WO2022007667A1 - 电源适配器 - Google Patents

电源适配器 Download PDF

Info

Publication number
WO2022007667A1
WO2022007667A1 PCT/CN2021/103258 CN2021103258W WO2022007667A1 WO 2022007667 A1 WO2022007667 A1 WO 2022007667A1 CN 2021103258 W CN2021103258 W CN 2021103258W WO 2022007667 A1 WO2022007667 A1 WO 2022007667A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
power
gan
voltage
power adapter
Prior art date
Application number
PCT/CN2021/103258
Other languages
English (en)
French (fr)
Inventor
江森龙
田晨
张加亮
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2022007667A1 publication Critical patent/WO2022007667A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/275Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/293Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • H02J7/06Regulation of charging current or voltage using discharge tubes or semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present disclosure relates to the field of electronic device charging, in particular to a power adapter.
  • the circuit in the power adapter generally first rectifies and filters the input mains power, and then inputs it to the primary side of the transformer, and the MOSFET is controlled by the PWM modulation chip to cut off the power on the primary side. The required voltage is obtained on the secondary side of the transformer.
  • the chopping frequency cannot be very high, resulting in transformers, capacitors, inductors and other components related to energy conversion cannot use small-sized devices , which is not conducive to realizing the miniaturization of the adapter.
  • An object of the present disclosure is to propose an adapter with a smaller volume.
  • the present disclosure provides a power adapter, comprising:
  • a chopper circuit comprising a control circuit and a high-speed electronic switch controlled by the control circuit, and the high-speed electronic switch chops the AC power supply under the control of the control circuit;
  • the transformer has a primary winding and a secondary winding; the AC power chopped by the high-speed electronic switch is input to the primary winding;
  • a rectifier circuit wherein the first end of the rectifier circuit is connected to the secondary winding, so as to rectify the AC power output by the secondary winding into a DC power output for charging electronic equipment.
  • the high-speed electronic switch is a GaN switch, and at least four of the GaN switches form a GaN full-bridge circuit;
  • the first end of the GaN full bridge circuit is connected to an AC power supply, and the second end of the GaN full bridge circuit is connected to the primary winding.
  • the power adapter further includes an LLC resonant circuit, one end of the LLC resonant circuit is connected to the output end of the GaN full-bridge circuit, and the primary winding serves as a resonant inductance of the LLC resonant circuit.
  • control circuit is further configured to detect the voltage of the AC power source, and the control circuit is configured to control the chopping frequency of the GaN full-bridge circuit according to the voltage of the AC power source.
  • the GaN full-bridge circuit includes two GaN half-bridge power driver circuits, and each of the GaN half-bridge power driver chips integrates two of the GaN switching devices;
  • the GaN half-bridge power driver chip has a first end, a second end and a controlled end; the controlled ends of the two GaN half-bridge power driver chips are connected to the control circuit; the two GaN half-bridges The first ends of the power driver chips are respectively connected to the live wire and the neutral wire of the AC power supply; the second ends of the two GaN half-bridge power driver chips are both connected to the primary winding.
  • the power adapter further includes a synchronous rectification circuit
  • the synchronous rectification circuit has at least two switching tubes
  • the control circuit controls the two switching tubes according to the timing of alternating positive and negative voltages on the secondary winding.
  • Each of the switch tubes is turned on alternately, so as to synchronously rectify the alternating current on the secondary winding.
  • the synchronous rectification circuit includes a first switch tube and a second switch tube; the secondary winding has a first end, a second end, and the first end and the second end located on the secondary winding the tap terminal between the terminals;
  • the first switch tube is connected to the first end of the secondary winding and the ground, and is controlled by the control circuit;
  • the second switch tube is connected to the second end of the secondary winding and the ground, and is controlled by the control circuit
  • the tap end is the output end of the synchronous rectification circuit.
  • the power adapter further includes a step-down circuit, and the step-down circuit is connected to the second end of the rectifier circuit to step down the DC power output by the rectifier circuit.
  • the power adapter further includes a voltage control chip
  • the voltage control chip controls the operation of the step-down circuit, so that the voltage output by the step-down circuit matches the desired charging voltage of the electronic device.
  • the step-down circuit includes at least two different types of power conversion circuits, so as to expand the allowable input voltage range of the step-down circuit.
  • the power adapter further includes a voltage boosting circuit, and the voltage boosting circuit is connected in parallel between the input end of the step-down circuit and the ground;
  • the boost voltage includes a third switch tube and a boost capacitor; the third switch tube is connected between the output end of the rectifier circuit and the input end of the step-down circuit, and is controlled by the control circuit;
  • the control circuit controls the third switch to be turned on, so that the boost capacitor stores energy, thereby increasing the voltage Voltage on the input of a buck circuit.
  • the secondary side of the transformer further includes a feedback winding, the feedback winding is coupled with the primary winding; the control circuit has a power supply terminal;
  • the power adapter further includes an auxiliary power supply, the input end of the auxiliary power supply is connected with the feedback winding, and the output end of the auxiliary power supply is connected with the power supply end of the control circuit;
  • the feedback winding is used to charge the auxiliary power source so that the auxiliary power source supplies power to the control circuit.
  • the embodiment of the present disclosure is based on the high-speed electronic switch for chopping, and utilizes the high switching frequency of the high-speed electronic switch, so that the chopping frequency can be increased, thereby reducing the volume of devices related to energy conversion, thereby reducing the power supply The overall volume of the adapter.
  • the rectifier circuit can be arranged on the secondary side in this embodiment, because the voltage on the secondary winding of the transformer is largely Therefore, arranging the rectifier circuit on the secondary side can reduce the power requirement of the device, so that more miniaturized and low withstand voltage devices can be used, which is beneficial to reduce the cost.
  • the technical solution of the present disclosure reduces the volume of the power adapter, which is beneficial to realize the miniaturization of the power adapter.
  • a power adapter comprising:
  • a chopper circuit comprising a control circuit and a high-speed electronic switch controlled by the control circuit, and the high-speed electronic switch chops the AC power supply under the control of the control circuit;
  • the transformer has a primary winding and a secondary winding; the AC power chopped by the high-speed electronic switch is input to the primary winding;
  • a step-down circuit the step-down circuit is connected to the secondary winding for stepping down the voltage output by the secondary winding; the step-down circuit includes at least two different types of electric energy conversion circuits to expand The voltage range allowed by the step-down circuit.
  • a rectifier circuit which is arranged on the primary side of the transformer and is connected between the chopper circuit and the AC power source; or the rectifier circuit is arranged on the secondary side of the transformer and connected to the between the secondary winding and the step-down circuit.
  • the step-down circuit at least includes a charge pump circuit and a buck circuit connected in series.
  • the step-down circuit is a step-down chip, and the difference between the upper limit value and the lower limit value of the input voltage range of the step-down chip is greater than or equal to 40V.
  • the embodiment of the present disclosure is based on the high-speed electronic switch for chopping, and utilizes the high switching frequency of the high-speed electronic switch, so that the chopping frequency can be increased, thereby reducing the volume of devices related to energy conversion, thereby reducing the power supply The overall volume of the adapter.
  • the step-down circuit connected to the secondary side of the transformer includes at least two different types of electric energy conversion circuits, so as to expand the allowable input voltage range of the step-down circuit. Therefore, the step-down circuit in this embodiment allows a wider voltage input range, and can well cope with the problem of a larger voltage range on the secondary winding caused by the use of a transformer with fewer turns, thereby ensuring that The reliability of the power adapter work.
  • the embodiments of the present disclosure reduce the volume of the power adapter and at the same time ensure the reliability of the operation of the power adapter.
  • FIG. 1 is a block diagram of a circuit structure of a power adapter according to an example
  • FIG. 2 is a block diagram of a circuit structure of a power adapter according to another example
  • FIG. 3 is a schematic diagram of a circuit structure of a power adapter according to an exemplary illustration
  • FIG. 4 is a schematic diagram of the circuit structure of the primary side of a transformer in an exemplary power adapter
  • Fig. 5 is a block diagram of a circuit structure of a power adapter according to yet another example.
  • Example embodiments will now be described more fully with reference to the accompanying drawings.
  • Example embodiments can be embodied in various forms and should not be construed as limited to the examples set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concept of example embodiments to those skilled in the art.
  • the drawings are merely schematic illustrations of the present disclosure and are not necessarily drawn to scale.
  • the same reference numerals in the drawings denote the same or similar parts, and thus their repeated descriptions will be omitted.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature defined as “first” or “second” may expressly or implicitly include one or more of that feature.
  • “plurality” means at least two, such as two, three, etc., unless expressly and specifically defined otherwise.
  • the present disclosure provides a power adapter, which is a power supply conversion device, which can convert the voltage of commercial power or other AC/DC power into a charging voltage acceptable to the electronic device, thereby charging the electronic device.
  • the power adapter proposed in the present disclosure can output a fixed voltage when charging an electronic device, or after the power adapter communicates with the electronic device and handshake, according to the expected charging voltage fed back by the electronic device, the output and the expected charging voltage can be output. voltage to match the voltage.
  • the power adapter proposed in the present disclosure reduces the volume of the power adapter by changing its internal circuit structure, which is beneficial to realize the miniaturization of the power adapter.
  • FIG. 1 is a block diagram showing a circuit structure of a power adapter according to an example.
  • the power adapter includes a chopper circuit 10 , a transformer 20 , and a rectifier circuit 30 connected in sequence.
  • the chopper circuit 10 includes a control circuit 104 and a high-speed electronic switch 103 controlled by the control circuit 104 .
  • the high-speed electronic switch 103 chops the AC power supply under the control of the control circuit 104 .
  • the transformer has a primary winding and a secondary winding; the AC power chopped by the high-speed electronic switch 103 is input to the primary winding; the input end of the rectifier circuit is connected to the secondary winding to connect the The AC power output by the secondary winding is rectified into DC power output for charging electronic equipment.
  • the input power supply is an AC power supply
  • at least four high-speed electronic switches 103 can be set, and they are electrically connected to form a full-bridge circuit, so as to chop the positive half-cycle power and the negative half-cycle power of the AC power supply respectively.
