WO2022193889A1 - 手术机器人系统的控制方法、可读存储介质及机器人系统 - Google Patents

手术机器人系统的控制方法、可读存储介质及机器人系统 Download PDF

Info

Publication number
WO2022193889A1
WO2022193889A1 PCT/CN2022/076250 CN2022076250W WO2022193889A1 WO 2022193889 A1 WO2022193889 A1 WO 2022193889A1 CN 2022076250 W CN2022076250 W CN 2022076250W WO 2022193889 A1 WO2022193889 A1 WO 2022193889A1
Authority
WO
WIPO (PCT)
Prior art keywords
surgical
instrument
robot system
state
fault
Prior art date
Application number
PCT/CN2022/076250
Other languages
English (en)
French (fr)
Inventor
李自汉
何超
王宣辉
王家寅
廖志祥
Original Assignee
上海微创医疗机器人(集团)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海微创医疗机器人(集团)股份有限公司 filed Critical 上海微创医疗机器人(集团)股份有限公司
Priority to EP22770244.6A priority Critical patent/EP4309612A1/en
Publication of WO2022193889A1 publication Critical patent/WO2022193889A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1689Teleoperation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • B25J9/161Hardware, e.g. neural networks, fuzzy logic, interfaces, processor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1674Programme controls characterised by safety, monitoring, diagnostic
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45117Medical, radio surgery manipulator

