WO2022007628A1 - 机器人系统以及退出方法 - Google Patents

机器人系统以及退出方法 Download PDF

Info

Publication number
WO2022007628A1
WO2022007628A1 PCT/CN2021/101654 CN2021101654W WO2022007628A1 WO 2022007628 A1 WO2022007628 A1 WO 2022007628A1 CN 2021101654 W CN2021101654 W CN 2021101654W WO 2022007628 A1 WO2022007628 A1 WO 2022007628A1
Authority
WO
WIPO (PCT)
Prior art keywords
exit
fault
type
module
communication
Prior art date
Application number
PCT/CN2021/101654
Other languages
English (en)
French (fr)
Inventor
徐凯
高国荣
Original Assignee
北京术锐技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京术锐技术有限公司 filed Critical 北京术锐技术有限公司
Priority to CN202180034319.4A priority Critical patent/CN115551433A/zh
Priority to EP21837507.9A priority patent/EP4179996A1/en
Publication of WO2022007628A1 publication Critical patent/WO2022007628A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/25User interfaces for surgical systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1674Programme controls characterised by safety, monitoring, diagnostic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1689Teleoperation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/32Surgical robots operating autonomously
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45118Endoscopic, laparoscopic manipulator

Definitions

  • the present disclosure relates to the field of robotics, and in particular, to a robotic system and an exit method.
  • the principle of "safety after failure” is generally used to deal with system failures. After the system detects a fault, the system can be put into a safe state in time, and an alarm signal is sent to prompt the user, so that the user can troubleshoot according to the alarm prompt.
  • the tool arm In the event of a determined failure, the tool arm needs to be withdrawn from the human body for finishing operations, so as to facilitate the medical staff to carry out subsequent patient treatment.
  • the types of failures according to safety requirements, it is necessary to prohibit the movement of all parts of the surgical robot, and use a purely manual way to withdraw the tool arm. Due to the cumbersome process, it is time-consuming and labor-intensive, which is not conducive to quickly ending the finishing operation, thereby affecting the rapid treatment of patients.
  • the present disclosure provides a robot system, comprising: a manipulator assembly; a drive module, the manipulator assembly is disposed on the drive module, and the drive module is used to drive the operation
  • the control module is connected in communication with the drive module, and the control module is configured to control the drive module to drive the manipulator assembly to exit from the current posture based on the failure type of the robot system.
  • the present disclosure provides a method for exiting a robot system, comprising: determining a failure type based on failure information of the robot system; judging whether the failure type is a first-type failure; responding to the failure The type is the first type of fault, and the control drive module drives the operator assembly to exit from the current posture.
  • FIG. 1 shows a structural block diagram of a robot system according to some embodiments of the present disclosure
  • FIG. 2 shows a flowchart of an exit method of a robotic system according to some embodiments of the present disclosure.
  • the terms “installed”, “connected”, “connected” and “coupled” should be understood in a broad sense, for example, it may be a fixed connection, or It can be a detachable connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components.
  • installed e.g., it may be a fixed connection, or It can be a detachable connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components.
  • the end close to the user eg, a doctor
  • proximal proximal or rear
  • distal distal or front
  • anterior distal, distal or front
  • FIG. 1 shows a structural block diagram of a robotic system 100 according to some embodiments of the present disclosure.
  • the robotic system 100 may include a manipulator assembly 30 , a drive module 20 and a control module 10 .
  • the operator assembly 30 is a mechanical structure that can be manipulated by the control module 10 .
  • the manipulator assembly 30 may include one or more surgical tools and/or endoscopes.
  • Surgical tools and endoscopes may include surgical tool arms and end devices.
  • the surgical tool arm may comprise a flexible surgical tool arm, eg, a flexible continuum structure.
  • the end devices of the surgical tool may include, but are not limited to, clamps, curved scissors, and the like.
  • the end device of the endoscope may include, but is not limited to, an illumination device or an image acquisition device.
  • the operator assembly 30 is disposed on the driving module 20 , for example, may be disposed at the distal end of the driving module 20 , and the driving module 20 is used for driving the operator assembly 30 to move.
  • the driving module 20 may include a plurality of motors and sensors coupled to the motors. Sensors may include, but are not limited to, encoders or potentiometers.
  • the operator assembly 30 is coupled with the motor of the drive module 20 , and the control module 10 can control the motor movement of the drive module 20 to drive the operator assembly 30 to move.
  • the sensors of the driving module 20 and the control module 10 may be connected in a limited manner or wirelessly through cables.
  • the sensor can acquire the parameters of the motor of the driving module 20 and the connection status information between the driving module 20 and the operator assembly 30 , and send the parameters and connection status information of the motor to the control module 10 .
  • the control module 10 can monitor the running state of the driving module 20 in real time and obtain the current posture of the terminal device of the manipulator assembly 30 through the parameters of the motor.
  • the current posture of the end device may include the current position and the current posture, for example, the posture of the end device may include the axial feed position of the end device along the manipulator assembly 30 and the rotation and deflection angle at the position, etc.
  • communications between control module 10 and drive module 20 may include drive command communications (eg, commands to control motor motion parameters) and status information communications (eg, motor status information and operator assembly 30 status information).
  • the drive command communication and the status information communication can use different transmission channels, so that the drive command transmission channel between the control module 10 and the drive module 20 is abnormal, the control module 10 cannot transmit the drive command to the drive module 20, and the drive module 20
  • the state information transmission channel can be used to send the state information of the motor and the state information of the operator component 30 to the control module 10, so that the control module 10 can acquire the state information of the motor and the operator component 30 in real time, and make an update on the motor and the operator. Component 30 is monitored.
  • control module 10 is in communication with the drive module 20 .
  • the control module 10 is configured to control the driving module 20 to drive the manipulator assembly 30 to exit from the current pose based on the failure type of the robot system 100 .
  • the control module 10 can control the motor movement of the drive module 20 based on the failure type of the robot system 100 to The manipulator assembly 30 is controlled to exit from the current pose.
  • the failure of the robot system 100 may include failures of various hardware or software constituting the robot system 100 .
  • the current posture may include the effective position and posture of the manipulator assembly 30 capable of performing surgical operations, and may also include the real-time posture and posture of the manipulator assembly 30 .
  • the failure types of the robotic system 100 may include a first type of failure and a second type of failure.
  • the first type of faults may include recoverable non-communication faults and non-recoverable non-communication faults unrelated to the normal communication function of the drive module 20 .
  • the recoverable non-communication fault of the first type of fault may include, but is not limited to, the contact disconnection of the adapter connecting the sterile protective sleeve, the abnormal connection between the operator assembly and the drive module, and other faults.
  • the non-recoverable non-communication faults of the first type of faults may include, but are not limited to, non-recoverable non-communication faults such as a master trolley pedal failure or a master operator failure of the robotic system 100.
  • the first type of failure has nothing to do with the normal communication function of the drive module 20 . It should be understood that when the first type of failure occurs in the robot system 100 , the control module 10 can still control the movement of the driving module 20 to control the manipulator assembly 30 to exit.
  • control module 10 may be configured to control the drive module 20 to drive the manipulator assembly 30 to exit from the current pose based on a recoverable non-communication fault.
  • control module 10 can automatically control the drive module 20 to drive the operator assembly 30 to exit from the current pose based on a recoverable non-communication fault, or receive an input command from the user, and based on the input command, control the drive module 20 to drive the operator Component 30 exits from the current pose.