  • the high-speed electronic switch 103 means that the electronic switch has a very high switching frequency, and the switching frequency reaches more than 300KHz, such as a GaN switch.
  • the high-speed electronic switch 103 is a GaN switch as an example for description.
  • the high-speed electronic switch 103 is a GaN switch, and at least four of the GaN switches form a GaN full-bridge circuit; the first end of the GaN full-bridge circuit is connected to an AC power supply, and the GaN full-bridge circuit is connected to an AC power supply. A second end of the circuit is connected to the primary winding.
  • the control circuit 104 is the power control chip 102 as an example.
  • the control circuit 104 may be a power control chip 102 or an MCU, a chip dedicated to PWM modulation management, or the like. Depending on the specific power control chip 102 selected, the pin names and numbers thereof will be correspondingly different.
  • the power control chip 102 has a plurality of control terminals for outputting control signals. Among them, four control terminals are respectively used for on-off with the four bridge arms of the GaN full-bridge circuit 101, so as to achieve the duty ratio of regulating the output voltage of the GaN full-bridge circuit 101. It can be understood that, four separate power control chips 102 can also be used to control the alternate on and off of the four bridge arms of the GaN full bridge circuit 101 respectively.
  • control circuit 104 is taken as an example for the power control chip 102 to be described.
  • FIG. 2 is a block diagram of a circuit structure of a power adapter according to another example.
  • the chopper circuit 10 includes a power control chip 102 and a GaN full-bridge circuit 101 controlled by the power control chip 102 .
  • the first end of the GaN full-bridge circuit 101 is connected to an AC power supply, and the GaN full-bridge circuit 101 includes a plurality of GaN full-bridge circuits.
  • the GaN full-bridge circuit 101 is used to chop the AC power supply;
  • the transformer 20 has a primary winding L1 and a secondary winding L2;
  • the primary winding L1 is connected to the second end of the GaN full-bridge circuit 101;
  • the first terminal of the rectifier circuit 30 The terminal is connected to the secondary winding L2 to rectify the AC power output by the secondary winding L2.
  • the power adapter may also include a step-down circuit 40 or a step-up circuit.
  • the step-down circuit 40 is connected to the second end of the rectifier circuit 30 to step down the DC power output by the rectifier circuit 30 .
  • the booster circuit is connected to the second end of the rectifier circuit 30 to boost the DC power output by the rectifier circuit 30 .
  • FIG. 3 is a schematic diagram of a circuit structure of a power adapter according to an example.
  • there are four GaN switching devices and the four GaN switching devices respectively form a left upper bridge arm, a left lower bridge arm, a right upper bridge arm, and a right lower bridge arm.
  • the four GaN switching devices are respectively connected to the control terminals of the power control chip 102 .
  • the upper left bridge arm and the lower left bridge arm are respectively connected with the live wire L and the neutral wire P of the AC power supply.
  • the GaN switching devices include a first GaN switching device H1 (corresponding to the upper left bridge arm), a second GaN switching device H2 (corresponding to the lower left bridge arm), a third GaN switching device H3 (corresponding to the upper right bridge arm), Four GaN switching devices H4 (corresponding to the lower right bridge arm).
  • the gates of the four GaN switching devices are all connected to the power control chip 102 , the source of the first GaN switching device H1 is connected to the drain of the second GaN switching device H2 , and the drain of the first GaN switching device H1 is connected to the live wire L connected, the source of the second GaN switching device H2 is grounded.
  • the source of the third GaN switching device H3 is connected to the drain of the fourth GaN switching device H4, the drain of the third GaN switching device H3 is connected to the neutral line P, and the source of the fourth GaN switching device H4 is grounded.
  • the power control chip 102 controls the GaN switching devices on the upper left bridge arm and the lower right bridge arm to turn on; in the positive and negative cycles of the mains, the power control chip 102 controls the GaN switching devices on the lower left bridge arm and the upper right bridge arm. The switching device is turned on. In this way, the GaN full-bridge circuit 101 realizes the chopping of the positive half cycle and the negative half cycle of the commercial power.
  • the upper left bridge arm and the lower left bridge arm constitute a push-pull structure; and the upper right bridge arm and the lower right bridge arm also constitute a push-pull structure.
  • the push-pull structure can reduce the dead zone, thereby improving the energy conversion efficiency from the primary winding L1 to the secondary winding L2, improving the utilization rate of electric energy, and effectively reducing the heat generation. It is also important to improve the accuracy of the power PWM modulation due to the reduction of the dead zone, thereby improving the accuracy of the output voltage of the adapter.
  • the GaN full-bridge circuit 101 includes two GaN half-bridge power driver chips 1011, and each GaN half-bridge power driver chip 1011 integrates two GaN switching devices; the GaN half-bridge power driver chip 1011 has a first terminal , the second terminal and the controlled terminal; the controlled terminals of the two GaN half-bridge power driver chips 1011 are both connected to the power supply control chip 102 ; the first terminals of the two GaN half-bridge power driver chips 1011 respectively supply the live wire L of the AC power supply It is connected to the neutral line P; the second ends of the two GaN half-bridge power driver chips 1011 are both connected to the primary winding L1.
  • GaN half-bridge power driver chip 1011 In a specific GaN half-bridge power driver chip 1011, its overall volume is only 9mmx9mmx1mm. Two GaN switching devices are integrated inside, and the driving circuit for on-off of the GaN switching device is integrated at the same time. Input a driving signal externally, the GaN switching device can be driven to work, so there is no need to configure it outside the GaN half-bridge power driver chip 1011. drive circuit, thus reducing the volume of the power adapter.
  • the power control chip 102 is also used for detecting the voltage level of the AC power supply, and the power supply control chip 102 is used for the voltage level of the AC power supply to control the chopping frequency of the GaN full-bridge circuit 101 .
  • the voltage level of the AC power source reflects the region and country to which it belongs.
  • the power control chip 102 detects that the voltage of the AC power supply is 220V, it means that it is China's AC mains. Since the voltage range of the Chinese AC mains is large, the available energy is more, so the power control chip 102 GaN full bridge
  • the chopping frequency of the circuit 101 can increase the duty cycle of the electric energy waveform after chopping, so as to output a larger power such as 120W.
  • the power control chip 102 detects that the voltage of the AC power supply is 110V, it means that it is the AC power supply in the United States. If the power output is still 120W at this time, the overall conversion efficiency of the circuit will be affected, causing the adapter to heat up and generate harmonics to the power grid. Therefore, the power control chip 102 controls the chopping frequency of the GaN full-bridge circuit 101 to output lower power.
  • the power adapter further includes an LLC resonant circuit 50, one end of the LLC resonant circuit 50 is connected between the second ends of the two GaN half-bridge power driver chips 1011; the LLC resonant circuit 50 includes an inductance, the inductance and the primary winding L1 coupling.
  • the resonant elements in the LLC resonant circuit 50 are mainly composed of the above three resonant elements, that is, the resonant capacitor Cs, the inductance Ls and the magnetizing inductance. Among them, the excitation inductance is the primary winding L1. By selecting an appropriately accommodated resonant capacitor Cs and an inductance with an appropriate inductance, the LLC resonant circuit 50 can work in a resonant state within the operating frequency range of the GaN full-bridge circuit 101 .
  • the LLC resonant circuit 50 works in a resonant state, the reverse input current when the GaN switching device is turned off can be reduced, the power loss of the GaN switching device during the on-off switching process can be further reduced, and the switching efficiency can be improved. And reduce the heat generated due to power loss.
  • the switching device based on the chopper circuit 10 of the above-mentioned embodiment is a GaN switching device, and the GaN switching device is a high electron mobility transistor (HEMT).
  • the GaN switching device has higher Working frequency, in the process of chopping, the working frequency can reach 500K-1Mhz. Due to the increase of the operating frequency, the requirement for the inductance of the winding of the transformer 20 is reduced, so that the number of turns of the transformer 20 can be reduced, thereby reducing the volume of the transformer 20 .
  • the transformer 20 is a planar transformer 20 .
  • the planar transformer 20 is a transformer 20 with the characteristics of high frequency, low profile, small height and high operating frequency, which is beneficial to reduce the thickness of the power adapter.
  • a printed circuit board (PCB) type transformer 20 is used.
  • the winding skeleton can be omitted, the heat dissipation area can be increased, and the eddy current loss caused by the skin effect and the proximity effect can be reduced during high-frequency operation.
  • a printed circuit PCB-type transformer 20 of 16T:2T:2T is used, and its volume is only about 20mm ⁇ 20mm, which is very small.
  • the power adapter further includes a rectifier circuit 30, and the first end of the rectifier circuit 30 is connected to the secondary winding L2 to rectify the AC power output by the secondary winding L2.
  • the rectifier circuit 30 is arranged on the primary side of the transformer 20; in this embodiment, the rectifier circuit 30 is arranged on the secondary side of the transformer 20, because the voltage on the secondary winding L2 of the transformer 20 is very large To a certain extent, it is lower than the voltage on the primary side winding. Therefore, arranging the rectifier circuit 30 on the secondary side can reduce the power requirement of the device, so that a more miniaturized and low withstand voltage device can be used, which is beneficial to reduce the cost.
  • the rectifier circuit 30 is arranged on the secondary side, so that on the primary side, the power control chip 102 only needs to control the GaN full-bridge circuit 101, and a dedicated control chip can be used for the rectifier circuit 30 on the secondary side, thereby reducing the The control burden of the power control chip 102 is reduced, so that the power control chip 102 can more accurately and effectively control the operation of the GaN full-bridge circuit 101. Therefore, this embodiment is beneficial to improve the working stability and reliability of the power adapter.
  • the GaN full-bridge circuit 101 is used on the primary side of the solution in this embodiment to chop the positive half cycle and the negative half cycle of the AC power supply respectively, so that there is no need for the primary side of the transformer 20.
  • the rectifier circuit 30 can be arranged on the secondary side of the transformer 20, so that the above beneficial effects can be obtained.
  • the rectifier circuit 30 adopts the synchronous rectifier circuit 30 .
  • the synchronous rectifier circuit 30 has at least two switches, and the power control chip 102 controls the two switches to be turned on alternately according to the positive and negative alternate timing of the voltage on the secondary winding, so as to control the secondary winding.
  • the alternating current on the secondary winding is synchronously rectified.
  • synchronous rectification can reduce the heat generation caused by the fixed voltage drop generated by the diode rectification, thereby helping to reduce the requirements of the heat dissipation structure in the power adapter, thereby further reducing the Small adapter volume.
  • the power adapter further includes a microwave isolation circuit 90, and the control signal sent by the power control chip 102 is sent to the switch tube in the rectifier circuit 30 through the microwave isolation circuit 90;
  • the microwave isolation circuit 90 includes a transmitting end and a receiving end, the transmitting end is connected to the power control chip 102, the receiving end is connected to the switch tube in the rectifier circuit 30, and the transmitting end is used to