Definitions

  • the present invention relates to the field of simulation-assisted surgery systems and methods, in particular to a control method of a surgical robot system, a readable storage medium and a robot system.
  • Surgical robots have become a powerful tool to help doctors complete operations.
  • da Vinci TM surgical robots have been used in major hospitals around the world, bringing good news to patients because of their advantages of less harm to patients, less bleeding and faster recovery.
  • the surgical robot system will enter the safety protection mode regardless of recoverable or non-recoverable faults during the operation, and all motor drivers will be braked and disabled to prevent the surgical robot from continuing to move and causing harm to the patient.
  • the control system of the surgical robot also loses the function of controlling the posture and clamping state of the end of the instrument, which may introduce surgical risks in the following scenarios;
  • the purpose of the present invention is to provide a control method of a surgical robot system, a readable storage medium and a surgical robot system, so as to solve the problem that the existing surgical robot system loses the posture and clamping state of the instrument end in the safety protection mode. control and introduce surgical risk.
  • a control method of a surgical robot system including:
  • S1 configures the corresponding fault response state according to the device information of different surgical instruments
  • S2 monitors the state of the surgical robot system, and when the surgical robot system is in a fault state, determines the current fault response state of the surgical instrument according to the instrument information of the current surgical instrument;
  • S3 controls the mobile phone robot system to perform a fault response operation according to the determined fault response state.
  • the instrument information includes state information of the surgical instrument; the determining the fault response state according to the instrument information of the surgical instrument in step S2 includes:
  • the fault response state includes: the surgical instrument enters a state maintaining mode, and the surgical instrument enters a safe mode without entering a state maintaining process.
  • the instrument information further includes type information of the surgical instrument; the type information of the surgical instrument includes a bipolar instrument or a monopolar instrument; if the type information of the surgical instrument includes a bipolar instrument, the The state maintaining mode includes simultaneously maintaining the terminal posture of the surgical instrument and maintaining the clamping state of the surgical instrument; if the type information of the surgical instrument includes a monopolar instrument, the state maintaining mode includes maintaining the surgical instrument end pose.
  • maintaining the terminal posture of the surgical instrument includes at least one of the following:
  • Pose maintenance is performed by tracking the current Cartesian pose position of the surgical instrument.
  • the status information of the surgical instrument includes installation information of whether the surgical instrument is installed, and/or enabling information of whether the instrument driver is enabled.
  • the fault response state when it is detected that the installation information is installed and the enabling information is an enabling state, the fault response state includes that the surgical instrument enters the state maintaining mode; when it is detected that the installation is When the information is not installed, or the enabling information is a disabled state, the fault response state includes the surgical instrument entering the safe mode.
  • control method of the surgical robot system further includes:
  • S4 After performing the fault reaction operation, S4 prompts recovery information corresponding to the fault type according to the fault type.
  • the fault category includes recoverable faults and non-recoverable faults
  • the recovering information corresponding to the unrecoverable fault is prompted to include restarting information for the operator to restart.
  • control method of the surgical robot system further includes:
  • the communication connection state between the instrument driver and the control device is detected. If the communication connection state is abnormal, the instrument driver executes the control method of the surgical robot system as described above; if the communication connection state is normal, the control method is executed by the instrument driver.
  • the apparatus performs the control method of the surgical robot system as described above.
  • a readable storage medium which stores a program, and when the program is executed, realizes the control method of the surgical robot system as described above.
  • a surgical robot system which includes: a patient-side operating table and a control device;
  • the patient-side operating table includes a robotic arm on which a surgical instrument is mounted or connected; the control device is communicatively connected with the surgical instrument;
  • the surgical robot system is configured such that when the surgical robot system is in a fault state, the control device performs a fault reaction operation according to the control method of the surgical robot system as described above; or when the surgical robot system is in a fault state In the state, according to the control method of the surgical robot system as described above, the communication connection state between the instrument driver and the control device is detected, and according to whether the communication connection state is normal or not, the instrument driver or the control device is selected to perform a fault response operation .
  • the control method of the surgical robot system includes: configuring corresponding fault response states according to the instrument information of different surgical instruments monitor the state of the surgical robot system, and when the surgical robot system is in a fault state, determine the current fault reaction state of the surgical instrument according to the instrument information of the current surgical instrument; and, control the mobile phone robot system to react according to the determined fault Status to perform fault response actions.
  • the surgical robot system can determine different fault response states and perform different fault response operations, thereby improving the safety of the surgical operation by the surgical robot system.
  • FIG. 1 is a schematic diagram of an application scenario of a surgical robot system according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a surgical robot system according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of a control method of a surgical robot system according to an embodiment of the present invention.
  • FIGS. 4a-4c are schematic views of the distal end of the surgical instrument according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of a control method of an unrecoverable failure surgical robot system according to an embodiment of the present invention
  • FIG. 6 is a flowchart of a control method of a recoverable surgical robot system according to an embodiment of the present invention.
  • FIG. 7 is a flowchart of a control method of a surgical robot system according to another embodiment of the present invention.
  • FIG. 8 is a schematic diagram of detecting a communication connection state according to an embodiment of the present invention.
  • 10-doctor's console 20-image trolley; 30-patient operating table; 31-manipulator; 40-surgical instrument; 41-bipolar instrument; 411-pitch joint; 412-yaw joint; 413-rotation 414-kneading piece; 50-patient bed; 60-auxiliary equipment; 70-beat square wave signal; 71-control device; 72-instrument driver.
  • the singular forms "a,” “an,” and “the” include plural referents.
  • the term “or” is generally employed in its sense including “and/or.”
  • the term “several” is generally used in its sense including “at least one.”
  • the term “at least two” is generally used in a sense including “two or more.”
  • the terms “first”, “second” and “third” are used for descriptive purposes only, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, features defined as “first”, “second”, “third” may expressly or implicitly include one or at least two of those features.
  • the term “proximal” is generally the end near the operator, and the term “distal” is generally the end near the patient.
  • One end and “the other end” and “proximal end” and “distal end” generally refer to corresponding two parts, which include not only the endpoints, unless the content clearly dictates otherwise.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, for example, it may be a fixed connection, a detachable connection, or an integral body; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal communication between the two elements or the interaction relationship between the two elements.
  • the disposition of an element on another element generally only means that there is a connection, coupling, cooperation or transmission relationship between the two elements, and the two elements may be directly or through intervening elements.
  • Indirect connection, coupling, cooperation or transmission and should not be understood as indicating or implying the spatial positional relationship between two elements, that is, one element can be in any orientation such as inside, outside, above, below or on one side of the other element, unless The content is clearly stated otherwise.
  • the specific meanings of the above terms in the present invention can be understood according to specific situations.
  • the purpose of the present invention is to provide a control method of a surgical robot system, a readable storage medium and a surgical robot system, so as to solve the problem that the existing surgical robot system loses the posture and clamping state of the instrument end in the safety protection mode. control and introduce surgical risk.
  • FIG. 1 is a schematic diagram of an application scenario of a surgical robot system according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a surgical robot system according to an embodiment of the present invention
  • FIG. 3 is an embodiment of the present invention
  • Fig. 4a to Fig. 4c are schematic diagrams of the distal end of a surgical instrument according to an embodiment of the present invention
  • Fig. 5 is a control method of a surgical robot system with an unrecoverable fault according to an embodiment of the present invention.
  • 6 is a flowchart of a control method of a recoverable surgical robot system according to an embodiment of the present invention
  • FIG. 7 is a flowchart of a control method of a surgical robot system according to another embodiment of the present invention
  • FIG. 1 shows an application scenario of performing surgery by using the surgical robot system in an exemplary embodiment.
  • the surgical robot system of the present invention has no particular limitation on the application environment.
  • the surgical robot system includes a doctor-side console 10 , an image cart 20 and a patient-side operating table 30 .
  • the patient-side operating table 30 includes at least one robotic arm 31 .
  • the robotic arm 31 is used to mount or connect a surgical instrument 40 or an endoscope.
  • the operator operates from the doctor-side console 10 to control the patient-side operating table 30 to drive the robotic arm 31, thereby operating the surgical instrument 40 to perform surgery.
  • the surgical robot system further includes a hospital bed 50 and auxiliary equipment 60 (such as a sterile table, a ventilator or a testing device, etc.).
  • auxiliary equipment 60 such as a sterile table, a ventilator or a testing device, etc.
  • the endoscope connected to the robotic arm is used to obtain image information of the surgical environment such as human tissues and organs, surgical instruments 40, blood vessels, and body fluids.
  • the doctor's console 10 further includes a display device for receiving image information collected by the endoscope, that is, the above-mentioned surgical environment image information.
  • the doctor's console 10 is provided with a main operator, and the main operation process of the surgical robot is that the operator (eg, a surgeon) performs remote operation through the doctor's console 10 and the main operator on the doctor's console 10 , so as to realize the minimally invasive surgical treatment of the patient on the hospital bed 50 .
  • the master operator 10 on the doctor's console is usually manually controlled by the surgeon and forms a master-slave mapping relationship with the surgical instrument 40 or the endoscope. During normal surgical operation, the operator controls the posture and clamping state of the end of the surgical instrument 40 through the master-slave teleoperation under the guidance of the image of the display device.
  • the present embodiment provides a control method of the surgical robot system, including:
  • Step S1 configure corresponding fault response states according to the device information of different surgical instruments
  • Step S2 monitor the state of the surgical robot system, when the surgical robot system is in a fault state, determine the current fault response state of the surgical instrument according to the instrument information of the current surgical instrument; and,
  • Step S3 Control the surgical robot system to perform a fault response operation according to the determined fault response state.
  • the surgical robot system can determine different fault response states and perform different fault response operations, thereby improving the safety of the surgical operation by the surgical robot system.
  • the instrument information includes at least: state information of the surgical instrument
  • the step of determining the current fault response state of the surgical instrument according to the instrument information of the current surgical instrument in the step S2 includes: according to the surgical instrument
