WO2022007032A1 - 均温板及均温板的加工方法 - Google Patents

均温板及均温板的加工方法 Download PDF

Info

Publication number
WO2022007032A1
WO2022007032A1 PCT/CN2020/104774 CN2020104774W WO2022007032A1 WO 2022007032 A1 WO2022007032 A1 WO 2022007032A1 CN 2020104774 W CN2020104774 W CN 2020104774W WO 2022007032 A1 WO2022007032 A1 WO 2022007032A1
Authority
WO
WIPO (PCT)
Prior art keywords
cover plate
bottom wall
hot end
capillary structure
sub
Prior art date
Application number
PCT/CN2020/104774
Other languages
English (en)
French (fr)
Inventor
陈晓杰
徐莎莎
方文兵
李富根
汪剑桥
徐斌
Original Assignee
瑞声声学科技(深圳)有限公司
瑞声科技(南京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司, 瑞声科技(南京)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Publication of WO2022007032A1 publication Critical patent/WO2022007032A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20336Heat pipes, e.g. wicks or capillary pumps

Definitions

  • the present application relates to the technical field of heat conduction, and in particular, to a temperature-spreading plate and a processing method of the temperature-spreading plate.
  • Electronic devices in the related art usually use copper foil or graphite for heat dissipation, but as some electronic devices become more powerful, they have higher requirements for their heat dissipation performance, and copper foil or graphite heat dissipation methods are gradually unable to meet the heat dissipation requirements.
  • an embodiment of the present application provides a temperature chamber, the temperature chamber includes a hot end close to a heat source and a cold end opposite to the hot end and away from the heat source.
  • the warm plate includes a first cover plate and a second cover plate opposite to the first cover plate and covered on the first cover plate, and the first cover plate is close to the side of the second cover plate A groove is formed in a recess away from the second cover plate, the first cover plate and the second cover plate are enclosed to form a closed inner cavity filled with working liquid;
  • the first cover plate includes and the second cover plate a bottom wall opposite and spaced apart from the cover plates, and a side wall that is bent and extended from the periphery of the bottom wall to the second cover plate and abuts against the second cover plate; the side walls are enclosed to form the a groove
  • the vapor chamber further includes a capillary structure disposed on the bottom wall, and the thickness of the capillary structure gradually increases from the hot end to the cold end.
  • the thickness of the capillary structure gradually increases in a stepped shape.
  • the thickness of the capillary structure gradually increases in a linear relationship.
  • the first cover plate is provided with a plurality of support columns, the support columns extend from the bottom wall toward the second cover plate and abut on the second cover plate .
  • Another embodiment of the present application provides a method for processing a vapor chamber, the vapor chamber includes a hot end close to a heat source and a cold end opposite to and away from the hot end, the method includes the following steps :
  • Step S2 In the direction from the hot end to the cold end, the bottom wall is divided into N regions, which are respectively N1, N2, N3 to Nn subregions, and the n subregions are according to the The hot end is sequentially distributed in the direction of the cold end; and a capillary structure with a thickness of S1 is formed by depositing on the bottom wall;
  • Step S5 blocking the sub-regions N1, N2 to N-1, and depositing a Sn-thick capillary structure on the sub-region Nn of the bottom wall;
  • Step S6 providing a second cover plate, and covering the second cover plate on the first cover plate to form a closed inner cavity filled with working liquid.
  • Yet another embodiment of the present application provides a method for processing a vapor chamber, the vapor chamber includes a hot end close to a heat source and a cold end opposite to and away from the hot end, the method includes the following steps :
  • Step S1 providing a first cover plate, forming grooves and several support columns on the first cover plate by etching or punching, the first cover plate including a bottom wall and a bending and extending from the periphery of the bottom wall; a side wall, the side wall encloses the groove, and a plurality of the support columns are formed on the bottom wall;
  • Step S3 shielding the sub-regions N1 and N3, N4 to Nn, and depositing a capillary structure with a thickness of S2 on the sub-region N2 of the bottom wall;
  • Step S4 shielding the sub-regions N1 to Nn-1, and depositing a Sn-thick capillary structure on the sub-region Nn of the bottom wall;
  • Step S5 providing a second cover plate, and covering the second cover plate on the first cover plate to form a closed inner cavity filled with working liquid;
  • the working liquid at the hot end of the uniform temperature plate vaporizes and absorbs heat, taking away the heat of the heat source.
  • the vaporized working liquid flows from the hot end to the cold end through the closed cavity and liquefies and releases heat at the cold end. It flows from the cold end to the hot end again, and so on and so forth to achieve heat dissipation.
