WO2022006910A1 - 一种具有初始位置偏置的梳齿结构及其制备方法 - Google Patents

一种具有初始位置偏置的梳齿结构及其制备方法 Download PDF

Info

Publication number
WO2022006910A1
WO2022006910A1 PCT/CN2020/101485 CN2020101485W WO2022006910A1 WO 2022006910 A1 WO2022006910 A1 WO 2022006910A1 CN 2020101485 W CN2020101485 W CN 2020101485W WO 2022006910 A1 WO2022006910 A1 WO 2022006910A1
Authority
WO
WIPO (PCT)
Prior art keywords
comb
static
insulating
conductive
conductive material
Prior art date
Application number
PCT/CN2020/101485
Other languages
English (en)
French (fr)
Inventor
但强
李杨
Original Assignee
瑞声声学科技(深圳)有限公司
瑞声科技(南京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司, 瑞声科技(南京)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Priority to PCT/CN2020/101485 priority Critical patent/WO2022006910A1/zh
Publication of WO2022006910A1 publication Critical patent/WO2022006910A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes

Definitions

  • the invention relates to a comb-tooth structure and a preparation method thereof, in particular to a comb-tooth structure with an initial position offset and a preparation method thereof.
  • a comb-tooth structure device in the prior art is composed of two comb-shaped structures, one is movable and the other is stationary, and the fingers are interdigitated, which can be used for driving and detection.
  • set the static comb teeth on the left and the moving comb teeth on the right set the left and right direction as the x direction, the up and down direction as the y direction, and the z direction perpendicular to the x direction and the y direction, then one way is to move the comb teeth along the x direction The direction moves back and forth.
  • This movement method is in-plane movement ( In-plane back and forth), this movement method has been successfully used in a variety of MEMS devices such as gyroscopes, MEMS electrostatic actuators, accelerometers, etc.
  • the comb teeth moving in the z direction can drive other mechanisms to move, and can be detected and driven.
  • Set the position offset of the static comb teeth and the moving comb teeth in the z direction (generally half the height of the comb teeth).
  • For driving if the static comb teeth and the moving comb teeth completely overlap, applying a driving voltage between them will not generate a driving force in the z direction; for detection, if the static comb teeth and the moving comb teeth start to overlap completely, No matter whether the moving direction of the moving parts is the +z or -z direction, the capacitance value between them is reduced, the moving direction cannot be distinguished, and the sensitivity is also low.
  • the existing methods for preparing the offset comb-tooth structure such as: directly through the MEMS deposition and etching process to make the static comb-tooth and moving-comb-tooth structure step by step, first deposit a thin film with the thickness of the lower left, and etch the comb-tooth structure , fill the sacrificial layer, etch to half the height, deposit a film with the thickness of the upper right, etch the comb structure, and finally release; the static comb and the movable comb are etched separately, and it is unlikely to ensure their relative position; and the offset The amount is extremely difficult to control.
  • the other process plan is to etch the corresponding comb tooth structure on two wafers respectively and then bond them together, and then carry out the subsequent steps.
  • the disadvantage of this process is that the alignment accuracy is difficult to guarantee, and the static comb teeth and dynamic comb The spacing between the teeth is inconsistent.
  • the purpose of the present invention is to provide a comb-tooth structure with a simple process flow for preparing the comb-tooth structure, and a precisely controllable relative initial position offset between the static comb-tooth and the movable comb-tooth and a preparation method thereof.
  • the present invention provides a comb-tooth structure with an initial position offset, which includes: a movable comb-shaped structure, the movable comb-shaped structure has a plurality of first comb teeth, and the first comb teeth Including a first dynamic conductive layer and a second dynamic conductive layer, the first dynamic conductive layer and the second dynamic conductive layer are electrically isolated from each other; a static comb structure, the static comb structure has a plurality of first Two comb teeth, the second comb teeth and the first comb teeth are arranged opposite to each other at intervals, the second comb teeth and the first comb teeth are coplanar, and the upper and lower sides of the second comb teeth are respectively aligned with the first comb teeth.
  • the upper and lower sides of the first comb teeth are aligned, the second comb teeth include a first electrostatic conduction layer and a second electrostatic conduction layer, and the first electrostatic conduction layer and the second electrostatic conduction layer are electrically connected to each other. isolate.
  • a dynamic insulating layer is provided between the first dynamic conductive layer and the second dynamic conductive layer
  • a first static insulating layer is provided between the first static conductive layer and the second static conductive layer , the first static insulating layer and the dynamic insulating layer are mutually staggered in the up-down direction.
  • the second comb teeth further include a third static conductive layer, and a second static insulating layer is provided between the third static conductive layer and the second static conductive layer.
  • the second static insulating layer and the dynamic insulating layer are staggered from each other in the up-down direction.
  • a positive voltage is applied on the first dynamic conductive layer, and a negative voltage is applied on the second dynamic conductive layer, so that a voltage difference is formed between the first dynamic conductive layer and the second static conductive layer
  • a voltage difference is also formed between the second dynamic conductive layer and the second static conductive layer, so that the dynamic comb structure moves relative to the static comb structure.
  • applying a voltage between the first dynamic conductive layer and the second static conductive layer causes the dynamic comb structure to move relative to the static comb structure.
  • the present invention provides a preparation method of a comb-tooth structure with an initial position offset, which includes the following steps: S1. Provide a substrate, and deposit a first conductive material and a first conductive material on the substrate. Insulating material, the first insulating material is located on the top of the first conductive material; S2. Modeling the first insulating material so that part of the surface of the first conductive material is exposed; S3. On the surface of the substrate depositing a second conductive material on top so that the second conductive material covers the first insulating material; S4.
  • the second insulating material After depositing a second insulating material on the top of the substrate to cover the second conductive material, the second insulating material is The material is modeled so that part of the surface of the second conductive material is exposed; S5. A third conductive material is deposited on top of the substrate, so that the third conductive material covers the second insulating material; S6. On the surface of the substrate After deep etching is performed above to form gaps between the comb teeth, multiple comb-like structures are formed.
  • the moving comb structure has a plurality of first comb teeth
  • the static comb-like structure has a plurality of second comb teeth, the second comb teeth and the first comb teeth are arranged at intervals in the left-right direction, and the second comb teeth and the first comb teeth are coplanar, And the upper and lower sides of the second comb teeth are respectively aligned with the upper and lower sides of the first comb teeth.
  • step S1 the following steps are further included: S0. depositing a sacrificial layer material on the substrate.
  • a plurality of first insulating layers are formed, and the plurality of first insulating layers are arranged at intervals in the left-right direction, and the second insulating layer is formed in step S4.
  • a plurality of second insulating layers are formed, and the plurality of second insulating layers are arranged at intervals in the left-right direction.
  • step S5 the following step is further included: S51. After depositing a third insulating material on top of the substrate to cover the third conductive material, modeling the third insulating material so that part of the third insulating material is formed. The surface of the conductive material is exposed; S52. Deposit a fourth conductive material on top of the substrate, so that the fourth conductive material covers the third insulating material.
  • the first comb teeth have a dynamic insulating layer
  • the dynamic insulating layer is formed of the second insulating material
  • the second comb teeth have a first static insulating layer
  • the first static insulating layer is provided Formed by the first insulating material, the first static insulating layer and the dynamic insulating layer are staggered from each other in the up-down direction.
  • the first conductive material of one of the comb-like structures is electrically connected to the second conductive material
  • the second conductive material is electrically connected to the second conductive material.
  • the third conductive materials are insulated from each other by the second insulating material.
  • the third conductive material of one of the comb-like structures is electrically connected to the second conductive material, and the second conductive material is electrically connected to the second conductive material.
  • the first conductive materials are insulated from each other by the first insulating material.
  • a third insulating layer is formed after shaping the third insulating material in step S51, and after deep etching is performed on the substrate in step S6, one of the fourth conductive materials of the comb-like structure is formed.