  • the state information of the instrument determines the current failure reaction state of the surgical instrument, wherein the failure reaction state includes: the surgical instrument enters a state maintaining mode, and the surgical instrument does not enter the state maintaining mode but enters a safe mode.
  • the surgical robot system further includes an instrument driver, which is preferably disposed on the patient-side operating table 30 for controlling each joint or motor for driving the surgical instrument.
  • the instrument driver has enable information whether it is enabled or not.
  • the enable information includes two states: disable and enable.
  • the instrument driver When the instrument driver is disabled, the instrument driver cannot control the joints or motors that drive the surgical instrument, the instrument driver does not maintain the position and posture of the surgical instrument, and does not maintain the clamping state, and enters a safe mode. At this time, it is convenient for the operator to manually operate the surgical instrument and withdraw the surgical instrument.
  • the instrument driver When the instrument driver is enabled, the instrument driver can control each joint or motor that drives the surgical instrument.
  • the status information of the surgical instrument includes installation information of whether the surgical instrument is installed, and/or enabling information of whether the instrument driver is enabled.
  • the installation information of the surgical instrument is installed and the enabling information is in an enabled state, it is determined that the surgical instrument is in a normal surgical process.
  • the fault response state includes that the surgical instrument enters a state maintaining mode, so that the terminal posture and the clamping state of the surgical instrument are maintained, so as to avoid harm to the patient.
  • the installation information of the surgical instrument is not installed, or the enable information is in the disabled state, it means that the surgical robot is not in normal operation at this time, and the fault response state includes that the surgical instrument enters the safe mode, which makes the instrument driver De-enable, which is convenient for the operator to troubleshoot.
  • the instrument information further includes type information of the surgical instrument.
  • the type information of the surgical instrument includes a bipolar instrument or a monopolar instrument.
  • the bipolar instrument 41 includes a pitch joint 411 , a yaw joint 412 (eg, left-right yaw), and an autorotation joint 413 , as shown in FIG. 4 a
  • the posture of the bipolar instrument 41 is mainly determined by three posture joints: the pitch joint 411 , the yaw joint 412 and the autorotation joint 413 .
  • the positions of all posture joints of the bipolar instrument 41 can be controlled when in the end pose hold. As shown in Fig.
  • the end of the bipolar instrument 41 includes two kneading pieces 414, and the opening and closing states of the two kneading pieces 414 are controlled by one or two control motors, respectively.
  • the control motor controls the two kneading pieces 414 to close, the end of the bipolar instrument 41 is in a clamping state, which can be used for clamping and pulling tissue, or clamping a suture needle, as shown in Figure 4c.
  • the control motor controls the two kneading pieces 414 to open the end of the bipolar instrument 41 is in an open state, the clamping of the object is released, and the clamped object can be released.
  • the control motors of the two kneading pieces 414 need to be controlled.
  • the bipolar instrument 41 shown in FIGS. 4a to 4c is only an example and not a limitation to the bipolar instrument 41.
  • the bipolar instrument 41 can also be a needle holder, an arc bipolar device commonly used in the art Or bipolar instruments with gripping function such as duckbill forceps.
  • the monopolar instrument can be an electric hook or other instrument without a clamping function
  • the adjustment and control of the end posture can refer to the above-mentioned bipolar instrument. Since the end of the monopolar instrument has no clamping function and does not need to be opened and closed, there is no need to consider the adjustment and control of the clamping state of the monopolar instrument.
  • the surgical robot system can specifically determine different fault response states for the surgical instrument and perform different fault response operations in a fault state.
  • the state maintaining mode at least includes: maintaining a terminal posture of the surgical instrument and/or maintaining a clamping state of the surgical instrument (the clamping state includes a clamping posture and a clamping force). Further, if the type information of the surgical instrument includes a bipolar instrument, the state maintaining mode includes simultaneously maintaining the terminal posture of the surgical instrument and maintaining the clamping state of the surgical instrument (for example, the state maintaining The mode includes keeping the terminal posture of the surgical instrument unchanged and the clamping force of the surgical instrument unchanged); if the type information of the surgical instrument includes a monopolar instrument, the state maintaining mode includes maintaining all Describe the end pose of the surgical instrument.
  • the surgical robot system further includes a control device.
  • the control method of the surgical robot system described above is preferably executable by a control device.
  • the control device determines the fault reaction state according to the instrument information of the surgical instrument, and directly controls the surgical instrument to maintain the posture and/or the holding state.
  • the control device is also connected in communication with the instrument driver, and the control device indirectly controls each joint or motor that drives the surgical instrument through the instrument driver.
  • the step of maintaining the terminal posture of the surgical instrument includes: maintaining the posture according to the current posture of the surgical instrument; or, according to the current instruction of the surgical instrument The posture is maintained; alternatively, the posture is maintained by tracking the current Cartesian posture position of the surgical instrument. That is, the terminal posture of the surgical instrument can be maintained by any one of the above three methods.
  • the control device can obtain the current posture of the surgical instrument by controlling and driving the surgical instrument, and drives the surgical instrument to adjust its posture by sending a command posture to the surgical instrument.
  • the control device can also obtain the Cartesian posture position of the surgical instrument through other tracking devices.
  • the control device can control the surgical instrument to maintain the posture and posture according to any one of the above three. Further, when the surgical robot is in normal operation, the control device can also drive the clamping (ie, opening and closing) of the surgical instrument. Therefore, when the surgical robot system fails, the control device can also control the surgical instrument to maintain the clamping state.
  • the control device indirectly implements any one of the above three ways through the instrument driver, so as to maintain the terminal posture of the surgical instrument, or the control device indirectly realizes maintaining the clamping state through the instrument driver.
  • control method of the surgical robot system further includes:
  • Step S0 when the surgical robot system is in a fault state, based on the received fault information, determine the fault category according to a preset rule;
  • Step S4 After the step of performing the fault response operation in step S3, according to the fault type, prompt recovery information corresponding to the fault type. It should be noted that the step S0 here can be executed before the step S1, or before the step S2, or after the step S2, but should be executed before the step S3.
  • the control device When the surgical robot system fails, the control device will receive the failure information, and then the control device will, according to the type of the failure information, such as driver failure, motor encoder failure, motor drive failure or network communication failure, etc.
  • the rule is used to judge the fault type. For example, when classifying a failure category into a recoverable failure and an unrecoverable failure, the failure is judged as a recoverable failure or an unrecoverable failure.
  • the recoverable faults are faults such as operation speed is too fast, position deviation caused by arm collision, etc.
  • the non-recoverable faults are physical faults such as motor disconnection, driver failure, code disc damage and the like. According to different fault categories, the corresponding recovery information is prompted for the operator to perform corresponding operations.
  • the recovery information corresponding to the unrecoverable fault is prompted to include restart prompt information for the operator to restart.
  • the general operator can only recover by power-off and restart. Therefore, a restart message is prompted.
  • the recovery information corresponding to the recoverable fault is prompted to include a prompt fault code for the operator to remove.
  • the general operator can recover by removing the fault code. If the fault code can be prompted in the interactive software, the operator can recover the fault by removing the fault code.
  • the surgical robot system further includes a prompting component, for example, the prompting component includes at least one of a signal light, a buzzer, and a display screen/interactive software for displaying interactive information.
  • the prompting component includes at least one of a signal light, a buzzer, and a display screen/interactive software for displaying interactive information.
  • an alarm or prompt information can be displayed through the prompt component to prompt the operator.
  • Table 1 exemplarily shows an indication of a fault type. It should be understood that the following table is only an indication of a fault type and not a limitation to the indication.
  • the communication connection between the control device 71 of the surgical robot system and the instrument driver 72 includes a verification mechanism, for example, a real-time beat square wave signal 70 is used for communication verification to detect whether the communication connection is normal.
  • a verification mechanism for example, a real-time beat square wave signal 70 is used for communication verification to detect whether the communication connection is normal.
  • the instrument driver 72 can execute the above-mentioned control method of the surgical robot system to further improve the safety.
  • the control device 71 indirectly controls each joint or motor that drives the surgical instrument through the instrument driver 72 .
  • the control device 71 determines the fault response state according to the instrument information of the surgical instrument, it sends the fault response state to the instrument driver 72 in real time.
  • the fault response state sent by the control device at the previous moment executes the fault response operation.
  • the instrument driver 72 can also determine the fault response state according to the instrument information of the surgical instrument, autonomously decide how to keep the surgical instrument, and execute the fault response state. For example, when the network is disconnected, the device driver 72 can independently decide the fault response operation, and does not need to perform the fault response operation according to the fault response state sent by the control device at the previous moment.
  • the control device 71 protects the entire surgical robot system, and performs posture maintenance and clamping maintenance of the surgical instrument.
  • the instrument driver 72 can autonomously protect the surgical instrument, and perform the posture maintenance and clamping maintenance of the surgical instrument.
  • the instrument driver 72 can still independently maintain the terminal posture and clamping state of the surgical instrument, which further improves the safety of the surgical robot system. .
  • This embodiment also provides a readable storage medium on which a program is stored, and when the program is executed, the above-mentioned control method of the surgical robot system is implemented.
  • the readable storage medium can be integrated into the surgical robot system, such as integrated into a control device or an instrument driver, or can be independently arranged.
  • the surgical robot system provided in this embodiment is configured to, when the surgical robot system is in a fault state, the control device performs a fault response operation according to the above-mentioned control method of the surgical robot system; or, when the surgical robot system is in a fault state
  • the control method of the surgical robot system as described above, the communication connection state between the instrument driver and the control device is detected, and according to whether the communication connection state is normal or not, the instrument driver or the control device is selected to execute the failure. reaction operation.
  • the control method of the surgical robot system includes: configuring corresponding fault response states according to the instrument information of different surgical instruments monitor the state of the surgical robot system, and when the surgical robot system is in a fault state, determine the current fault reaction state of the surgical instrument according to the instrument information of the current surgical instrument; and, control the mobile phone robot system to react according to the determined fault Status to perform fault response actions.
  • the surgical robot system can determine different fault response states and perform corresponding fault response operations, thereby improving the safety of the surgical operation of the surgical robot system.