  • the control module 10 is configured to receive an input command from a user based on an unrecoverable non-communication fault, and based on the input command, control the drive module 20 to drive the manipulator assembly 30 to exit from the current pose.
  • input commands may be input by a user through a user interface, which may include, but is not limited to, a keyboard, a touch screen, buttons, a microphone, and the like.
  • the input commands may include a gesture command for causing the operator assembly 30 to form an exit gesture and an exit command for causing the operator assembly 30 to exit.
  • the operator assembly 30 may be in a non-straight posture during the actual operation, and the driving module 20 may control the operator assembly 30 to form an exit posture based on the posture command.
  • the exit posture may include a straight state, a partially straight state, a partially arcuate posture, or a posture adapted to the shape of the sheath, and the like.
  • the drive module 20 may control the operator assembly 30 to exit from the exit posture based on the exit command.
  • the input command may also only include an exit command, and the drive module 20 may control the operator assembly 30 to directly exit from the exit posture based on the exit command. It should be understood that the gesture command and the exit command may be input through one input command, or may be input through multiple input commands.
  • the second type of failure may include a communication failure that affects the normal communication function of the drive module 20 .
  • the second type of fault may include, but is not limited to, a communication interruption, a motor failure of the drive module 20, a motor power failure of the drive module 20, a sensor failure of the drive module 20, or related to the motion control of the drive module 20 software failure, etc. It should be understood that communication failures in this disclosure should be construed broadly.
  • the second type of fault may directly affect the normal communication function of the driving module 20 , or indirectly affect the normal communication of the driving module 20 , for example, the driving module 20 cannot perform normal movement.
  • a sensor failure of the driving module 20 or a software failure related to the motion control of the driving module 20 causes the control module 10 to fail to effectively control the driving module 20, which is manifested as a communication failure.
  • the driving module 20 cannot execute the driving command of the control module 10, which is manifested as a communication failure.
  • the control module 10 may be configured to issue a communication failure alert message based on a communication failure and allow the user to manually exit the manipulator assembly 30 from the current pose.
  • control module 10 may be configured to issue a first type of alarm information based on a first type of fault, and a second type of alarm information based on a second type of fault.
  • first type of alarm information may include recoverable non-communication failure alarm information and non-recoverable non-communication failure alarm information.
  • the control module 10 is configured to issue a recoverable non-communication failure alarm message based on a recoverable non-communication failure, and a non-recoverable non-communication failure alarm message based on an unrecoverable non-communication failure.
  • the robotic system 100 may also include an output module 40 .
  • the output module 40 may be connected in communication with the control module 10 and configured to output the first type of alarm information and/or the second type of alarm information.
  • the output module 40 may include, but is not limited to, at least one of an audio output module, a light output module, or an image output module.
  • the audio output module may include a speaker or a voice announcer or the like.
  • the light output module can include light strips, and the light strips of different colors can display different alarm information. For example, based on the fault type being the first fault, a green light flashing manner may be used as the first type of alarm information.
  • the yellow light flashing method can be used as the second type of alarm information.
  • the image output module may include a display screen or a touch screen or the like.
  • the output modules 40 listed in the embodiments of the present disclosure are exemplary and not limitative. It should be understood that the output module 40 may also be other output forms capable of reminding the user, which all fall within the protection scope of the present disclosure. Those skilled in the art should understand that different types of alarm information can be output through the same or different output modules 40 .
  • control module 10 includes an alarm handler 110 , an exit handler 120 and an exit actuator 130 .
  • the exit processor 120 may be connected in communication with the alarm processor 110 and the exit executor 130 .
  • the alarm processor 110 may be configured to receive fault information of the robotic system 100, determine a fault type based on the fault information, and issue a first The second type of alarm information or the second type of alarm information is issued based on the second type of failure (eg, communication failure).
  • the exit handler 120 may be configured to determine the type of exit based on the type of failure.
  • the exit types may include fail-automatic exit and fail-manual exit. For example, based on the recoverable non-communication failure and the non-recoverable non-communication failure, it may be determined that the exit type is failure automatic exit. Based on the communication failure, it can be determined that the exit type is manual exit with failure.
  • the fault type can be obtained by querying the fault information list, the robot system 100 can generate different fault information based on the fault type, and different fault information can correspond to the same or different exit types.
  • the exit actuator 130 may determine a fail exit mode based on the type of exit, and send a drive command to the drive module 20 based on the determined fail exit mode, or send an operation instruction to the output module 40 based on the determined fail exit mode. It should be understood that the exit actuator 130 can determine the failure exit mode according to the type of exit, and use different modes to control the movement of the driving module 20 to drive the exit of the operator assembly 30 .
  • the fail-out modes may include a first fail-out mode, a second fail-out mode, and a third fail-out mode.
  • the first fault exit mode may be an automatic control mode, for example, may be used for the control module 10 to autonomously control the movement of the drive module 20 through commands.
  • the exit actuator 130 may be configured to automatically exit based on recoverable non-communication faults and faults, such as faults that do not affect the control module 10's control of the drive module 20, such as a display error of the output module 40, etc., to determine The first failure exit mode, and based on the first failure exit mode, the driving module 20 is controlled to drive the operator assembly 30 to exit from the current posture.
  • the control module 10 can determine the type of the failure, and in response to the failure being a recoverable non-communication failure, use the first failure exit mode to send a drive command to the drive module 20 to automatically control
  • the driving module 20 exits from the current posture by driving the manipulator assembly 30 .
  • the motor motion parameter information of the control module may be included, so as to drive the rotation direction and angle of the operator assembly 30 through the motor motion of the control module.
  • the second fault exit mode may be semi-automatic, eg, the control module 10 requires a user to input commands or manually control the movement of the drive module 20 .
  • the exit actuator 130 may be configured to automatically exit based on non-recoverable non-communication faults and faults, send a first operation instruction to the output module 40 based on the second fault exit mode, and prompt the user to input a command to control the drive mode
  • the group 20 drives the manipulator assembly 30 to exit from the current pose.
  • the control module 10 can determine the type of the failure, and in response to the failure being an unrecoverable non-communication failure, based on the user input command, use the second failure exit mode to control the drive module 20 to drive the operation
  • the device component 30 exits from the current pose.
  • the output module 40 may include an image display device, such as a touch screen , the first operation instruction can be displayed on the touch screen.
  • the first operation instruction may prompt the user to complete the exit of the operator assembly 30, such as displaying prompt information or displaying an exit control key on the touch screen.
  • the user can control the drive module 20 to drive the operator assembly 30 to exit by triggering the exit control key according to the first operation instruction.
  • the exit control key may also include an exit button, for example, the exit button may be provided on the drive module 20 or other components of the robot system 100, and the first operation instruction may include prompting the user to press the exit button.
  • the user can control the drive module 20 to drive the operator assembly 30 to exit by pressing the exit button.
