WO2022007576A1 - 投影幕布及其制造方法、投影显示系统及显示方法 - Google Patents

投影幕布及其制造方法、投影显示系统及显示方法 Download PDF

Info

Publication number
WO2022007576A1
WO2022007576A1 PCT/CN2021/099174 CN2021099174W WO2022007576A1 WO 2022007576 A1 WO2022007576 A1 WO 2022007576A1 CN 2021099174 W CN2021099174 W CN 2021099174W WO 2022007576 A1 WO2022007576 A1 WO 2022007576A1
Authority
WO
WIPO (PCT)
Prior art keywords
projection screen
transparent
cover plate
touch
transparent cover
Prior art date
Application number
PCT/CN2021/099174
Other languages
English (en)
French (fr)
Other versions
WO2022007576A9 (zh
Inventor
仝广运
张宇
李卓隆
秦雪飞
苏俊宁
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/779,296 priority Critical patent/US11927878B2/en
Publication of WO2022007576A1 publication Critical patent/WO2022007576A1/zh
Publication of WO2022007576A9 publication Critical patent/WO2022007576A9/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/62Translucent screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/14Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with multiple outlet openings; with strainers in or outside the outlet opening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/14Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with multiple outlet openings; with strainers in or outside the outlet opening
    • B05B1/20Arrangements of several outlets along elongated bodies, e.g. perforated pipes or troughs, e.g. spray booms; Outlet elements therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • G06F3/03547Touch pads, in which fingers can move on a surface
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3179Video signal processing therefor
    • H04N9/3185Geometric adjustment, e.g. keystone or convergence
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3191Testing thereof
    • H04N9/3194Testing thereof including sensor feedback
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/02Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work
    • B05B13/04Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work the spray heads being moved during spraying operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/538Roughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/208Touch screens
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3179Video signal processing therefor

