WO2022007260A1 - 一种油水分离装置 - Google Patents

一种油水分离装置 Download PDF

Info

Publication number
WO2022007260A1
WO2022007260A1 PCT/CN2020/125249 CN2020125249W WO2022007260A1 WO 2022007260 A1 WO2022007260 A1 WO 2022007260A1 CN 2020125249 W CN2020125249 W CN 2020125249W WO 2022007260 A1 WO2022007260 A1 WO 2022007260A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
plate
longitudinal
water separation
wing
Prior art date
Application number
PCT/CN2020/125249
Other languages
English (en)
French (fr)
Inventor
胡长朝
徐孝轩
党伟
丁鹏元
王兴旺
唐志伟
谭文捷
王莉莉
司艳晓
毕彩霞
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司石油勘探开发研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司石油勘探开发研究院 filed Critical 中国石油化工股份有限公司
Priority to US18/005,007 priority Critical patent/US20230330563A1/en
Publication of WO2022007260A1 publication Critical patent/WO2022007260A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/04Breaking emulsions
    • B01D17/045Breaking emulsions with coalescers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/40Devices for separating or removing fatty or oily substances or similar floating material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/0208Separation of non-miscible liquids by sedimentation
    • B01D17/0211Separation of non-miscible liquids by sedimentation with baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/0208Separation of non-miscible liquids by sedimentation
    • B01D17/0214Separation of non-miscible liquids by sedimentation with removal of one of the phases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/10Nature of the water, waste water, sewage or sludge to be treated from quarries or from mining activities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/14Maintenance of water treatment installations