  • the third conductive material and the third conductive material are insulated from each other by the third insulating material, and the third conductive material and the second conductive material are electrically connected, and the second conductive material and the first conductive material are passed through the The first insulating materials are insulated from each other.
  • the one of the comb-like structures is a second comb tooth.
  • the beneficial effect of the present invention is that: a comb-tooth pair is formed between the second comb-tooth and the first comb-tooth, and the offset amount of the second comb-tooth and the first comb-tooth can be precisely controlled by the thickness of the deposited material;
  • the gap between the first comb tooth and the second comb tooth is precisely controllable, and the consistency between the second comb tooth and the first comb tooth is good; the initial overlap between the second comb tooth and the first comb tooth can be precisely controlled,
  • the comb-tooth structure can be used for both driving and detection.
  • the material layers for preparing the comb-tooth structure are not limited, as long as the insulation and conductivity requirements for each layer are met, and the processes are compatible.
  • the drivable voltage and ground can be interchanged between.
  • FIG. 1 is a schematic structural diagram of a static and dynamic comb tooth according to one embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a static and dynamic comb tooth according to another embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of applying voltage to the static and dynamic comb teeth according to an embodiment of the present invention.
  • Figures 4A to 4G show simplified cross-sectional views of a comb-tooth structure manufactured according to a method for fabricating a comb-tooth structure according to an embodiment of the present invention.
  • 5A to 5B are simplified cross-sectional views of a comb-tooth structure manufactured according to a method for manufacturing a comb-tooth structure in another embodiment of the present invention.
  • FIG. 6 is a schematic flowchart of the preparation method of the comb-tooth structure of the present invention.
  • FIG. 7 is a simulation diagram of capacitance change under the same displacement between the comb-tooth structure of the present invention and the comb-tooth structure of the reference group.
  • FIG. 8A is a structural perspective view of a microphone manufactured according to the preparation method of the comb-tooth structure of the present invention.
  • FIG. 8B is a partial exploded view of a microphone manufactured according to the preparation method of the comb-tooth structure of the present invention.
  • 8C is a cross-sectional view of a microphone manufactured according to the preparation method of the comb-tooth structure of the present invention.
  • a comb structure with an initial position offset includes a movable comb structure and a static comb structure.
  • the movable comb structure has a plurality of first comb teeth B, and the first comb teeth B include a first movable conductive layer 1 and a second movable conductive layer 2 .
  • the second dynamic conductive layers 2 are electrically isolated from each other; in this embodiment, the first dynamic conductive layer 1 and the second dynamic conductive layer 2 are electrically isolated from each other by insulating materials, and the first dynamic conductive layer 2 is electrically isolated from each other. 1 is located under the second movable conductive layer 2 .
  • the static comb-like structure has a plurality of second comb teeth A, and the second comb teeth A and the first comb teeth B are arranged at intervals opposite to each other.
  • the first comb teeth B are arranged in a cross-spaced arrangement in the left-right direction.
  • the second comb tooth A and the first comb tooth B are coplanar, that is, the plane where the second comb tooth A is located coincides with the plane where the first comb tooth B is located, and the second comb tooth A is on the same plane.
  • the upper and lower sides are respectively aligned with the upper and lower sides of the first comb tooth B, that is, the upper edge of the second comb tooth A and the upper edge of the first comb tooth B are on the same straight line, and the second comb tooth A
  • the lower side and the lower side of the first comb teeth B are on the same straight line, so that the length of the second comb teeth A is equal to the length of the first comb teeth B.
  • the second comb tooth A includes a first electrostatic conductive layer 3 and a second electrostatic conductive layer 4, and the first electrostatic conductive layer 3 and the second electrostatic conductive layer 4 are electrically isolated from each other; in this embodiment Among them, the first electrostatic conduction layer 3 and the second electrostatic conduction layer 4 are electrically isolated from each other by insulating materials, and the first electrostatic conduction layer 3 is located under the second electrostatic conduction layer 4 .
  • a dynamic insulating layer 5 is disposed between the first dynamic conductive layer 1 and the second dynamic conductive layer 2 , the first static conductive layer 3 and the second static conductive layer A first static insulating layer 6 is arranged between 4, and the first static insulating layer 6 and the dynamic insulating layer 5 are mutually staggered in the up-down direction, so that the first comb teeth B and the second comb An initial position offset is formed between the teeth A.
  • the second comb tooth A further includes a third static conductive layer 7 , and the third static conductive layer 7 and the second static conductive layer 4 are separated from each other.
  • a second static insulating layer 8 is disposed between, so that the first comb teeth B and the second comb teeth A form a differential structure.
  • the second static insulating layer 8 and the dynamic insulating layer 5 are also staggered from each other in the up-down direction.
  • the dynamic insulating layer 5 is located between the first static insulating layer 6 and the second static insulating layer 8 in the up-down direction, so that the first comb teeth B and the second comb teeth are A differential initial position offset is formed between A.
  • a voltage is applied on the second dynamic conductive layer 2, and the first static conductive layer 3 is grounded, so that the dynamic comb structure is opposite to the static comb structure. or the second dynamic conductive layer 2 is grounded, and a voltage is applied to the first static conductive layer 3, so that the dynamic comb-like structure can move relative to the static comb-like structure, so that all The drivable voltage and grounding between the static comb structure and the dynamic comb structure can be interchanged.
  • a positive voltage is applied on the second dynamic conductive layer 2
  • a negative voltage is applied on the first dynamic conductive layer 1
  • an initial voltage is applied on the second static conductive layer 4
  • a voltage difference is formed between the second dynamic conductive layer 2 and the second static conductive layer 4, and a voltage difference is also formed between the first dynamic conductive layer 1 and the second static conductive layer 4, so that The dynamic comb structure is movable relative to the static comb structure.
  • a method for preparing a comb-tooth structure with an initial position offset includes the following steps:
  • the first conductive material 11 , the second conductive material 13 and the third conductive material 15 are set to use the same conductive material, the first insulating material 12 and the second insulating material
  • the material 14 is configured to use the same insulating material (in other embodiments, the first insulating material 12 and the second insulating material 14 may be configured to use different insulating materials).
  • step S1 depositing a sacrificial layer material on the substrate 10 .
  • a plurality of first insulating layers are formed, and the plurality of first insulating layers are arranged at intervals in the left-right direction
  • the second insulating material 14 is shaped to form a plurality of second insulating layers, the plurality of second insulating layers are arranged at intervals in the left-right direction, and the plurality of the second insulating layers are located on the plurality of the first insulating layers above.
  • step S5 Please refer to FIG. 5A and FIG. 5B , in one embodiment, the following steps are further included after step S5:
  • a fourth conductive material 17 is deposited on top of the substrate 10 so that the fourth conductive material 17 covers the third insulating material 16 .
  • the first conductive material 11 , the second conductive material 13 , the third conductive material 15 and the fourth conductive material 17 are set to use the same conductive material, the first insulating material
  • the material 12, the second insulating material 14 and the third insulating material 16 are set to use the same insulating material (in other embodiments, the first insulating material 12, the second insulating material 14 and the The third insulating material 16 may be provided with a different insulating material).
  • the first comb tooth B has a plurality of the moving insulating layers 5 , and the moving insulating layers 5 are formed of the second insulating material 14 .
  • the second comb tooth A has a plurality of first static insulating layers 6, and the first static insulating layers 6 are formed of the first insulating material 12.
  • the first static insulating layers 6 and the dynamic insulating layers 5 They are mutually staggered in the up-down direction.
  • the dynamic insulating layer 5 is located above the first static insulating layer 6 , so that the first comb teeth B and the second comb teeth A are on the left and right.
  • Direction cross interval setting is provided above the first static insulating layer 6 , so that the first comb teeth B and the second comb teeth A are on the left and right.
