obtain the noise intensity of the battery and the battery information of the battery; the battery information, and select a battery detection scheme from at least two preset candidate battery detection schemes; wherein, the battery detection scheme includes at least one of discharge load value, detection frequency, duty cycle and detection time, the The discharge load value and the detection frequency are respectively related to the noise intensity, and the duty cycle and the detection time are respectively related to the battery information; the battery is detected according to the battery detection scheme.
  • the embodiment of the present invention comprehensively selects a battery detection scheme based on noise intensity and battery information, and can also achieve fast and accurate detection of the battery in the case of noise interference and/or the battery is in a poor health state.
  • FIG. 1 is a schematic diagram of a battery detection system provided by an embodiment of the present invention.
  • FIG. 2 is a schematic flowchart of a method for detecting a battery of a vehicle provided by an embodiment of the present invention
  • step S10 in FIG. 2 is a schematic diagram of a refinement flow of step S10 in FIG. 2 according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a refinement flow of step S20 in FIG. 2 according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a refinement flow of step S30 in FIG. 2 according to an embodiment of the present invention.
  • FIG. 6 is a schematic flowchart of another method for detecting a battery of a vehicle provided by an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a device for detecting a battery of a vehicle provided by an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a hardware structure of a battery detection device for performing a method for detecting a battery of a vehicle provided by an embodiment of the present invention.
  • the method for detecting a battery of a vehicle is applied to a battery detecting device, and the battery detecting device can be used to detect a battery battery of a vehicle.
  • the battery detection device may be an electronic device that can detect the battery of the vehicle, such as a battery detector, a smart phone, a palmtop computer, a tablet computer, and a smart watch.
  • FIG. 1 is a schematic diagram of a battery detection system provided by an embodiment of the present invention.
  • the battery testing system 100 includes: a battery testing device 10 and a vehicle 20 communicatively connected to the battery testing device 10 .
  • the battery testing device 10 may be any type of vehicle diagnostic product, including at least one electrical connector, the end of which is used to test the battery of the vehicle 20 .
  • the electrical connectors include Kelvin connectors, low frequency circular connectors, optical fiber connectors, rectangular connectors, printed circuit connectors, radio frequency connectors and other connectors.
  • the connectors are Kelvin connectors.
  • the battery detection device 10 establishes physical communication connections with various vehicle buses in the vehicle 20 through interface modules, such as diagnostic connectors and hardware communication interfaces, and loads a suitable or paired protocol configuration to achieve communication with the vehicle. Data interaction between 20, such as sending inspection instructions or receiving inspection data.
  • the vehicle 20 may specifically be a motor vehicle of any model, such as a truck, a small vehicle 20, a bus, etc.
  • the vehicle 20 has an electronic control system composed of a plurality of electronic control units to coordinate and control the vehicle according to the Operation instructions from the driver, etc., and real-time monitoring of one or more vehicle parameters to ensure reliable and safe operation of the vehicle 20 .
  • the communication connection between the various electronic control units in the vehicle 20 is usually in the form of a bus.
  • Each electronic control unit uses a specific communication protocol.
  • the electronic control unit will communicate on the corresponding vehicle 20 bus according to the communication protocol used by itself, so as to avoid conflicts and improve efficiency. That is, electronic control units using the same communication protocol communicate on one vehicle 20 bus, and one vehicle 20 bus corresponds to one communication protocol.
  • a battery is provided on the vehicle 20 for maintaining the normal operation of the vehicle 20 .
  • the vehicle 20 may also have at least one hardware communication interface, such as an OBD interface.
  • the hardware communication interface and the vehicle 20 can be connected to one or more buses of the vehicle 20 for establishing a communication connection with an external device so that it can complete processes such as data interaction with the electronic control unit.
  • the hardware communication interface may be used to connect with the electrical connector of the battery detection device 10 for data interaction.
  • the battery detection device 10 is used to detect the state of health of the battery of the vehicle 20 .
  • the battery detection device 10 presets at least two candidate battery detection schemes.
  • the battery detection device 10 first obtains the noise intensity of the battery and the battery information of the battery, and then according to the The noise intensity and the battery information are used to select a battery detection scheme from at least two preset candidate battery detection schemes to detect the battery.
  • the present application comprehensively selects a battery detection scheme based on noise intensity and battery information, and can also achieve fast and accurate detection of the battery in the case of noise interference and/or the battery is in a poor health state.
  • FIG. 2 is a schematic flowchart of a method for detecting a battery of a vehicle provided by an embodiment of the present invention. The method includes the following steps:
  • Step S10 Acquire the noise intensity of the storage battery and the battery information of the storage battery.
  • the environment where the battery is located has different degrees of noise.
  • the noise intensity of the noise is small, a low load current can be used for testing.
  • the noise intensity of the noise is large, the low load current is used. If the load current is tested, it will be easily interfered, resulting in inaccurate detection of the battery.
  • step S10 includes:
  • Step S101 Obtain the voltage jump amplitude and the maximum noise voltage amplitude of the battery.
  • the maximum noise voltage amplitude is generally considered to be the maximum value among the voltage jump amplitudes, the maximum noise voltage amplitude is a fixed value, and the maximum noise voltage amplitude is a statistical value, which can be calculated in advance.
  • Step S102 Determine the noise intensity of the battery according to the voltage jump amplitude and the maximum noise voltage amplitude.
  • the calculation formula for determining the noise intensity of the battery is:
  • Noise intensity of battery voltage jump amplitude / maximum noise voltage amplitude
  • the noise intensity of the battery is represented by 1-100.
  • the noise intensity of the battery can be directly defined as 100.
  • the noise intensity of the battery can be directly defined as 1.
  • the battery information includes the nominal capacity of the battery, the current capacity of the battery, open circuit voltage and temperature.
  • the nominal capacity of the battery and the current capacity of the battery are used to select the battery detection scheme.
  • the open circuit voltage and/or temperature are used to detect the state of health of the battery.
  • the nominal capacity of the battery is used to measure the size of the stored power of the battery, and the nominal capacity of the battery is the capacity measured from the full charge to the dead battery, and the unit is milliampere-hour (mAh) or ampere-hour ( Ah).
  • the battery detection device acquires vehicle identification information of the vehicle input by the user, and determines the nominal capacity of the battery corresponding to the vehicle according to the vehicle identification information.
  • the current capacity of the battery can be obtained through a load test.
  • the load test is generally to apply a load at both ends of the battery to make the battery generate a discharge current of about 10A-100A for a certain period of time (1ms-1s).
  • the voltage drop has a certain linear relationship.
  • the current capacity value of the battery is finally estimated.
  • the unit of the battery capacity is milliamp-hour or ampere-hour.
  • Step S20 According to the noise intensity and the battery information, select a battery detection scheme from at least two preset candidate battery detection schemes.
  • the battery detection scheme includes at least one of a discharge load value, a detection frequency, a duty cycle and a detection time, the discharge load value and the detection frequency are respectively related to the noise intensity, and the duty cycle and The detection times are respectively related to the battery information.
  • the duty cycle and the detection time are related to the nominal capacity of the battery and the current capacity of the battery, respectively. It can be understood that, if the nominal capacity of the battery is large, a battery detection solution with a large duty cycle can be selected. If the current capacity of the storage battery is small, a battery detection scheme with a long detection time is selected.
  • the preset at least two candidate battery detection schemes include scheme one, scheme two, scheme three, scheme four and scheme five.
  • the first solution includes a discharge load value of 10 ohms, a detection frequency of 100 Hz, a duty cycle of 50%, and a detection time of 1-15 seconds.
  • the second solution includes a discharge load value of 1 ohm, a detection frequency of 2 Hz, a duty cycle of 5%, and a detection time of 1-30 seconds.
  • the third solution includes a discharge load value of 0.5 ohms, a detection frequency of 1 Hz, a duty cycle of 0.5%, and a detection time of 1-30 seconds.
  • the fourth solution includes a discharge load value of 0.3 ohms, a detection frequency of 1 Hz, a duty cycle of 0.2%, and a detection time of 1-10 seconds.
  • the fifth solution includes a discharge load value of 0.2 ohms, a detection frequency of 1 Hz, a duty cycle of 0.1%, and a detection time of 1-5 seconds.
  • a battery detection scheme may be comprehensively selected according to the noise intensity, the nominal capacity of the battery, and the current capacity of the battery.
  • the preset at least two candidate detection schemes are not limited to the above-mentioned scheme 1, scheme 2, scheme 3, scheme 4 and scheme 5, and may also be other schemes.
  • the candidate detection schemes may be preset, that is, the values of detection parameters in each scheme are fixed; or, the candidate detection schemes may be dynamically obtained according to the detected noise intensity and battery information.
  • each parameter in the candidate detection scheme can be within the following ranges, and the candidate detection scheme only needs to include a combination of parameters within each value range.
  • the embodiment of the present application does not limit the combination relationship between parameter values and parameters .
  • the range of discharge load value can be [0.2 ohm, 10 ohm]; the range of detection frequency can be [0, 1KHz]; the range of duty cycle can be [0.1, 50%]; the detection time can also be understood as detection Duration, the range can be [0.5s, 30s].
  • FIG. 4 is a schematic diagram of a refinement process of step S20 in FIG. 2 .
  • Step S20 includes:
  • Step S201 Determine at least one first candidate battery detection scheme from at least two preset candidate battery detection schemes according to the noise intensity.
  • Step S202 According to the battery information, determine at least one second candidate battery detection scheme from the preset at least two candidate battery detection schemes.
  • the battery information includes the nominal capacity and the current capacity
  • the battery detection scheme includes the duty cycle and the detection time
  • the duty cycle and the detection time are respectively related to the nominal capacity and The current capacity of the battery is related.
  • the step S202 specifically includes: according to the nominal capacity, determining at least one first primary battery detection scheme from at least two preset candidate battery detection schemes; according to the current capacity, Determine at least one second primary battery detection scheme from the preset at least two candidate battery detection schemes; judge the at least one first primary battery detection scheme and the at least one second primary battery detection scheme Whether the same candidate battery detection scheme exists in the scheme; if so, the same candidate battery detection scheme is determined as the second candidate battery detection scheme; if not, the second primary battery detection scheme is determined as the second candidate battery detection scheme.
  • Step S203 Select a battery detection scheme from the at least one first candidate battery detection scheme and the at least one second candidate battery detection scheme.
  • the step S203 specifically includes: judging whether the at least one first candidate battery detection solution and the at least one second candidate battery detection solution have the same candidate battery detection solution; if If there is, a battery detection scheme is determined from the same candidate battery detection schemes; if it does not exist, a battery detection scheme is determined from the at least one of the second candidate battery detection schemes.
  • determining one battery detection method from the same candidate battery detection schemes includes detecting a battery with a smaller discharge load value.
  • the plan is determined as the final battery testing plan.
  • the determining a battery detection scheme from the at least one of the second candidate battery detection schemes includes determining a battery detection scheme with a small duty cycle and/or a long detection time as the final battery detection scheme Battery testing solution.
  • two or more schemes may be selected from the same candidate battery detection scheme to detect the battery of the vehicle respectively, Synthesize the test results of each test, such as taking an average value, to obtain the final test result, or without selecting a scheme, you can use a plurality of the candidate battery test schemes to test the battery of the vehicle respectively, and then take the average value of each test result.