  • the capillary structure Since the capillary structure is arranged on the bottom wall, and from the hot end to the cold end, the thickness of the capillary structure increases gradually, so that the condensed working liquid is more likely to flow from the cold end to the hot end, so that the working liquid changes from liquid to gaseous state to The circulation speed of the liquid phase is faster, thereby making the heat dissipation performance of the vapor chamber in this embodiment better.
  • FIG. 1 is a schematic diagram of the overall structure of a vapor chamber according to an embodiment of the application
  • Fig. 2 is the exploded schematic diagram of Fig. 1;
  • Fig. 4 is a partial enlarged schematic diagram at B in Fig. 3;
  • Fig. 5 is the partial enlarged schematic diagram of C place in Fig. 3;
  • Fig. 6 is the first embodiment of the processing method of the vapor chamber in Fig. 1;
  • an embodiment of the present application provides a temperature equalizing plate.
  • the temperature equalizing plate in this embodiment has a closed inner cavity 10 , and the closed inner cavity 10 is filled with a working liquid, and the working liquid is a liquid phase
  • Variable materials such as liquid water, ethanol and acetone, can quickly dissipate heat through the transformation process of the working liquid from liquid to gas and then to liquid, and the heat dissipation effect is better.
  • the temperature equalizing plate in this embodiment includes a first cover plate 100 and a second cover plate 200 arranged opposite to each other, and a capillary structure disposed between the first cover plate 100 and the second cover plate 200 300, specifically, a side of the first cover plate 100 close to the second cover plate 200 is recessed away from the second cover plate 200 to form a groove 101, and the first cover plate 100 and the second cover plate 200 are enclosed to form a groove 101 filled with working liquid.
  • the first cover plate 100 includes a bottom wall 110 that is opposite to the second cover plate 200 and is spaced apart, and bends and extends from the periphery of the bottom wall 110 to the second cover plate 200 and abuts against the second cover plate 200
  • the side wall 120 is connected to the side wall 120; the side wall 120 encloses the groove 101, and the capillary structure 300 is arranged on the bottom wall 110.
  • the capillary structure 300 is used to absorb the working liquid after being cooled and liquefied.
  • the capillary structure 300 can be used as a liquid A channel for the liquid working liquid to flow
  • the second cover plate 200 is covered on the first cover plate 100 and sealed on the groove 101
  • the second cover plate 200, the side wall 120 and the bottom wall 110 are jointly enclosed
  • a vapor passage 102 is formed, through which the vaporous working liquid can flow.
  • the side of the second cover plate 200 facing the first cover plate 100 is also provided with a groove corresponding to the groove 101 to increase the volume of the steam passage.
  • the second cover plate 200 is a flat plate without grooves, so as to reduce the difficulty of manufacturing.
  • the vapor chamber in this embodiment generally includes a hot end 500 close to the heat source and a cold end 600 opposite to the hot end 500 and away from the hot end 500 .
  • the working principle of the vapor chamber is as follows: the working liquid filled in the steam channel 102 in the hot end 500 vaporizes and absorbs heat, takes away the heat of the heat source, and the vaporized working liquid flows from the hot end 500 to the cold end 600 through the steam channel 102 And it liquefies and releases heat at the cold end 600 , and then the liquefied working liquid flows from the capillary structure 300 from the cold end 600 to the hot end 500 again, so as to reciprocate and circulate to achieve heat dissipation.
  • the temperature chamber has two opposite long-axis parts and a short-axis part for connecting the two long-axis parts, and the hot end 500 and the cold end 600 are respectively close to each other.
  • the ends of the two stub shafts are respectively close to each other.
  • the capillary structure 300 is disposed on the bottom wall 110 , and in the direction from the hot end 500 to the cold end 600 , the thickness of the capillary structure 300 increases gradually, and the capillary structure of the cold end 600 increases gradually.
  • the structure 300 is thicker, so that the working liquid liquefied when cold is more likely to flow from the cold end 600 to the hot end 500, so that the circulation speed of the working liquid from liquid state to gas state and then liquid state is faster, thereby making the temperature uniformity plate in this embodiment. better heat dissipation performance.
  • the thickness of the capillary structure 300 increases gradually in a stepped shape. Since the thickness of the capillary structure 300 gradually increases in the direction from the hot end 500 to the cold end 600 , the capillary structure 300 of the cold end 600 is thicker.
  • the thickness of the capillary structure 300 gradually increases in a linear relationship. Since the thickness of the capillary structure 300 gradually increases in the direction from the hot end 500 to the cold end 600 , the capillary structure 300 of the cold end 600 is thicker.
