WO2022012499A1 - 一种检测车辆电池的方法、装置及电池检测设备 - Google Patents

一种检测车辆电池的方法、装置及电池检测设备 Download PDF

Info

Publication number
WO2022012499A1
WO2022012499A1 PCT/CN2021/105919 CN2021105919W WO2022012499A1 WO 2022012499 A1 WO2022012499 A1 WO 2022012499A1 CN 2021105919 W CN2021105919 W CN 2021105919W WO 2022012499 A1 WO2022012499 A1 WO 2022012499A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
current
voltage
vehicle battery
noise
Prior art date
Application number
PCT/CN2021/105919
Other languages
English (en)
French (fr)
Inventor
瞿松松
冯光文
Original Assignee
深圳市道通科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通科技股份有限公司 filed Critical 深圳市道通科技股份有限公司
Publication of WO2022012499A1 publication Critical patent/WO2022012499A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/386Arrangements for measuring battery or accumulator variables using test-loads
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables

Definitions

  • the present application relates to the technical field of automotive electronics, and in particular, to a method, a device, and a battery detection device for detecting a vehicle battery.
  • the traditional battery detection scheme For judging whether the car battery is healthy, the traditional battery detection scheme generally detects the internal resistance of the resistor through a battery tester, and then judges whether the car battery is healthy according to the internal resistance of the resistor: first, by applying a load to the battery, measuring the load voltage and applying After the load is generated, the load is released, and the open circuit voltage of the battery is measured.
  • the inventor found that the existing battery detection scheme has at least the following technical problems: during the battery detection process, no matter when the load is applied to the battery or the load is released, the automotive electronic equipment will consume current and consume The current will feed back the corresponding voltage to the battery detection device, and the feedback voltage is uncertain, which will greatly interfere with the detection results of the open circuit voltage or load voltage, making the detection value of the open circuit voltage or load voltage deviate from the true value. , resulting in inaccurate detection of battery internal resistance.
  • embodiments of the present invention provide a method, device and battery detection device for detecting a vehicle battery, which can solve the technical problem of inaccurate detection due to noise interference in battery detection in the prior art.
  • an embodiment of the present invention provides a method for detecting a vehicle battery, the method is applied to a battery detection device, the battery detection device includes a current detection device, and the battery detection device is connected to a vehicle battery through a Kelvin connector , the current detection device is connected to the negative electrode of the vehicle battery, and the method includes: acquiring a noise relationship table for the vehicle battery, wherein the noise relationship table includes a corresponding relationship between noise current and noise voltage; applying a load to the vehicle battery; obtaining a first total current after applying a load to the vehicle battery, and a load current and a load voltage; according to the first total current, the load current and the load voltage, and Combined with the noise relation table, calculate the real load voltage; obtain the open circuit voltage of the vehicle battery; calculate the internal resistance of the vehicle battery according to the real load voltage, the open circuit voltage and the load current.
  • the applying a load to the vehicle battery includes: applying a load of a preset size to the vehicle battery within a preset time period; acquiring a first total current after the load is applied to the vehicle battery, And, the step of load current and load voltage, further comprising: collecting the total current, load current and load voltage after applying the load at preset time intervals within the preset time period, to obtain multiple sets of the load The total current, load current and load voltage after the load is applied; calculate the average value of the total current, load current and load voltage after applying the load respectively for multiple groups to obtain the first total current, the load current and the load voltage.
  • the step of acquiring the open-circuit voltage of the vehicle battery further includes: acquiring a second total current after the load applied to the vehicle battery is released, and no-load current and no-load voltage; according to the the second total current, the no-load current and the no-load voltage, and the open-circuit voltage is obtained in combination with the noise relation table; the vehicle is calculated according to the real load voltage, the open-circuit voltage and the load current
  • the step of the internal resistance of the battery further includes: calculating a real load current according to the load current and the no-load current; calculating the internal resistance of the vehicle battery according to the real load voltage, the open circuit voltage and the real load current resistance.
  • the step of acquiring the second total current after releasing the load applied to the vehicle battery, and the no-load current and the no-load voltage further includes: after releasing the load applied to the vehicle battery, at a preset time interval Collect the total current, no-load current and no-load voltage after releasing the load to obtain the total current, no-load current and no-load voltage after releasing the load for multiple groups; The average value of the no-load current and the no-load voltage to obtain the second total current, the no-load current and the no-load voltage.
  • the step of obtaining the open-circuit voltage according to the second total current, the no-load current and the no-load voltage, and in combination with the noise relationship table further includes: calculating the second total current the first current difference with the no-load current; obtain the first noise voltage corresponding to the first current difference according to the noise relationship table; subtract the first noise voltage from the no-load voltage to obtain the open circuit voltage.
  • the step of acquiring the open circuit voltage of the vehicle battery further includes: acquiring a bias voltage of the battery detection device; and acquiring the open circuit voltage according to the bias voltage.
  • the step of calculating the real load voltage according to the first total current, the load current and the load voltage, and in combination with the noise relationship table further includes: calculating the first total current and the second current difference value of the load current; obtain a second noise voltage corresponding to the second current difference value according to the noise relation table; subtract the second noise voltage from the load voltage to obtain the true load voltage.
  • the step of acquiring the noise relationship table for the vehicle battery further includes: collecting the vehicle battery at preset time intervals within a preset time period when no load is applied to the vehicle battery to obtain multiple sets of noise currents and noise voltages of the vehicle battery; construct multiple sets of corresponding relationships between the noise currents and noise voltages to obtain the noise relationship table.
  • the method further includes: determining the CCA value of the vehicle battery according to the internal resistance of the vehicle battery; detecting the CCA value according to at least one of the open circuit voltage, the internal resistance and the CCA value state of health of the vehicle battery.
  • an embodiment of the present invention provides an apparatus for detecting a vehicle battery, including: a first acquisition module configured to acquire a noise relationship table for the vehicle battery, wherein the noise relationship table includes noise current and noise a corresponding relationship between currents; a loading module for applying a load to the vehicle battery; a second obtaining module for obtaining a first total current after applying a load to the vehicle battery, and a load current and a load voltage; a first calculation module, configured to calculate a real load voltage according to the first total current, the load current and the load voltage, and in combination with the noise relation table; a second acquisition module, configured to obtain the vehicle battery The open-circuit voltage of ; the second calculation module is configured to calculate the internal resistance of the vehicle battery according to the real load voltage, the open-circuit voltage and the load current.
  • embodiments of the present invention provide a battery detection device, a battery detection module for connecting with a vehicle battery through a Kelvin connector; a load adjustment module for applying a load to the vehicle battery; a current detection module for using connected to the negative pole of the vehicle battery; a control module, respectively connected to the battery detection module, the load adjustment module and the current detection module, the control module includes: at least one processor; a memory communicatively coupled to a processor; wherein the memory stores instructions executable by the at least one processor, the instructions being executed by the at least one processor to enable the at least one processor to perform the above the method described.
  • an embodiment of the present invention provides a non-volatile computer-readable storage medium, where the computer-readable storage medium stores computer-executable instructions, and when the computer-executable instructions are executed by an electronic device, causes The electronic device performs the method as described above.
  • the beneficial effects of the embodiments of the present invention are: different from the prior art, a method, a device and a battery detection device for detecting a vehicle battery are provided.
  • the method is applied to a battery detection device, and the method includes: obtaining a noise relationship table for a vehicle battery; applying a load to the vehicle battery; obtaining a first total current after applying a load to the vehicle battery, and the load current and load voltage; A total current, load current and load voltage, and combined with the noise relationship table, calculate the real load voltage; obtain the open circuit voltage of the vehicle battery; calculate the internal resistance of the vehicle battery according to the real load voltage, open circuit voltage and the load current.
  • the present invention Embodiments can improve the accuracy of battery detection.
  • FIG. 1 is a schematic structural diagram of a battery detection device provided by an embodiment of the present invention.
  • FIG. 2 is a schematic flowchart of a method for detecting a vehicle battery provided by an embodiment of the present invention
  • Fig. 3 is a kind of schematic flow chart of S10 in Fig. 2;
  • Fig. 4 is a kind of schematic flow chart of S30 in Fig. 2;
  • Fig. 5 is a kind of schematic flow chart of S40 in Fig. 2;
  • Fig. 6 is a kind of schematic flow chart of S50 in Fig. 2;
  • Fig. 7 is another kind of schematic flow chart of S50 in Fig. 2;
  • Fig. 8 is a kind of schematic flow chart of S53 in Fig. 7;
  • Fig. 9 is a kind of schematic flow chart of S54 in Fig. 7;
  • Fig. 10 is a kind of schematic flow chart of S60 in Fig. 2;
  • FIG. 11 is a schematic flowchart of a method for detecting a vehicle battery provided by another embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a device for detecting a vehicle battery provided by an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of a device for detecting a vehicle battery provided by another embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of a control module in FIG. 1 .
  • the change degree of the internal resistance of the battery is determined by detecting the internal resistance value of the battery, and the change degree of the internal resistance can reflect the aging degree or health state of the battery, so that the unhealthy battery or the bad battery can be replaced in time.
  • a key point is to accurately detect the internal resistance of the battery.
  • an embodiment of the present invention provides a method for detecting a vehicle battery, which is applied to a battery detection device.