  • the control signal sent by the power control chip 102 is converted into a microwave signal and sent to the receiving end, and the receiving end is used to convert the microwave signal into the control signal to control the on or off of the corresponding switch tube. break.
  • the transmitter can convert the control signal into a microwave signal and transmit it to the receiver quickly. Therefore, even if the dead time of the control signal is set to a short time, the switch can be quickly turned on or off.
  • the distance between the transmitting end and the receiving end of the microwave unit can be set farther, and further ground, can avoid circuit crosstalk, and can also avoid misdirection of the switch tube.
  • the synchronous rectifier circuit 30 includes a first switch Q1 and a second switch Q2; the secondary winding L2 has a first end, a second end, and is located between the first end and the second end of the secondary winding L2
  • the tap end of the first switch tube Q1 is connected to the first end of the secondary winding L2 and the ground, and is controlled by the power control chip 102;
  • the second switch tube Q2 is connected to the second end of the secondary winding L2 and the ground, and It is controlled by the power control chip 102 ;
  • the tap end is connected to the input end of the step-down circuit 40 .
  • the first switch transistor Q1 and the second switch transistor Q2 may be MOS transistors.
  • the tap terminal is used for outputting the forward voltage, and the first switch tube Q1 and the second switch tube Q2 are respectively grounded in turn, so as to realize the rectification of the secondary winding L2 of the transformer 20 .
  • the synchronous rectifier circuit 30 in this example directly drives the rectifier MOS by using a high logic level without a bootstrap circuit, thereby saving components and simplifying the circuit structure.
  • the high switching frequency of the GaN switching device enables the transformer 20 to use fewer turns.
  • the transformer 20 will have a larger change ratio; That is, the voltage variation range on the secondary winding L2 of the transformer 20 will be wider.
  • the multilayer PCB board is sandwiched between the magnetic cores. During the production process, the air gap is not easy to control, so it is easy to cause the actual transformation ratio of the PCB type transformer 20 to be compared with the designed transformation ratio. There is a deviation between them, which may cause the voltage range on the secondary winding L2 of the transformer 20 to further increase.
  • the step-down circuit 40 connected to the secondary side of the transformer 20 includes a series-connected charge pump circuit and a buck circuit.
  • the charge pump circuit can allow a wider voltage input range, while the buck circuit has higher energy conversion efficiency, so the step-down circuit 40 in this embodiment allows a wider voltage input range, and can well cope with the use of turns The problem of a larger voltage range on the secondary winding L2 caused by fewer transformers 20 .
  • a step-down chip that allows wider voltage input capability can be directly used, and the difference between the upper limit and the lower limit of the input voltage range of the step-down chip is greater than or equal to 40V, for example, 5V-60V.
  • the use of the step-down chip can further reduce the size of the power adapter.
  • the step-down chip can be directly controlled by the power control chip 102 , and in other embodiments, the step-down chip is controlled by the voltage control chip 80 disposed on the secondary side of the transformer 20 .
  • the voltage control chip 80 may be an MCU.
  • the voltage control chip 80 outputs a PWM wave with an adjustable duty cycle, and controls the on-off of the switch in the step-down chip through a MOS switch (the MOS switch can be built-in or external to the voltage control chip 80 ), so as to achieve regulation. The purpose of stepping down the output voltage of the chip.
  • the electronic device to be charged is connected to the voltage adapter through the charging interface, so as to receive the power finally output by the step-down chip.
  • the charging interface here can be a TYPE-C interface, a USB 2.0 interface, a Micro USB interface, etc.
  • the voltage control chip 80 When the voltage adapter is connected to the electronic device to be charged, the voltage control chip 80 is also used for the communication handshake of the electronic device, so as to determine the expected output voltage and expected output current of the electronic device. Furthermore, the power control chip 102 adjusts the duty ratio of the output PWM based on the desired output voltage and the desired output current, thereby controlling the output voltage and output current of the step-down circuit 40 .
  • the power supply control chip 102 is used on the primary side of the transformer 20 to control the chopping frequency of the GaN full-bridge circuit 101, and the AC power is voltage-converted in a wide range according to the desired output voltage; on the secondary side of the transformer 20
  • the voltage control chip 80 is used to further finely adjust the voltage output by the final step-down chip, thereby improving the matching of the voltage output by the power adapter with the desired output voltage. Therefore, this embodiment improves the accuracy of the on-demand output voltage of the power adapter.
  • the voltage on the secondary winding L2 of the transformer 20 is rectified by the synchronous rectifier circuit 30 to form a steamed bread wave.
  • a steamed bread wave its voltage changes with time.
  • the operating threshold of the step-down circuit 40 is exceeded, so that the step-down circuit 40 cannot perform energy conversion on the electric energy in the low voltage range, thus resulting in waste of energy.
  • FIG. 5 is a block diagram of a circuit structure of a power adapter according to another example.
  • the power adapter is set to further include a voltage booster circuit 60, and the voltage booster circuit 60 is used to boost the voltage of the input terminal of the step-down circuit 40, so that even when the output voltage of the synchronous rectifier circuit 30 is low, the step-down circuit can also be guaranteed.
  • 40 can work normally, so that the step-down circuit 40 can perform energy conversion on the electric energy in the low voltage range, thereby improving the electric energy conversion efficiency.
  • the booster circuit 60 is connected in parallel between the input end of the step-down circuit 40 and the ground; the booster voltage includes a third switch tube Q3 and a booster capacitor C1; the third switch tube Q3 is connected to the tap terminal and the step-down circuit 40 between the input terminals of the power supply control chip 102 and controlled by the power supply control chip 102; when the voltage on the input terminal of the step-down circuit 40 is lower than the first preset voltage value, the power supply control chip 102 controls the third switch transistor Q3 to be turned on, so that the The boost capacitor C1 stores energy, thereby boosting the voltage on the input terminal of the step-down circuit 40 .
  • the third switch transistor Q3 can be a MOS transistor.
  • the gate of the MOS transistor can be connected to the power control chip 102 or other control chips.
  • the drain of the MOS transistor is connected to the capacitor, and the MOS transistor can be connected to the capacitor.
  • the source of the tube is grounded. It should also be understood that, in order to increase the voltage-lifting effect, a plurality of capacitors may be arranged in parallel.
  • the power control chip 102 controls the third switch transistor Q3 to be turned on. At this time, the capacitor is gradually fully charged and has a voltage, and the voltage on the capacitor is loaded on the step-down circuit 40 on the input end of the buck circuit 40, thereby raising the voltage on the input end of the step-down circuit 40, so as to ensure that the electric energy in the low voltage range of the steamed bread wave can be effectively utilized.
  • the operation of the boosting circuit 60 is controlled by the power control chip 102 .
  • the power control chip 102 can send a control signal to the switch tube in the booster circuit 60 through the microwave isolation circuit 90 .
  • the microwave isolation circuit 90 For specific embodiments of the microwave isolation circuit 90, refer to the above-mentioned embodiments.
  • the power control chip 102 can send control signals to the switch tubes in the rectifier circuit 30 and the booster circuit 60 respectively via different microwave isolation circuits 90 to avoid signal crosstalk.
  • the booster circuit 60 used in this embodiment is connected in parallel to the circuit only when the output voltage of the rectifier circuit 30 is low, so as to increase the voltage of the input terminal of the step-down circuit 40, so that a smaller capacitor can be used to meet the requirements of the step-down circuit. 40 job requirements. Smaller capacitors are smaller in size, which is beneficial for further reducing the size of the adapter. Therefore, the booster circuit 60 of this embodiment is provided on the premise of satisfying the working requirements of the step-down circuit 40, which is beneficial to further reducing the volume of the adapter.
  • the secondary side of the transformer 20 further includes a feedback winding L3, which is coupled to the primary winding L1; the power control chip 102 has a power supply terminal; the power adapter further includes an auxiliary power supply 70, the input terminal of which is connected to the feedback The winding L3 is connected, and the output end of the auxiliary power supply 70 is connected to the power supply end of the power supply control chip 102; at the beginning of the operation of the power adapter, the weak electric energy on the primary side of the transformer 20 can be fed to the feedback winding L3, so the feedback winding L3 is very important to the auxiliary power supply 70.
  • the auxiliary power supply 70 supplies power to the power supply control chip 102 to start the power supply control chip 102 to start working.
  • the auxiliary power supply 70 is a linear regulated power supply.
  • a converted linear voltage regulator chip can also be used, so as to output a stable power supply voltage to the power supply control chip 102 .
  • the feedback winding L3 is also used for detecting the voltage on the feedback winding L3, and feeding the voltage back to the power control chip 102, so that the power control chip 102 adjusts the GaN full-bridge circuit 101 according to the feedback voltage.
  • the auxiliary power supply 70 may include a voltage dividing sampling circuit, and the voltage dividing sampling circuit may be formed by connecting at least two resistors in series.
  • the compatibility of the power adapter is improved by configuring multiple charging protocols in the power adapter.
  • the charging protocol can be PD, QC, SCP, VOOC and other charging protocols.
  • the embodiment of the present disclosure is based on the GaN full-bridge circuit 101 for chopping, and utilizes the higher switching frequency of the GaN switching device, so that the chopping frequency can be increased, thereby reducing the volume of the device related to energy conversion, thereby reducing the overall volume of the power adapter.
  • the rectifier circuit 30 is arranged on the secondary side in this embodiment, because the voltage on the secondary winding L2 of the transformer 20 It is largely lower than the voltage on the primary side winding. Therefore, arranging the rectifier circuit 30 on the secondary side can reduce the power requirement of the device, so that a more miniaturized and low withstand voltage device can be used, which is beneficial to reduce the power consumption of the device. cost.
  • the technical solution of the present disclosure reduces the volume of the power adapter, which is conducive to realizing the miniaturization of the power adapter.
  • the embodiment of the present disclosure is based on the GaN full-bridge circuit 101 for chopping, and utilizes the higher switching frequency of the GaN switching device, so that the chopping frequency can be increased, thereby reducing the volume of the device related to energy conversion, thereby reducing the overall volume of the power adapter.
  • the step-down circuit 40 provided and connected to the secondary side of the transformer 20 includes a series-connected charge pump circuit and a buck circuit.
  • the charge pump circuit can allow a wider voltage input range, while the buck circuit has higher energy conversion efficiency, so the step-down circuit 40 in this embodiment allows a wider voltage input range, and can well cope with the use of turns
  • the problem of a larger voltage range on the secondary winding L2 caused by the smaller number of transformers 20 ensures the reliability of the power adapter's operation.
  • the embodiments of the present disclosure reduce the volume of the power adapter and at the same time ensure the reliability of the operation of the power adapter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

