WO2022006902A1 - 热失控检测的方法和电池管理系统 - Google Patents

热失控检测的方法和电池管理系统 Download PDF

Info

Publication number
WO2022006902A1
WO2022006902A1 PCT/CN2020/101448 CN2020101448W WO2022006902A1 WO 2022006902 A1 WO2022006902 A1 WO 2022006902A1 CN 2020101448 W CN2020101448 W CN 2020101448W WO 2022006902 A1 WO2022006902 A1 WO 2022006902A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling medium
battery
pressure
temperature
liquid level
Prior art date
Application number
PCT/CN2020/101448
Other languages
English (en)
French (fr)
Inventor
陈小波
李耀
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to KR1020227019093A priority Critical patent/KR20220097962A/ko
Priority to CN202080044886.3A priority patent/CN114175350B/zh
Priority to US15/734,718 priority patent/US11342601B2/en
Priority to JP2022537762A priority patent/JP7506157B2/ja
Priority to PCT/CN2020/101448 priority patent/WO2022006902A1/zh
Priority to EP20803076.7A priority patent/EP3965208B1/en
Publication of WO2022006902A1 publication Critical patent/WO2022006902A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/488Cells or batteries combined with indicating means for external visualization of the condition, e.g. by change of colour or of light density
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the embodiments of the present application relate to the technical field of batteries, and more particularly, to a method and a battery management system for thermal runaway detection.
  • Embodiments of the present application provide a thermal runaway detection method and a battery management system, which can effectively detect thermal runaway of a battery.
  • a method for detecting thermal runaway comprising: acquiring at least one parameter of a cooling medium of a battery, the battery including a heat conducting device, the heat conducting device accommodating the cooling medium; When the at least one parameter satisfies a preset condition, it is determined that thermal runaway occurs in the battery.
  • the at least one parameter includes at least one of the following parameters: the pressure of the cooling medium, the flow rate of the cooling medium, the liquid level of the cooling medium, and the cooling medium temperature of the medium.
  • the at least one parameter meeting a preset condition includes: the at least one parameter meeting any one of the following preset conditions: the parameter value reaches a corresponding threshold value, and the change amount of the parameter value reaches a corresponding The threshold and parameter values are lost.
  • the parameter value when the parameter value reaches a certain threshold, or the variation of the parameter value reaches a certain threshold, or the parameter value is lost because the sensor is damaged, it can be used as a condition for judging the occurrence of thermal runaway. In practical applications, appropriate conditions can be used to determine whether the battery is thermally out of control based on the changing laws and changing speeds of different parameters.
  • the at least one parameter includes the pressure of the cooling medium, wherein the pressure of the cooling medium satisfies a preset condition, including: the pressure of the cooling medium drops to a first pressure threshold, The amount of change in the pressure of the cooling medium exceeds a second pressure threshold, or data on the pressure of the cooling medium is lost.
  • the method further includes: acquiring the pressure of the cooling medium from a pressure sensor, wherein the pressure sensor is disposed at the input port or the output port of the heat conducting device, and the pressure sensor For monitoring the pressure of the cooling medium.
  • the input port and output port of the heat transfer device are used to input and output the cooling medium.
  • the pressure sensor is arranged at the input port or output port of the heat transfer device, which not only ensures the convenience of the installation location, but also makes the pressure change of the cooling medium easier to monitor. .
  • the at least one parameter includes the flow rate of the cooling medium, and the flow rate of the cooling medium satisfies a preset condition, including: the flow rate of the cooling medium drops to a first flow threshold value, the flow rate of the cooling medium The amount of change in the flow rate of the cooling medium exceeds a second flow rate threshold, or data on the flow rate of the cooling medium is lost.
  • the method further includes: acquiring the flow rate of the cooling medium from a flow sensor, wherein the flow sensor is disposed at the input port or the output port of the heat conduction device, and the flow sensor For monitoring the flow of the cooling medium.
  • Disposing the flow sensor at the input port or the output port of the heat conduction device not only ensures the convenience of the installation location, but also makes it easier to monitor the flow change of the cooling medium.