  • the method of selecting a battery detection scheme from the candidate battery detection schemes according to the noise intensity and battery information to detect the battery is described.
  • the range of schemes that can be selected is large, that is, if the noise intensity is small, the detection results of each scheme are less affected by noise; if the acquired noise intensity is large, the scheme with a low discharge load value is selected accordingly. Discharge the battery with a large current to reduce the influence of noise intensity on the test results.
  • the first candidate battery detection scheme includes the scheme 1, scheme 2, scheme 3, scheme 4 and scheme 5;
  • the first candidate battery detection scheme includes the scheme 2, the scheme 3, the scheme 4 and the scheme 5;
  • the first candidate battery detection scheme includes the scheme three, scheme four and scheme five;
  • the first candidate battery detection scheme includes the scheme three, scheme four and scheme five;
  • the first candidate battery detection scheme includes the scheme three, scheme four and scheme five.
  • the obtained nominal capacity is large, the corresponding range of schemes that can be selected is large, that is, when the nominal capacity is large, the detection results of each scheme are less affected by the duty cycle, and selecting a slightly larger duty cycle can improve the The discharge efficiency of the battery; if the obtained nominal capacity is small, a scheme with a small duty ratio is selected accordingly, so as to improve the discharge condition of the battery and reduce heat generation.
  • the first primary battery detection scheme includes scheme 2, scheme 3, scheme 4 and scheme 5;
  • the nominal capacity is 50-200 Ah
  • the first primary battery detection scheme includes scheme 1, scheme 2, scheme 3, scheme 4 and scheme 5.
  • a candidate battery detection scheme with a long detection time can be selected accordingly, thereby improving detection accuracy; if the acquired current capacity is large, a candidate battery detection scheme with a short detection time can be selected accordingly, thereby saving resources.
  • the detection time should be greater than or equal to 15 seconds, and the second primary battery detection scheme includes scheme 1, scheme 2 and scheme 3;
  • the detection time should be less than 15 seconds, and the second primary battery detection scheme includes scheme four and scheme five.
  • the first candidate battery detection schemes are scheme 1, scheme 2, scheme 3, scheme 4 and scheme five
  • the first preliminary battery detection scheme is scheme one, scheme two, scheme three, scheme four and scheme five
  • the second preliminary battery detection scheme is scheme four and scheme five
  • it is judged that the first The primary battery detection scheme and the second primary battery detection scheme have the same candidate battery detection scheme, scheme 4 and scheme 5,
  • the second candidate battery detection scheme is scheme 4 and scheme 5, and the first candidate is judged
  • the battery detection scheme and the second candidate battery detection scheme have the same candidate battery detection scheme.
  • a battery detection scheme with a smaller discharge load value can be selected first, and scheme 5 is determined as the final battery detection scheme; or , respectively use scheme 4 and scheme 5 to test the battery, and combine the test results of the two tests as the final test result.
  • the first candidate battery detection schemes are scheme three, scheme four, and scheme five.
  • the first preliminary battery detection scheme is scheme 2, scheme 3, scheme 4 and scheme 5,
  • the second preliminary battery detection scheme is scheme 1, scheme 2 and scheme 3, and it is judged that the first preliminary battery detection scheme and The second primary battery detection scheme is selected, and there are the same candidate battery detection schemes, scheme 2 and scheme 3, then the second candidate battery detection scheme is scheme 2 and scheme 3, and the first candidate battery detection scheme and the second battery detection scheme are judged.
  • the candidate battery detection schemes there are the same candidate battery detection schemes, and for the third scheme, the third scheme is determined as the final battery detection scheme.
  • Step S30 Detect the battery according to the battery detection scheme.
  • FIG. 5 is a schematic diagram of the refinement process of step S30 in FIG. 2.
  • Step S30 includes:
  • Step S301 Calculate the internal resistance of the battery according to the battery detection scheme.
  • the internal resistance of the battery can be calculated by measuring the difference between the battery voltage when the battery is loaded and the battery voltage when the battery is not loaded.
  • Rb (V–Vr)/I, where Rb is the internal resistance of the battery, V is the battery voltage at no load, Vr is the battery voltage tested with load, and I is the current tested with load.
  • Step S302 Determine the CCA value of the battery according to the internal resistance of the battery.
  • CCA scale factor/Rb+standard value.
  • the proportional coefficient is a fixed value
  • Rb is the internal resistance of the battery
  • the standard value is a fixed value.
  • Step S303 Detect the state of health of the battery according to the open circuit voltage and/or the temperature, at least one of the battery detection scheme, the internal resistance and the CCA value.
  • the state of health of the battery may be detected based on the CCA value.
  • the CCA value is greater than 80% of the nominal CCA, the battery is considered healthy, and when the CCA value is between 73% and 80% of the nominal CCA, the battery is considered to be in a critical uncertainty state, and the CCA value is less than The battery was considered damaged at 73% of the nominal CCA.
  • the state of health of the battery may be detected according to the CCA value and the temperature.
  • the final CCA value is greater than 80% of the nominal CCA, the battery is considered to be healthy, and when the final CCA value is 73% to 80% of the nominal CCA, the battery is considered to be in critical uncertainty. state, the battery is considered damaged when the final CCA value is less than 73% of the nominal CCA.
  • the detection method provided by the embodiment of the present invention can be used to detect the detection result again.
  • the battery is checked again according to the state of health of the battery or the CCA value of the battery input by the user.
  • the method for detecting the battery of the vehicle includes: acquiring the noise intensity of the battery, and battery information of the battery; and acquiring the CCA value of the battery, wherein the CCA value of the battery was detected last time
  • at least one first candidate battery detection scheme is determined from the preset at least two candidate battery detection schemes; according to the battery information, the preset at least two candidate battery detection schemes are selected from Determine at least one second candidate battery detection scheme in One battery detection solution is selected from the candidate battery detection solutions, the at least one second candidate battery detection solution, and the at least one fourth candidate battery detection solution.
  • selecting a battery detection solution from the at least one first candidate battery detection solution, the at least one second candidate battery detection solution, and the at least one fourth candidate battery detection solution includes judging whether the same candidate battery detection scheme exists in the at least one of the first candidate battery detection scheme, the at least one second candidate battery detection scheme and the at least one of the fourth candidate battery detection scheme ; if it exists, determine a battery detection solution from the same candidate battery detection solutions; if it does not exist, determine a battery detection solution from the at least one of the fourth candidate battery detection solutions.
  • the obtained CCA value of the battery is large, it means that the battery is in a good state of health, and the range of solutions that can be selected is large. accuracy.
  • the CCA value of the battery is greater than or equal to 80% of the nominal CCA, and the fourth candidate battery detection scheme includes scheme one, scheme two, scheme three, scheme four and scheme five;
  • the CCA value of the storage battery is less than 80% of the nominal CCA
  • the fourth candidate battery detection scheme includes scheme one, scheme two, scheme three and scheme four.
  • the first candidate battery detection scheme Scheme 1, Scheme 2, Scheme 3, Scheme 4 and Scheme 5
  • the first preliminary battery detection scheme is scheme 1, scheme 2, scheme 3, scheme 4 and scheme 5
  • the second preliminary battery detection scheme is selected
  • the second candidate battery detection scheme is: Scheme 4 and scheme 5
  • the fourth candidate battery detection scheme includes scheme 1, scheme 2, scheme 3 and scheme 4, then the first candidate battery detection scheme, the second candidate battery detection scheme and the fourth candidate battery detection scheme There are the same candidate battery detection schemes.
  • scheme 4 is determined as the final battery detection scheme.
  • the acquired noise intensity is 4, the nominal capacity is 80A, the current capacity is 80% of the nominal capacity, and the CCA value of the battery is 90% of the nominal CCA, then the first candidate battery detection scheme Scheme 1, Scheme 2, Scheme 3, Scheme 4 and Scheme 5, the first preliminary battery detection scheme is scheme 1, scheme 2, scheme 3, scheme 4 and scheme 5, and the second preliminary battery detection scheme is selected
  • the second candidate battery detection scheme is: Scheme 4 and scheme 5, the fourth candidate battery detection scheme includes scheme 1, scheme 2, scheme 3 and scheme 4 and scheme 5, then the first candidate battery detection scheme, the second candidate battery detection scheme and the fourth candidate battery detection scheme There are the same candidate battery detection schemes in the battery detection scheme.
  • scheme 4 and scheme 5 the battery detection scheme with a small discharge load value can be preferentially selected, and scheme 5 is determined as the final battery detection scheme; alternatively, scheme 4 and scheme 5 are used respectively.
  • the battery is tested, and the test results of the two tests are integrated as the final test result.
  • the last detection result can be used as the final detection result, or, if the battery detection device has a memory function, the latest two or more detection results and the latest two or more detection results can be simultaneously output. The average of two or more test results.
  • the battery detection device automatically deletes the detection results with a large deviation in the detection results, or the user can manually delete the detection results with a large deviation in the detection results.
  • the method for detecting the battery of the vehicle further includes displaying the state of health of the battery.
  • the battery detection device not only displays the health status of the battery, but also displays the CCA value, open circuit voltage, internal resistance value, temperature, and the like of the battery.
  • the noise intensity of the battery and the battery information of the battery are obtained; according to the noise intensity and the battery information, one of the preset at least two candidate battery detection schemes is selected A battery detection scheme; wherein the battery detection scheme includes at least one of a discharge load value, a detection frequency, a duty cycle and a detection time, the discharge load value and the detection frequency are respectively related to the noise intensity, and the The duty cycle and the detection time are respectively related to the battery information; according to the battery detection scheme, the battery is detected, which can also be implemented in the case of noise interference and/or the battery's poor health status Fast and accurate detection of the battery.
  • FIG. 6 is a schematic flowchart of another method for detecting a battery of a vehicle provided by an embodiment of the present invention. The method includes the following steps:
  • Step S10' Acquire the noise intensity of the storage battery and the battery information of the storage battery.
  • Step S20' Detect the open circuit voltage of the battery.
  • the open circuit voltage of the battery is the voltage when the battery is not loaded.
  • Step S30' Determine the load capacity of the battery according to the open circuit voltage.
  • the open circuit voltage is greater than or equal to 12.5 volts, it is considered that the battery has a strong load capacity, and the open circuit voltage is less than 12.5 volts, it is considered that the battery has a weak load capacity.
  • Step S40' According to the noise intensity, the battery information and the load capacity of the storage battery, select a battery detection scheme from at least two preset candidate battery detection schemes.
  • the battery detection scheme includes at least one of a discharge load value, a detection frequency, a duty cycle and a detection time, the discharge load value and the detection frequency are respectively related to the noise intensity, and the duty cycle and The detection times are respectively related to the battery information.
  • the selection of a battery detection scheme from at least two preset candidate battery detection schemes according to the noise intensity, the battery information and the load capacity of the battery specifically includes, according to the noise intensity, from Determine at least one first candidate battery detection solution from the preset at least two candidate battery detection solutions; determine at least one second candidate battery detection solution from the preset at least two candidate battery detection solutions according to the battery information; The load capacity of the storage battery, at least one third candidate battery detection scheme is determined from the preset at least two candidate battery detection schemes; from the at least one first candidate battery detection scheme, the at least one candidate battery detection scheme One battery detection solution is selected from the second candidate battery detection solution and the at least one third candidate battery detection solution.