提供了一种电源适配器。电源适配器包括斩波电路、变压器、整流电路。斩波电路包括控制电路以及受控于所述控制电路的高速电子开关,所述高速电子开关在所述控制电路的控制下对交流电源进行斩波;变压器具有初级绕组以及次级绕组;经所述高速电子开关斩波后的交流电能输入至所述初级绕组;整流电路的输入端与所述次级绕组连接,以将所述次级绕组输出的交流电能整流成直流电能输出,用于为电子设备充电。本技术方案中的电源适配器的电路结构使得电源适配器具有较小的体积。

Description

电源适配器
交叉引用
本公开要求于2020年07月10日提交的申请号为202010665063.4名称均为“电源适配器”的中国专利申请的优先权,该中国专利申请的全部内容通过引用全部并入本文。
技术领域
本公开涉及电子设备充电领域,特别涉及一种电源适配器。
背景技术
电源适配器内的电路一般都是首先对输入的市电进行整流滤波,而后输入至变压器的初级侧,并由PWM调制芯片控制MOS管开断,以对初级侧上的电能进行斩波,从而在变压器次级侧上获得所需要的电压。
然而,受制于整流电路的工作频率,以及MOS管的工作频率的限制,使得斩波频率无法做到很高,导致了变压器、电容、电感等与能量转换相关的元器件无法使用体积小的器件,从而不利于实现适配器朝小型化方向发展。
在所述背景技术部分公开的上述信息仅用于加强对本公开的背景的理解,因此它可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
本公开的一个目的在于提出一种具有较小体积的适配器。
为解决上述技术问题,本公开采用如下技术方案:
根据本公开的一个方面,本公开提供一种电源适配器,包括:
斩波电路,包括控制电路以及受控于所述控制电路的高速电子开关,所述高速电子开关在所述控制电路的控制下对交流电源进行斩波;
变压器,所述变压器具有初级绕组以及次级绕组;经所述高速电子开关斩波后的交流电能输入至所述初级绕组;
整流电路,所述整流电路的第一端与所述次级绕组连接,以将所述次级绕组输出的交流电能整流成直流电能输出,用于为电子设备充电。
根据本公开一实施例,所述高速电子开关至少有四个,且电连接形成全桥电路,以对所述交流电源的正半周电能、负半周电能分别进行斩波。
根据本公开一实施例,所述高速电子开关为GaN开关,至少四个所述GaN开关形成GaN全桥电路;
所述GaN全桥电路的第一端接入交流电源,所述GaN全桥电路的第二端与所述初级绕组连接。
根据本公开一实施例,所述电源适配器还包括LLC谐振电路,所述LLC谐振电路的一端连接于所述GaN全桥电路的输出端,所述初级绕组作为所述LLC谐振电路的谐振电感。
根据本公开一实施例,所述控制电路还用于检测所述交流电源的电压,且所述控制电路用于根据所述交流电源的电压,控制所述GaN全桥电路的斩波频率。
根据本公开一实施例,所述GaN全桥电路包括两个GaN半桥功率驱动电路,每个所述GaN半桥功率驱动芯片内集成了两个所述GaN开关器件;
所述GaN半桥功率驱动芯片具有第一端、第二端以及受控端;两个所述GaN半桥功率驱动芯片的受控端均与所述控制电路连接;两个所述GaN半桥功率驱动芯片的第一端分别供所述交流电源的火线和零线连接;两个所述GaN半桥功率驱动芯片的第二端均与所述初级绕组连接。
根据本公开一实施例,所述电源适配器还包括同步整流电路,所述同步整流电路至少具有两个开关管,所述控制电路根据所述次级绕组上电压的正、负交替时机,控制两个所述开关管交替导通,以对所述次级绕组上的交流电进行同步整流。
根据本公开一实施例,所述同步整流电路包括第一开关管、第二开关管;所述次级绕组具有第一端、第二端、以及位于所述次级绕组第一端和第二端之间的抽头端;
所述第一开关管连接于所述次级绕组的第一端以及地,且受控于所述控制电路;
所述第二开关管连接于所述次级绕组的第二端以及地,且受控于所述控制电路;
所述抽头端为所述同步整流电路的输出端。
根据本公开一实施例,所述电源适配器还包括降压电路,所述降压电路与所述整流电路的第二端连接,以对所述整流电路输出的直流电能降压。
根据本公开一实施例,所述电源适配器还包括电压控制芯片;
所述电压控制芯片控制所述降压电路的工作,以使所述降压电路输出的电压与所述电子设备期望的充电电压匹配。
根据本公开一实施例,所述降压电路至少包括两种不同类型的电能变换电路,以扩大所述降压电路所允许的的输入电压范围。
根据本公开一实施例,所述电源适配器还包括抬压电路,所述抬压电路并联于所述降压电路的输入端与地之间;
所述抬压电压包括第三开关管、抬压电容;所述第三开关管连接于所述整流电路输出端与所述降压电路的输入端之间,且受控于所述控制电路;
在所述降压电路输入端上的电压低于第一预设电压值时,所述控制电路控制所述第三开关管导通,以使所述抬压电容储能,从而升高所述降压电路的输入端上的电压。
根据本公开一实施例,所述变压器次级侧还包括反馈绕组,所述反馈绕组与所述初级绕组耦合;所述控制电路具有电源端;
电源适配器还包括辅助电源,所述辅助电源的输入端与所述反馈绕组连接,所述辅助电源的输出端与所述控制电路的电源端连接;
所述反馈绕组用于对所述辅助电源充电,以使所述辅助电源对所述控制电路供电。
本公开实施例是基于高速电子开关用于斩波,利用高速电子开关较高的开关频率,从而能够提高斩波频率,由此得以减小与能量转换有关的器件的体积,从而减小了电源适配器的整体体积。
并且,由于高速电子开关能够对交流电源的正半周期、负半周期分别进行斩波,因此本实施例得以将整流电路设置在次级侧,由于变压器的次级绕组上的电压在很大程度上低于初级侧绕组上的电压,因此将整流电路设置在次级侧能够减小对器件功率的要求,从而能够采用更加小型化、低耐压值的器件,有利于降低成本。
综上所述,本公开技术方案减小了电源适配器的体积,有利于实现电 源适配器的小型化。
根据本公开另一方面还提出一种电源适配器,包括:
斩波电路,包括控制电路以及受控于所述控制电路的高速电子开关,所述高速电子开关在所述控制电路的控制下对交流电源进行斩波;
变压器,所述变压器具有初级绕组以及次级绕组;经所述高速电子开关斩波后的交流电能输入至所述初级绕组;
降压电路,所述降压电路与所述次级绕组连接,以用于对所述次级绕组输出的电压降压;所述降压电路至少包括两种不同类型的电能变换电路,以扩大所述降压电路所允许输入的电压范围。
整流电路,所述整流电路设置于所述变压器初级侧,且连接于所述斩波电路与所述交流电源之间;或所述整流电路设置于所述变压器次级侧,且连接于所述次级绕组与所述降压电路之间。
根据本公开一实施例,所述降压电路至少包括串联连接的电荷泵电路以及BUCK电路。
根据本公开一实施例,所述降压电路为降压芯片,所述降压芯片的输入电压范围的上限值和下限值的差值大于或等于40V。
本公开实施例是基于高速电子开关用于斩波,利用高速电子开关较高的开关频率,从而能够提高斩波频率,由此得以减小与能量转换有关的器件的体积,从而减小了电源适配器的整体体积。
并且,在本实施例中,设置连接在变压器次级侧上的降压电路包括至少包括两种不同类型的电能变换电路,以扩大所述降压电路所允许的的输入电压范围。因此本实施例中的降压电路允许较宽的电压输入范围,能够很好的应对采用了匝数较少的变压器后所带来的次级绕组上的电压范围较大的问题,从而保证了电源适配器工作的可靠性。
综上所述,本公开实施例减小了电源适配器的体积了同时,保证了电源适配器工作的可靠性。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本公开。
附图说明
通过参照附图详细描述其示例实施例,本公开的上述和其它目标、特征及优点将变得更加显而易见。
图1是根据一示例示出的一种电源适配器的电路结构框图;
图2是根据另一示例示出的一种电源适配器的电路结构框图;
图3是根据一示例性示出的一种电源适配器的电路结构示意图;
图4是根据一示例性示出的电源适配器中,变压器初级侧的电路结构示意图;
图5是根据再一示例性示出的一种电源适配器的电路结构框图。
附图标记说明如下:
10、斩波电路;101、GaN全桥电路;102、电源控制芯片;H1、第一GaN开关器件;H2、第二GaN开关器件;H3、第三GaN开关器件;H4、第四GaN开关器件;1011、GaN半桥功率驱动芯片;
20、变压器;L1、初级绕组;L2、次级绕组;L3、反馈绕组;30、整流电路;40、降压电路;50、LLC谐振电路;Q1、第一开关管;Q2、第二开关管;Q3、第三开关管;C1、抬压电容;60、抬压电路;70、辅助电源;80、电压控制芯片;90、微波隔离电路。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施方式使得本公开将更加全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。附图仅为本公开的示意性图解,并非一定是按比例绘制。图中相同的附图标记表示相同或类似的部分,因而将省略对它们的重复描述。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
以下结合本说明书的附图,对本公开的较佳实施方式予以进一步地详尽阐述。
本公开提出一种电源适配器,电源适配器是一种供电电源变换设备,其可以将市电或其他交流/直流电源的电压变换成电子设备所能接受的充电电压,从而为电子设备充电。本公开所提出的电源适配器在对电子设备充电时,可以是输出一固定的电压,也可以是电源适配器与电子设备进行通讯握手后,根据电子设备所反馈的期望充电电压,而输出与期望充电电压相匹配的电压。