Definitions

  • the invention relates to an oil-water separation device, in particular to a device for separating an oil phase from a mixture.
  • the present invention relates to an oil-water separation device for oil field wellhead produced fluid.
  • Separation of various phases from mixtures containing multiple phases is a technique commonly used in modern industry and is widely used in various fields. For example, in municipal wastewater treatment and industrial wastewater treatment, it is often necessary to separate wastewater containing oil and suspended solids for subsequent classification.
  • phase separation of oilfield produced fluid is an important technology.
  • oilfield development enters the high water-cut development period, it is often necessary to transport the high water-cut produced fluid to the combined station for centralized heating and dehydration treatment over long distances. Qualified produced water after the above treatment is returned to the water injection station for water injection development.
  • the above-mentioned centralized treatment mode of high water-cut produced fluid has problems such as high energy consumption and overloaded operation of some stations, and it is difficult to effectively meet the water-based treatment needs of the high water-cut development stage.
  • the downhole water separation technology has been developed.
  • a downhole cyclone separator is used to accelerate the rotation of the oil well mixture, and the oil and water are separated by the principle of density difference and gravity separation.
  • Simultaneous injection and production are realized in the same wellbore, and one well can be used for two purposes.
  • the technology is currently used by the industry.
  • the above method has the problems of high requirements on the wellbore structure, difficult monitoring of the downhole separation effect, high equipment cost, slow development, and difficulty in popularization and application.
  • the invention aims to provide a wellhead oil-water separation device.
  • the present invention aims to provide an apparatus for phase separation of oil field wellhead produced fluids.
  • the device has a simple structure, small footprint, does not require dosing, and does not require oxygen exposure. It can realize on-site water separation and on-site treatment of wellhead produced fluid through physical methods under airtight conditions, so as to save investment and reduce operation. cost and improve economic efficiency.
  • an oil-water separation device comprising:
  • the longitudinal plate member divides the inner cavity of the casing into fluid passages
  • first guide hole arranged on the longitudinal plate or between the longitudinal plate and the inner wall of the casing, the first guide hole communicates with the fluid passage
  • a collecting pipe is provided at the longitudinal downstream end of the casing, and the collecting pipe communicates with the inner cavity of the casing through the top wall of the casing.
  • the oil-water separation device is arranged at the wellhead of the oil field for receiving the produced fluid at the wellhead, and the longitudinal plate is arranged in the inner cavity of the casing.
  • the oil layer is collected by multiple collection pipes for multiple times and then discharged; the fine suspended solids in the water are collided and aggregated, and the particle size becomes larger, and the Under the action, it slides down the upper wall of the longitudinal plate, and is guided by the second guide hole to settle into the lower space of the shell; the water flows in the middle of the shell, which realizes effective oil-water separation and separation of water and suspended solids. Preliminary separation.
  • each longitudinal plate member includes two airfoil plates arranged at an interval relative to each other, the inner end of each airfoil plate is higher than the outer end and is inclined and disposed, and each airfoil plate comprises a The wing head sub-board, the wing middle sub-board and the wing tail sub-board are sequentially connected in the direction from the end to the outer end.
  • a first guide hole is formed between the wing head sub-boards of the two matching airfoil plates.
  • a second guide hole is formed between the plate and the inner wall of the housing.
  • an oleophilic coating is provided on at least the lower surface of the mid-wing sub-panel of the airfoil panel.
  • a plurality of vertically spaced longitudinal plates are stacked in the inner cavity of the casing, and the first guide holes formed correspondingly by different longitudinal plates communicate through.
  • the angle formed by the connection line between the two end points of the wing head sub-plate at the upper end and the horizontal direction is compared with the connection line between the two end points of the wing head sub-plate at the lower end.
  • the angle formed with the horizontal direction is large
  • the angle formed by the connecting line between the two end points of the wing tail sub-plate and the horizontal direction gradually increases.
  • the vertical distance between adjacent wing middle sub-plates gradually decreases or is the same.
  • a communication hole that communicates with the fluid channel at both the upper and lower ends is provided on the mid-wing sub-plate of the at least one longitudinal plate at the lower end.
  • the mid-wing sub-board includes a plurality of broken line segments that are not on the same straight line, and adjacent broken line segments are fixedly connected.
  • the angle formed between the upper surfaces of adjacent polyline segments is in the range of 130 to 240 degrees.
  • the angle formed by the connecting line between the two end points of the wing head sub-plate and the horizontal direction is in the range of 30 to 85 degrees
  • the angle formed by the connecting line between the two end points of the wing tail sub-plate and the horizontal direction is in the range of 30 to 85 degrees
  • a plurality of collecting pipes are arranged at a longitudinal interval at the downstream end of the casing, and in the direction from upstream to downstream, the spacing between adjacent collecting pipes is equal or gradually increases.
  • Figure 1 shows an oil-water separation device according to an embodiment of the present invention
  • Figure 2 shows an axial cross-sectional view of an oil-water separation device according to an embodiment of the present invention
  • Figure 3 shows an axial cross-sectional view of a longitudinal panel according to an embodiment of the present invention
  • Figure 4 shows a longitudinal top view of a longitudinal panel according to one embodiment of the present invention.
  • FIG. 1 shows an oil-water separation device 100 according to an embodiment of the present invention.
  • the oil-water separation device 100 is arranged at the wellhead, and is used to separate the oil field produced fluid introduced thereinto, thereby outputting an oil phase and a mixture phase of water and suspended solids.
  • the oil-water separation device 100 is configured as a horizontal separator, including a substantially cylindrical casing 10 .
  • the housing 10 may also be formed into a quadrangle or other shapes.
  • At least one longitudinal panel 20 is arranged within the housing 10 .
  • the longitudinal plate 20 extends along the longitudinal direction of the casing 10 (ie, the left-right extending direction in FIG. 1 ), and is arranged obliquely with respect to the horizontal direction (the left-right extending direction in FIG. 2 ), so that the The lumen is divided into different fluid channels 30 , as shown in FIG. 2 .
  • a first guide hole 40 is provided on the longitudinal plate 20 or between the longitudinal plate 20 and the inner wall of the housing 10 .
  • a second guide hole 50 is provided on the longitudinal plate 20 or between the longitudinal plate 20 and the inner wall of the housing 10 .
  • both the first guide hole 40 and the second guide hole 50 communicate with the fluid channel 30 .
  • the geometrical positions of the second guide holes 50 are lower than the geometrical positions of the corresponding first guide holes 40 .
  • a collecting pipe 60 is provided at the downstream end of the casing 10 .
  • the collecting pipe 60 communicates with the upper space of the housing 10 for conveying the oil phase stored there outwards.
  • the downstream end of the housing 10 is used to transport the water and suspended solids mixture phase to the outside.
  • the fluid to be separated enters the flow channel 30 through the inlet (the left port in FIG. 1 ) of the oil-water separation device 100 .
  • the small oil droplets gather on the lower surface of the longitudinal plate 20 through collision coalescence and wet coalescence, continue to gather to form an oil film, float up under the action of buoyancy, and travel along the first guide hole. 40 is lifted into the upper space of the housing 10 .
  • the suspended solids in the water, after collision and coalescence the particle size becomes larger, slide down through the upper wall of the longitudinal plate 20 under the action of gravity, and sink to the shell along the second guide hole 50.
  • the oil-water separation device 100 can realize on-site water separation and on-site treatment of the produced fluid at the wellhead, and avoid problems such as long-distance round-trip transportation of produced water.
  • the downhole water separation technology is transferred to the bottom surface of the wellhead, which effectively avoids the limitation of the downhole water separation technology.
  • the oil-water separation device 100 is seldom restricted by the well site and other operations, and can be easily applied to any required well site.
  • the oil-water separation device 100 itself has a simple structure, a concise technological process, low investment, and a small footprint, which can well meet the needs of on-site water separation of the wellhead produced fluid.
  • each longitudinal plate member 20 includes two airfoil plates 21 arranged in pairs.
  • the two airfoil plates 21 are relatively spaced apart, as shown in FIG. 3 .
  • the inner end of the airfoil plate 21 is inclined higher than the outer end.
  • each airfoil plate 21 is sequentially connected in the direction from the inner end (the end close to the center of the casing 10 ) to the outer end (the end away from the inner end and away from the center of the casing 10 ).
  • the wing head sub-board 22, the wing middle sub-board 23 and the wing tail sub-board 24 are sequentially connected in the direction from the inner end (the end close to the center of the casing 10 ) to the outer end (the end away from the inner end and away from the center of the casing 10 ).
  • the paired two airfoil plates 21 are arranged at intervals on the left and right, so that a first guide hole 40 is formed between the wing head sub-plates 22 .
  • a second guide hole 50 is formed between the tail split plate 24 and the inner wall of the casing 10 .
  • the two airfoil plates 21 of each longitudinal plate member 20 are symmetrically distributed with respect to the longitudinal centerline of the casing 10, so that the first guide holes 40 correspond to the geometrically highest position of the inner space of the casing 10, and there are Helps the oil phase to drain and store into the upper space of the lumen of the housing 10 .