  • selecting a battery detection solution from the at least one first candidate battery detection solution, the at least one second candidate battery detection solution, and the at least one third candidate battery detection solution includes judging whether the same candidate battery detection scheme exists in the at least one of the first candidate battery detection scheme, the at least one second candidate battery detection scheme and the at least one third candidate battery detection scheme ; if it exists, determine a battery detection solution from the same candidate battery detection solutions; if it does not exist, determine a battery detection solution from the at least one of the third candidate battery detection solutions.
  • the first candidate battery detection scheme includes the scheme 1, scheme 2, scheme 3, scheme 4 and scheme 5;
  • the first candidate battery detection scheme includes the scheme 2, the scheme 3, the scheme 4 and the scheme 5;
  • the first candidate battery detection scheme includes the scheme three, scheme four and scheme five;
  • the first candidate battery detection scheme includes the scheme three, scheme four and scheme five;
  • the first candidate battery detection scheme includes the scheme three, scheme four and scheme five.
  • the first primary battery detection scheme includes scheme 2, scheme 3, scheme 4 and scheme 5;
  • the nominal capacity is 50-200 Ah
  • the first primary battery detection scheme includes scheme 1, scheme 2, scheme 3, scheme 4 and scheme 5.
  • the detection time should be greater than or equal to 15 seconds, and the second primary battery detection scheme includes scheme 1, scheme 2 and scheme 3;
  • the detection time should be less than 15 seconds, and the second primary battery detection scheme includes scheme four and scheme five.
  • the obtained open-circuit voltage is large, it means that the battery has a strong load capacity, and the range of schemes that can be selected is large, that is, when the load capacity is strong, the detection results of each scheme are less affected by the load capacity; If the open-circuit voltage is small, a scheme with a large discharge load value is selected accordingly to ensure the accuracy of detection.
  • the third candidate battery detection scheme includes scheme one, scheme two, scheme three, scheme four and scheme five;
  • the third candidate battery detection scheme includes scheme one, scheme two, scheme three and scheme four.
  • the first candidate battery detection schemes are scheme 1, scheme 2, Scheme 3, Scheme 4 and Scheme 5
  • the first primary battery detection schemes are Scheme 1, Scheme 2, Scheme 3, Scheme 4 and Scheme 5
  • the second primary battery detection schemes are Scheme 4 and Scheme 5
  • the third candidate battery detection scheme includes scheme 1, scheme 2, scheme 3 and scheme 4, then the first candidate battery detection scheme, the second candidate battery detection scheme and the third candidate battery detection scheme have the same candidate battery detection scheme , scheme four, scheme four is determined as the final battery testing scheme.
  • the first candidate battery detection schemes are scheme 1, scheme 2, Scheme 3, Scheme 4 and Scheme 5
  • the first primary battery detection schemes are Scheme 1, Scheme 2, Scheme 3, Scheme 4 and Scheme 5
  • the second primary battery detection schemes are Scheme 4 and Scheme 5
  • the third candidate battery detection scheme includes scheme 1, scheme 2, scheme 3, scheme 4 and scheme 5, then the first candidate battery detection scheme, the second candidate battery detection scheme and the third candidate battery detection scheme have the same candidate Battery testing scheme, scheme 4 and scheme 5, the battery detection scheme with small discharge load value can be selected first, and scheme 5 is determined as the final battery detection scheme; The test result of the second test is used as the final test result.
  • the on-load capacity of the battery is also related to the on-load voltage drop, and when the on-load voltage drop is large, the battery detection scheme needs to be adjusted to a scheme including a large discharge load value.
  • the open-circuit voltage of the battery is greater than or equal to 12.5 volts, start a load current of 1 A for 1-10 seconds, and collect and record the voltage drop with the load. If the voltage drop with the load is small, Then start a load current of 10 A for 10 milliseconds to 1 second, and collect and record the voltage drop with the load. If the open circuit voltage of the battery is less than 12.5 volts, a load current of 1 A is started for 1 second to 10 seconds, and the voltage drop with the load is collected and recorded. And, further, the battery detection scheme is adjusted according to the on-load voltage.
  • Step S50' Detect the battery according to the battery detection scheme.
  • the CCA of the battery can be obtained after a detection cycle is completed by the detection method of the second embodiment, and the battery can be detected again according to the CCA value of the battery, that is, The battery is detected according to the noise intensity, the battery information, the load capacity of the battery, and the CCA of the battery.
  • the specific detection method and detection process please refer to Embodiment 1, which will not be described here. Repeat.
  • a battery detection solution is selected from at least two preset candidate battery detection solutions; the battery is detected according to the battery detection solution. The accuracy of detecting the battery can be further improved.
  • FIG. 7 is a schematic diagram of a device for detecting a battery of a vehicle provided by an embodiment of the present invention.
  • the device 30 includes: an acquisition module 301, a selection module 302, and a first detection module 303.
  • the acquisition module 301 is used to acquire the noise intensity of the battery and the battery information of the battery
  • the selection module 302 is used to select from at least two preset candidates according to the noise intensity and the battery information
  • a battery detection scheme is selected from the battery detection scheme; wherein, the battery detection scheme includes at least one of a discharge load value, a detection frequency, a duty cycle and a detection time, and the discharge load value and the detection frequency are respectively the same as the
  • the noise intensity is related, and the duty cycle and the detection time are respectively related to the battery information
  • the first detection module 303 is configured to detect the battery according to the battery detection scheme.
  • the apparatus 30 further includes a second detection module 304 and a determination module 305 .
  • the second detection module 304 is used to detect the open circuit voltage of the battery
  • the determination module 305 is used to determine the load capacity of the battery according to the open circuit voltage
  • the selection module 302 includes: a first selection unit 3021, which uses According to the noise intensity, the battery information and the load capacity of the storage battery, a battery detection scheme is selected from at least two preset candidate battery detection schemes.
  • the selection module 302 further includes: a first determination unit 3022 , a second determination unit 3023 and a second selection unit 3024 .
  • the first determination unit 3022 is configured to determine at least one first candidate battery detection scheme from the preset at least two candidate battery detection schemes according to the noise intensity
  • the second determination unit 3023 is configured to determine the battery detection scheme according to the battery information, determine at least one second candidate battery detection scheme from the preset at least two candidate battery detection schemes
  • the second selection unit 3024 is configured to select from the at least one first candidate battery detection scheme and the at least one candidate battery detection scheme One battery detection scheme is selected from the second candidate battery detection schemes.
  • the second selection unit 3024 is specifically configured to: determine whether the same candidate battery detection scheme exists in the at least one first candidate battery detection scheme and the at least one second candidate battery detection scheme ; if it exists, determine a battery detection solution from the same candidate battery detection solutions; if it does not exist, determine a battery detection solution from the at least one of the second candidate battery detection solutions.
  • the battery information includes the nominal capacity of the battery and the current capacity of the battery, and the duty cycle and the detection time are respectively related to the nominal capacity of the battery and the current capacity of the battery. current capacity.
  • the obtaining module 301 includes: an obtaining unit 3011 and a third determining unit 3012 .
  • the obtaining unit 3011 is used to obtain the voltage jump amplitude and the maximum noise voltage amplitude of the battery;
  • the third determining unit 3012 is used to determine the voltage jump amplitude and the maximum noise voltage amplitude according to the voltage jump amplitude and the maximum noise voltage amplitude. the noise level of the battery.
  • the battery information includes open circuit voltage and/or temperature
  • the first detection module 303 includes: a calculation unit 3031 , a fourth determination unit 3032 and a detection unit 3033 .
  • the calculation unit 3031 is used to calculate the internal resistance of the battery according to the battery detection scheme
  • the fourth determination unit 3032 is used to determine the CCA value of the battery according to the internal resistance of the battery
  • the detection unit 3033 for detecting the state of health of the battery according to at least one of the open circuit voltage and/or the temperature, the battery detection scheme, the internal resistance and the CCA value.
  • the noise intensity of the storage battery and the battery information of the storage battery are obtained through an acquisition module; the selection module selects at least two candidate batteries from a preset according to the noise intensity and the battery information.
  • a battery detection scheme is selected from the detection scheme; wherein, the battery detection scheme includes at least one of a discharge load value, a detection frequency, a duty cycle and a detection time, and the discharge load value and the detection frequency are respectively related to the noise strength is related, the duty cycle and the detection time are respectively related to the battery information; the battery is detected by the first detection module according to the battery detection scheme, in the event of noise interference and/or the battery In the case of poor health status, fast and accurate detection of the battery can also be achieved.
  • FIG. 8 is a schematic diagram of a hardware structure of a battery detection device for performing a method for detecting a battery of a vehicle provided by an embodiment of the present invention.
  • the battery detection device 10 includes: one or more processors 101 and a memory 102, and one memory is taken as an example in FIG. 8 .
  • the processor 101 and the memory 102 may be connected by a bus or in other ways, and the connection by a bus is taken as an example in FIG. 8 .
  • the memory 102 can be used to store non-volatile software programs, non-volatile computer-executable programs and modules, such as the method corresponding to the battery detection method of the vehicle in the embodiment of the present invention.
  • program instructions/modules eg, the respective modules shown in FIG. 7
  • the processor 101 executes various functional applications and data processing of the device for detecting the battery of the vehicle by running the non-volatile software programs, instructions and modules stored in the memory 102, that is, the battery detection of the vehicle according to the above method embodiment is implemented. Methods.
  • the memory 102 may include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application program required for at least one function; the storage data area may store data created according to the use of the device detected by the battery of the vehicle, and the like . Additionally, memory 102 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device. In some embodiments, the memory 102 may optionally include memory located remotely relative to the processor 101, and these remote memories may be connected via a network to the vehicle's battery detection device. Examples of such networks include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the one or more modules are stored in the memory 102, and when executed by the one or more processors 101, perform the method for detecting the battery of the vehicle in any of the above method embodiments.
  • the above product can execute the method provided by the embodiment of the present invention, and has corresponding functional modules and beneficial effects for executing the method.
  • the method provided by the embodiment of the present invention can execute the method provided by the embodiment of the present invention, and has corresponding functional modules and beneficial effects for executing the method.
  • An embodiment of the present invention provides a non-volatile computer-readable storage medium, where the non-volatile computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are used by an electronic device to execute any of the foregoing method embodiments A method of battery detection in a vehicle.
  • An embodiment of the present invention provides a computer program product, including a computer program stored on a non-volatile computer-readable storage medium, where the computer program includes program instructions that, when executed by a computer, make the program instructions
  • the computer executes the method for detecting the battery of the vehicle in any of the above method embodiments.
  • each embodiment can be implemented by means of software plus a general hardware platform, and certainly can also be implemented by hardware.
  • Those of ordinary skill in the art can understand that all or part of the processes in the methods of the above embodiments can be completed by instructing the relevant hardware through a computer program, and the program can be stored in a computer-readable storage medium, and the program is During execution, it may include the processes of the embodiments of the above-mentioned methods.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM), or a random access memory (Random Access Memory, RAM) or the like.