  • the exit control key may also be provided on a remote control device associated with the motor.
  • the exit control keys may include a gesture button and an exit button.
  • the gesture button can be triggered by a touch screen, and the exit button can be triggered by pressing a button provided on the driving module 20 .
  • the gesture button and the exit button may both be triggered by a touch screen or both by pressing a button.
  • the gesture button and the exit button can be integrated into the same button.
  • the user can press the gesture button, and the drive module 20 can receive an input command from the user, and control the motor movement of the drive module 20 based on the input command, so as to make the manipulator assembly
  • the distal end of 30 forms an exit position, eg, a straight position, and then withdraws the manipulator assembly 30 from the current position.
  • the user can also directly input a command to the driving module 20 by triggering the exit button on the driving module 20, and control the driving module 20 based on the input command.
  • the motor moves to directly exit the manipulator assembly 30 from the current pose.
  • control of the manipulator assembly 30 such as a surgical tool or endoscope, to withdraw the sheath from the surgical field.
  • the user can also control the motor movement of the drive module 20 by inputting a command, for example, by pressing the exit control key, so as to withdraw the operator assembly 30 from the current posture .
  • the third failure exit mode may be a manual control mode.
  • the control module 10 cannot automatically control the movement of the driving module 20 through commands, and cannot control the movement of the driving module 20 based on user input commands.
  • the exit actuator 130 may also be configured to manually exit based on the exit type as a fault, and send a second operation instruction to the output module 40 based on the third fault exit mode, prompting the user to manually exit the operator assembly 30 from the current posture.
  • the control module 10 may determine the type of the failure, and in response to the failure being a communication failure, send a second operation instruction to the output module 40 based on the third failure exit mode.
  • the user can manually control the driving module 20 to drive the operator assembly 30 to exit from the current posture based on the second operation instruction.
  • the second operation instruction for example, the output module 40 may include an image display device, and the second operation instruction may include a manual operation interface position and an operation method instruction.
  • the user can manually disassemble the driving module 20, such as physically, so as to withdraw the operator assembly 30 from the current posture. For example, the user can manually rotate the motor bearing of the driving module 20 to drive the operator assembly 30 to move out.
  • the second operation indication may include a plurality of messages prompting the user of the required operation.
  • the second operation instruction may prompt the user to drive the operator assembly 30 to move away from the human tissue through the driving module 20 .
  • the second operation instruction may prompt the user to remove the manipulator assembly 30 from the drive module 20 for manual disassembly.
  • the second operation instruction may also prompt the user to manually disassemble the manipulator assembly 30 from the drive module 20, so that the manipulator assembly 30 forms an exit posture when the disassembly is completed, For example, the straight state, so as to facilitate the removal from the surgical operation area, so as to realize the rapid closure of the operation.
  • the control module 10 determines the exit type, and sends a drive command to the drive module 20 according to the exit type to realize the automatic exit of the operator assembly 30, or sends an operation instruction to the output module 40, so that the user can
  • the operation instruction completes the exit of the operator assembly 30, which has better control effect and human-machine experience.
  • different exit methods can be adopted, and different fault processing procedures can be adopted according to the urgency of troubleshooting. All steps that can be operated by non-human operators are integrated into computer control to achieve accurate and efficient fault exit procedures. For the steps that cannot be completed autonomously by the computer, detailed operation prompts and operation instructions can be provided to the user, so as to realize troubleshooting with the simplest operation in a relatively short period of time, thereby facilitating the rapid withdrawal of the operator assembly 30.
  • FIG. 2 shows a flowchart of a control method 200 for a robotic system (eg, robotic system 100 ) according to some embodiments of the present disclosure.
  • the method 200 may be performed by a control module (eg, control module 10 ) of the robotic system 100 .
  • Control module 10 may be configured on a computing device.
  • Method 200 may be implemented by software and/or hardware.
  • the failure type is determined based on the failure information of the robot system.
  • the robot system 100 may include multiple components, for example, may include a main console cart and an operating cart, and the main console cart may include a control module 10, an output module 40, a main operator (not shown in the figure), and the like.
  • the surgical cart may include a drive module 20, a manipulator assembly 30, and the like.
  • the failure information may be sent to the control module 10 according to a preset form, or the control module 10 does not receive the communication information of the corresponding component within a preset time period and/or fails to extract the information error messages can also be generated.
  • Different fault information can be divided into different types of fault information, and different types of fault information can respectively correspond to different fault types, so that the fault type of the robot system can be determined based on different fault information.
  • step 203 it is judged whether the fault type is the first type of fault.
  • different types of fault information may include first fault information and second fault information, the first fault information corresponds to the first type of fault, and the second fault information corresponds to the second type of fault.
  • the severity level of the fault that has occurred can be determined, so that the robot system and/or the user can take fault handling measures based on the fault that has occurred.
  • the control driving module drives the manipulator assembly to exit from the current pose.
  • the drive module is automatically controlled to drive the manipulator assembly to exit from the current pose, or an input command is received from the user, and based on the input command, the drive module is controlled to drive the manipulator assembly to exit from the current pose.
  • the first type of alarm information is issued, and the first type of fault may include recoverable non-communication faults and non-recoverable non-communication faults unrelated to the normal communication function of the drive module 20 .
  • control module 10 may automatically send a drive command to the drive module 20 to control the drive module 20 to drive the operator assembly 30 to exit from the current pose.
  • failure type being an unrecoverable non-communication failure in the first type of failure
  • an input command from the user may be received, and based on the input command, the driving module 20 is controlled to drive the operator assembly 30 to exit from the current pose.
  • method 200 may also include step 207 .
  • step 207 based on the second type of failure, the user is allowed to manually withdraw the manipulator assembly from the current pose.
  • the second type of alarm information is issued, and the second type of fault may include a communication fault affecting the normal communication function of the drive module 20 .
  • the second type of alarm information is issued, and the user is allowed to manually control the movement of the driving module 20 to make the operator assembly 30 exit from the current posture.
  • the method 200 may further include: determining an exit type based on the fault type, determining a fault exit mode based on the exit type, and controlling the drive module to drive the operator assembly to exit based on the fault exit mode. For example, based on the recoverable non-communication failure and the non-recoverable non-communication failure, it may be determined that the exit type is failure automatic exit. Based on the communication failure, it can be determined that the exit type is manual exit with failure.
  • the drive module 20 is controlled to drive the operator assembly 30 to exit from the current pose based on the first failure exit mode based on the automatic exit based on the exit type being a fault including a recoverable non-communication fault.
  • a first operation instruction is sent to the output module 40 based on the second fault exit mode, so that the user can input a command based on the first operation instruction to control the driving operation of the drive module 20
  • the device component 30 exits from the current pose.
  • a second operation instruction is sent to the output module 40 based on the third fault exit mode, and the user is allowed to manually exit the operator assembly 30 from the current posture.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Robotics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Manipulator (AREA)