  • the capillary structure 300 in this embodiment is formed on the side of the bottom wall 110 close to the second cover plate 200 through a sintering (mesh) process, an etching process or an electrodeposition process.
  • the capillary structure 300 in this embodiment may be a woven wire mesh or synthetic fiber, or may be metal powder particles.
  • the first cover plate 100 in this embodiment is provided with a plurality of support columns 400 .
  • the support columns 400 extend from the bottom wall 110 toward the second cover plate 200 and abut against the second cover plate 200 . superior.
  • the plurality of support columns 400 are all accommodated in the closed cavity, and the strength of the temperature equalizing plate in this embodiment can be ensured by the plurality of support columns 400 .
  • the grooves 101 and the support columns 400 in this embodiment are formed on the first cover plate 100 by etching or punching.
  • a plurality of support posts 400 are bonded to the bottom surface of the groove 101, thereby saving some materials.
  • the support columns 400 are arranged in an array, and adjacent support columns 400 are arranged at intervals.
  • the support columns 400 may also be arranged irregularly.
  • the first cover plate 100 and/or the second cover plate 200 in this embodiment are stainless steel plates and/or copper plates, respectively. Of course, it can also be made of other metals with better thermal conductivity.
  • the present application further provides a method for processing a vapor chamber.
  • the cold end 600 away from the hot end 500 includes the following steps:
  • Step S2 in the direction from the hot end 500 to the cold end 600, divide the bottom wall into N regions, which are respectively N1, N2, N3 to Nn sub-regions, and the n sub-regions face the cold end 600 according to the self-heating end 500
  • the directions are distributed in sequence; and the capillary structure 300 with the thickness of S1 is formed by depositing on the bottom wall 110;
  • Step S3 blocking the sub-region N1, and depositing a capillary structure 300 with a thickness of S2 on the sub-regions N2, N3 to Nn of the bottom wall 110;
  • Step S6 providing the second cover plate 200 , and covering the second cover plate 200 on the first cover plate 100 to form a closed inner cavity filled with the working liquid.
  • the thickness of the capillary structure 300 in the sub-region N1 after deposition is S1
  • the thickness of the capillary structure 300 in the sub-region N2 is S1+S2
  • the thickness of the capillary structure 300 in the sub-region N3 is S1+S2+S3
  • the thickness of the capillary structure 300 of the sub-region Nn is S1+S2+S3+...+Sn.
  • the present application further provides another method for processing a vapor chamber.
  • the cold end 600 opposite to and away from the hot end 500 includes the following steps:
  • Step S1 providing a first cover plate 100 , forming grooves 101 and a plurality of support columns 400 on the first cover plate 100 by etching or punching, the first cover plate 100 includes a bottom wall 110 and is bent and extended from the periphery of the bottom wall 110 The side wall 120 is enclosed by the side wall 120 to form a groove 101, and a plurality of support columns 400 are formed on the bottom wall 110;
  • Step S2 in the direction from the hot end 500 to the cold end 600, divide the bottom wall 110 into N sub-regions, which are N1, N2, N3 to Nn sub-regions, and the n sub-regions are oriented according to the direction of the self-heating end 500.
  • the directions of the cold ends 600 are distributed in sequence; the sub-regions N2, N3 to Nn are blocked, and a capillary structure 300 with a thickness of S1 is deposited on the sub-region N1 of the bottom wall 110;
  • Step S3 blocking the sub-regions N1 and N3, N4 to Nn, and depositing a capillary structure 300 with a thickness of S2 on the sub-region N2 of the bottom wall 110;
  • Step S5 providing the second cover plate 200 , and covering the second cover plate 200 on the first cover plate 100 to form a closed inner cavity filled with the working liquid.
  • the beneficial effects of the present application are as follows: the working liquid at the hot end of the uniform temperature plate vaporizes and absorbs heat, and takes away the heat of the heat source, and the vaporized working liquid flows from the hot end to the cold end through the closed cavity, liquefies and releases heat at the cold end, and then liquefies The latter working liquid flows from the cold end to the hot end again from the capillary structure, and thus circulates back and forth to achieve heat dissipation.
  • the capillary structure Since the capillary structure is arranged on the bottom wall, and from the hot end to the cold end, the thickness of the capillary structure increases gradually, so that the condensed working liquid is more likely to flow from the cold end to the hot end, so that the working liquid changes from liquid to gaseous state to The circulation speed of the liquid phase is faster, thereby making the heat dissipation performance of the vapor chamber in this embodiment better.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