Abstract

一种车辆(20)的蓄电池检测的方法以及电池检测设备(10)。方法包括:获取蓄电池的噪声强度,以及,蓄电池的电池信息(S10);根据噪声强度与电池信息,从预设的至少两个候选电池检测方案中选取一个电池检测方案(S20);其中,电池检测方案包括放电负载值,检测频率,占空比以及检测时间中的至少一个,放电负载值和检测频率分别与噪声强度相关,占空比和检测时间分别与电池信息相关;根据电池检测方案,对蓄电池进行检测(S30)。通过噪声强度和电池信息,综合选取电池检测方案,在噪声干扰和/或蓄电池的健康状态不良的情况下,也可实现对蓄电池的快速准确检测。

Description

一种车辆的蓄电池检测的方法以及电池检测设备
本申请要求于2020年7月10日提交中国专利局、申请号为202010663189.8、申请名称为“一种车辆的蓄电池检测的方法以及电池检测设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及汽车电子技术领域,特别是涉及一种车辆的蓄电池检测的方法以及电池检测设备。
背景技术
车辆的蓄电池检测的核心是要能够快速、准确的对蓄电池进行检测,从而评估蓄电池的健康状态,进而评估蓄电池是否需要更换。通常使用电池检测设备,例如,电池检测仪,对车辆的蓄电池进行检测。目前市面上使用的电池检测设备使用电导测量和负载测试两种方法。
但是,本发明的发明人在实现本发明实施例的过程中,发现:一般的电导测量采用100赫兹,1安左右负载电流进行测试,因为信号较弱,需要测量毫伏级的信号误差,容易受到环境干扰,导致测量不稳定,所以一般该方案要求电池需要处于稳定状态。然而,随着车辆的快速发展,高科技功能越来越多,导致车辆上的电器和电子单元越来越多,即使熄火时,一些智能化的设备仍然是在工作的,这样导致蓄电池持续处于对外供电状态,并且存在不同频率的噪声信号,此时使用电导测量则容易出现误判。
负载测试需要大电流放电,一般超过100安,并要求电池要处于满电状态,对于亏电状态的电池无法检测。
综上,传统的电导测量和负载测试很难对车辆的蓄电池进行准确测试,用户满意度不高。
发明内容
鉴于上述问题,本发明实施例提供了一种车辆的蓄电池检测的方法以及电池检测设备,克服了上述问题或者至少部分地解决了上述问题。
根据本发明实施例的一个方面,提供了一种车辆的蓄电池检测的方法,应用于电池检测设备,包括:获取所述蓄电池的噪声强度,以及,所述蓄电池的电池信息;根据所述噪声强度与所述电池信息,从预设的至少两个候选电池检测方案中选取一个电池检测方案;其中,所述电池检测方案包括放电负载值,检测频率,占空比以及检测时间中的至少一个,所述放电负载值和所述检测频率分别与所述噪声强度相关,所述占空比和所述检测时间分别与所述电池信息相关;根据所述电池检测方案,对所述蓄电池进行检测。
在一种可选的方式中,所述方法还包括:检测所述蓄电池的开路电压;根 据所述开路电压确定所述蓄电池的带负载能力;所述根据所述噪声强度与所述电池信息,从预设的至少两个候选电池检测方案中选取一个电池检测方案,包括:
根据所述噪声强度、所述电池信息与所述蓄电池的带负载能力,从预设的至少两个候选电池检测方案中选取一个电池检测方案。
在一种可选的方式中,所述根据所述噪声强度与所述电池信息,从预设的至少两个候选电池检测方案中选取一个电池检测方案,包括:根据所述噪声强度,从预设的至少两个候选电池检测方案中确定至少一个第一候选电池检测方案;根据所述电池信息,从预设的至少两个候选电池检测方案中确定至少一个第二候选电池检测方案;从所述至少一个所述第一候选电池检测方案与所述至少一个所述第二候选电池检测方案中选取一个电池检测方案。
在一种可选的方式中,所述从所述至少一个所述第一候选电池检测方案与所述至少一个所述第二候选电池检测方案中选取一个电池检测方案,包括:判断所述至少一个所述第一候选电池检测方案和所述至少一个所述第二候选检测方案中是否存在相同的候选电池检测方案;若存在,则从所述相同的候选电池检测方案中确定一个电池检测方案;若不存在,则从所述至少一个所述第二候选电池检测方案中确定一个电池检测方案。
在一种可选的方式中,所述电池信息包括所述蓄电池的标称容量与所述蓄电池的当前容量,所述占空比和所述检测时间分别与所述蓄电池的标称容量和所述蓄电池的当前容量相关。
在一种可选的方式中,所述获取所述蓄电池的噪声强度,包括:获取所述蓄电池的电压跳动幅值以及最大噪声电压幅值;根据所述电压跳动幅值与所述最大噪声电压幅值,确定所述蓄电池的噪声强度。
在一种可选的方式中,所述电池信息包括开路电压和/或温度,所述根据所述电池检测方案,对所述蓄电池进行检测,包括:根据所述电池检测方案,计算所述蓄电池的内阻;根据所述蓄电池的内阻,确定所述蓄电池的CCA值;根据所述开路电压和/或所述温度,所述电池检测方案、所述内阻和所述CCA值中的至少一个,检测所述蓄电池的健康状态
根据本发明实施例的一个方面,提供了一种车辆的蓄电池检测的装置,包括:获取模块,用于获取所述蓄电池的噪声强度,以及,所述蓄电池的电池信息;选取模块,用于根据所述噪声强度与所述电池信息,从预设的至少两个候选电池检测方案中选取一个电池检测方案;其中,所述电池检测方案包括放电负载值,检测频率,占空比以及检测时间中的至少一个,所述放电负载值和所述检测频率分别与所述噪声强度相关,所述占空比和所述检测时间分别与所述电池信息相关;第一检测模块,用于根据所述电池检测方案,对所述蓄电池进行检测。
在一种可选的方式中,所述装置还包括:第二检测模块,用于检测所述蓄电池的开路电压;确定模块,用于根据所述开路电压确定所述蓄电池的带负载 能力;所述选取模块包括:第一选取单元,用于根据所述噪声强度、所述电池信息与所述蓄电池的带负载能力,从预设的至少两个候选电池检测方案中选取一个电池检测方案。
在一种可选的方式中,选取模块包括:第一确定单元,用于根据所述噪声强度,从预设的至少两个候选电池检测方案中确定至少一个第一候选电池检测方案;第二确定单元,用于根据所述电池信息,从预设的至少两个候选电池检测方案中确定至少一个第二候选电池检测方案;第二选取单元,用于从所述至少一个所述第一候选电池检测方案与所述至少一个所述第二候选电池检测方案中选取一个电池检测方案。
在一种可选的方式中,第二选取单元具体用于:判断所述至少一个所述第一候选电池检测方案和所述至少一个所述第二候选检测方案中是否存在相同的候选电池检测方案;若存在,则从所述相同的候选电池检测方案中确定一个电池检测方案;若不存在,则从所述至少一个所述第二候选电池检测方案中确定一个电池检测方案。
在一种可选的方式中,所述电池信息包括所述蓄电池的标称容量与所述蓄电池的当前容量,所述占空比和所述检测时间分别与所述蓄电池的标称容量和所述蓄电池的当前容量相关。
在一种可选的方式中,获取模块包括:获取单元,用于获取所述蓄电池的电压跳动幅值以及最大噪声电压幅值;第三确定单元,用于根据所述电压跳动幅值与所述最大噪声电压幅值,确定所述蓄电池的噪声强度。
在一种可选的方式中,所述电池信息包括开路电压和/或温度,第一检测模块包括:计算单元,用于根据所述电池检测方案,计算所述蓄电池的内阻;第四确定单元,用于根据所述蓄电池的内阻,确定所述蓄电池的CCA值;检测单元,用于根据所述开路电压和/或所述温度,所述电池检测方案、所述内阻和所述CCA值中的至少一个,检测所述蓄电池的健康状态。
根据本发明实施例的一个方面,提供了一种电池检测设备,包括:至少一个处理器,以及存储器,所述存储器与所述至少一个处理器通信连接,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如上所述的方法。
本发明实施例的有益效果是:区别于现有的车辆的蓄电池检测的方法,本发明实施例通过获取所述蓄电池的噪声强度,以及,所述蓄电池的电池信息;根据所述噪声强度与所述电池信息,从预设的至少两个候选电池检测方案中选取一个电池检测方案;其中,所述电池检测方案包括放电负载值,检测频率,占空比以及检测时间中的至少一个,所述放电负载值和所述检测频率分别与所述噪声强度相关,所述占空比和所述检测时间分别与所述电池信息相关;根据所述电池检测方案,对所述蓄电池进行检测。本发明实施例通过噪声强度和电池信息,综合选取电池检测方案,在噪声干扰和/或所述蓄电池的健康状态不良的情况下,也可实现对所述蓄电池的快速准确检测。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是本发明实施例提供的一种电池检测系统的示意图;
图2是本发明实施例提供的一种车辆的蓄电池检测的方法的流程示意图;
图3是本发明实施例图2中的步骤S10的细化流程示意图;
图4是本发明实施例图2中的步骤S20的细化流程示意图;
图5是本发明实施例图2中的步骤S30的细化流程示意图;
图6是本发明实施例提供的另一种车辆的蓄电池检测的方法的流程示意图;
图7是本发明实施例提供的一种车辆的蓄电池检测的装置的示意图;
图8是本发明实施例提供的执行车辆的蓄电池检测的方法的电池检测设备的硬件结构示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
本申请提供的车辆的蓄电池检测的方法应用于电池检测设备,所述电池检测设备可用于对车辆的蓄电池电池进行检测。
在本发明的实施例中,电池检测设备可以是电池检测仪、智能手机、掌上电脑、平板电脑、智能手表等能对车辆的蓄电池进行检测的电子设备。
请参阅图1,图1是本发明实施例提供的一种电池检测系统的示意图。所述电池检测系统100包括:电池检测设备10以及与所述电池检测设备10通信连接的车辆20。
所述电池检测设备10可以是任何类型的车辆诊断产品,包括至少一个电连接器,所述电连接器的末端用于检测所述车辆20的蓄电池。所述电连接器包括开尔文(Kelvin)连接器、低频圆形连接器、光纤连接器、矩形连接器、印制电路连接器、射频连接器等连接器,优选的,本发明实施例中的电连接器为开尔文连接器。
在实际使用过程中,电池检测设备10通过接口模块,例如诊断接头和硬件通信接口,与车辆20中的多种车辆总线建立物理上的通信连接,并加载合适或者配对的协议配置来实现与车辆20之间的数据交互,例如发送检测指令或者接收检测数据。
所述车辆20具体可以是任何车型车款的机动车辆,例如货车、小车辆20、公交车等,所述车辆20具有由多个电子控制单元组成的电子控制系统,用以协调和控制车辆按照驾驶员等的操作指令,并对一个或者多项车辆参数进行实 时监测,确保车辆20可靠并安全地运行。
其中,车辆20中的各个电子控制单元之间通常采用总线的方式通信连接。每个电子控制单元使用特定的通信协议。电子控制单元按照自身使用的通信协议,会在相应的车辆20总线上进行通信,以避免冲突和提升效率。亦即,使用同一种通信协议的电子控制单元在一种车辆20总线上通信,一种车辆20总线与一种通信协议对应。
所述车辆20上设置蓄电池,用于维持所述车辆20的正常运行。
为了便于日常检修和维护,车辆20还可以具有至少一个硬件通信接口,比如OBD接口。该硬件通信接口与车辆20可以与一种或者多个车辆20总线连接,用于与外部设备建立通信连接,使其与电子控制单元完成数据交互等过程。在本发明实施例中,所述硬件通信接口可用于与所述电池检测设备10的电连接器连接以进行数据交互。
所述电池检测设备10用于检测所述车辆20的蓄电池的健康状态。在本发明实施例中,所述电池检测设备10预设至少两个候选电池检测方案,所述电池检测设备10首先获取所述蓄电池的噪声强度,以及,所述蓄电池的电池信息,然后根据所述噪声强度与所述电池信息,从预设的至少两个候选电池检测方案中选取一个电池检测方案以对所述蓄电池进行检测。本申请通过噪声强度和电池信息,综合选取电池检测方案,在噪声干扰和/或所述蓄电池的健康状态不良的情况下,也可实现对所述蓄电池的快速准确检测。
实施例一
请参阅图2,图2是本发明实施例提供的一种车辆的蓄电池检测的方法的流程示意图,该方法包括以下步骤:
步骤S10:获取所述蓄电池的噪声强度,以及,所述蓄电池的电池信息。