Abstract

一种机器人系统(100),包括操作器组件(30)、驱动模组(20)和控制模块(10)。操作器组件(30)设置于驱动模组(20)上,驱动模组(20)用于驱动操作器组件(30)运动,控制模块(10)与驱动模组(20)通信连接,控制模块(10)被配置成基于机器人系统(100)的故障类型,控制驱动模组(20)驱动操作器组件(30)从当前位姿退出。用户可以根据不同的故障类型采用不同的退出方式,可以根据故障排除的紧急程度采用不同的故障处理流程,以实现故障退出流程的准确和高效。

Description

机器人系统以及退出方法
相关申请的交叉引用
本申请要求于2020年7月10日提交的、申请号为2020106637610、发明名称为“一种手术机器人和手术机器人退出方法”的中国专利申请的优先权,该申请的全文以引用方式整体结合于此。
技术领域
本公开涉及机器人领域,尤其涉及机器人系统以及退出方法。
背景技术
对于医疗器械产品,一般遵循“失效后安全”的原则处理系统故障。需要在系统检测到故障后,能够及时将系统置为安全状态,并通过发出报警信号以对用户进行提示,以便用户可以根据报警的提示进行故障排除。
对于手术机器人系统,在确定出现故障的情况下,需要将工具臂退出人体进行收尾操作,以方便医护人员展开后续的病人救治。但是目前,在对故障类型不加以区分的情况下,根据安全的要求,需要禁止手术机器人所有部件的运动,并采用纯人工的方式进行工具臂的退出。由于过程繁琐因此费时费力,不利于快速结束收尾操作,从而影响对病人的快速救治。
发明内容
在一些实施例中,本公开提供了一种机器人系统,包括:操作器组件;驱动模组,所述操作器组件设置于所述驱动模组上,所述驱动模组用于驱动所述操作器组件运动;控制模块,与所述驱动模组通信连接,所述控制模块被配置成基于机器人系统 的故障类型,控制所述驱动模组驱动所述操作器组件从当前位姿退出。
在一些实施例中,本公开提供了一种机器人系统的退出方法,包括:基于所述机器人系统的故障信息,确定故障类型;判断所述故障类型是否为第一类故障;响应于所述故障类型为所述第一类故障,控制驱动模组驱动操作器组件从当前位姿退出。
附图说明
为了清楚地说明本公开实施例中的技术方案,下面将对本公开实施例描述中所需要使用的附图作简单的介绍。下面描述中的附图仅仅示出本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据本公开实施例的内容和这些附图获得其他的实施例。
图1示出了根据本公开一些实施例的机器人系统的结构框图;
图2示出了根据本公开一些实施例的机器人系统的退出方法流程图。
具体实施方式
为使本公开解决的技术问题、采用的技术方案和达到的技术效果更加清楚,下面将结合附图对本公开实施例的技术方案作进一步的详细描述,显然,所描述的实施例仅仅是本公开示例性实施例,而不是全部的实施例。
在本公开的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。在本公开的描述中,需要说明的是,除非另有明确的规定和限 定,术语“安装”、“相连”、“连接”、“耦合”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连;可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。在本公开中,在手术机器人系统中,定义靠近用户(例如医生)的一端为近端、近部或后端、后部,靠近手术患者的一端为远端、远部或前端、前部。本领域技术人员可以理解,本公开的实施例可以用于医疗器械或手术机器人,也可以用于其他非医疗装置。
本公开提供了一种机器人系统。图1示出了根据本公开一些实施例的机器人系统100的结构框图。如图1所示,机器人系统100可以包括操作器组件30、驱动模组20和控制模块10。操作器组件30为可以被控制模块10操作的机械结构。在一些实施例中,操作器组件30可以包括一个或多个手术工具和/或内窥镜。手术工具和内窥镜可以包括手术工具臂体和末端设备。应当理解,手术工具臂体可以包括柔性手术工具臂体,例如,柔性连续体结构。手术工具的末端设备可以包括但不限于夹钳、弯剪等。内窥镜的末端设备可以包括但不限于照明装置或者图像获取装置。
在一些实施例中,操作器组件30设置于驱动模组20上,例如可以设置在驱动模组20的远端,驱动模组20用于驱动操作器组件30运动。本领域技术人员应理解,驱动模组20可以包括多个电机以及与电机耦合的传感器。传感器可以包括但不限于编码器或电位计。在一些实施例中,操作器组件30与驱动模组20的电机耦合,控制模块10可以控制驱动模组20的电机运动,以驱动操作器组件30运动。驱动模组20的传感器与控制模块10可以通过线缆有限连接或无线连接。传感器可以获取驱动模组20的电机的参数以及驱动模组20与操作器组件30的连接状态信息,并将电机的参数和连接状态信息发送至控制模块10。控制模块10通过电机的参数可以实时监测驱动模组20的运行状态以及获取操作器组件30的末端设备的当前位姿。末端设备的当前 位姿可以包括当前位置和当前姿态,例如,末端设备的位姿可以包括末端设备沿操作器组件30的轴向进给位置以及在该位置的旋转和偏向角度等。
在一些实施例,控制模块10与驱动模组20之间的通信可以包括驱动命令通信(例如控制电机运动参数的命令)以及状态信息通信(例如电机的状态信息以及操作器组件30的状态信息)。驱动命令通信和状态信息通信可以采用不同的传输通道,这样控制模块10与驱动模组20之间的驱动命令传输通道异常,控制模块10无法将驱动命令传输至驱动模组20,驱动模组20可以采用状态信息传输通道,将电机的状态信息以及操作器组件30的状态信息发送给控制模块10,从而使控制模块10能够实时获取电机以及操作器组件30的状态信息,并对电机以及操作器组件30进行监控。
在一些实施例中,控制模块10与驱动模组20通信连接。控制模块10被配置成基于机器人系统100的故障类型,控制驱动模组20驱动操作器组件30从当前位姿退出。在一些实施例中,机器人系统100在实际操作过程中(例如在手术过程中),机器人系统100发生故障,控制模块10可以基于机器人系统100的故障类型,控制驱动模组20的电机运动,以控制操作器组件30从当前位姿退出。其中,机器人系统100的故障可以包括组成机器人系统100的各硬件或者软件故障。应当理解,当前位姿可以包括操作器组件30能够进行手术操作的有效位置和姿态,也可以包括操作器组件30的实时位姿。
在一些实施例中,机器人系统100的故障类型可以包括第一类故障和第二类故障。在一些实施例中,第一类故障可以包括与驱动模组20的正常通信功能无关的可恢复非通信故障和不可恢复非通信故障。在一些实施例中,例如,第一类故障的可恢复非通讯故障可以包括但不限于连接无菌保护套的适配器的触点断开、操作器组件与驱动模组的连接异常等故障。在一些实施例中,第一类故障的不可恢复非通信故障可以包括但不限于机器人系统100的主控台车踏板故障或主操作器故障等不可恢复非通 信故障。第一类故障与驱动模组20的正常通信功能无关。应当理解,在机器人系统100发生第一类故障时,控制模块10仍然可以控制驱动模组20运动,以控制操作器组件30退出。