Definitions

  • the present disclosure relates to the field of display devices, and in particular, to a projection screen and a manufacturing method thereof, a projection display system and a display method.
  • a projection display system is a system that can project images or video onto a projection screen.
  • touch projection display system has become a research hotspot that has received much attention.
  • Embodiments of the present disclosure provide a projection screen and a manufacturing method thereof, a projection display system and a display method.
  • an embodiment of the present disclosure provides a projection screen, the projection screen includes a first transparent cover plate, a transparent touch panel, and a first nanoparticle layer, the first nanoparticle layer and the first transparent
  • the cover plate is sequentially stacked on one side of the transparent touch panel, and the first nanoparticle layer includes a variety of dispersed nanoparticles with different particle sizes.
  • the projection screen further includes a second transparent cover plate and a second nanoparticle layer, and the second nanoparticle layer and the second transparent cover plate are sequentially stacked on the other side of the transparent touch panel , the second nanoparticle layer includes a plurality of dispersed nanoparticles with different particle sizes.
  • nanoparticles with the same particle size have the same distribution.
  • the total particle concentration of various nanoparticles of the first nanoparticle layer gradually increases from the center to the edge of the projection screen.
  • the total particle concentration of various nanoparticles in the first nanoparticle layer is 5*10 8 /cm 2 to 5*10 9 /cm 2 .
  • the nanoparticle includes an inner core and an outer shell wrapped outside the inner core, and the inner core and the outer shell are made of different materials.
  • the inner core is made of Si
  • the outer shell is made of Ag
  • at least one of the thickness of the outer shell and the diameter of the inner core of the nanoparticles with different particle sizes is different.
  • the nanoparticles are ZnO, Al 2 O 3 or TiO 2 nanoparticles.
  • the particle size of the nanoparticles is not greater than 100 nm.
  • the first nanoparticle layer further includes a first transparent substrate, and the nanoparticles on the one side of the transparent touch panel are located on the surface of the first transparent substrate;
  • the second nanoparticle layer further includes a second transparent substrate, and the nanoparticles on the other side of the transparent touch panel are located on the surface of the second transparent substrate.
  • the first transparent cover plate, the first nanoparticle layer, the transparent touch panel, the second nanoparticle layer and the second transparent cover plate are bonded by a transparent adhesive.
  • the thickness of the first transparent cover plate and the thickness of the second transparent cover plate are both 1 mm to 1.5 mm.
  • the thickness of the projection screen is not more than 5mm.
  • the transparent touch panel includes a transparent substrate and touch electrode patterns on the transparent substrate;
  • the touch electrode pattern includes a plurality of touch driving electrodes, a plurality of touch sensing electrodes and a touch signal line, the touch driving electrodes and the touch sensing electrodes are arranged to intersect, and the touch driving electrodes are connected to the touch sensing electrodes.
  • the intersections of the touch sensing electrodes are insulated and separated by a touch insulating layer, and each of the touch driving electrodes and each of the touch sensing electrodes is correspondingly connected to one of the touch signal lines; or
  • the touch electrode pattern includes touch signal lines and a plurality of touch detection electrodes distributed in an array, and each of the touch detection electrodes is correspondingly connected to one of the touch signal lines.
  • the touch electrode pattern is located on a side of the transparent substrate close to the first transparent cover plate, and the thickness of the second transparent cover plate is smaller than that of the first transparent cover plate.
  • the thickness of the first transparent cover plate is equal to the sum of the thicknesses of the second transparent cover plate and the transparent substrate.
  • the thickness of the first transparent cover plate is 1 mm ⁇ 1.5 mm
  • the thickness of the second transparent cover plate is 1 mm ⁇ 1.5 mm.
  • the thickness of the projection screen is not more than 5mm.
  • an embodiment of the present disclosure further provides a projection display system, including a projector, a controller, and the projection screen described in the first aspect, wherein the controller is connected to a transparent touch panel of the projection screen, so The controller is connected to the projector, and the controller is used for controlling the projector to perform projection display according to the touch signal output by the transparent touch panel.
  • an embodiment of the present disclosure also provides a method for manufacturing a projection screen, comprising:
  • first nanoparticle layer including a plurality of dispersed nanoparticles with different particle sizes
  • the first nanoparticle layer and the first transparent cover plate are sequentially stacked on one side of the transparent touch panel to form a projection screen.
  • the forming the first nanoparticle layer includes:
  • a nanoparticle sol is formed on one side of the first transparent cover; or,
  • the forming the first nanoparticle layer includes:
  • the transparent base film is arranged on one side of the first transparent cover plate.
  • forming a nanoparticle sol on one side of the first transparent cover plate includes:
  • the nozzle Facing the nozzle toward the first transparent cover plate, the nozzle has a plurality of nozzle holes, and the distribution density of the nozzle holes gradually increases from the middle to the two ends along the arrangement direction of the nozzle holes, or The size of the plurality of spray holes gradually increases from the middle to the two ends along the arrangement direction of the plurality of spray holes, so that the arrangement direction of the plurality of spray holes is parallel to the first transparent cover plate. side;
  • the spray head is relatively moved along the second side of the first transparent cover plate. During the moving process, the nanoparticle sol is sprayed to the first transparent cover plate through the spray head, and the moving speed is first accelerated and then slowed down.
  • forming a nanoparticle sol on the surface of the transparent substrate film includes:
  • the nozzle is directed towards the transparent substrate film, the nozzle has a plurality of nozzle holes, and the distribution density of the nozzle holes gradually increases from the middle to the two ends along the arrangement direction of the nozzle holes
  • the size of the plurality of injection holes gradually increases from the middle to the two ends along the arrangement direction of the plurality of injection holes, so that the arrangement direction of the plurality of injection holes is parallel to the first side of the first transparent cover plate side;
  • the nozzle is moved along the second side of the transparent substrate film. During the process of moving the nozzle, the nanoparticle sol is sprayed onto the transparent substrate film through the nozzle, and the moving speed is accelerated first and then slowed down.
  • an embodiment of the present disclosure further provides a projection display method, where the projection display method is applied to the projection display system described in the second aspect, and the method includes:
  • mapping indication information is used to indicate the mapping relationship between the touch coordinate system and the image coordinate system
  • mapping indication information According to the mapping indication information and the touch position, the coordinates of the touch position in the image coordinate system are determined.
  • the method before the acquiring the mapping indication information, the method further includes:
  • the position indication information is used to indicate the relative positional relationship between the observer, the projector and the projection screen,
  • nanoparticles with a size of nanometers will scatter the light, and the wavelengths of light scattered by nanoparticles with different particle sizes are also different, so that the projector can be projected onto the projection screen.
  • the light of different colors is scattered, and the scattered light enters the eyes of the observer, and the observer can perceive the image projected by the projector after receiving the light of various colors scattered by the nanoparticles.
  • FIG. 1 is a schematic structural diagram of a projection screen in the related art
  • FIG. 2 is a schematic structural diagram of a projection screen provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of a projection screen provided by an embodiment of the present disclosure.
  • FIG. 4 is a working schematic diagram of a projection screen provided by an embodiment of the present disclosure.
  • FIG. 5 is a working schematic diagram of a projection screen provided by an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a nanoparticle provided by an embodiment of the present disclosure.
  • FIG. 7 is a partially enlarged schematic diagram of a projection screen provided by an embodiment of the present disclosure.
  • FIG. 8 is a partially enlarged schematic diagram of a projection screen provided by an embodiment of the present disclosure.
  • FIG. 9 is a schematic partial structure diagram of a transparent touch panel provided by an embodiment of the present disclosure.
  • FIG. 10 is a schematic partial structure diagram of a transparent touch panel provided by an embodiment of the present disclosure.
  • FIG. 11 is a schematic partial structure diagram of a transparent touch panel provided by an embodiment of the present disclosure.
  • FIG. 12 is a flowchart of a method for manufacturing a projection screen provided by an embodiment of the present disclosure
  • FIG. 13 is a schematic diagram of a process for forming a nanoparticle sol according to an embodiment of the present disclosure
  • FIG. 14 is a flowchart of a method for manufacturing a projection screen provided by an embodiment of the present disclosure
  • FIG. 15 is a schematic structural diagram of a projection display system provided by an embodiment of the present disclosure.
  • FIG. 16 is a flowchart of a projection display method provided by an embodiment of the present disclosure.
  • FIG. 17 is a schematic diagram of a projection display provided by an embodiment of the present disclosure.
  • FIG. 18 is a schematic diagram of a process of projection display provided by an embodiment of the present disclosure.
  • 19 is a schematic diagram of a process of projection display provided by an embodiment of the present disclosure.
  • FIG. 21 is a working flowchart of a projection display system provided by an embodiment of the present disclosure.
  • FIG. 1 is a schematic structural diagram of a projection screen in the related art.
  • the projection screen includes a first transparent substrate 11 and a second transparent substrate 12 , the first transparent substrate 11 and the second transparent substrate 12 are arranged opposite to each other, and the side of the first transparent substrate 11 close to the second transparent substrate 12 is Acid etching is performed to form a scattering surface 111 , a conductive coating 13 is formed on the scattering surface 111 , and the conductive coating 13 is patterned into a touch electrode.
  • the projection screen corrodes one side of the first transparent substrate 11 to form a diffusing surface 111 with an uneven surface, so as to scatter the light emitted by the projector, so that the light emitted by the projector scatters and enters the observer's eyes.
  • the speed of acid etching is difficult to control, resulting in different degrees of etching in different areas on the scattering surface, and different degrees of light scattering, resulting in poor image quality and large differences in brightness and contrast in different areas.
  • FIG. 2 is a schematic structural diagram of a projection screen provided by an embodiment of the present disclosure.
  • the projection screen includes a first transparent cover plate 21 , a transparent touch panel 30 and a first nanoparticle layer 41 .
  • the first nanoparticle layer 41 and the first transparent cover 21 are sequentially stacked on one side of the transparent touch panel 30 .
  • the first nanoparticle layer 41 includes particles dispersed between the first transparent cover 21 and the transparent touch panel 30 .
  • the nanoparticles 400 with the same particle size are the same type of nanoparticles, and the nanoparticles 400 with different particle sizes are different types of nanoparticles. Scattering here means distributing in a mutually spaced manner.
  • the projection screen may include a plurality of imaging regions arranged in an array, each region having a variety of nanoparticles 400 dispersed therein.
  • nanoparticles with a size of nanometers will scatter the light, and the wavelengths of light scattered by nanoparticles with different particle sizes are also different, so that the projector can be projected onto the projection screen.
  • the light of different colors is scattered, and the scattered light enters the eyes of the observer, and the observer can perceive the image projected by the projector after receiving the light of various colors scattered by the nanoparticles.
  • the wavelength of light that the nanoparticles 400 can scatter is related to the size of the nanoparticles 400.
  • the nanoparticles 400 with different particle sizes can scatter light with different wavelengths. Colored light scatters to present a picture. Compared with forming the scattering surface by acid etching, the use of nanoparticles 400 for scattering avoids the problems of poor image quality and large differences in brightness and contrast in different regions due to acid etching.
  • FIG. 3 is a schematic structural diagram of a projection screen provided by an embodiment of the present disclosure.
  • the projection screen further includes a second transparent cover plate 22 and a second nanoparticle layer 42 .
  • the second nanoparticle layer 42 and the second transparent cover plate 22 are sequentially stacked on the other side of the transparent touch panel 30 .
  • the second nanoparticle layer 42 includes a A variety of nanoparticles 400 with different particle sizes.
  • FIG. 4 is a working schematic diagram of a projection screen provided by an embodiment of the present disclosure.
  • the light propagating to the observer A needs to pass through the first transparent cover plate 21
  • the light propagating to the observer B needs to pass through the transparent touch panel 30 .
  • the first transparent cover plate 21 and the transparent touch panel 30 must have a certain difference in optical properties, there will be certain differences in the pictures seen by the observer A and the observer B, such as the brightness and contrast of the pictures, etc. .
  • FIG. 5 is a working schematic diagram of a projection screen provided by an embodiment of the present disclosure.
  • both the nanoparticles 400 in the first nanoparticle layer 41 and the nanoparticles 400 in the second nanoparticle layer 42 scatter light.
  • the light propagating to the observer C includes two parts: one part is scattered by the nanoparticles 400 in the first nanoparticle layer 41, and this part of the light is received by the observer C after passing through the first transparent cover 21; the other part is scattered by the second nanoparticle
  • the nanoparticles 400 in the layer 42 scatter, and this part of the light is received by the observer C after passing through the transparent touch panel 30 and the first transparent cover 21 .
  • the light propagating to the observer D also includes two parts: one part is scattered by the nanoparticles 400 in the second nanoparticle layer 42, and this part of the light is received by the observer D after passing through the second transparent cover plate 22; the other part is emitted by the first nanoparticle.
  • the nanoparticles 400 in the particle layer 41 scatter, and this part of the light is received by the observer D after passing through the transparent touch panel 30 and the second transparent cover 22 .
  • the light received by observer C and observer D includes only the light passing through the transparent cover, the light passing through the transparent cover and the transparent touch panel, which makes the comparison between observer A and observer B , the difference between the pictures seen by observer C and observer D is smaller, for example, the difference in brightness and contrast is smaller.
  • the distribution of nanoparticles 400 with the same particle size is the same.
  • the same distribution here means that the particle concentration is the same in the same area of the projection screen.