  • the method obtains a noise relationship table for the vehicle battery in advance, uses the noise relationship table to calculate the real load voltage, and then combines the open circuit voltage and load current.
  • the embodiments of the present invention can improve the accuracy of vehicle battery detection.
  • FIG. 1 is a schematic structural diagram of a battery detection device provided by an embodiment of the present invention.
  • the battery detection device 100 can detect the vehicle battery 200 .
  • the battery detection device 100 includes a battery detection module 11 , a load adjustment module 12 , a current detection module 13 and a control module 14 .
  • the battery detection module 11 is connected to the vehicle battery 200 through a Kelvin connector, and the Kelvin connector includes four connecting lines, namely a B+ connecting line, a B- connecting line, an S+ connecting line and an S- connecting line, wherein the B+ connecting line and the The S+ connection lines are both electrically connected to the positive electrode of the battery 200 , the B- connection lines and the S- connection lines are both electrically connected to the negative electrode of the battery 200 , and the B+ connection lines and the B- connection lines are used to separate the two electrodes of the battery 200 .
  • the discharge current, the S+ connection line and the S- connection line are used to separate the open circuit voltage between the two electrodes of the battery 200 .
  • the battery detection module 11 can detect the load current and the load voltage, wherein the load current is the actual measured current value flowing through the load when the battery is discharged 200, and the load voltage is when the battery is discharged 200 through S+ The voltage of the positive and negative terminals of the battery 200 detected by the connection line and the S-connection line.
  • the battery detection module 11 can detect the no-load current and no-load voltage, wherein the no-load current is the actual measured current value when the battery 200 is not loaded, The no-load voltage is the voltage across the positive and negative terminals of the battery 200 when the battery 200 is not loaded.
  • the load adjustment module 12 is used to apply a load to the battery 200.
  • the load applied by the load adjustment module 12 to the battery 200 is different, and the current generated by the discharge loop is also different.
  • the current detection module 13 is used for connecting with the negative pole of the battery 200, and it can detect the total current value of the battery 200.
  • the total current value of the battery 200 is not fixed, but can be changed according to different situations, for example , when the battery 200 is not loaded and when different loads are applied to the battery, the total current value of the battery 200 is different.
  • the current detection module 13 may be a device or instrument independent of the battery detection device 100, and the current detection module 13 is connected to the battery detection device 100 and the battery 200 respectively.
  • the current detection module 13 is a current clamp, The current clamp is clamped at the negative electrode of the battery 200 to detect the total current value of the battery 200, so that the battery testing device 100 can obtain the total current data, wherein the current clamp is a clamp-type ammeter.
  • the control module 14 is respectively connected to the battery detection module 11 , the load adjustment module 12 and the current detection module 13 .
  • the control module 14 can control the load adjustment module 12 according to the loading instruction, so that the load adjustment module 12 applies different loads to the battery 200 , or does not apply a load to the battery 200 , on the other hand, the control module 14 can obtain the battery 200 Noise relationship table, and obtaining the first total current, load current and load voltage after applying a load to the battery 200, according to the first total current, load current and load voltage, and combining with the noise relationship table, calculate the real load voltage, and then obtain The open circuit voltage of the battery 200 is calculated, and then the internal resistance of the battery 200 is calculated according to the actual load voltage, the open circuit voltage and the load current.
  • the embodiments of the present invention provide a battery detection device 100 that can accurately calculate the internal resistance of the battery 200 when detecting the battery 200 , so as to accurately determine the health of the battery 200 through the internal resistance of the battery 200 .
  • FIG. 2 is a schematic flowchart of a method for detecting a vehicle battery according to an embodiment of the present invention. As shown in Figure 2, the method includes the following steps:
  • the noise relationship table is obtained before the vehicle battery is detected to obtain various parameters that can calculate the internal resistance of the battery 200 , that is, the noise relationship table is obtained and the subsequent detection of the vehicle battery is based on the same vehicle battery. Therefore, its The same noise environment can be simulated. It is understandable that since some electronic devices on the car will draw power from the battery 200 even when the car is turned off, the current of the battery 200 will be consumed, and this part of the current consumed by the electronic devices is the noise current. , the noise current will feed back the corresponding noise voltage to the battery detection module 11 through the detection signal line, and different noise currents correspond to different noise voltages.
  • S10 includes:
  • the noise current and the corresponding noise voltage are collected at 100us time intervals to obtain multiple sets of noise currents and noise voltages of the vehicle battery.
  • the preset time length and the collection time interval are both It can be programmed according to the actual needs. Generally, if you need to obtain a complete noise relationship table, that is, within the preset accuracy, each noise current has a corresponding noise voltage, then you can The preset duration is set to be longer, or, if the duration remains unchanged, the acquisition time interval can also be set to be shorter to obtain enough groups of noise currents and noise voltages.
  • the noise relationship table includes multiple groups of noise currents and noise voltages that have a corresponding relationship with the noise currents. For example, the noise current and noise voltage are simultaneously collected at the first collection point to obtain the first noise current and the first noise voltage. The noise current and noise voltage are collected by the two collection points at the same time, and the second noise current and the second noise voltage are obtained... Therefore, after a period of collection time, multiple sets of noise current and noise voltage can be obtained, and each set of noise currents and noise voltages can be obtained. Both noise current and noise voltage correspond.
  • a load of a preset size is applied to the vehicle battery within a preset period of time, for example, a load of 0.4 ohm is continuously applied to the vehicle battery within a period of 3-100ms, the preset period of time and the size of the applied load can be According to the actual testing needs of users.
  • S30 includes:
  • S31 Collect the total current, load current, and load voltage after applying the load at preset time intervals within the preset time period, to obtain the total current, load current, and load voltage after applying the load to the vehicle battery for multiple groups;
  • a period of time is intercepted, and within this period of time, the total current, load current and load voltage are collected respectively at preset time intervals, that is, at a certain sampling rate, so as to obtain multiple groups of total currents , load current and load voltage. Since the total current, load current and load voltage of each group are collected at the same time node, there is a corresponding relationship between the total current, load current and load voltage of each group.
  • the average value of the multiple total currents is determined as the first total current
  • the average value of the multiple load currents is determined as the load current
  • the average value of the multiple total currents is determined as the load current.
  • the average value of the load voltages is determined as the load voltage.
  • S40 includes:
  • the second current difference is the noise current when a preset load is applied to the vehicle battery.
  • the noise voltage corresponding to the second current difference can be determined by querying the noise relation table, and the noise voltage is the second noise voltage.
  • the real load voltage is the load voltage after eliminating the corresponding noise voltage.
  • the acquisition method may be: subtracting the corresponding load currents from a plurality of first total currents to obtain a plurality of current difference values, finding noise voltages corresponding to the plurality of current differences by querying the noise relation table, and finally dividing the plurality of load voltages. Subtract multiple corresponding noise voltages to obtain multiple voltage differences, and average the multiple voltage differences to obtain the real load voltage.
  • internal resistance R (real load voltage - open circuit voltage)/load current
  • the value of the open circuit voltage is relatively close to the value of the bias voltage , so the value of the bias voltage can be substituted into the open-circuit voltage in the formula, and the internal resistance of the vehicle battery can be calculated.
  • the real load voltage is the load voltage after excluding the noise voltage , that is, the calculation result of the internal resistance will not be affected by the noise voltage.
  • the calculated internal resistance can reflect the real internal resistance of the vehicle battery, thereby improving the accuracy of vehicle battery detection and making more accurate judgments.
  • this method does not need to detect the vehicle battery in the no-load state, it is beneficial to save battery detection time, and can greatly improve the battery detection efficiency.
  • S50 includes:
  • the bias voltage is written by the battery testing device 100 through calibration before leaving the factory.
  • the open circuit voltage is determined by the bias voltage.
  • FIG. 7 is another schematic flowchart of S50 in FIG. 2 .
  • S50 includes:
  • S53 includes:
  • a period of time After releasing the load applied to the vehicle battery, select a period of time, and use a preset time interval, for example, 100ms as the time interval, that is, collect the total current, load current, and load voltage at a certain sampling rate. , so as to obtain the total current, no-load current and no-load voltage of multiple groups. Since the total current, no-load current and no-load voltage of each group are collected at the same time node, the total current, no-load current and no-load voltage of each group are collected at the same time node. There is a corresponding relationship between current and no-load voltage.
  • the average value of multiple total currents is determined as the first total current, and the average value of multiple no-load currents is determined as the no-load current , and the average value of multiple no-load voltages is determined as the no-load voltage.
  • S54 includes:
  • the first current difference is the noise current after releasing the load on the vehicle battery, that is, when the vehicle is not loaded.
  • the noise corresponding to the first current difference can be determined by querying the noise relation table.
  • voltage, the noise voltage is the first noise voltage.
  • the open circuit voltage is the no-load voltage after eliminating the corresponding noise voltage.
  • the voltage acquisition method may be: subtracting the corresponding load currents from multiple second total currents to obtain multiple current difference values, finding the noise voltage corresponding to the multiple current difference values by querying the noise relation table, and finally removing the multiple empty current values.
  • the carrier voltage is subtracted from a plurality of corresponding noise voltages to obtain a plurality of voltage differences, and the open circuit voltage can be obtained by averaging the plurality of voltage differences.