在一些实施例中,控制模块10可以被配置成基于可恢复非通信故障,控制驱动模组20驱动操作器组件30从当前位姿退出。例如,控制模块10可以基于可恢复非通信故障,自动控制驱动模组20驱动操作器组件30从当前位姿退出,或者接收用户的输入命令,并且基于输入命令,控制驱动模组20驱动操作器组件30从当前位姿退出。在一些实施例中,控制模块10被配置成基于不可恢复非通信故障,接收来自用户的输入命令,以及基于输入命令,控制驱动模组20驱动操作器组件30从当前位姿退出。应当理解,输入命令可以由用户通过用户接口输入,用户接口可以包括但不限于键盘、触摸屏、按钮、话筒等。
在一些实施例中,输入命令可以包括姿态命令以及退出命令,姿态命令用于使操作器组件30形成退出姿态,退出命令用于使操作器组件30退出。应理解,操作器组件30在实际操作过程中可以处于非直姿态,驱动模组20可以基于姿态命令控制操作器组件30形成退出姿态。退出姿态可以包括直态、部分呈直态、部分弧状姿态、或者与鞘套形状适配的姿态等。在操作器组件30形成退出姿态后,驱动模组20可以基于退出命令控制操作器组件30从退出姿态退出。在一些实施例中,输入命令也可以只包括退出命令,驱动模组20可以基于退出命令控制操作器组件30直接从退出姿态退出。应当理解,姿态命令以及退出命令可以通过一次输入命令输入,也可以通过多次输入命令输入。
在一些实施例中,第二类故障可以包括影响驱动模组20的正常通信功能的通信故障。例如,第二类故障可以包括,但不限于,通信中断、驱动模组20的电机故障、驱动模组20的电机动力电故障、驱动模组20的传感器故障或与驱动模组20运动 控制相关的软件故障等。应理解,本公开中的通信故障应当做广义解释。第二类故障可以直接影响驱动模组20的正常通信功能,或者间接表现为影响驱动模组20的正常通信,例如驱动模组20不能进行正常运动。例如,驱动模组20的传感器故障或与驱动模组20运动控制相关的软件故障,导致控制模块10无法有效控制驱动模组20,表现为发生通信故障。或者由于驱动模组20的电机故障或电机动力电故障,导致驱动模组20无法执行控制模块10的驱动命令,表现为发生通信故障。应当理解,在机器人系统100发生第二类故障时,由于驱动模组20的通信故障,控制模块10不能控制驱动模组20运动,使得操作器组件30不能从当前位姿退出。在一些实施例中,控制模块10可以被配置成基于通信故障,发出通信故障警报信息,并且允许用户通过手动方式使操作器组件30从当前位姿退出。
在一些实施例中,控制模块10可以被配置成基于第一类故障,发出第一类报警信息,以及基于第二类故障,发出第二类报警信息。在一些实施例中,第一类报警信息可以包括可恢复非通信故障报警信息和不可恢复非通信故障报警信息。控制模块10被配置成能基于可恢复非通信故障,发出可恢复非通信故障报警信息,以及基于不可恢复非通信故障,发出不可恢复非通信故障报警信息。
在一些实施例中,机器人系统100还可以包括输出模块40。应当理解,输出模块40可以与控制模块10通信连接,并且被配置成可以输出第一类报警信息和/或第二类报警信息。在一些实施例中,输出模块40可以包括但不限于音频输出模块、灯光输出模块或图像输出模块中的至少一个。例如,音频输出模块可以包括音箱或语音播报器等。灯光输出模块可以包括灯带,不同颜色的灯带可以显示不同的报警信息。例如,基于故障类型为第一故障,可以采用绿光闪烁的方式,作为第一类报警信息。基于故障类型为第二故障,可以采用黄光闪烁的方式,作为第二类报警信息。图像输出模块可以包括显示屏或者触摸屏等。本公开实施例所列举的输出模块40是示例性 的,并非限制性的。应当理解,输出模块40还可以为其他能够对用户起到提醒警示作用的输出形式,均落入本公开的保护范围内。本领域技术人员应理解,不同类型的报警信息可以通过相同或者不同的输出模块40进行输出。
在一些实施例中,控制模块10包括:报警处理器110、退出处理器120和退出执行器130。其中,退出处理器120可以与报警处理器110和退出执行器130通信连接。在一些实施例中,报警处理器110可以用于接收机器人系统100的故障信息,基于故障信息确定故障类型,基于第一类故障(例如可恢复非通信故障和不可恢复非通信故障)发出第一类警报信息或基于第二类故障(例如通信故障)发出第二类警报信息。
在一些实施例中,退出处理器120可以被设置成基于故障类型,确定退出类型。在一些实施例中,退出类型可以包括故障自动退出和故障手动退出。例如,可以基于可恢复非通信故障以及不可恢复非通信故障,确定退出类型为故障自动退出。可以基于通信故障,确定退出类型为故障手动退出。在一些实施例中,故障类型可以通过查询故障信息列表获得,机器人系统100可以基于故障类型,生成不同的故障信息,不同的故障信息可以对应相同或不同的退出类型。
在一些实施例中,退出执行器130可以基于退出类型确定故障退出模式,并基于确定的故障退出模式向驱动模组20发送驱动命令,或者基于确定的故障退出模式向输出模块40发送操作指示。应当理解,退出执行器130可根据退出类型确定故障退出模式,并采用不同的模式控制驱动模组20的运动,以驱动操作器组件30的退出。
在一些实施例中,故障退出模式可以包括第一故障退出模式、第二故障退出模式和第三故障退出模式。第一故障退出模式可以为自动控制模式,例如,可以用于控制模块10通过命令自主控制驱动模组20运动。在一些实施例中,退出执行器130可以被配置成基于可恢复非通信故障和故障自动退出,例如不影响控制模块10对驱动模组20控制的故障,如输出模块40的显示器错误等,确定第一故障退出模式,并基于 第一故障退出模式控制驱动模组20驱动操作器组件30从当前位姿退出。应当理解,在机器人系统100发生故障时,控制模块10可以判断该故障的类型,响应于该故障为可恢复非通信故障,利用第一故障退出模式向驱动模组20发送驱动命令,以自动控制驱动模组20以驱动操作器组件30从当前位姿退出。应理解,基于可恢复非通信故障,可以确定驱动模组20的电机工作正常,以及控制模块10与驱动模组20之间的通信正常,采用第一故障退出模式发送驱动命令,例如,驱动命令可以包括控制模组的电机运动参数信息,以通过控制模组的电机运动驱动操作器组件30的转动方向和角度等。
应当理解,第二故障退出模式可以为半自动,例如,控制模块10需要用户输入命令或者手动控制驱动模组20运动。例如,基于不可恢复非通信故障和故障自动退出,确定采用第二故障退出模式。在一些实施例中,退出执行器130可以被配置成基于不可恢复非通信故障和故障自动退出,基于第二故障退出模式向输出模块40发送第一操作指示,提示用户输入命令,以控制驱动模组20驱动操作器组件30从当前位姿退出。例如,在机器人系统100发生故障时,控制模块10可以判断该故障的类型,响应于该故障为不可恢复非通信故障,基于用户输入命令,利用第二故障退出模式控制驱动模组20以驱动操作器组件30从当前位姿退出。应理解,基于不可恢复非通信故障,可以确定驱动模组20的电机工作正常,采用第二故障退出模式向输出模块40发送第一操作指示,例如,输出模块40可以包括图像显示装置,如触摸屏,第一操作指示可以在触摸屏上显示。