本申请提供了均温板及均温板的加工方法,均温板包括靠近热源的热端以及与热端相对且远离热源的冷端,均温板包括第一盖板以及与第一盖板相对设置且盖设在第一盖板上的第二盖板,第一盖板靠近第二盖板的一侧向远离第二盖板凹陷形成第一凹槽,第一盖板与第二盖板围合形成填充有工作液体的封闭内腔;第一盖板包括与第二盖板相对且间隔设置的底壁以及自底壁的周缘向第二盖板弯折延伸并与第二盖板抵接的侧壁,均温板还包括设置于底壁的毛细结构,由热端到冷端的方向上,毛细结构的厚度逐渐增加。由热端到冷端的方向上,毛细结构的厚度逐渐增加,工作液体更易从冷端流向热端,使工作液体从液态至气态再至液态的循环速度更快,散热性能更优。

Description

均温板及均温板的加工方法 技术领域
本申请涉及热传导技术领域,尤其涉及一种均温板及均温板的加工方法。
背景技术
相关技术中的电子设备,通常使用铜箔或石墨进行散热,但是随着一些电子设备的功能愈发强大,其对其散热性能要求更高,铜箔或石墨散热的方式逐渐无法满足散热需求。
技术问题
为解决上述问题,相关技术中通过一些均温板进行散热,但是由于相关技术中的均温板在结构上存在一定缺点,从而致使其散热效果并不能达到预期。
因此,有必要提供一种新型的均温板来解决上述问题。
技术解决方案
本申请的目的在于提供一种均温板及均温板的加工方法,该均温板导热效果更佳。
本申请的技术方案如下:本申请的一个实施例提供一种均温板,所述均温板包括靠近热源的热端以及与所述热端相对且远离所述热源的冷端,所述均温板包括第一盖板以及与所述第一盖板相对设置且盖设在所述第一盖板上的第二盖板,所述第一盖板靠近所述第二盖板的一侧向远离所述第二盖板凹陷形成凹槽,所述第一盖板与所述第二盖板围合形成填充有工作液体的封闭内腔;所述第一盖板包括与所述第二盖板相对且间隔设置的底壁以及自所述底壁的周缘向所述第二盖板弯折延伸并与所述第二盖板抵接的侧壁;所述侧壁围合形成所述凹槽,所述均温板还包括设置于所述底壁的毛细结构,且由所述热端到所述冷端的方向上,所述毛细结构的厚度逐渐增加。
作为本申请的一个实施例,由所述热端到所述冷端的方向上,所述毛细结构的厚度呈阶梯状逐渐增加。
作为本申请的一个实施例,由所述热端到所述冷端的方向上,所述毛细结构的厚度呈线性关系逐渐增加。
作为本申请的一个实施例,所述毛细结构通过烧结工艺或蚀刻工艺或电沉积工艺形成于所述底壁靠近所述第二盖板的一侧。
作为本申请的一个实施例,所述第一盖板上设置有若干支撑柱,所述支撑柱自所述底壁向靠近所述第二盖板延伸并抵接在所述第二盖板上。
作为本申请的一个实施例,若干所述支撑柱呈阵列排布于所述底壁,相邻所述支撑柱间隔设置。
作为本申请的一个实施例,所述凹槽以及所述支撑柱通过蚀刻或冲压形成于所述第一盖板上。
作为本申请的一个实施例,所述第一盖板和/或所述第二盖板分别由不锈钢和/或铜制成。
本申请的另一个实施例提供一种均温板的加工方法,所述均温板包括靠近热源的热端以及与所述热端相对且远离所述热端的冷端,所述方法包括如下步骤:
步骤S1:提供第一盖板,通过蚀刻或冲压在所述第一盖板上形成凹槽和若干支撑柱,所述第一盖板包括底壁以及自所述底壁的周缘弯折延伸的侧壁,所述侧壁围合形成所述凹槽,若干所述支撑柱形成在所述底壁上;
步骤S2:在自所述热端朝向所述冷端的方向上,将所述底壁分为N份区域,分别为N1、N2、N3到Nn个子区域,且n个所述子区域按照自所述热端朝向所述冷端的方向依次分布;并在所述底壁沉积形成S1厚度的毛细结构;
步骤S3:遮挡所述N1子区域,并在所述底壁的所述子区域N2、N3到Nn沉积形成S2厚度的毛细结构;
步骤S4:遮挡所述子区域N1和N2,并在所述底壁的所述子区域N3到Nn沉积形成S3厚度的毛细结构;
步骤S5:遮挡所述子区域N1、N2到N-1的区域,在所述底壁的所述子区域Nn沉积形成Sn厚度的毛细结构;
步骤S6:提供第二盖板,将所述第二盖板盖设于所述第一盖板形成填充有工作液体的封闭内腔。
本申请的又一个实施例提供一种均温板的加工方法,所述均温板包括靠近热源的热端以及与所述热端相对且远离所述热端的冷端,所述方法包括如下步骤:
步骤S1:提供第一盖板,通过蚀刻或冲压在所述第一盖板上形成凹槽和若干支撑柱,所述第一盖板包括底壁以及自所述底壁的周缘弯折延伸的侧壁,所述侧壁围合形成所述凹槽,若干所述支撑柱形成在所述底壁上;
步骤S2:在自所述热端朝向所述冷端的方向上,将所述底壁分为N份区域,分别为N1、N2、N3到Nn个子区域,且n个所述子区域按照自所述热端朝向所述冷端的方向依次分布;遮挡所述子区域N2、N3到Nn,在所述底壁的所述子区域N1沉积形成S1厚度的毛细结构;
步骤S3:遮挡所述子区域N1和N3、N4到Nn,在所述底壁的所述子区域N2沉积形成S2厚度的毛细结构;
步骤S4:遮挡所述子区域N1到Nn-1,在所述底壁的所述子区域Nn沉积形成Sn厚度的毛细结构;