  • S60 includes:
  • the true load current is determined as the difference between the load current and the no-load current.
  • the internal resistance of the vehicle battery can be calculated.
  • the real load voltage in the formula can be the average value of multiple voltage differences obtained by subtracting multiple corresponding noise voltages from multiple obtained load voltages
  • the open circuit voltage can be multiple obtained no-load voltages.
  • the average value of multiple voltage differences obtained by subtracting multiple corresponding noise voltages, and the real load current may be a current difference value obtained by subtracting the average value of multiple no-load currents from the obtained average value of multiple load currents.
  • the embodiments of the present invention can improve the accuracy of battery detection.
  • FIG. 11 is a schematic flowchart of a method for detecting a vehicle battery according to another embodiment of the present invention. The difference between this embodiment and the above-mentioned embodiment is that the method further includes:
  • S80 Determine the state of health of the vehicle battery according to at least one of the open circuit voltage, the internal resistance and the CCA value.
  • the state of health of the vehicle battery may be determined from the CCA value.
  • the CCA value is greater than 80% of the nominal CCA, the vehicle battery is determined to be healthy, when the CCA value is between 73% and 80% of the nominal CCA, it is determined that the vehicle battery is in a critical uncertainty state, and when the CCA value is less than 73% of the nominal CCA, Determine if the battery is damaged.
  • FIG. 12 is a schematic structural diagram of an apparatus for detecting a vehicle battery according to an embodiment of the present invention.
  • the apparatus 120 includes: a first acquisition module 121 , a loading module 122 , a second acquisition module 123 , a first calculation module 124 , a third acquisition module 125 and a second calculation module 126 .
  • the first acquisition module 121 is used to acquire a noise relationship table for the vehicle battery, wherein the noise relationship table includes a corresponding relationship between noise current and noise current; the loading module 122 is used to apply a load to the vehicle battery, and the second acquisition module 123 is used to obtain the first total current, the load current and the load voltage after applying a load to the vehicle battery, and the first calculation module 124 is used to calculate the real Load voltage, the third acquisition module 125 is used to acquire the open circuit voltage of the vehicle battery, and the second calculation module 126 is used to calculate the internal resistance of the vehicle battery according to the actual load voltage, open circuit voltage and load current.
  • the device 120 further includes a first determination module 127 and a second determination module 128.
  • the first determination module 127 determines the CCA value of the vehicle battery according to the internal resistance of the vehicle battery
  • the second determination module 128 is configured to determine the CCA value of the vehicle battery according to the open circuit voltage, internal resistance and CCA. At least one of the values to determine the state of health of the vehicle battery.
  • the first acquisition module 121 is specifically configured to acquire the noise current and noise voltage of the vehicle battery at preset time intervals within a preset period of time without applying a load to the vehicle battery, so as to acquire multiple sets of noise current and noise of the vehicle battery. voltage, construct the corresponding relationship between multiple groups of noise current and noise voltage, and obtain a noise relationship table.
  • the second acquisition module 123 is specifically configured to collect the total current, load current and load voltage after applying a load at a preset time interval within a preset time period, so as to obtain multiple groups of total current, load current and load after applying a load. voltage, and calculate the average value of the total current, the load current and the load voltage after applying the load in multiple groups respectively, so as to obtain the first total current, the load current and the load voltage.
  • the first calculation module 124 is specifically configured to calculate the second current difference between the first total current and the load current, obtain a second noise voltage corresponding to the second current difference according to the noise relationship table, and subtract the second noise from the load voltage voltage to get the real load voltage.
  • the third obtaining module 125 includes a first obtaining unit 1251 and a second obtaining unit 1252, where the first obtaining unit 1251 is configured to obtain the second total current after releasing the load applied to the vehicle battery, and the no-load For current and no-load voltage, the second obtaining unit 1252 is configured to obtain the open-circuit voltage according to the second total current, no-load current, and no-load voltage, and in combination with the noise relation table.
  • the second calculation module 126 is specifically configured to calculate the real load current according to the load current and the no-load current, and calculate the internal resistance of the vehicle battery according to the real load voltage, open circuit voltage and real load current.
  • the first obtaining unit 1251 is specifically configured to collect the total current, no-load current and no-load voltage after releasing the load at preset time intervals after releasing the load applied to the vehicle battery, so as to obtain multiple sets of Calculate the total current, no-load current, and no-load voltage after releasing the load, and calculate the average value of the total current, no-load current, and no-load voltage after releasing the load for multiple groups to obtain the second total current, no-load current, and no-load voltage. Voltage.
  • the second obtaining unit 1252 is specifically configured to calculate the first current difference between the second total current and the no-load current, obtain the first noise voltage corresponding to the first current difference according to the noise relationship table, and set the The open circuit voltage is obtained by subtracting the first noise voltage from the no-load voltage.
  • the third obtaining module 125 includes a third obtaining unit 1253 and a fourth obtaining unit 1254 , the third obtaining unit 1253 is used to obtain the bias voltage of the battery detection device 100 , and the fourth obtaining The unit 1254 is used to obtain the open circuit voltage according to the bias voltage.
  • FIG. 14 is a schematic structural diagram of a control module in FIG. 2 .
  • the control module 14 includes one or more processors 141 and a memory 142 .
  • one processor 141 is taken as an example in FIG. 14 .
  • the processor 141 and the memory 142 may be connected by a bus or in other ways, and the connection by a bus is taken as an example in FIG. 14 .
  • the memory 142 can be used to store non-volatile software programs, non-volatile computer-executable programs and modules, etc., such as program instructions corresponding to the methods in the foregoing embodiments of the present invention and modules corresponding to the devices in the above embodiments of the present invention (eg, the first acquisition module 121 , the loading module 122 , the second acquisition module 123 , the first calculation module 124 , the third acquisition module 125 , and the second calculation module 126 , etc.).
  • the processor 141 executes various functional applications and data processing of a method for detecting a vehicle battery by running the non-volatile software programs, instructions and modules stored in the memory 142, that is, implementing one of the above method embodiments A method of detecting a vehicle battery and the functions of the various modules of the above-described apparatus embodiments.
  • the memory 142 may include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application program required for at least one function; the storage data area may store data created according to the use of a device for detecting a vehicle battery Wait.
  • memory 142 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • memory 142 includes memory located remotely from processor 141 , which may be connected to processor 41 through a network. Examples of such networks include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the program instructions and one or more modules are stored in the memory 142, and when executed by the one or more processors 141, execute each step of a method for detecting a vehicle battery in any of the above method embodiments , or, to implement the functions of each module of a device for detecting a vehicle battery in any of the above device embodiments.
  • the above product can execute the method provided by the above embodiments of the present invention, and has functional modules and beneficial effects corresponding to the execution method.
  • the above product can execute the method provided by the above embodiments of the present invention, and has functional modules and beneficial effects corresponding to the execution method.
  • Embodiments of the present invention further provide a non-volatile computer-readable storage medium, where the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are executed by one or more processors, for example, in FIG. 14 .
  • a processor 141 can cause the computer to execute each step of a method for detecting a vehicle battery in any of the above method embodiments, or implement the functions of each module of a device for detecting a vehicle battery in any of the above device embodiments.
  • An embodiment of the present invention also provides a computer program product, the computer program product includes a computer program stored on a non-volatile computer-readable storage medium, the computer program includes program instructions, and when the program instructions are executed by one or more The execution of a processor, such as a processor 141 in FIG. 14 , can cause the computer to execute each step of a method for detecting a vehicle battery in any of the above-mentioned method embodiments, or to implement one of the above-mentioned device embodiments for detecting a vehicle.
  • modules described as separate components may or may not be physically separated, and the components displayed as modules may or may not be physical units, that is, they may be located in One place, or it can be distributed over multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each embodiment can be implemented by means of software plus a general hardware platform, and certainly can also be implemented by hardware.
  • Those of ordinary skill in the art can understand that all or part of the processes in the methods of the above embodiments can be implemented by computer program instructions related to hardware.
  • the program can be stored in a computer-readable storage medium, and when the program is executed At the time, the flow of the implementation method of the above-mentioned methods may be included.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM) or a random access memory (Random Access Memory, RAM) or the like.
  • the present invention can be implemented in many different forms, and is not limited to the embodiments described in this specification. These embodiments are not intended to limit the content of the present invention. The purpose of providing these embodiments is to make the present invention more effective. A more thorough and comprehensive understanding of the disclosed content. And under the thinking of the present invention, the above-mentioned technical features continue to be combined with each other, and there are many other changes in different aspects of the present invention as described above, which are all regarded as the scope of the description of the present invention; further, to those of ordinary skill in the art. That said, improvements or changes can be made based on the above description, and all such improvements and changes should fall within the protection scope of the appended claims of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