Abstract

本发明提供一种手术机器人系统的控制方法、可读存储介质及机器人系统,所述手术机器人系统的控制方法包括:根据不同手术器械的器械信息配置相应的故障反应状态;监测手术机器人系统的状态,当所述手术机器人系统处于故障状态时,根据当前手术器械的器械信息确定当前所述手术器械的故障反应状态;以及,控制所述手机机器人系统根据确定的故障反应状态执行故障反应操作。如此,根据不同的手术器械的器械信息,手术机器人系统可确定不同的故障反应状态并执行相应的故障反应操作,提高了手术机器人系统的手术操作安全性。

Description

手术机器人系统的控制方法、可读存储介质及机器人系统 技术领域
本发明涉及模拟辅助手术系统和方法领域,特别涉及一种手术机器人系统的控制方法、可读存储介质及机器人系统。
背景技术
手术机器人的出现符合精准外科的发展趋势。手术机器人成为帮助医生完成手术的有力工具,如da Vinci TM手术机器人已经应用在全球各大医院,因其具有对患者的伤害小,出血少、恢复快的优势而为患者带来福音。
目前手术机器人系统在手术过程中无论发生可恢复故障或不可恢复故障均会进入安全保护模式,将所有的电机驱动器抱闸而去使能,避免手术机器人继续动作而造成对患者的伤害。但手术机器人系统在安全保护模式下,手术机器人的控制系统也失去了对器械末端的姿态与夹持状态的控制功能,在以下情景下可能会引入手术风险;
1)发生故障时,手术器械正在夹持血管止血。在该情景下,器械控制电机去使能将会使手术器械失去夹持力,导致血管出血,引入手术风险;
2)发生故障时,手术器械正在牵引前列腺、肝脏等重要器官组织。在该情景下,器械控制电机去使能将会使手术器械失去夹持力,导致重要器官组织不受控地自由滑落,容易碰撞术中的其他手术器械,造成组织刮伤;或者人体组织在重力作用下带动手术器械末端的姿态动作,使得器械末端的姿态不受控地运动,可能刮伤组织;
3)发生故障时,手术器械正夹持着缝合针。在该情景下,器械控制电机去使能将会导致手术器械丢针,引入手术风险;
4)发生网络通讯故障,手术机器人的控制系统与器械驱动器失去联系。在该情景下,手术器械末端的姿态与夹持状态不受控,引入手术风险。
发明内容
本发明的目的在于提供一种手术机器人系统的控制方法、可读存储介质 及手术机器人系统,以解决现有的手术机器人系统在安全保护模式中,由于失去对器械末端的姿态与夹持状态的控制而引入手术风险的问题。
为解决上述技术问题,根据本发明的第一个方面,提供了一种手术机器人系统的控制方法,包括:
S1根据不同手术器械的器械信息配置相应的故障反应状态;
S2监测手术机器人系统的状态,当所述手术机器人系统处于故障状态时,根据当前手术器械的器械信息确定当前所述手术器械的故障反应状态;以及,
S3控制所述手机机器人系统根据确定的故障反应状态执行故障反应操作。
可选的,所述器械信息包括所述手术器械的状态信息;步骤S2中的所述根据手术器械的器械信息确定故障反应状态包括:
根据所述手术器械的状态信息确定当前所述手术器械的故障反应状态;
其中,所述故障反应状态包括:所述手术器械进入状态保持模式,以及所述手术器械不进入状态保持流程而进入安全模式。
可选的,所述器械信息还包括所述手术器械的类型信息;所述手术器械的类型信息包括双极器械或单极器械;若所述手术器械的类型信息包括双极器械,则所述状态保持模式包括同时保持所述手术器械的末端位姿以及保持所述手术器械的夹持状态;若所述手术器械的类型信息包括单极器械,则所述状态保持模式包括保持所述手术器械的末端位姿。
可选的,保持所述手术器械的末端位姿包括以下中的至少一者:
根据所述手术器械的当前位姿进行位姿保持;
根据所述手术器械的当前指令位姿进行位姿保持;以及
通过跟踪所述手术器械的当前笛卡尔姿态位置进行位姿保持。
可选的,所述手术器械的状态信息包括手术器械是否安装的安装信息,和/或,器械驱动器是否使能的使能信息。
可选的,当检测到所述安装信息为已安装,且所述使能信息为使能状态时,所述故障反应状态包括所述手术器械进入所述状态保持模式;当检测到所述安装信息为未安装,或者所述使能信息为去使能状态时,所述故障反应状态包括所述手术器械进入所述安全模式。
可选的,所述手术机器人系统的控制方法还包括:
S0当所述手术机器人系统处于故障状态时,基于收到的故障信息,根据预设的规则判断故障类别;
S4在执行所述故障反应操作之后,根据所述故障类别,提示与所述故障类别相对应的恢复信息。
可选的,所述故障类别包括可恢复故障和不可恢复故障;
提示与所述可恢复故障对应的恢复信息包括提示故障码,以供操作者解除;
提示与所述不可恢复故障对应的恢复信息包括提示重启信息,以供操作者重启。
可选的,所述手术机器人系统的控制方法还包括:
检测器械驱动器与控制装置的通信连接状态,若所述通信连接状态异常,则由所述器械驱动器执行如上所述的手术机器人系统的控制方法;若所述通信连接状态正常,则由所述控制装置执行如上所述的手术机器人系统的控制方法。
为解决上述技术问题,根据本发明的第二个方面,还提供了一种可读存储介质,其上存储有程序,所述程序被执行时,实现如上所述的手术机器人系统的控制方法。
为解决上述技术问题,根据本发明的第三个方面,还提供了一种手术机器人系统,其包括:患者端手术台及控制装置;
所述患者端手术台包括机械臂,所述机械臂上挂载或连接有手术器械;所述控制装置与所述手术器械通信连接;
所述手术机器人系统被配置为,当所述手术机器人系统处于故障状态时,所述控制装置根据如上所述的手术机器人系统的控制方法,执行故障反应操作;或者当所述手术机器人系统处于故障状态时,根据如上所述的手术机器人系统的控制方法,检测器械驱动器与控制装置的通信连接状态,并根据通信连接状态的正常与否,选择所述器械驱动器或所述控制装置执行故障反应操作。
综上所述,在本发明提供的手术机器人系统的控制方法、可读存储介质 及手术机器人系统中,所述手术机器人系统的控制方法包括:根据不同手术器械的器械信息配置相应的故障反应状态;监测手术机器人系统的状态,当所述手术机器人系统处于故障状态时,根据当前手术器械的器械信息确定当前所述手术器械的故障反应状态;以及,控制所述手机机器人系统根据确定的故障反应状态执行故障反应操作。如此配置,根据不同的手术器械的器械信息,手术机器人系统可确定不同的故障反应状态并执行不同的故障反应操作,提高了手术机器人系统进行手术操作的安全性。
附图说明
本领域的普通技术人员将会理解,提供的附图用于更好地理解本发明,而不对本发明的范围构成任何限定。其中:
图1是本发明一实施例的手术机器人系统的应用场景的示意图;
图2是本发明一实施例的手术机器人系统的示意图;
图3是本发明一实施例的手术机器人系统的控制方法的流程图;
图4a~图4c是本发明一实施例的手术器械的末端的示意图;
图5是本发明一实施例的不可恢复故障的手术机器人系统的控制方法的流程图;
图6是本发明一实施例的可恢复故障的手术机器人系统的控制方法的流程图;
图7是本发明另一实施例的手术机器人系统的控制方法的流程图;
图8是本发明一实施例的检测通信连接状态的示意图。
附图中:
10-医生端控制台;20-图像台车;30-患者端手术台;31-机械臂;40-手术器械;41-双极器械;411-俯仰关节;412-偏摆关节;413-自转关节;414-捏合片;50-病床;60-辅助设备;70-beat方波信号;71-控制装置;72-器械驱动器。
具体实施方式
