WO2022007636A1 - 一种手术操作系统及其单、双极混合输出方法 - Google Patents

一种手术操作系统及其单、双极混合输出方法 Download PDF

Info

Publication number
WO2022007636A1
WO2022007636A1 PCT/CN2021/102016 CN2021102016W WO2022007636A1 WO 2022007636 A1 WO2022007636 A1 WO 2022007636A1 CN 2021102016 W CN2021102016 W CN 2021102016W WO 2022007636 A1 WO2022007636 A1 WO 2022007636A1
Authority
WO
WIPO (PCT)
Prior art keywords
bipolar
instrument
output
mode
switch
Prior art date
Application number
PCT/CN2021/102016
Other languages
English (en)
French (fr)
Inventor
刘春晓
林敏�
罗维涛
李鹏飞
Original Assignee
珠海市司迈科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010662241.8A external-priority patent/CN111671515A/zh
Application filed by 珠海市司迈科技有限公司 filed Critical 珠海市司迈科技有限公司
Priority to JP2022570408A priority Critical patent/JP2023526411A/ja
Priority to US18/007,595 priority patent/US20230263568A1/en
Priority to EP21837090.6A priority patent/EP4179988A4/en
Publication of WO2022007636A1 publication Critical patent/WO2022007636A1/zh
Priority to JP2023190371A priority patent/JP2024010189A/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1442Probes having pivoting end effectors, e.g. forceps
    • A61B18/1445Probes having pivoting end effectors, e.g. forceps at the distal end of a shaft, e.g. forceps or scissors at the end of a rigid rod
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1442Probes having pivoting end effectors, e.g. forceps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00589Coagulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00601Cutting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00607Coagulation and cutting with the same instrument
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • A61B2018/124Generators therefor switching the output to different electrodes, e.g. sequentially
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • A61B2018/1246Generators therefor characterised by the output polarity
    • A61B2018/1253Generators therefor characterised by the output polarity monopolar
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • A61B2018/1246Generators therefor characterised by the output polarity
    • A61B2018/126Generators therefor characterised by the output polarity bipolar
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/90Identification means for patients or instruments, e.g. tags
    • A61B90/98Identification means for patients or instruments, e.g. tags using electromagnetic means, e.g. transponders