  • the present application is not limited to the above-mentioned structure of the vertical plate member 20 .
  • the longitudinal plate member 20 can also be configured in other structures.
  • the longitudinal plate 20 may include two airfoil plates with the same structure as above, but the airfoil plates are arranged in the inner cavity of the casing 10 in an inclined manner with the inner end lower than the outer end, so that the airfoil plates are arranged in an inclined manner in the inner end of the casing 10 .
  • a generally "V" shaped structure (not shown) is formed in the inner cavity of 10 . This form is equivalent to rotating the oil-water separation device 100 described in FIG. 2 along the circumferential direction by 180 degrees.
  • the first guide hole is provided between the wing tail sub-plate and the inner wall of the shell 10, and the second guide hole is provided in the paired two airfoil plates between the wing head sub-panels.
  • the longitudinal plate member 20 may also be configured as a broken line wave in the axial section.
  • the first guide holes are close to or located at the crests of the waves and the second guide holes are close to or located at the troughs of the waves.
  • the two different structures of the longitudinal plate 20 also utilize the principle that the oil phase is relatively light and floats up, which is similar to the working principle of the inverted "V"-shaped longitudinal plate 20 shown in FIG. 2 , and will not be repeated here.
  • the inverted "V"-shaped longitudinal plate 20 shown in FIG. 2 compared with the inverted "V"-shaped longitudinal plate 20 shown in FIG. 2 , the arrangement of the folded longitudinal plate is slightly more complicated, especially when the inner size of the housing 10 is limited, the separation effect is not prominent.
  • the "V"-shaped longitudinal plate makes the oil phase float up from both ends of the longitudinal plate. Compared with the way of floating in the middle as shown in Figure 2, the collision probability between oil droplets is reduced, the coalescence efficiency is low, and the middle The floating method can better gather the oil phase in the upper inner space of the casing 10 . Therefore, the inverted "V"-shaped longitudinal plate 20 shown in FIG. 2 not only has a simple structure and is easy to arrange, but also has a high oil discharge efficiency.
  • an oleophilic coating is provided on the lower surface of the airfoil plate 21 .
  • the lipophilic coating is a nano-silica layer.
  • a plurality of longitudinal plate members 20 are arranged in the inner cavity of the housing 10 .
  • the plurality of longitudinal plates 20 are arranged at intervals up and down, that is, the plurality of longitudinal plates 20 are arranged one above the other at a certain interval.
  • the first guide holes 40 corresponding to different longitudinal plates 20 correspond to each other and are connected vertically through, that is, the inner ends of the wing head sub-plates 22 on the same side are on the same vertical extending line.
  • the lateral dimension of the outlet of the first guide hole 40 (referring to the distance between the inner end points of the two paired wing head sub-plates 22 in FIG. 2 ) may be 5-50 mm.
  • the lateral dimension of the outlet end of the second guide hole 50 (which is consistent with the outer end of the tail sub-plate 24 in FIG. The shortest distance) can be 3-50mm.
  • the structure of the multi-layer longitudinal plate member 20 has the function of greatly improving the oil-water separation efficiency.
  • the inclination degrees of the wing sub-panels 22 of different longitudinal panels 20 are different. Specifically, the angle formed by the connecting line between the two end points of the wing head sub-plate 22 and the horizontal direction gradually decreases from top to bottom. It should be noted that, in the embodiment shown in FIG. 2 of the present application, since the wing head sub-board 22 is a straight plate, the above angle refers to the angle formed by the wing head sub-board 22 itself and the horizontal direction. It is represented by a in FIG. 2 .
  • the above arrangement makes the lower part of the first guide hole 40 at the upper end tend to tighten inward relative to the lower part of the first guide hole 40 at the lower end. The limit is getting smaller and smaller, which helps the oil phase to float.
  • the angle formed by the connecting line between the two end points of the wing head sub-board 22 and the horizontal direction is 30-85 degrees.
  • the angle between the uppermost wing head sub-plate 22 and the horizontal direction is 85 degrees
  • the angle between the lowermost wing head sub-plate 22 and the horizontal direction is 30 degrees.
  • the inclination degrees of the tail sub-panels 24 of different longitudinal panels 20 are also different. Specifically, in the direction from top to bottom, the angle (marked by b in FIG. 2 ) formed by the connecting line between the two end points of the wing tail sub-plate 24 and the horizontal direction gradually increases. That is to say, the included angle of the wing tail sub-plate 24 at the upper end is relatively small with respect to the horizontal direction, while the included angle of the wing tail sub-board 24 at the lower end is relatively large with respect to the horizontal direction so as to be more right angle, so that the suspended solids are more easily slides into the lower space of the housing 10 .
  • the above arrangement improves the sliding efficiency of the suspended solids, thereby improving the separation effect.
  • the angle formed by the connecting line between the two end points of the wing tail sub-board 24 and the horizontal direction is 30-85 degrees.
  • the angle between the uppermost wing tail sub-panel 24 and the horizontal direction is 30 degrees
  • the angle between the lowermost wing tail sub-panel 24 and the horizontal direction is 85 degrees.
  • the distance between the upper and lower adjacent longitudinal plate members 20 may be a fixed value or a variable value.
  • the vertical distance between adjacent wing mid-parts 23 gradually decreases. That is to say, at the lower end of the inner space of the housing 10 , the distribution of the longitudinal plates 20 is denser than that at the upper end. This arrangement optimizes the arrangement of the longitudinal plates 20.
  • the oil droplets in the lower space of the housing 10 are smaller in size than those in the upper space.
  • the denser longitudinal plates 20 can increase the collision probability of oil droplets and shorten the length of the oil droplets. The migration distance of oil droplets, thereby helping to improve the coalescence effect of oil droplets.
  • a communication hole (not shown in the figure) that communicates with the flow channel 30 is provided on the sub-plate 23 of the wing of at least one longitudinal plate member 20 at the lower end.
  • Which longitudinal plate member 20 the communication hole is specifically arranged on can be adjusted according to actual work needs.
  • communication holes may be provided on the sub-plates 23 of the wings of the three longitudinal plates 20 located at the lower ends.
  • the communication holes may be through holes drilled on the mid-wing sub-plate 23 , and the through holes are arranged at intervals in the longitudinal direction of the mid-wing sub-plate 23 . This arrangement can increase the turbulence of the produced fluid in the lower space of the casing 10 and help the oil droplets to collide and coalesce.
  • the angle (indicated by c in FIG. 2 ) formed by the connecting line between the two end points of the mid-wing sub-plate 23 and the horizontal direction is 15-60 degrees, for example, 35 degrees.
  • the mid-wing sub-board 23 can be a straight-line board or a folded-line board and includes a plurality of folded-line segments 25 that are not on the same straight line.
  • the angle formed between the upper surfaces of adjacent polyline segments 25 is in the range of 130 to 240 degrees.
  • This arrangement makes the change trend of the wing middle sub-plate 23 relatively gentle, and will not affect the oil phase floating and the suspended solid sliding.
  • this arrangement can appropriately increase the contact area between the mid-wing sub-plate 23 and the oil droplets within a certain range, thereby improving the oil-water separation efficiency.
  • a plurality of (eg, three or four) collecting pipes 60 are arranged at intervals at the downstream end of the casing 10 to collect oil in time and avoid interphase interference.
  • the collection pipes 60 may be arranged at equal intervals, and the collection pipes 60 may also be arranged at unequal intervals. For example, in the direction from upstream to downstream, the spacing between adjacent collection tubes 60 gradually increases.
  • a valve is set on the collecting pipe 60 to control the water split ratio.
  • the size of the oil-water separation device 100 can be adjusted appropriately.
  • the housing 10 has a longitudinal length of 8m and an inner diameter of 200mm.
  • eight layers of longitudinal panels 20 are arranged vertically and at equal distances up and down.
  • the uppermost end of the longitudinal plate 20 of the uppermost first layer is 20 mm away from the highest point of the inner wall of the casing 10 .
  • the vertical distance between the vertical plates 20 of the upper and lower adjacent layers is 20 mm.
  • the lateral dimension of the outlet of the first guide hole 40 is 10 mm.
  • the transverse dimension of the outlet of the second guide hole is 5 mm; three oil phase collecting pipes 60 with an inner diameter of 100 mm are arranged at equal distances on the top wall of the downstream end of the casing 10, and two adjacent oil phase collecting pipes 60 are separated by 800 mm.
  • the parameters of the wellhead water separation structure are designed as follows: the casing 10 is 12 m long and has an inner diameter of 250 mm. Inside the casing 10, eight layers of vertical panels 20 are arranged at intervals up and down. The uppermost end of the longitudinal plate 20 of the uppermost first layer is 30 mm away from the highest point of the inner wall of the casing 10 . The distance between the first and second longitudinal panels 20 is 20 mm. The lateral dimension of the outlet of the first guide hole 40 is 12 mm. The outlet of the second guide hole is 6 mm wide. A total of four oil phase collecting pipes 60 with an inner diameter of 150 mm are arranged on the top wall of the downstream end of the casing 10 at equal distances, and the distance between two adjacent oil phase collecting pipes 60 is 1000 mm.
  • Tests show that the oil-water separation device 100 according to the present application is used for processing wellhead produced fluid with a crude oil density of 0.88 g/cm 3 and a water content of 95%.
  • the oil-water separation device 100 can separate more than 70% of the produced water, and the oil content of the water is ⁇ 30 mg /L, has a very good oil-water separation effect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Removal Of Floating Material (AREA)