  • the at least one parameter includes a liquid level height of the cooling medium, and the liquid level height of the cooling medium satisfies a preset condition, including: the liquid level height of the cooling medium drops to the first A height threshold, the amount of change in the liquid level of the cooling medium exceeds a second height threshold, or data on the liquid level of the cooling medium is lost.
  • the method further includes: acquiring the liquid level of the cooling medium from a liquid level sensor, wherein the liquid level sensor is arranged on a storage tank for storing the cooling medium, The liquid level sensor is used for monitoring the liquid level of the cooling medium stored in the storage tank.
  • the cooling medium is stored in the storage tank, which is communicated with the input port of the heat conduction device.
  • the change of the liquid level in the storage box is the most sensitive. Therefore, if the flow sensor is arranged on the storage tank, the change of the liquid level of the cooling medium can be monitored more accurately.
  • the at least one parameter includes the temperature of the cooling medium, and the temperature of the cooling medium satisfies a preset condition, including: the temperature of the cooling medium rises to a first temperature threshold, the The amount of change in the temperature of the cooling medium exceeds the second temperature threshold, or data on the temperature of the cooling medium is lost.
  • the method further includes: acquiring the temperature of the cooling medium from a temperature sensor, wherein the temperature sensor is arranged at the output port of the heat conducting device, and the temperature sensor is used for monitoring The temperature of the cooling medium at the outlet of the heat conducting device.
  • the method further includes: outputting an indication signal to a vehicle controller for indicating that the battery is thermally out of control.
  • a battery management system in a second aspect, includes:
  • an acquisition unit configured to acquire at least one parameter of the cooling medium of the battery
  • the battery includes a heat conduction device, and the heat conduction device accommodates the cooling medium
  • the processing unit is configured to determine that thermal runaway occurs in the battery when the at least one parameter satisfies a preset condition.
  • the at least one parameter acquired by the acquiring unit includes at least one of the following parameters: the pressure of the cooling medium, the flow rate of the cooling medium, and the liquid level of the cooling medium altitude, and the temperature of the cooling medium.
  • the at least one parameter meeting a preset condition includes: the at least one parameter meeting any one of the following preset conditions: the parameter value reaches a corresponding threshold value, and the change amount of the parameter value reaches a corresponding The threshold and parameter values are lost.
  • the at least one parameter includes the pressure of the cooling medium
  • the processing unit is specifically configured to: when the pressure of the cooling medium drops to a first pressure threshold, the cooling medium When the variation of the pressure of the battery exceeds a second pressure threshold, or the data of the pressure of the cooling medium is lost, it is determined that thermal runaway occurs in the battery.
  • the processing unit is further configured to: acquire the pressure of the cooling medium from a pressure sensor, wherein the pressure sensor is arranged at the input port or the output port of the heat conducting device, and the A pressure sensor is used to monitor the pressure of the cooling medium.
  • the at least one parameter includes the flow rate of the cooling medium
  • the processing unit is specifically configured to: when the flow rate of the cooling medium drops to a first flow threshold, the cooling medium When the variation of the flow rate of the battery exceeds a second flow rate threshold, or the data of the flow rate of the cooling medium is lost, it is determined that the battery has thermal runaway.
  • the processing unit is further configured to: acquire the flow rate of the cooling medium from a flow sensor, wherein the flow sensor is arranged at the input port or the output port of the heat conduction device, and the A flow sensor is used to monitor the flow of the cooling medium.
  • the at least one parameter includes a liquid level height of the cooling medium
  • the processing unit is specifically configured to: when the liquid level height of the cooling medium drops to a first height threshold, When the variation of the liquid level of the cooling medium exceeds a second height threshold, or the data of the liquid level of the cooling medium is lost, it is determined that the battery is thermally out of control.
  • the processing unit is further configured to: acquire the liquid level of the cooling medium from the liquid level sensor, wherein the liquid level sensor is arranged in a storage device for storing the cooling medium On the storage tank, the liquid level sensor is used for monitoring the liquid level of the cooling medium stored in the storage tank.