  • the dynamic insulating layer 5 may be formed of the first insulating material 12
  • the first static insulating layer 6 may be formed of the second insulating material 14
  • the dynamic insulating layer 5 is located on the below the first static insulating layer 6 .
  • the first conductive material 11 and the second conductive material of one of the comb-like structures are The material 13 is electrically connected, and the second conductive material 13 and the third conductive material 15 are insulated from each other by the second insulating material 14 .
  • the comb-like structure is set as the first comb tooth B (in other embodiments, the comb-like structure can also be set as the second comb tooth A).
  • the third conductive material 15 of one of the comb-like structures is electrically connected to the second conductive material 13, and the second conductive material 13 is connected to the second conductive material 13.
  • the first conductive materials 11 are insulated from each other by the first insulating layer.
  • the comb-like structure is set as the second comb tooth A (in other embodiments, the comb-like structure may also be set as the first comb tooth B).
  • the first comb tooth B includes a first dynamic conductive layer 1 , a dynamic insulating layer 5 and a second dynamic conductive layer 2 formed by electrical connection of the first conductive material 11 and the second conductive material 13 .
  • the layer 5 is formed of the second insulating material 14, and the second dynamic conductive layer 2 is formed of the third conductive material 15; the second comb tooth A includes the third conductive material 15 and the second conductive material 13.
  • the second static conductive layer 4, the first static insulating layer 6 and the first static conductive layer 3 are formed by connection, the first static insulating layer 6 is formed by the first insulating material 12, and the first static conductive layer 3 is formed by The first conductive material 11 is formed.
  • the second comb teeth A and the first comb teeth B are coplanar, and the upper and lower edges of the second comb teeth A are aligned with the upper and lower edges of the first comb teeth B, respectively.
  • the third insulating layer is formed after the third insulating material 16 is patterned in step S51 , and after deep etching is performed on the substrate 10 in step S6 ,
  • the fourth conductive material 17 and the third conductive material 15 of one of the comb-like structures are insulated from each other by the third insulating layer, and the third conductive material 15 and the second conductive material 13 are electrically connected, and the second conductive material 13 and the first conductive material 11 are insulated from each other by the first insulating material 12 .
  • the comb-shaped structure is set as the second comb-tooth A, that is, one of the comb-shaped structures is the second comb-tooth A.
  • step S51 the third insulating material 16 is shaped to form a third insulating layer, and after deep etching is performed on the substrate 10 in step S6, one of the fourth conductive materials 17 of the comb-like structure is formed. electrically connected to the third conductive material 15, and the third conductive material 15 and the second conductive material 13 are insulated from each other by the second insulating layer, and the second conductive material 13 and the first The conductive material 11 is electrically connected.
  • the comb-like structure is set as the first comb-tooth B, that is, one of the comb-like structures is the first comb-tooth B, so that the first comb-tooth B and the A differential initial position offset is formed between the second comb teeth A.
  • the first comb tooth B is arranged on the left side of the first comb tooth B, and the first comb tooth B includes a first moving conductive layer 1, a moving insulating layer 5 and a second moving conductive layer 2.
  • the moving insulating layer 5 is formed of the second insulating material 14, the first moving conductive layer 1 is formed by electrically connecting the second conductive material 13 and the first conductive material 11, and the second The active conductive layer 2 is formed by electrically connecting the fourth conductive material 17 and the third conductive material 15 .
  • the second comb tooth A includes a first static conductive layer 3 , a second static conductive layer 4 , a third static conductive layer 7 , a first static insulating layer 6 and a second static insulating layer 8 .
  • the first static insulating layer 6 is composed of The first insulating material 12 is formed, the first static conductive layer 3 is formed from the first conductive material 11 , and the second static conductive layer 4 is formed from the second conductive material 13 and the third conductive material 15 The electrical connection is formed, the third static conductive layer 7 is formed of the fourth conductive material 17 , and the second static insulating layer 8 is formed of the third insulating material 16 .
  • the second comb teeth A and the first comb teeth B are coplanar, and the upper and lower edges of the second comb teeth A are aligned with the upper and lower edges of the first comb teeth B, respectively.
  • a comb-tooth pair can be formed between the second comb-tooth A and the first comb-tooth B, and the dynamic comb-like structure and the static comb can be formed.
  • the offset amount of the structure can be precisely controlled by the thickness of the deposited material; the gap between the first comb tooth B and the second comb tooth A is precisely controllable, because the present invention has only one etching and forming, this In this way, the consistency of the first comb tooth B and the second comb tooth A is good; the initial overlap between the first comb tooth B and the second comb tooth A can also be precisely controlled , so that the comb-tooth structure can be used for both driving and detection, and the material layers for preparing the comb-tooth structure are not limited, as long as the insulation and conductivity requirements for each layer are met, and the processes are compatible.
  • the first comb-tooth B and The drivable voltage and ground between the second comb teeth A can be interchanged.
  • the preparation process of the comb-tooth structure in the present invention is simple, the initial position offset of the comb-tooth structure is precisely controllable, and the comb-tooth structure is suitable for the requirements of different devices.
  • the capacitance change rate of the comb structure with the initial position offset of the present invention under the moving state of the moving comb, wherein the normal comb pair is used as a reference group, and the moving displacement of the moving comb relative to the static comb is from - 1um ⁇ 1um, record the capacitance change (other conditions are the same). 1) It can be seen from the change curve that with the movement of the moving comb teeth, the capacitance changes linearly. (2) Compared with the traditional comb-tooth structure, the capacitance change rate of the comb-tooth structure with the initial position offset of the present invention is slightly smaller under the same displacement.
  • the comb of the present invention has the same displacement.
  • the capacitance change generated by the tooth structure is smaller than that of the traditional comb structure (10% ⁇ 20%), that is, under the same conditions, the sensitivity will decrease by this proportion, but considering that the traditional method is extremely difficult to prepare a comb with an initial position offset Structure, loss is acceptable.
  • a material with a low dielectric constant can be preferably used, which can increase the capacitance change of the structure of the present invention.
  • the microphone C is finally made by the preparation method of the comb-tooth structure with the initial position offset, the microphone C has a diaphragm part C1 and a comb-tooth part C2, the front and rear sides of the diaphragm part C1 It is not connected to the base plate, but the left and right sides of the diaphragm part C1 are fixed to the base plate, the comb tooth part C2 includes the first comb tooth B and the second comb tooth A, and the comb tooth part C2 is located at The diaphragm portion C1 is above and in the middle of the microphone C.
  • the microphone also has a support beam C3, the support beam C3 is connected to the left and right sides of the diaphragm portion C1 and is connected to the lower end surface of the inner comb teeth of the upper comb tooth portion C2.
  • Two electrodes of the microphone C one is connected from the upper surface of the device, and the other is connected from the diaphragm part C1.
  • a comb-tooth pair can be formed between the second comb-tooth A of the static comb-tooth and the first comb-tooth B of the movable comb-tooth, and the movable comb-like
  • the offset of the structure and the static comb structure can be precisely controlled by the thickness of the deposited material; the gap between the first comb tooth B and the second comb tooth A is precisely controllable, because the present invention only has One-time etching molding, this method makes the consistency of the first comb tooth B and the second comb tooth A good; there is an initial initial comb tooth B and the second comb tooth A
  • the overlapping part can also be precisely controlled, so that the comb-tooth structure can be used for both driving and detection, and the material layers for preparing the comb-tooth structure are not limited, as long as the insulation and conductivity requirements for each layer are met, and the process is compatible.
  • the drivable voltage and ground between the first comb tooth B and the second comb tooth A can be interchanged.
  • the preparation process of the comb-tooth structure in the present invention is simple, the initial position offset of the comb-tooth structure is precisely controllable, and the comb-tooth structure is suitable for the requirements of different devices.