一种检测车辆电池的方法、装置及电池检测设备。该方法应用于电池检测设备,该方法包括:获取针对车辆电池的噪声关系表(S10);对车辆电池施加负载(S20);获取对车辆电池施加负载后的第一总电流、以及,负载电流和负载电压(S30);根据第一总电流、负载电流和负载电压,并且结合噪声关系表,计算真实负载电压(S40);获取车辆电池的开路电压(S50);根据真实负载电压、开路电压和所述负载电流,计算车辆电池的内阻(S60)。通过预先获取针对车辆电池的噪声关系表,利用噪声关系表计算真实负载电压,再结合开路电压和负载电流准确地计算出电池内阻,以根据电池内阻准确判断电池健康程度,可提高电池检测的准确度。

Description

一种检测车辆电池的方法、装置及电池检测设备
本申请要求于2020年7月14日提交中国专利局、申请号为202010675825.9、申请名称为“一种检测车辆电池的方法、装置及电池检测设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及汽车电子技术领域,特别是涉及一种检测车辆电池的方法、装置及电池检测设备。
背景技术
现代科技发展越来越快,车上的电子设备越来越多,对汽车电池能力要求也越来越高,不仅要求其能够正常启动汽车,还需要在一些特定场景能够给车上的电器提供足够的电力支持,若汽车长期使用不健康的电池,将会导致严重的后果,因此,需要对汽车电池进行周期性的保养测试,以判断汽车电池是否健康或能否满足使用需求,若不健康或不能满足使用需求,则需要及时对汽车电池进行更换。
对于判断汽车电池是否健康,传统的电池检测方案一般是通过电池检测仪检测电阻的内阻,再根据电阻的内阻的大小判断汽车电池是否健康:首先通过对电池施加负载,测量负载电压以及施加负载后产生的电流,然后释放负载,测量电池开路电压,通过公式电池内阻=(开路电压-负载电压)/电流,即可计算出电池内阻的大小。
然而,发明人在实施本发明的过程中,发现现有的电池检测方案至少存在以下技术问题:在电池检测过程中,无论是对电池施加负载或释放负载时,汽车电子设备都会消耗电流,消耗的电流会反馈相应的电压至电池检测设备,并且反馈的电压是不确定的,这会对开路电压或负载电压的检测结果产生极大的干扰,使得开路电压或负载电压的检测值偏离真实值,从而导致电池内阻的检测不够准确。
发明内容
为解决上述技术问题,本发明实施例提供了一种检测车辆电池的方法、装置及电池检测设备,能够解决现有技术中在电池检测中由于受到噪声干扰致使检测不够准确的技术问题。
本发明实施例为解决上述技术问题提供了如下技术方案:
在第一方面,本发明实施例提供一种检测车辆电池的方法,所述方法应用于电池检测设备,所述电池检测设备包括电流检测装置,所述电池检测设备通过开尔文连接器与车辆电池连接,所述电流检测装置与所述车辆电池的负极连接,所述方法包括:获取针对所述车辆电池的噪声关系表,其中,所述噪声关 系表包括噪声电流和噪声电压之间的对应关系;对所述车辆电池施加负载;获取对所述车辆电池施加负载后的第一总电流、以及,负载电流和负载电压;根据所述第一总电流、所述负载电流和所述负载电压,并且结合所述噪声关系表,计算真实负载电压;获取所述车辆电池的开路电压;根据所述真实负载电压、所述开路电压和所述负载电流,计算所述车辆电池的内阻。
可选地,所述对所述车辆电池施加负载,包括:在预设时长内对所述车辆电池施加预设大小的负载;所述获取对所述车辆电池施加负载后的第一总电流、以及,负载电流和负载电压的步骤,进一步包括:在所述预设时长内以预设时间间隔分别对施加所述负载后的总电流、负载电流和负载电压进行采集,以获取多组所述施加所述负载后的总电流、负载电流和负载电压;分别计算多组所述施加所述负载后的总电流、负载电流和负载电压的平均值,以得到所述第一总电流、所述负载电流和所述负载电压。
可选地,所述获取所述车辆电池的开路电压的步骤,进一步包括:获取释放对所述车辆电池施加的负载后的第二总电流、以及,空载电流和空载电压;根据所述第二总电流、所述空载电流和所述空载电压,并且结合所述噪声关系表,获取所述开路电压;所述根据所述真实负载电压、开路电压和负载电流,计算所述车辆电池的内阻的步骤,进一步包括:根据所述负载电流和所述空载电流,计算真实负载电流;根据所述真实负载电压、所述开路电压和真实负载电流,计算所述车辆电池的内阻。所述获取释放对所述车辆电池施加的负载后的第二总电流、以及,空载电流和空载电压的步骤,进一步包括:释放对所述车辆电池施加的负载后,以预设时间间隔对释放负载后的总电流、空载电流和空载电压进行采集,以获取多组释放负载后的总电流、空载电流和空载电压;分别计算多组所述释放负载后的总电流、空载电流和空载电压的平均值,以得到所述第二总电流、所述空载电流和所述空载电压。
可选地,所述根据所述第二总电流、空载电流和所述空载电压,并且结合所述噪声关系表,获取所述开路电压的步骤,进一步包括:计算所述第二总电流与所述空载电流的第一电流差值;根据噪声关系表,获取与所述第一电流差值对应的第一噪声电压;将所述空载电压减去所述第一噪声电压,得到所述开路电压。
可选地,所述获取所述车辆电池的开路电压的步骤,进一步包括:获取所述电池检测设备的偏置电压;根据所述偏置电压,获取所述开路电压。
可选地,所述根据所述第一总电流、所述负载电流和所述负载电压,并且结合所述噪声关系表,计算真实负载电压的步骤,进一步包括:计算所述第一总电流和负载电流的第二电流差值;根据所述噪声关系表,获取与所述第二电流差值对应的第二噪声电压;将所述负载电压减去所述第二噪声电压,得到所述真实负载电压。
可选地,所述获取针对所述车辆电池的噪声关系表的步骤,进一步包括:在未对所述车辆电池施加负载的情况下,在预设时长内以预设时间间隔采集所 述车辆电池的噪声电流和噪声电压,以获取所述车辆电池的多组噪声电流和噪声电压;构建多组所述噪声电流和噪声电压之间的对应关系,得到所述噪声关系表。
可选地,所述方法还包括:根据所述车辆电池的内阻,确定所述车辆电池的CCA值;根据所述开路电压、所述内阻和所述CCA值中的至少一个,检测所述车辆电池的健康状态。
在第二方面,本发明实施例提供一种检测车辆电池的装置,包括:第一获取模块,用于获取针对所述车辆电池的噪声关系表,其中,所述噪声关系表包括噪声电流和噪声电流之间的对应关系;加载模块,用于对所述车辆电池施加负载;第二获取模块,用于获取对所述车辆电池施加负载后的第一总电流、以及,负载电流和负载电压;第一计算模块,用于根据所述第一总电流、所述负载电流和所述负载电压,并且结合所述噪声关系表,计算真实负载电压;第二获取模块,用于获取所述车辆电池的开路电压;第二计算模块,用于根据所述真实负载电压、所述开路电压和所述负载电流,计算所述车辆电池的内阻。
在第三方面,本发明实施例提供一种电池检测设备,电池检测模块,用于通过开尔文连接器与车辆电池连接;负载调节模块,用于向所述车辆电池施加负载;电流检测模块,用于与所述车辆电池的负极连接;控制模块,分别与所述电池检测模块、所述负载调节模块及所述电流检测模块连接,所述控制模块包括:至少一个处理器;和与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如上所述的方法。
在第三方面,本发明实施例提供一种非易失性计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,当所述计算机可执行指令被电子设备执行时,使所述电子设备执行如上所述的方法。
本发明实施例的有益效果是:区别于现有技术,提供一种检测车辆电池的方法、装置及电池检测设备。该方法应用于电池检测设备,该方法包括:获取针对车辆电池的噪声关系表;对车辆电池施加负载;获取对车辆电池施加负载后的第一总电流、以及,负载电流和负载电压;根据第一总电流、负载电流和负载电压,并且结合噪声关系表,计算真实负载电压;获取车辆电池的开路电压;根据真实负载电压、开路电压和所述负载电流,计算车辆电池的内阻。通过预先获取针对车辆电池的噪声关系表,利用噪声关系表计算真实负载电压,再结合开路电压和负载电流准确地计算出电池内阻,以根据电池内阻准确判断电池健康程度,因此,本发明实施例可提高电池检测的准确度。
附图说明
一个或多个实施例通过与之对应的附图中的图片仅作为示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是本发明实施例提供的一种电池检测设备的结构示意图;
图2是本发明实施例提供一种检测车辆电池的方法的流程示意图;
图3是图2中S10的一种流程示意图;
图4是图2中S30的一种流程示意图;
图5是图2中S40的一种流程示意图;
图6是图2中S50的一种流程示意图;
图7是图2中S50的另一种流程示意图;
图8是图7中S53的一种流程示意图;
图9是图7中S54的一种流程示意图;
图10是图2中S60的一种流程示意图;
图11是本发明另一实施例提供一种检测车辆电池的方法的流程示意图;
图12是本发明实施例提供一种检测车辆电池的装置的结构示意图;
图13是本发明另一实施例提供一种检测车辆电池的装置的结构示意图;
图14是图1中一种控制模块的结构示意图。
具体实施方式
为了便于理解本申请,下面结合附图和具体实施方式,对本申请进行更详细的说明。需要说明的是,当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是用于限制本发明。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
此外,下面所描述的本申请不同实施例中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
通过大量的实验得出:蓄电池的内阻值随电池容量的可降低而升高,也就是说,当蓄电池不断老化,容量在不断降低时,蓄电池的内阻会不断地上升。由此,通过检测蓄电池的内阻值来确定蓄电池的内阻变化程度,内阻的变化程度可以反映蓄电池的老化程度或健康状态,以便对不健康的蓄电池或坏电池进行及时的更换。如何准确地判断蓄电池的健康状态,避免将好电池错认为是坏电池,或者将坏电池错认为是好电池,一个关键点在于准确地检测蓄电池的内阻。