为使本发明的目的、优点和特征更加清楚,以下结合附图和具体实施例 对本发明作进一步详细说明。需说明的是,附图均采用非常简化的形式且未按比例绘制,仅用以方便、明晰地辅助说明本发明实施例的目的。此外,附图所展示的结构往往是实际结构的一部分。特别的,各附图需要展示的侧重点不同,有时会采用不同的比例。
如在本发明中所使用的,单数形式“一”、“一个”以及“该”包括复数对象。术语“或”通常是以包括“和/或”的含义而进行使用的。术语“若干”通常是以包括“至少一个”的含义而进行使用的。术语“至少两个”通常是以包括“两个或两个以上”的含义而进行使用的。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括一个或者至少两个该特征。术语“近端”通常是靠近操作者的一端,术语“远端”通常是靠近患者的一端。“一端”与“另一端”以及“近端”与“远端”通常是指相对应的两部分,其不仅包括端点,除非内容另外明确指出外。如在本发明中所使用的,除非另外明确指出外,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。此外,如在本发明中所使用的,一元件设置于另一元件上,通常仅表示两元件之间存在连接、耦合、配合或传动关系,且两元件之间可以是直接的或通过中间元件间接的连接、耦合、配合或传动,而不能理解为指示或暗示两元件之间的空间位置关系,即一元件可以在另一元件的内部、外部、上方、下方或一侧等任意方位,除非内容另外明确指出外。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
本发明的目的在于提供一种手术机器人系统的控制方法、可读存储介质及手术机器人系统,以解决现有的手术机器人系统在安全保护模式中,由于失去对器械末端的姿态与夹持状态的控制而引入手术风险的问题。
以下参考附图进行描述。
请参考图1至图8,其中,图1是本发明一实施例的手术机器人系统的应用场景的示意图;图2是本发明一实施例的手术机器人系统的示意图;图3是本发明一实施例的手术机器人系统的控制方法的流程图;图4a~图4c是本发明一实施例的手术器械的末端的示意图;图5是本发明一实施例的不可恢复故障的手术机器人系统的控制方法的流程图;图6是本发明一实施例的可恢复故障的手术机器人系统的控制方法的流程图;图7是本发明另一实施例的手术机器人系统的控制方法的流程图;图8是本发明一实施例的检测通信连接状态的示意图。
本发明实施例提供一种手术机器人系统,图1示出了在一个示范性的实施例中,利用所述手术机器人系统进行手术的应用场景。本发明的手术机器人系统对应用环境没有特别的限制。该手术机器人系统包括医生端控制台10、图像台车20以及患者端手术台30。所述患者端手术台30包含至少一个机械臂31。所述机械臂31用于挂载或连接手术器械40或内窥镜。操作者从医生端控制台10操纵,以控制患者端手术台30驱动机械臂31,从而操作手术器械40进行手术。优选的,所述手术机器人系统还包括病床50以及辅助设备60(如无菌台、呼吸机或检测装置等)。进一步的,连接于机械臂上的内窥镜用于获取人体组织器官、手术器械40、血管以及体液等手术环境图像信息。所述医生端控制台10还包括显示装置,用于接收内窥镜采集的图像信息,即如上所述的手术环境图像信息。
请参考图2,医生端控制台10上设有主操作手,手术机器人主要操作过程是操作者(例如,外科医生)通过医生端控制台10以及医生控制台10上的主操作手进行远程操作,从而实现对病床50上的患者的微创伤手术治疗。其中,医生端控制台上的10主操作手通常由外科医生手控并与手术器械40或内窥镜构成主从映射关系。正常手术操作时,操作者在显示装置的图像引导下,通过主从遥操作,对手术器械40的末端位姿与夹持状态进行控制。本领域技术人员可根据现有技术对所述手术机器人系统的部件结构和原理进行理解。
请参考图3,基于上述手术机器人系统,本实施例提供一种手术机器人系 统的控制方法,包括:
步骤S1:根据不同手术器械的器械信息配置相应的故障反应状态;
步骤S2:监测手术机器人系统的状态,当所述手术机器人系统处于故障状态时,根据当前手术器械的器械信息确定当前所述手术器械的故障反应状态;以及,
步骤S3:控制所述手术机器人系统根据确定的故障反应状态执行故障反应操作。
如此配置,根据不同的手术器械的器械信息,手术机器人系统可确定不同的故障反应状态并执行不同的故障反应操作,提高了手术机器人系统进行手术操作的安全性。
可选的,所述器械信息至少包括:所述手术器械的状态信息,所述步骤S2中的根据当前手术器械的器械信息确定当前所述手术器械的故障反应状态的步骤包括:根据所述手术器械的状态信息确定当前所述手术器械的故障反应状态,其中,所述故障反应状态包括:所述手术器械进入状态保持模式,以及所述手术器械不进入状态保持模式而进入安全模式。在一些实施例中,所述手术机器人系统还包括器械驱动器,所述器械驱动器优选设置于患者端手术台30上,用于控制驱动手术器械的各关节或电机。器械驱动器具有是否使能的使能信息。使能信息包括去使能与使能两种状态。器械驱动器去使能时,器械驱动器无法控制驱动手术器械的各关节或电机,器械驱动器对手术器械不保持位置及姿态,且不保持夹持状态,并进入安全模式。此时,便于操作者手动操作手术器械,撤出手术器械。器械驱动器使能时,器械驱动器能够控制驱动手术器械的各关节或电机。
可选的,所述手术器械的状态信息包括手术器械是否安装的安装信息,和/或,器械驱动器是否使能的使能信息。优选的,当检测到手术器械的安装信息为已安装,且使能信息为使能状态时,则确定手术器械处于正常手术过程。此时,故障反应状态包括所述手术器械进入状态保持模式,使手术器械的末端位姿以及夹持状态等得到保持,避免对患者造成伤害。若当手术器械的安装信息为未安装,或者使能信息为去使能状态时,则表明此时手术机器 人未处于正常的手术中,故障反应状态包括所述手术器械进入安全模式,使器械驱动器去使能,便于操作者排除故障。
优选的,所述器械信息还包括所述手术器械的类型信息。所述手术器械的类型信息包括双极器械或单极器械。请参考图4a至图4c,其示出了一种双极器械41,所述双极器械41包括俯仰关节411、偏摆关节412(例如左右偏摆)以及自转关节413,如图4a所示,该双极器械41的位姿主要由俯仰关节411、偏摆关节412以及自转关节413三个姿态关节决定。当处于末端位姿保持时,能够对双极器械41的所有姿态关节的位置进行控制。如图4b所示,所述双极器械41的末端包括两个捏合片414,两个捏合片414的开合状态分别由一个或两个控制电机控制。当控制电机控制两片捏合片414闭合时,双极器械41的末端处于夹持状态,可以用于夹持牵引组织,或夹持缝合针,如图4c所示。当控制电机控制两片捏合片414张开时,双极器械41的末端处于张开状态,解除对物体的夹持,可释放夹持物体。由此,手术器械的夹持状态保持时,需对两个捏合片414的控制电机进行控制。需理解的,图4a~图4c所示出的双极器械41仅为一个示例而非对双极器械41的限定,双极器械41还可为本领域常用的持针器、弧形双极或鸭嘴钳等带夹持功能的双极器械。
单极器械如可为电钩等不带夹持功能的器械,其末端位姿的调节和控制可参考上述的双极器械。由于单极器械的末端不带夹持功能,不需要开合,因此无需考虑对单极器械的夹持状态的调节和控制。由此,通过获取手术器械的类型信息,手术机器人系统可以于故障状态时,针对性地对手术器械确定不同的故障反应状态并执行不同的故障反应操作。