Definitions

  • the invention relates to the technical field of electrosurgery, in particular to a surgical operating system and a monopolar and bipolar mixed output method applied to the system.
  • Electrosurgery uses the energy output by the electrosurgery system to complete the cutting and coagulation of human tissue.
  • the thermal effect of current will make human tissue vaporize, which is the principle of cutting; the thermal effect of current will cause the denaturation and coagulation of human tissue proteins, which is the principle of coagulation.
  • electrosurgery systems generally have a unipolar output function and a bipolar output function.
  • FIG. 1 is the working mode of the unipolar output function of an existing electrosurgery system.
  • the electrosurgery system includes a high-frequency power supply module, an electrosurgical pen, a return electrode, Active lead and return electrode lead, the specific working process of the electrosurgical system's unipolar output function is as follows: the current flows from the electrosurgical pen through the human tissue into the negative plate attached to the patient to form a loop.
  • FIG. 2 is the working mode of the bipolar output function of an existing electrosurgery system.
  • the electrosurgery system includes bipolar scissors, an active lead and a return electrode lead.
  • the specific workflow of the working mode of the polar output function is as follows: the bipolar instrument clamps the tissue between bipolar scissors (or bipolar forceps, bipolar forceps), and current flows through the human tissue to complete tissue vaporization and coagulation to stop bleeding.
  • the existing electrosurgery systems generally have the functions of unipolar output and bipolar output, respectively.
  • the advantages and disadvantages of unipolar output Compared with bipolar electrosurgery, monopolar electrosurgery using unipolar output mode has higher energy density than bipolar electrosurgery. Electric knife has better cutting effect.
  • the electrosurgical pen is only one pole in the entire current loop, the electric power cannot be concentrated on the tissue to be coagulated to a large extent, but passes through the tip of the pen and reaches the end of the negative plate through a larger area of human tissue. Therefore, its coagulation effect is worse than that of bipolar electrocautery; and it is difficult for the monopolar electrocautery pen to penetrate into the abdominal cavity for minimally invasive surgery under laparoscopic; Only high power can cut the tissue, but high power brings greater thermal damage to the tissue.
  • bipolar output Since the coagulated tissue is the tissue that needs to be coagulated, it is sandwiched between the two bipolar stages, so that the electrical power is largely concentrated in the tissue between the two poles.
  • Bipolar scissors or bipolar forceps, bipolar forceps
  • bipolar instruments bipolar scissors or bipolar forceps, bipolar forceps
  • the energy output of bipolar instruments is generally smaller than that of monopolar
  • the tissue energy density between the upper and lower blades is smaller than that of the tip of the monopolar electric knife pen
  • bipolar instruments are often only able to cut thin tissues.
  • the unipolar output mode is more conducive to cutting, but not conducive to coagulation; the bipolar output mode is more conducive to coagulation, but not conducive to cutting.
  • the main purpose of the present invention is to provide a single and bipolar mixed output method that can realize single and bipolar mixed output on the same executing instrument.
  • Another object of the present invention is to provide a surgical operating system that can realize single and bipolar mixed output on the same executing instrument.
  • the present invention provides a monopolar and bipolar hybrid output method, which is applied to a surgical operating system.
  • the cutting action and the tissue coagulation action are performed by controlling the first actuator.
  • the main control unit uses the first group of control signals to make the current pass through the first execution end of the first execution instrument and through the human tissue to reach the return electrode to form a cutting action.
  • the first current loop is used to complete the cutting action in the mono-bipolar hybrid mode on the first executing instrument.
  • the main control unit uses the second set of control signals to make the current pass through the tissue to be resected through the first execution end of the first execution instrument.
  • a second current loop is formed by reaching the second executing end of the first executing instrument, and the tissue coagulation action in the monopolar hybrid mode is completed on the first executing instrument.
  • the output mode further includes a unipolar mode, in which the main control unit uses a third group of control signals to make the current pass through the third execution end of the second execution instrument and through the human tissue to reach the target.
  • the return electrode forms a third current loop, and completes the cutting action and the tissue coagulation action in the monopolar mode on the second executing instrument.
  • the output mode further includes a bipolar mode
  • the main control unit uses a fourth group of control signals to cause the current to pass through the human tissue through the first execution end of the first execution instrument.
  • a fourth current loop is formed by reaching the second executing end of the first executing instrument, and the cutting action and the tissue coagulation action in the bipolar mode are completed on the first executing instrument.
  • the present invention provides a surgical operating system, comprising: a main control unit, a control panel and an executive instrument, the main control unit includes a central controller, a high-frequency power supply module and a switch matrix, the The high-frequency power supply module is respectively connected with the central controller and the switch matrix.
  • the central controller receives the control panel output selection instruction, and reads the mode information of the built-in chip of the executive instrument or the foot switch instruction.
  • the central controller outputs a driving switch signal to the switch matrix, so as to control the switch matrix to turn on and drive the actuator.
  • the switch matrix includes a first switch tube, a second switch tube, a third switch tube, and a fourth switch tube
  • the central controller sends the first switch tube, the fourth switch tube to the first switch tube, the fourth switch tube according to the received selection instruction.
  • the second switch tube, the third switch tube, and the fourth switch tube send driving switch signals to control the turn-on and turn-off of the first switch tube, the second switch tube, the third switch tube, and the fourth switch tube.
  • the switch matrix further includes a sixth switch tube and a seventh switch tube
  • the central controller sends a drive switch signal to the sixth switch tube and the seventh switch tube according to the received selection instruction to The turn-on and turn-off of the sixth switch tube and the seventh switch tube are controlled.
  • the actuator includes a first actuator, a second actuator and a return electrode, the first output socket of the switch matrix is connected to the end of the first actuator, and the second output socket of the switch matrix is connected to the end of the first actuator.
  • Output sockets are respectively connected to the second actuator end and the return electrode end, wherein the first actuator is a bipolar instrument and the second actuator is an electrode structure.
  • the bipolar instrument includes a first conductive area, a second conductive area, a handle assembly and an execution end of the bipolar instrument, and the first conductive area is connected to the first output end of the first output socket , the second conductive area is connected with the second output end of the first output socket, the handle assembly is connected with the execution end of the bipolar instrument, wherein the execution end of the bipolar instrument has a first execution end, The second execution end, the electrode structure has a third execution end.
  • the application can be used in the single and bipolar mixed output modes in the same execution instrument, and in the monopolar and bipolar mixed output modes, the same execution instrument can realize the mixing of the monopolar mode cutting and bipolar mode hemostasis mode, which overcomes the respective shortcomings of conventional unipolar output and conventional bipolar output, and integrates the respective advantages of unipolar output and bipolar output.
  • the bipolar instrument can realize cutting in the monopolar mode, so that one performing end of the bipolar instrument can also have a high energy density; and the shear force of the bipolar instrument can be used. , so that the bipolar instrument can complete the cutting function under low power, so that the damage to the patient during the operation will be greatly reduced.
  • the coagulation essence of the bipolar device is still bipolar coagulation.
  • the coagulation layer is thicker, resulting in better hemostasis at the bleeding point.
  • the present invention has the above three working modes at the same time, and the output mode can be arbitrarily switched according to the needs of the operation under the cooperation of the execution instrument.
  • FIG. 1 is a schematic diagram of a working mode of a unipolar output function of an electrosurgery system in the prior art.
  • FIG. 2 is a schematic diagram of a bipolar output function working mode of an electrosurgery system in the prior art.
  • FIG. 3 is a schematic block diagram of an embodiment of a surgical operating system of the present invention.
  • FIG. 4 is a schematic circuit diagram of an embodiment of a surgical operating system of the present invention.
  • FIG. 5 is a circuit schematic diagram of a switch matrix in an embodiment of a surgical operating system of the present invention.
  • FIG. 6 is a schematic structural diagram of a bipolar instrument in an embodiment of a surgical operating system of the present invention.
  • FIG. 7 is a schematic diagram of a control panel selection mode in an embodiment of a surgical operating system of the present invention.
  • the surgical operating system of the present invention consists of a central controller 2, a high-frequency power supply module 3 and a switch matrix 4, a main control unit, a control panel 1 and an executive instrument, and the high-frequency power supply module 3 is connected to the central control
  • the controller 2 and the switch matrix 4 are connected, the central controller 2 receives the selection command output by the control panel 1, and reads the mode information of the built-in chip of the executive instrument or the foot switch command, and the central controller 2 outputs the drive switch signal to the switch matrix 4,
  • the actuator is driven by controlling the switch matrix 4 to be turned on.
  • the selection instruction in this embodiment may be an instruction selected by the user through the display screen interface of the control panel 1, or may be instruction information recognized by the system through the electrode built-in chip.