  • the particle concentration refers to the number of nanoparticles 400 distributed in a unit area. This is beneficial to further reduce the difference between the pictures seen by the observer C and the observer D.
  • the light projected by the projector to the area E will be emitted by the nanoparticles 400 of the first nanoparticle layer 41 and the nanoparticles 400 of the second nanoparticle layer 42 . Since the distribution of nanoparticles 400 with the same particle size in the two nanoparticle layers is the same, in the region E, the color of the light scattered by the nanoparticles 400 of the first nanoparticle layer 41 is the same as that of the nanoparticles 400 of the second nanoparticle layer 42. 400 The color of the scattered light is the same, further reducing the difference in the pictures seen by observer C and observer D.
  • the total particle concentration of the various nanoparticles 400 of the first nanoparticle layer 41 gradually increases from the center to the edge of the projection screen. That is, the farther the region on the first nanoparticle layer 41 is from the geometric center of the projection screen, the greater the particle concentration.
  • the gradual increase may be a continuous increase as the distance from the geometric center of the projection screen increases, or a stepwise increase.
  • the light near the center of the screen is usually stronger, and the light near the edge is weaker, so that the brightness of the center of the screen is higher than that of the edges.
  • the total particle concentration of various nanoparticles 400 in the second nanoparticle layer 42 is also from the center of the projection screen to the direction of the The edge gradually increases.
  • the total particle concentration of various nanoparticles 400 in the first nanoparticle layer 41 is 5*10 8 /cm 2 to 5*10 9 /cm 2 .
  • the particle concentration of the first nanoparticle layer 41 is 5*10 9 /cm 2 , that is, the total number of nanoparticles 400 of various sizes dispersed in each square centimeter is 5* 10 9 .
  • the haze of the projection screen does not exceed 10%, and the reflectance is 4% to 10%, and the formed image is clearly visible in the indoor lighting environment.
  • the particle concentration at the edge of the projection screen in the first nanoparticle layer 41 may be 8% to 12% higher than that in the center.
  • the particle concentration at the edge of the projection screen in the first nanoparticle layer 41 is higher than that in the center.
  • the particle concentration is 10% higher.
  • the concentration of the nanoparticles 400 is too low, less light is scattered into the eyes of the observer, and the brightness of the image formed on the projection screen will be low.
  • the gaps between the nanoparticles 400 enable light to pass through the projection screen, making the projection screen transparent. Too high concentration will increase the haze of the projection screen and reduce the transparency of the projection screen.
  • the concentration of nanoparticles 400 is set within this range, the image formed on the projection screen has higher brightness, and the transparency of the projection screen is also high, and the projection screen can be clearly observed on both sides of the projection screen. screen.
  • the particle size of the nanoparticles 400 is not greater than 100 nm. That is, the nanoparticle 400 with the largest particle size has a diameter of not more than 100 nm. Nanoparticles 400 with different particle sizes have a scattering effect on light of different wavelengths, and nanoparticles 400 within a particle size range of 0-100 nm can scatter all light in the visible light band.
  • FIG. 6 is a schematic structural diagram of a nanoparticle provided by an embodiment of the present disclosure.
  • the nanoparticle 400 includes an inner core 4011 and an outer shell 4012 wrapped around the inner core 4011 .
  • the inner core 4011 and the outer shell 4012 are made of different materials.
  • the light that can be scattered by the nanoparticles 400 is not only related to the particle size of the nanoparticles 400 , but also related to the structure and material of the nanoparticles 400 .
  • the inner core 4011 is made of Si
  • the outer shell 4012 is made of Ag
  • at least one of the thickness of the outer shell 4012 and the diameter of the inner core 4011 of the nanoparticles 400 with different particle sizes is different.
  • the nanoparticles 400 can scatter light of a specific wavelength.
  • the diameter of the inner core 4011 is 1.3 nm and the outer shell 4012 thickness is 30.8 nm.
  • the wavelength of the light is concentrated at 458nm; for the nanoparticle 400 with a diameter of 22.2nm in the core 4011 and a thickness of 15.8nm in the outer shell 4012, it has a strong scattering effect on green light, and the wavelength of the scattered light is concentrated at 532nm; for the diameter of the inner core 4011 is 34.3 nm, the nanoparticle 400 with the shell 4012 having a thickness of 11.0 nm has a strong scattering effect on red light, and the scattered light wavelength is concentrated at 640 nm.
  • the nanoparticles 400 can also be made of metal oxides, for example, the nanoparticles 400 are nanoparticles of zinc oxide ZnO, aluminum oxide Al 2 O 3 or titanium oxide TiO 2 .
  • FIG. 7 is a partially enlarged schematic diagram of a projection screen provided by an embodiment of the present disclosure.
  • the first nanoparticle layer 41 includes nanoparticles 400 dispersed on the surface of the first transparent cover plate 21 .
  • the first nanoparticle layer 41 is directly formed on the first transparent cover plate 21 with the first transparent cover plate 21 as a carrier, which is beneficial to reduce the total thickness of the projection screen.
  • FIG. 8 is a schematic structural diagram of a projection screen provided by an embodiment of the present disclosure.
  • the first nanoparticle layer 41 further includes a first transparent substrate 411
  • the second nanoparticle layer 42 further includes a second transparent substrate 421 .
  • the nanoparticles 400 on one side of the transparent touch panel 30 are located on the surface of the first transparent substrate 411
  • the nanoparticles 400 on the other side of the transparent touch panel 30 are located on the surface of the second transparent substrate 421 .
  • the first nanoparticle layer 41 includes a first transparent substrate 411 and nanoparticles 400 .
  • the nanoparticles 400 are distributed on the surface of the first transparent substrate 411 , and the first transparent substrate 411 is located between the first transparent cover plate 21 and the transparent touch panel 30 .
  • the first transparent substrate 411 as the carrier of the nanoparticles 400, when making the projection screen, the first transparent substrate 411 carrying the nanoparticles 400 can be directly placed between the first transparent cover 21 and the transparent touch panel 30, more convenient to make.
  • the first transparent substrate 411 may be a transparent film, such as a polyethylene terephthalate (English: Polyethylene terephthalate, PET for short) film.
  • the first transparent substrate 411 may be adhered on the surface of the first transparent cover plate 21 by the transparent adhesive 43 .
  • it can be bonded by optically clear adhesive (English: Optically Clear Adhesive, abbreviated as: OCA) or optically transparent resin (English: OCR Optical Clear Resin, abbreviated as: OCR).
  • the nanoparticles 400 may be located on the side of the first transparent substrate 411 close to the first transparent cover plate 21 , or may be located on the side of the first transparent substrate 411 close to the transparent touch panel 30 .
  • the structure of the second nanoparticle layer 42 may be the same as that of the first nanoparticle layer 41, that is, the second nanoparticle layer 42 may include nanoparticles 400 dispersed on the surface of the second transparent cover plate 22. Or as shown in FIG. 8 , the second nanoparticle layer 42 includes a second transparent substrate 421 and nanoparticles 400 . The second transparent substrate 421 may be adhered on the surface of the second transparent cover plate 22 .
  • the first transparent cover plate 21 , the first nanoparticle layer 41 , the transparent touch panel 30 , the second nanoparticle layer 42 and the second transparent cover plate 22 may all be bonded by a transparent adhesive 43 .
  • the transparent adhesive 43 may be OCA or OCR. Both OCA and OCR have good transparency, high light transmittance and less light absorption.
  • the refractive index of the transparent adhesive 43 is 1.45-1.6, and the refractive index of the transparent adhesive 43 should be as close as possible to the refractive index of the transparent structure in contact.
  • the refractive index of the transparent adhesive 43 should be as close as possible to the first transparent cover plate 21 or the first nanoparticle layer 41 .
  • the thickness of the transparent adhesive 43 may be 0.1 mm ⁇ 0.25 mm.
  • the thickness of the transparent adhesive 43 affects the firmness of the bonding and the light transmittance. Reducing the thickness can improve the light transmittance, but it will also reduce the firmness of the bond. Conversely, increasing the thickness can improve the firmness of the bond, but The light transmittance will be reduced, and the thickness of the transparent adhesive 43 can be reduced as much as possible under the condition of ensuring sufficient firmness.
  • the peeling force of the transparent adhesive 43 is not less than 0.1 N/mm to ensure that the projection screen has sufficient strength.
  • the thickness of the transparent adhesive 43 is set to 0.1 mm to 0.25 mm, both the magnitude of the peeling force and the light transmittance can be achieved.
  • both the first transparent cover plate 21 and the second transparent cover plate 22 may be a glass cover plate or a plastic cover plate.
  • the first transparent cover plate 21 and the second transparent cover plate 22 can provide protection to avoid external damage such as scratches on the first nanoparticle layer 41 , the transparent touch panel 30 and the second nanoparticle layer 42 .
  • the first transparent cover 21 and the second transparent cover 22 are the same transparent cover.
  • the roughness of the surface of the first transparent cover 21 away from the transparent touch panel 30 may be 0.15 ⁇ m to 0.25 ⁇ m, and it is sufficiently resistant to friction.
  • 2cm*2cm steel wool is used to rub with a load of 500 grams, and there are no scratches for 2000 times to meet the needs of touch.
  • the size of the first transparent cover plate 21 and the size of the second transparent cover plate 22 can be set according to the area of the projection screen to be produced.
  • the first transparent cover plate 21 and the second transparent cover plate 22 are both rectangular, and the dimension here generally refers to the length of the diagonal line.
  • both the first transparent cover plate 21 and the second transparent cover plate 22 may be 110 inches, that is, the diagonal length of the first transparent cover plate 21 and the diagonal length of the first transparent cover plate 21 are both 110 inches.
  • both the first transparent cover 21 and the second transparent cover 22 are circular, and the dimensions refer to the first transparent cover 21 and the second transparent cover 22 diameter of.
  • the thickness of the first transparent cover plate 21 is 1 mm ⁇ 1.5 mm
  • the thickness of the second transparent cover plate 22 is 1 mm ⁇ 1.5 mm.
  • the thickness of the first transparent cover plate 21 and the second transparent cover plate 22 can be set in consideration of strength.
  • the first transparent cover plate 21 and the second transparent cover plate 22 need to have sufficient strength to provide protection. Too thinness will result in the structural strength of the projection screen. too low.
  • the thickness is too large, the light transmittance of the first transparent cover plate 21 and the second transparent cover plate 22 will also be affected, and if the thickness is too large, ghost images will appear and the imaging effect will be reduced.
  • the thicknesses of the first transparent cover plate 21 and the second transparent cover plate 22 are minimized as much as possible, usually within the thickness range of 1 mm to 1.5 mm, which can meet the strength requirements and will not form obvious ghost images.
  • the light transmittance of the first transparent cover plate 21 and the second transparent cover plate 22 is not less than 85%, and the haze is not more than 3%, so as to ensure sufficient transparency of the projection screen.
  • the transparent touch panel 30 is a capacitive touch panel.
  • FIG. 9 is a schematic partial structure diagram of a transparent touch panel provided by an embodiment of the present disclosure. As shown in FIG. 9 , the transparent touch panel 30 includes a transparent substrate 301 and touch electrode patterns 302 on the transparent substrate 301 .
  • the touch electrode pattern 302 is located on the side of the transparent substrate 301 close to the first transparent cover plate 21 , and the thickness of the second transparent cover plate 22 is smaller than that of the first transparent cover plate 21 . Since the touch electrode pattern 302 is located on the side of the transparent substrate 301 close to the first transparent cover 21 , when the touch operation is performed from the first transparent cover 21 side, the distance between the operator's finger and the touch electrode pattern 302 It is only affected by the thickness of the first transparent cover plate 21 , and when the touch operation is performed from the side of the second transparent cover plate 22 , the distance between the operator’s finger and the touch electrode pattern 302 is affected by the second transparent cover plate 21 .
  • the thickness of the transparent substrate 301 and the thickness of the transparent substrate 301, and the distance between the finger and the touch electrode pattern 302 will affect the sensitivity of the touch. Setting the thickness of the second transparent cover plate 22 to be smaller than the thickness of the first transparent cover plate 21 is beneficial to make the touch sensitivity on both sides equal.
  • the thickness of the first transparent cover plate 21 is equal to the sum of the thicknesses of the second transparent cover plate 22 and the transparent substrate 301 .
  • the touch sensitivity is the same.
  • the thickness of the first transparent cover plate 21 is 1.5 mm
  • the thickness of the second transparent cover plate 22 is 1 mm
  • the thickness of the transparent substrate is 0.5 mm.
  • the thickness of the transparent substrate 301 may be 0.5 mm to 1.0 mm. If the transparent substrate 301 is too thin, the structural strength of the transparent touch panel 30 will be too low. If the thickness of the transparent substrate 301 is too large, the first nanoparticle layer 41 and the second nanoparticle layer 42 The larger the distance between the first nanoparticle layer 41 and the second nanoparticle layer 42 is, the image coincidence degree of the first nanoparticle layer 41 and the second nanoparticle layer 42 will be reduced, which will cause ghosting and reduce the imaging effect. Thickness, usually in the range of 0.5mm ⁇ 1.0mm thickness, can meet the strength requirements, and will not form obvious ghosting.
  • the touch electrode pattern 302 of the transparent touch panel 30 includes a plurality of touch driving electrodes 3021 , a plurality of touch sensing electrodes 3022 and a touch signal line 3023 , and the touch driving electrodes 3021 and the touch sensing
  • the electrodes 3022 are crossed, and the intersections of the touch driving electrodes 3021 and the touch sensing electrodes 3022 are insulated and separated by a touch insulating layer, and each touch driving electrode 3021 and each touch sensing electrode 3022 are respectively connected to a touch signal line 3023.
  • the touch driving electrodes 3021 and the touch sensing electrodes 3022 both include a plurality of electrode blocks, and each electrode block is arranged in the same layer. As shown in FIG. 9 , in the embodiment of the present disclosure, the electrode blocks are rhombus-shaped.
  • An electrode block of one of the touch driving electrodes 3021 and the touch sensing electrodes 3022 is electrically connected through a connection block on the same layer as the electrode block; the other electrode block of the touch driving electrodes 3021 and the touch sensing electrodes 3022 is electrically connected to the electrodes
  • the touch bridges 3020 of different layers are connected.
  • the connection block and the touch bridge 3020 are insulated and disconnected by an insulating layer.
  • the electrode blocks of the touch driving electrodes 3021 are electrically connected through connection blocks, and the electrode blocks of the touch sensing electrodes 3022 are connected through the touch bridge 3020 .
  • the insulating layer may be a stacked layer formed of one or more of a silicon oxide layer, a silicon nitride layer, or a silicon oxynitride layer.
  • the electrode block, the connection block and the touch bridge 3020 can all be made of metal or indium tin oxide (English: Indium Tin Oxide, ITO for short), and the materials of the electrode block, the connection block and the touch bridge 3020 can be the same or different.