在一些实施例中,第一操作指示可以提示用户完成操作器组件30退出,例如显示提示信息或者在触摸屏上显示退出控制键。用户可以根据第一操作指示通过触发退出控制键,以控制驱动模组20驱动操作器组件30退出。应当理解,退出控制键还可以包括退出按钮,例如退出按钮可以设置在驱动模组20或者机器人系统100的其他部 件上,第一操作指示可以包括提示用户按压退出按钮。用户可以通过按压退出按钮,以控制驱动模组20驱动操作器组件30退出。应理解,退出控制键还可以设置在与电机关联的遥控设备上。在一些实施例中,退出控制键可以包括姿态按钮和退出按钮。应当理解,姿态按钮可以通过触摸屏触发,退出按钮可以通过按压设置在驱动模组20上的按钮触发。在一些实施例中,姿态按钮和退出按钮可以均通过触摸屏触发或者均通过按压按钮触发。在一些实施例中,姿态按钮和退出按钮可以集成为同一个按钮。以上实施例仅为示例性,并非限制性。例如,在确定操作器组件30的远端呈弯曲状态时,用户可以按压姿态按钮,驱动模组20可以接收用户的输入命令,基于输入命令控制驱动模组20的电机运动,以使操作器组件30的远端形成退出姿态,例如形成直态,然后将操作器组件30从当前位姿退出。应理解,在确定操作器组件30的远端本身已呈直态时,用户也可以直接通过触发驱动模组20上的退出按钮向驱动模组20输入命令,基于输入命令控制驱动模组20的电机运动,以将操作器组件30直接从当前位姿退出。以实现控制操作器组件30,例如手术工具或内窥镜,从手术操作区域退出鞘管。
在一些实施例中,在机器人系统100未发生故障时,用户也可以通过输入命令,例如可以通过按压退出控制键,控制驱动模组20的电机运动,以将操作器组件30从当前位姿退出。
在一些实施例中,第三故障退出模式可以为手动控制模式,例如,控制模块10无法通过命令自动控制驱动模组20运动,且无法基于用户的输入命令控制驱动模组20运动。退出执行器130还可以被配置成基于退出类型为故障手动退出,基于第三故障退出模式向输出模块40发送第二操作指示,提示用户通过手动方式使操作器组件30从当前位姿退出。例如,在机器人系统100发生故障时,控制模块10可以判断该故障的类型,响应于该故障为通信故障,基于第三故障退出模式向输出模块40发送 第二操作指示。用户可以基于第二操作指示,以手动方式控制驱动模组20驱动操作器组件30从当前位姿退出。应理解,基于通信故障,可以确定控制模块10与驱动模组20之间的通信异常或受阻,驱动模组20的电机状态异常,无法正常工作,采用第三故障退出模式向输出模块40发送第二操作指示,例如,输出模块40可以包括图像显示装置,第二操作指示可以包括手动方式的操作接口位置以及操作方式的指示。用户可以基于第二操作指示,通过手动方式,例如物理方式拆卸驱动模组20,以使操作器组件30从当前位姿退出。例如,用户可以通过手动转动驱动模组20的电机轴承以带动操作器组件30移动退出。
在一些实施例,第二操作指示可以包括向用户提示需要进行的操作的多个消息。在判断操作器组件30的当前位姿与人体组织的距离小于安全范围时,第二操作指示可以提示用户通过驱动模组20驱动操作器组件30向远离人体组织的方向移动。在操作器组件30移动至与当前位姿超过预设距离,且操作器组件所在的位置对人体不会造成伤害的安全范围时,第二操作指示可以提示用户将操作器组件30从驱动模组20上进行手动拆卸。基于操作器组件30的远端处于弯曲状态,第二操作指示还可以提示用户将操作器组件30从驱动模组20上进行手动拆卸的方式,以使拆卸完成时操作器组件30形成退出姿态,例如直态,从而便于从手术操作区域取出,以实现手术的快速收尾。
本公开的一些实施例,通过控制模块10确定退出类型,并根据退出类型向驱动模组20发送驱动命令以实现操作器组件30的自动退出,或者向输出模块40发送操作指示,以使用户根据操作指示完成对操作器组件30的退出,具有更好的控制效果和人机体验。根据不同的故障类型采用不同的退出方式,可以根据故障排除的紧急程度采用不同的故障处理流程,将所有可以采用非人操作的步骤都集成于计算机控制,以实现故障退出流程的准确和高效。对于无法通过计算机自主完成的步骤,可以对用户 提供详细的操作提示和操作说明,以使在较短时间内以最简单的操作实现故障处理,从而便于实现操作器组件30的快速退出。
本公开提供了一种可以用于机器人系统的控制方法。图2示出了根据本公开一些实施例的用于机器人系统(例如机器人系统100)的控制方法200的流程图。如图2所示,该方法200可以由机器人系统100的控制模块(例如控制模块10)来执行。控制模块10可以配置在计算设备上。方法200可以由软件和/或硬件来实现。
在步骤201,基于机器人系统的故障信息,确定故障类型。应当理解,机器人系统100可以包括多个部件组成,例如可以包括主控台车和手术台车,主控台车可以包括控制模块10、输出模块40和主操作器(图中未示)等。手术台车可以包括驱动模组20和操作器组件30等。在其中一些部件出现硬件或软件错误或故障时,可以根据预设形式向控制模块10发出故障信息,或者控制模块10在预设时间段内没有收到对应部件的通讯信息和/或提取信息失败时,也可以生成故障信息。可以将不同的故障信息分为不同类型的故障信息,不同类型的故障信息可以分别对应不同的故障类型,从而可以基于不同的故障信息,确定机器人系统的故障类型。
在步骤203,判断故障类型是否为第一类故障。例如,不同类型的故障信息可以包括第一故障信息和第二故障信息,第一故障信息对应第一类故障,第二故障信息对应第二类故障。通过判断故障类型是否为第一类故障,从而可以确定所发生故障的严重等级,从而便于机器人系统和/或用户基于所发生故障,采取故障处理措施。
在步骤205,控制驱动模组驱动操作器组件从当前位姿退出。例如,自动控制驱动模组驱动操作器组件从当前位姿退出,或者接收来自用户的输入命令,以及基于输入命令,控制驱动模组驱动操作器组件从当前位姿退出。在一些实施例中,基于故障类型为第一类故障,发出第一类报警信息,第一类故障可以包括与驱动模组20正常通信功能无关的可恢复非通信故障和不可恢复非通信故障。响应于故障类型为第一类 故障中的可恢复非通信故障,控制模块10可以自动发送驱动命令至驱动模组20,以控制驱动模组20驱动操作器组件30从当前位姿退出。响应于故障类型为第一类故障中的不可恢复非通信故障,可以接收来自用户的输入命令,以及基于输入命令,控制驱动模组20驱动操作器组件30从当前位姿退出。
在一些实施例中,方法200还可以包括步骤207。在步骤207,基于第二类故障,允许用户通过手动方式使操作器组件从当前位姿退出。在一些实施例中,基于故障类型为第二类故障,发出第二类报警信息,第二类故障可以包括影响驱动模组20正常通信功能的通信故障。响应于故障类型为第二类故障,发出第二类报警信息,并允许用户通过手动方式控制驱动模组20运动,以使操作器组件30从当前位姿退出。
在一些实施例中,方法200还可以包括:基于故障类型,确定退出类型,基于退出类型确定故障退出模式,基于故障退出模式,控制驱动模组驱动操作器组件退出。例如,可以基于可恢复非通信故障以及不可恢复非通信故障,确定退出类型为故障自动退出。可以基于通信故障,确定退出类型为故障手动退出。在一些实施例中,基于退出类型为包括可恢复非通信故障的故障自动退出,基于第一故障退出模式控制驱动模组20驱动操作器组件30从当前位姿退出。基于退出类型为包括不可恢复非通信故障的故障自动退出,基于第二故障退出模式向输出模块40发送第一操作指示,以使用户基于第一操作指示输入命令,以控制驱动模组20驱动操作器组件30从当前位姿退出。基于退出类型为故障手动退出,基于第三故障退出模式向输出模块40发送第二操作指示,并且允许用户通过手动方式使操作器组件30从当前位姿退出。
注意,上述仅为本公开的示例性实施例及所运用技术原理。本领域技术人员会理解,本公开不限于这里的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本公开的保护范围。因此,虽然通过以上实施例对本公开进行了较为详细的说明,但是本公开不仅仅限于以上实施例,在不脱离本公开构 思的情况下,还可以包括更多其他等效实施例,而本公开的范围由所附的权利要求范围决定。