本公开所提出的电源适配器,通过改变其内部电路架构,从而使得电源适配器的体积得以减小,有利于实现电源适配器朝向小型化发展。
图1是根据一示例示出的一种电源适配器的电路结构框图。在一实施例中,电源适配器包括依次连接的斩波电路10、变压器20、整流电路30。其中,斩波电路10包括控制电路104以及受控于所述控制电路104的高速电子开关103,所述高速电子开关103在所述控制电路104的控制下对交流电源进行斩波。所述变压器具有初级绕组以及次级绕组;经所述高速电子开关103斩波后的交流电能输入至所述初级绕组;所述整流电路的输入端与所述次级绕组连接,以将所述次级绕组输出的交流电能整流成直流电能输出,用于为电子设备充电。
进一步的,当输入电源为交流电源时,可以设置所述高速电子开关103至少有四个,且电连接形成全桥电路,以对所述交流电源的正半周电能、负半周电能分别进行斩波。
在此高速电子开关103是指该电子开关具有非常高的开关频率,开关频率达到300KHz以上,例如GaN开关。在下述实施例中,以高速电子开关103为GaN开关为例进行说明。
在一具体实施例中,所述高速电子开关103为GaN开关,至少四个所述GaN开关形成GaN全桥电路;所述GaN全桥电路的第一端接入交流电源,所述GaN全桥电路的第二端与所述初级绕组连接。控制电路104为电源控制芯片102为例说明。
控制电路104可以是电源控制芯片102或者MCU、专用于PWM调制管理的芯片等。根据具体所选用的电源控制芯片102不同,其引脚名称及数量会有相应不同。在一示例中,电源控制芯片102具有多个控制端,用于输出控制信号。其中有四个控制端分别用于与GaN全桥电路101的 四个桥臂的通断,从而达到调控GaN全桥电路101输出电压的占空比。可以理解的是,也可以采用四个单独的电源控制芯片102分别控制GaN全桥电路101的四个桥臂的交替通断。
在下述实施例中以控制电路104为电源控制芯片102为例说明。
请参阅图2,图2是根据另一示例示出的一种电源适配器的电路结构框图。具体的,斩波电路10包括电源控制芯片102以及受控于电源控制芯片102的GaN全桥电路101,GaN全桥电路101的第一端接入交流电源,GaN全桥电路101包括多个GaN开关器件,GaN全桥电路101用于对交流电源进行斩波;变压器20具有初级绕组L1以及次级绕组L2;初级绕组L1与GaN全桥电路101的第二端连接;整流电路30的第一端与次级绕组L2连接,以整流次级绕组L2输出的交流电能。
进一步的,电源适配器还可以包括有降压电路40或升压电路。降压电路40与整流电路30的第二端连接,以对整流电路30输出的直流电能降压。升压电路与整流电路30的第二端连接,以对整流电路30输出的直流电能升压。
请参阅图3,图3是根据一示例示出的一种电源适配器的电路结构示意图。在一示例中,请参阅图3,图3中,共有四个GaN开关器件,四个GaN开关器件分别形成左上桥臂、左下桥臂、右上桥臂、右下桥臂。四个GaN开关器件分别与电源控制芯片102的控制端连接。其中,左上桥臂和左下桥臂分别与交流电源的火线L和零线P连接。
在此,GaN开关器件包括第一GaN开关器件H1(对应在左上桥臂)、第二GaN开关器件H2(对应在左下桥臂)、第三GaN开关器件H3(对应在右上桥臂)、第四GaN开关器件H4(对应在右下桥臂)。这四个GaN开关器件的栅极均与电源控制芯片102连接,第一GaN开关器件H1的源极与第二GaN开关器件H2的漏极连接,第一GaN开关器件H1的漏极与火线L连接,第二GaN开关器件H2的源极接地。第三GaN开关器件H3的源极与第四GaN开关器件H4的漏极连接,第三GaN开关器件H3的漏极与零线P连接,第四GaN开关器件H4的源极接地。
在此,以交流电源为市电为例说明。在市电正半周期,电源控制芯片102控制左上桥臂、右下桥臂上的GaN开关器件导通;在市电正负周期, 电源控制芯片102控制左下桥臂、右上桥臂上的GaN开关器件导通。如此,GaN全桥电路101实现了对市电正半周期、负半周期的斩波。
本实施例中,相较于相关技术中,利用一个开关管的通断,以调制变压器20初级绕组L1上的电能方案中,由于变压器20初级绕组L1上的电压变化幅值较大,因此当初级绕组L1上的电压较小而无法满足开关管的导通条件时,开关管无法导通,从而导致能量无法传导至变压器20负极,并且积累的能量会转换成热量,造成变压器20发热。在此,由于初级绕组L1上电压较小而无法维持开关管工作的区间称为死区。因此,相关技术中的对初级绕组L1上的电能斩波过程中,电压死区较大。
而在本公开实施例中,左上桥臂、左下桥臂组成了推挽结构;且右上桥臂、右下桥臂也组成了推挽结构。推挽结构能够减小死区,从而提高了能量从初级绕组L1向次级绕组L2转换的效率,提高了电能利用率,并且有效的减小了发热量。同样重要的是,由于死区的减小,有利于提高对电能PWM调制的精确性,从而提高适配器输出电压的精准性。
请参阅图4,图4是根据一示例示出的一种电源适配器的电路结构示意图。在一示例中,GaN全桥电路101包括两个GaN半桥功率驱动芯片1011,每个GaN半桥功率驱动芯片1011内集成了两个GaN开关器件;GaN半桥功率驱动芯片1011具有第一端、第二端以及受控端;两个GaN半桥功率驱动芯片1011的受控端均与电源控制芯片102连接;两个GaN半桥功率驱动芯片1011的第一端分别供交流电源的火线L和零线P连接;两个GaN半桥功率驱动芯片1011的第二端均与初级绕组L1连接。
在一具体的GaN半桥功率驱动芯片1011,其整体体积只有9mmx9mmx1mm。内集成了两个GaN开关器件,并且同时集成了GaN开关器件通断的驱动电路,在外部输入一驱动信号,即可以驱动GaN开关器件工作,因此无需在GaN半桥功率驱动芯片1011外再配置驱动电路,因此减小了电源适配器的体积。
在一些实施例中,电源控制芯片102还用于检测交流电源的电压等级,且电源控制芯片102用于交流电源的电压等级,控制GaN全桥电路101的斩波频率。在一具体的示例中,交流电源的电压等级反映了所属地区、国家。
例如,当电源控制芯片102检测到交流电源的电压为220V时,则表示是中国交流市电,由于中国交流市电的电压幅度较大,可利用的能量较多,因此电源控制芯片102GaN全桥电路101的斩波频率,以增大斩波后电能波形的占空比,以输出较大功率如120W。当电源控制芯片102检测到交流电源的电压为110V时则表示是美国地区的交流电源,此时如果仍以120W能量输出,将会影响电路的整体转换效率,导致适配器发热、对电网产生谐波干扰等影响,因此电源控制芯片102控制GaN全桥电路101的斩波频率,以输出较低的功率。
请继续参阅图3。在一些实施例中,电源适配器还包括LLC谐振电路50,LLC谐振电路50的一端连接于两个GaN半桥功率驱动芯片1011的第二端之间;LLC谐振电路50包括电感,电感与初级绕组L1耦合。
LLC谐振电路50中的谐振元件主要由以上3个谐振元件构成,即谐振电容Cs,电感Ls和激磁电感。其中,励磁电感为初级绕组L1。通过选择合适的容置的谐振电容Cs以及合适电感量的电感,从而在GaN全桥电路101的工作频率范围内,使得LLC谐振电路50工作在谐振状态。当LLC谐振电路50工作在谐振状态时,能够减小在GaN开关器件关断时的反向输入电流,能够进一步减小GaN开关器件在通断切换过程中电能的损耗,有利于提高开关效率,并减小因电能损耗所产生的发热量。
进一步的,如前,上述实施例的斩波电路10基于的开关器件是GaN开关器件,GaN开关器件是一种高电子迁移率晶体管(HEMT)相对于传统的MOS管,GaN开关器件有更高工作频率,其在斩波过程中,工作频率可以达到500K-1Mhz。由于工作频率的增大,降低了对变压器20绕组电感量的要求,从而可以允许减小变压器20的匝数,由此得以减小变压器20的体积。
在一些实施例中,变压器20采用的是平面变压器20。平面变压器20是一种具有高频,低造型,高度很小而工作频率很高等特点的变压器20,有利于降低电源适配器的厚度。例如,采用印刷电路PCB(printed circuit board)型变压器20。可省去绕组骨架,能增大散热面积,能减小在高频工作时由集肤效应和邻近效应所引起的涡流损耗。在一示例中,采用16T:2T:2T的印刷电路PCB型变压器20,而其体积只有20mmx20mm左右, 非常小巧。
进一步的,本实施例中,电源适配器还包括整流电路30,整流电路30的第一端与次级绕组L2连接,以整流次级绕组L2输出的交流电能。对比相关技术中,整流电路30均设置在变压器20的初级侧;本实施例中,整流电路30是设置在了变压器20的次级侧,由于变压器20的次级绕组L2上的电压在很大程度上低于初级侧绕组上的电压,因此将整流电路30设置在次级侧能够减小对器件功率的要求,从而能够采用更加小型化、低耐压值的器件,有利于降低成本。
并且,将整流电路30设置在次级侧,使得在初级侧,电源控制芯片102仅需要控制GaN全桥电路101,对于在次级的整流电路30可以采用专用的控制芯片来进行控制,从而降低了电源控制芯片102的控制负担,使得电源控制芯片102更加能够准确、有效的控制GaN全桥电路101的工作,因此本实施例有利于提高电源适配器的工作稳定性和可靠性。
在此需要说明的是,正是由于本实施例方案中在初级侧采用了GaN全桥电路101来对交流电源的正半周期、负半周期分别进行斩波,从而使得无需在变压器20的初级侧再设置整流电路30,而得以将整流电路30设置在变压器20的次级侧,从而才有了上述有益效果。
在一实施例中,整流电路30采用的是同步整流电路30。所述同步整流电路30至少具有两个开关管,所述电源控制芯片102根据所述次级绕组上电压的正、负交替时机,控制两个所述开关管交替导通,以对所述次级绕组上的交流电进行同步整流。