  • ITO Indium Tin Oxide
  • FIG. 10 is a schematic partial structure diagram of a transparent touch panel provided by an embodiment of the present disclosure.
  • the touch electrode pattern 302 of the transparent touch panel 30 includes touch signal lines 3023 and a plurality of touch detection electrodes 3024 distributed in an array.
  • the structures of the transparent touch panel 30 shown in FIGS. 9 and 10 are only examples of the embodiments of the present disclosure, and the structure of the transparent touch panel 30 may also adopt other structural forms in the related art.
  • the total thickness of the projection screen does not exceed 5mm.
  • FIG. 11 is a schematic partial structure diagram of a transparent touch panel provided by an embodiment of the present disclosure.
  • the projection screen may further include a base 50 on which the first transparent cover plate 21 , the first nanoparticle layer 41 , the transparent touch panel 30 , the second nanoparticle layer 42 and the second transparent cover plate 22 are mounted. 50 on.
  • the base 50 can provide support to facilitate the placement of the projection screen.
  • An operation button 51 may be provided on the base 50 to facilitate the user's operation, for example, including at least a power-on operation.
  • the operation buttons 51 may be distributed only on one side of the projection screen, or may be distributed on both sides of the projection screen.
  • the operation button 51 may be a physical button or a virtual button.
  • a touch screen may be provided on the base 50 to provide virtual buttons.
  • the projection screen may also include a remote control, and the remote control may implement the same function as the operation button 51 to facilitate the user's operation.
  • the projector 100 when a projection screen is used for projection display, the projector 100 has four placement positions. When the projector 100 is on the same side of the projection screen, the projector 100 is positioned above and below. Except for different heights, the projector 100 itself is also rotated 180° around the axis of its lens, and the projection screen can also be connected to the projector 100 in communication. Different projection modes can be selected through the operation button 51, so that the projector 100 can form an upright image on the projection screen.
  • FIG. 12 is a flowchart of a method for manufacturing a projection screen provided by an embodiment of the present disclosure. This method is used to manufacture the projection screen shown in Figs. 2-12. As shown in Figure 12, the manufacturing method includes:
  • step S11 a first nanoparticle layer is formed.
  • the first nanoparticle layer includes a plurality of dispersed nanoparticles with different particle sizes.
  • step S12 the first nanoparticle layer and the first transparent cover plate are sequentially stacked on one side of the transparent touch panel to form a projection screen.
  • step S11 may include:
  • a nanoparticle sol is formed on one side of the first transparent cover plate.
  • the first nanoparticle layer 41 can be directly formed on the first transparent cover plate 21 after the nanoparticle sol is solidified. Directly using the first transparent cover plate 21 as a carrier is beneficial to reduce the total thickness of the projection screen.
  • FIG. 13 is a schematic diagram of a process for forming a nanoparticle sol according to an embodiment of the present disclosure.
  • the nanoparticle sol can be sprayed onto the first transparent cover plate 21 through the spray head 80 .
  • the spray head 80 has a plurality of spray holes 80a; the plurality of spray holes 80a can be distributed in a straight line, and the distribution density of the plurality of spray holes 80a gradually increases from the middle to the two ends.
  • the distribution density refers to the number of injection holes 80a per unit area.
  • the nozzle holes 80a near the middle have a smaller distribution density, and the nozzle holes 80a near both ends have a high distribution density.
  • the plurality of injection holes 80a may be gradually increased in size from the middle to both ends.
  • the nozzle hole 80 a should correspond to the middle of the first transparent cover plate 21 when the nanoparticle sol is sprayed to the first transparent cover plate 21 .
  • the nozzle head 80 is directed toward the first transparent cover plate 21 , so that the arrangement direction of the plurality of nozzle holes 80 a is parallel to the first side edge 21 a of the first transparent cover plate 21 .
  • Move the nozzle 80 along the second side 21b of the first transparent cover 21 moves the direction shown by the arrow in FIG. 13 is the moving direction of the nozzle 80.
  • the nanoparticle sol is sprayed to the first transparent cover plate 21 through the nozzle 80, and the moving speed is first accelerated and then slowed down.
  • the nozzle 80 sprays the nanoparticle sol along the direction of the first side 21a to the first
  • the concentration of nanoparticles is lower in the middle of the transparent cover plate 21 and higher at the edges.
  • the moving speed is first accelerated and then slowed down, that is, in the direction of the second side 21b, the nozzle 80 moves fast when it is in the middle of the first transparent cover 21, and moves slowly at the edge.
  • the particle concentration on the first transparent cover plate 21 increases from the center to the edge.
  • step S11 may include:
  • a transparent base material film is provided, a nanoparticle sol is formed on the surface of the transparent base material film, and the transparent base material film is arranged on one side of a first transparent cover plate.
  • the nanoparticles 400 are formed on the first transparent substrate 411 , and the first transparent substrate 411 can be pasted on the first transparent cover plate 21 .
  • the first nanoparticle layer 41 is fabricated by using the transparent base film as a carrier, so as to avoid damage to the first transparent cover plate 21 during the fabrication process, and also facilitate the cutting of the first nanoparticle layer 41 .
  • the nanoparticle sol can also be formed on the surface of the transparent substrate film by a nozzle.
  • the spray head can be directed toward the transparent base film, so that the arrangement direction of the plurality of spray holes is parallel to the first side of the transparent base film.
  • the nozzle is moved along the second side of the transparent substrate film. During the process of moving the nozzle, the nanoparticle sol is sprayed onto the transparent substrate film through the nozzle, and the moving speed is accelerated first and then slowed down.
  • the particle concentration on the transparent substrate film increases from the center to the edges.
  • FIG. 14 is a flowchart of a method for manufacturing a projection screen provided by an embodiment of the present disclosure. This method is used to manufacture the projection screen shown in FIG. 3 . As shown in Figure 14, the manufacturing method includes:
  • step S21 a first nanoparticle layer is formed.
  • Step S21 may be the same as the aforementioned step S11, and will not be described in detail here.
  • step S22 a second nanoparticle layer is formed.
  • step S23 the first nanoparticle layer and the first transparent cover plate are sequentially laminated on one side of the transparent touch panel, and the second nanoparticle layer and the second transparent cover plate are sequentially laminated on the other side of the transparent touch panel side to form a projection screen.
  • nanoparticles with a size of nanometers will scatter the light, and the wavelengths of light scattered by nanoparticles with different particle sizes are also different, so that the projector can be projected onto the projection screen.
  • the light of different colors is scattered, and the scattered light enters the eyes of the observer, and the observer can perceive the image projected by the projector after receiving the light of various colors scattered by the nanoparticles.
  • FIG. 15 is a schematic structural diagram of a projection display system provided by an embodiment of the present disclosure.
  • the projection display system includes a projector 100 , a controller 200 and any one of the projection screens 300 shown in FIGS. 2 to 12 .
  • the controller 200 is connected to the transparent touch panel 30 of the projection screen 300 , the controller 200 is connected to the projector 100 , and the controller 200 is used to control the projector 100 to perform projection display according to the touch signal output by the transparent touch panel 30 .
  • connection here can be a communication connection, and the communication connection includes a wired connection and a wireless connection.
  • nanoparticles with a size of nanometers will scatter the light, and the wavelengths of light scattered by nanoparticles with different particle sizes are also different, so that the projector can be projected onto the projection screen.
  • the light of different colors is scattered, and the scattered light enters the eyes of the observer, and the observer can perceive the image projected by the projector after receiving the light of various colors scattered by the nanoparticles.
  • the projector 100 can be a short-throw projector or an ultra-short-throw projector.
  • the projector 100 can be divided into a short-throw projector and an ultra-short-throw projector according to the size of the projection ratio.
  • the projection ratio is the ratio of the projection distance to the screen width.
  • the distance is the vertical distance between the projector 100 and the projection screen 300, which projects a picture of the same width.
  • the projection distance of the ultra-short-throw projector is smaller than that of the short-throw projector, usually several centimeters to ten centimeters. With ultra-short throw projectors, the size of the projection display system is smaller.
  • the throw ratio of the projector 100 may not exceed 0.5, and the brightness may not be less than 2500lm.
  • the projector 100 and the controller 200 can be connected through wireless fidelity (English: Wireless Fidelity, Wi-Fi for short), a cellular network or the cloud.
  • the projector 100 may have a Wi-Fi module, and the projector 100 and the controller 200 are connected through Wi-Fi.
  • the controller 200 and the transparent touch panel 30 of the projection screen 300 may be connected through a flexible circuit board (English: Flexible Printed Circuit, FPC for short).
  • a flexible circuit board English: Flexible Printed Circuit, FPC for short.
  • FIG. 16 is a flowchart of a projection display method provided by an embodiment of the present disclosure. This projection display method is applied to the projection display system shown in FIG. 15 . As shown in Figure 16, the projection display method includes:
  • the mapping indication information is used to indicate the mapping relationship between the touch coordinate system and the image coordinate system.
  • S32 Determine the coordinates of the touch position in the image coordinate system according to the mapping indication information and the touch position.
  • the touch coordinate system is a plane coordinate system established with the projection screen as a reference, and the coordinates in the touch coordinate system are used to indicate the position of the touch point on the projection screen.
  • the image coordinate system is a plane coordinate system established with reference to the image provided by the controller to the projector, and the coordinates in the image coordinate system are used to indicate the position of the point in the image.
  • a certain mapping relationship is established between the touch coordinate system and the image coordinate system, so that when the image is projected onto the projection screen, the touch point in the touch coordinate system is based on the touch points on the projection screen.
  • the coordinates and mapping relationship can determine the coordinates of the point in the image, projected on the projection screen, and the point coincident with the touch point in the image coordinate system.
  • the mapping relationship between the touch coordinate system and the image coordinate system includes a first mapping relationship and a second mapping relationship, and the first mapping relationship includes the overlap between the touch coordinate system and the image coordinate system.
  • the second mapping relationship includes that the ordinate of the touch coordinate system coincides with the ordinate of the image coordinate system, and the abscissa of the touch coordinate system is opposite to the abscissa of the image coordinate system.
  • FIG. 17 is a schematic diagram of a projection display provided by an embodiment of the present disclosure.
  • the user F on the first side of the projection screen is using the projection display system to perform projection display.
  • the projection display system acquires mapping indication information, and determines the mapping relationship between the touch coordinate system and the image coordinate system according to the acquired mapping indication information.
  • FIG. 18 is a schematic diagram of a process of projection display provided by an embodiment of the present disclosure. As shown in FIG.
  • user F is located on the first side of the projection screen, and the touch coordinate system coincides with the image coordinate system.
  • the controller 200 of the image T 1 is supplied to the projector 100 by the projector 100 T 1 image projected onto the projection screen 300, the image T 1 is a graph showing an image of the uppercase E.
  • T 1 may be determined in the image, on a projection screen 300, the point M coincides with the point M 'coordinates in the image coordinate system is also is (m, n), in response to operation of a projection display system, a user clicks on the point m, the controller 200 of the image T 2 is supplied to the projector 100, the image difference between T 2 and T 1 as the image points wherein m 'is black.
  • the projector 100 projects the image T 2 to the projection screen 300 for display, and the point M′ in the image T 2 is coincident with the point M on the projection screen 300 .
  • FIG. 19 is a schematic diagram of a process of projection display provided by an embodiment of the present disclosure.
  • the user G is located on the second side of the projection screen, the ordinate of the touch coordinate system coincides with the ordinate of the image coordinate system, and the abscissa of the touch coordinate system is opposite to the abscissa of the image coordinate system.
  • the controller 200 still provides the image T 1 to the projector 100 , and the projector 100 projects the image T 1 onto the projection screen 300 .
  • the user G clicks the point Q on the projection screen 300 on the image T 1 , and the coordinates of the point Q in the touch coordinate system are (-m, n), That is, the point Q and the point M are symmetrical about the longitudinal axis of the touch coordinate system.
  • the controller 200 of the image T 2 is supplied to the projector 100, the image difference T 2 T 1 as that of the image point M 'is black.
  • the projector 100 projects the image T 2 to the projection screen 300 for display, and the point M′ in the image T 2 is coincident with the point Q on the projection screen 300 .
  • mapping indication information may include:
  • a user command may be issued by triggering an operation button.
  • Action buttons can be triggered by the user.
  • the user can trigger the operation button according to the relative position between himself and the projection screen to issue the corresponding instruction, or he can also issue the instruction through the aforementioned remote control.
  • FIG. 20 is a flowchart of a projection display method provided by an embodiment of the present disclosure, and the method is used for adjustment after the projection display system is powered on. As shown in Figure 20, the method includes:
  • the default image may be the startup image of the projected display system.
  • S42 Acquire position indication information, where the position indication information is used to indicate the relative positional relationship between the observer, the projector and the projection screen.
  • FIG. 21 is a working flowchart of a projection display system provided by an embodiment of the present disclosure. As shown in FIG. 21 , for example, after the projection display system is powered on, the projector first projects a default image to the projection screen.
  • the position indication information is obtained, and the position indication information is used to indicate the relative positional relationship between the observer, the projector and the projection screen.
  • the currently projected default image will be maintained; if the observer and the projector are located on both sides of the projection screen, the default image will be mirrored and displayed, that is, flipped left and right, and then projected to the projector curtain.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Geometry (AREA)
  • Overhead Projectors And Projection Screens (AREA)
  • Projection Apparatus (AREA)