Claims (20)

  1. 一种机器人系统,包括:
    操作器组件;
    驱动模组,所述操作器组件设置于所述驱动模组上,所述驱动模组用于驱动所述操作器组件运动;
    控制模块,与所述驱动模组通信连接,所述控制模块被配置成基于机器人系统的故障类型,控制所述驱动模组驱动所述操作器组件从当前位姿退出。
  2. 根据权利要求1所述的机器人系统,其特征在于,所述故障类型包括:
    第一类故障,包括与所述驱动模组的正常通信功能无关的可恢复非通信故障和不可恢复非通信故障;以及
    第二类故障,包括影响所述驱动模组的正常通信功能的通信故障。
  3. 根据权利要求2所述的机器人系统,其特征在于,
    所述控制模块被配置成基于所述第一类故障,发出第一类报警信息;以及
    所述控制模块被配置成基于所述第二类故障,发出第二类报警信息。
  4. 根据权利要求3所述的机器人系统,其特征在于,
    所述第一类报警信息包括可恢复非通信故障报警信息和不可恢复非通信故障报警信息;以及
    所述控制模块被配置成基于所述可恢复非通信故障,发出所述可恢复非通信故障报警信息,以及基于所述不可恢复非通信故障,发出所述不可恢复非通信故障报警信息。
  5. 根据权利要求3所述的机器人系统,其特征在于,还包括:
    输出模块,与所述控制模块通信连接,所述输出模块被配置成输出所述第一类报警信息和/或所述第二类报警信息。
  6. 根据权利要求2所述的机器人系统,其特征在于,所述控制模块被配置成基于所述可恢复非通信故障,控制所述驱动模组驱动所述操作器组件从当前位姿退出。
  7. 根据权利要求2所述的机器人系统,其特征在于,所述控制模块被配置成基于所述不可恢复非通信故障,接收来自用户的输入命令,以及基于所述输入命令,控制所述驱动模组驱动所述操作器组件从当前位姿退出。
  8. 根据权利要求2所述的机器人系统,其特征在于,所述控制模块被配置成基于所述通信故障,发出通信故障警报信息,并且允许用户通过手动方式使所述操作器组件从当前位姿退出。
  9. 根据权利要求7所述的机器人系统,其特征在于,所述输入命令包括姿态命令以及退出命令,所述姿态命令用于使所述操作器组件形成退出姿态,所述退出命令用于使所述操作器组件退出。
  10. 根据权利要求5所述的机器人系统,其特征在于,所述输出模块包括音频输出模块、灯光输出模块或图像输出模块中的至少一个。
  11. 根据权利要求2所述的机器人系统,其特征在于,所述控制模块包括:
    报警处理器,用于接收所述机器人系统的故障信息,基于所述故障信息确定所述故障类型,基于所述可恢复非通信故障和不可恢复非通信故障发出第一类警报信息或基于所述通信故障发出第二类警报信息;
    退出处理器,被设置成基于所述故障类型,确定退出类型;
    退出执行器,基于所述退出类型确定故障退出模式,并基于确定的所述故障退出模式向所述驱动模组发送驱动命令,或者基于确定的所述故障退出模式向输出模块发送操作指示。
  12. 根据权利要求11所述的机器人系统,其特征在于,所述退出类型包括故障 自动退出和故障手动退出;
    基于所述可恢复非通信故障以及所述不可恢复非通信故障,确定所述退出类型为所述故障自动退出;以及
    基于所述通信故障,确定所述退出类型为所述故障手动退出。
  13. 根据权利要求12所述的机器人系统,其特征在于,
    所述退出执行器被配置成基于所述可恢复非通信故障和所述故障自动退出,确定第一故障退出模式,并且基于所述第一故障退出模式控制所述驱动模组驱动所述操作器组件从当前位姿退出;或者
    所述退出执行器被配置成基于所述不可恢复非通信故障和所述故障自动退出,确定第二故障退出模式,基于所述第二故障退出模式向所述输出模块发送用于提示用户输入命令的第一操作指示,并且基于输入的命令,控制所述驱动模组驱动所述操作器组件从当前位姿退出。
  14. 根据权利要求13所述的机器人系统,其特征在于,
    所述退出执行器被配置成基于所述故障手动退出,确定第三故障退出模式,并且基于所述第三故障退出模式,向所述输出模块发送第二操作指示,用于提示用户通过手动方式使所述操作器组件从当前位姿退出。
  15. 根据权利要求14所述的机器人系统,其特征在于,所述第二操作指示包括向用户提示需要进行的操作的多个消息。
  16. 一种机器人系统的退出方法,包括:
    基于所述机器人系统的故障信息,确定故障类型;
    判断所述故障类型是否为第一类故障;
    响应于所述故障类型为所述第一类故障,控制驱动模组驱动操作器组件从当前位姿退出。
  17. 根据权利要求16所述的退出方法,其特征在于,所述第一类故障包括与所述驱动模组正常通信功能无关的可恢复非通信故障和不可恢复非通信故障,
    所述退出方法包括响应于所述故障类型为所述可恢复非通信故障,控制驱动模组驱动操作器组件从当前位姿退出。
  18. 根据权利要求16或17所述的退出方法,其特征在于,还包括:
    响应于所述故障类型为所述第一类故障,发出第一类报警信息;以及
    响应于所述故障类型为第二类故障,发出第二类报警信息,所述第二类故障包括影响所述驱动模组正常通信功能的通信故障。
  19. 根据权利要求17所述的退出方法,其特征在于,还包括:
    响应于所述故障类型为所述不可恢复非通信故障,接收来自用户的输入命令,以及基于所述输入命令,控制所述驱动模组驱动所述操作器组件从当前位姿退出。
  20. 根据权利要求18所述的退出方法,其特征在于,还包括:
    响应于所述故障类型为所述通信故障,发出通信故障报警信息,所述报警信息用于提示用户通过手动方式使所述操作器组件从当前位姿退出。
PCT/CN2021/101654 2020-07-10 2021-06-22 机器人系统以及退出方法 WO2022007628A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180034319.4A CN115551433A (zh) 2020-07-10 2021-06-22 机器人系统以及退出方法
EP21837507.9A EP4179996A1 (en) 2020-07-10 2021-06-22 Robotic system and exit method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010663761.0A CN113907885A (zh) 2020-07-10 2020-07-10 一种手术机器人和手术机器人退出方法
CN202010663761.0 2020-07-10