Abstract

一种具有初始位置偏置的梳齿结构及其制备方法。梳齿结构的第二梳齿(A)和第一梳齿(B)之间形成梳齿对,且第二梳齿(A)和第一梳齿(B)的偏置量可通过沉积的材料厚度精确控制;第二梳齿(A)和第一梳齿(B)之间的间隙精确可控,且第二梳齿(A)和第一梳齿(B)之间的一致性好;第二梳齿(A)和第一梳齿(B)之间存在初始的重叠部分可以精确控制,使得梳齿结构既可用于驱动也可用于检测,制备梳齿结构的材料层不限,只要满足针对各层的绝缘和导电要求,同时工艺兼容即可,第二梳齿(A)和第一梳齿(B)之间的可驱动电压和接地可以互换。

Description

一种具有初始位置偏置的梳齿结构及其制备方法 技术领域
本发明涉及一种梳齿结构及其制备方法,特别地涉及一种具有初始位置偏置的梳齿结构及其制备方法。
背景技术
现有技术的一种梳齿结构装置,其由两个梳状结构组成,一个是移动的,一个是静止的,其指状是相互交叉的,即可用于驱动也可用于检测,一般来说,设置静梳齿在左边,动梳齿在右边,设置左右方向为x方向,上下方向为y方向,垂直于x方向与y方向的为z方向,则一种方式是动梳齿沿着x方向来回运动。这种梳齿结构装置的制备流程:比如在SOI(silicon on isolation)硅片的顶层硅直接一道光刻工艺即可完成(沿z方向干法刻蚀),这种运动方式为面内运动(面内来回),这种运动方式目前有成功运用在多种MEMS器件中如陀螺仪,MEMS静电驱动器,加速度计等。
技术问题
但也有很多种运动是要实现面外方向的位移,沿z方向运动的梳齿可以带动其他机构运动,可检测和驱动。设置静梳齿与动梳齿存在z方向的位置偏置(一般取梳齿高度一半)。对驱动来说,如果静梳齿与动梳齿完全重叠则,在他们之间施加驱动电压不会在z方向产生驱动力;对检测来说,如果静梳齿与动梳齿开始完全重叠,则不管运动部件的运动方向是+z还是-z方向,他们间电容值均是降低,分不清运动方向,灵敏度也低。现有的偏置梳齿结构的制备方法,比如:直接通过MEMS的沉积刻蚀工艺一步一步按顺序做出静梳齿和动梳齿结构,首先先沉积左下厚度的薄膜,刻蚀梳齿结构,填充牺牲层,刻蚀到一半高度,沉积右上厚度的薄膜,刻蚀梳齿结构,最后释放;静梳齿和动梳齿分别刻蚀制作,不大可能保证他们间相对位置;且偏置量极难控制。其它的工艺方案是将两片晶圆,上面分别刻蚀好相应的梳齿结构然后键合一起,再进行后续步骤,这种工艺的缺点是对准精度难保证,并且静梳齿和动梳齿之间的间距一致性差。
因此,有必要提供一种具有初始位置偏置的梳齿结构及其制备方法,以解决以上静梳齿和动梳齿之间的间隙一致性差,静梳齿和动梳齿在z方向上的位置偏置精确度难以可控性等问题。
技术解决方案
本发明的目的在于提供一种梳齿结构的制备工艺流程简单,静梳齿和动梳齿之间的相对初始位置偏置精确可控的梳齿结构及其制备方法。
本发明的技术方案如下:
为实现上述目的,一方面本发明提供一种具有初始位置偏置的梳齿结构,其包括:一动梳状结构,所述动梳状结构具有多个第一梳齿,所述第一梳齿包括一第一动导电层以及一第二动导电层,所述第一动导电层与所述第二动导电层彼此电隔离;一静梳状结构,所述静梳状结构具有多个第二梳齿,所述第二梳齿与所述第一梳齿相对交叉间隔设置,所述第二梳齿与所述第一梳齿共面,且所述第二梳齿的上下两边分别与所述第一梳齿的上下两边对齐,所述第二梳齿包括一第一静导电层以及一第二静导电层,且所述第一静导电层与所述第二静导电层彼此电隔离。
优选的,所述第一动导电层与所述第二动导电层之间设有一动绝缘层,所述第一静导电层与所述第二静导电层之间设有一第一静绝缘层,所述第一静绝缘层与所述动绝缘在上下方向上相互错开。
优选的,所述第二梳齿还包括一第三静导电层,所述第三静导电层与所述第二静导电层之间设有第二静绝缘层。
优选的,所述第二静绝缘层与所述动绝缘层在上下方向上相互错开。
优选的,在所述第一动导电层上施加正电压,在所述第二动导电层上施加负电压,使得所述第一动导电层与所述第二静导电层之间形成电压差,同时所述第二动导电层与所述第二静导电层之间也形成电压差,使得所述动梳状结构相对于所述静梳状结构移动。
优选的,在所述第一动导电层与所述第二静导电层之间施加电压使得所述动梳状结构相对于所述静梳状结构移动。
为实现上述目的,另一方面本发明提供一种具有初始位置偏置的梳齿结构的制备方法,其包括以下步骤:S1.提供一基板,在所述基板上沉积第一导电材料和第一绝缘材料,所述第一绝缘材料位于所述第一导电材料的上面;S2.对所述第一绝缘材料进行造型,使得部分所述第一导电材料的表面露出;S3.在所述基板的顶部沉积第二导电材料,使得所述第二导电材料覆盖所述第一绝缘材料;S4.在所述基板的顶部沉积第二绝缘材料覆盖所述第二导电材料后,对所述第二绝缘材料进行造型,使得部分所述第二导电材料的表面露出;S5.在所述基板的顶部沉积第三导电材料,使得所述第三导电材料覆盖所述第二绝缘材料;S6.在基板的上方进行深刻蚀形成梳齿间缝隙后,形成多个梳状结构。
优选的,还包括以下步骤:S7.在基板上进行背腔刻蚀及释放工艺,以此形成动梳状结构以及静梳状结构,所述动梳状结构具有多个第一梳齿,所述静梳状结构具有多个第二梳齿,所述第二梳齿与所述第一梳齿在左右方向上交叉间隔设置,所述第二梳齿与所述第一梳齿共面,且所述第二梳齿的上下两边分别与所述第一梳齿的上下两边对齐。
优选的,在步骤S1之前还包括以下步骤:S0.在基板上沉积牺牲层材料。
优选的,在步骤S2中对所述第一绝缘材料进行造型后形成多个第一绝缘层,多个所述第一绝缘层在左右方向上间隔设置,在步骤S4中对所述第二绝缘材料进行造型后形成多个第二绝缘层,多个第二绝缘层在左右方向上间隔设置。
优选的,在步骤S5之后还包括以下步骤:S51.在所述基板的顶部沉积第三绝缘材料覆盖所述第三导电材料后,对所述第三绝缘材料进行造型,使得部分所述第三导电材料的表面露出;S52.在所述基板的顶部沉积第四导电材料,使得所述第四导电材料覆盖所述第三绝缘材料。
优选的,所述第一梳齿具有动绝缘层,所述动绝缘层设置由所述第二绝缘材料形成,所述第二梳齿具有第一静绝缘层,所述第一静绝缘层设置由所述第一绝缘材料形成,所述第一静绝缘层与所述动绝缘层在上下方向上相互错开。
优选的,在步骤S6中在基板的上方进行深刻蚀后,其中一个所述梳状结构的所述第一导电材料与所述第二导电材料电连接,且所述第二导电材料与所述第三导电材料通过所述第二绝缘材料彼此绝缘。
优选的,在步骤S6中在基板的上方进行深刻蚀后,其中一个所述梳状结构的所述第三导电材料与所述第二导电材料电连接,且所述第二导电材料与所述第一导电材料通过所述第一绝缘材料彼此绝缘。
优选的,在步骤S51中对所述第三绝缘材料进行造型后形成第三绝缘层,在步骤S6中在基板的上方进行深刻蚀后,其中一个所述梳状结构的所述第四导电材料与所述第三导电材料通过所述第三绝缘材料彼此绝缘,且所述第三导电材料与所述第二导电材料电连接,且所述第二导电材料与所述第一导电材料通过所述第一绝缘材料彼此绝缘。
优选的,所述其中一个所述梳状结构为第二梳齿。
有益效果