Abstract

一种油水分离装置(100),该油水分离装(100)置包括:壳体(10);沿壳体(10)的纵向方向布置的至少一个相对水平方向倾斜的纵向板件(20),纵向板件(20)将壳体(10)的内腔分为流体通道(30);设置在纵向板件(20)上或设置在纵向板件(20)与壳体(10)的内壁之间的第一引导孔(40),第一引导孔(40)与流体通道(30)连通;设置在纵向板件(20)上或设置在纵向板件(20)与壳体(10)的内壁之间的第二引导孔(50),第二引导孔(50)与流体通道(30)连通,并且,第二引导孔(50)的几何位置低于第一引导孔(40)的几何位置;设置在壳体(10)的纵向的下游端的收集管(60),收集管(60)通过壳体(10)的顶壁与壳体(10)的内腔连通。该油水分离装置(100)能实现就地处理,避免了长距离输送等问题。

Description

一种油水分离装置
相关申请的交叉引用
本申请要求享有于2020年7月10日提交的题为“一种油水分离装置”的中国专利申请CN202010663145.5的优先权,该申请通过引用结合于本文中。
技术领域
本发明涉及一种油水分离装置,具体地涉及一种用于将油相由混合物中分离出来的装置。特别是,本发明涉及一种用于油田井口采出液的油水分离装置。
背景技术
从含有多种相的混合物中分离出各种相是现代工业中普通使用的一项技术,在多种领域中都得到了广泛的应用。例如,在市政污水处理以及工业污水处理中,就经常需要对含有油和悬浮固体的污水进行分离,以便随后进行分类处理。
另外,在采油工业中,对油田采出液进行相分离更是一项重要的技术。尤其是,随着油田开发进入高含水开发期,常常需要将高含水采出液长距离输送至联合站进行集中加热脱水处理。经过上述处理合格的采出水再返输至注水站进行注水开发。上述这种高含水采出液集中处理模式存在能耗高、部分站场超负荷运行等问题,难以有效适应高含水开发阶段以水为主的处理需求。
为了解决上述集中处理模式产生的问题,井下分水技术得到了发展。一般采用井下旋流分离器使油井混合液加速旋转,利用密度差和重力分离原理将油水分离,低含水油举升至地面,低含油采出水(含油约300mg/L)回注到注入层,在同一井筒内实现注入、采出同步进行,一井两用。目前该技术已被业界使用。但是,上述方法存在对井身结构要求高、井下分离效果难以监测、设备费用高等问题,自身发展缓慢,推广应用困难。
发明内容
本发明旨在提供一种井口油水分离装置。尤其是,本发明旨在提供一种用于 对油田井口采出液进行相分离的装置。该装置结构简单、占地面积小,不需要加药,不需要曝氧,能在密闭条件下,通过物理方法实现对井口采出液就地分水、就地处理,以节约投资、降低运行费用、提高经济效益。
根据本发明,提出了一种油水分离装置,包括:
壳体,
沿壳体的纵向方向布置的至少一个相对水平方向倾斜的纵向板件,纵向板件将壳体的内腔分为流体通道,
设置在纵向板件上或设置在纵向板件与壳体的内壁之间的第一引导孔,第一引导孔与流体通道连通,
设置在纵向板件上或设置在纵向板件与壳体的内壁之间的第二引导孔,第二引导孔与流体通道连通,并且,第二引导孔的几何位置低于第一引导孔的几何位置,
设置在壳体的纵向的下游端的收集管,收集管通过壳体的顶壁与壳体的内腔连通。该油水分离装置设置在油田井口,用于接收井口采出液,该纵向板件设置在壳体的内腔中。在油田采出液于壳体内纵向流动时,分散于水中的小油滴经碰撞聚结和湿润聚结,变成较大油滴,在浮力作用下沿着倾斜设置的纵向板件的下壁面浮升,并由第一引导孔升至壳体的上部空间内,形成油层,油层由多个收集管多次收集后排出;水中的细小悬浮固体经碰撞聚并,粒径变大,在重力作用下沿着纵向板件的上壁面下滑,并由第二引导孔引导沉降至壳体的下部空间内;水则在壳体的中部流动,实现了有效的油水分离,以及水和悬浮固体的初步分离。
根据本发明的一个优选的实施例,各纵向板件包括两个相对间隔式设置的翼型板,各翼型板的内端高于外端而倾斜式设置,并且各翼型板包括从内端到外端方向上依次连接的翼头分板、翼中分板和翼尾分板,匹配的两个翼型板的翼头分板之间形成第一引导孔,而在各翼尾分板与壳体的内壁之间形成第二引导孔。
根据本发明的一个优选的实施例,在翼型板的至少翼中分板的下表面上设置有亲油覆层。
根据本发明的一个优选的实施例,在壳体的内腔中叠摞式设置多个上下间隔的纵向板件,不同的纵向板件所对应形成的第一引导孔贯通式连通。
根据本发明的一个优选的实施例,位于上端的翼头分板的两端点之间的连线与水平方向所形成的角度相较于位于下端的翼头分板的两端点之间的连线与水 平方向所形成的角度大,
和/或,在从上到下方向上,翼尾分板的两端点之间的连线与水平方向所形成的角度逐渐增加。
根据本发明的一个优选的实施例,在从上到下方向上,相邻的翼中分板的之间的竖向距离逐渐减小或相同。
根据本发明的一个优选的实施例,在处于下端的至少一个纵向板件的翼中分板上设置有上下均与流体通道连通的连通孔。
根据本发明的一个优选的实施例,翼中分板包括多个不在同一直线上的折线段,相邻的折线段固定连接。
根据本发明的一个优选的实施例,相邻的折线段的上表面之间所形成的角度处于130到240度的范围内。
根据本发明的一个优选的实施例,翼头分板的两端点之间的连线与水平方向所形成的角度处于30到85度的范围内,
和/或,翼尾分板的两端点之间的连线与水平方向所形成的角度处于30到85度的范围内,
和/或,翼中分板的两端点之间的连线与水平方向所形成的角度15到60度的范围内,
和/或,在壳体的下游端纵向间隔式设置多个收集管,在从上游到下游的方向上,相邻收集管之间的间距相等或逐渐增大。
附图说明
通过结合附图对本发明示例性实施方式进行更详细的描述,本发明的上述以及其它目的、特征和优势将变得更加明显。在图中:
图1显示了根据本发明的一个实施例的油水分离装置;