Abstract

一种投影幕布及其制造方法、投影显示系统及投影显示方法。投影幕布包括第一透明盖板(21)、透明触控板(30)和第一纳米粒子层(41),第一纳米粒子层(41)和第一透明盖板(21)依次层叠于透明触控板(30)的一侧,第一纳米粒子层(41)包括分散的粒径不同的多种纳米粒子(400)。投影幕布在承接投影机发出的光时,尺寸在纳米级别的纳米粒子(400)会对光产生散射作用,并且粒径不同的纳米粒子(400)散射的光的波长也不同,从而能够对投影机投射到投影幕布上的不同颜色的光进行散射,并使散射后的光进入观察者的眼睛,观察者接收到由纳米粒子(400)散射的各种颜色的光就可以感知到投影机投射出的图像。

Description

投影幕布及其制造方法、投影显示系统及显示方法
本申请要求于2020年7月6日提交的申请号为202010642530.1、发明名称为“投影幕布及其制造方法、投影显示系统及显示方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及显示设备领域,特别涉及一种投影幕布及其制造方法、投影显示系统及显示方法。
背景技术
投影显示系统是一种可以将图像或视频投射到投影幕布上的系统。随着显示技术的快速发展,触控投影显示系统已成为一个备受关注的研究热点。
发明内容
本公开实施例提供了一种投影幕布及其制造方法、投影显示系统及显示方法。
第一方面,本公开实施例提供了一种投影幕布,所述投影幕布包括第一透明盖板、透明触控板和第一纳米粒子层,所述第一纳米粒子层和所述第一透明盖板依次层叠于所述透明触控板的一侧,所述第一纳米粒子层包括分散的粒径不同的多种纳米粒子。
可选地,所述投影幕布还包括第二透明盖板和第二纳米粒子层,所述第二纳米粒子层和所述第二透明盖板依次层叠于所述透明触控板的另一侧,所述第二纳米粒子层包括分散的粒径不同的多种纳米粒子。
可选地,所述第一纳米粒子层和所述第二纳米粒子层中,相同粒径的纳米粒子的分布相同。
可选地,所述第一纳米粒子层的各种纳米粒子总的粒子浓度从所述投影幕布的中央向边缘逐渐增加。
可选地,所述第一纳米粒子层的各种所述纳米粒子总的粒子浓度为 5*10 8/cm 2~5*10 9/cm 2
可选地,所述纳米粒子包括内核和包裹在所述内核外的外壳,所述内核和所述外壳采用不同的材料制成。
可选地,所述内核采用Si制成,所述外壳采用Ag制成,粒径不同的所述纳米粒子的外壳的厚度和内核的直径中的至少一种不同。
可选地,所述纳米粒子为ZnO、Al 2O 3或TiO 2纳米粒子。
可选地,所述纳米粒子的粒径不大于100nm。
可选地,所述第一纳米粒子层还包括第一透明基底,所述透明触控板的所述一侧的纳米粒子位于所述第一透明基底的表面上;
所述第二纳米粒子层还包括第二透明基底,所述透明触控板的所述另一侧的纳米粒子位于所述第二透明基底的表面上。
可选地,所述第一透明盖板、所述第一纳米粒子层、所述透明触控板、所述第二纳米粒子层和所述第二透明盖板通过透明粘合剂粘接。
可选地,所述第一透明盖板的厚度和所述第二透明盖板的厚度均为1mm~1.5mm。
可选地,所述投影幕布的厚度不超过5mm。
可选地,所述透明触控板包括透明基板和位于所述透明基板上的触控电极图形;
所述触控电极图形包括多个触控驱动电极、多个触控感应电极和触控信号线,所述触控驱动电极与所述触控感应电极交叉设置,所述触控驱动电极与所述触控感应电极交叉处被触控绝缘层绝缘间隔开,每个所述触控驱动电极和每个所述触控感应电极均对应连接一条所述触控信号线;或者
所述触控电极图形包括触控信号线和阵列分布的多个触控检测电极,每个所述触控检测电极均对应连接一条所述触控信号线。
可选地,所述触控电极图形位于所述透明基板靠近所述第一透明盖板一侧,所述第二透明盖板的厚度小于所述第一透明盖板的厚度。
可选地,所述第一透明盖板的厚度等于所述第二透明盖板与所述透明基板的厚度之和。
可选地,所述第一透明盖板的厚度为1mm~1.5mm,所述第二透明盖板的厚度为1mm~1.5mm。
可选地,所述投影幕布的厚度不超过5mm。
第二方面,本公开实施例还提供了一种投影显示系统,包括投影机、控制器和第一方面所述的投影幕布,所述控制器与所述投影幕布的透明触控板连接,所述控制器与所述投影机连接,所述控制器用于根据所述透明触控板输出的触控信号控制所述投影机进行投影显示。
第三方面,本公开实施例还提供了一种投影幕布的制造方法,包括:
形成第一纳米粒子层,所述第一纳米粒子层包括分散的粒径不同的多种纳米粒子;
将所述第一纳米粒子层和第一透明盖板依次层叠于透明触控板的一侧,形成投影幕布。
可选地,所述形成第一纳米粒子层,包括:
在第一透明盖板的一面形成纳米粒子溶胶;或者,
所述形成第一纳米粒子层,包括:
提供透明基材薄膜;
在所述透明基材薄膜的表面形成纳米粒子溶胶;
将所述透明基材薄膜设置在所述第一透明盖板的一面。
可选地,所述在第一透明盖板的一面形成纳米粒子溶胶,包括:
将喷头朝向所述第一透明盖板,所述喷头上具有多个喷孔,所述多个喷孔的分布密度沿所述多个喷孔的排列方向从中部到两端的位置逐渐增大或者所述多个喷孔的尺寸沿所述多个喷孔的排列方向从中部到两端的位置逐渐增大,使所述多个喷孔的排列方向平行于所述第一透明盖板的第一侧边;
沿所述第一透明盖板的第二侧边相对移动所述喷头,在移动过程中,通过所述喷头向所述第一透明盖板喷射纳米粒子溶胶,移动速度先加快再减慢。
可选地,所述在所述透明基材薄膜的表面形成纳米粒子溶胶,包括:
将喷头朝向所述透明基材薄膜,所述喷头上具有多个喷孔,所述多个喷孔的分布密度沿所述多个喷孔的排列方向从中部到两端的位置逐渐增大或者所述多个喷孔的尺寸沿所述多个喷孔的排列方向从中部到两端的位置逐渐增大,使所述多个喷孔的排列方向平行于所述第一透明盖板的第一侧边;
沿所述透明基材薄膜的第二侧边移动所述喷头,在移动所述喷头的过程中,通过所述喷头向所述透明基材薄膜喷射纳米粒子溶胶,移动速度先加快再减慢。
第四方面,本公开实施例还提供了一种投影显示方法,所述投影显示方法应用于第二方面所述的投影显示系统,所述方法包括:
获取映射指示信息,所述映射指示信息用于指示触控坐标系与图像坐标系的映射关系;
根据所述映射指示信息和触控位置,确定所述触控位置在所述图像坐标系中的坐标。
可选地,在所述获取映射指示信息之前,所述方法还包括:
将默认图像投射至投影幕布;
获取位置指示信息,该位置指示信息用于指示观察者、投影机和投影幕布的相对位置关系,
根据位置指示信息调整投影画面。
本公开实施例提供的技术方案带来的有益效果至少包括:
投影幕布在承接投影机发出的光时,尺寸在纳米级别的纳米粒子会对光产生散射作用,并且粒径不同的纳米粒子散射的光的波长也不同,从而能够对投影机投射到投影幕布上的不同颜色的光进行散射,并使散射后的光进入观察者的眼睛,观察者接收到由纳米粒子散射的各种颜色的光就可以感知到投影机投射出的图像。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是相关技术中的一种投影幕布的结构示意图;
图2是本公开实施例提供的一种投影幕布的结构示意图;
图3是本公开实施例提供的一种投影幕布的结构示意图;
图4是本公开实施例提供的一种投影幕布的工作示意图;
图5是本公开实施例提供的一种投影幕布的工作示意图;
图6是本公开实施例提供的一种纳米粒子的结构示意图;
图7是本公开实施例提供的一种投影幕布的局部放大示意图;
图8是本公开实施例提供的一种投影幕布的局部放大示意图;
图9是本公开实施例提供的一种透明触控板的局部结构示意图;
图10是本公开实施例提供的一种透明触控板的局部结构示意图;
图11是本公开实施例提供的一种透明触控板的局部结构示意图;
图12是本公开实施例提供的一种投影幕布的制造方法流程图;
图13为本公开实施例提供的一种形成纳米粒子溶胶的过程示意图;
图14是本公开实施例提供的一种投影幕布的制造方法流程图;
图15是本公开实施例提供的一种投影显示系统的结构示意图;
图16是本公开实施例提供的一种投影显示方法的流程图;
图17是本公开实施例提供的一种投影显示的示意图;
图18是本公开实施例提供的一种投影显示的过程示意图;
图19是本公开实施例提供的一种投影显示的过程示意图;
图20是本公开实施例提供的一种投影显示方法的流程图;
图21是本公开实施例提供的一种投影显示系统的工作流程图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开实施方式作进一步地详细描述。
图1是相关技术中的一种投影幕布的结构示意图。如图1所示,该投影幕布包括第一透明基板11和第二透明基板12,第一透明基板11和第二透明基板12相对布置,第一透明基板11靠近第二透明基板12的一面被酸蚀刻,形成散射面111,在散射面111上形成有导电涂层13,导电涂层13构图成触控电极。该投影幕布通过对第一透明基板11的一面进行腐蚀形成表面不光滑的散射面111,以对投影机发出的光进行散射,使投影机发出的光散射后进入观察者的眼睛。通过酸蚀刻的速度难以控制,导致散射面上不同区域的蚀刻程度不同,对光线的散射程度也不一样,导致成像画面质量较差,不同区域的亮度、对比度 均有较大差异。
图2是本公开实施例提供的一种投影幕布的结构示意图。如图2所示,该投影幕布包括第一透明盖板21、透明触控板30和第一纳米粒子层41。第一纳米粒子层41和第一透明盖板21依次层叠于透明触控板30的一侧,第一纳米粒子层41包括分散于第一透明盖板21和透明触控板30之间的粒径不同的多种纳米粒子400。
本公开实施例中,粒径相同的纳米粒子400为同一种纳米粒子,粒径不同的纳米粒子400为不同种的纳米粒子。这里分散是指以相互间隔的方式分布。
投影幕布可以包括阵列排布的多个成像区域,每个区域均分散有多种纳米粒子400。
投影幕布在承接投影机发出的光时,尺寸在纳米级别的纳米粒子会对光产生散射作用,并且粒径不同的纳米粒子散射的光的波长也不同,从而能够对投影机投射到投影幕布上的不同颜色的光进行散射,并使散射后的光进入观察者的眼睛,观察者接收到由纳米粒子散射的各种颜色的光就可以感知到投影机投射出的图像。
纳米粒子400所能散射的光的波长与纳米粒子400的尺寸有关,不同粒径的纳米粒子400可以散射不同波长的光,通过设置粒径不同的多种纳米粒子400,就可以对多种不同颜色的光进行散射,从而呈现出画面。相较于通过酸蚀刻形成散射面,采用纳米粒子400进行散射,避免了由于酸蚀刻导致的成像画面质量较差,不同区域的亮度、对比度差异较大的问题。
图3是本公开实施例提供的一种投影幕布的结构示意图。如图3所示,相比于图2所示的投影幕布,该投影幕布还包括第二透明盖板22和第二纳米粒子层42。第二纳米粒子层42和第二透明盖板22依次层叠于透明触控板30的另一侧,第二纳米粒子层42包括分散于第二透明盖板22和透明触控板30之间的粒径不同的多种纳米粒子400。通过布置第二透明盖板22和第二纳米粒子层42,可以使观察者在投影幕布的两侧进行观看时,画面效果更接近。
图4是本公开实施例提供的一种投影幕布的工作示意图。如图4所示,纳米粒子400散射的光线中,传播至观察者A的光线需经过第一透明盖板21,传播至观察者B的光线需经过透明触控板30。由于第一透明盖板21和透明触控板30必然存在一定光学性质上的差异,因此会导致观察者A和观察者B所看到的 画面会存在一定的差异,例如画面的亮度、对比度等。
图5是本公开实施例提供的一种投影幕布的工作示意图。如图5所示,第一纳米粒子层41中的纳米粒子400和第二纳米粒子层42中的纳米粒子400均会对光线进行散射。传播至观察者C的光线包括两部分:一部分由第一纳米粒子层41中的纳米粒子400散射,该部分光线经过第一透明盖板21后被观察者C接收;另一部分由第二纳米粒子层42中的纳米粒子400散射,该部分光线经过透明触控板30和第一透明盖板21后被观察者C接收。传播至观察者D的光线也包括两部分:一部分由第二纳米粒子层42中的纳米粒子400散射,该部分光线经过第二透明盖板22后被观察者D接收;另一部分由第一纳米粒子层41中的纳米粒子400散射,该部分光线经过透明触控板30和第二透明盖板22后被观察者D接收。可见观察者C和观察者D所接收到的光均包括了只穿过透明盖板的光、穿过透明盖板和透明触控板的光,这使得相比于观察者A和观察者B,观察者C和观察者D所看到的画面差异更小,例如亮度和对比度上的差异更小。
可选地,第一纳米粒子层41和第二纳米粒子层中,相同粒径的纳米粒子400的分布相同。这里的分布相同是指在投影幕布的相同区域内,粒子浓度相同。粒子浓度是指单位面积内所分布的纳米粒子400的数量。这有利于进一步减小观察者C和观察者D所看到的画面的差异。
如图5所示,选取投影幕布上一个任意的区域E为例,投影机投射到区域E的光线,会被第一纳米粒子层41的纳米粒子400和第二纳米粒子层42的纳米粒子400散射,由于两个纳米粒子层中相同粒径的纳米粒子400的分布相同,因此在区域E内,第一纳米粒子层41的纳米粒子400散射的光线颜色与第二纳米粒子层42的纳米粒子400散射的光线颜色是相同的,从而进一步减小观察者C和观察者D所看到的画面的差异。
可选地,第一纳米粒子层41的各种纳米粒子400总的粒子浓度从投影幕布的中央向边缘逐渐增加。即第一纳米粒子层41上离投影幕布的几何中心越远的区域,粒子浓度越大。逐渐增加可以是随着与投影幕布的几何中心距离的增大而连续增加,也可以是阶梯式的增加。投影机在投射影像时,通常靠近画面中央的光线较强,靠近边缘的光线较弱,使得画面中央的亮度比边缘的亮度高,通过使总的粒子浓度从投影幕布的中央向边缘逐渐增加,加强投影幕布边缘对于光线的散射作用,从而使画面的亮度更均匀。
由于第一纳米粒子层41和第二纳米粒子层中,相同粒径的纳米粒子400的分布相同,因此第二纳米粒子层42的各种纳米粒子400总的粒子浓度也是从投影幕布的中央向边缘逐渐增加的。
可选地,第一纳米粒子层41的各种纳米粒子400总的粒子浓度为5*10 8/cm 2~5*10 9/cm 2。例如,靠近投影幕布边缘的某一区域内,第一纳米粒子层41的粒子浓度为5*10 9/cm 2,即每平方厘米中分散的各种粒径的纳米粒子400的总数为5*10 9。在这一范围内,投影幕布的雾度不超过10%,反射率为4%~10%,所成的像在室内照明环境下清晰可见。
第一纳米粒子层41中投影幕布的边缘的粒子浓度可以比中央的粒子浓度高8%~12%,例如本公开实施例中,第一纳米粒子层41中投影幕布的边缘的粒子浓度比中央的粒子浓度高10%。
纳米粒子400的浓度过低,被散射进入观察者眼睛的光线较少,会使投影幕布上所成的像亮度较低。纳米粒子400之间的间隙使光线能够透射过投影幕布,使投影幕布呈现透明,过高的浓度会增大投影幕布的雾度,降低投影幕布的透明度。将纳米粒子400的浓度设置在该范围内,投影幕布上所成的像具有较高的亮度,并且投影幕布的透明度也较高,在投影幕布的两侧均可以较清晰的观察到投影幕布上的画面。
可选地,纳米粒子400的粒径不大于100nm。即粒径最大的纳米粒子400,其直径不超过100nm。不同粒径的纳米粒子400对不同波长的光有散射作用,0~100nm粒径范围内的纳米粒子400,可以对可见光波段内的所有光线进行散射。
图6是本公开实施例提供的一种纳米粒子的结构示意图。如图6所示,纳米粒子400包括内核4011和包裹在内核4011外的外壳4012。内核4011和外壳4012采用不同的材料制成。纳米粒子400所能散射的光,除了与纳米粒子400的粒径有关,还与纳米粒子400的结构和材料有一定关系。
示例性地,内核4011采用Si制成,外壳4012采用Ag制成,粒径不同种的纳米粒子400的外壳4012的厚度和内核4011的直径中的至少一种不同。通过调整材料、内核4011的直径、外壳4012的厚度,可以使纳米粒子400对特定波长的光产生散射作用。
以内核4011采用Si制成,外壳4012采用Ag制成的纳米粒子400为例, 对于内核4011直径为1.3nm,外壳4012厚度为30.8nm的纳米粒子400,对蓝光有较强的散射作用,散射的光线波长集中在458nm;对于内核4011直径为22.2nm,外壳4012厚度为15.8nm的纳米粒子400,对绿光有较强的散射作用,散射的光线波长集中在532nm;对于内核4011直径为34.3nm,外壳4012厚度为11.0nm的纳米粒子400,对红光有较强的散射作用,散射的光线波长集中在640nm。
在其他可能的实现方式中,纳米粒子400还可以采用金属氧化物制成,例如纳米粒子400为氧化锌ZnO、氧化铝Al 2O 3或氧化钛TiO 2纳米粒子。
图7是本公开实施例提供的一种投影幕布的局部放大示意图。如图7所示,第一纳米粒子层41包括分散于第一透明盖板21表面的纳米粒子400。这种第一纳米粒子层41以第一透明盖板21为载体,直接形成在第一透明盖板21上,有利于降低投影幕布的总厚度。
图8是本公开实施例提供的一种投影幕布的结构示意图。相较于图7所示的投影幕布,如图8所示,该投影幕布中,第一纳米粒子层41还包括第一透明基底411,第二纳米粒子层42还包括第二透明基底421,透明触控板30的一侧的纳米粒子400位于第一透明基底411的表面上,透明触控板30的另一侧的纳米粒子400位于第二透明基底421的表面上。
如图8所示,第一纳米粒子层41包括第一透明基底411和纳米粒子400。纳米粒子400分布于第一透明基底411的表面,第一透明基底411位于第一透明盖板21和透明触控板30之间。以第一透明基底411作为纳米粒子400的载体,在制作投影幕布时,可以将承载有纳米粒子400的第一透明基底411直接设置到第一透明盖板21和透明触控板30之间,制作更加方便。
第一透明基底411可以为透明薄膜,例如聚对苯二甲酸乙二醇酯(英文:Polyethylene terephthalate,简称:PET)薄膜。
示例性地,第一透明基底411可以通过透明粘合剂43粘接在第一透明盖板21的表面上。例如可以通过光学透明胶(英文:Optically Clear Adhesive,简称:OCA)或光学透明树脂(英文:OCR Optical Clear Resin,简称:OCR)粘接。
纳米粒子400可以位于第一透明基底411靠近第一透明盖板21的一面,也可以位于第一透明基底411靠近透明触控板30的一面。
第二纳米粒子层42的结构可以与第一纳米粒子层41的结构相同,即第二 纳米粒子层42可以包括分散于第二透明盖板22表面的纳米粒子400。或者如图8所示,第二纳米粒子层42包括第二透明基底421和纳米粒子400。第二透明基底421可以粘接在第二透明盖板22的表面上。