  • the central controller 2 in this embodiment may be a chip with computing functions such as MCU, but is not limited to MCU, and may also refer to other microcontrollers such as DSP, microcomputer, programmable logic controller CPLD, FPGA, special integrated circuits and other programmable circuits.
  • the surgical operating system further includes a low-voltage power supply 10 and a switching power supply 9 .
  • the low-voltage power supply 10 and the switching power supply 9 in this embodiment may output other voltages, for example, the switching power supply 9 may output a 24V power supply.
  • the switch matrix 4 includes a first switch tube 41 , a second switch tube 42 , a third switch tube 43 , a fourth switch tube 44 , a first output socket 21 , a second output socket 22 and at least one third switch tube 41 .
  • the central controller 2 sends a driving switch signal to the first switch tube 41, the second switch tube 42, the third switch tube 43, and the fourth switch tube 44 to control the first switch tube 41,
  • the second switch tube 42 , the third switch tube 43 , and the fourth switch tube 44 are turned on and off.
  • the switch matrix 4 also includes a sixth switch tube and a seventh switch tube, and the central controller 2 sends a driving switch signal to the sixth switch tube and the seventh switch tube according to the received selection instruction to control the sixth switch tube and the seventh switch tube. switch on and off.
  • first switch tube 41 and the second switch tube 42 are respectively connected to the first output terminal and the second output terminal of the first output socket 21
  • the third switch tube 43 and the fourth switch tube 44 are respectively connected to the second output terminal.
  • the first output end and the second output end of the socket 22 are connected
  • the sixth switch tube and the seventh switch tube are respectively connected with the first output end and the second output end of the third output socket.
  • the switch matrix 4 in this embodiment is preferably a relay switch matrix, but is not limited to a relay, and can also be a photocoupler, a triode, a power MOSFET, an insulated gate bipolar transistor (IGBT) or any other controllable switch.
  • a relay switch matrix but is not limited to a relay, and can also be a photocoupler, a triode, a power MOSFET, an insulated gate bipolar transistor (IGBT) or any other controllable switch.
  • IGBT insulated gate bipolar transistor
  • the first switch transistor 41, the second switch transistor 42, the third switch transistor 43, the fourth switch transistor 44, the sixth switch transistor, and the seventh switch transistor are the first relay switches JDQ1, The second relay switch JDQ2, the third relay switch JDQ3, the fourth relay switch JDQ4, the sixth relay switch JDQ6, and the seventh relay switch JDQ7
  • the central controller 2 turns on and drives the relay switch six through the same inverter (such as 74HC14D, etc.)
  • the signals are the CH1_PK2ABDR signal of the input FET G5, the CH1_PKABDR signal of the FET G1, the CH2_PKADR signal of the FET G4, the CH3_BEMDR signal of the FET G2, the CH4_VP2DR signal of the FET G6, and the FET G6 signal.
  • the field effect transistor of this embodiment can also be a photocoupler, such as PC817; it can also be an analog switch, such as 74HC4066; it can also be a triode, etc. to complete the switch control of the relay.
  • the central controller 2 outputs the CH1_PK2ABDR signal to the gate of the FET G5, the drain of the FET G5 is connected to the third terminal of the first relay switch JDQ1, and the central controller 2 outputs the CH1_PKABDR signal to the FET G1
  • the gate of the field effect transistor G1 is connected to the third terminal of the second relay switch JDQ2
  • the central controller 2 outputs the CH2_PKADR signal to the gate of the field effect transistor G4, and the drain of the field effect transistor G4 is connected to the third relay.
  • the third terminal of the switch JDQ3 is connected, the central controller 2 outputs the CH3_BEMDR signal to the gate of the FET G2, the drain of the FET G2 is connected to the third terminal of the fourth relay switch JDQ4, and the central controller 2 outputs the CH4_VP2DR signal To the gate of the field effect transistor G6, the drain of the field effect transistor G6 is connected to the third end of the sixth relay switch JDQ6, the central controller 2 outputs the CH4_VPDR signal to the gate of the field effect transistor G3, and the drain of the field effect transistor G3 The pole is connected to the third terminal of the seventh relay switch JDQ7.
  • the sources of FET G1, FET G2, FET G3, FET G4, FET G5, FET G6, and FET G7 are grounded respectively, and the first terminal of the first relay switch JDQ1 is connected to At the node 1, the node 1 is connected to the node 3, the first terminal of the third relay switch JDQ3 and the first terminal of the sixth relay switch JDQ6 are connected to the node 3.
  • the first terminal of the second relay switch JDQ2 , the first terminal of the fourth relay switch JDQ4 and the first terminal of the seventh relay switch JDQ7 are connected to the node 2 .
  • the second terminal of the first relay switch JDQ1 and the second terminal of the second relay switch JDQ2 are connected to the first output socket 21 (such as the SM output socket), the second terminal of the sixth relay switch JDQ6 and the second terminal of the seventh relay switch JDQ7.
  • the two terminals are connected to the third output socket (eg VP output socket), the second terminal of the third relay switch JDQ3 and the second terminal of the fourth relay switch JDQ4 are connected to the second output socket 22 (eg J_MONO and J_PATIENT).
  • the actuator includes a first actuator, a second actuator and a return electrode 5, the first output socket 21 of the switch matrix 4 is connected to the end of the first actuator, and the second output socket 22 of the switch matrix 4 is respectively Connected to the end of the second actuator and the end of the return electrode 5, wherein the first actuator is a bipolar instrument 7, the second actuator is an electrode structure 6, and the return electrode 5 is a negative plate (muscle-applying plate).
  • the second output socket 22 in this embodiment can be electrically divided into two interface sockets, that is, one interface socket is connected to the 3 ports of the second output socket 22, the other interface socket is connected to the 4 ports of the second output socket 22, and an interface socket is connected to the 4 ports of the second output socket 22.
  • the second actuator is connected, and the other interface socket is connected to the return electrode 5 .
  • the bipolar instrument 7 includes a first conductive area 73 , a second conductive area 74 , a handle assembly 75 and an execution end of the bipolar instrument.
  • the first conductive area 73 is connected to the first output end of the first output socket 21
  • the first conductive area 73 is connected to the first output end of the first output socket 21 .
  • the two conductive areas 74 are connected to the second output end of the first output socket 21 (which can also be connected in reverse), and the handle assembly 75 is connected to the execution end of the bipolar instrument.
  • the bipolar instrument 7 in this embodiment is preferably bipolar coagulation scissors, but is not limited to bipolar coagulation scissors, and may also be bipolar coagulation forceps, bipolar coagulation forceps and other bipolar coagulators; this embodiment
  • the electrode structure 6 is preferably a monopolar electric knife pen module or a similar structure.
  • the execution end of the bipolar instrument has a first execution end 71 and a second execution end 72
  • the electrode structure 6 has a third execution end
  • the first conductive area is electrically connected to the first execution end of the bipolar instrument
  • the second conductive area is electrically connected to the first execution end of the bipolar instrument.
  • the second execution end of the bipolar executing instrument is electrically connected; or, the first conductive area is electrically connected with the second execution end, and the second conductive area is electrically connected with the first execution end.
  • the first execution end 71 of the bipolar instrument 7 is the upper blade end
  • the second execution end 72 of the bipolar instrument 7 is the lower blade end
  • the third execution end of the electrode structure 6 is the cutter head end.
  • the high-frequency power supply module 3 of this embodiment has three energy output modes, respectively corresponding to the three output modes of the surgical operating system of the present invention: unipolar mode, bipolar mode or unipolar hybrid mode.
  • the main control unit allows the operating system to work in unipolar output mode, bipolar output mode or single/bipolar mixed output mode. When the system single and bipolar mixed output mode is selected, it can be realized on the same actuator of the operating system. Single bipolar mixed output.
  • the monopolar hybrid mode when cutting, the current flows through the blade end of the bipolar instrument 7 into the negative plate through the human tissue (essentially monopolar cutting); when coagulation, the current passes through the upper blade end of the bipolar instrument 7 The lower blade end of the bipolar instrument 7 flows through the human tissue sandwiched between the bipolar instruments 7 (essentially bipolar coagulation). It can be seen that the single and bipolar mixed output (monopolar cutting, bipolar coagulation) and bipolar output (bipolar cutting, bipolar coagulation) can be realized on the same executive instrument.
  • the monopolar energy output mode is used. At this time, only the upper blade end of the bipolar instrument 7 outputs energy, and the current flows through the tissue to reach the negative plate; When the device 7 performs tissue coagulation, it is in a bipolar energy output mode, and current flows between the upper blade end and the lower blade end of the bipolar device 7, and the current does not pass through the negative plate. That is to say, the advantages of the monopolar and bipolar energy output modes are integrated on the same actuator (bipolar instrument 7 ), and the original disadvantages of the monopolar and bipolar energy output modes are overcome.
  • the return electrode 5 is electrically connected to the first output terminal (line 4 or line 3 ) of the second output socket 22
  • the electrode structure 6 is electrically connected to the second output socket 22 (line 3 or line 4 ).
  • the system closes the third switch tube 43 or the fourth switch tube 44 to form a unipolar circuit, and completes unipolar cutting and coagulation.
  • the bipolar instrument 7 is connected to the first output socket 21 (bipolar output socket).
  • the system closes the first switch tube 41 or the second switch tube 42 to form a bipolar loop, completing the bipolar circuit. Pole cutting and coagulation.
  • the bipolar instrument 7 When the single and bipolar mixed output mode is selected, the bipolar instrument 7 is connected to the first output socket 21 , and the return electrode 5 is connected to the second output socket 22 .
  • the system closes the first switch tube 41 and the fourth switch tube 44 connected to the return electrode 5, and disconnects the second switch tube 42 and the third switch tube 43, so that the current flows through the bipolar instrument