本发明的有益效果在于:第二梳齿和第一梳齿之间形成梳齿对,且第二梳齿和第一梳齿的偏置量可通过沉积的材料厚度精确控制;第二梳齿和第一梳齿之间的间隙精确可控,且第二梳齿和第一梳齿之间的一致性好;第二梳齿和第一梳齿之间存在初始的重叠部分可以精确控制,使得梳齿结构既可用于驱动也可用于检测,制备梳齿结构的材料层不限,只要满足针对各层的绝缘和导电要求,同时工艺兼容即可,第二梳齿和第一梳齿之间的可驱动电压和接地可以互换。
附图说明
图1为本发明中其中一个实施例的动静梳齿的结构示意图。
图2为本发明中另外一个实施例的动静梳齿的结构示意图。
图3为本发明中一个实施例的动静梳齿加上电压的结构示意图。
图示4A至4G出根据本发明一个实施例中的根据梳齿结构的制备方法制造梳齿结构的简化截面图。
图示5A至5B出根据本发明另外一个实施例中的根据梳齿结构的制备方法制造出梳齿结构的简化截面图。
图6为本发明的梳齿结构的制备方法流程示意图。
图7为本发明的梳齿结构与参照组梳齿结构同位移下的电容变化的仿真图。
图8A为本发明的根据梳齿结构的制备方法制造出麦克风的结构立体图。
图8B为本发明的根据梳齿结构的制备方法制造出麦克风的部分分解图。
图8C为本发明的根据梳齿结构的制备方法制造出麦克风的截面图。
本发明的最佳实施方式
下面结合附图和实施方式对本发明作进一步说明。
请参考图1,一种具有初始位置偏置的梳齿结构,其包括一动梳状结构以及一静梳状结构。所述动梳状结构具有多个第一梳齿B,所述第一梳齿B包括一第一动导电层1以及一第二动导电层2,所述第一动导电层1与所述第二动导电层2彼此电隔离;在本实施例中,所述第一动导电层1与所述第二动导电层2彼此的电隔离为通过绝缘材料隔离,所述第一动导电层1位于所述第二动导电层2下方。
所述静梳状结构具有多个第二梳齿A,所述第二梳齿A与所述第一梳齿B相对交叉间隔设置,在本实施例中,所述第二梳齿A与所述第一梳齿B在左右方向上交叉间隔排列设置。所述第二梳齿A与所述第一梳齿B共面即所述第二梳齿A所在的平面与所述第一梳齿B所在的平面重合,且所述第二梳齿A的上下两边分别与所述第一梳齿B的上下两边对齐,即是所述第二梳齿A的上边与所述第一梳齿B的上边在同一条直线,所述第二梳齿A的下边与所述第一梳齿B的下边在同一条直线使得所述第二梳齿A的长度等于所述第一梳齿B的长度。所述第二梳齿A包括一第一静导电层3以及一第二静导电层4,且所述第一静导电层3与所述第二静导电层4彼此电隔离;在本实施例中,所述第一静导电层3与所述第二静导电层4彼此的电隔离为通过绝缘材料隔离,所述第一静导电层3位于所述第二静导电层4下方。
请参考图1及图2,所述第一动导电层1与所述第二动导电层2之间设有一动绝缘层5,所述第一静导电层3与所述第二静导电层4之间设有一第一静绝缘层6,所述第一静绝缘层6与所述动绝缘层5在上下方向上相互错开,以此使得所述第一梳齿B与所述第二梳齿A之间形成初始位置偏置。
请参考图1及图2,在其中一个实施例中,所述第二梳齿A还包括一第三静导电层7,所述第三静导电层7与所述第二静导电层4之间设有第二静绝缘层8,以此使得所述第一梳齿B与所述第二梳齿A组成差分形式的结构。所述第二静绝缘层8与所述动绝缘层5在上下方向上也相互错开。在其中一个实施例中,所述动绝缘层5在上下方向上位于第一静绝缘层6与第二静绝缘层8之间,使得使得所述第一梳齿B与所述第二梳齿A之间形成差分式的初始位置偏置。
请参考图3,在其中一个实施例中,在所述第二动导电层2上施加电压,将所述第一静导电层3接地,使得所述动梳状结构相对于所述静梳状结构移动;或者将所述第二动导电层2接地,在所述第一静导电层3上施加电压,使得所述动梳状结构能够相对于所述静梳状结构移动,以此使得所述静梳状结构和所述动梳状结构之间的可驱动电压和接地可以互换。
在其中一个实施例中,在所述第二动导电层2上施加正电压,在所述第一动导电层1上施加负电压,在所述第二静导电层4上施加一个初始电压,使得所述第二动导电层2与所述第二静导电层4之间形成电压差,同时所述第一动导电层1与所述第二静导电层4之间也形成电压差,使得所述动梳状结构能够相对于所述静梳状结构移动。
请参考图1至图6,一种具有初始位置偏置的梳齿结构的制备方法,其包括以下步骤:
S1. 提供一基板10,在所述基板10上沉积第一导电材料11和第一绝缘材料12,所述第一绝缘材料12位于所述第一导电材料11的上面;
S2. 对所述第一绝缘材料12进行造型,使得部分所述第一导电材料11的表面露出;
S3.  在所述基板10的顶部沉积第二导电材料13,使得所述第二导电材料13覆盖所述第一绝缘材料12;
S4. 在所述基板10的顶部沉积第二绝缘材料14覆盖所述第二导电材料13后,对所述第二绝缘材料14进行造型,使得部分所述第二导电材料13的表面露出;
S5. 在所述基板10的顶部沉积第三导电材料15,使得所述第三导电材料15覆盖所述第二绝缘材料14;
S6. 在基板10的上方进行深刻蚀形成梳齿间缝隙后,形成多个梳状结构;
S7. 在基板10上进行背腔刻蚀及释放工艺,以此形成动梳状结构以及静梳状结构;其中,所述动梳状结构具有多个第一梳齿B,所述静梳状结构具有多个第二梳齿A,所述第二梳齿A与所述第一梳齿B在左右方向上交叉间隔设置,所述第二梳齿A与所述第一梳齿B共面,且所述第二梳齿A的上下两边分别与所述第一梳齿B的上下两边对齐。
在本实施例中,所述第一导电材料11、所述第二导电材料13以及所述第三导电材料15设置为采用同一种导电材料,所述第一绝缘材料12以及所述第二绝缘材料14设置为采用同一种绝缘材料(在其它实施例中,所述第一绝缘材料12以及所述第二绝缘材料14可以设置为采用不同的绝缘材料)。
在其中一个实施例中,在步骤S1之前还包括以下步骤:S0.在基板10上沉积牺牲层材料。
在其中一个实施例中,在步骤S2中对所述第一绝缘材料12进行造型后形成多个第一绝缘层,多个所述第一绝缘层在左右方向上间隔设置,在步骤S4中对所述第二绝缘材料14进行造型后形成多个第二绝缘层,多个所述第二绝缘层在左右方向上间隔设置,多个所述第二绝缘层位于多个所述第一绝缘层上方。
请参考图5A以及图5B,在其中一个实施例中,在步骤S5之后还包括以下步骤:
S51. 在所述基板10的顶部沉积第三绝缘材料16覆盖所述第三导电材料15后,对所述第三绝缘材料16进行造型,使得部分所述第三导电材料15的表面露出;
S52. 在所述基板10的顶部沉积第四导电材料17,使得所述第四导电材料17覆盖所述第三绝缘材料16。在本实施例中,所述第一导电材料11、所述第二导电材料13、所述第三导电材料15以及所述第四导电材料17设置为采用同一种导电材料,所述第一绝缘材料12、所述第二绝缘材料14以及所述第三绝缘材料16设置为采用同一种绝缘材料(在其它实施例中,所述第一绝缘材料12、所述第二绝缘材料14以及所述第三绝缘材料16可以设置为采用不同的绝缘材料)。