可选地,第一透明盖板21、第一纳米粒子层41、透明触控板30、第二纳米粒子层42和第二透明盖板22均可以通过透明粘合剂43粘接。透明粘合剂43可以为OCA或OCR。OCA和OCR均具有较好的透明度,光透过率高,对光线的吸收少。
透明粘合剂43的折射率为1.45~1.6,透明粘合剂43的折射率应尽量接近所接触的透明结构的折射率,例如粘接第一透明盖板21和第一纳米粒子层41的透明粘合剂43,其折射率应尽量接近第一透明盖板21或第一纳米粒子层41。
透明粘合剂43的厚度可以为0.1mm~0.25mm。透明粘合剂43的厚度影响粘接的牢固程度以及光透过率,降低厚度可以提高光透过率,但是也会降低粘接的牢固程度,反之提高厚度可以提高粘接的牢固程度,但是会降低光透过率,在保证足够牢固程度的情况下,可以尽量降低透明粘合剂43的厚度。
透明粘合剂43的剥离力不小于0.1N/mm,以确保投影幕布具有足够的强度。将透明粘合剂43的厚度设置在0.1mm~0.25mm可以兼顾剥离力的大小和光透过率。
可选地,第一透明盖板21和第二透明盖板22均可以为玻璃盖板、塑料盖板。第一透明盖板21和第二透明盖板22可以提供保护,避免第一纳米粒子层41、透明触控板30以及第二纳米粒子层42出现划伤等外部损伤。
第一透明盖板21和第二透明盖板22为相同的透明盖板,以第一透明盖板21为例,第一透明盖板21远离透明触控板30的表面的粗糙度可以为0.15μm~0.25μm,且足够耐摩擦,例如采用2cm*2cm的钢丝绒,以500克的荷重进行摩擦,2000次无划痕,以满足触控的需要。
第一透明盖板21的尺寸和第二透明盖板22的尺寸可以根据所需要制作的投影幕布的面积进行设置。对于矩形的投影幕布,第一透明盖板21和第二透明盖板22均呈矩形,这里的尺寸通常指对角线的长度。例如第一透明盖板21和第二透明盖板22均可以为110英寸,即第一透明盖板21的对角线长度和第一透明盖板21的对角线长度均为110英寸。对于其他可能形状的投影幕布,例如圆形的投影幕布,第一透明盖板21和第二透明盖板22均呈圆形,尺寸则是指 第一透明盖板21和第二透明盖板22的直径。
可选地,第一透明盖板21的厚度为1mm~1.5mm,第二透明盖板22的厚度为1mm~1.5mm。第一透明盖板21和第二透明盖板22的厚度设置可以考虑强度,第一透明盖板21和第二透明盖板22需要具有足够的强度提供保护作用,过薄会导致投影幕布结构强度过低。同时,厚度过大也会影响第一透明盖板21和第二透明盖板22的光透过率,而且厚度过大还会导致出现重影,降低成像效果,在强度足够的情况下,可以尽量减小第一透明盖板21和第二透明盖板22的厚度,通常在1mm~1.5mm厚度范围内,可以满足强度要求,并且也不会形成明显的重影。
第一透明盖板21和第二透明盖板22的光透过率均不小于85%,雾度均不超过3%,以保证投影幕布足够的透明度。
该透明触控板30为电容式触控板。图9是本公开实施例提供的一种透明触控板的局部结构示意图。如图9所示,透明触控板30包括透明基板301和位于透明基板301上的触控电极图形302。
可选地,触控电极图形302位于透明基板301靠近第一透明盖板21一侧,第二透明盖板22的厚度小于第一透明盖板21的厚度。由于触控电极图形302位于透明基板301靠近第一透明盖板21一侧,因此从第一透明盖板21一侧进行触控操作时,操作者的手指与触控电极图形302之间的间距只受第一透明盖板21的厚度的影响,而从第二透明盖板22一侧进行触控操作时,操作者的手指与触控电极图形302之间的间距受第二透明盖板21的厚度和透明基板301的厚度的影响,而手指与触控电极图形302的间距会影响触控的灵敏度。将第二透明盖板22的厚度设置的比第一透明盖板21的厚度小,有利于使两侧进行触控的灵敏度相当。
可选地,第一透明盖板21的厚度等于第二透明盖板22与透明基板301的厚度之和。这样在第一透明盖板21一侧进行触控操作时,和在第二透明盖板22一侧进行触控操作时,触控的灵敏度都相同。例如第一透明盖板21的厚度为1.5mm,第二透明盖板22的厚度为1mm,透明基板的厚度为0.5mm。
透明基板301的厚度可以为0.5mm~1.0mm,透明基板301过薄会导致透明触控板30结构强度过低,透明基板301厚度过大,第一纳米粒子层41和第二纳米粒子层42的间隔就越大,第一纳米粒子层41和第二纳米粒子层42呈的像 重合度会降低,引起重影,降低成像效果,在强度足够的情况下,可以尽量减小透明基板301的厚度,通常在0.5mm~1.0mm厚度范围内,可以满足强度要求,并且也不会形成明显的重影。
如图9所示,该透明触控板30的触控电极图形302包括多个触控驱动电极3021、多个触控感应电极3022和触控信号线3023,触控驱动电极3021与触控感应电极3022交叉设置,触控驱动电极3021与触控感应电极3022交叉处被触控绝缘层绝缘间隔开,每个触控驱动电极3021和每个触控感应电极3022均对应连接一条触控信号线3023。
触控驱动电极3021和触控感应电极3022均包括多个电极块,各个电极块均同层布置。如图9所示,本公开实施例中,电极块呈菱形。
触控驱动电极3021和触控感应电极3022中的一个的电极块通过与电极块同层的连接块电连接;触控驱动电极3021和触控感应电极3022中的另一个的电极块通过与电极块不同层的触控桥3020连接。连接块和触控桥3020之间通过绝缘层绝缘断开。
作为示例,触控驱动电极3021的电极块通过连接块电连接,触控感应电极3022的电极块通过触控桥3020连接。
示例性地,绝缘层可以为氧化硅层、氮化硅层或者氮氧化硅层中的一种或者多种形成的叠层。
电极块、连接块和触控桥3020均可以采用金属或者氧化铟锡(英文:Indium Tin Oxide,简称:ITO)制成,电极块、连接块和触控桥3020的材料可以相同也可以不同。
图10是本公开实施例提供的一种透明触控板的局部结构示意图。如图10所示,该透明触控板30的触控电极图形302包括触控信号线3023和阵列分布的多个触控检测电极3024。
图9和图10所示的透明触控板30的结构仅作为本公开实施例的示例,透明触控板30的结构还可以采用相关领域中的其他结构形式。
可选地,投影幕布的总厚度不超过5mm。投影幕布整体厚度越大越容易出现明显的重影,较小的厚度有利于提高画面效果。
图11是本公开实施例提供的一种透明触控板的局部结构示意图。如图11所示,投影幕布还可以包括底座50,第一透明盖板21、第一纳米粒子层41、透 明触控板30、第二纳米粒子层42和第二透明盖板22安装在底座50上。底座50能够提供支撑,方便投影幕布的摆放。
底座50上可以具有操作钮51,以方便用户操作,例如至少包括开机操作。操作钮51可以只分布在投影幕布的一侧,也可以分布在投影幕布的两侧。操作钮51可以是物理按键,也可以虚拟按键,当操作钮51为虚拟按键时,底座50上可以具有触控屏,以提供虚拟按键。
投影幕布也可以包括遥控器,遥控器可以实现与操作钮51相同的功能,以方便用户进行操作。
如图11所示,通常在利用投影幕布进行投影显示时,投影机100有4种摆放位置,其中在投影幕布的同侧时,投影机100位于上方和位于下方除了高度不同外,投影机100本身也绕其镜头的轴线旋转了180°,投影幕布还可以与投影机100通讯连接,通过操作钮51选择不同的投影方式,使投影机100能够在投影幕布上形成正立的图像。
图12是本公开实施例提供的一种投影幕布的制造方法流程图。该方法用于制造图2~12所示的投影幕布。如图12所示,该制造方法包括:
在步骤S11中,形成第一纳米粒子层。
其中,第一纳米粒子层包括分散的粒径不同的多种纳米粒子。
在步骤S12中,将第一纳米粒子层和第一透明盖板依次层叠于透明触控板的一侧,形成投影幕布。
在制作图7所示的投影幕布时,步骤S11可以包括:
在第一透明盖板的一面形成纳米粒子溶胶。
结合图7,通过直接在第一透明盖板21上形成纳米粒子溶胶,待纳米粒子溶胶凝固后就可以直接在第一透明盖板21上形成第一纳米粒子层41。直接以第一透明盖板21作为载体,有利于减小投影幕布的总厚度。
图13为本公开实施例提供的一种形成纳米粒子溶胶的过程示意图。如图13所示,可以通过喷头80将纳米粒子溶胶喷射至第一透明盖板21上。该喷头80上具有多个喷孔80a;其中多个喷孔80a可以呈直线分布,且多个喷孔80a的分布密度从中部到两端的位置逐渐增大。分布密度是指单位面积内喷孔80a的数量。如图13中所示,在喷孔80a的排列方向上,靠近中部的喷孔80a分布密度较小,靠近两端的喷孔80a分布密度较大。多个喷孔80a也可以是从中部到两端 的位置喷孔尺寸逐渐增大。在向第一透明盖板21喷射纳米粒子溶胶时喷孔80a应对应于第一透明盖板21的中部。
如图13所示,将喷头80朝向第一透明盖板21,使多个喷孔80a的排列方向平行于第一透明盖板21的第一侧边21a。沿第一透明盖板21的第二侧边21b移动喷头80(移动是相对的,事实上也可移动第一透明盖板21),图13中箭头所示方向即为喷头80的移动方向,在移动喷头80的过程中,通过喷头80向第一透明盖板21喷射纳米粒子溶胶,移动速度先加快再减慢。
由于多个喷孔80a的分布密度沿多个喷孔80a的排列方向从中部到两端的位置逐渐增大,因此喷头80在喷射纳米粒子溶胶时,沿第一侧边21a方向,喷射到第一透明盖板21中部的纳米粒子浓度较低,边缘的较高。在移动喷头80的过程中,移动速度先加快再减慢,即在第二侧边21b方向上,喷头80在第一透明盖板21中部时移动速度快,在边缘时移动速度慢,这样在喷嘴80的分布密度的作用下结合喷头80的移动速度,使得第一透明盖板21上的粒子浓度从中央向边缘增加。
在制作图8所示的投影幕布时,步骤S11可以包括:
提供透明基材薄膜,在透明基材薄膜的表面形成纳米粒子溶胶,将透明基材薄膜设置在第一透明盖板的一面。
以透明基材薄膜作为第一透明基底411,将纳米粒子400形成在第一透明基底411上,第一透明基底411可以粘贴到第一透明盖板21上。以透明基材薄膜作为载体制作第一纳米粒子层41,避免制作过程中损坏第一透明盖板21,并且也方便对第一纳米粒子层41进行裁剪。
也可以通过喷头在透明基材薄膜的表面形成纳米粒子溶胶。可以将喷头朝向透明基材薄膜,使多个喷孔的排列方向平行于透明基材薄膜的第一侧边。沿透明基材薄膜的第二侧边移动喷头,在移动喷头的过程中,通过喷头向透明基材薄膜喷射纳米粒子溶胶,移动速度先加快再减慢。使得透明基材薄膜上的粒子浓度从中央向边缘增加。
图14是本公开实施例提供的一种投影幕布的制造方法流程图。该方法用于制造图3所示的投影幕布。如图14所示,该制造方法包括:
在步骤S21中,形成第一纳米粒子层。
步骤S21可以与前述的步骤S11相同,此处不再详述。
在步骤S22中,形成第二纳米粒子层。
第二纳米粒子层的形式方法可以参照第一纳米粒子层的形成方法,此处不再详述。
在步骤S23中,将第一纳米粒子层和第一透明盖板依次层叠于透明触控板的一侧,将第二纳米粒子层和第二透明盖板依次层叠于透明触控板的另一侧,形成投影幕布。
投影幕布在承接投影机发出的光时,尺寸在纳米级别的纳米粒子会对光产生散射作用,并且粒径不同的纳米粒子散射的光的波长也不同,从而能够对投影机投射到投影幕布上的不同颜色的光进行散射,并使散射后的光进入观察者的眼睛,观察者接收到由纳米粒子散射的各种颜色的光就可以感知到投影机投射出的图像。
图15是本公开实施例提供的一种投影显示系统的结构示意图。如图15所示,该投影显示系统包括投影机100、控制器200和如图2~12所示的任一种投影幕布300。控制器200与投影幕布300的透明触控板30连接,控制器200与投影机100连接,控制器200用于根据透明触控板30输出的触控信号控制投影机100进行投影显示。
这里的连接可以是通讯连接,通讯连接包括有线连接和无线连接。
投影幕布在承接投影机发出的光时,尺寸在纳米级别的纳米粒子会对光产生散射作用,并且粒径不同的纳米粒子散射的光的波长也不同,从而能够对投影机投射到投影幕布上的不同颜色的光进行散射,并使散射后的光进入观察者的眼睛,观察者接收到由纳米粒子散射的各种颜色的光就可以感知到投影机投射出的图像。
投影机100可以是短焦投影机或超短焦投影机,投影机100根据投射比的大小可以分为短焦投影机、超短焦投影机,投射比为投影距离与画面宽度的比值,投影距离是投影机100与投影幕布300的垂直距离,投影出相同宽度的画面,超短焦投影机的投影距离比短焦投影机更小,通常为几厘米到十几厘米。采用超短焦投影机,投影显示系统的体积更小。
投影机100的投射比可以不超过0.5,亮度可以不小于2500lm。
投影机100与控制器200可以通过无线保真(英文:Wireless Fidelity,简称:Wi-Fi)、蜂窝网络或云端连接。例如投影机100可以具有Wi-Fi模块,投影机100与控制器200通过Wi-Fi连接。
控制器200与投影幕布300的透明触控板30可以通过柔性电路板(英文:Flexible Printed Circuit,简称:FPC)连接。
图16是本公开实施例提供的一种投影显示方法的流程图。该投影显示方法应用于图15所示的投影显示系统。如图16所示,该投影显示方法包括:
S31:获取映射指示信息。
其中,映射指示信息用于指示触控坐标系与图像坐标系的映射关系。
S32:根据映射指示信息和触控位置确定触控位置在图像坐标系中的坐标。
触控坐标系是以投影幕布为参照建立的平面坐标系,触控坐标系中的坐标用于指示触点在投影幕布上的位置。
图像坐标系是以控制器提供给投影机的图像为参照建立的平面坐标系,图像坐标系中的坐标用于指示图像中的点所在的位置。
为了使投影显示系统能够正确的响应触控指令,触控坐标系与图像坐标系建立有一定的映射关系,使得图像投射到投影幕布上时,根据投影幕布上的触点在触控坐标系中的坐标以及映射关系,能够确定出图像中,投射在投影幕布上,与该触点重合的点在图像坐标系中的坐标。
触控坐标系与图像坐标系的映射关系包括第一映射关系和第二映射关系,第一映射关系包括触控坐标系与图像坐标系重合。第二映射关系包括触控坐标系的纵坐标与图像坐标系的纵坐标重合,触控坐标系的横坐标与图像坐标系的横坐标方向相反。
以图像投射到投影幕布上,用户进行书写操作为例,对该投影显示方法进行说明,进行书写操作时,用户点击图像中的点,图像中相应的点由白色转变为黑色。图17是本公开实施例提供的一种投影显示的示意图。如图17所示,位于投影幕布的第一侧的用户F在使用投影显示系统进行投影显示。在使用该投影显示系统进行投影显示的过程中,投影显示系统获取映射指示信息,根据所获取的映射指示信息确定触控坐标系与图像坐标系的映射关系。图18是本公开实施例提供的一种投影显示的过程示意图。如图18所示,用户F位于投影幕布的第一侧,触控坐标系与图像坐标系重合。控制器200将图像T 1提供给投影 机100,由投影机100将图像T 1投射到投影幕布300上,图像T 1是显示有大写字母E的图像。在进行书写过程中,用户在图像T 1上点击了投影幕布300上的点M,点M在触控坐标系中的坐标为(m,n),由于触控坐标系的坐标轴与图像坐标系的坐标轴重合,因此根据点M在触控坐标系中的坐标,可以确定出图像T 1中,投射在投影幕布300上,与点M重合的点M’在图像坐标系中的坐标也为(m,n),投影显示系统响应用户点击点M的操作,控制器200将图像T 2提供给投影机100,图像T 2与图像T 1的区别在于点M’为黑色。投影机100将图像T 2投射至投影幕布300显示,图像T 2中的点M’与投影幕布300上的点M重合。
如图17所示,位于投影幕布的第二侧的用户G在使用投影显示系统进行投影显示。在使用该投影显示系统进行投影显示的过程中,投影显示系统获取映射指示信息,根据所获取的映射指示信息确定触控坐标系与图像坐标系的映射关系。图19是本公开实施例提供的一种投影显示的过程示意图。如图19所示,用户G位于投影幕布的第二侧,触控坐标系的纵坐标与图像坐标系的纵坐标重合,触控坐标系的横坐标与图像坐标系的横坐标方向相反。控制器200仍将图像T 1提供给投影机100,由投影机100将图像T 1投射到投影幕布300上。用户G为了使投影幕布300上也显示出图像T 3,用户G在图像T 1上点击了投影幕布300上的点Q,点Q在触控坐标系中的坐标为(-m,n),即点Q和点M关于触控坐标系的纵轴对称。由于触控坐标系的纵坐标与图像坐标系的纵坐标重合,触控坐标系的横坐标与图像坐标系的横坐标方向相反,因此根据点Q在触控坐标系中的坐标,可以确定出图像T 1中,投射在投影幕布300上,与点Q重合的点M’在图像坐标系中的坐标为(m,n),投影显示系统响应用户点击点Q的操作,控制器200将图像T 2提供给投影机100,图像T 2与图像T 1的区别在于点M’为黑色。投影机100将图像T 2投射至投影幕布300显示,图像T 2中的点M’与投影幕布300上的点Q重合。
可选地,获取映射指示信息可以包括:
接收用户指令,根据用户指令获取映射指示信息。
示例性地,用户指令可以通过触发操作钮发出。操作钮可以由用户进行触发。用户可以根据自身与投影幕布的相对位置,触发操作钮,以发出相应的指令,或者也可以通过前述的遥控器发出指令。
图20是本公开实施例提供的一种投影显示方法的流程图,该方法用于投影显示系统开机后的调整。如图20所示,该方法包括:
S41:将默认图像投射至投影幕布。
默认图像可以是投影显示系统的开机图像。
S42:获取位置指示信息,该位置指示信息用于指示观察者、投影机和投影幕布的相对位置关系。
S43:根据位置指示信息调整投影画面。
图21是本公开实施例提供的一种投影显示系统的工作流程图。如图21所示,示例性地,在投影显示系统开机后,投影机先将默认图像投射至投影幕布。
然后获取位置指示信息,该位置指示信息用于指示观察者、投影机和投影幕布的相对位置关系,观察者与投影机可以位于投影幕布的同一侧,也可以分别位于投影幕布的两侧。
若观察者与投影机位于投影幕布的同一侧,则保持当前投射的默认图像;若观察者和投影机分别位于投影幕布的两侧,则对默认图像镜像显示,即左右翻转,再投射至投影幕布。
再确认投影机的投影位置,若投影机位于投影幕布的下方,则保持当前投射的默认图像,若投影机位于投影幕布的上方,则对默认图像进行180°旋转,再投射至投影幕布。
接收触控指令,根据指示信息和触控位置确定触控位置在图像坐标系中的坐标。
以上所述仅为本公开的可选实施例,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (23)