  • the executive end (blade end) of 7 reaches the return electrode 5 through human tissue to form a current loop, forming an essentially monopolar loop, and completes monopolar cutting on the bipolar instrument 7 .
  • the system closes the first switch tube 41 and the second switch tube 42, disconnects the fourth switch tube 44 connected to the circuit of the return electrode 5, and disconnects the third switch tube connected to the electrode structure 6.
  • the switch tube 43 makes the current pass through an executive end (such as the upper blade end) of the bipolar instrument 7 through the human tissue to reach the other executive end (the lower blade end) of the bipolar instrument 7 to form a circuit, forming an essentially bipolar coagulation circuit, Achieve bipolar coagulation effect.
  • the high-frequency power supply module 3 also has a fourth energy output mode, which corresponds to the fourth output mode of the surgical operating system of the present invention: the bipolar VP mode.
  • the bipolar VP mode of the present invention is the second bipolar mode output or two or more bipolar mode outputs, and its output principle is the same as that of the bipolar mode, that is, the sixth switch tube and the seventh switch tube are added, and the Corresponding bipolar instruments 7 are added to the corresponding output sockets.
  • control panel 1 of this embodiment may be a touch display screen, but is not limited to a touch screen display, may be a membrane button, or any inductive display device that can receive input signals such as contacts.
  • the central controller 2 controls the high-frequency power module 3 through the interface and the radio frequency adapter (eg, the J_RF1 socket), and the high-frequency power module 3 outputs the output to the patient through the J_RF socket and the relay switch matrix.
  • the communication mode between the central controller 2 and the high-frequency power supply module 3 may be serial data or parallel data format.
  • the serial data format can be SPI, IIC, UART, one-line bus, etc.;
  • the parallel data format can be asynchronous clocks such as 8-bit, 16-bit, 32-bit, etc., or synchronous clocks such as 8-bit, 16-bit, 32-bit, etc.
  • a monopolar and bipolar hybrid output method of the present invention is applied to an electrosurgical operation system, and the method includes: determining, through the control panel 1, the mode information read by the operator or the built-in chip of the executive instrument for the monopolar mode , selection instruction of bipolar mode or mono-bipolar hybrid mode, when the main control unit obtains the instruction to select mono-bipolar hybrid mode, it controls the first executing instrument to perform cutting action and tissue coagulation action.
  • the above-mentioned operating system realizes information interaction with the central controller 2 by touching the display screen.
  • the right area is the unipolar area
  • the left area is the bipolar mode area.
  • the upper left area is the bipolar SM area
  • the lower left area is the bipolar VP area. control area.
  • the upper left is the bipolar SM area and there are two mode selection buttons, the first mode selection button: when the first bipolar mode is pressed, it is bipolar output mode, that is, the current is made to pass through the bipolar output mode through the relay selection.
  • the first mode selection button when the first bipolar mode is pressed, it is bipolar output mode, that is, the current is made to pass through the bipolar output mode through the relay selection.
  • One executing end of the polar instrument 7 flows into the other executing end of the bipolar instrument 7 through the human tissue sandwiched between the bipolars;
  • the second mode selection button when the second bipolar mode is pressed, it is a single-bipolar hybrid mode , when the system detects that the return electrode 5 has been connected to the patient, the system will select the relay through the relay so that during cutting, the current flows into the return electrode 5 through the execution end of the bipolar instrument 7 through the human tissue (essentially monopolar cutting).
  • One performing end of the polar instrument 7 flows into the other performing end of the bipolar instrument
  • the system can read electrode information through a one-line bus to confirm that the default output mode of the electrode is bipolar output or single-bipolar mixed output.
  • the main control unit uses the first set of control signals to make the current pass through the first execution end 71 of the first actuator through the human tissue to reach the return electrode 5 to form a first current loop, and at The monopolar cutting action in the monopolar hybrid mode is completed on the first executing instrument.
  • the main control unit uses the second set of control signals to make the current pass through the first execution end 71 of the first execution instrument and through the tissue to be resected to reach the first
  • the second actuator end 72 of the actuator forms a second current loop, and completes the bipolar tissue coagulation action in the monopolar hybrid mode on the first actuator.
  • the main control unit uses the third set of control signals to make the current pass through the third actuator end of the second actuator through the human tissue to reach the return electrode 5 to form a third current loop, and complete the monopole on the second actuator The cutting action in the mode and the tissue coagulation action.
  • the main control unit uses the fourth group of control signals to make the current pass through the first actuator end 71 of the first actuator through the human tissue to reach the second actuator end 72 of the first actuator to form a fourth current loop, and at The cutting action and the tissue coagulation action in the bipolar mode are completed on the first executing instrument.
  • the first group of control signals, the second group of control signals, the third group of control signals, and the fourth group of control signals in this embodiment are all controlled by the central controller 2 to output the high-frequency power supply module 3 and the relay matrix, and form various current loop.
  • the central controller 2 passes the The same type of inverter is turned on to drive the relay switch signals CH2_PKADR and CH3_BEMDR, so that the fourth switch tube 44 (such as the fourth relay switch JDQ4) and the third switch tube 43 (such as the third relay switch JDQ3) are turned on, and the central controller 2
  • the other relays are controlled to be disconnected, so that the high-frequency power module 3 outputs high-frequency current through the third switch tube 43 (such as the third relay switch JDQ3) to the electrode structure 6 (such as an electric knife pen), through the human tissue to the return electrode 5, and through the fourth The switch tube 44 (eg, the fourth relay switch JDQ4 ) returns to the high-frequency power supply module 3 to realize un
  • step on the foot pedal or manual cutting or coagulation button triggers the transmission to the central controller 2 through the data transmission interface.
  • the central controller 2 turns on and drives the relay switch signals CH1_PK2ABDR and CH1_PKABDR makes the first switch tube 41 (such as the first relay switch JDQ1) and the second switch tube 42 (such as the second relay switch JDQ2) turn on, and the central controller 2 controls the remaining relays to turn off, so that the high-frequency current passes through the first switch.
  • the switch tube 41 (such as the first relay switch JDQ1 ) reaches an executive end of the bipolar device 7 and passes through the diseased tissue clamped in the bipolar device 7 , and from the other executive end of the bipolar device 7 , through the second switch tube 42 (such as The second relay switch JDQ2) returns to the high frequency power supply module 3 to realize bipolar cutting and coagulation.
  • the implementing instruments such as bipolar coagulation scissors, forceps, forceps
  • the present invention have better clinical effects than conventional bipolar implementing instruments.
  • step on the foot pedal or manual coagulation button When performing the tissue coagulation action, step on the foot pedal or manual coagulation button, and send it to the central controller 2 through the circuit trigger.
  • 41 and the second switch tube 42 are turned on, and the rest of the relays are controlled by the central controller 2 to be turned off, so that the high-frequency current passes through the first switch tube 41 to reach an executive end of the bipolar instrument 7 and passes through the diseased tissue clamped in the bipolar instrument 7 , from the other execution end of the bipolar instrument 7, through the second switch tube 42 back to the high-frequency power supply module 3, to realize the bipolar coagulation operation.
  • the system also includes bipolar VP mode output, such as selecting the mode by touching the bipolar VP control area of the display, or switching the SM port output and the VP port output through the switch button in the middle of the foot switch.
  • the bipolar VP mode is the output of the second bipolar mode or more than two bipolar mode outputs, that is, adding a sixth switch tube and a seventh switch tube, and adding a corresponding dual-stage electrocoagulation device to the corresponding output seat.
  • the central controller 2 drives the relay switch signal through the same inverter to turn on the sixth switch tube and the seventh switch tube (such as the sixth relay switch JDQ6 and the seventh relay switch JDQ7), and the The central controller 2 controls the rest of the relays to disconnect.
  • the principle is the same as the above-mentioned bipolar mode, but by adding one or more RF output sockets (such as the third output socket) to realize the output of different RF output sockets, when another RF output socket is added When the output seat is used, a two-stage electrocoagulation device can be added accordingly.
  • one or more RF output sockets such as the third output socket
  • the application can be used in the single and bipolar mixed output modes in the same execution instrument, and in the monopolar and bipolar mixed output modes, the same execution instrument can realize the mixing of the monopolar mode cutting and bipolar mode hemostasis mode, which overcomes the respective shortcomings of conventional unipolar output and conventional bipolar output, and integrates the respective advantages of unipolar output and bipolar output.
  • the bipolar instrument 7 can realize cutting in the monopolar mode, so that one executing end of the bipolar instrument 7 can also have a higher energy density; Due to the action of shearing force, the bipolar instrument 7 can complete the cutting function under low power, so that the damage caused to the patient during the operation will be greatly reduced.
  • the coagulation essence of the bipolar device 7 is still bipolar coagulation.
  • the advantage of bipolar coagulation is that the power is more concentrated within a certain depth of the coagulation site. , the coagulation layer depth is thicker, so as to have a better hemostasis effect on the bleeding point.
  • the present invention has the above three working modes at the same time, and the output mode can be arbitrarily switched according to the needs of the operation under the cooperation of the execution instrument.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Otolaryngology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)