车辆的蓄电池处于持续对外供电的情况下,蓄电池所在的环境存在不同程度的噪声,在所述噪声的噪声强度小时,可采用低负载电流进行测试,当所述噪声的噪声强度大时,采用低负载电流进行测试,则容易受到干扰从而导致对蓄电池的检测不准确。通过获取所述蓄电池的噪声强度以及进一步的根据所述噪声强度来调节所述电池检测设备的负载进行车辆的蓄电池检测,可提高对车辆的蓄电池检测的准确率。
在一些实施例中,所述蓄电池的噪声强度可根据所述蓄电池的电压跳动幅值和最大噪声电压幅值进行测量。具体的,请参阅图3,步骤S10包括:
步骤S101:获取所述蓄电池的电压跳动幅值以及最大噪声电压幅值。
在所电池检测设备连接于所述车辆时连续测试多个电压点,将电压点的最大值减去最小值即为电压跳动幅值。所述最大噪声电压幅值一般认为是电压跳动幅值中的最大值,所述最大噪声电压幅值为固定值,且所述最大噪声电压幅值为统计值,可以预先统计出来。
步骤S102:根据所述电压跳动幅值与所述最大噪声电压幅值,确定所述 蓄电池的噪声强度。
根据所述电压跳动幅值与所述最大噪声电压幅值,确定所述蓄电池的噪声强度的计算公式为:
蓄电池的噪声强度=电压跳动幅值/最大噪声电压幅值
需要说明的是,在一些实施例中,蓄电池的噪声强度通过用1-100来表示,当计算获得的噪声强度大于100时,则可以直接将所述蓄电池的噪声强度定义为100,当计算获得的噪声强度小于1时,则可以直接将所述蓄电池的噪声强度定义为1。
对于所述电池信息,所述电池信息包括所述蓄电池的标称容量、所述蓄电池的当前容量、开路电压和温度。所述蓄电池的标称容量和所述蓄电池的当前容量用于选取所述电池检测方案。所述开路电压和/或温度用于检测所述蓄电池的健康状态。
其中,所述蓄电池的标称容量用于衡量所述蓄电池存储电量的大小,蓄电池的标称容量是蓄电池从满电至没电测出的容量,单位为毫安时(mAh)或者安时(Ah)。在一些实施例中,所述电池检测设备获取用户输入的所述车辆的车辆识别信息,根据所述车辆识别信息确定车辆对应的所述蓄电池的标称容量。
其中,所述蓄电池的当前容量可通过负载测试获得。负载测试一般是在蓄电池两端施加负载,使蓄电池产生10A-100A左右的放电电流,持续一定时间(1ms-1s),测试加负载的时候,蓄电池压降的变化,得出电压下降幅度。不同蓄电池容量,施加大负载的时候,电压下降的幅度存在一定的线性关系,通过对不同电压下,蓄电池下降幅度对应蓄电池容量的关系,最终估算出所述蓄电池的当前容量值。其中,所述蓄电池容量的单位为毫安时或者安时。
步骤S20:根据所述噪声强度与所述电池信息,从预设的至少两个候选电池检测方案中选取一个电池检测方案。
其中,所述电池检测方案包括放电负载值,检测频率,占空比以及检测时间中的至少一个,所述放电负载值和所述检测频率分别与所述噪声强度相关,所述占空比和所述检测时间分别与所述电池信息相关。
可以理解的是,所述噪声强度大,则选取具有小放电负载值以及小检测频率的电池检测方案。
所述占空比和所述检测时间分别与所述蓄电池的标称容量和所述蓄电池的当前容量相关。可以理解的是,所述蓄电池的标称容量大,则可选具有大占空比的电池检测方案。所述蓄电池的当前容量小,则选择具有检测时间长的电池检测方案。
例如,所述预设的至少两个候选电池检测方案包括方案一、方案二、方案三、方案四和方案五。
所述方案一包括放电负载值为10欧、检测频率为100赫兹、占空比为50%、检测时间为1-15秒。
所述方案二包括放电负载值为1欧、检测频率为2赫兹、占空比为5%、 检测时间为1-30秒。
所述方案三包括放电负载值为0.5欧、检测频率为1赫兹、占空比为0.5%、检测时间为1-30秒。
所述方案四包括放电负载值为0.3欧、检测频率为1赫兹、占空比为0.2%、检测时间为1-10秒。
所述方案五包括放电负载值为0.2欧、检测频率为1赫兹、占空比为为0.1%、检测时间为1-5秒。
可根据所述噪声强度、所述蓄电池的标称容量以及所述蓄电池的当前容量综合选取一个电池检测方案。
需要说明的是,所述预设的至少两个候选检测方案不限于上述方案一、方案二、方案三、方案四和方案五,也可以为其它方案。其中,候选检测方案可以是预设的,即各方案中检测参数的值是固定的;或者,候选检测方案可以是根据检测到的噪声强度和电池信息动态得到的。
候选检测方案中各参数的取值可以在以下范围内,候选检测方案只要包括在各取值范围内的参数组合即可,本申请实施例对于参数取值与参数之间的组合关系不予限定。
例如,放电负载值的范围可以为[0.2欧姆,10欧姆];检测频率的范围可以为[0,1KHz];占空比范围可以为[0.1,50%];检测时间也可以理解为是检测时长,其范围可以是[0.5s,30s]。
请参阅图4,图4是图2中的步骤S20的细化流程示意图,步骤S20包括:
步骤S201:根据所述噪声强度,从预设的至少两个候选电池检测方案中确定至少一个第一候选电池检测方案。
步骤S202:根据所述电池信息,从预设的至少两个候选电池检测方案中确定至少一个第二候选电池检测方案。
如前所述,所述电池信息包括标称容量和当前容量,所述电池检测方案包括占空比和检测时间,所述占空比和所述检测时间分别与所述蓄电池的标称容量和所述蓄电池的当前容量相关。则在一些实施例中,所述步骤S202具体包括:根据所述标称容量,从预设的至少两个候选电池检测方案中确定至少一个第一初选电池检测方案;根据所述当前容量,从预设的至少两个候选电池检测方案中确定至少一个第二初选电池检测方案;判断所述至少一个所述第一初选电池检测方案和所述至少一个所述第二初选电池检测方案中是否存在相同的候选电池检测方案;若存在,则将相同的候选电池检测方案确定为所述第二候选电池检测方案;若不存在,则将所述第二初选电池检测方案确定为所述第二候选电池检测方案。
步骤S203:从所述至少一个所述第一候选电池检测方案与所述至少一个所述第二候选电池检测方案中选取一个电池检测方案。
在一些实施例中,所述步骤S203具体包括:判断所述至少一个所述第一候选电池检测方案和所述至少一个所述第二候选电池检测方案中是否存在相 同的候选电池检测方案;若存在,则从所述相同的候选电池检测方案中确定一个电池检测方案;若不存在,则从所述至少一个所述第二候选电池检测方案中确定一个电池检测方案。
其中,在一些实施例中,若相同的候选电池检测方案有两个或两个以上,所述从所述相同的候选电池检测方案中确定一个电池检测方法,包括将放电负载值小的电池检测方案确定为最终的电池检测方案。
其中,在一些实施例中,所述从所述至少一个所述第二候选电池检测方案中确定一个电池检测方案,包括将占空比小和/或检测时间长的电池检测方案确定为最终的电池检测方案。
需要说明的是,在一些实施例中,当所述相同的候选电池检测方案为多个时,可以从相同的候选电池检测方案选取两个或两个以上的方案分别对车辆的蓄电池进行检测,综合各检测的检测结果,如取平均值,得到最终检测结果,或者无需选取方案,可以分别用多个所述候选电池检测方案对所述车辆的蓄电池进行检测,再对各检测结果取平均值。
为使读者更好的理解本发明的发明构思,现举例说明本发明实施例一所述的电池检测方案的选取方法。
以候选电池检测方案包括上述方案一、方案二、方案三、方案四和方案五为例,描述根据噪声强度和电池信息从候选电池检测方案中选取电池检测方案对蓄电池进行检测的方法。
若获取的噪声强度小,则相应可以选取的方案范围大,即噪声强度小时,各方案的检测结果受噪声的影响小;若获取的噪声强度大,则相应选取放电负载值低的方案,以使蓄电池大电流放电,降低噪声强度对检测结果的影响。
例如,设定
所述噪声强度为1-5时,所述第一候选电池检测方案包括所述方案一、方案二、方案三、方案四和方案五;
所述噪声强度为6-20时,所述第一候选电池检测方案包括所述方案二、方案三、方案四和方案五;
所述噪声强度为21-40时,所述第一候选电池检测方案包括所述方案三、方案四和方案五;
所述噪声强度为41-70时,所述第一候选电池检测方案包括所述方案三、方案四和方案五;
所述噪声强度为71-100时,所述第一候选电池检测方案包括所述方案三、方案四和方案五。
若获取的标称容量大,则相应可以选取的方案范围大,即标称容量大时,各方案的检测结果受占空比的影响小,而选择稍微大一些的占空比可提高所述蓄电池的放电效率;若获取的标称容量小,则相应选取占空比小的方案,从而改善所述蓄电池的放电条件,降低发热。
例如,设定
所述标称容量为30-50安时时,所述第一初选电池检测方案包括方案二、方案三、方案四和方案五;
所述标称容量为50-200安时时,所述第一初选电池检测方案包括方案一、方案二、方案三、方案四和方案五。
若获取的当前容量小,则相应可以选取检测时间长的候选电池检测方案,从而提高检测精度;若获取的当前容量大,则相应可以选取检测时间短的候选电池检测方案,从而节省资源。
例如,设定
所述当前容量小于所述标称容量的50%时,所述检测时间应大于或等于15秒,所述第二初选电池检测方案包括方案一、方案二和方案三;
所述当前容量大于或等于所述标称容量的50%时,所述检测时间应小于15秒,所述第二初选电池检测方案包括方案四和方案五。
例如,获取的所述噪声强度为4,标称容量为80安时,当前容量为标称容量的60%,则所述第一候选电池检测方案为方案一、方案二、方案三、方案四和方案五,所述第一初选电池检测方案为方案一、方案二、方案三、方案四和方案五,所述第二初选电池检测方案为方案四和方案五,判断所述第一初选电池检测方案和第二初选电池检测方案,存在相同的候选电池检测方案,方案四和方案五,则所述第二候选电池检测方案为方案四和方案五,判断所述第一候选电池检测方案和第二候选电池检测方案,存在相同的候选电池检测方案,方案四和方案五,可以优先选择放电负载值小的电池检测方案,则将方案五确定为最终的电池检测方案;或者,分别利用方案四和方案五对蓄电池进行检测,综合两次检测的检测结果作为最终检测结果。
例如,获取的所述噪声强度为60,标称容量为40安时,当前容量为标称容量的30%,则所述第一候选电池检测方案为方案三、方案四和方案五,所述第一初选电池检测方案为方案二、方案三、方案四和方案五,所述第二初选电池检测方案为方案一、方案二和方案三,判断所述第一初选电池检测方案和第二初选电池检测方案,存在相同的候选电池检测方案,方案二和方案三,则所述第二候选电池检测方案为方案二和方案三,判断所述第一候选电池检测方案和第二候选电池检测方案,存在相同的候选电池检测方案,方案三,则将方案三确定为最终的电池检测方案。
步骤S30:根据所述电池检测方案,对所述蓄电池进行检测。
请参阅图5,图5是图2中的步骤S30的细化流程示意图,步骤S30包括:
步骤S301:根据所述电池检测方案,计算所述蓄电池的内阻。
所述蓄电池的内阻可通过测量所述蓄电池带负载时蓄电池电压和不带载时蓄电池电压的差别来计算。通过公式Rb=(V–Vr)/I,其中,Rb为蓄电池内阻,V为空载时蓄电池电压,Vr为带负载时测试出来的蓄电池电压,I为带负载时测试出来的电流。
步骤S302:根据所述蓄电池的内阻,确定所述蓄电池的CCA值。
所述蓄电池的CCA值与所述蓄电池的内阻之间存在一定的对应关系,可通过所述蓄电池的内阻确定所述蓄电池的CCA值。在一些实施例中,CCA=比例系数/Rb+标准值。其中,比例系数为固定值,Rb为为蓄电池内阻,标准值为固定值。
步骤S303:根据所述开路电压和/或所述温度,所述电池检测方案、所述内阻和所述CCA值中的至少一个,检测所述蓄电池的健康状态。
例如,可根据所述CCA值检测所述蓄电池的健康状态。所述CCA值大于标称CCA的80%时,认为所述蓄电池健康,所述CCA值在标称CCA的73%到80%时,认为所述蓄电池处于临界不确定状态,所述CCA值小于标称CCA的73%时,认为所述蓄电池损坏。
又例如,可根据所述CCA值和温度检测所述蓄电池的健康状态。在10°测得的CCA值为400,则加上温度的影响,最终10°的CCA值将会乘以比例参数1.1,即最终的CCA值将会是400*1.1=440。进一步的,所述最终的CCA值大于标称CCA的80%时,认为所述蓄电池健康,所述最终的CCA值在标称CCA的73%到80%时,认为所述蓄电池处于临界不确定状态,所述最终的CCA值小于标称CCA的73%时,认为所述蓄电池损坏。