  1. 一种投影幕布,所述投影幕布包括第一透明盖板(21)、透明触控板(30)和第一纳米粒子层(41),所述第一纳米粒子层(41)和所述第一透明盖板(21)依次层叠于所述透明触控板(30)的一侧,所述第一纳米粒子层(41)包括分散的粒径不同的多种纳米粒子(400)。
  2. 根据权利要求1所述的投影幕布,其中,所述投影幕布还包括第二透明盖板(22)和第二纳米粒子层(42),所述第二纳米粒子层(42)和所述第二透明盖板(22)依次层叠于所述透明触控板(30)的另一侧,所述第二纳米粒子层(42)包括分散的粒径不同的多种纳米粒子(400)。
  3. 根据权利要求2所述的投影幕布,其中,所述第一纳米粒子层(41)和所述第二纳米粒子层中,相同粒径的纳米粒子(400)的分布相同。
  4. 根据权利要求3所述的投影幕布,其中,所述第一纳米粒子层(41)的各种纳米粒子(400)总的粒子浓度从所述投影幕布的中央向边缘逐渐增加。
  5. 根据权利要求4所述的投影幕布,其中,所述第一纳米粒子层(41)的各种所述纳米粒子(400)总的粒子浓度为5*10 8/cm 2~5*10 9/cm 2
  6. 根据权利要求1~5任一项所述的投影幕布,其中,所述纳米粒子(400)包括内核(4011)和包裹在所述内核(4011)外的外壳(4012),所述内核(4011)和所述外壳(4012)采用不同的材料制成。
  7. 根据权利要求6所述的投影幕布,其中,所述内核(4011)采用Si制成,所述外壳(4012)采用Ag制成,粒径不同的所述纳米粒子(400)的外壳(4012)的厚度和内核(4011)的直径中的至少一种不同。
  8. 根据权利要求1~5任一项所述的投影幕布,其中,所述纳米粒子(400) 为ZnO、Al 2O 3或TiO 2纳米粒子。
  9. 根据权利要求1~5任一项所述的投影幕布,其中,所述纳米粒子(400)的粒径不大于100nm。
  10. 根据权利要求2~5任一项所述的投影幕布,其中,
    所述第一纳米粒子层(41)还包括第一透明基底(411),所述透明触控板(30)的所述一侧的纳米粒子(400)位于所述第一透明基底(411)的表面上;
    所述第二纳米粒子层(42)还包括第二透明基底(421),所述透明触控板(30)的所述另一侧的纳米粒子(400)位于所述第二透明基底(421)的表面上。
  11. 根据权利要求10所述的投影幕布,其中,所述第一透明盖板(21)、所述第一纳米粒子层(41)、所述透明触控板(30)、所述第二纳米粒子层(42)和所述第二透明盖板(22)通过透明粘合剂(43)粘接。
  12. 根据权利要求2~5任一项所述的投影幕布,其中,所述透明触控板(30)包括透明基板(301)和位于所述透明基板(301)上的触控电极图形(302);
    所述触控电极图形(302)包括多个触控驱动电极(3021)、多个触控感应电极(3022)和触控信号线(3023),所述触控驱动电极(3021)与所述触控感应电极(3022)交叉设置,所述触控驱动电极(3021)与所述触控感应电极(3022)交叉处被触控绝缘层绝缘间隔开,每个所述触控驱动电极(3021)和每个所述触控感应电极(3022)均对应连接一条所述触控信号线(3023);或者
    所述触控电极图形(302)包括触控信号线(3023)和阵列分布的多个触控检测电极(3024),每个所述触控检测电极(3024)均对应连接一条所述触控信号线(3023)。
  13. 根据权利要求12所述的投影幕布,其中,所述触控电极图形(302)位于所述透明基板(301)靠近所述第一透明盖板(21)一侧,所述第二透明盖板 (22)的厚度小于所述第一透明盖板(21)的厚度。
  14. 根据权利要求13所述的投影幕布,其中,所述第一透明盖板(21)的厚度等于所述第二透明盖板(22)与所述透明基板(301)的厚度之和。
  15. 根据权利要求13所述的投影幕布,其中,所述第一透明盖板(21)的厚度为1mm~1.5mm,所述第二透明盖板(22)的厚度为1mm~1.5mm。
  16. 根据权利要求1~5任一项所述的投影幕布,其中,所述投影幕布的厚度不超过5mm。
  17. 一种投影显示系统,包括投影机(100)、控制器(200)和如权利要求1~16任一项所述的投影幕布(300),所述控制器(200)与所述投影幕布(300)的透明触控板(30)连接,所述控制器(200)与所述投影机(100)连接,所述控制器(200)用于根据所述透明触控板(30)输出的触控信号控制所述投影机(100)进行投影显示。
  18. 一种投影幕布的制造方法,包括:
    形成第一纳米粒子层,所述第一纳米粒子层包括分散的粒径不同的多种纳米粒子;
    将所述第一纳米粒子层和第一透明盖板依次层叠于透明触控板的一侧,形成投影幕布。
  19. 根据权利要求18所述的制造方法,其中,所述形成第一纳米粒子层,包括:
    在第一透明盖板的一面形成纳米粒子溶胶;或者,
    所述形成第一纳米粒子层,包括:
    提供透明基材薄膜;
    在所述透明基材薄膜的表面形成纳米粒子溶胶;
    将所述透明基材薄膜设置在所述第一透明盖板的一面。
  20. 根据权利要求19所述的制造方法,其中,
    所述在第一透明盖板的一面形成纳米粒子溶胶,包括:
    将喷头朝向所述第一透明盖板,所述喷头上具有多个喷孔,所述多个喷孔的分布密度沿所述多个喷孔的排列方向从中部到两端的位置逐渐增大或者所述多个喷孔的尺寸沿所述多个喷孔的排列方向从中部到两端的位置逐渐增大,使所述多个喷孔的排列方向平行于所述第一透明盖板的第一侧边;
    沿所述第一透明盖板的第二侧边相对移动所述喷头,在移动过程中,通过所述喷头向所述第一透明盖板喷射纳米粒子溶胶,移动速度先加快再减慢。
  21. 根据权利要求19所述的制造方法,其中,
    所述在所述透明基材薄膜的表面形成纳米粒子溶胶,包括:
    将喷头朝向所述透明基材薄膜,所述喷头上具有多个喷孔,所述多个喷孔的分布密度沿所述多个喷孔的排列方向从中部到两端的位置逐渐增大或者所述多个喷孔的尺寸沿所述多个喷孔的排列方向从中部到两端的位置逐渐增大,使所述多个喷孔的排列方向平行于所述第一透明盖板的第一侧边;
    沿所述透明基材薄膜的第二侧边移动所述喷头,在移动所述喷头的过程中,通过所述喷头向所述透明基材薄膜喷射纳米粒子溶胶,移动速度先加快再减慢。
  22. 一种投影显示方法,所述投影显示方法应用于权利要求17所述的投影显示系统,所述方法包括:
    获取映射指示信息,所述映射指示信息用于指示触控坐标系与图像坐标系的映射关系;
    根据所述映射指示信息和触控位置,确定所述触控位置在所述图像坐标系中的坐标。
  23. 根据权利要求22所述的投影显示方法,其中,在所述获取映射指示信息之前,所述方法还包括:
    将默认图像投射至投影幕布;
    获取位置指示信息,该位置指示信息用于指示观察者、投影机和投影幕布 的相对位置关系,
    根据位置指示信息调整投影画面。
PCT/CN2021/099174 2020-07-06 2021-06-09 投影幕布及其制造方法、投影显示系统及显示方法 WO2022007576A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/779,296 US11927878B2 (en) 2020-07-06 2021-06-09 Projection screen, manufacturing method, and display system having nanoparticle layers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010642530.1 2020-07-06
CN202010642530.1A CN113900348A (zh) 2020-07-06 2020-07-06 投影幕布及其制造方法、投影显示系统及显示方法