基于此,本发明实施例提供一种检测车辆电池的方法应用于电池检测设备,该方法通过预先获取针对车辆电池的噪声关系表,利用噪声关系表计算真实负载电压,再结合开路电压和负载电流准确地计算出车辆电池的内阻,也就是说,最后的计算得到内阻值是剔除了车辆电池的噪声的,亦即,计算得到的内阻值是可以作为车辆电池实时的,并且是真实的内阻值的。
因此,本发明实施例可提高车辆电池检测的准确度。
实施例一
请参阅图1,图1是本发明实施例提供一种电池检测设备的结构示意图。电池检测设备100可对车辆电池200进行检测,如图1所示,电池检测设备100包括:电池检测模块11、负载调节模块12、电流检测模块13及控制模块14。
电池检测模块11通过开尔文连接器与车辆电池200连接,而开尔文连接器包括四根连接线,分别为B+连接线、B-连接线、S+连接线及S-连接线,其中,B+连接线和S+连接线均与电池200的正极电连接,B-连接线和S-连接线均与电池200的负极电连接,B+连接线和B-连接线用于分离电池200的两个电极之间的放电电流,S+连接线和S-连接线用于分离电池200的两个电极之间的开路电压。
在对电池200施加负载时,电池检测模块11可检测出负载电流和负载电压,其中,负载电流为电池放电200时实际测得的流经负载的电流值,负载电压为电池放电200时通过S+连接线和S-连接线检测到的电池200正负极两端的电压。在不对电池200施加负载时,也即,空载时,电池检测模块11可检测出空载电流和空载电压,其中,空载电流为电池200不带负载时的实际测得的电流值,空载电压为电池200不带负载时电池200正负极两端的电压。
负载调节模块12用于向电池200施加负载,一般的,当电池检测模块11与电池200形成放电回路时,负载调节模块12对电池200施加的负载不同,放电回路所产生的电流也不同。
电流检测模块13用于与电池200的负极连接,其可检测电池200总的电流值,电池200总的电流值并不是固定不变的,而是可根据不同的情况而发生相应的变化,例如,电池200空载的时候以及对电池施加不同的负载的时候,电池200总的电流值是不尽相同的。
在一些实施例中,电流检测模块13可以是独立于电池检测设备100的器件或仪器,电流检测模块13分别于电池检测设备100及电池200连接,例如,电流检测模块13是一种电流钳,电流钳夹在电池200的负极以检测电池200总的电流值,以使电池检测设备100能够获取到总电流数据,其中,电流钳是一种钳式电流表。
控制模块14分别于电池检测模块11、负载调节模块12及电流检测模块13连接。一方面,控制模块14可根据加载指令控制负载调节模块12,以使负载调节模块12对电池200施加不同大小的负载,或者不对电池200施加负载,另一方面,控制模块14可获取电池200的噪声关系表,以及获取对电池200施加负载后的第一总电流、以及负载电流和负载电压,根据第一总电流、负载电流和负载电压,并且结合噪声关系表,计算真实负载电压,然后获取电池200的开路电压,再根据真实负载电压、开路电压和负载电流,计算电池200 的内阻。
因此,本发明实施例提供一种电池检测设备100在对电池200进行检测时,能够准确计算出电池200的内阻,从而能够通过电池200的内阻准确判断出电池200的健康程度。
实施例二
请参阅图2,图2为本发明实施例提供一种检测车辆电池的方法的流程示意图。如图2所示,该方法包括以下步骤:
S10、获取针对车辆电池的噪声关系表,其中,噪声关系表包括噪声电流和噪声电压之间的对应关系;
噪声关系表在对车辆电池进行检测以获取可计算电池200的内阻的各个参数之前获得的,也即,获得噪声关系表与后续对车辆电池进行检测都是基于相同的车辆电池,因此,其能够模拟相同的噪声环境。可以理解的是,由于汽车上的一些电子设备即使在汽车熄火时也会从电池200取电,也即会消耗电池200的电流,被电子设备所消耗的这部分电流即为噪声电流,此时,噪声电流会通过检测信号线向电池检测模块11反馈对应的噪声电压,不同的噪声电流对应不同的噪声电压。
在一些实施例中,如图3所示,S10包括:
S11、在未对车辆电池施加负载的情况下,在预设时长内以预设时间间隔采集车辆电池的噪声电流和噪声电压,以获取车辆电池的多组噪声电流和噪声电压;
例如,在100ms以上,10s以下的一段时长内,以100us的时间间隔采集噪声电流以及对应的噪声电压,以获取车辆电池的多组噪声电流和噪声电压,预设的时长以及采集的时间间隔均可根据用于实际需求进行编程设定,一般的,如果需要获取完整的噪声关系表,亦即,在预设的精度内,每一个噪声电流均有与之相对应的噪声电压,那么,可以将预设的时长设定得长些,或者,在时长不变的情况下,也可以将采集的时间间隔设定得短些,以获得足够多组噪声电流和噪声电压。
S12、构建多组噪声电流和噪声电压之间的对应关系,得到噪声关系表。
噪声关系表包括多组噪声电流及与噪声电流具有对应关系的噪声电压,例如,在第一个采集点同时对噪声电流和噪声电压进行采集,得到第一噪声电流与第一噪声电压,在第二个采集点同时对噪声电流和噪声电压进行采集,得到第二噪声电流与第二噪声电压……,因此,在经过一段采集时长后,可获得多组噪声电流与噪声电压,并且,每组噪声电流与噪声电压都是对应的。
S20、对车辆电池施加负载;
在本实施例中,在预设时长内对车辆电池施加预设大小的负载,例如在3-100ms的时长内对车辆电池连续施加0.4欧姆的负载,预设时长和所施加负载的大小均可根据用户的实际检测需求而定。
S30、获取对车辆电池施加负载后的第一总电流、以及,负载电流和负载电压;
具体的,如图4所示,S30包括:
S31、在上述预设时长内以预设时间间隔分别对施加负载后的总电流、负载电流和负载电压进行采集,以获取多组对车辆电池施加负载后的总电流、负载电流和负载电压;
例如,在上述预设时长内,截取一段时间,并且在该段时间内以预设时间间隔,即以一定的采样率分别对总电流、负载电流和负载电压进行采集,从而获取多组总电流、负载电流和负载电压,由于每组的总电流、负载电流和负载电压都是在同一时间节点进行采集的,因此,每组的总电流、负载电流和负载电压存在着对应关系。
S32、分别计算多组施加负载后的总电流、负载电流和负载电压的平均值,以得到第一总电流、负载电流和负载电压。
通过对获取到的多个总电流、负载电流和负载电压分别求平均,将多个总电流的平均值确定为第一总电流,将多个负载电流的平均值确定为负载电流,以及将多个负载电压的平均值确定为负载电压。
S40、根据第一总电流、负载电流和负载电压,并且结合噪声关系表,计算真实负载电压;
具体的,如图5所示,S40包括:
S41、计算第一总电流和负载电流的第二电流差值;
S42、根据噪声关系表,获取与第二电流差值对应的第二噪声电压;
第二电流差值即为对车辆电池施加预设大小负载时的噪声电流,在
计算出第二电流差值后,通过查询噪声关系表,即可确定与第二电流差值对应的噪声电压,该噪声电压即为第二噪声电压。
S43、将负载电压减去第二噪声电压,得到真实负载电压;
真实负载电压即为剔除了对应噪声电压后的负载电压。
可以理解的是,由于在S31中,获取得到的多组总电流、负载电流和负载电压中,每组的总电流、负载电流和负载电压都是存在着对应关系的,因此,真实负载电压的获取方法可以是:将多个第一总电流减去对应的负载电流,得到多个电流差值,通过查询噪声关系表找到与该多个电流差值对应的噪声电压,最后将多个负载电压减去多个对应的噪声电压,得到多个电压差值,将该多个电压差值求平均,即可得到真实负载电压。
S50、获取车辆电池的开路电压;
S60、根据真实负载电压、开路电压和负载电流,计算车辆电池的内阻。
在获取了真实负载电压、开路电压和负载电流后,根据公式:内阻R=(真实负载电压-开路电压)/负载电流,一般的,开路电压的值与偏置电压的值是比较接近的,因此可将偏置电压的值代入到公式中的开路电压中,即可计算出车辆电池的内阻,通过此种方式,在一方面,由于真实负载电压是剔除了噪声 电压后的负载电压,亦即,内阻的计算结果并不会受到噪声电压的影响,如前所述,计算得到的内阻能够反映车辆电池真实的内阻,从而提高车辆电池检测的准确度,更准确地判断出车辆电池的健康程度,另一方面,由于此种方式不需要对车辆电池在空载状态下进行检测,因此,其有利于节省电池检测时间,可大大提高电池检测效率。
在一些实施例中,如图6所示,S50包括:
S51、获取电池检测设备100的偏置电压;
偏置电压为电池检测设备100在出厂前通过校准写入的。
S52、根据偏置电压,获取开路电压。
开路电压由偏置电压来确定。
在图6中,开路电压是根据偏置电压来确定的,而偏置电压是一个相对固定的值,其不能真实反映车辆电池处于不同阶段的开路电压,因此,可进一步对车辆电池在空载状态下进行检测,以获取更加准确的开路电压,从而进一步提高电池内阻计算的准确度。请参阅图7,图7为图2中S50的另一种流程示意图。如图7所示,S50包括:
S53、获取释放对车辆电池施加的负载后的第二总电流、以及,空载电流和空载电压;
具体的,如图8所示,S53包括:
S531、释放对车辆电池施加的负载后,以预设时间间隔对释放负载后的总电流、空载电流和空载电压进行采集,以获取多组释放负载后的总电流、空载电流和空载电压;
释放对车辆电池施加的负载后,选取一段时间,并且在该段时间内以预设时间间隔,例如将100ms作为时间间隔,即以一定的采样率分别对总电流、负载电流和负载电压进行采集,从而获取多组总电流、空载电流和空载电压,由于每组的总电流、空载电流和空载电压都是在同一时间节点进行采集的,因此,每组的总电流、空载电流和空载电压存在着对应关系。
S532、分别计算多组释放负载后的总电流、空载电流和空载电压的平均值,以得到第二总电流、空载电流和空载电压。