需要说明的是,在一些实施例中,当所述检测结果为临界不确定状态或者用户对所述蓄电池的健康状态的检测结果不认可时,可再次根据本发明实施例提供的检测方法检测所述蓄电池的健康状态或者用户输入所述蓄电池的CCA值再次对所述蓄电池进行检测。
具体的,所述车辆的蓄电池的检测方法包括:获取所述蓄电池的噪声强度,以及,所述蓄电池的电池信息;获取所述蓄电池的CCA值,其中,所述蓄电池的CCA值为上一检测周期检测得到的;根据所述噪声强度,从预设的至少两个候选电池检测方案中确定至少一个第一候选电池检测方案;根据所述电池信息,从预设的至少两个候选电池检测方案中确定至少一个第二候选电池检测方案;根据所述蓄电池的CCA值,从预设的至少两个候选电池检测方案中确定至少一个第四候选电池检测方案;从所述至少一个所述第一候选电池检测方案、所述至少一个所述第二候选电池检测方案与所述至少一个所述第四候选电池检测方案中选取一个电池检测方案。
其中,所述从所述至少一个所述第一候选电池检测方案、所述至少一个所述第二候选电池检测方案与所述至少一个所述第四候选电池检测方案中选取一个电池检测方案,具体包括判断所述至少一个所述第一候选电池检测方案、所述至少一个所述第二候选电池检测方案与所述至少一个所述第四候选电池检测方案中是否存在相同的候选电池检测方案;若存在,则从所述相同的候选电池检测方案中确定一个电池检测方案;若不存在,则从所述至少一个所述第四候选电池检测方案中确定一个电池检测方案。
若获取的蓄电池的CCA值大,则说明所述蓄电池的健康状态良好,则相应可以选取的方案范围大,若获取的蓄电池的CCA值小,则相应选取放电负载值 大的方案,以保证检测的准确性。
例如,设定,
所述蓄电池的CCA值大于或等于标称CCA的80%,所述第四候选电池检测方案包括方案一、方案二、方案三、方案四和方案五;
所述蓄电池的CCA值小于标称CCA的80%,所述第四候选电池检测方案包括方案一、方案二、方案三和方案四。
例如,获取的所述噪声强度为4,标称容量为80安时,当前容量为标称容量的60%,蓄电池的CCA值为标称CCA的60%,则所述第一候选电池检测方案为方案一、方案二、方案三、方案四和方案五,所述第一初选电池检测方案为方案一、方案二、方案三、方案四和方案五,所述第二初选电池检测方案为方案四和方案五,判断所述第一初选电池检测方案和第二初选电池检测方案,存在相同的候选电池检测方案,方案四和方案五,则所述第二候选电池检测方案为方案四和方案五,所述第四候选电池检测方案包括方案一、方案二、方案三和方案四,则所述第一候选电池检测方案、第二候选电池检测方案和第四候选电池检测方案存在相同的候选电池检测方案,方案四,则将方案四确定为最终的电池检测方案。
例如,获取的所述噪声强度为4,标称容量为80安时,当前容量为标称容量的80%,蓄电池的CCA值为标称CCA的90%,则所述第一候选电池检测方案为方案一、方案二、方案三、方案四和方案五,所述第一初选电池检测方案为方案一、方案二、方案三、方案四和方案五,所述第二初选电池检测方案为方案四和方案五,判断所述第一初选电池检测方案和第二初选电池检测方案,存在相同的候选电池检测方案,方案四和方案五,则所述第二候选电池检测方案为方案四和方案五,所述第四候选电池检测方案包括方案一、方案二、方案三和方案四和方案五,则所述第一候选电池检测方案、第二候选电池检测方案和第四候选电池检测方案存在相同的候选电池检测方案,方案四和方案五,可以优先选择放电负载值小的电池检测方案,则将方案五确定为最终的电池检测方案;或者,分别利用方案四和方案五对蓄电池进行检测,综合两次检测的检测结果作为最终检测结果。
需要说明的是,可将最后一次的检测结果作为最终的检测结果,又或者,若所述电池检测设备具有记忆功能,则可同时输出最近两次或两次以上的检测结果以及最近两次或两次以上的检测结果的平均值。
当然,若其中一次的检测结果与其他几次的检测结果偏差大,则所述电池检测设备自动删除检测结果偏差大的检测结果,或者,用户可手动删除检测结果偏差大的检测结果。
需要说明的是,在一些实施例中,所述车辆的蓄电池检测的方法还进一步的包括显示所述蓄电池的健康状态。所述电池检测设备不仅显示所述蓄电池的健康状态,还显示所述蓄电池的CCA值、开路电压、内阻值以及温度等。
在本发明实施例中,通过获取所述蓄电池的噪声强度,以及,所述蓄电池 的电池信息;根据所述噪声强度与所述电池信息,从预设的至少两个候选电池检测方案中选取一个电池检测方案;其中,所述电池检测方案包括放电负载值,检测频率,占空比以及检测时间中的至少一个,所述放电负载值和所述检测频率分别与所述噪声强度相关,所述占空比和所述检测时间分别与所述电池信息相关;根据所述电池检测方案,对所述蓄电池进行检测,在噪声干扰和/或所述蓄电池的健康状态不良的情况下,也可实现对所述蓄电池的快速准确检测。
实施例二
请参阅图6,图6是是本发明实施例提供的另一种车辆的蓄电池检测的方法的流程示意图,该方法包括以下步骤:
步骤S10’:获取所述蓄电池的噪声强度,以及,所述蓄电池的电池信息。
步骤S20’:检测所述蓄电池的开路电压。
所述蓄电池的开路电压为所述蓄电池不带负载时的电压。
步骤S30’:根据所述开路电压确定所述蓄电池的带负载能力。
例如,在一些实施例中,所述开路电压大于或等于12.5伏,则认为所述蓄电池的带负载能力强,所述开路电压小于12.5伏,则认为所述蓄电池的带负载能力弱。
步骤S40’:根据所述噪声强度、所述电池信息与所述蓄电池的带负载能力,从预设的至少两个候选电池检测方案中选取一个电池检测方案。
其中,所述电池检测方案包括放电负载值,检测频率,占空比以及检测时间中的至少一个,所述放电负载值和所述检测频率分别与所述噪声强度相关,所述占空比和所述检测时间分别与所述电池信息相关。
所述根据所述噪声强度、所述电池信息与所述蓄电池的带负载能力,从预设的至少两个候选电池检测方案中选取一个电池检测方案,具体的,包括根据所述噪声强度,从预设的至少两个候选电池检测方案中确定至少一个第一候选电池检测方案;根据所述电池信息,从预设的至少两个候选电池检测方案中确定至少一个第二候选电池检测方案;根据所述蓄电池的带负载能力,从预设的至少两个候选电池检测方案中确定至少一个第三候选电池检测方案;从所述至少一个所述第一候选电池检测方案、所述至少一个所述第二候选电池检测方案与所述至少一个所述第三候选电池检测方案中选取一个电池检测方案。
其中,所述从所述至少一个所述第一候选电池检测方案、所述至少一个所述第二候选电池检测方案与所述至少一个所述第三候选电池检测方案中选取一个电池检测方案,具体包括判断所述至少一个所述第一候选电池检测方案、所述至少一个所述第二候选电池检测方案与所述至少一个所述第三候选电池检测方案中是否存在相同的候选电池检测方案;若存在,则从所述相同的候选电池检测方案中确定一个电池检测方案;若不存在,则从所述至少一个所述第三候选电池检测方案中确定一个电池检测方案。
为使读者更好的理解本发明的发明构思,现举例说明本发明实施例二所述 的电池检测方案的选取方法。
对于上述方案一、方案二、方案三、方案四和方案五,其中,
例如,设定
所述噪声强度为1-5时,所述第一候选电池检测方案包括所述方案一、方案二、方案三、方案四和方案五;
所述噪声强度为6-20时,所述第一候选电池检测方案包括所述方案二、方案三、方案四和方案五;
所述噪声强度为21-40时,所述第一候选电池检测方案包括所述方案三、方案四和方案五;
所述噪声强度为41-70时,所述第一候选电池检测方案包括所述方案三、方案四和方案五;
所述噪声强度为71-100时,所述第一候选电池检测方案包括所述方案三、方案四和方案五。
例如,设定
所述标称容量为30-50安时时,所述第一初选电池检测方案包括方案二、方案三、方案四和方案五;
所述标称容量为50-200安时时,所述第一初选电池检测方案包括方案一、方案二、方案三、方案四和方案五。
例如,设定
所述当前容量小于所述标称容量的50%时,所述检测时间应大于或等于15秒,所述第二初选电池检测方案包括方案一、方案二和方案三;
所述当前容量大于或等于所述标称容量的50%时,所述检测时间应小于15秒,所述第二初选电池检测方案包括方案四和方案五。
若获取的开路电压大,则说明所述蓄电池的带负载能力强,则相应可以选取的方案范围大,即带负载能力强时,各方案的检测结果受带负载能力的影响小;若获取的开路电压小,则相应选取放电负载值大的方案,以保证检测的准确性。
例如,设定
所述开路电压大于或等于12.5伏,则认为所述蓄电池的带负载能力强,所述第三候选电池检测方案包括方案一、方案二、方案三、方案四和方案五;
所述开路电压小于12.5伏,则认为所述蓄电池的带负载能力弱,所述第三候选电池检测方案包括方案一、方案二、方案三和方案四。
例如,获取的所述噪声强度为4,标称容量为80安时,当前容量为标称容量的60%,开路电压为11,则所述第一候选电池检测方案为方案一、方案二、方案三、方案四和方案五,所述第一初选电池检测方案为方案一、方案二、方案三、方案四和方案五,所述第二初选电池检测方案为方案四和方案五,判断所述第一初选电池检测方案和第二初选电池检测方案,存在相同的候选电池检测方案,方案四和方案五,则所述第二候选电池检测方案为方案四和方案五, 所述第三候选电池检测方案包括方案一、方案二、方案三和方案四,则所述第一候选电池检测方案、第二候选电池检测方案和第三候选电池检测方案存在相同的候选电池检测方案,方案四,则将方案四确定为最终的电池检测方案。
例如,获取的所述噪声强度为4,标称容量为80安时,当前容量为标称容量的80%,开路电压为13,则所述第一候选电池检测方案为方案一、方案二、方案三、方案四和方案五,所述第一初选电池检测方案为方案一、方案二、方案三、方案四和方案五,所述第二初选电池检测方案为方案四和方案五,判断所述第一初选电池检测方案和第二初选电池检测方案,存在相同的候选电池检测方案,方案四和方案五,则所述第二候选电池检测方案为方案四和方案五,所述第三候选电池检测方案包括方案一、方案二、方案三、方案四和方案五,则所述第一候选电池检测方案、第二候选电池检测方案和第三候选电池检测方案存在相同的候选电池检测方案,方案四和方案五,可以优先选择放电负载值小的电池检测方案,则将方案五确定为最终的电池检测方案;或者,分别利用方案四和方案五对蓄电池进行检测,综合两次检测的检测结果作为最终检测结果。
在一些实施例中,所述蓄电池的带负载能力还与带负载压降有关,所述带负载压降大时,需将所述电池检测方案调整为包括大的放电负载值的方案。
在实际应用中,若所述蓄电池的开路电压大于或等于12.5伏,则启动1安负载电流1-10秒,并采集和记录所述带负载压降情况,若所述带负载压降小,则启动10安负载电流10毫秒到1秒,并采集和记录所述带负载压降情况。所述蓄电池的开路电压小于12.5伏,则启动1安负载电流1秒到10秒,并采集和记录所述带负载压降情况。以及,进一步的,根据所述带负载电压调整所述电池检测方案。
步骤S50’:根据所述电池检测方案,对所述蓄电池进行检测。
可以理解的是,在一些实施例中,通过实施例二的检测方法在完成一个检测周期后,获取所述蓄电池的CCA,则可以根据所述蓄电池的CCA值再次对所述蓄电池进行检测,即根据所述噪声强度、所述电池信息、所述蓄电池的带负载能力以及所述蓄电池的CCA对所述蓄电池进行检测,具体检测方法和检测过程,可参考实施例一,此处不再一一赘述。
在本发明实施例中,通过获取所述蓄电池的噪声强度,以及,所述蓄电池的电池信息;检测所述蓄电池的开路电压;根据所述开路电压确定所述蓄电池的带负载能力;以及根据所述噪声强度、所述电池信息与所述蓄电池的带负载能力,从预设的至少两个候选电池检测方案中选取一个电池检测方案;根据所述电池检测方案,对所述蓄电池进行检测。可进一步的提高对所述蓄电池进行检测的准确率。
实施例三
请参阅图7,图7是本发明实施例提供的一种车辆的蓄电池检测的装置的 示意图,该装置30包括:获取模块301、选取模块302和第一检测模块303。其中,获取模块301,用于获取所述蓄电池的噪声强度,以及,所述蓄电池的电池信息;选取模块302,用于根据所述噪声强度与所述电池信息,从预设的至少两个候选电池检测方案中选取一个电池检测方案;其中,所述电池检测方案包括放电负载值,检测频率,占空比以及检测时间中的至少一个,所述放电负载值和所述检测频率分别与所述噪声强度相关,所述占空比和所述检测时间分别与所述电池信息相关;第一检测模块303,用于根据所述电池检测方案,对所述蓄电池进行检测。