Abstract

一种手术操作系统及其单、双极混合输出方法,该方法应用于手术操作系统,包括确定操作者对输出模式的选择指令,当获取到选择单双极混合模式的指令时,通过控制第一执行器械执行切割动作以及组织凝结动作。该系统包括主控制单元、控制面板(1)、高频电源模块(3)、以及执行器械。同一执行器械可以实现单极模式切割,双极模式凝血的混合模式,不仅克服了常规单极输出和常规双极输出各自的不足,还集成了单极输出和双极输出各自的优点。

Description

一种手术操作系统及其单、双极混合输出方法 技术领域
本发明涉及电外科手术技术领域,尤其涉及一种手术操作系统以及应用于该系统的单、双极混合输出方法。
背景技术
电刀是利用电外科手术系统所输出的能量来完成对人体组织的切割和凝血。其中,电流的热效应会使得人体组织发生汽化,这是切割的原理;电流的热效应会使得人体组织蛋白质变性凝固,这是凝血的原理。
目前,电外科手术系统普遍具备单极输出功能和双极输出的功能。
在现有技术中,如图1所示,图1是现有的一种电外科手术系统的单极输出功能的工作模式,该电外科手术系统包括高频电源模块、电刀笔、回路电极、有源导线以及回路电极导线,电外科手术系统单极输出功能的工作模式的具体工作流程为:电流由电刀笔通过人体组织进入贴在病人身上的负极板形成回路。
如图2所示,图2是现有的一种电外科手术系统的双极输出功能的工作模式,该电外科手术系统包括双极剪、有源导线以及回路电极导线,电外科手术系统双极输出功能的工作模式的具体工作流程为:双极器械将组织夹在双极剪(或者是双极镊,双极钳)之间,电流流经人体组织完成组织汽化与凝固止血。
因此,现有电外科手术系统普遍分别具有单极输出和双极输出的功能。其中,单极输出的优点和缺点:使用单极输出模式的单极电刀相比双极电刀来论,因为单极的笔尖具有更大的能量密度,所以单极电刀有比双极电刀更好的切割效果。
然而,由于电刀笔仅为整个电流回路中的一极,电功率并不能较大程度集中在需要凝固组织上,而是通过笔尖后经由较大区域的人体组织到达负极板端。因而其凝血效果要比双极电刀较差;且单极电刀笔难以深入到腹腔里进行腹腔镜下的微创手术;单极电刀笔切割时也无法借助机械剪切力,因而往往需要较大的功率才能将组织切开,不过较大的功率又带来了 较大的组织热损伤。
双极输出的优点和缺点:由于凝固组织是需要凝固的组织被夹在双极两级之间,使得电功率较大程度集中在两极之间的组织。双极剪(或者是双极镊,双极钳)比单极电刀笔具有更好的凝血效果,且双极的机械结构特性使得其在进行切割时还具有单极电刀笔所不具有的剪切力。
然而,由于双极器械(双极剪或者是双极镊,双极钳)自身能量输出普遍较单极小,且上刀片与下刀片位置之间的组织能量密度较单极电刀笔笔尖位置小,所有在切割较厚组织时,难以实现快速汽化分离组织。所以双极器械(双极剪或者是双极镊,双极钳)往往仅能切割细薄的组织。
综上可得,单极输出模式更有利于切割,不利于凝血;双极输出模式更有利于凝血,而不利于切割。
发明内容
本发明的主要目的在于提供一种在同一执行器械上可以实现单双极混合输出的单、双极混合输出方法。
本发明的另一目的在于提供一种在同一执行器械上可以实现单双极混合输出的手术操作系统。
为了实现上述的主要目的,本发明提供的一种单、双极混合输出方法,该方法应用于手术操作系统,该方法包括:通过确定操作者对输出模式的选择指令,当获取到选择单双极混合模式的指令时,通过控制第一执行器械执行切割动作以及组织凝结动作。
进一步的方案中,在单双极混合模式下,执行切割动作时,所述主控制单元以第一组控制信号使得电流经过所述第一执行器械的第一执行端通过人体组织到达回路电极形成第一电流回路,并在所述第一执行器械上完成单双极混合模式下的切割动作。
更进一步的方案中,在单双极混合模式下,执行组织凝结动作时,所述主控制单元以第二组控制信号使得电流经过所述第一执行器械的第一执行端通过需要切除的组织到达所述第一执行器械的第二执行端形成第二电流回路,并在所述第一执行器械上完成单双极混合模式下的组织凝结动作。
更进一步的方案中,所述输出模式还包括单极模式,在单极模式下,所述主控制单元以第三组控制信号使得电流经过第二执行器械的第三执行端通过人体组织到达所述回路电极形成第三电流回路,并在所述第二执行器械上完成单极模式下的切割动作以及组织凝结动作。
更进一步的方案中,所述输出模式还包括双极模式,在双极模式下,所述主控制单元以第四组控制信号使得电流经过所述第一执行器械的第一执行端通过人体组织到达所述第一执行器械的第二执行端形成第四电流回路,并在所述第一执行器械上完成双极模式下的切割动作以及组织凝结动作。
为了实现上述的另一目的,本发明提供的一种手术操作系统,包括:主控制单元、控制面板以及执行器械,所述主控制单元包括中央控制器、高频电源模块和开关矩阵,所述高频电源模块分别与所述中央控制器、所述开关矩阵连接,所述中央控制器接收所述控制面板输出选择指令、以及读取执行器械内置芯片的模式信息或脚踏开关指令,所述中央控制器输出驱动开关信号至所述开关矩阵,以控制所述开关矩阵导通驱动所述执行器械。
进一步的方案是,所述开关矩阵包括第一开关管、第二开关管、第三开关管、第四开关管,所述中央控制器根据接收到的选择指令向所述第一开关管、第二开关管、第三开关管、第四开关管发送驱动开关信号以控制所述第一开关管、第二开关管、第三开关管、第四开关管的导通和关断。
更进一步的方案是,所述开关矩阵还包括第六开关管以及第七开关管,所述中央控制器根据接收到的选择指令向所述第六开关管、第七开关管发送驱动开关信号以控制所述第六开关管、第七开关管的导通和关断。
更进一步的方案是,所述执行器械包括第一执行器械、第二执行器械以及回路电极,所述开关矩阵的第一输出插座连接至所述第一执行器械末端,所述开关矩阵的第二输出插座分别连接至所述第二执行器械末端和所述回路电极末端,其中,所述第一执行器械为双极器械,所述第二执行器 械为电极结构。
更进一步的方案是,所述双极器械包括第一导电区域、第二导电区域、手柄组件以及双极器械执行端,所述第一导电区域与所述第一输出插座的第一输出端连接,所述第二导电区域与所述第一输出插座的第二输出端连接,所述手柄组件与所述双极器械执行端连接,其中,所述双极器械执行端具有第一执行端、第二执行端,所述电极结构具有第三执行端。
本发明的有益效果为:本申请在同一执行器械可以使用于单、双极混合输出模式,在单、双极混合输出模式下,同一执行器械可以实现单极模式切割,双极模式止血的混合模式,克服了常规单极输出和常规双极输出各自的不足,又集成了单极输出和双极输出各自的优点。
在单、双极混合输出模式下,双极器械可实现使用单极模式进行切割,从而使得双极器械的一个执行端也能具有较高的能量密度;并且可以借助双极器械的切力作用,使得双极器械在低功率下就可以完成切割功能,从而使得手术过程对病人造成的损伤会降低很多。
在单、双极混合输出模式下,双极器械的凝血本质依然为双极凝血,与单极模式的凝血效果相比,双极凝血的优势是在凝血处的一定深度内,功率更集中,凝固层深度更厚,从而对出血点有更好的止血效果。
此外,本发明同时具备以上三种工作模式,在执行器械的配合下可以根据手术需要任意切换输出模式。
附图说明
图1是现有技术的一种电外科手术系统的单极输出功能工作模式的示意图。
图2是现有技术的一种电外科手术系统的双极输出功能工作模式的示意图。
图3是本发明一种手术操作系统实施例的原理框图。
图4是本发明一种手术操作系统实施例的电路原理图。
图5是本发明一种手术操作系统实施例中开关矩阵的电路原理图。
图6是本发明一种手术操作系统实施例中双极器械的结构示意图。
图7是本发明一种手术操作系统实施例中控制面板选择模式的示意图。
以下结合附图及实施例对本发明作进一步说明。
具体实施方式
一种手术操作系统实施例:
参见图3至图4,本发明的手术操作系统由中央控制器2、高频电源模块3和开关矩阵4组成的主控制单元、控制面板1以及执行器械,高频电源模块3分别与中央控制器2、开关矩阵4连接,中央控制器2接收控制面板1输出的选择指令、以及读取执行器械内置芯片的模式信息或脚踏开关指令,中央控制器2输出驱动开关信号至开关矩阵4,以控制开关矩阵4导通驱动执行器械。本实施例的选择指令可以是用户通过控制面板1的显示屏界面选择的指令,也可以是系统通过电极内置芯片识别到的指令信息。
其中,本实施例的中央控制器2可以是MCU等具有运算功能的芯片,但不限于MCU,也可以是指其他微控制器如DSP、微计算机、可编程逻辑控制器CPLD、FPGA、专用集成电路和其他可编程电路。
在本实施例中,手术操作系统还包括低压电源10以及开关电源9,低压电源10为中央控制器2提供5V/12V电源,开关电源9为高频电源模块3提供48V电源。当然,本实施例的低压电源10及开关电源9可以是其他电压输出,如开关电源9可以是24V电源输出。
在本实施例中,开关矩阵4包括第一开关管41、第二开关管42、第三开关管43、第四开关管44、第一输出插座21、第二输出插座22以及至少一个第三输出插座,中央控制器2根据接收到的选择指令向第一开关管41、第二开关管42、第三开关管43、第四开关管44发送驱动开关信号以控制第一开关管41、第二开关管42、第三开关管43、第四开关管44的导通和关断。
其中,开关矩阵4还包括第六开关管以及第七开关管,中央控制器2 根据接收到的选择指令向第六开关管、第七开关管发送驱动开关信号以控制第六开关管、第七开关管的导通和关断。
进一步的,第一开关管41、第二开关管42分别与第一输出插座21的的第一输出端、第二输出端连接,第三开关管43、第四开关管44分别与第二输出插座22的的第一输出端、第二输出端连接,第六开关管、第七开关管分别与第三输出插座的的第一输出端、第二输出端连接。
本实施例的开关矩阵4优选为继电器开关矩阵,但不限于继电器,也可以是光电耦合器、三极管、功率MOSFET、绝缘栅双极晶体管(IGBT)或任何其它可控开关。
具体的,如图5所示,第一开关管41、第二开关管42、第三开关管43、第四开关管44、第六开关管、第七开关管分别为第一继电器开关JDQ1、第二继电器开关JDQ2、第三继电器开关JDQ3、第四继电器开关JDQ4、第六继电器开关JDQ6、第七继电器开关JDQ7,中央控制器2通过同类反相器(如74HC14D等)导通驱动继电器开关六个信号,分别为输入场效应管G5的CH1_PK2ABDR信号、场效应管G1的CH1_PKABDR信号、场效应管G4的CH2_PKADR信号、以及场效应管G2的CH3_BEMDR信号、场效应管G6的CH4_VP2DR信号、场效应管G3的CH4_VPDR信号。
当然,本实施例的场效应管也可以是光电耦合器,如PC817;也可以是模拟开关,如74HC4066;也可以是三极管等来完成对继电器的开关控制。
具体的,中央控制器2输出CH1_PK2ABDR信号至场效应管G5的栅极,场效应管G5的漏极与第一继电器开关JDQ1的第三端连接,中央控制器2输出CH1_PKABDR信号至场效应管G1的栅极,场效应管G1的漏极与第二继电器开关JDQ2的第三端连接,中央控制器2输出CH2_PKADR信号至场效应管G4的栅极,场效应管G4的漏极与第三继电器开关JDQ3的第三端连接,中央控制器2输出CH3_BEMDR信号至场效应管G2的栅极,场效应管G2的漏极与第四继电器开关JDQ4的第三端 连接,中央控制器2输出CH4_VP2DR信号至场效应管G6的栅极,场效应管G6的漏极与第六继电器开关JDQ6的第三端连接,中央控制器2输出CH4_VPDR信号至场效应管G3的栅极,场效应管G3的漏极与第七继电器开关JDQ7的第三端连接。场效应管G1、场效应管G2、场效应管G3、场效应管G4、场效应管G5、场效应管G6、场效应管G7的源极分别接地,第一继电器开关JDQ1的第一端接于节点1,节点1接于节点3,第三继电器开关JDQ3的第一端、第六继电器开关JDQ6的第一端接于节点3。第二继电器开关JDQ2的第一端、第四继电器开关JDQ4的第一端和第七继电器开关JDQ7的第一端接于节点2。第一继电器开关JDQ1的第二端、第二继电器开关JDQ2的第二端接于第一输出插座21(如SM输出座),第六继电器开关JDQ6的第二端、第七继电器开关JDQ7的第二端接于第三输出插座(如VP输出座),第三继电器开关JDQ3的第二端、第四继电器开关JDQ4的第二端接于第二输出插座22(如J_MONO和J_PATIENT)。
在本实施例中,执行器械包括第一执行器械、第二执行器械以及回路电极5,开关矩阵4的第一输出插座21连接至第一执行器械末端,开关矩阵4的第二输出插座22分别连接至第二执行器械末端和回路电极5末端,其中,第一执行器械为双极器械7,第二执行器械为电极结构6,回路电极5为负极板(敷肌板)。本实施例的第二输出插座22可以电性分割为两个接口插座,即一个接口插座连接第二输出插座22的3端口,另一个接口插座连接第二输出插座22的4端口,一个接口插座连接第二执行器械,另一个接口插座连接回路电极5。
参见图6,双极器械7包括第一导电区域73、第二导电区域74、手柄组件75以及双极器械执行端,第一导电区域73与第一输出插座21的第一输出端连接,第二导电区域74与第一输出插座21的第二输出端连接(也可以反过来接),手柄组件75与双极器械执行端连接。本实施例的双极器械7优选为双极电凝剪,但不限于双极电凝剪,也可以是双极电凝钳, 双极电凝镊等其他双极电凝器;本实施例的电极结构6优选为单极电刀笔模块或类似结构。
双极器械执行端具有第一执行端71、第二执行端72,电极结构6具有第三执行端,第一导电区域与双极执行器械的第一执行端电性连接,第二导电区域与双极执行器械的第二执行端电性连接;或者,第一导电区域与第二执行端电性连接,第二导电区域与第一执行端电性连接。其中,双极器械7的第一执行端71为上刀片端,双极器械7的第二执行端72为下刀片端,电极结构6的第三执行端为刀头端。
本实施例的高频电源模块3具有三种能量输出模式,分别对应本发明手术操作系统的三种输出模式:单极模式、双极模式或单双极混合模式。通过主控制单元让操作系统在单极输出模式、双极输出模式或单/双极混合输出模式下工作,当选择系统单、双极混合输出模式时,在操作系统的同一执行器械上可以实现单双极混合输出。
在选择单双极混合模式时,在切割时,电流经过双极器械7的刀片端经由人体组织流入负极板(本质为单极切割);在凝血时,电流经过双极器械7的上刀片端经由夹在双极器械7间的人体组织流入双极器械7的下刀片端(本质为双极凝血)。可见,在同一执行器械上可以实现单双极混合输出(单极切,双极凝)及双极输出(双极切,双极凝)。
具体为,在使用双极器械7进行组织切割时使用的是单极能量输出模式,此时仅仅在双极器械7的上刀片端输出能量,电流流经组织到达负极板;而在使用双极器械7进行组织凝血时,则是进行双极能量输出模式,双极器械7的上刀片端和下刀片端之间流过电流,电流不经过负极板。也就是说,在同一个执行器械(双极器械7)上既集成了单、双极两种能量输出模式各自的优点,又克服了单、双极两种能量输出模式各自原有的缺点。
在单极模式下,回路电极5电性连接第二输出插座22的第一输出端(线4或线3),电极结构6电性连接第二输出插座22(线3或线4)。 当选择单极模式时,系统闭合第三开关管43或第四开关管44形成单极回路,完成单极切割和凝血。
在双极模式下,双极器械7连接第一输出插座21(双极输出插座),当选择双极模式时,系统闭合第一开关管41或第二开关管42形成双极回路,完成双极极切割和凝血。
当选择单、双极混合输出模式时,双极器械7连接第一输出插座21,回路电极5连接第二输出插座22。
使能切割踏板或手控切割按键时,系统闭合第一开关管41和连接回路电极5的第四开关管44,断开第二开关管42和第三开关管43,使得电流经过双极器械7的执行端(刀片端)通过人体组织到达回路电极5形成电流回路,形成本质上的单极回路,在双极器械7上完成单极切割。