步骤S5:提供第二盖板,将所述第二盖板盖设于所述第一盖板形成填充有工作液体的封闭内腔;
其中,Sn>Sn-1>…>S2>S1。
有益效果
本申请的有益效果在于:
均温板热端的工作液体汽化吸热,将热源的热量带走,汽化后的工作液体通过封闭内腔自热端流向冷端并在冷端液化放热,之后液化后的工作液体自毛细结构再次从冷端流向热端,如此往复循环,实现散热作用。由于毛细结构设置在底壁上,且由热端到冷端的方向上,毛细结构的厚度逐渐增加,从而冷凝后的工作液体更易从冷端流向热端,从而使工作液体从液态至气态再至液态的循环速度更快,进而使本实施例中的均温板的散热性能更优。
附图说明
图1为本申请一实施例的均温板的整体结构示意图;
图2为图1的分解示意图;
图3为图1中沿A-A的剖视图;
图4为图3中B处的局部放大示意图;
图5为图3中C处的局部放大示意图;
图6为图1中的均温板的加工方法的实施例一;
图7为图1中的均温板的加工方法的实施例二;
本发明的实施方式
为进一步说明各实施例,本申请提供有附图。这些附图为本申请揭露内容的一部分,其主要用以说明实施例,并可配合说明书的相关描述来解释实施例的运作原理。配合参考这些内容,本领域普通技术人员应能理解其他可能的实施方式以及本申请的优点。图中的组件并未按比例绘制,而类似的组件符号通常用来表示类似的组件。
下面结合附图和实施方式对本申请作进一步说明。
请参照图1-图6,本申请一实施例提供了一种均温板,本实施例中的均温板具有封闭内腔10,封闭内腔10内填充有工作液体,工作液体为液体相变材料,比如液态水、乙醇以及丙酮等,通过工作液体由液体至气体再至液体的转变过程,使热量快速散失,散热效果更好。
优选地,封闭内腔10为真空状态,进而使工作液体由液体至气体至液体的转变过程不会受到杂质的影响,散热效果更佳。
请参照图1-图4,本实施例中的均温板包括相对设置的第一盖板100和第二盖板200以及设在第一盖板100与第二盖板200之间的毛细结构300,具体地,第一盖板100靠近第二盖板200的一侧向远离第二盖板200凹陷形成凹槽101,第一盖板100与第二盖板200围合形成填充有工作液体的封闭内腔10;第一盖板100包括与第二盖板200相对且间隔设置的底壁110以及自底壁110的周缘向第二盖板200弯折延伸并与第二盖板200抵接的侧壁120;侧壁120围合形成所述凹槽101,毛细结构300设置在底壁110上,毛细结构300用于吸收遇冷液化后的工作液体,具体地毛细结构300可作为液体通道,以供液态的工作液体流动,第二盖板200盖设在第一盖板100上并密封封盖在凹槽101上,第二盖板200、侧壁120以及底壁110共同围合形成蒸汽通道102,通过蒸汽通道102可供汽态的工作液体流动。
在另外的一些实施例中,第二盖板200朝向第一盖板100的一侧上也开设有与凹槽101对应的槽,以增大蒸汽通道的容积。当然,优选为第二盖板200为一平板,且不开设槽,从而减小制造难度。
请参照图1-图4,根据安装使用场景,本实施例中的均温板通常包括靠近热源的热端500以及与热端500相对且远离热端500的冷端600,本实施例中的均温板的工作原理为:热端500的中填充在蒸汽通道102中的工作液体汽化吸热,将热源的热量带走,汽化后的工作液体通过蒸汽通道102自热端500流向冷端600并在冷端600液化放热,之后液化后的工作液体自毛细结构300再次从冷端600流向热端500,如此往复循环,实现散热作用。
需要说明的是,以均温板为矩形结构为例,均温板具有相对的两个长轴部和用于连接两个长轴部的短轴部,热端500和冷端600分别为靠近两个短轴部的端部。
请参照图1以及图2,本实施例中,由于毛细结构300设置在底壁110上,且由热端500到冷端600的方向上,毛细结构300的厚度逐渐增加,冷端600的毛细结构300更厚,从而遇冷液化后的工作液体更易从冷端600流向热端500,从而使工作液体从液态至气态再至液态的循环速度更快,进而使本实施例中的均温板的散热性能更优。
请参照图2以及图3,本实施例中,由热端500到冷端600的方向上,毛细结构300的厚度呈阶梯状逐渐增加。由于自热端500到冷端600的方向上,毛细结构300的厚度逐渐增加,冷端600的毛细结构300更厚。
在另外一些实施例中,由热端500到冷端600的方向上,毛细结构300的厚度呈线性关系逐渐增加。由于自热端500到冷端600的方向上,毛细结构300的厚度逐渐增加,冷端600的毛细结构300更厚。
本实施例中的毛细结构300通过烧结(网线)工艺或蚀刻工艺或电沉积工艺形成于底壁110靠近所述第二盖板200的一侧上。
本实施例中的毛细结构300可以为编织丝网或合成纤维,还可以是金属粉颗粒。