由于本实施例中的电源适配器体积较小,对比二极管整流电路30,同步整流可减少因为二极管整流产生的固定压降导致的发热,从而有助于减少电源适配器内散热结构的要求,从而进一步减小适配器体积。
所述电源适配器还包括微波隔离电路90,所述电源控制芯片102发出的控制信号经过所述微波隔离电路90发送至所述整流电路30中的开关管;
所述微波隔离电路90包括发射端和接收端,所述发射端与所述电源控制芯片102连接,所述接收端与所述整流电路30中的开关管连接,所述发射端用于将所述电源控制芯片102发出的控制信号转化为微波信号并发送至所述接收端,所述接收端用于将所述微波信号转化为所述控制信号, 以控制相应的开关管的导通或关断。
由于隔离微波单元90的响应速度快,其发射端可以将控制信号转化为微波信号并快速传输至接收端,因此,即使控制信号的死区时间设置的较短,也能快速开通或关断开关管,可以提高效率,同时也不会引起电路的串扰;另一方面,由于微波的传输不依靠介质传输,因此,微波单元的发射端和接收端之间的距离可以设置的较远一些,进一步地,可以避免电路串扰,也可以避免开关管的误导通。
在一示例中,同步整流电路30包括第一开关管Q1、第二开关管Q2;次级绕组L2具有第一端、第二端、以及位于次级绕组L2第一端和第二端之间的抽头端;第一开关管Q1连接于次级绕组L2的第一端以及地,且受控于电源控制芯片102;第二开关管Q2连接于次级绕组L2的第二端以及地,且受控于电源控制芯片102;抽头端与降压电路40的输入端连接。
在此第一开关管Q1、第二开关管Q2可以是MOS管。其中抽头端用于输出正向电压,第一开关管Q1、第二开关管Q2轮流分别接地,从而实现对变压器20次级绕组L2的整流。本示例中的同步整流电路30使用逻辑电平高直接驱动该整流MOS,无需自举电路,由此节省了器件,简化了电路结构。
如前,由于采用了GaN开关器件用于斩波,GaN开关器件的高开关频率使得变压器20可以采用较少的匝数,当变压器20的匝数减小时,将造成变压器20的变比较大;即在变压器20次级绕组L2上的电压变化范围会较宽。并且,对于印刷电路PCB型变压器20,多层PCB板是夹在磁芯之间的,在生产过程中,气隙不容易控制,所以容易造成PCB型变压器20的实际变比与设计变比之间具有偏差,这种偏差可能造成变压器20次级绕组L2上的电压范围会进一步增大。
基于此,在本实施例中,设置连接在变压器20次级侧上的降压电路40包括串联的电荷泵电路以及BUCK电路。电荷泵电路能够允许有较宽的电压输入范围,而buck电路具有较高的能量转换效率,因此本实施例中的降压电路40允许较宽的电压输入范围,能够很好的应对采用了匝数较少的变压器20后所带来的次级绕组L2上的电压范围较大的问题。
在一实施例中,可以直接使用允许较宽电压输入能力的降压芯片,降 压芯片的输入电压范围的上限值和下限值的差值大于或等于40V,例如可以是5V~60V。降压芯片的使用能够进一步降低电源适配器的体积。
在一些实施例中,降压芯片可以直接受控于电源控制芯片102,在另一些实施例中,降压芯片受控于设置在变压器20次级侧的电压控制芯片80。电压控制芯片80可以是MCU。电压控制芯片80输出占空比可调的PWM波,并通过一个MOS开关管(该MOS开关管可以内置或外置于电压控制芯片80)控制降压芯片内开关管的通断,从而达到调节降压芯片输出电压的目的。
此外,当电压适配器还包括充电接口,待充电的电子设备通过该充电接口与电压适配器连接,以接收最终由降压芯片所输出的电能。充电接口在此可以是TYPE-C接口,USB 2.0接口、Micro USB接口等。
当电压适配器与待充电的电子设备连接时,电压控制芯片80还用于该电子设备通讯握手,从而确定电子设备的期望输出电压和期望输出电流。进而,电源控制芯片102基于期望输出电压和期望输出电流调节输出的PWM的占空比,从而控制降压电路40的输出电压和输出电流。
在本实施例中,在变压器20的初级侧使用电源控制芯片102控制GaN全桥电路101的斩波频率,以大范围的根据期望输出电压对交流电源进行电压变换;在变压器20的次级侧使用电压控制芯片80来进一步精细化的调节最终降压芯片所输出的电压,从而提高了电源适配器所输出的电压与期望输出电压匹配。因此本实施例提高了电源适配器按需输出电压的精准性。
变压器20次级绕组L2上的电压经过同步整流电路30整流后,形成馒头波。对于馒头波,其电压会随着时间而发生变化。当电压低到一定程度时,超过了降压电路40的工作阈值,则造成降压电路40无法对这部分低电压区间的电能进行能量变换,从而导致能量的浪费。
请继续参阅图3以及参阅图5,其中,图5是根据另一示例性示出的一种电源适配器的电路结构框图。在一实施例中,设置电源适配器还包括抬压电路60,抬压电路60用于抬高降压电路40输入端电压,从而在同步整流电路30输出电压较低时,也能够保证降压电路40能够正常工作,使得降压电路40能够对低电压区间的电能进行能量变换,从而提高电能转 换效率。
具体的,抬压电路60并联于降压电路40的输入端与地之间;抬压电压包括第三开关管Q3、抬压电容C1;第三开关管Q3连接于抽头端与降压电路40的输入端之间,且受控于电源控制芯片102;在降压电路40输入端上的电压低于第一预设电压值时,电源控制芯片102控制第三开关管Q3导通,以使抬压电容C1储能,从而升高降压电路40的输入端上的电压。
在此第三开关管Q3可以是MOS管,当采用NMOS管时,MOS管的栅极可以与电源控制芯片102连接,也可以与其他的控制芯片连接,MOS管的漏极与电容连接,MOS管的源极接地。还应当理解,为了增大抬压效果,可以设置多个电容并联。
当同步整流电路30输出电压处于馒头波的低电压区间时,电源控制芯片102控制第三开关管Q3导通,此时电容逐渐被充满电而具有电压,电容上的电压加载在降压电路40的输入端上,从而抬高降压电路40的输入端上的电压,以保证处于馒头波的低电压区间上的电能能够被有效的利用。
抬压电路60的工作受控于电源控制芯片102。电源控制芯片102可以通过微波隔离电路90向抬压电路60内的开关管发出控制信号。微波隔离电路90的具体实施例参阅上述实施例。
应当理解的是,电源控制芯片102可经由不同的微波隔离电路90分别向整流电路30和抬压电路60内的开关管发送控制信号,以避免信号发生串扰。
本实施例采用的抬压电路60仅在整流电路30输出电压较低时,才会并联进电路,以抬高降压电路40输入端电压,从而可以使用较小的电容就可以满足降压电路40工作的要求。较小的电容体积较小,有利于进一步减小适配器的体积。因此本实施例的抬压电路60设置在满足降压电路40工作的要求的前提下,有利于适配器体积的进一步减小。
在一些实施例中,变压器20次级侧还包括反馈绕组L3,反馈绕组L3与初级绕组L1耦合;电源控制芯片102具有电源端;电源适配器还包括辅助电源70,辅助电源70的输入端与反馈绕组L3连接,辅助电源70的 输出端与电源控制芯片102的电源端连接;在电源适配器工作初始,变压器20初级侧上的微弱电能能够馈送到反馈绕组L3上,因此反馈绕组L3对辅助电源70充电,辅助电源70充电后对电源控制芯片102供电,以启动电源控制芯片102开始工作。
在一示例中,辅助电源70为线性稳压源。具体的,也可以采用转用的线性稳压芯片,从而向电源控制芯片102输出稳定的供电电压。
反馈绕组L3还用于检测反馈绕组L3上的电压,并将该电压反馈至电源控制芯片102,从而使电源控制芯片102根据反馈的电压调节GaN全桥电路101。在一示例中,辅助电源70可以包括分压采样电路,分压采样电路具体可以由至少两个电阻串联而形成。
在一些实施例中,通过在电源适配器内配置多种充电协议,以提高电源适配器的兼容性。充电协议可以是PD、QC、SCP、VOOC等充电协议。
本公开实施例是基于GaN全桥电路101用于斩波,利用GaN开关器件较高的开关频率,从而能够提高斩波频率,由此得以减小与能量转换有关的器件的体积,从而减小了电源适配器的整体体积。
并且,由于GaN全桥电路101能够对交流电源的正半周期、负半周期分别进行斩波,因此本实施例将整流电路30设置在次级侧,由于变压器20的次级绕组L2上的电压在很大程度上低于初级侧绕组上的电压,因此将整流电路30设置在次级侧能够减小对器件功率的要求,从而能够采用更加小型化、低耐压值的器件,有利于降低成本。
综上,本公开技术方案减小了电源适配器的体积,有利于实现电源适配器的小型化。
本公开实施例是基于GaN全桥电路101用于斩波,利用GaN开关器件较高的开关频率,从而能够提高斩波频率,由此得以减小与能量转换有关的器件的体积,从而减小了电源适配器的整体体积。
并且,在本实施例中,设置连接在变压器20次级侧上的降压电路40包括串联的电荷泵电路以及BUCK电路。电荷泵电路能够允许有较宽的电压输入范围,而buck电路具有较高的能量转换效率,因此本实施例中的降压电路40允许较宽的电压输入范围,能够很好的应对采用了匝数较少的变压器20后所带来的次级绕组L2上的电压范围较大的问题,从而保证 了电源适配器工作的可靠性。
综上,本公开实施例减小了电源适配器的体积了同时,保证了电源适配器工作的可靠性。
虽然已参照几个典型实施方式描述了本公开,但应当理解,所用的术语是说明和示例性、而非限制性的术语。由于本公开能够以多种形式具体实施而不脱离发明的精神或实质,所以应当理解,上述实施方式不限于任何前述的细节,而应在随附权利要求所限定的精神和范围内广泛地解释,因此落入权利要求或其等效范围内的全部变化和改型都应为随附权利要求所涵盖。