使能凝血踏板时或手控凝血按键时,系统闭合第一开关管41、第二开关管42,断开连接回路电极5回路的第四开关管44,断开与电极结构6连接的第三开关管43,使得电流经过双极器械7的一执行端(如上刀片端)通过人体组织到达双极器械7的另一执行端(如下刀片端)形成回路,形成本质上的双极凝血回路,实现双极凝血效果。
在本实施例中,高频电源模块3还具有第四种能量输出模式,对应本发明手术操作系统的第四种输出模式:双极VP模式。
本发明的双极VP模式,为第二个双级模式输出或两个以上的双级模式输出,其输出原理与与双级模式相同,即增加第六开关管以及第七开关管,并在相应输出座上增加相应的双极器械7。
作为优选,本实施例的控制面板1可以是触摸显示屏,但不限于触摸显示屏,可以是薄膜按键,也可以是任意一种可接收触头等输入讯号的感应式显示装置。
具体的,中央控制器2通过接口及射频适配器(如J_RF1插座)控制高频电源模块3,高频电源模块3通过J_RF插座及继电器开关矩阵输出至患者。其中,中央控制器2与高频电源模块3的通信方式可以是串行数 据也可以是并行数据格式。串行数据格式可以是SPI、IIC、uart、一线总线等;并行数据格式可以是8位、16位、32位等异步时钟,也可以是是8位、16位、32位等同步时钟。
一种手术操作系统的单、双极混合输出方法实施例:
参见图7,本发明的一种单、双极混合输出方法应用于电外科手术操作系统,该方法包括:通过控制面板1确定操作者或执行器械内置的芯片读取的模式信息对单极模式、双极模式或单双极混合模式的选择指令,当主控制单元获取到选择单双极混合模式的指令时,通过控制第一执行器械执行切割动作以及组织凝结动作。
具体的,上述操作系统通过触摸显示屏与中央控制器2实现信息交互。关于模式选择:当系统开机后,触摸显示屏进入待机界面,右侧区域为单极区域,左侧区域为双极模式区域内,其中,左上区域为双极SM区域,左下区域为双极VP控制区域。
在实际应用中,左上为双极SM区域有两种模式选择按钮,第一种模式选择按钮:当按下第一种双极模式时为双极输出模式,即通过继电器选则使得电流经过双极器械7的一执行端经由夹在双极间的人体组织流入双极器械7的另一执行端;第二种模式选择按钮:当按下第二种双极模式时为单双极混合模式,系统检测回路电极5已经连接至患者时,系统会通过继电器选则使得切割时,电流经过双极器械7执行端经由人体组织流入回路电极5(本质为单极切割),凝血时电流经过双极器械7的一执行端经由夹在双极间的人体组织流入双极器械7的另一执行端(本质为双极凝血)。
在本实施例中,该系统可以通过一线总线读取电极信息确认电极默认的输出模式为双极输出或单双极混合输出。
在单双极混合模式下,执行切割动作时,主控制单元以第一组控制信号使得电流经过第一执行器械的第一执行端71通过人体组织到达回路电极5形成第一电流回路,并在第一执行器械上完成单双极混合模式下的单极切割动作。
在本实施例中,在单双极混合模式下,执行组织凝结动作时,主控制 单元以第二组控制信号使得电流经过第一执行器械的第一执行端71通过需要切除的组织到达第一执行器械的第二执行端72形成第二电流回路,并在第一执行器械上完成单双极混合模式下的双极组织凝结动作。
在单极模式下,主控制单元以第三组控制信号使得电流经过第二执行器械的第三执行端通过人体组织到达回路电极5形成第三电流回路,并在第二执行器械上完成单极模式下的切割动作以及组织凝结动作。
在双极模式下,主控制单元以第四组控制信号使得电流经过第一执行器械的第一执行端71通过人体组织到达第一执行器械的第二执行端72形成第四电流回路,并在第一执行器械上完成双极模式下的切割动作以及组织凝结动作。
当然,本实施例的第一组控制信号、第二组控制信号、第三组控制信号、第四组控制信号均由中央控制器2控制高频电源模块3及继电器矩阵输出,并形成各种电流回路。
当使用单极模式时,按下电极结构6(如电刀笔切割)或凝血按钮,通过电路触发光耦或运放的光耦信号或放大电信号传送至中央控制器2,中央控制器2通过同类反相器导通驱动继电器开关信号CH2_PKADR及CH3_BEMDR使得第四开关管44(如第四继电器开关JDQ4)及第三开关管43(如第三继电器开关JDQ3)导通,并由中央控制器2控制其余继电器断开,使得高频电源模块3输出高频电流通过第三开关管43(如第三继电器开关JDQ3)到达电极结构6(如电刀笔)经过人体组织到达回路电极5,经由第四开关管44(如第四继电器开关JDQ4)返回高频电源模块3,实现单极切割和凝血。
当使用双极模式时,踏下脚踏或手控切割或凝血按钮,通过电路触发经过数据传输接口传送至中央控制器2,中央控制器2通过同类反相器导通驱动继电器开关信号CH1_PK2ABDR及CH1_PKABDR使得第一开关管41(如第一继电器开关JDQ1)及第二开关管42(如第二继电器开关JDQ2)导通,由中央控制器2控制其余继电器断开,使得高频电流通过第一开关 管41(如第一继电器开关JDQ1)到达双极器械7的一执行端经过夹在双极器械7的病变组织,从双极器械7的另一执行端,经由第二开关管42(如第二继电器开关JDQ2)返回高频电源模块3,实现双极切割和凝血。可见,本发明所提供的执行器械(如双极电凝剪刀,钳,镊)具有比常规双极执行器械更佳的临床效果。
当使用单双极混合模式时,执行切割动作时,踏下脚踏或手控切割按钮,通过电路触发经过数据传输接口传送至中央控制器2,中央控制器2通过同类反相器导通驱动继电器开关信号CH1_PK2ABDR及CH3_BEMDR使得第一开关管41及第四开关管44导通,由中央控制器2控制其余开关管断开,使得高频电流通过第一开关管41到达双极器械7的执行端经过人体组织,到达回路电极5,经由第四开关管44返回高频电源模块3,实现单极切割操作。
在执行组织凝结动作时,踏下脚踏或手控凝血按钮,通过电路触发传送至中央控制器2,中央控制器2通过同类反相器导通驱动继电器开关信号CH1_PK2ABDR及CH1_PKABDR使得第一开关管41及第二开关管42导通,由中央控制器2控制其余继电器断开,使得高频电流通过第一开关管41到达双极器械7的一执行端经过夹在双极器械7的病变组织,从双极器械7的另一执行端,经由第二开关管42返回高频电源模块3,实现双极凝血操作。
本系统还包括双极VP模式输出,如通过触摸显示屏的双极VP控制区域来选择该模式,或通过脚踏开关中间的转换按钮来切换SM端口输出与VP端口输出。双极VP模式为第二个双级模式输出或两个以上的双级模式输出,即增加第六开关管以及第七开关管,并在相应输出座上增加相应的双级电凝器械。在双极VP模式下,中央控制器2通过同类反相器导通驱动继电器开关信号使得第六开关管、第七开关管(如第六继电器开关JDQ6、第七继电器开关JDQ7)导通,由中央控制器2控制其余继电器断开,原理同上述双极模式,只是通过添加一个或多个射频输出座输出(如 第三输出座),以实现不同的射频输出座输出,当再增加一个射频输出座时,相应增加双级电凝器械即可。
本发明的有益效果为:本申请在同一执行器械可以使用于单、双极混合输出模式,在单、双极混合输出模式下,同一执行器械可以实现单极模式切割,双极模式止血的混合模式,克服了常规单极输出和常规双极输出各自的不足,又集成了单极输出和双极输出各自的优点。
在单、双极混合输出模式下,双极器械7可实现使用单极模式进行切割,从而使得双极器械7的一个执行端也能具有较高的能量密度;并且可以借助双极器械7的切力作用,使得双极器械7在低功率下就可以完成切割功能,从而使得手术过程对病人造成的损伤会降低很多。
在单、双极混合输出模式下,双极器械7的凝血本质依然为双极凝血,与单极模式的凝血效果相比,双极凝血的优势是在凝血处的一定深度内,功率更集中,凝固层深度更厚,从而对出血点有更好的止血效果。
此外,本发明同时具备以上三种工作模式,在执行器械的配合下可以根据手术需要任意切换输出模式。
需要说明的是,以上仅为本发明的优选实施例,但发明的设计构思并不局限于此,凡利用此构思对本发明做出的非实质性修改,也均落入本发明的保护范围之内。