  • the at least one parameter includes the temperature of the cooling medium
  • the processing unit is specifically configured to: when the temperature of the cooling medium rises to a first temperature threshold, the cooling medium When the variation of the temperature of the battery exceeds a second temperature threshold, or the data of the temperature of the cooling medium is lost, it is determined that the battery has thermal runaway.
  • the processing unit is further configured to: acquire the temperature of the cooling medium from a temperature sensor, wherein the temperature sensor is arranged at the output port of the heat conduction device, and the temperature sensor uses for monitoring the temperature of the cooling medium at the outlet of the heat conducting device.
  • the processing unit is further configured to: output an indication signal to a vehicle controller for indicating that the battery is thermally out of control.
  • a battery comprising:
  • At least one battery cell At least one battery cell
  • a battery management system according to the second aspect and any possible implementation manner of the second aspect.
  • a thermal runaway detection device comprising a memory and a processor, where the memory is used to store an instruction, and the processor is used to read the instruction and execute the above-mentioned first aspect and the first aspect based on the instruction.
  • a readable storage medium for storing a computer program, and the computer program is used to execute the method in the first aspect and any possible implementation manner of the first aspect.
  • a vehicle comprising:
  • the vehicle control system is configured to receive an indication signal sent by a battery management system in the battery and used to indicate that the battery is thermally runaway.
  • the vehicle control system is further configured to: issue an alarm signal according to the indication signal.
  • the alarm signal is a light signal or a sound signal.
  • Fig. 1 is a schematic block diagram of BMS monitoring thermal runaway
  • FIG. 2 is a schematic diagram of a vehicle according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a battery according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a battery module according to an embodiment of the present application.
  • FIG. 5 is an exploded view of a battery cell according to an embodiment of the present application.
  • FIG. 6 is an exploded view of a battery of an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a method for thermal runaway detection according to an embodiment of the present application.
  • FIG. 8 is a schematic block diagram of a BMS monitoring thermal runaway based on the method shown in FIG. 7;
  • FIG. 9 is a schematic diagram of the pressure and flow rate of the cooling medium when a thermal runaway occurs in the battery
  • FIG. 10 is a schematic block diagram of a BMS according to an embodiment of the present application.
  • FIG. 11 is a schematic block diagram of an apparatus for thermal runaway detection according to an embodiment of the present application.
  • a battery includes multiple battery cells, and when one or more of the battery cells experience thermal runaway, such as fire, explosion, or smoke, the heat will be transferred to the adjacent battery cells, that is, the heat of the battery cells. Loss of control can spread to surrounding cells, causing a chain reaction. In the process of heat dissipation, it may cause dangerous situations such as fire or explosion at any time.
  • EVS-GTR Electric Vehicle Safety-Global Technical Regulation
  • the voltage of each battery cell is generally monitored through a low-voltage monitoring system, and a sensor is set every few battery cells to monitor the temperature of the battery cell.
  • Thermal runaway occurs.
  • the battery management system BMS is responsible for monitoring the temperature and voltage of the battery cells, and determines whether thermal runaway occurs based on temperature changes and voltage changes.
  • the BMS can send an indication signal to the vehicle control unit (VCU), so that the VCU sends an alarm signal to remind the occupants to avoid danger.
  • VCU vehicle control unit
  • thermal runaway when thermal runaway occurs, there may be the following problems: when the voltage drop of the battery cell in which thermal runaway occurs coincides with the voltage drop feature of the battery cell during normal discharge, it is difficult to use the voltage drop feature to determine Whether thermal runaway occurs in the battery cell; when the temperature sensor is not arranged on the battery cell with thermal runaway, it is difficult to use the temperature signal to determine whether thermal runaway occurs; the high-temperature and high-speed gas ejected at the moment when the thermal runaway occurs in the battery cell is very easy to cause
  • the physical destruction of the voltage sensor and the temperature sensor results in the interruption of signal transmission due to the destruction of the sensor even if it can be judged whether thermal runaway occurs based on the temperature change and voltage change of the battery cell. It can be seen that there are certain missed judgments and misjudgments in using the temperature change and voltage change of the battery to determine whether thermal runaway occurs.
  • the present application proposes a thermal runaway detection method, which can more accurately detect the thermal runaway of a battery and reduce the probability of missed judgment and misjudgment.