Claims (20)

  1. 一种电源适配器,其特征在于,包括:
    斩波电路,包括控制电路以及受控于所述控制电路的高速电子开关,所述高速电子开关在所述控制电路的控制下对交流电源进行斩波;
    变压器,所述变压器具有初级绕组以及次级绕组;经所述高速电子开关斩波后的交流电能输入至所述初级绕组;
    整流电路,所述整流电路的输入端与所述次级绕组连接,以将所述次级绕组输出的交流电能整流成直流电能输出,用于为电子设备充电。
  2. 根据权利要求1所述的电源适配器,其特征在于,所述高速电子开关至少有四个,且电连接形成全桥电路,以对所述交流电源的正半周电能、负半周电能分别进行斩波。
  3. 根据权利要求2所述的电源适配器,其特征在于,所述高速电子开关为GaN开关,至少四个所述GaN开关形成GaN全桥电路;
    所述GaN全桥电路的第一端接入交流电源,所述GaN全桥电路的第二端与所述初级绕组连接。
  4. 根据权利要求3所述的电源适配器,其特征在于,所述电源适配器还包括LLC谐振电路,所述LLC谐振电路的一端连接于所述GaN全桥电路的输出端,所述初级绕组作为所述LLC谐振电路的谐振电感。
  5. 根据权利要求3所述的电源适配器,其特征在于,所述控制电路还用于检测所述交流电源的电压,且所述控制电路用于根据所述交流电源的电压,控制所述GaN全桥电路的斩波频率。
  6. 根据权利要求3所述的电源适配器,其特征在于,所述GaN全桥电路包括两个GaN半桥功率驱动电路,每个所述GaN半桥功率驱动芯片内集成了两个所述GaN开关器件;
    所述GaN半桥功率驱动芯片具有第一端、第二端以及受控端;两个所述GaN半桥功率驱动芯片的受控端均与所述控制电路连接;两个所述GaN半桥功率驱动芯片的第一端分别供所述交流电源的火线和零线连接;两个所述GaN半桥功率驱动芯片的第二端均与所述初级绕组连接。
  7. 根据权利要求1所述的电源适配器,其特征在于,所述电源适配器还包括同步整流电路,所述同步整流电路至少具有两个开关管,所述控制 电路根据所述次级绕组上电压的正、负交替时机,控制两个所述开关管交替导通,以对所述次级绕组上的交流电进行同步整流。
  8. 根据权利要求7所述的电源适配器,其特征在于,所述同步整流电路包括第一开关管、第二开关管;所述次级绕组具有第一端、第二端、以及位于所述次级绕组第一端和第二端之间的抽头端;
    所述第一开关管连接于所述次级绕组的第一端以及地,且受控于所述控制电路;
    所述第二开关管连接于所述次级绕组的第二端以及地,且受控于所述控制电路;
    所述抽头端为所述同步整流电路的输出端。
  9. 根据权利要求7所述的电源适配器,其特征在于,所述电源适配器还包括微波隔离电路,所述控制电路发出的控制信号经过所述微波隔离电路发送至所述整流电路中的开关管;
    所述微波隔离电路包括发射端和接收端,所述发射端与所述控制电路连接,所述接收端与所述整流电路中的开关管连接,所述发射端用于将所述控制电路发出的控制信号转化为微波信号并发送至所述接收端,所述接收端用于将所述微波信号转化为所述控制信号,以控制相应的开关管的导通或关断。
  10. 根据权利要求1至9任意一项所述的电源适配器,其特征在于,所述电源适配器还包括降压电路,所述降压电路与所述整流电路的第二端连接,以对所述整流电路输出的直流电能降压。
  11. 根据权利要求10所述的电源适配器,其特征在于,所述电源适配器还包括电压控制芯片;
    所述电压控制芯片控制所述降压电路的工作,以使所述降压电路输出的电压与所述电子设备期望的充电电压匹配。
  12. 根据权利要求10所述的电源适配器,其特征在于,所述降压电路至少包括两种不同类型的电能变换电路,以扩大所述降压电路所允许输入的电压范围。
  13. 根据权利要求10所述的电源适配器,其特征在于,所述电源适配器还包括抬压电路,所述抬压电路并联于所述降压电路的输入端与地之间;
    所述抬压电压包括第三开关管、抬压电容;所述第三开关管连接于所述整流电路输出端与所述降压电路的输入端之间,且受控于所述控制电路;
    在所述降压电路输入端上的电压低于第一预设电压值时,所述控制电路控制所述第三开关管导通,以使所述抬压电容储能,从而升高所述降压电路的输入端上的电压。
  14. 根据权利要求1所述的电源适配器,其特征在于,所述变压器次级侧还包括反馈绕组,所述反馈绕组与所述初级绕组耦合;所述控制电路具有电源端;
    电源适配器还包括辅助电源,所述辅助电源的输入端与所述反馈绕组连接,所述辅助电源的输出端与所述控制电路的电源端连接;
    所述反馈绕组用于对所述辅助电源充电,以使所述辅助电源对所述控制电路供电。
  15. 一种电源适配器,其特征在于,包括:
    斩波电路,包括控制电路以及受控于所述控制电路的高速电子开关,所述高速电子开关在所述控制电路的控制下对交流电源进行斩波;
    变压器,所述变压器具有初级绕组以及次级绕组;经所述高速电子开关斩波后的交流电能输入至所述初级绕组;
    降压电路,所述降压电路与所述次级绕组连接,以用于对所述次级绕组输出的电压降压;所述降压电路至少包括两种不同类型的电能变换电路,以扩大所述降压电路所允许输入的电压范围;
    整流电路,所述整流电路设置于所述变压器初级侧,且连接于所述斩波电路与所述交流电源之间;或所述整流电路设置于所述变压器次级侧,且连接于所述次级绕组与所述降压电路之间。
  16. 根据权利要求15所述的电源适配器,其特征在于,所述降压电路至少包括串联连接的电荷泵电路以及BUCK电路。
  17. 根据权利要求15所述的电源适配器,其特征在于,所述降压电路为降压芯片,所述降压芯片的输入电压范围的上限值和下限值的差值大于或等于40V。
  18. 根据权利要求15所述的电源适配器,其特征在于,所述高速电子开关至少有四个,且电连接形成全桥电路,以对所述交流电源的正半周电 能、负半周电能分别进行斩波。
  19. 根据权利要求15所述的电源适配器,其特征在于,所述高速电子开关为GaN开关,至少四个所述GaN开关形成GaN全桥电路;
    所述GaN全桥电路的第一端接入交流电源,所述GaN全桥电路的第二端与所述初级绕组连接。
  20. 根据权利要求15所述的电源适配器,其特征在于,所述电源适配器还包括LLC谐振电路,所述LLC谐振电路的一端连接于所述GaN全桥电路的输出端,所述初级绕组作为所述LLC谐振电路的谐振电感。
PCT/CN2021/103258 2020-07-10 2021-06-29 电源适配器 WO2022007667A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010665063.4A CN113922679A (zh) 2020-07-10 2020-07-10 电源适配器
CN202010665063.4 2020-07-10