请参考图4A至图4G,在其中一个实施例中,所述第一梳齿B具有多个所述动绝缘层5,所述动绝缘层5设置由所述第二绝缘材料14形成,所述第二梳齿A具有多个第一静绝缘层6,所述第一静绝缘层6设置由所述第一绝缘材料12形成,所述第一静绝缘层6与所述动绝缘层5在上下方向上相互错开,在本实施例中,所述动绝缘层5位于所述第一静绝缘层6上方,以此使得所述第一梳齿B与所述第二梳齿A在左右方向上交叉间隔设置。在其它实施例中,所述动绝缘层5可设置由所述第一绝缘材料12形成,所述第一静绝缘层6可设置为所述第二绝缘材料14,所述动绝缘层5位于所述第一静绝缘层6下方。
请参考图4A至图4G,在其中一个实施例中,在步骤S6中在基板10的上方进行深刻蚀后,其中一个所述梳状结构的所述第一导电材料11与所述第二导电材料13电连接,且所述第二导电材料13与所述第三导电材料15通过所述第二绝缘材料14彼此绝缘。在本实施例中,所述梳状结构设置为所述第一梳齿B(在其它实施例中,所述梳状结构也可以设置为第二梳齿A)。在步骤S6中在基板10的上方进行深刻蚀后,其中一个所述梳状结构的所述第三导电材料15与所述第二导电材料13电连接,且所述第二导电材料13与所述第一导电材料11通过所述第一绝缘层彼此绝缘。在本实施例中,所述梳状结构设置为所述第二梳齿A(在其它实施例中,所述梳状结构也可以设置为第一梳齿B)。
请参考图4A至图4G,在本实例中,通过具有初始位置偏置的梳齿结构的制备方法,最后得到:所述第一梳齿B设置在所述第一梳齿B的左侧,所述第一梳齿B包括所述第一导电材料11与所述第二导电材料13电连接形成的第一动导电层1、动绝缘层5以及第二动导电层2,所述动绝缘层5由所述第二绝缘材料14形成,所述第二动导电层2由第三导电材料15形成;第二梳齿A包括所述第三导电材料15与所述第二导电材料13电连接形成第二静导电层4、第一静绝缘层6以及第一静导电层3,所述第一静绝缘层6由所述第一绝缘材料12形成,所述第一静导电层3由所述第一导电材料11形成。所述第二梳齿A与所述第一梳齿B共面,且所述第二梳齿A的上下两边分别与所述第一梳齿B的上下两边对齐。
请参考图4A至图5B,在其中一个实施例中,在步骤S51中对所述第三绝缘材料16进行造型后形成第三绝缘层,在步骤S6中在基板10的上方进行深刻蚀后,其中一个所述梳状结构的所述第四导电材料17与所述第三导电材料15通过所述第三绝缘层彼此绝缘,且所述第三导电材料15与所述第二导电材料13电连接,且所述第二导电材料13与所述第一导电材料11通过所述第一绝缘材料12彼此绝缘。在本实施例中,所述梳状结构设置为所述第二梳齿A,即是所述其中一个所述梳状结构为第二梳齿A。在步骤S51中对所述第三绝缘材料16进行造型后形成第三绝缘层,在步骤S6中在基板10的上方进行深刻蚀后,其中一个所述梳状结构的所述第四导电材料17与所述第三导电材料15电连接,且所述第三导电材料15与所述第二导电材料13通过所述第二绝缘层彼此绝缘,且所述第二导电材料13与所述第一导电材料11电连接。在本实施例中,所述梳状结构设置为所述第一梳齿B,即是所述其中一个所述梳状结构为第一梳齿B,使得所述第一梳齿B与所述第二梳齿A之间形成差分式的初始位置偏置。
请参考图1至图6,在本实例中,通过具有初始位置偏置的梳齿结构的制备方法,最后得到所述第一梳齿B与所述第二梳齿A之间形成差分式的初始位置偏置:所述第一梳齿B设置在所述第一梳齿B的左侧,所述第一梳齿B包括第一动导电层1、动绝缘层5以及第二动导电层2,所述动绝缘层5由所述第二绝缘材料14形成,所述第一动导电层1由所述第二导电材料13与所述第一导电材料11电连接形成,所述第二动导电层2由所述第四导电材料17与所述第三导电材料15电连接形成。第二梳齿A包括第一静导电层3、第二静导电层4、第三静导电层7、第一静绝缘层6以及第二静绝缘层8,所述第一静绝缘层6由所述第一绝缘材料12形成,所述第一静导电层3由所述第一导电材料11形成,所述第二静导电层4由所述第二导电材料13与所述第三导电材料15电连接形成,所述第三静导电层7由所述第四导电材料17形成,所述第二静绝缘层8由第三绝缘材料16形成。所述第二梳齿A与所述第一梳齿B共面,且所述第二梳齿A的上下两边分别与所述第一梳齿B的上下两边对齐。
本发明,通过具有初始位置偏置的梳齿结构的制备方法,最后可以使得第二梳齿A和第一梳齿B之间形成梳齿对,且所述动梳状结构和所述静梳状结构的偏置量可通过沉积的材料厚度来精确控制;其所述第一梳齿B和所述第二梳齿A之间的间隙精确可控,因为本发明只有一次刻蚀成型,此种方法的使得所述第一梳齿B和所述第二梳齿A的一致性好;所述第一梳齿B和所述第二梳齿A之间存在初始的重叠部分也可以精确控制,使得梳齿结构既可用于驱动也可用于检测,而且制备梳齿结构的材料层不限,只要满足针对各层的绝缘和导电要求,同时工艺兼容即可,所述第一梳齿B和所述第二梳齿A之间之间的可驱动电压和接地可以互换。本发明中的梳齿结构的制备工艺流程简单,梳齿结构对初始位置偏置精确可控,适用于不同器件的需求。
请参考图7,本发明的具有初始位置偏置的梳齿结构在动梳齿运动状态下的电容变化率情况,其中正常梳齿对作为参照组,动梳齿相对静梳齿运动位移从-1um~1um,记录电容变化量(其他条件一致)。1)从变化曲线可看出,随着动梳齿的移动,电容呈线性变化。(2)对比传统梳齿结构,同位移下本发明的具有初始位置偏置的梳齿结构的电容变化率要稍小,从仿真结果看,动梳齿同样位移的情况下,本发明的梳齿结构产生的电容变化量要小于传统的梳齿结构(10%~20%),也就是同条件下,灵敏度会下降这个比例,不过考虑到传统方法极难制备带初始位置偏置的梳齿结构,损失可接受。(3)本发明的结构中的不作为电极使用的其他材料,可优选用介电常数低的材料,这样可以提高本发明的结构的电容变化量。
请参考图8A至图8C,本发明通过具有初始位置偏置的梳齿结构的制备方法最后制成的麦克风,麦克风C具有振膜部分C1以及梳齿部分C2,所述振膜部分C1前后两边并未与基板连接,但是所述振膜部分C1的左右两边固定于基板,所述梳齿部分C2包括所述第一梳齿B以及所述第二梳齿A,所述梳齿部分C2位于所述振膜部分C1的上方且位于麦克风C的中间。麦克风还具有支撑梁C3,所述支撑梁C3连接所述振膜部分C1的左右两边且与上面的所述梳齿部分C2的内部梳齿的下端面连接。麦克风C的两个电极:一个从器件上表面,一个从所述振膜部分C1连出。
本发明,通过具有初始位置偏置的梳齿结构的制备方法,最后可以使得静梳齿第二梳齿A和动梳齿第一梳齿B之间形成梳齿对,且所述动梳状结构和所述静梳状结构的偏置量可通过沉积的材料厚度来精确控制;其所述第一梳齿B和所述第二梳齿A之间的间隙精确可控,因为本发明只有一次刻蚀成型,此种方法的使得所述第一梳齿B和所述第二梳齿A的一致性好;所述第一梳齿B和所述第二梳齿A之间存在初始的重叠部分也可以精确控制,使得梳齿结构既可用于驱动也可用于检测,而且制备梳齿结构的材料层不限,只要满足针对各层的绝缘和导电要求,同时工艺兼容即可,所述第一梳齿B和所述第二梳齿A之间之间的可驱动电压和接地可以互换。本发明中的梳齿结构的制备工艺流程简单,梳齿结构对初始位置偏置精确可控,适用于不同器件的需求。
以上所述的仅是本发明的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出改进,但这些均属于本发明的保护范围。