通过对获取到的多个总电流、空载电流和空载电压分别求平均,将多个总电流的平均值确定为第一总电流,将多个空载电流的平均值确定为空载电流,以及将多个空载电压的平均值确定为空载电压。
S54、根据第二总电流、空载电流和空载电压,并且结合噪声关系表,获取开路电压。
具体的,如图9所示,S54包括:
S541、计算第二总电流与空载电流的第一电流差值;
S542、根据噪声关系表,获取与第一电流差值对应的第一噪声电压;
第一电流差值即为释放对车辆电池施加负载后,即空载时的噪声电流,在计算出第一电流差值,通过查询噪声关系表,即可确定与第一电流差值对应的 噪声电压,该噪声电压即为第一噪声电压。
S543、将空载电压减去第一噪声电压,得到开路电压。
开路电压即为剔除了对应噪声电压后的空载电压。
可以理解的是,在S531中,获取得到的多组总电流、空载电流和空载电压中,每组的总电流、空载电流和空载电压都是存在着对应关系的,因此,开路电压的获取方法可以是:将多个第二总电流减去对应的负载电流,得到多个电流差值,通过查询噪声关系表找到与多个电流差值对应的噪声电压,最后将多个空载电压减去多个对应的噪声电压,得到多个电压差值,将该多个电压差值求平均,即可得到开路电压。
在获取了开路电压后,进一步的,如图10所示,S60包括:
S61、根据负载电流和空载电流,计算真实负载电流;
将真实负载电流确定为负载电流和空载电流的差值。
S62、根据真实负载电压、开路电压和真实负载电流,计算车辆电池的内阻。
在获取了真实负载电压、开路电压和真实负载电流后,根据公式:R=(真实负载电压-开路电压)/真实负载电流,即可计算出车辆电池的内阻。可以理解的是,公式中的真实负载电压可以是获取到的多个负载电压减去多个对应噪声电压得到的多个电压差值的平均值,开路电压可以是获取到的多个空载电压减去多个对应噪声电压得到的多个电压差值的平均值,真实负载电流可以是获取到的多个负载电流的平均值减去多个空载电流的平均值得到的电流差值。
由于用于计算车辆电池的内阻的真实负载电压和开路电压都是剔除了对应的噪声电压的,因此,其能够避免电池检测设备100在对车辆电池进行检测的过程中,由于受到噪声影响而导致检测结果不够准确的技术问题,因此,本发明实施例可提高电池检测的准确度。
在一些实施例中,请参阅图11,图11为本发明另一实施例提供一种检测车辆电池的方法流程示意图。本实施例与上述实施例不同之处在于,该方法还包括:
S70、根据所述车辆电池的内阻,确定车辆电池的CCA值;
本领域技术人员可知,CCA值跟内阻R有一定的比例系数α,即CCA=α*R,从而,即可获得CCA值以及CCA百分比。
S80、根据开路电压、内阻和CCA值中的至少一个,确定车辆电池的健康状态。
例如,可根据CCA值确定车辆电池的健康状态。CCA值大于标称CCA的80%时,确定车辆电池健康,CCA值在标称CCA的73%到80%时,确定车辆电池处于临界不确定状态,CCA值小于标称CCA的73%时,确定电池损坏。
实施例三
请参阅图12,图12为本发明实施例提供一种检测车辆电池的装置的结构 示意图。如图12所示,装置120包括:第一获取模块121、加载模块122、第二获取模块123、第一计算模块124、第三获取模块125及第二计算模块126。其中,第一获取模块121用于获取针对车辆电池的噪声关系表,其中,噪声关系表包括噪声电流和噪声电流之间的对应关系;加载模块122用于对车辆电池施加负载,第二获取模块123用于获取对车辆电池施加负载后的第一总电流、以及负载电流和负载电压,第一计算模块124用于根据第一总电流、负载电流和负载电压,并且结合噪声关系表,计算真实负载电压,第三获取模块125用于获取车辆电池的开路电压,第二计算模块126用于根据真实负载电压、开路电压和负载电流,计算车辆电池的内阻。
装置120还包括第一确定模块127和第二确定模块128,第一确定模块127根据车辆电池的内阻,确定车辆电池的CCA值,第二确定模块128用于根据开路电压、内阻和CCA值中的至少一个,确定车辆电池的健康状态。
第一获取模块121具体用于在未对车辆电池施加负载的情况下,在预设时长内以预设时间间隔采集车辆电池的噪声电流和噪声电压,以获取车辆电池的多组噪声电流和噪声电压,构建多组噪声电流和噪声电压之间的对应关系,得到噪声关系表。
第二获取模块123具体用于在预设时长内以预设时间间隔分别对施加负载后的总电流、负载电流和负载电压进行采集,以获取多组施加负载后的总电流、负载电流和负载电压,分别计算多组施加负载后的总电流、负载电流和负载电压的平均值,以得到第一总电流、负载电流和负载电压。
第一计算模块124具体用于计算第一总电流和负载电流的第二电流差值,根据噪声关系表,获取与第二电流差值对应的第二噪声电压,将负载电压减去第二噪声电压,得到真实负载电压。
在一些实施例中,第三获取模块125包括第一获取单元1251和第二获取单元1252,第一获取单元1251用于获取释放对车辆电池施加的负载后的第二总电流、以及,空载电流和空载电压,第二获取单元1252用于根据第二总电流、空载电流和空载电压,并且结合噪声关系表,获取开路电压。
进一步的,第二计算模块126具体用于根据负载电流和空载电流,计算真实负载电流,根据真实负载电压、开路电压和真实负载电流,计算车辆电池的内阻。
在一些实施例中,第一获取单元1251具体用于释放对车辆电池施加的负载后,以预设时间间隔对释放负载后的总电流、空载电流和空载电压进行采集,以获取多组释放负载后的总电流、空载电流和空载电压,分别计算多组释放负载后的总电流、空载电流和空载电压的平均值,以得到第二总电流、空载电流和空载电压。
在一些实施例中,第二获取单元1252具体用于计算第二总电流与空载电流的第一电流差值,根据噪声关系表,获取与第一电流差值对应的第一噪声电压,将空载电压减去第一噪声电压,得到开路电压。
在一些实施例中,如图13所示,第三获取模块125包括第三获取单元1253及第四获取单元1254,第三获取单元1253用于获取电池检测设备100的偏置电压,第四获取单元1254用于根据偏置电压,获取开路电压。
请参阅图14,图14为图2中一种控制模块的结构示意图。如图14所示,控制模块14包括一个或多个处理器141及存储器142。其中,图14中以一个处理器141为例。
处理器141和存储器142可以通过总线或者其他方式连接,图14中以通过总线连接为例。
存储器142作为一种非易失性计算机可读存储介质,可用于存储非易失性软件程序、非易失性计算机可执行程序以及模块等,如本发明上述实施例中的方法对应的程序指令以及本发明上述实施例中的装置对应的模块(例如第一获取模块121、加载模块122、第二获取模块123、第一计算模块124、第三获取模块125及第二计算模块126等)。处理器141通过运行存储在存储器142中的非易失性软件程序、指令以及模块,从而执行一种检测车辆电池的方法的各种功能应用以及数据处理,即实现上述方法实施例中的一种检测车辆电池的方法以及上述装置实施例的各个模块的功能。
存储器142可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据一种检测车辆电池的装置的使用所创建的数据等。
此外,存储器142可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实施例中,存储器142包括相对于处理器141远程设置的存储器,这些远程存储器可以通过网络连接至处理器41。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
所述程序指令以及一个或多个模块存储在所述存储器142中,当被所述一个或者多个处理器141执行时,执行上述任意方法实施例中的一种检测车辆电池的方法的各个步骤,或者,实现上述任意装置实施例中的一种检测车辆电池的装置的各个模块的功能。
上述产品可执行本发明上述实施例所提供的方法,具备执行方法相应的功能模块和有益效果。未在本实施例中详尽描述的技术细节,可参见本发明上述实施例所提供的方法。
本发明实施例还提供了一种非易失性计算机可读存储介质,计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个或多个处理器执行,例如图14中的一个处理器141,可使得计算机执行上述任意方法实施例中的一种检测车辆电池的方法的各个步骤,或者,实现上述任意装置实施例中的一种检测车辆电池的装置的各个模块的功能。
本发明实施例还提供了一种计算机程序产品,计算机程序产品包括存储在非易失性计算机可读存储介质上的计算机程序,该计算机程序包括程序指令, 当所述程序指令被一个或多个处理器执行,例如图14中的一个处理器141,可使得计算机执行上述任意方法实施例中的一种检测车辆电池的方法的各个步骤,或者,实现上述任意装置实施例中的一种检测车辆电池的装置中各个模块的功能。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
通过以上的实施例的描述,本领域普通技术人员可以清楚地了解到各实施例可借助软件加通用硬件平台的方式来实现,当然也可以通过硬件。本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程是可以通过计算机程序指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施方法的流程。其中,所述存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
最后要说明的是,本发明可以通过许多不同的形式来实现,并不限于本说明书所描述的实施例,这些实施例不作为对本发明内容的额外限制,提供这些实施方式的目的是使对本发明的公开内容的理解更加透彻全面。并且在本发明的思路下,上述各技术特征继续相互组合,并存在如上所述的本发明不同方面的许多其它变化,均视为本发明说明书记载的范围;进一步地,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (12)