Publications (2)

Publication Number Publication Date
WO2022007576A1 true WO2022007576A1 (zh) 2022-01-13
WO2022007576A9 WO2022007576A9 (zh) 2022-03-17

Family

ID=79186898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/099174 WO2022007576A1 (zh) 2020-07-06 2021-06-09 投影幕布及其制造方法、投影显示系统及显示方法

Country Status (3)

Country Link
US (1) US11927878B2 (zh)
CN (1) CN113900348A (zh)
WO (1) WO2022007576A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11971175B1 (en) * 2023-08-05 2024-04-30 Modern Flames, Llc Thin film faux fireplace with two-sided view

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010157044A (ja) * 2008-12-26 2010-07-15 Tohoku Univ ディスプレイ装置とそれに用いるライトペン
CN105182676A (zh) * 2015-09-08 2015-12-23 京东方科技集团股份有限公司 投影幕布、触控屏投影显示方法及系统
CN106406450A (zh) * 2016-10-18 2017-02-15 孙绪刚 一种透明成像电子白板及互动透明电子白板系统
JP2017076216A (ja) * 2015-10-14 2017-04-20 アルプス電気株式会社 入力装置
CN109062431A (zh) * 2018-07-17 2018-12-21 京东方科技集团股份有限公司 一种触控模组、其制作方法及显示装置
CN109188848A (zh) * 2018-11-16 2019-01-11 烟台市谛源光科有限公司 带触控的正投短焦投影幕
CN210895411U (zh) * 2019-12-31 2020-06-30 苏州本瑞光电科技有限公司 一种双面投影触摸屏

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001265249A (ja) 2000-03-17 2001-09-28 Totoku Electric Co Ltd 無線センサユニット
JP2003005617A (ja) 2001-02-23 2003-01-08 Denso Corp ホログラムディスプレイ装置及びテレビ電話
US7710391B2 (en) 2002-05-28 2010-05-04 Matthew Bell Processing an image utilizing a spatially varying pattern
KR100935451B1 (ko) 2009-09-17 2010-01-06 (주)맥스파인 후면 투사 스크린
CN103460160A (zh) * 2011-02-07 2013-12-18 迪睿合电子材料有限公司 透明导电性元件、输入装置、电子设备以及透明导电性元件制作用原盘
JP2012185770A (ja) * 2011-03-08 2012-09-27 Sony Corp 透明電極素子、情報入力装置、および電子機器
JP2013020347A (ja) 2011-07-08 2013-01-31 Toppan Printing Co Ltd タッチパネルおよびタッチパネルの製造方法
US9335027B2 (en) 2013-01-02 2016-05-10 Massachusetts Institute Of Technology Methods and apparatus for transparent display using scattering nanoparticles
JP2016021170A (ja) * 2014-07-15 2016-02-04 日立化成株式会社 静電容量結合方式タッチパネル入力装置付き表示装置
JP6632429B2 (ja) 2016-03-07 2020-01-22 シャープ株式会社 情報表示装置および情報表示方法
JP2017215383A (ja) * 2016-05-30 2017-12-07 グンゼ株式会社 映写スクリーンシート及び入力機能付き映写スクリーンシート
US9971151B1 (en) 2016-06-13 2018-05-15 Amazon Technologies, Inc. Mountable clear displays and projection systems
CN109545440A (zh) * 2017-09-22 2019-03-29 南昌欧菲显示科技有限公司 透明导电性薄膜、触控屏及其制备方法
CN108334223A (zh) * 2018-01-19 2018-07-27 昆山维信诺科技有限公司 显示装置及其制备方法及电子产品
US10539864B2 (en) * 2018-02-08 2020-01-21 Guardian Glass, LLC Capacitive touch panel having diffuser and patterned electrode
TWI726654B (zh) * 2020-03-17 2021-05-01 鴻銳科技股份有限公司 光學面板的光學透明黏合層貼合結構
US11209923B2 (en) * 2020-05-01 2021-12-28 Futuretech Capital, Inc. Protective film for metal mesh touch sensor
CN114167675A (zh) * 2022-01-14 2022-03-11 江苏集萃智能液晶科技有限公司 一种触控透明投影膜、透明投影幕及透明投影系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010157044A (ja) * 2008-12-26 2010-07-15 Tohoku Univ ディスプレイ装置とそれに用いるライトペン
CN105182676A (zh) * 2015-09-08 2015-12-23 京东方科技集团股份有限公司 投影幕布、触控屏投影显示方法及系统
JP2017076216A (ja) * 2015-10-14 2017-04-20 アルプス電気株式会社 入力装置
CN106406450A (zh) * 2016-10-18 2017-02-15 孙绪刚 一种透明成像电子白板及互动透明电子白板系统
CN109062431A (zh) * 2018-07-17 2018-12-21 京东方科技集团股份有限公司 一种触控模组、其制作方法及显示装置
CN109188848A (zh) * 2018-11-16 2019-01-11 烟台市谛源光科有限公司 带触控的正投短焦投影幕
CN210895411U (zh) * 2019-12-31 2020-06-30 苏州本瑞光电科技有限公司 一种双面投影触摸屏

Also Published As

Publication number Publication date
WO2022007576A9 (zh) 2022-03-17
CN113900348A (zh) 2022-01-07
US20220413375A1 (en) 2022-12-29
US11927878B2 (en) 2024-03-12

Similar Documents

Publication Publication Date Title
JP5093717B2 (ja) 光学素子およびこれを用いた照明光学装置、表示装置、電子機器
KR101668939B1 (ko) 브로드밴드 반사 방지 필름을 구비한 디스플레이
US20100195201A1 (en) Screen
US9274255B2 (en) Light-diffusion member, manufacturing method thereof, and display device
US20180292595A1 (en) Display apparatus
CN104700721B (zh) 一种显示面板及其制造方法、显示装置
CN213405315U (zh) 用于会议桌的成像装置及具有其的会议桌
JP2016009271A (ja) 映像表示システム
TW201217895A (en) employing rugged surface of diffusion layer to diffuse exit light for excellent external light resistance capability and high gain
CN109239830A (zh) 光学膜、显示面板和显示装置
WO2021078056A1 (zh) 显示模组及其控制方法和装置、电子设备
WO2022007576A1 (zh) 投影幕布及其制造方法、投影显示系统及显示方法
WO2018032912A1 (zh) 平视显示装置及其控制方法
CN108363235A (zh) 减反膜及其制备方法、阵列基板、显示装置
KR20030081088A (ko) 마스크, 광 반사막 부착 기판, 광 반사막의 형성 방법,전기 광학 장치의 제조 방법, 및 전기 광학 장치, 및 전자기기
US11112554B2 (en) Back light unit, fabricating method thereof and display device
JP2003036143A (ja) インナータッチパネル
CN108663893A (zh) 背投影屏幕
WO2021248620A1 (zh) 光敏变色触控显示装置
CN111458923A (zh) 防窥膜及显示装置
WO2020025011A1 (zh) 显示装置
JPWO2013157431A1 (ja) 光制御部材およびその製造方法、表示装置
US9877002B2 (en) Reconfigurable mobile device
JP2019028308A (ja) 表示パネル及び表示装置
WO2021036161A1 (zh) 显示面板及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21838906

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21838906

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07/09/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21838906

Country of ref document: EP

Kind code of ref document: A1