请参照图2以及图4,本实施例中的第一盖板100上设置有若干支撑柱400,支撑柱400自底壁110向靠近第二盖板200延伸并抵接在第二盖板200上。若干支撑柱400均收容于封闭内腔中,通过若干支撑柱400,可以保证本实施例中的均温板的强度。
本实施例中的凹槽101和支撑柱400通过蚀刻或冲压形成于所述第一盖板100上。
在另外的一些实施例中,若干支撑柱400粘接在凹槽101的底面上,进而可节省部分材质。
本实施例中的支撑柱400呈阵列排布且相邻支撑柱400间隔设置。当然,支撑柱400也可以是不规则排布。
本实施例中的第一盖板100和/或所述第二盖板200分别为不锈钢板和/或铜板。当然也可以是由其它导热性能较好的金属制成。
本实施例中的第一盖板100和第二盖板200的形状及大小不作限制,可以是矩形、V型或其它形状。
请参照图5,针对毛细结构300的厚度呈阶梯状逐渐增加的实施例,本申请还提供了一种均温板的加工方法,均温板包括靠近热源的热端500以及与热端500相对且远离热端500的冷端600,包括如下步骤:
步骤S1:提供第一盖板100,通过蚀刻或冲压在第一盖板100上形成凹槽101和若干支撑柱400,第一盖板100包括底壁110以及自底壁110的周缘弯折延伸的侧壁120,侧壁120围合形成凹槽101,若干支撑柱400形成在底壁110上;
步骤S2:在自热端500朝向冷端600的方向上,将底壁分为N份区域,分别为N1、N2、N3到Nn个子区域,且n个子区域按照自热端500朝向冷端600的方向依次分布;并在底壁110沉积形成S1厚度的毛细结构300;
步骤S3:遮挡子区域N1区域,并在底壁110的子区域N2、N3到Nn沉积形成S2厚度的毛细结构300;
步骤S4:遮挡子区域N1和N2,并在底壁110的子区域N3到Nn沉积形成S3厚度的毛细结构300;
步骤S5:遮挡子区域N1、N2到N-1的区域,在底壁110的子区域Nn沉积形成Sn厚度的毛细结构300。
步骤S6:提供第二盖板200,将第二盖板200盖设于第一盖板100形成填充有工作液体的封闭内腔。
需要说明的是,沉积后的子区域N1的毛细结构300的厚度为S1,子区域N2的毛细结构300的厚度为S1+S2,子区域N3的毛细结构300的厚度为S1+S2+S3,依此类推,子区域Nn的毛细结构300的厚度为S1+S2+S3+…+Sn。
优选地,将底壁110分为4份区域。
通过本实施例的方法形成的均温板,由于毛细结构300设置在底壁110上,且由热端500到冷端600的方向上,毛细结构300的厚度逐渐增加,冷端600的毛细结构300更厚,从而工作液体更易从冷端600流向热端500,从而使工作液体从液态至气态再至液态的循环速度更快,进而使本实施例中的均温板的散热性能更优。
请参照图6,针对毛细结构300的厚度呈阶梯状逐渐增加的实施例,本申请还提供了另一种均温板的加工方法,均温板包括靠近热源的热端500以及与热端500相对且远离热端500的冷端600,方法包括如下步骤:
步骤S1:提供第一盖板100,通过蚀刻或冲压在第一盖板100上形成凹槽101和若干支撑柱400,第一盖板100包括底壁110以及自底壁110的周缘弯折延伸的侧壁120,侧壁120围合形成凹槽101,若干支撑柱400形成在底壁110上;
步骤S2:在自热端500朝向冷端600的方向上,将底壁110分为N份区域,分别为N1、N2、N3到Nn个子区域,且n个子区域按照自热端500朝向所述冷端600的方向依次分布;遮挡子区域N2、N3到Nn,在底壁110的所述子区域N1沉积形成S1厚度的毛细结构300;
步骤S3:遮挡子区域N1和N3、N4到Nn,在底壁110的子区域N2沉积形成S2厚度的毛细结构300;
步骤S4:遮挡子区域N1到Nn-1,在所述底壁110的所述子区域Nn沉积形成Sn厚度的毛细结构300;
步骤S5:提供第二盖板200,将第二盖板200盖设于第一盖板100形成填充有工作液体的封闭内腔。
其中,Sn>Sn-1>…>S2>S1,进而使越靠近冷端600的毛细结构300的厚度更大。
通过本实施例中的方法,每次只需要沉积底面的一个区域,进而能够快速在底壁110上形成毛细结构300,生产速度更高。。
本申请的有益效果在于:均温板热端的工作液体汽化吸热,将热源的热量带走,汽化后的工作液体通过封闭内腔自热端流向冷端并在冷端液化放热,之后液化后的工作液体自毛细结构再次从冷端流向热端,如此往复循环,实现散热作用。由于毛细结构设置在底壁上,且由热端到冷端的方向上,毛细结构的厚度逐渐增加,从而冷凝后的工作液体更易从冷端流向热端,从而使工作液体从液态至气态再至液态的循环速度更快,进而使本实施例中的均温板的散热性能更优。
以上所述的仅是本申请的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本申请创造构思的前提下,还可以做出改进,但这些均属于本申请的保护范围。