  1. 一种检测车辆电池的方法,其特征在于,所述方法应用于电池检测设备,所述电池检测设备包括电流检测模块,所述电池检测设备通过开尔文连接器与车辆电池连接,所述电流检测模块与所述车辆电池的负极连接,所述方法包括:
    获取针对所述车辆电池的噪声关系表,其中,所述噪声关系表包括噪声电流和噪声电压之间的对应关系;
    对所述车辆电池施加负载;
    获取对所述车辆电池施加负载后的第一总电流、以及,负载电流和负载电压;
    根据所述第一总电流、所述负载电流和所述负载电压,并且结合所述噪声关系表,计算真实负载电压;
    获取所述车辆电池的开路电压;
    根据所述真实负载电压、所述开路电压和所述负载电流,计算所述车辆电池的内阻。
  2. 根据权利要求1所述的方法,其特征在于,
    所述对所述车辆电池施加负载,包括:在预设时长内对所述车辆电池施加预设大小的负载;
    所述获取对所述车辆电池施加负载后的第一总电流、以及,负载电流和负载电压的步骤,进一步包括:
    在所述预设时长内以预设时间间隔分别对施加所述负载后的总电流、负载电流和负载电压进行采集,以获取多组所述施加所述负载后的总电流、负载电流和负载电压;
    分别计算多组所述施加所述负载后的总电流、负载电流和负载电压的平均值,以得到所述第一总电流、所述负载电流和所述负载电压。
  3. 根据权利要求1所述的方法,其特征在于,所述获取所述车辆电池的开路电压的步骤,进一步包括:
    获取释放对所述车辆电池施加的负载后的第二总电流、以及,空载电流和空载电压;
    根据所述第二总电流、所述空载电流和所述空载电压,并且结合所述噪声关系表,获取所述开路电压;
    所述根据所述真实负载电压、开路电压和负载电流,计算所述车辆电池的内阻的步骤,进一步包括:
    根据所述负载电流和所述空载电流,计算真实负载电流;
    根据所述真实负载电压、所述开路电压和真实负载电流,计算所述车辆电池的内阻。
  4. 根据权利要求3所述的方法,其特征在于,所述获取释放对所述车辆电池施加的负载后的第二总电流、以及,空载电流和空载电压的步骤,进一步包括:
    释放对所述车辆电池施加的负载后,以预设时间间隔对释放负载后的总电流、空载电流和空载电压进行采集,以获取多组释放负载后的总电流、空载电流和空载电压;
    分别计算多组所述释放负载后的总电流、空载电流和空载电压的平均值,以得到所述第二总电流、所述空载电流和所述空载电压。
  5. 根据权利要求3所述的方法,其特征在于,所述根据所述第二总电流、空载电流和所述空载电压,并且结合所述噪声关系表,获取所述开路电压的步骤,进一步包括:
    计算所述第二总电流与所述空载电流的第一电流差值;
    根据所述噪声关系表,获取与所述第一电流差值对应的第一噪声电压;
    将所述空载电压减去所述第一噪声电压,得到所述开路电压。
  6. 根据权利要求1所述的方法,其特征在于,所述获取所述车辆电池的开路电压的步骤,进一步包括:
    获取所述电池检测设备的偏置电压;
    根据所述偏置电压,获取所述开路电压。
  7. 根据权利要求1至6中任意一项所述的方法,其特征在于,所述根据所述第一总电流、所述负载电流和所述负载电压,并且结合所述噪声关系表,计算真实负载电压的步骤,进一步包括:
    计算所述第一总电流和负载电流的第二电流差值;
    根据所述噪声关系表,获取与所述第二电流差值对应的第二噪声电压;
    将所述负载电压减去所述第二噪声电压,得到所述真实负载电压。
  8. 根据权利要求1至6中任意一项所述的方法,其特征在于,所述获取针对所述车辆电池的噪声关系表的步骤,进一步包括:
    在未对所述车辆电池施加负载的情况下,在预设时长内以预设时间间隔采集所述车辆电池的噪声电流和噪声电压,以获取所述车辆电池的多组噪声电流和噪声电压;
    构建多组所述噪声电流和噪声电压之间的对应关系,得到所述噪声关系表。
  9. 根据权利要求1至6中任意一项所述的方法,其特征在于,所述方法还 包括:
    根据所述车辆电池的内阻,确定所述车辆电池的CCA值;
    根据所述开路电压、所述内阻和所述CCA值中的至少一个,确定所述车辆电池的健康状态。
  10. 一种检测车辆电池的装置,其特征在于,包括:
    第一获取模块,用于获取针对所述车辆电池的噪声关系表,其中,所述噪声关系表包括噪声电流和噪声电流之间的对应关系;
    加载模块,用于对所述车辆电池施加负载;
    第二获取模块,用于获取对所述车辆电池施加负载后的第一总电流、以及,负载电流和负载电压;
    第一计算模块,用于根据所述第一总电流、所述负载电流和所述负载电压,并且结合所述噪声关系表,计算真实负载电压;
    第三获取模块,用于获取所述车辆电池的开路电压;
    第二计算模块,用于根据所述真实负载电压、所述开路电压和所述负载电流,计算所述车辆电池的内阻。
  11. 一种电池检测设备,其特征在于,包括:
    电池检测模块,用于通过开尔文连接器与车辆电池连接;
    负载调节模块,用于向所述车辆电池施加负载;
    电流检测模块,用于与所述车辆电池的负极连接;
    控制模块,分别与所述电池检测模块、所述负载调节模块及所述电流检测模块连接,所述控制模块包括:
    至少一个处理器;和
    与所述至少一个处理器通信连接的存储器;其中,
    所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如权利要求1至9任意一项所述的方法。
  12. 一种非易失性计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机可执行指令,当所述计算机可执行指令被电子设备执行时,使所述电子设备执行如权利要求1至9任意一项所述的方法。
PCT/CN2021/105919 2020-07-14 2021-07-13 一种检测车辆电池的方法、装置及电池检测设备 WO2022012499A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010675825.9 2020-07-14
CN202010675825.9A CN111781526B (zh) 2020-07-14 2020-07-14 一种检测车辆电池的方法、装置及电池检测设备