  • the thermal runaway detection method of the embodiment of the present application can be applied to a battery.
  • the battery cells in the battery suffer from thermal runaway, which is also referred to as thermal runaway of the battery.
  • the battery includes a heat conduction device, such as a cooling plate or a liquid cooling plate.
  • a cooling medium is accommodated in the heat conducting device.
  • the cooling medium can be used to cool the battery. It should be understood that when thermal runaway occurs in the battery, the thermally conductive device can be destroyed, thereby allowing the cooling medium therein to be discharged from the interior of the thermally conductive device.
  • Each battery cell in the battery is provided with a pressure relief mechanism, such as an explosion-proof valve.
  • the pressure relief mechanism on the battery cell has an important impact on the safety of the battery. For example, when a short circuit, overcharge and other phenomena occur, it may cause thermal runaway inside the battery cell and a sudden increase in air pressure. In this case, the internal temperature and air pressure can be released through the pressure relief mechanism to prevent the battery cell from exploding and catching fire.
  • the emissions of the battery cells are high-pressure and high-heat emissions, including high-pressure and high-heat gas, liquid or solid combustion products such as metal shavings and the like.
  • the main focus is to release the high pressure and high heat inside the battery cell, that is, to discharge the exhaust to the outside of the battery cell.
  • a plurality of battery cells are often required, and the plurality of battery cells are electrically connected through a busbar.
  • the discharge from the inside of the battery cells may cause short-circuits in the remaining battery cells. For example, when the discharged metal scraps electrically connect the two bus components, the batteries will be short-circuited, thus posing a safety hazard.
  • the present application proposes a solution for thermal runaway detection, which achieves the purpose of battery thermal runaway detection by cooperating the pressure relief mechanism with a heat conduction device.
  • the pressure relief mechanism is provided on one wall of the battery cell and the surface of the thermally conductive device is attached to the same wall of the battery cell.
  • the pressure relief mechanism is used for releasing the internal pressure when the internal pressure of the battery cell reaches a threshold value, so that the surface of the heat conducting device is damaged.
  • the cooling medium therein will be discharged from the interior of the heat conduction device. By monitoring the cooling medium, it can be determined whether thermal runaway occurs.
  • the discharge from the inside of the battery cell can destroy the heat-conducting device, and the cooling medium inside the heat-conducting device can be discharged, which can cool the discharge and further reduce the risk of the discharge.
  • the pressure relief mechanism of the battery cell and the electrode terminal of the battery cell are arranged on different walls of the battery cell, so that the discharge can be farther away from the electrode terminal, thereby reducing the discharge to the electrode terminal. and the influence of the bus components, so the safety of the battery can be enhanced.
  • FIG. 2 it is a schematic structural diagram of a vehicle 1 to which the embodiments of the present application may be applied.
  • the vehicle 1 may be a fuel vehicle, a gas vehicle, or a new energy vehicle, and the new energy vehicle may be a pure electric vehicle, a hybrid vehicle, or a new energy vehicle. program car etc.
  • the battery 10 may be provided inside the vehicle 1 , for example, the battery 10 may be provided at the bottom or the front or rear of the vehicle 1 .
  • the battery 10 can be used for power supply of the vehicle 1 , for example, the battery 10 can be used as the operating power source of the vehicle 1 , for the electrical circuit system of the vehicle 1 , such as for starting, navigating and running the vehicle 1 .
  • the battery 10 can not only be used as the operating power source of the vehicle 1 , but also can be used as the driving power source of the vehicle 1 to provide driving power for the vehicle 1 in place of or partially in place of fuel or natural gas.
  • the battery may include a plurality of battery cells.
  • a plurality of battery cells can be connected in series, in parallel or in mixed connection, and mixed connection refers to the mixture of series connection and parallel connection.
  • a battery can also be called a battery pack.
  • Multiple battery cells can be connected in series or in parallel or mixed to form a battery module, and multiple battery modules can be connected in series or in parallel or mixed to form a battery. That is to say, a plurality of battery cells can directly form a battery, or a battery module can be formed first, and then the battery module can be formed into a battery.
  • FIG. 3 is a schematic structural diagram of a possible battery according to an embodiment of the present application.