在一些实施例中,所述装置30还包括第二检测模块304和确定模块305。其中,第二检测模块304,用于检测所述蓄电池的开路电压;确定模块305,用于根据所述开路电压确定所述蓄电池的带负载能力;选取模块302包括:第一选取单元3021,用于根据所述噪声强度、所述电池信息与所述蓄电池的带负载能力,从预设的至少两个候选电池检测方案中选取一个电池检测方案。
在一些实施例中,选取模块302还包括:第一确定单元3022、第二确定单元3023和第二选取单元3024。其中,第一确定单元3022,用于根据所述噪声强度,从预设的至少两个候选电池检测方案中确定至少一个第一候选电池检测方案;第二确定单元3023,用于根据所述电池信息,从预设的至少两个候选电池检测方案中确定至少一个第二候选电池检测方案;第二选取单元3024,用于从所述至少一个所述第一候选电池检测方案与所述至少一个所述第二候选电池检测方案中选取一个电池检测方案。
在一些实施例中,第二选取单元3024具体用于:判断所述至少一个所述第一候选电池检测方案和所述至少一个所述第二候选电池检测方案中是否存在相同的候选电池检测方案;若存在,则从所述相同的候选电池检测方案中确定一个电池检测方案;若不存在,则从所述至少一个所述第二候选电池检测方案中确定一个电池检测方案。
在一些实施例中,所述电池信息包括所述蓄电池的标称容量与所述蓄电池的当前容量,所述占空比和所述检测时间分别与所述蓄电池的标称容量和所述蓄电池的当前容量相关。
在一些实施例中,获取模块301包括:获取单元3011和第三确定单元3012。其中,获取单元3011,用于获取所述蓄电池的电压跳动幅值以及最大噪声电压幅值;第三确定单元3012,用于根据所述电压跳动幅值与所述最大噪声电压幅值,确定所述蓄电池的噪声强度。
在一些实施例中,所述电池信息包括开路电压和/或温度,第一检测模块303包括:计算单元3031、第四确定单元3032和检测单元3033。其中,计算单元3031,用于根据所述电池检测方案,计算所述蓄电池的内阻;第四确定单元3032,用于根据所述蓄电池的内阻,确定所述蓄电池的CCA值;检测单元3033,用于根据所述开路电压和/或所述温度,所述电池检测方案、所述内阻和所述CCA值中的至少一个,检测所述蓄电池的健康状态。
在本发明实施例中,通过获取模块获取所述蓄电池的噪声强度,以及,所述蓄电池的电池信息;通过选取模块根据所述噪声强度与所述电池信息,从预设的至少两个候选电池检测方案中选取一个电池检测方案;其中,所述电池检测方案包括放电负载值,检测频率,占空比以及检测时间中的至少一个,所述放电负载值和所述检测频率分别与所述噪声强度相关,所述占空比和所述检测时间分别与所述电池信息相关;通过第一检测模块根据所述电池检测方案,对所述蓄电池进行检测,在噪声干扰和/或所述蓄电池的健康状态不良的情况下,也可实现对所述蓄电池进行快速准确的检测。
实施例四
请参阅图8,图8是是本发明实施例提供的执行车辆的蓄电池检测的方法的电池检测设备的硬件结构示意图。电池检测设备10包括:一个或多个处理器101以及存储器102,图8中以一个存储器为例。
处理器101和存储器102可以通过总线或者其他方式连接,图8中以通过总线连接为例。
存储器102作为一种非易失性计算机可读存储介质,可用于存储非易失性软件程序、非易失性计算机可执行程序以及模块,如本发明实施例中的车辆的蓄电池检测的方法对应的程序指令/模块(例如,附图7所示的各个模块)。处理器101通过运行存储在存储器102中的非易失性软件程序、指令以及模块,从而执行车辆的蓄电池检测的装置的各种功能应用以及数据处理,即实现上述方法实施例的车辆的蓄电池检测的方法。
存储器102可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据车辆的蓄电池检测的装置的使用所创建的数据等。此外,存储器102可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实施例中,存储器102可选包括相对于处理器101远程设置的存储器,这些远程存储器可以通过网络连接至车辆的蓄电池检测的装置。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
所述一个或者多个模块存储在所述存储器102中,当被所述一个或者多个处理器101执行时,执行上述任意方法实施例中的车辆的蓄电池检测的方法。
上述产品可执行本发明实施例所提供的方法,具备执行方法相应的功能模块和有益效果。未在本实施例中详尽描述的技术细节,可参见本发明实施例所提供的方法。
本发明实施例提供了一种非易失性计算机可读存储介质,所述非易失性计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被电子设备执行上述任意方法实施例中的车辆的蓄电池检测的方法。
本发明实施例提供了一种计算机程序产品,包括存储在非易失性计算机可 读存储介质上的计算程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时时,使所述计算机执行上述任意方法实施例中的车辆的蓄电池检测的方法。
通过以上的实施方式的描述,本领域普通技术人员可以清楚地了解到各实施方式可借助软件加通用硬件平台的方式来实现,当然也可以通过硬件来实现。本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;在本发明的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本发明的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种车辆的蓄电池检测的方法,应用于电池检测设备,其特征在于,包括:
    获取所述蓄电池的噪声强度,以及,所述蓄电池的电池信息;
    根据所述噪声强度与所述电池信息,从预设的至少两个候选电池检测方案中选取一个电池检测方案;其中,所述电池检测方案包括放电负载值,检测频率,占空比以及检测时间中的至少一个,所述放电负载值和所述检测频率分别与所述噪声强度相关,所述占空比和所述检测时间分别与所述电池信息相关;
    根据所述电池检测方案,对所述蓄电池进行检测。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    检测所述蓄电池的开路电压;
    根据所述开路电压确定所述蓄电池的带负载能力;
    所述根据所述噪声强度与所述电池信息,从预设的至少两个候选电池检测方案中选取一个电池检测方案,包括:
    根据所述噪声强度、所述电池信息与所述蓄电池的带负载能力,从预设的至少两个候选电池检测方案中选取一个电池检测方案。
  3. 根据权利要求1或2所述的方法,其特征在于,所述根据所述噪声强度与所述电池信息,从预设的至少两个候选电池检测方案中选取一个电池检测方案,包括:
    根据所述噪声强度,从预设的至少两个候选电池检测方案中确定至少一个第一候选电池检测方案;
    根据所述电池信息,从预设的至少两个候选电池检测方案中确定至少一个第二候选电池检测方案;
    从所述至少一个所述第一候选电池检测方案与所述至少一个所述第二候选电池检测方案中选取一个电池检测方案。
  4. 根据权利要求3所述的方法,其特征在于,所述从所述至少一个所述第一候选电池检测方案与所述至少一个所述第二候选电池检测方案中选取一个电池检测方案,包括:
    判断所述至少一个所述第一候选电池检测方案和所述至少一个所述第二候选检测方案中是否存在相同的候选电池检测方案;
    若存在,则从所述相同的候选电池检测方案中确定一个电池检测方案;
    若不存在,则从所述至少一个所述第二候选电池检测方案中确定一个电池检测方案。
  5. 根据权利要求1所述的方法,其特征在于,所述电池信息包括所述蓄电池的标称容量与所述蓄电池的当前容量,所述占空比和所述检测时间分别与所述蓄电池的标称容量和所述蓄电池的当前容量相关。
  6. 根据权利要求1所述的方法,其特征在于,所述获取所述蓄电池的噪声强度,包括:
    获取所述蓄电池的电压跳动幅值以及最大噪声电压幅值;
    根据所述电压跳动幅值与所述最大噪声电压幅值,确定所述蓄电池的噪声强度。
  7. 根据权利要求1所述的方法,其特征在于,所述电池信息包括开路电压和/或温度,所述根据所述电池检测方案,对所述蓄电池进行检测,包括:
    根据所述电池检测方案,计算所述蓄电池的内阻;
    根据所述蓄电池的内阻,确定所述蓄电池的CCA值;
    根据所述开路电压和/或所述温度,所述电池检测方案、所述内阻和所述CCA值中的至少一个,检测所述蓄电池的健康状态。
  8. 一种车辆的蓄电池检测的装置,其特征在于,包括:
    获取模块,用于获取所述蓄电池的噪声强度,以及,所述蓄电池的电池信息;
    选取模块,用于根据所述噪声强度与所述电池信息,从预设的至少两个候选电池检测方案中选取一个电池检测方案;其中,所述电池检测方案包括放电负载值,检测频率,占空比以及检测时间中的至少一个,所述放电负载值和所述检测频率分别与所述噪声强度相关,所述占空比和所述检测时间分别与所述电池信息相关;
    第一检测模块,用于根据所述电池检测方案,对所述蓄电池进行检测。
  9. 根据权利要求8所述的装置,其特征在于,所述装置还包括:
    第二检测模块,用于检测所述蓄电池的开路电压;
    确定模块,用于根据所述开路电压确定所述蓄电池的带负载能力;
    所述选取模块包括:
    第一选取单元,用于根据所述噪声强度、所述电池信息与所述蓄电池的带负载能力,从预设的至少两个候选电池检测方案中选取一个电池检测方案。
  10. 一种电池检测设备,其特征在于,包括:
    至少一个处理器;以及
    存储器,所述存储器与所述至少一个处理器通信连接,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行, 以使所述至少一个处理器能够执行权利要求1-7中任一项所述的方法。
PCT/CN2021/104100 2020-07-10 2021-07-01 一种车辆的蓄电池检测的方法以及电池检测设备 WO2022007711A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21838073.1A EP4180827A4 (en) 2020-07-10 2021-07-01 METHOD FOR DETECTING A STORAGE BATTERY OF A VEHICLE AND BATTERY DETECTION DEVICE
US18/150,764 US20230152389A1 (en) 2020-07-10 2023-01-05 Method for Detecting Storage Battery of Vehicle and Battery Detection Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010663189.8 2020-07-10
CN202010663189.8A CN111781521B (zh) 2020-07-10 2020-07-10 一种车辆的蓄电池检测的方法以及电池检测设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/150,764 Continuation US20230152389A1 (en) 2020-07-10 2023-01-05 Method for Detecting Storage Battery of Vehicle and Battery Detection Device