Claims (10)

  1. 一种均温板,其特征在于:所述均温板包括靠近热源的热端以及与所述热端相对且远离所述热源的冷端,所述均温板包括第一盖板以及与所述第一盖板相对设置且盖设在所述第一盖板上的第二盖板,所述第一盖板靠近所述第二盖板的一侧向远离所述第二盖板凹陷形成凹槽,所述第一盖板与所述第二盖板围合形成填充有工作液体的封闭内腔;所述第一盖板包括与所述第二盖板相对且间隔设置的底壁以及自所述底壁的周缘向所述第二盖板弯折延伸并与所述第二盖板抵接的侧壁;所述侧壁围合形成所述凹槽,所述均温板还包括设置于所述底壁的毛细结构,且由所述热端到所述冷端的方向上,所述毛细结构的厚度逐渐增加。
  2. 根据权利要求1所述的均温板,其特征在于:由所述热端到所述冷端的方向上,所述毛细结构的厚度呈阶梯状逐渐增加。
  3. 根据权利要求1所述的均温板,其特征在于:由所述热端到所述冷端的方向上,所述毛细结构的厚度呈线性关系逐渐增加。
  4. 根据权利要求2或3所述的均温板,其特征在于:所述毛细结构通过烧结工艺或蚀刻工艺或电沉积工艺形成于所述底壁靠近所述第二盖板的一侧。
  5. 根据权利要求1所述的均温板,其特征在于:所述第一盖板上设置有若干支撑柱,所述支撑柱自所述底壁向靠近所述第二盖板延伸并抵接在所述第二盖板上。
  6. 根据权利要求5所述的均温板,其特征在于:若干所述支撑柱呈阵列排布于所述底壁,相邻所述支撑柱间隔设置。
  7. 根据权利要求5所述的均温板,其特征在于:所述凹槽以及所述支撑柱通过蚀刻或冲压形成于所述第一盖板上。
  8. 根据权利要求1所述的均温板,其特征在于:所述第一盖板和/或所述第二盖板分别由不锈钢和/或铜制成。
  9. 一种均温板的加工方法,所述均温板包括靠近热源的热端以及与所述热端相对且远离所述热端的冷端,其特征在于:所述方法包括如下步骤:
    步骤S1:提供第一盖板,通过蚀刻或冲压在所述第一盖板上形成凹槽和若干支撑柱,所述第一盖板包括底壁以及自所述底壁的周缘弯折延伸的侧壁,所述侧壁围合形成所述凹槽,若干所述支撑柱形成在所述底壁上;
    步骤S2:在自所述热端朝向所述冷端的方向上,将所述底壁分为N份区域,分别为N1、N2、N3到Nn个子区域,且n个所述子区域按照自所述热端朝向所述冷端的方向依次分布;并在所述底壁沉积形成S1厚度的毛细结构;
    步骤S3:遮挡所述N1子区域,并在所述底壁的所述子区域N2、N3到Nn沉积形成S2厚度的毛细结构;
    步骤S4:遮挡所述子区域N1和N2,并在所述底壁的所述子区域N3到Nn沉积形成S3厚度的毛细结构;
    步骤S5:遮挡所述子区域N1、N2到N-1,在所述底壁的所述子区域Nn沉积形成Sn厚度的毛细结构;
    步骤S6:提供第二盖板,将所述第二盖板盖设于所述第一盖板形成填充有工作液体的封闭内腔。
  10. 一种均温板的加工方法,所述均温板包括靠近热源的热端以及与所述热端相对且远离所述热端的冷端,其特征在于:所述方法包括如下步骤:
    步骤S1:提供第一盖板,通过蚀刻或冲压在所述第一盖板上形成凹槽和若干支撑柱,所述第一盖板包括底壁以及自所述底壁的周缘弯折延伸的侧壁,所述侧壁围合形成所述凹槽,若干所述支撑柱形成在所述底壁上;
    步骤S2:在自所述热端朝向所述冷端的方向上,将所述底壁分为N份区域,分别为N1、N2、N3到Nn个子区域,且n个所述子区域按照自所述热端朝向所述冷端的方向依次分布;遮挡所述子区域N2、N3到Nn,在所述底壁的所述子区域N1沉积形成S1厚度的毛细结构;
    步骤S3:遮挡所述子区域N1和N3、N4到Nn,在所述底壁的所述子区域N2沉积形成S2厚度的毛细结构;
    步骤S4:遮挡所述子区域N1到Nn-1,在所述底壁的所述子区域Nn沉积形成Sn厚度的毛细结构;
    步骤S5:提供第二盖板,将所述第二盖板盖设于所述第一盖板形成填充有工作液体的封闭内腔;
    其中,Sn>Sn-1>…>S2>S1。
PCT/CN2020/104774 2020-07-06 2020-07-27 均温板及均温板的加工方法 WO2022007032A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010641489.6 2020-07-06
CN202010641489.6A CN111836518B (zh) 2020-07-06 2020-07-06 均温板及均温板的加工方法