Claims (10)

  1. 一种手术操作系统的单、双极混合输出方法,其特征在于,该方法应用于手术操作系统,该方法包括:
    通过确定操作者对输出模式的选择指令,当获取到选择单双极混合模式的指令时,通过控制第一执行器械执行切割动作以及组织凝结动作。
  2. 根据权利要求1所述的方法,其特征在于:
    在单双极混合模式下,执行切割动作时,所述主控制单元以第一组控制信号使得电流经过所述第一执行器械的第一执行端通过人体组织到达回路电极形成第一电流回路,并在所述第一执行器械上完成单双极混合模式下的切割动作。
  3. 根据权利要求2所述的方法,其特征在于:
    在单双极混合模式下,执行组织凝结动作时,所述主控制单元以第二组控制信号使得电流经过所述第一执行器械的第一执行端通过需要切除的组织到达所述第一执行器械的第二执行端形成第二电流回路,并在所述第一执行器械上完成单双极混合模式下的组织凝结动作。
  4. 根据权利要求1至3任一项所述的方法,其特征在于:
    所述输出模式还包括单极模式,在单极模式下,所述主控制单元以第三组控制信号使得电流经过第二执行器械的第三执行端通过人体组织到达所述回路电极形成第三电流回路,并在所述第二执行器械上完成单极模式下的切割动作以及组织凝结动作。
  5. 根据权利要求1至3任一项所述的方法,其特征在于:
    所述输出模式还包括双极模式,在双极模式下,所述主控制单元以第四组控制信号使得电流经过所述第一执行器械的第一执行端通过人体组织到达所述第一执行器械的第二执行端形成第四电流回路,并在所述第一执行器械上完成双极模式下的切割动作以及组织凝结动作。
  6. 一种手术操作系统,其特征在于,包括:
    主控制单元、控制面板以及执行器械,所述主控制单元包括中央控制器、高频电源模块和开关矩阵,所述高频电源模块分别与所述中央控制器、所述开关矩阵连接,所述中央控制器接收所述控制面板输出的选择指令、以及读取执行器械内置芯片的模式信息或脚踏开关指令,所述中央控制器输出驱动开关信号至所述开关矩阵,以控制所述开关矩阵导通驱动所述执行器械。
  7. 根据权利要求6所述的操作系统,其特征在于:
    所述开关矩阵包括第一开关管、第二开关管、第三开关管、第四开关管,所述中央控制器根据接收到的选择指令向所述第一开关管、第二开关管、第三开关管、第四开关管发送驱动开关信号以控制所述第一开关管、第二开关管、第三开关管、第四开关管的导通和关断。
  8. 根据权利要求7所述的操作系统,其特征在于:
    所述开关矩阵还包括第六开关管以及第七开关管,所述中央控制器根据接收到的选择指令向所述第六开关管、第七开关管发送驱动开关信号以控制所述第六开关管、第七开关管的导通和关断。
  9. 根据权利要求6或7所述的操作系统,其特征在于:
    所述执行器械包括第一执行器械、第二执行器械以及回路电极,所述开关矩阵的第一输出插座连接至所述第一执行器械末端,所述开关矩阵的第二输出插座分别连接至所述第二执行器械末端和所述回路电极末端,其中,所述第一执行器械为双极器械,所述第二执行器械为电极结构。
  10. 根据权利要求9所述的操作系统,其特征在于:
    所述双极器械包括第一导电区域、第二导电区域、手柄组件以及双极器械执行端,所述第一导电区域与所述第一输出插座的第一输出端连 接,所述第二导电区域与所述第一输出插座的第二输出端连接,所述手柄组件与所述双极器械执行端连接,其中,所述双极器械执行端具有第一执行端、第二执行端,所述电极结构具有第三执行端。
PCT/CN2021/102016 2020-07-08 2021-06-24 一种手术操作系统及其单、双极混合输出方法 WO2022007636A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022570408A JP2023526411A (ja) 2020-07-08 2021-06-24 手術オペレーティングシステム及びそのモノポーラバイポーラハイブリッド出力方法
US18/007,595 US20230263568A1 (en) 2020-07-08 2021-06-24 Surgical operating system and monopolar-bipolar hybrid output method therefor
EP21837090.6A EP4179988A4 (en) 2020-07-08 2021-06-24 SURGICAL OPERATING SYSTEM AND UNIPOLAR AND BIPOLAR MIXED OUTPUT METHOD THEREOF
JP2023190371A JP2024010189A (ja) 2020-07-08 2023-11-07 手術オペレーティングシステム

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010652994.0 2020-07-08
CN202010652994 2020-07-08
CN202010662241.8A CN111671515A (zh) 2020-07-10 2020-07-10 一种手术操作系统及其单、双极混合输出方法
CN202010662241.8 2020-07-10

Publications (1)

Publication Number Publication Date
WO2022007636A1 true WO2022007636A1 (zh) 2022-01-13

Family

ID=79552744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/102016 WO2022007636A1 (zh) 2020-07-08 2021-06-24 一种手术操作系统及其单、双极混合输出方法

Country Status (4)

Country Link
US (1) US20230263568A1 (zh)
EP (1) EP4179988A4 (zh)
JP (2) JP2023526411A (zh)
WO (1) WO2022007636A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070203482A1 (en) * 2006-02-27 2007-08-30 Moshe Ein-Gal Blended monopolar and bipolar application of RF energy
CN105877836A (zh) * 2016-05-27 2016-08-24 厚凯(北京)医疗科技有限公司 一种外科手术能量平台系统
CN107468340A (zh) * 2017-08-17 2017-12-15 成都中科博恩思医学机器人有限公司 一种手术机器人能量器械控制系统及能量器械控制方法
CN208481456U (zh) * 2017-09-28 2019-02-12 四川锦江电子科技有限公司 一种具有极间放电功能的射频消融设备
CN110381870A (zh) * 2017-03-01 2019-10-25 I.C.医疗股份有限公司 具有氩束能力的超极性伸缩式和非伸缩式电外科笔和超极性电外科刀片组件
CN111671515A (zh) * 2020-07-10 2020-09-18 珠海市司迈科技有限公司 一种手术操作系统及其单、双极混合输出方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7094231B1 (en) * 2004-01-22 2006-08-22 Ellman Alan G Dual-mode electrosurgical instrument
GB0708783D0 (en) * 2007-05-04 2007-06-13 Gyrus Medical Ltd Electrosurgical system
EP2974682B1 (en) * 2013-03-15 2017-08-30 Gyrus ACMI, Inc. Combination electrosurgical device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070203482A1 (en) * 2006-02-27 2007-08-30 Moshe Ein-Gal Blended monopolar and bipolar application of RF energy
CN105877836A (zh) * 2016-05-27 2016-08-24 厚凯(北京)医疗科技有限公司 一种外科手术能量平台系统
CN110381870A (zh) * 2017-03-01 2019-10-25 I.C.医疗股份有限公司 具有氩束能力的超极性伸缩式和非伸缩式电外科笔和超极性电外科刀片组件
CN107468340A (zh) * 2017-08-17 2017-12-15 成都中科博恩思医学机器人有限公司 一种手术机器人能量器械控制系统及能量器械控制方法
CN208481456U (zh) * 2017-09-28 2019-02-12 四川锦江电子科技有限公司 一种具有极间放电功能的射频消融设备
CN111671515A (zh) * 2020-07-10 2020-09-18 珠海市司迈科技有限公司 一种手术操作系统及其单、双极混合输出方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4179988A4 *

Also Published As

Publication number Publication date
US20230263568A1 (en) 2023-08-24
EP4179988A4 (en) 2023-12-27
JP2023526411A (ja) 2023-06-21
EP4179988A1 (en) 2023-05-17
JP2024010189A (ja) 2024-01-23

Similar Documents

Publication Publication Date Title
US10278771B2 (en) System and method for delivering 5 high current to electrosurgical device
CN212395036U (zh) 一种手术操作系统
CN113397656A (zh) 双极高频超声双输出手术系统
CN103547230B (zh) 电外科发生器
JPH07124101A (ja) 高周波焼灼装置
JP2010527676A (ja) 電気手術ジェネレータ
CN210170159U (zh) 一种可变频率输出的电外科发生器和电外科系统
US20220022934A1 (en) Electrosurgical generator and electrosurgical system with variable frequency output
JP2011527612A5 (zh)
EP2531132B1 (en) Electrosurgical instrument and system
CN102068307A (zh) 带有多功能手持机头的外科手术装置
CN111671515A (zh) 一种手术操作系统及其单、双极混合输出方法
WO2022007636A1 (zh) 一种手术操作系统及其单、双极混合输出方法
CN102159150B (zh) 电外科高频发生器
CN113349915A (zh) 带双极止血功能的鼻用刨削刀及系统
CN107332457B (zh) 用于低温等离子体系统的多路并联逆变控制方法及其系统
CN2780105Y (zh) 腹腔镜解剖器
US20210259759A1 (en) Electrosurgical system and methods of switching between distinct modes and power settings
CN202173470U (zh) 电外科手术双极等离子发生器
CN217186415U (zh) 高频电刀单双极控制装置
CN112603526A (zh) 射频等离子手术系统及其使用方法
EP3500200B1 (en) Bipolar electrosurgical cutting and coagulation instrument
US20210393313A1 (en) Universal surgical footswitch toggling
JP3051640B2 (ja) 医療用凝固装置
CN202270066U (zh) 调控型电刀笔

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21837090

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022570408

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021837090

Country of ref document: EP

Effective date: 20230208