图2显示了根据本发明的一个实施例的油水分离装置的轴向截面图;
图3显示了根据本发明的一个实施例的纵向板件的轴向截面图;
图4显示了根据本发明的一个实施例的纵向板件的纵向俯视图。
在附图中,相同的部件使用相同的附图标记。附图并未按照实际的比例绘制。
具体实施方式
下面将结合附图对本发明作进一步说明。为方便理解,在下文中将结合用于对油田井口采出液(主要相为油、水和悬浮固体)进行相分离的装置来对本发明的原理进行说明。
图1显示了根据本发明的一个实施例的油水分离装置100。该油水分离装置100设置在井口处,用于将引导到其中的油田采出液进行分离,从而输出油相和水与悬浮固体的混合物相。
如图1所示,该油水分离装置100构造为卧式分离器,包括大致圆柱形的壳体10。需要说明的是,在另外的未示出的实施例中,壳体10也可以形成为四边形或其它形状。在壳体10内布置有至少一个纵向板件20。该纵向板件20沿壳体10的纵向方向(即图1中的左右延伸的方向)延伸,并相对于水平方向(图2中的左右延伸的方向)倾斜式布设,以将壳体10的内腔分为不同的流体通道30,如图2所示。在纵向板件20上或在纵向板件20与壳体10的内壁之间设置第一引导孔40。同时,在纵向板件20上或在纵向板件20与壳体10的内壁之间设置第二引导孔50。其中,第一引导孔40和第二引导孔50均与流体通道30连通。并且,第二引导孔50的几何位置低于相应的第一引导孔40的几何位置。在壳体10的下游端设置有收集管60。该收集管60与壳体10的上部空间连通,以用于向外输送储存在该处的油相。而壳体10的下游端用于向外输送水和悬浮固体混合物相。
在工作过程中,需要被分离的流体(在该实施例中为油田井口采出液)通过油水分离装置100的入口(图1中的左端口)进入到流动通道30内。流体在流经流动通道30之后,小油滴经碰撞聚结和湿润聚结,聚集在纵向板件20的下表面,继续聚集而形成油膜,在浮力作用下上浮,并沿着第一引导孔40升至壳体10的上部空间内。流体在流经流动通道30之后,水中的悬浮固体,经碰撞聚并,粒径变大后,在重力作用下经过纵向板件20的上壁面下滑,沿着第二引导孔50下沉到壳体10的下部空间内。从而,使得被分离的油相通过收集管60输出,而水携带有悬浮固体的混合相从油水分离装置100的下游端出口(即图1中的右端)流出。该油水分离装置100能实现井口采出液就地分水、就地处理,避免了采出水长距离往返输送等问题。通过该油水分离装置100将井下分水技术转移到井口底面上,有效规避了井下分水技术的局限性。同时,该油水分离装置100很少能受到井场以及其它作业限制,可以方便地应用于任何需要的井场。再有,该油水 分离装置100本身结构简单,工艺流程简洁,投资低,占地小,可以很好的满足井口采出液就地分水的需要。
根据本发明,如图2所示,各纵向板件20包括两个配对式设置的翼型板21。这两个翼型板21相对式间隔分布,如图3所示。优选地,翼型板21的内端高于外端而倾斜式设置。如图3所示,各翼型板21包括从内端(接近于壳体10的中心的一端)到外端(与所述内端背离并远离壳体10的中心的一端)方向上依次连接的翼头分板22、翼中分板23和翼尾分板24。其中,如图4所示,配对的两个翼型板21左右间隔式设置,以使得翼头分板22之间形成第一引导孔40。翼尾分板24与壳体10的内壁之间形成第二引导孔50。进一步优选地,各纵向板件20的两个翼型板21关于壳体10的纵向中心线对称式分布,以使得第一引导孔40与壳体10的内空间的几何最高位置相对应,有助于油相排出并存储到壳体10的内腔上部空间中。在实际工作过程中,采出液进入到壳体10的内腔中后,流经纵向板件20,向上浮出来的油滴中的多数会聚集在翼中分板23的下表面,聚集的油滴会在浮力作用下沿着翼中分板23的斜面向上滑脱,在滑脱到翼头分板22后,将油滴从采出液中分离出去,而进入到壳体10的上部空间;而在翼型板21的上表面,悬浮固体由翼中分板23的上表面向下滑动,并由翼尾分板24引导进入到壳体10的下部空间内。这种结构的纵向板件20能很好的实现油水分离。
需要说明的是,本申请并不限定于上述的纵向板件20结构方式。也就是说,纵向板件20还可以构造为其它结构。例如,纵向板件20可以包括与上述自身结构相同的两个翼型板,但是翼型板在壳体10的内腔中的布设方式为内端低于外端倾斜式设置,以在壳体10的内腔中形成大体的“V”型结构(图中未示出)。这种形式相当于将图2中所述的油水分离装置100沿着周向旋转180度。容易理解地,对应这种“V”型的纵向板件20,第一引导孔设置在翼尾分板与壳体10的内壁之间,而第二引导孔设置在配对的两个翼型板的翼头分板之间。再例如,纵向板件20还可以构造为在轴向截面上的折线波浪状。此形式中,第一引导孔靠近或者设置在波峰处而第二引导孔靠近或者设置在波谷处。这两种不同结构的纵向板件20也是利用了油相相对轻而上浮的原理,与图2所示的倒“V”型纵向板件20的工作原理相类似,在此不再赘述。
但是,相对于图2所示的倒“V”型的纵向板件20,折线型的纵向板件布设略显复杂,尤其在壳体10的内部尺寸有限的情况下,分离效果并不突出。而“V” 型的纵向板件使得油相从纵向板件的两端上浮,相对于图2这种中间上浮的方式,降低了油滴之间的碰撞几率,聚结效率偏低,而且中间上浮的方式能更好的将油相聚集在壳体10的上部内空间内。由此,图2中所示的这种倒“V”型的纵向板件20不仅结构简单,布设容易,还具有很高的排油效率。
根据本发明,在翼型板21的下表面上设置有亲油覆层。例如,该亲油覆层为纳米二氧化硅层。通过这种设置能使得小油滴更容易聚集在翼型板21的下表面上,有助于提高油水分离的效率和效果。