  • the battery 10 may include a plurality of battery cells 20 .
  • the battery 10 may also include a cover body or a box body, the inside of the cover body is a hollow structure, and a plurality of battery cells 10 are accommodated in the cover body.
  • the cover may include 111 and 112 that are snapped together.
  • the battery 10 may also include other structures, which will not be repeated here.
  • the battery 10 may further include a bussing component for realizing electrical connection between the plurality of battery cells 20, such as parallel or series or hybrid.
  • the bus member may realize electrical connection between the battery cells 20 by connecting the electrode terminals of the battery cells 20 .
  • the bus members may be fixed to the electrode terminals of the battery cells 20 by welding.
  • the electrical energy of the plurality of battery cells 20 can be further extracted through the cover body through the conductive mechanism.
  • the conducting means can also belong to the bus components.
  • the number of battery cells 20 can be set to any value.
  • a plurality of battery cells 20 can be connected in series, in parallel or in a mixed manner to achieve larger capacity or power. Since the number of battery cells 20 included in each battery 10 may be large, in order to facilitate installation, the battery cells 20 may be arranged in groups, and each group of battery cells 20 constitutes a battery module.
  • the battery may include a plurality of battery modules, and these battery modules may be connected in series, parallel or mixed connection.
  • the battery cell 20 may be a lithium ion secondary battery, a lithium ion primary battery, a lithium sulfur battery, a sodium lithium ion battery, a sodium ion battery, a magnesium ion battery, or the like.
  • the battery cells 20 may be cylindrical, flat, rectangular, or other shapes.
  • FIG. 5 is a schematic structural diagram of a possible battery cell 20 according to an embodiment of the present application.
  • the battery cell 20 includes a case 211 , a cover plate 212 , an electrode assembly 22 and a connecting member 23 . Both the wall of the case 211 and the cover plate 212 are referred to as the wall of the battery cell 20 .
  • a pressure relief mechanism 213 is provided on the wall 21a of the battery cell.
  • the wall 21a is separated from the housing 211 in FIG. 5 , but this does not limit the bottom side of the housing 211 to have an opening.
  • the pressure relief mechanism 213 is used for releasing the internal pressure when the internal pressure of the battery cell 20 reaches a threshold value.
  • the pressure relief mechanism 213 may be a part of the wall 21a, or may be a separate structure from the wall 21a, and may be fixed on the wall 21a by, for example, welding.
  • the pressure relief mechanism 213 can be formed by arranging a notch on the wall 21a, and the thickness of the wall 21a corresponding to the notch is smaller than that of the pressure relief mechanism 213 except the notch. Thickness of other areas.
  • the notch is the weakest position of the pressure relief mechanism 213 .
  • the pressure relief mechanism 213 may rupture at the notch, so that the inside and outside of the casing 211 communicate with each other, and the gas pressure passes through the pressure relief mechanism 213. The cracks are released outward, thereby preventing the battery cells 20 from exploding.
  • the electrode terminal 214 is provided on the other wall of the battery cell 20 .
  • the wall 21 a may be the bottom wall of the battery cell 20
  • the other wall may be the top wall of the battery cell 20 , ie, the cover plate 212 .
  • Disposing the pressure relief mechanism 213 and the electrode terminal 214 on different walls of the battery cell 20 can make the discharge of the battery cell 20 farther away from the electrode terminal 214, thereby reducing the impact of the discharge on the electrode terminal 214 and the bus components, Can enhance the safety of the battery.
  • the pressure relief mechanism 213 is arranged on the bottom wall of the battery cell 20 , so that the discharge of the battery cell 20 can be discharged to the bottom of the battery 10 .
  • the thermal management system at the bottom of the battery 10 can be used to reduce the risk of emissions; on the other hand, the bottom of the battery 10 is usually far away from the user, thereby reducing the harm to the user.
  • the pressure relief mechanism 213 may be various possible pressure relief structures, which are not limited in this embodiment of the present application.