Publications (1)

Publication Number Publication Date
WO2022007667A1 true WO2022007667A1 (zh) 2022-01-13

Family

ID=79232406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/103258 WO2022007667A1 (zh) 2020-07-10 2021-06-29 电源适配器

Country Status (2)

Country Link
CN (1) CN113922679A (zh)
WO (1) WO2022007667A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116632984A (zh) * 2023-07-24 2023-08-22 鹏元晟高科技股份有限公司 移动电源充放电电路

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08214546A (ja) * 1994-12-06 1996-08-20 Hitachi Ltd 直流電源装置及び直流電源供給システム
CN201726325U (zh) * 2010-08-11 2011-01-26 上海交通大学 全桥高频链单相电力电子变压器
CN102163932A (zh) * 2011-03-18 2011-08-24 上海交通大学 交流斩波的线性ac-dc变换器
CN102291020A (zh) * 2011-07-22 2011-12-21 上海交通大学 交流推挽变换-单管整流的ac-dc变换器
CN106712529A (zh) * 2017-01-17 2017-05-24 浙江大学 一种基于GaN的高效率高功率密度隔离DC‑DC变换电路
CN110429838A (zh) * 2019-08-12 2019-11-08 黄山学院 高功率密度GaN同步整流负载点电源模块
CN110492623A (zh) * 2018-05-15 2019-11-22 哈尔滨工业大学 一种基于直接控制ac-ac变换器的无线电能传输逆变电源
CN110995025A (zh) * 2019-12-20 2020-04-10 矽力杰半导体技术(杭州)有限公司 一种开关电源电路
CN111064369A (zh) * 2019-12-20 2020-04-24 矽力杰半导体技术(杭州)有限公司 开关电源电路
CN211266788U (zh) * 2019-12-20 2020-08-14 矽力杰半导体技术(杭州)有限公司 一种开关电源电路
CN211701861U (zh) * 2019-12-20 2020-10-16 矽力杰半导体技术(杭州)有限公司 开关电源电路
CN112165266A (zh) * 2020-09-25 2021-01-01 矽力杰半导体技术(杭州)有限公司 开关电源电路

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08214546A (ja) * 1994-12-06 1996-08-20 Hitachi Ltd 直流電源装置及び直流電源供給システム
CN201726325U (zh) * 2010-08-11 2011-01-26 上海交通大学 全桥高频链单相电力电子变压器
CN102163932A (zh) * 2011-03-18 2011-08-24 上海交通大学 交流斩波的线性ac-dc变换器
CN102291020A (zh) * 2011-07-22 2011-12-21 上海交通大学 交流推挽变换-单管整流的ac-dc变换器
CN106712529A (zh) * 2017-01-17 2017-05-24 浙江大学 一种基于GaN的高效率高功率密度隔离DC‑DC变换电路
CN110492623A (zh) * 2018-05-15 2019-11-22 哈尔滨工业大学 一种基于直接控制ac-ac变换器的无线电能传输逆变电源
CN110429838A (zh) * 2019-08-12 2019-11-08 黄山学院 高功率密度GaN同步整流负载点电源模块
CN110995025A (zh) * 2019-12-20 2020-04-10 矽力杰半导体技术(杭州)有限公司 一种开关电源电路
CN111064369A (zh) * 2019-12-20 2020-04-24 矽力杰半导体技术(杭州)有限公司 开关电源电路
CN211266788U (zh) * 2019-12-20 2020-08-14 矽力杰半导体技术(杭州)有限公司 一种开关电源电路
CN211701861U (zh) * 2019-12-20 2020-10-16 矽力杰半导体技术(杭州)有限公司 开关电源电路
CN112165266A (zh) * 2020-09-25 2021-01-01 矽力杰半导体技术(杭州)有限公司 开关电源电路

Also Published As

Publication number Publication date
CN113922679A (zh) 2022-01-11

Similar Documents

Publication Publication Date Title
WO2019128071A1 (zh) 一种dc-dc变换器
CN108964474B (zh) 一种基于llc谐振变换器的三模态整流拓扑结构
CN101685980B (zh) 一种用于ups的基于llc的全桥零电压开关升压谐振变换器
CN105119391A (zh) 一种高效率的电能发射端和无线电能传输装置
US20100097826A1 (en) Resonant converter for synchronous rectification control
CN101719728A (zh) 谐振功率转换器及其控制方法
CN201054545Y (zh) 中功率多路输出薄型开关电源
CN111682769B (zh) 有源钳位正激变换器的自适应同步整流数字控制方法
WO2013075401A1 (zh) 一种电源电路
CN107017779B (zh) 一种带下拉有源钳位支路的隔离型dc-dc升压变换器控制方法
WO2022007667A1 (zh) 电源适配器
CN110572039A (zh) 一种基于倍流整流器的新型全桥直流变换器
CN113676057B (zh) 一种基于二次电流模拟的llc同步整流电路
WO2020093508A1 (zh) 双向隔离dc/dc电路及其采用的控制方法
CN104065283A (zh) 无桥式pfc交流直流电源变换器
CN104284481A (zh) 无桥无电解电容低纹波大功率led灯恒流电源
CN107147297B (zh) 一种带有下拉辅助开关的感应耦合电能传输控制方法
CN103441690B (zh) 高频交流侧串联实现紧调整输出的组合变流器的控制方法
CN107134927B (zh) 一种带有下拉辅助开关的感应耦合电能传输装置
CN113162170A (zh) 一种无线充电电路
CN108768146A (zh) 功率变换器及其控制电路和控制方法
CN209805684U (zh) 一种自激驱动的电源电路
CN205141847U (zh) 一种高效率的电能发射端和无线电能传输装置
CN108695995B (zh) 一种高效率谐振型无线电能传输系统
CN107154683B (zh) 一种带有上拉辅助开关的感应耦合电能传输装置及控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21838054

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21838054

Country of ref document: EP

Kind code of ref document: A1