如图2所示,在壳体10的内腔中设置多个纵向板件20。多个纵向板件20上下间隔式布设,也就是,多个纵向板件20以一定的间距上下叠摞设置。其中,不同的纵向板件20所对应的第一引导孔40互相对应,并上下贯通式连通,也就是,同侧的翼头分板22的内端在同一竖向延伸的直线上。例如,第一引导孔40的出口横向尺寸(是指图2中的两个配对的翼头分板22的内端点之间的距离)可以为5-50mm。第二引导孔50的出口端(与图2中的翼尾分板24的外端一致)的横向尺寸(是指图2中的翼尾分板24的外端点到壳体10的内腔的最短距离)可以为3-50mm。这种多层纵向板件20的结构形式,具有大幅度提高油水分离效率的功能。
在本申请中,横向截面中,不同的纵向板件20的翼头分板22的倾斜程度不相同。具体地,翼头分板22的两端点之间的连线与水平方向所形成的角度在从上到下方向上逐渐减小。需要说明的是,在本申请的图2所示的实施例中,由于翼头分板22为直线板,则上述角度指的是翼头分板22自身与水平方向所形成的夹角,在图2中用a表示。上述设置使得位于上端的第一引导孔40的下部分相对于其下端的第一引导孔40的下部分具有向内收紧的趋势,在上端油相对于下端油丰富的情况下,对油相的限制越来越小,有助于油相上浮。
在一个优选地实施例中,翼头分板22的两端点之间的连线与水平方向所形成的角度为30-85度。例如,图2中,最上端的翼头分板22与水平方向的角度为85度,而最下端的翼头分板22与水平方向的角度30度。
横向截面中,不同的纵向板件20的翼尾分板24的倾斜程度也不相同。具体地,在从上到下方向上,翼尾分板24的两端点之间的连线与水平方向所形成的角度(图2中以b标识)逐渐增加。也就是说,位于上端的翼尾分板24相对于水平方向的夹角比较小,而位于下端的翼尾分板24相对于水平方向的夹角比较 大以更趋于直角,使得悬浮固体更容易地滑入到壳体10的下空间内。上述设置方式提高了悬浮固体的下滑效率,进而提高了分离效果。
在一个优选地实施例中,翼尾分板24的两端点之间的连线与水平方向所形成的角度为30-85度。例如,图2中,最上端的翼尾分板24与水平方向的角度为30度,而最下端的翼尾分板24与水平方向的角度85度。
根据本申请,在壳体10的内腔中,上下相邻的纵向板件20的之间的间距可以是定值也可以是变化的值。例如,在从上到下方向上,相邻的翼中分板23之间的竖向距离逐渐减小。也就是说,在壳体10的内空间的下端相较于上端,纵向板件20的分布更加密集。这种设置优化了纵向板件20的布设,在分离过程中,壳体10的下部空间的油滴比上部空间粒径小,通过比较密集的纵向板件20可以增加油滴的碰撞机率,缩短油滴的运移距离,从而有助于提高油滴聚结效果。
根据本发明,在处于下端的至少一个纵向板件20的翼中分板23上设置有与流通通道30连通的连通孔(图中未示出)。连通孔具体设置在哪个纵向板件20上,可以根据实际工作需要进行一定调整。例如,在如图2所示的具有上下八个纵向板件20的实施例中,可以在位于下端的三个纵向板件20的翼中分板23上设置连通孔。具体地,该连通孔可以是钻设在翼中分板23上的通孔,该通孔在翼中分板23的纵向方向上间隔式设置。这种设置可以在壳体10的下部空间内增加采出液的扰动,有助于油滴碰撞聚结。
根据本发明,翼中分板23的两端点之间的连线与水平方向所形成的角度(在图2中以c表示)为15-60度,例如,可以为35度。
根据本发明,翼中分板23可以为直线板,还可以为折线板并包括多个不在同一直线上的折线段25。优选地,相邻的折线段25的上表面之间所形成的角度(在图中用d表示)处于130到240度的范围内。这种设置使得翼中分板23的自身变化趋势比较平缓,不至于影响油相上浮以及悬浮固体下滑。但是,这种设置可以在一定范围内适当增加翼中分板23与油滴的接触面积,进而提高油水分离效率。
本申请中,在壳体10的下游端间隔式设置多个(例如,三个或四个)收集管60,及时收油,避免了相间的干扰。可以等距离间隔设置收集管60,还可以非等距离间隔设置收集管60。例如,在从上游到下游的方向上,相邻收集管60之间的间距逐渐增大。在收集管60上设置阀门,以控制分水比例。
在实际生产过程中,油水分离装置100的尺寸可以进行适当的调整。
在一个实施例中,壳体10的纵向长8m,内直径200mm。壳体10内,在竖向,上下等距离设置八层纵向板件20。最上端的第一层的纵向板件20的最上端距壳体10的内壁最高点20mm。上下相邻两层纵向板件20之间的竖向距离为20mm。第一引导孔40的出口横向尺寸为10mm。第二引导孔的出口的横向尺寸为5mm;在壳体10的下游端顶壁上等距离设置内直径100mm的油相收集管60共3根,相邻两根油相收集管60相距800mm。
在本发明的另一个实施例中,井口分水结构参数设计如下:壳体10长12m,内直径250mm。壳体10内,上下间隔式设置8层纵向板件20。最上端的第一层的纵向板件20的最上端距壳体10的内壁最高点30mm。第一层和第二层纵向板件20之间的距离为20mm。第一引导孔40的出口横向尺寸为12mm。第二引导孔的出口宽6mm。在壳体10的下游端顶壁上等距离设置内直径150mm的油相收集管60共4根,相邻两根油相收集管60相距1000mm。
试验显示,根据本申请的油水分离装置100,用于处理原油密度0.88g/cm 3、含水95%的井口采出液,油水分离装置100能够分出70%以上的采出水,出水含油≤30mg/L,具有非常好的油水分离效果。
尽管在上文中结合用于对井口采出液进行相分离的装置来对本发明的原理进行了说明,然而可以理解,本发明的原理可同样地用于市政污水以及工业污水的处理。
虽然已经参考优选实施例对本发明进行了描述,但在不脱离本发明的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本发明并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (10)