可选的,所述状态保持模式至少包括:保持所述手术器械的末端位姿和/或保持所述手术器械的夹持状态(所述夹持状态包括夹持位姿和夹持力)。进一步地,若所述手术器械的类型信息包括双极器械,则所述状态保持模式包括同时保持所述手术器械的末端位姿以及保持所述手术器械的夹持状态(例如,所述状态保持模式包括同时保持所述手术器械的末端位姿不变和保持所述手术器械的夹持力不变);若所述手术器械的类型信息包括单极器械,则所 述状态保持模式包括保持所述手术器械的末端位姿。可以理解的,在本实施例提供的手术机器人系统的控制方法中,对于存在夹持需求的双极器械,当手术机器人系统发生故障时,同时保持手术器械的末端位姿以及保持手术器械的夹持状态,从而使得手术器械在故障状态下亦能对血管或前列腺等重要组织的夹持状态(即,夹持力)保持不变,可有效提高机器人手术操作的安全性。而对于无夹持需求的单极器械,当手术机器人系统发生故障时,则可仅保持手术器械的末端位姿,从而避免手术器械不受控地运动而改变位姿。
进一步的,所述手术机器人系统还包括控制装置。上述的手术机器人系统的控制方法优选可由控制装置执行。当手术机器人系统发生故障时,控制装置根据手术器械的器械信息确定故障反应状态,并直接控制手术器械执行位姿保持和/或夹持状态保持。在另外的一些实施例中,控制装置也与器械驱动器通信连接,控制装置通过器械驱动器间接地控制驱动手术器械的各关节或电机。
可选的,在一个示范性的实施例中,保持所述手术器械的末端位姿的步骤包括:根据所述手术器械的当前位姿进行位姿保持;或者,根据所述手术器械的当前指令位姿进行位姿保持;或者,通过跟踪所述手术器械的当前笛卡尔姿态位置进行位姿保持。即可通过上述三种方式中的任一种,实现保持手术器械的末端位姿。具体的,在手术机器人正常运作时,控制装置通过对手术器械的控制和驱动,可以获知手术器械的当前位姿,并通过向手术器械发送指令位姿,驱动手术器械调节其位姿。此外,控制装置还可以通过其它的跟踪设备,跟踪得到手术器械的笛卡尔姿态位置。因此,当手术机器人系统发生故障时,控制装置可根据上述三者中的任一者,控制手术器械进行位姿保持。进一步的,在手术机器人正常运作时,控制装置也可以驱动手术器械的夹持(即,开合)。因此,当手术机器人系统发生故障时,控制装置也可以控制手术器械进行夹持状态保持。在另外的一些实施例中,控制装置通过器械驱动器间接地实现上述三种方式中的任一种,从而实现保持手术器械的末端位姿,或者控制装置通过器械驱动器间接地实现保持夹持状态。
可选的,所述手术机器人系统的控制方法还包括:
步骤S0:当所述手术机器人系统处于故障状态时,基于收到的故障信息,根据预设的规则判断故障类别;
步骤S4:在步骤S3执行故障反应操作的步骤之后,根据所述故障类别,提示与所述故障类别相对应的恢复信息。需要说明的,这里的步骤S0,可于步骤S1之前执行,或者于步骤S2之前执行,也可以于步骤S2之后执行,但应于步骤S3之前执行。
当手术机器人系统发生故障时,控制装置会收到故障信息,进而控制装置根据故障信息的类型,例如驱动器故障、电机码盘故障、电机驱动故障或网络通讯故障等各类故障,根据预设的规则进行故障类别判断。例如,当将故障类别分类为可恢复故障和不可恢复故障时,则将故障判断为可恢复故障或不可恢复故障。所述可恢复故障为例如操作速度过快、臂碰撞导致位置偏差等故障,所述不可恢复故障为例如电机断路、驱动器故障、码盘损坏等物理故障。根据不同的故障类别,提示相对应的恢复信息,以供操作者执行相对应的操作。
请参考图5,优选的,提示与所述不可恢复故障对应的恢复信息包括提示重启信息,以供操作者重启。当手术机器人系统发生不可恢复故障时,一般操作者只能通过断电重启的方式来恢复。因此,提示重启信息。请参考图6,优选的,提示与所述可恢复故障对应的恢复信息包括提示故障码,以供操作者解除。当手术机器人系统发生可恢复故障时,一般操作者可通过解除故障码的方式来恢复。如可在交互软件中提示故障码,操作者通过解除故障码,即可使故障恢复。
可选的,在一个示范例中,手术机器人系统还包括提示部件,提示部件如包括设置于机械臂上的信号灯、蜂鸣器以及用于显示交互信息的显示屏/交互软件中的至少一者。步骤S3可通过提示部件显示报警或提示信息,以提示操作者。表1示范性地示出了一种故障类型的提示情况。需理解,下表中仅为一种故障类型的提示情况而非对提示情况的限定。
表1
Figure PCTCN2022076250-appb-000001
Figure PCTCN2022076250-appb-000002
请参考图7和图8,手术机器人系统的控制装置71与器械驱动器72的通信连接包括一校验机制,例如通过实时的beat方波信号70进行通信检验,来检测通信连接状态是否正常。优选的,当通信连接状态异常时,例如出现断网等通信故障时,可由器械驱动器72来执行上述的手术机器人系统的控制方法,以进一步提高安全性。可选的,在手术机器人系统中,控制装置71通过器械驱动器72间接地控制驱动手术器械的各关节或电机。具体地,控制装置71根据手术器械的器械信息确定故障反应状态后,将该故障反应状态实时地发送给器械驱动器72,器械驱动器72一旦检测到与控制装置71的通信连接状态异常时,即根据前一时刻控制装置所发送的故障反应状态执行故障反应操作。当然在其它的一些实施例中,也可以由器械驱动器72自身根据手术器械的器械信息确定故障反应状态,自主决策手术器械的保持方式,并执行故障反应状态。例如断网时,器械驱动器72可以自主决定故障反应操作,无需根据前一时刻控制装置发送的故障反应状态来执行故障反应操作。
如此配置,当控制装置71与器械驱动器72通信正常时,控制装置71对整个手术机器人系统进行安全保护,执行手术器械的位姿保持与夹持保持。当控制装置71与器械驱动器72通信异常时,器械驱动器72可自主对手术器械进行安全保护,执行手术器械的位姿保持与夹持保持。当出现断网等通信故障时,器械驱动器72与控制装置71失联时,器械驱动器72依然可自主实现对手术器械的末端位姿与夹持状态的保持,更进一步提高手术机器人系统的安全性。
本实施例还提供一种可读存储介质,其上存储有程序,所述程序被执行时实现如上所述的手术机器人系统的控制方法。该可读存储介质可集成设置在手术机器人系统中,如集成于控制装置或器械驱动器中,也可以独立设置。 进一步的,本实施例提供的手术机器人系统被配置为,当所述手术机器人系统处于故障状态时,所述控制装置根据如上所述的手术机器人系统的控制方法,执行故障反应操作;或者,当处于故障状态时,根据如上所述的手术机器人系统的控制方法,检测器械驱动器与控制装置的通信连接状态,并根据通信连接状态的正常与否,选择所述器械驱动器或所述控制装置执行故障反应操作。
综上所述,在本发明提供的手术机器人系统的控制方法、可读存储介质及手术机器人系统中,所述手术机器人系统的控制方法包括:根据不同手术器械的器械信息配置相应的故障反应状态;监测手术机器人系统的状态,当所述手术机器人系统处于故障状态时,根据当前手术器械的器械信息确定当前所述手术器械的故障反应状态;以及,控制所述手机机器人系统根据确定的故障反应状态执行故障反应操作。如此配置,根据不同的手术器械的器械信息,手术机器人系统可确定不同的故障反应状态并执行相应的故障反应操作,提高了手术机器人系统手术操作的安全性。
上述描述仅是对本发明较佳实施例的描述,并非对本发明范围的任何限定,本发明领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于权利要求书的保护范围。