Claims (16)

  1. 一种具有初始位置偏置的梳齿结构,其特征在于,包括:
    一动梳状结构,所述动梳状结构具有多个第一梳齿,所述第一梳齿包括一第一动导电层以及一第二动导电层,所述第一动导电层与所述第二动导电层彼此电隔离;
    一静梳状结构,所述静梳状结构具有多个第二梳齿,所述第二梳齿与所述第一梳齿相对交叉间隔设置,所述第二梳齿与所述第一梳齿共面,且所述第二梳齿的上下两边分别与所述第一梳齿的上下两边对齐,所述第二梳齿包括一第一静导电层以及一第二静导电层,且所述第一静导电层与所述第二静导电层彼此电隔离。
  2. 根据权利要求1所述的具有初始位置偏置的梳齿结构,其特征在于:所述第一动导电层与所述第二动导电层之间设有一动绝缘层,所述第一静导电层与所述第二静导电层之间设有一第一静绝缘层,所述第一静绝缘层与所述动绝缘在上下方向上相互错开。
  3. 根据权利要求2所述的具有初始位置偏置的梳齿结构,其特征在于:所述第二梳齿还包括一第三静导电层,所述第三静导电层与所述第二静导电层之间设有第二静绝缘层。
  4. 根据权利要求3所述的具有初始位置偏置的梳齿结构,其特征在于:所述第二静绝缘层与所述动绝缘层在上下方向上相互错开。
  5. 根据权利要求3所述的具有初始位置偏置的梳齿结构,其特征在于:在所述第一动导电层上施加正电压,在所述第二动导电层上施加负电压,使得所述第一动导电层与所述第二静导电层之间形成电压差,同时所述第二动导电层与所述第二静导电层之间也形成电压差,使得所述动梳状结构相对于所述静梳状结构移动。
  6. 根据权利要求2所述的具有初始位置偏置的梳齿结构,其特征在于:在所述第一动导电层与所述第二静导电层之间施加电压使得所述动梳状结构相对于所述静梳状结构移动。
  7. 一种具有初始位置偏置的梳齿结构的制备方法,其特征在于,包括以下步骤:
    S1. 提供一基板,在所述基板上沉积第一导电材料和第一绝缘材料,所述第一绝缘材料位于所述第一导电材料的上面;
    S2. 对所述第一绝缘材料进行造型,使得部分所述第一导电材料的表面露出;
    S3.  在所述基板的顶部沉积第二导电材料,使得所述第二导电材料覆盖所述第一绝缘材料;
    S4. 在所述基板的顶部沉积第二绝缘材料覆盖所述第二导电材料后,对所述第二绝缘材料进行造型,使得部分所述第二导电材料的表面露出;
    S5. 在所述基板的顶部沉积第三导电材料,使得所述第三导电材料覆盖所述第二绝缘材料;
    S6. 在基板的上方进行深刻蚀形成梳齿间缝隙后,形成多个梳状结构。
  8. 根据权利要求7所述的具有初始位置偏置的梳齿结构的制备方法,其特征在于,还包括以下步骤:
    S7. 在基板上进行背腔刻蚀及释放工艺,以此形成动梳状结构以及静梳状结构,所述动梳状结构具有多个第一梳齿,所述静梳状结构具有多个第二梳齿,所述第二梳齿与所述第一梳齿在左右方向上交叉间隔设置,所述第二梳齿与所述第一梳齿共面,且所述第二梳齿的上下两边分别与所述第一梳齿的上下两边对齐。
  9. 根据权利要求7所述的具有初始位置偏置的梳齿结构的制备方法,其特征在于,在步骤S1之前还包括以下步骤:
      S0.在基板上沉积牺牲层材料。
  10. 根据权利要求8所述的具有初始位置偏置的梳齿结构的制备方法,其特征在于,在步骤S2中对所述第一绝缘材料进行造型后形成多个第一绝缘层,多个所述第一绝缘层在左右方向上间隔设置,在步骤S4中对所述第二绝缘材料进行造型后形成多个第二绝缘层,多个第二绝缘层在左右方向上间隔设置。
  11. 根据权利要求8所述的具有初始位置偏置的梳齿结构的制备方法,其特征在于,在步骤S5之后还包括以下步骤:
         S51. 在所述基板的顶部沉积第三绝缘材料覆盖所述第三导电材料后,对所述第三绝缘材料进行造型,使得部分所述第三导电材料的表面露出;
    S52. 在所述基板的顶部沉积第四导电材料,使得所述第四导电材料覆盖所述第三绝缘材料。
  12. 根据权利要求8所述的具有初始位置偏置的梳齿结构的制备方法,其特征在于,所述第一梳齿具有动绝缘层,所述动绝缘层设置由所述第二绝缘材料形成,所述第二梳齿具有第一静绝缘层,所述第一静绝缘层设置由所述第一绝缘材料形成,所述第一静绝缘层与所述动绝缘层在上下方向上相互错开。
  13. 根据权利要求8所述的具有初始位置偏置的梳齿结构的制备方法,其特征在于,在步骤S6中在基板的上方进行深刻蚀后,其中一个所述梳状结构的所述第一导电材料与所述第二导电材料电连接,且所述第二导电材料与所述第三导电材料通过所述第二绝缘材料彼此绝缘。
  14. 根据权利要求8所述的具有初始位置偏置的梳齿结构的制备方法,其特征在于,在步骤S6中在基板的上方进行深刻蚀后,其中一个所述梳状结构的所述第三导电材料与所述第二导电材料电连接,且所述第二导电材料与所述第一导电材料通过所述第一绝缘材料彼此绝缘。
  15. 根据权利要求11所述的具有初始位置偏置的梳齿结构的制备方法,其特征在于,在步骤S51中对所述第三绝缘材料进行造型后形成第三绝缘层,在步骤S6中在基板的上方进行深刻蚀后,其中一个所述梳状结构的所述第四导电材料与所述第三导电材料通过所述第三绝缘材料彼此绝缘,且所述第三导电材料与所述第二导电材料电连接,且所述第二导电材料与所述第一导电材料通过所述第一绝缘材料彼此绝缘。
  16. 根据权利要求15所述的具有初始位置偏置的梳齿结构的制备方法,其特征在于,所述其中一个所述梳状结构为第二梳齿。
PCT/CN2020/101485 2020-07-10 2020-07-10 一种具有初始位置偏置的梳齿结构及其制备方法 WO2022006910A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/101485 WO2022006910A1 (zh) 2020-07-10 2020-07-10 一种具有初始位置偏置的梳齿结构及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/101485 WO2022006910A1 (zh) 2020-07-10 2020-07-10 一种具有初始位置偏置的梳齿结构及其制备方法