  1. 一种油水分离装置,其特征在于,包括:
    壳体,
    沿所述壳体的纵向方向布置的至少一个相对水平方向倾斜的纵向板件,所述纵向板件将所述壳体的内腔分为流体通道,
    设置在所述纵向板件上或设置在所述纵向板件与所述壳体的内壁之间的第一引导孔,所述第一引导孔与所述流体通道连通,
    设置在所述纵向板件上或设置在所述纵向板件与所述壳体的内壁之间的第二引导孔,所述第二引导孔与所述流体通道连通,并且,所述第二引导孔的几何位置低于所述第一引导孔的几何位置,
    设置在所述壳体的纵向的下游端的收集管,所述收集管通过所述壳体的顶壁与所述壳体的内腔连通。
  2. 根据权利要求1所述的油水分离装置,其特征在于,各所述纵向板件包括两个相对间隔式设置的翼型板,各所述翼型板的内端高于外端而倾斜式设置,并且各所述翼型板包括从内端到外端方向上依次连接的翼头分板、翼中分板和翼尾分板,匹配的两个所述翼型板的所述翼头分板之间形成所述第一引导孔,而在各所述翼尾分板与所述壳体的内壁之间形成所述第二引导孔。
  3. 根据权利要求2所述的油水分离装置,其特征在于,在所述翼型板的下表面上设置有亲油覆层。
  4. 根据权利要求2或3所述的油水分离装置,其特征在于,在所述壳体的内腔中叠摞式设置多个上下间隔的所述纵向板件,不同的所述纵向板件所对应形成的所述第一引导孔贯通式连通。
  5. 根据权利要求4所述的油水分离装置,其特征在于,位于上端的所述翼头分板的两端点之间的连线与水平方向所形成的角度相较于位于下端的所述翼头分板的两端点之间的连线与水平方向所形成的角度大,
    和/或,在从上到下方向上,所述翼尾分板的两端点之间的连线与水平方向所形成的角度逐渐增加。
  6. 根据权利要求4或5所述的油水分离装置,其特征在于,在从上到下方向上,相邻的所述翼中分板的之间的竖向距离逐渐减小或相同。
  7. 根据权利要求4到6中任一项所述的油水分离装置,其特征在于,在处于所述下端的至少一个所述纵向板件的所述翼中分板上设置有上下均与所述流体通道连通的连通孔。
  8. 根据权利要求2到7中任一项所述的油水分离装置,其特征在于,所述翼中分板包括多个不在同一直线上的折线段,相邻的所述折线段固定连接。
  9. 根据权利要求8所述的油水分离装置,其特征在于,相邻的所述折线段的上表面之间所形成的角度处于130到240度的范围内。
  10. 根据权利要求2到9中任一项所述的油水分离装置,其特征在于,所述翼头分板的两端点之间的连线与水平方向所形成的角度处于30到85度的范围内,
    和/或,所述翼尾分板的两端点之间的连线与水平方向所形成的角度处于30到85度的范围内,
    和/或,所述翼中分板的两端点之间的连线与水平方向所形成的角度15到60度的范围内,
    和/或,在所述壳体的下游端纵向间隔式设置多个所述收集管,在从上游到下游的方向上,相邻收集管之间的间距相等或逐渐增大。
PCT/CN2020/125249 2020-07-10 2020-10-30 一种油水分离装置 WO2022007260A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/005,007 US20230330563A1 (en) 2020-07-10 2020-10-30 Oil-water separation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010663145.5A CN113912158B (zh) 2020-07-10 2020-07-10 一种油水分离装置
CN202010663145.5 2020-07-10