Publications (1)

Publication Number Publication Date
WO2022007711A1 true WO2022007711A1 (zh) 2022-01-13

Family

ID=72768063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/104100 WO2022007711A1 (zh) 2020-07-10 2021-07-01 一种车辆的蓄电池检测的方法以及电池检测设备

Country Status (4)

Country Link
US (1) US20230152389A1 (zh)
EP (1) EP4180827A4 (zh)
CN (1) CN111781521B (zh)
WO (1) WO2022007711A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111781521B (zh) * 2020-07-10 2022-11-08 深圳市道通科技股份有限公司 一种车辆的蓄电池检测的方法以及电池检测设备
CN112698207A (zh) * 2020-12-03 2021-04-23 天津小鲨鱼智能科技有限公司 一种电池容量检测方法及装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060170397A1 (en) * 2005-01-28 2006-08-03 Rengaswamy Srinivasan Battery healty monitor
CN101109789A (zh) * 2006-12-15 2008-01-23 长安大学 电动汽车蓄电池性能智能分析试验台
CN101477179A (zh) * 2009-01-15 2009-07-08 艾默生网络能源有限公司 蓄电池内阻在线交流检测方法和系统
CN106324508A (zh) * 2015-07-02 2017-01-11 华为技术有限公司 电池健康状态的检测装置及方法
CN106646267A (zh) * 2017-02-13 2017-05-10 云南电网有限责任公司电力科学研究院 配电终端电池寿命检测方法及装置
CN108562858A (zh) * 2018-04-29 2018-09-21 成都凯威计量技术有限公司 一种电动汽车仪表soc测量装置
CN110687468A (zh) * 2018-06-19 2020-01-14 华为技术有限公司 一种电池荷电状态的估计方法及装置
CN111077468A (zh) * 2019-12-27 2020-04-28 孚能科技(赣州)股份有限公司 电池测试流程的生成方法和生成装置
CN111142037A (zh) * 2019-12-24 2020-05-12 许昌中科森尼瑞技术有限公司 一种高频放电蓄电池内阻在线检测方法
CN111781521A (zh) * 2020-07-10 2020-10-16 深圳市道通科技股份有限公司 一种车辆的蓄电池检测的方法以及电池检测设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6469512B2 (en) * 2000-01-12 2002-10-22 Honeywell International Inc. System and method for determining battery state-of-health
JP3591718B2 (ja) * 2000-12-04 2004-11-24 理化工業株式会社 ノイズキャンセル装置
GB0122787D0 (en) * 2001-09-21 2001-11-14 Univ Gent Measurement of noise voltage with the purpose to determine the state-of-health of electrochemical batteries or cells
JP6256027B2 (ja) * 2014-01-17 2018-01-10 株式会社デンソー 二次電池の等価回路のパラメータ推定装置及びパラメータ推定方法
CN111366855B (zh) * 2020-03-19 2021-03-12 北京理工大学 一种电池等效电路模型抗扰动参数化方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060170397A1 (en) * 2005-01-28 2006-08-03 Rengaswamy Srinivasan Battery healty monitor
CN101109789A (zh) * 2006-12-15 2008-01-23 长安大学 电动汽车蓄电池性能智能分析试验台
CN101477179A (zh) * 2009-01-15 2009-07-08 艾默生网络能源有限公司 蓄电池内阻在线交流检测方法和系统
CN106324508A (zh) * 2015-07-02 2017-01-11 华为技术有限公司 电池健康状态的检测装置及方法
CN106646267A (zh) * 2017-02-13 2017-05-10 云南电网有限责任公司电力科学研究院 配电终端电池寿命检测方法及装置
CN108562858A (zh) * 2018-04-29 2018-09-21 成都凯威计量技术有限公司 一种电动汽车仪表soc测量装置
CN110687468A (zh) * 2018-06-19 2020-01-14 华为技术有限公司 一种电池荷电状态的估计方法及装置
CN111142037A (zh) * 2019-12-24 2020-05-12 许昌中科森尼瑞技术有限公司 一种高频放电蓄电池内阻在线检测方法
CN111077468A (zh) * 2019-12-27 2020-04-28 孚能科技(赣州)股份有限公司 电池测试流程的生成方法和生成装置
CN111781521A (zh) * 2020-07-10 2020-10-16 深圳市道通科技股份有限公司 一种车辆的蓄电池检测的方法以及电池检测设备

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
FANG, HAITAO: "Research and Implementation of On-line SOC Estimation for Vehicular Lead-Acid Battery", SCIENCE-ENGINEERING (B), CHINA MASTER’S THESES FULL-TEXT DATABASE, no. 3, 15 March 2017 (2017-03-15), pages 1 - 81, XP055886648 *
LI, WENLIANG ET AL.: "Optimization Method of Battery On-line Monitoring Technology", ELECTRONIC TEST, no. 9, 30 September 2017 (2017-09-30), pages 95 - 96, XP055886641 *
See also references of EP4180827A4 *
WANG, FANG ET AL.: "Experimental Analysis of Internal Resistance of Energy-Type LiFePO4 Power Batteries and Its Influencing Factors", JOURNAL OF CHONGQING UNIVERSITY OF TECHNOLOGY(NATURAL SCIENCE), vol. 31, no. 8, 31 August 2017 (2017-08-31), pages 44 - 50, XP055886644 *

Also Published As

Publication number Publication date
US20230152389A1 (en) 2023-05-18
EP4180827A1 (en) 2023-05-17
CN111781521A (zh) 2020-10-16
EP4180827A4 (en) 2024-01-17
CN111781521B (zh) 2022-11-08

Similar Documents

Publication Publication Date Title
US20230152389A1 (en) Method for Detecting Storage Battery of Vehicle and Battery Detection Device
US8775106B2 (en) Method for determining a parameter of at least one accumulator of a battery
US6249124B1 (en) Electronic battery tester with internal battery
US20150168499A1 (en) Battery tester and battery registration tool
JP2004191373A (ja) 電子バッテリテスタ
CN109828218B (zh) 电池动态电化学阻抗谱的获取方法
WO2014119328A1 (ja) 電池状態推定装置
US20220091062A1 (en) System and method for anomaly detection and total capacity estimation of a battery
WO2022007710A1 (zh) 一种检测车辆发电机的方法及电池检测仪
CN108093118B (zh) 主板上器件的测试方法、测试装置和计算机可读存储介质
WO2022012499A1 (zh) 一种检测车辆电池的方法、装置及电池检测设备
US20220074998A1 (en) Self-characterizing smart cells for battery lifecycle managment
CN114167132A (zh) 无线终端的功耗检测方法、装置、电子设备及存储介质
CN114137415A (zh) 电池组的发热量检测方法、装置、车辆及存储介质
CN111179670B (zh) 物理电学实验结果的量化方法、装置、终端和存储介质
CN113945302B (zh) 一种电池内部温度的确定方法及其确定装置
US9417288B2 (en) Process for auto-testing a fully discharged battery, such as double-layer capacitor battery, and circuit for doing the same
US20220349944A1 (en) Battery performance evaluation device, electronic apparatus, charger, and battery performance evaluation method
CN210181590U (zh) Mcu参数测试系统
CN210015215U (zh) 电池动态电化学阻抗谱的测试装置
WO2020010624A1 (zh) 电池检测方法、系统及电池分析装置
CN114442019B (zh) 一种测试工具的测试校正方法、装置及电子设备
US11543459B2 (en) Method for testing batteries
US20220291290A1 (en) Measurement appratus of power storage device and measurement method
CN115932376A (zh) 一种欠压故障诊断方法、系统、终端设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21838073

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021838073

Country of ref document: EP

Effective date: 20230208