Publications (1)

Publication Number Publication Date
WO2022006910A1 true WO2022006910A1 (zh) 2022-01-13

Family

ID=79553597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/101485 WO2022006910A1 (zh) 2020-07-10 2020-07-10 一种具有初始位置偏置的梳齿结构及其制备方法

Country Status (1)

Country Link
WO (1) WO2022006910A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1336548A (zh) * 2001-09-14 2002-02-20 清华大学 定齿偏置的梳齿式体硅加工微机械结构
JP2006353081A (ja) * 2005-06-15 2006-12-28 Samsung Electronics Co Ltd 垂直くし型電極を具備したアクチュエータ
CN102435777A (zh) * 2011-11-02 2012-05-02 重庆理工大学 一种硅微电容式二维集成加速度传感器
CN102435779A (zh) * 2011-11-02 2012-05-02 重庆理工大学 一种硅微电容式二维加速度传感器
JP2013078206A (ja) * 2011-09-30 2013-04-25 Olympus Corp 櫛歯型アクチュエータ
CN103809285A (zh) * 2012-11-06 2014-05-21 亚太优势微系统股份有限公司 自对准垂直式梳状传感器及其制作方法
CN105353506A (zh) * 2015-12-18 2016-02-24 中国电子科技集团公司第十三研究所 垂直梳齿驱动moems微镜及其制作方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1336548A (zh) * 2001-09-14 2002-02-20 清华大学 定齿偏置的梳齿式体硅加工微机械结构
JP2006353081A (ja) * 2005-06-15 2006-12-28 Samsung Electronics Co Ltd 垂直くし型電極を具備したアクチュエータ
JP2013078206A (ja) * 2011-09-30 2013-04-25 Olympus Corp 櫛歯型アクチュエータ
CN102435777A (zh) * 2011-11-02 2012-05-02 重庆理工大学 一种硅微电容式二维集成加速度传感器
CN102435779A (zh) * 2011-11-02 2012-05-02 重庆理工大学 一种硅微电容式二维加速度传感器
CN103809285A (zh) * 2012-11-06 2014-05-21 亚太优势微系统股份有限公司 自对准垂直式梳状传感器及其制作方法
CN105353506A (zh) * 2015-12-18 2016-02-24 中国电子科技集团公司第十三研究所 垂直梳齿驱动moems微镜及其制作方法

Similar Documents

Publication Publication Date Title
US7418864B2 (en) Acceleration sensor and method for manufacturing the same
JP3884795B2 (ja) アバットメントにより基板から離れて保持された有効層を備えた構造体の製造方法及びそのような層の分離方法
US7172917B2 (en) Method of making a nanogap for variable capacitive elements, and device having a nanogap
JP5192610B2 (ja) Mems素子、およびmems素子の製造方法
CN109490575B (zh) 一种低阻尼电容式加速度传感器及其制备方法
US7439184B2 (en) Method of making comb-teeth electrode pair
JP2004500252A (ja) 多層自己整列型垂直櫛形ドライブ静電アクチュエータ及びその製造方法
JP2011022137A (ja) Mems装置及びその製造方法
JP4000936B2 (ja) 容量式力学量センサを有する検出装置
JP2014098705A (ja) 二方向性平面外櫛駆動加速度計
CN110703430A (zh) 二维静电扫描微镜
KR100373739B1 (ko) 단결정 실리콘 웨이퍼 한 장를 이용한 정전형 수직구동기의 제조 방법
EP1932803B1 (en) MEMS device with Z-axis asymetry
WO2022006910A1 (zh) 一种具有初始位置偏置的梳齿结构及其制备方法
CN110342453B (zh) 一种基于双光栅检测的微机电陀螺仪及其加工封装方法
CN111943127B (zh) 一种梳齿结构、其制备方法及麦克风
CN113008220B (zh) 一种压电式磁性调谐盘型陀螺仪及其制备方法与应用
KR100442824B1 (ko) 마이크로구조물소자및그제조방법
JPH06347474A (ja) 加速度センサ
JP3577566B2 (ja) 半導体力学量センサの製造方法
KR101573518B1 (ko) 초음파 트랜스듀서 및 그 제조 방법
CN215263584U (zh) 加速度传感器
JP2004004119A (ja) 半導体力学量センサ
JPH0954114A (ja) 加速度センサ
CN218841706U (zh) 自对准多晶硅单晶硅混合mems垂直梳齿电极

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20944716

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20944716

Country of ref document: EP

Kind code of ref document: A1