Publications (1)

Publication Number Publication Date
WO2022007628A1 true WO2022007628A1 (zh) 2022-01-13

Family

ID=79552754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/101654 WO2022007628A1 (zh) 2020-07-10 2021-06-22 机器人系统以及退出方法

Country Status (3)

Country Link
EP (1) EP4179996A1 (zh)
CN (2) CN113907885A (zh)
WO (1) WO2022007628A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114536401B (zh) * 2022-02-16 2024-03-29 中国医学科学院北京协和医院 基于多个位姿标识的机器人系统故障检测处理方法及机器人系统
CN114347037B (zh) * 2022-02-16 2024-03-29 中国医学科学院北京协和医院 基于复合标识的机器人系统故障检测处理方法及机器人系统
CN114536402B (zh) * 2022-02-16 2024-04-09 中国医学科学院北京协和医院 基于关联标识的机器人系统故障检测处理方法及机器人系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110319815A1 (en) * 2010-06-24 2011-12-29 Hansen Medical, Inc. Fiber optic instrument sensing system
JP2012071406A (ja) * 2010-09-29 2012-04-12 Olympus Corp マスタ・スレーブ方式マニピュレータの制御装置及びその制御方法
CN105636748A (zh) * 2013-10-17 2016-06-01 直观外科手术操作公司 在机器人系统中的故障反应、故障隔离和故障弱化
CN106272554A (zh) * 2016-08-31 2017-01-04 北京术锐技术有限公司 一种手术机器人运行状态故障检测方法
CN107334531A (zh) * 2017-07-31 2017-11-10 成都中科博恩思医学机器人有限公司 一种机器人手术设备以及机器人手术设备安全控制方法
CN109069206A (zh) * 2016-06-30 2018-12-21 直观外科手术操作公司 用于医疗机器人系统的故障反应机制的系统和方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2713922B1 (en) * 2011-05-31 2021-08-11 Intuitive Surgical Operations, Inc. Positive control of robotic surgical instrument end effector
CN106175936B (zh) * 2016-08-31 2018-09-04 北京术锐技术有限公司 一种手术机器人完全运行状态故障检测方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110319815A1 (en) * 2010-06-24 2011-12-29 Hansen Medical, Inc. Fiber optic instrument sensing system
JP2012071406A (ja) * 2010-09-29 2012-04-12 Olympus Corp マスタ・スレーブ方式マニピュレータの制御装置及びその制御方法
CN105636748A (zh) * 2013-10-17 2016-06-01 直观外科手术操作公司 在机器人系统中的故障反应、故障隔离和故障弱化
CN109069206A (zh) * 2016-06-30 2018-12-21 直观外科手术操作公司 用于医疗机器人系统的故障反应机制的系统和方法
CN106272554A (zh) * 2016-08-31 2017-01-04 北京术锐技术有限公司 一种手术机器人运行状态故障检测方法
CN107334531A (zh) * 2017-07-31 2017-11-10 成都中科博恩思医学机器人有限公司 一种机器人手术设备以及机器人手术设备安全控制方法

Also Published As

Publication number Publication date
CN113907885A (zh) 2022-01-11
EP4179996A1 (en) 2023-05-17
CN115551433A (zh) 2022-12-30

Similar Documents

Publication Publication Date Title
WO2022007628A1 (zh) 机器人系统以及退出方法
US9433470B2 (en) Surgical robot system and method for controlling surgical robot system
JP5537204B2 (ja) 医療用マニピュレータシステム
WO2022193889A1 (zh) 手术机器人系统的控制方法、可读存储介质及机器人系统
JP3752494B2 (ja) マスタスレーブマニピュレータ、その制御装置及び制御方法
JP3680050B2 (ja) 医療用マニピュレータ及びその制御方法
US20140039521A1 (en) Method for graphically providing continuous change of state directions to a user of a medical robotic system
CN110215287A (zh) 一种主从式医疗操控系统
WO2018105045A1 (ja) 医療システムとその制御方法
CN113397712B (zh) 基于球窝关节及触觉反馈的手术机器人
EP3254638A1 (en) Medical manipulator system and control method therefor
JP7202767B2 (ja) 操作可能制御システム及びそれを備えたロボット支援手術装置
JP7443399B2 (ja) 遠隔操作に係合するためのロボット把持器へのuidの不適合/適合
US20210283778A1 (en) Redundant robot power and communication architecture
US20220378531A1 (en) Surgical robot
CN112890954A (zh) 机械臂运动控制方法、系统及外科手术系统
US12005589B2 (en) Redundant robot power and communication architecture
JP4823745B2 (ja) 機器制御システム
WO2024089812A1 (ja) ロボットシステム
US20240099558A1 (en) Remote surgery support system and mentor-side operating device
JP2023167996A (ja) 手術支援システムおよび手術支援システムの制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21837507

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021837507

Country of ref document: EP

Effective date: 20230210

NENP Non-entry into the national phase

Ref country code: DE