Publications (1)

Publication Number Publication Date
WO2022012499A1 true WO2022012499A1 (zh) 2022-01-20

Family

ID=72767706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/105919 WO2022012499A1 (zh) 2020-07-14 2021-07-13 一种检测车辆电池的方法、装置及电池检测设备

Country Status (2)

Country Link
CN (1) CN111781526B (zh)
WO (1) WO2022012499A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111781526B (zh) * 2020-07-14 2022-05-03 深圳市道通科技股份有限公司 一种检测车辆电池的方法、装置及电池检测设备
CN113358920A (zh) * 2021-05-17 2021-09-07 优利德科技(中国)股份有限公司 电压降测量装置及电压降测量方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1725025A (zh) * 2004-07-02 2006-01-25 金百达科技有限公司 车用电源内阻监测预警方法及其装置
CN101388478A (zh) * 2007-09-14 2009-03-18 康奈可关精株式会社 二次电池内部状态估计装置
JP2009214604A (ja) * 2008-03-07 2009-09-24 Autonetworks Technologies Ltd バッテリ状態推定装置及びバッテリ状態推定方法
CN102216793A (zh) * 2008-03-05 2011-10-12 利厄伯特公司 用于测量电池内阻的系统和方法
US20120119745A1 (en) * 2010-05-14 2012-05-17 Liebert Corporation Battery monitor with correction for internal ohmic measurements of battery cells in parallel connected battery strings
CN104380128A (zh) * 2012-06-08 2015-02-25 罗伯特·博世有限公司 蓄电池系统和用于确定蓄电池系统的蓄电池单元或蓄电池模块的内阻的所属的方法
CN104678179A (zh) * 2013-11-29 2015-06-03 上海汽车集团股份有限公司 汽车蓄电池内阻的测量
CN105093113A (zh) * 2014-05-22 2015-11-25 上海汽车集团股份有限公司 汽车行进过程中蓄电池内阻的测量
CN107861064A (zh) * 2017-07-24 2018-03-30 广州微宏电源科技有限公司 一种多串联动力电池组电性能检测方法
CN111781526A (zh) * 2020-07-14 2020-10-16 深圳市道通科技股份有限公司 一种检测车辆电池的方法、装置及电池检测设备

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1725025A (zh) * 2004-07-02 2006-01-25 金百达科技有限公司 车用电源内阻监测预警方法及其装置
CN101388478A (zh) * 2007-09-14 2009-03-18 康奈可关精株式会社 二次电池内部状态估计装置
CN102216793A (zh) * 2008-03-05 2011-10-12 利厄伯特公司 用于测量电池内阻的系统和方法
JP2009214604A (ja) * 2008-03-07 2009-09-24 Autonetworks Technologies Ltd バッテリ状態推定装置及びバッテリ状態推定方法
US20120119745A1 (en) * 2010-05-14 2012-05-17 Liebert Corporation Battery monitor with correction for internal ohmic measurements of battery cells in parallel connected battery strings
CN104380128A (zh) * 2012-06-08 2015-02-25 罗伯特·博世有限公司 蓄电池系统和用于确定蓄电池系统的蓄电池单元或蓄电池模块的内阻的所属的方法
CN104678179A (zh) * 2013-11-29 2015-06-03 上海汽车集团股份有限公司 汽车蓄电池内阻的测量
CN105093113A (zh) * 2014-05-22 2015-11-25 上海汽车集团股份有限公司 汽车行进过程中蓄电池内阻的测量
CN107861064A (zh) * 2017-07-24 2018-03-30 广州微宏电源科技有限公司 一种多串联动力电池组电性能检测方法
CN111781526A (zh) * 2020-07-14 2020-10-16 深圳市道通科技股份有限公司 一种检测车辆电池的方法、装置及电池检测设备

Also Published As

Publication number Publication date
CN111781526A (zh) 2020-10-16
CN111781526B (zh) 2022-05-03

Similar Documents

Publication Publication Date Title
US8242738B2 (en) Systems and methods for determining battery parameters following active operation of the battery
US6304087B1 (en) Apparatus for calibrating electronic battery tester
WO2022012499A1 (zh) 一种检测车辆电池的方法、装置及电池检测设备
US6781382B2 (en) Electronic battery tester
US9891285B2 (en) Battery fuel gauge
US10228411B2 (en) Testing apparatus
CN113945302B (zh) 一种电池内部温度的确定方法及其确定装置
WO2022007711A1 (zh) 一种车辆的蓄电池检测的方法以及电池检测设备
CN111929603A (zh) 电池单体自放电测算方法、装置及计算机可读存储介质
EP3688477B1 (en) Differential battery tester and method for battery testing
US9612290B2 (en) Reducing or avoiding noise in measured signals of a tested battery cell(s) in a battery power system used to determine state of health (SOH)
CN110806543A (zh) 一种交流阻抗频谱获取方法、装置及相关组件
CN109633451B (zh) 储能系统自轨迹参数标定方法及soc估算方法
CN113514771A (zh) 一种电池阻抗寿命估算方法及系统
WO2015021378A1 (en) Voltage mode fuel gauge
CN113805088B (zh) 电池膨胀系数校准方法及装置、电池健康状态检测方法
CN112964994B (zh) 一种电池最大电流测量方法及装置
WO2017161870A1 (zh) 一种频率调节的方法及装置
CN211955708U (zh) 一种电容内爆检测电路
JP7001680B2 (ja) 被試験装置を保護する制限回路を含むシステム
CN112577585A (zh) 称重设备、称重传感器组的状态检测装置及方法
WO2020010624A1 (zh) 电池检测方法、系统及电池分析装置
CN116256623B (zh) 一种基于伏安特性曲线的芯片电特性分析系统及方法
CN117872093B (zh) 一种使用ate在线检测的方法及系统
CN116859312A (zh) 电池管理系统测试电路和测试方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21842515

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21842515

Country of ref document: EP

Kind code of ref document: A1