Claims (11)

  1. 一种手术机器人系统的控制方法,其特征在于,包括:
    S1根据不同手术器械的器械信息配置相应的故障反应状态;
    S2监测手术机器人系统的状态,当所述手术机器人系统处于故障状态时,根据当前手术器械的器械信息确定当前所述手术器械的故障反应状态;以及,
    S3控制所述手术机器人系统根据确定的故障反应状态执行故障反应操作。
  2. 根据权利要求1所述的手术机器人系统的控制方法,其特征在于,所述器械信息包括所述手术器械的状态信息;步骤S2中的根据当前手术器械的器械信息确定当前所述手术器械的故障反应状态包括:
    根据所述手术器械的状态信息确定当前所述手术器械的故障反应状态;
    其中,所述故障反应状态包括:所述手术器械进入状态保持模式,以及所述手术器械不进入状态保持模式而进入安全模式。
  3. 根据权利要求2所述的手术机器人系统的控制方法,其特征在于,所述器械信息还包括所述手术器械的类型信息;所述手术器械的类型信息包括双极器械或单极器械;若所述手术器械的类型信息包括双极器械,则所述状态保持模式包括同时保持所述手术器械的末端位姿以及保持所述手术器械的夹持状态;若所述手术器械的类型信息包括单极器械,则所述状态保持模式包括保持所述手术器械的末端位姿。
  4. 根据权利要求3所述的手术机器人系统的控制方法,其特征在于,保持所述手术器械的末端位姿包括以下中的至少一者:
    根据所述手术器械的当前位姿进行位姿保持;
    根据所述手术器械的当前指令位姿进行位姿保持;以及
    通过跟踪所述手术器械的当前笛卡尔姿态位置进行位姿保持。
  5. 根据权利要求2所述的手术机器人系统的控制方法,其特征在于,所述手术器械的状态信息包括手术器械是否安装的安装信息,和/或,器械驱动器是否使能的使能信息。
  6. 根据权利要求5所述的手术机器人系统的控制方法,其特征在于,当检测到所述安装信息为已安装,且所述使能信息为使能状态时,所述故障反应状态包括所述手术器械进入所述状态保持模式;当检测到所述安装信息为未安装,或者所述使能信息为去使能状态时,所述故障反应状态包括所述手术器械进入所述安全模式。
  7. 根据权利要求1所述的手术机器人系统的控制方法,其特征在于,还包括:
    S0当所述手术机器人系统处于故障状态时,基于收到的故障信息,根据预设的规则判断故障类别;
    S4在执行故障反应操作之后,根据所述故障类别,提示与所述故障类别相对应的恢复信息。
  8. 根据权利要求7所述的手术机器人系统的控制方法,其特征在于,所述故障类别包括可恢复故障和不可恢复故障;
    提示与所述可恢复故障对应的恢复信息包括提示故障码,以供操作者解除;
    提示与所述不可恢复故障对应的恢复信息包括提示重启信息,以供操作者重启。
  9. 根据权利要求1~8中的任一项所述的手术机器人系统的控制方法,其特征在于,还包括:
    检测器械驱动器与控制装置的通信连接状态,若所述通信连接状态异常,则由所述器械驱动器执行根据权利要求1~8中的任一项所述的手术机器人系统的控制方法;若所述通信连接状态正常,则由所述控制装置执行根据权利要求1~8中的任一项所述的手术机器人系统的控制方法。
  10. 一种可读存储介质,其上存储有程序,其特征在于,所述程序被执行时,实现根据权利要求1~9中的任一项所述的手术机器人系统的控制方法。
  11. 一种手术机器人系统,其特征在于,包括:患者端手术台及控制装置;
    所述患者端手术台包括机械臂,所述机械臂上挂载或连接有手术器械;所述控制装置与所述手术器械通信连接;
    所述手术机器人系统被配置为,当所述手术机器人系统处于故障状态时,所述控制装置根据权利要求1~8中的任一项所述的手术机器人系统的控制方法,执行故障反应操作;或者当所述手术机器人系统处于故障状态时,根据权利要求9所述的手术机器人系统的控制方法,检测器械驱动器与控制装置的通信连接状态,并根据通信连接状态的正常与否,选择由所述器械驱动器或所述控制装置执行故障反应操作。
PCT/CN2022/076250 2021-03-16 2022-02-14 手术机器人系统的控制方法、可读存储介质及机器人系统 WO2022193889A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22770244.6A EP4309612A1 (en) 2021-03-16 2022-02-14 Control method for surgical robot system, readable storage medium, and robot system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110283035.0A CN113057735B (zh) 2021-03-16 2021-03-16 手术机器人系统的控制方法、可读存储介质及机器人系统
CN202110283035.0 2021-03-16