Publications (1)

Publication Number Publication Date
WO2022007032A1 true WO2022007032A1 (zh) 2022-01-13

Family

ID=72901079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/104774 WO2022007032A1 (zh) 2020-07-06 2020-07-27 均温板及均温板的加工方法

Country Status (2)

Country Link
CN (1) CN111836518B (zh)
WO (1) WO2022007032A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112458503B (zh) * 2020-11-19 2022-03-01 瑞声科技(南京)有限公司 均温板上盖板的制备方法以及均温板
CN112566459B (zh) * 2020-11-30 2022-01-11 瑞声科技(南京)有限公司 散热装置的制作方法及散热装置
CN112589387B (zh) * 2020-11-30 2022-07-01 瑞声科技(南京)有限公司 均温板加工方法及均温板
CN112760630A (zh) * 2020-12-25 2021-05-07 瑞声科技(南京)有限公司 散热装置的制作方法及散热装置
CN114083841A (zh) * 2021-12-16 2022-02-25 成都四威高科技产业园有限公司 一种高导热石墨膜均温板及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201007109A (en) * 2008-08-15 2010-02-16 Foxconn Tech Co Ltd Method of manufacturing a vapor chamber
CN101650142A (zh) * 2008-08-15 2010-02-17 富准精密工业(深圳)有限公司 平板式热管的毛细结构的制造方法
CN102168931A (zh) * 2010-02-26 2011-08-31 昆山德泰新金属粉末有限公司 扁平式散热管及其制造方法
CN103307916A (zh) * 2012-03-09 2013-09-18 富瑞精密组件(昆山)有限公司 平板热管
US20150027668A1 (en) * 2013-07-24 2015-01-29 Asia Vital Components Co., Ltd. Vapor chamber structure

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW530935U (en) * 2002-07-26 2003-05-01 Tai Sol Electronics Co Ltd Heat dissipation apparatus for lower-connect type integrated circuit
CN201207780Y (zh) * 2008-05-26 2009-03-11 索士亚科技股份有限公司 段差式均温板
CN201335633Y (zh) * 2008-12-26 2009-10-28 索士亚科技股份有限公司 具有不同厚度的毛细组织的均温板及用于该均温板的模具
CN106996710B (zh) * 2016-01-25 2018-11-23 昆山巨仲电子有限公司 薄形均温板结构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201007109A (en) * 2008-08-15 2010-02-16 Foxconn Tech Co Ltd Method of manufacturing a vapor chamber
CN101650142A (zh) * 2008-08-15 2010-02-17 富准精密工业(深圳)有限公司 平板式热管的毛细结构的制造方法
CN102168931A (zh) * 2010-02-26 2011-08-31 昆山德泰新金属粉末有限公司 扁平式散热管及其制造方法
CN103307916A (zh) * 2012-03-09 2013-09-18 富瑞精密组件(昆山)有限公司 平板热管
US20150027668A1 (en) * 2013-07-24 2015-01-29 Asia Vital Components Co., Ltd. Vapor chamber structure

Also Published As

Publication number Publication date
CN111836518B (zh) 2022-04-26
CN111836518A (zh) 2020-10-27

Similar Documents

Publication Publication Date Title
WO2022007032A1 (zh) 均温板及均温板的加工方法
US11561050B2 (en) Slim vapor chamber
WO2020137569A1 (ja) ヒートシンク
US10018427B2 (en) Vapor chamber structure
TWI398616B (zh) Micro - temperature plate structure improvement
TWM532046U (zh) 具有液汽分離結構的均溫板
US11493280B2 (en) Heat pipe module and heat dissipating device using the same
US11051427B2 (en) High-performance electronics cooling system
WO2022007044A1 (zh) 均温板
US20230122387A1 (en) Vapor chamber with unequal cross-sectional widths
CN213426736U (zh) 均温板
TW202030447A (zh) 複合式熱管
US20230107867A1 (en) Vapor chamber and electronic device
CN215572350U (zh) 具有不等截面宽度的均温板
TWM597381U (zh) 均溫板結構改良
US10453768B2 (en) Thermal management devices and systems without a separate wicking structure and methods of manufacture and use
TWM584883U (zh) 具軸向毛細的散熱單元
CN216385225U (zh) 回路热管
US20140158325A1 (en) Thin barrier bi-metal heat pipe
WO2019056506A1 (zh) 由冲压工艺形成的薄型均热板
TWM620214U (zh) 具有不等截面寬度的均溫板
CN103841803A (zh) 利用厚过烧镀层和沸腾的具有薄腔的散热器
CN212324598U (zh) 薄型均温板结构
WO2023112616A1 (ja) 熱拡散デバイス及び電子機器
US20230384039A1 (en) Heat dissipating apparatus and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20944763

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20944763

Country of ref document: EP

Kind code of ref document: A1