Publications (1)

Publication Number Publication Date
WO2022007260A1 true WO2022007260A1 (zh) 2022-01-13

Family

ID=79232481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/125249 WO2022007260A1 (zh) 2020-07-10 2020-10-30 一种油水分离装置

Country Status (3)

Country Link
US (1) US20230330563A1 (zh)
CN (1) CN113912158B (zh)
WO (1) WO2022007260A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5520825A (en) * 1993-11-08 1996-05-28 Mctighe Industries, Inc. Oil-water separator
CN102399041A (zh) * 2011-12-07 2012-04-04 杨智军 全自动化无动力装置集油器
CN204803041U (zh) * 2015-04-30 2015-11-25 中国石油天然气股份有限公司 油水分离装置
CN105776710A (zh) * 2016-04-27 2016-07-20 中国汽车工业工程有限公司 浓液中油的收集机构及油水分离装置
CN106986418A (zh) * 2017-05-25 2017-07-28 江苏永益环保科技有限公司 油水分离器
CN109395433A (zh) * 2017-08-15 2019-03-01 中国石油化工股份有限公司 分离装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3208054A1 (de) * 1982-03-05 1983-09-08 Central'noe proektno-konstruktorskoe i technologičeskoe bjuro Vsesojuznogo rybopromyšlennogo ob"edinenija azovo-černomorskogo bassejna Oel-wasser-scheider
GB2195554B (en) * 1986-07-21 1989-12-20 Brian Denis Waring Improvements in ridged plate separators and separator plates thereof
GB0130840D0 (en) * 2001-03-21 2002-02-06 Mantis Oil Separation Ltd Seperation of oil and water
JP2003024705A (ja) * 2001-07-12 2003-01-28 Ishigaki Co Ltd 油水分離方法並びにその装置
CN202146643U (zh) * 2011-07-16 2012-02-22 太原绿威环境能源科技工程有限公司 一种带有梯度分布突触的聚结板
CN103752042B (zh) * 2013-01-29 2016-08-17 中国石油天然气股份有限公司 对开式翼形板及其组合体油水泥分离构件和油水泥分离方法
US8985343B1 (en) * 2014-01-24 2015-03-24 Kirby Smith Mohr Method and apparatus for separating immiscible liquids and solids from liquids
CN204138385U (zh) * 2014-08-15 2015-02-04 山东利源海达环境工程有限公司 一种作为油水分离器填料的折流板
CN207775153U (zh) * 2016-12-06 2018-08-28 中国石油天然气股份有限公司 一种卧式三相分离装置
CN206793686U (zh) * 2017-05-08 2017-12-26 天津中福环保科技股份有限公司 一种适用于油水分离装置的聚结梯形板填料组件
CN209835714U (zh) * 2019-03-01 2019-12-24 中国矿业大学 一种用于含油污水处理的粗粒化装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5520825A (en) * 1993-11-08 1996-05-28 Mctighe Industries, Inc. Oil-water separator
CN102399041A (zh) * 2011-12-07 2012-04-04 杨智军 全自动化无动力装置集油器
CN204803041U (zh) * 2015-04-30 2015-11-25 中国石油天然气股份有限公司 油水分离装置
CN105776710A (zh) * 2016-04-27 2016-07-20 中国汽车工业工程有限公司 浓液中油的收集机构及油水分离装置
CN106986418A (zh) * 2017-05-25 2017-07-28 江苏永益环保科技有限公司 油水分离器
CN109395433A (zh) * 2017-08-15 2019-03-01 中国石油化工股份有限公司 分离装置

Also Published As

Publication number Publication date
CN113912158B (zh) 2023-03-21
US20230330563A1 (en) 2023-10-19
CN113912158A (zh) 2022-01-11

Similar Documents

Publication Publication Date Title
CN106076671B (zh) 一种脱油除砂旋流分离装置
KR101287374B1 (ko) 액체/액체/가스/고체 혼합물을 분리하기 위한 세퍼레이터
BRPI0712784A2 (pt) mÉtodo e aparelho para separaÇço de fluido
US20090065431A1 (en) In-line separator
CN207463471U (zh) 一种脱气除油水力聚结装置
CN101983779B (zh) 同向出流倒锥式旋流分离器
CN2455329Y (zh) 一种油气水三相分离器
CN102225382A (zh) 一种溢流管壁孔式集油曲线形旋流器
CN107252742A (zh) 一种脱气除油水力聚结装置
CN101810941A (zh) 复合式油水分离系统
CN201389497Y (zh) 内锥式液液分离水力旋流器
CN101537267B (zh) 一种管道式油水分离方法及装置
CN103752047A (zh) 紧凑型斜式三相分离装置及油田产出液油气水分离处理方法
WO2022007260A1 (zh) 一种油水分离装置
CN201454163U (zh) 一种管道式油水分离装置
CN108328686A (zh) 多旋重力驱型油水聚结分离罐
CN108191001A (zh) 一种油水分离装置
CN111171859B (zh) 一种处理油田采出液的分段式电磁耦合分离器
CN107648884A (zh) 一种电动管式油水分离装置
CN103551262B (zh) 一种嵌入式倒置双锥油气水三相旋流分离器
CN108434785A (zh) 一种油水分离装置及应用
CN113816460B (zh) 一种自溢流迭代分离旋流器及其在地下水中DNAPLs分离的应用
CN201407025Y (zh) 一种油水分离装置
RU2822428C1 (ru) Устройство для разделения нефти и воды
CN2893142Y (zh) 一种气液和液液分流器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20944224

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20944224

Country of ref document: EP

Kind code of ref document: A1