Publications (1)

Publication Number Publication Date
WO2022193889A1 true WO2022193889A1 (zh) 2022-09-22

Family

ID=76560756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/076250 WO2022193889A1 (zh) 2021-03-16 2022-02-14 手术机器人系统的控制方法、可读存储介质及机器人系统

Country Status (3)

Country Link
EP (1) EP4309612A1 (zh)
CN (1) CN113057735B (zh)
WO (1) WO2022193889A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113057735B (zh) * 2021-03-16 2023-06-02 上海微创医疗机器人(集团)股份有限公司 手术机器人系统的控制方法、可读存储介质及机器人系统
CN113907808B (zh) * 2021-12-14 2022-03-01 极限人工智能有限公司 分体式手术装置及分体式手术装置的控制方法
WO2023116577A1 (zh) * 2021-12-24 2023-06-29 深圳市精锋医疗科技股份有限公司 手术系统、咬合力控制方法及计算机可读存储介质
CN114347037B (zh) * 2022-02-16 2024-03-29 中国医学科学院北京协和医院 基于复合标识的机器人系统故障检测处理方法及机器人系统
CN114536401B (zh) * 2022-02-16 2024-03-29 中国医学科学院北京协和医院 基于多个位姿标识的机器人系统故障检测处理方法及机器人系统
CN115157324A (zh) * 2022-08-29 2022-10-11 湖南医科医工科技有限公司 一种手术机器人的故障保护系统及方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07129425A (ja) * 1993-10-29 1995-05-19 Hitachi Ltd リブート処理方法
JP2006082141A (ja) * 2004-09-14 2006-03-30 Iai:Kk クランプ装置
US20110319815A1 (en) * 2010-06-24 2011-12-29 Hansen Medical, Inc. Fiber optic instrument sensing system
CN104546066A (zh) * 2015-01-22 2015-04-29 中国科学院深圳先进技术研究院 被动式鼻内镜手术辅助机器人
CN106175936A (zh) * 2016-08-31 2016-12-07 北京术锐技术有限公司 一种手术机器人完全运行状态故障检测方法
CN107334531A (zh) * 2017-07-31 2017-11-10 成都中科博恩思医学机器人有限公司 一种机器人手术设备以及机器人手术设备安全控制方法
CN109069206A (zh) * 2016-06-30 2018-12-21 直观外科手术操作公司 用于医疗机器人系统的故障反应机制的系统和方法
CN111787867A (zh) * 2017-12-28 2020-10-16 爱惜康有限责任公司 具有只含硬件的控制电路的外科器械
CN113057735A (zh) * 2021-03-16 2021-07-02 上海微创医疗机器人(集团)股份有限公司 手术机器人系统的控制方法、可读存储介质及机器人系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07129425A (ja) * 1993-10-29 1995-05-19 Hitachi Ltd リブート処理方法
JP2006082141A (ja) * 2004-09-14 2006-03-30 Iai:Kk クランプ装置
US20110319815A1 (en) * 2010-06-24 2011-12-29 Hansen Medical, Inc. Fiber optic instrument sensing system
CN104546066A (zh) * 2015-01-22 2015-04-29 中国科学院深圳先进技术研究院 被动式鼻内镜手术辅助机器人
CN109069206A (zh) * 2016-06-30 2018-12-21 直观外科手术操作公司 用于医疗机器人系统的故障反应机制的系统和方法
CN106175936A (zh) * 2016-08-31 2016-12-07 北京术锐技术有限公司 一种手术机器人完全运行状态故障检测方法
CN107334531A (zh) * 2017-07-31 2017-11-10 成都中科博恩思医学机器人有限公司 一种机器人手术设备以及机器人手术设备安全控制方法
CN111787867A (zh) * 2017-12-28 2020-10-16 爱惜康有限责任公司 具有只含硬件的控制电路的外科器械
CN113057735A (zh) * 2021-03-16 2021-07-02 上海微创医疗机器人(集团)股份有限公司 手术机器人系统的控制方法、可读存储介质及机器人系统

Also Published As

Publication number Publication date
CN113057735B (zh) 2023-06-02
CN113057735A (zh) 2021-07-02
EP4309612A1 (en) 2024-01-24

Similar Documents

Publication Publication Date Title
WO2022193889A1 (zh) 手术机器人系统的控制方法、可读存储介质及机器人系统
JP5537204B2 (ja) 医療用マニピュレータシステム
JP6261629B2 (ja) 外科手術アクセサリークランプおよびシステム
KR101337281B1 (ko) 멸균 수술 어댑터
US8892224B2 (en) Method for graphically providing continuous change of state directions to a user of a medical robotic system
JP7405432B2 (ja) 追跡カメラ技術を有するロボット手術デバイスならびに関連するシステムおよび方法
JP2009520573A (ja) ロボット手術システムの機器インターフェース
JP2003052701A (ja) 手術マニピュレータ
EP3714830A1 (en) Stopper and adaptor
CN115551433A (zh) 机器人系统以及退出方法
KR20190138732A (ko) 최소 침습 외과수술 시스템을 위한 캐뉼라 고정 어셈블리
JP5856745B2 (ja) 手術システム及びその制御方法
EP4196034A1 (en) Detection of disengagement in cable driven tool
CN114081631B (zh) 健康监测系统及手术机器人系统
CN116600732A (zh) 用于外科机器人的增强现实头戴式耳机
Wang et al. Robotic Surgery and Nursing
WO2022253286A1 (zh) 术中不动点的调整方法、可读存储介质及手术机器人系统
Wang et al. Instructions for use of Da Vinci surgical robots
US20210282878A1 (en) Surgeon disengagement detection during termination of teleoperation
WO2024084514A1 (en) A multi-arm robotic surgical system
CN115887014A (zh) 器械夹持力控制方法、微创手术机器人及可读存储介质
JP2023543930A (ja) 外科用ツールの関節運動継手のハードストップの対処法
JP2023543931A (ja) ロボット器具のエンドエフェクタ継手のための零空間制御
Jeong et al. Robotic Surgery: Basic Instrumentation and Troubleshooting

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22770244

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022770244

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022770244

Country of ref document: EP

Effective date: 20231016