  • the pressure relief mechanism 213 may be a temperature-sensitive pressure relief mechanism configured to be able to melt when the internal temperature of the battery cell 20 provided with the pressure relief mechanism 213 reaches a threshold; and/or the pressure relief mechanism 213 may be a pressure-sensitive pressure relief mechanism, and the pressure-sensitive pressure relief mechanism is configured to be able to rupture when the internal air pressure of the battery cell 20 provided with the pressure relief mechanism 213 reaches a threshold value.
  • the battery 10 includes a plurality of battery cells 20 , and the description of each component in the battery 10 may refer to the foregoing embodiments, which are not repeated here for brevity.
  • the heat-conducting device 13 is provided with a groove 134 opposite to the pressure relief mechanism 213 .
  • the bottom wall of the groove 134 is weaker than other areas of the heat-conducting device 13 and is easily damaged by the discharge. Therefore, the discharge can damage the bottom wall of the groove 134 , so that the cooling medium in the heat transfer device 13 is discharged from the inside of the heat transfer device 13 .
  • the opening of the groove 134 may face the wall 21a.
  • the opening of the groove 134 may also face away from the wall 21a, in which case the bottom wall of the groove 134 is also easily damaged by the discharge.
  • the heat-conducting device 13 may be formed of a heat-conducting material to form a flow channel of the cooling medium. The cooling medium flows in the flow channel and conducts heat through the thermally conductive material to cool the battery cells 20 .
  • FIG. 7 is a schematic flowchart of a method for thermal runaway detection according to an embodiment of the present application. As shown in FIG. 7, a method 700 of thermal runaway detection includes:
  • step 710 at least one parameter of the cooling medium of the battery is obtained.
  • step 720 when at least one parameter of the cooling medium satisfies a preset condition, it is determined that thermal runaway of the battery occurs.
  • thermal runaway occurs in the battery
  • the thermal conduction device in the battery will be damaged, thereby causing the parameters of the cooling medium contained therein to change. Therefore, according to the parameters of the cooling medium, the occurrence of thermal runaway of the battery can be effectively detected.
  • an indication signal for indicating that the battery is thermally runaway may be output to the VCU.
  • the method 700 shown in FIG. 7 may be performed by a BMS.
  • the BMS is responsible for acquiring at least one parameter of the cooling medium from the thermal management system, and determining that the battery is thermally out of control when the at least one parameter of the cooling medium satisfies a preset condition.
  • the BMS determines that the battery is thermally out of control, it outputs an indication signal to the VCU for indicating that the battery is thermally out of control.
  • the VCU receives the indication signal, it sends out an alarm signal.
  • the warning signal can be, for example, an acoustic signal or a light signal.
  • a thermal management system such as a cooling system, is used to thermally manage the battery.
  • the thermal management system includes: heat conduction devices such as cooling plates or liquid cooling plates, storage tanks, electronic water pumps, coolers, sensors and other components.
  • the heat-conducting device may be a heat-dissipating pipeline that surrounds the battery, that is, a flow channel, and the heat-conducting device is used in cooperation with the pressure relief mechanism on the battery cell.
  • the pressure relief mechanism on the battery cell can release the internal pressure and break through the heat conduction device instantaneously (usually less than 1 second), so that the cooling medium in the heat conduction device flows out from the inside.
  • the storage box communicates with the heat conduction device for storing the cooling medium.
  • the electronic water pump is used to adjust the pushing force of the pump through electric drive to adjust the flow speed of the cooling medium in the heat conduction device.
  • the cooler adopts the refrigerant in the air conditioning system to absorb the heat of the cooling medium in the heat conduction device to achieve the purpose of heat dissipation and cooling.
  • the at least one parameter of the cooling medium may include, for example, at least one of the following parameters: the pressure of the cooling medium, the flow rate of the cooling medium, the liquid level of the cooling medium, and the temperature of the cooling medium.
  • the cooling medium in the thermal conduction device will flow out from the damaged part of the thermal conduction device due to the action of gravity, and the liquid level of the cooling medium stored in the storage box will drop significantly or even reach 0;
  • the flow of the cooling medium will also be reduced due to the loss of the cooling medium;
  • the pressure of the cooling medium will also be reduced, for example, from the pressure generated by the water pump to the pressure generated by gravity; and due to the thermal runaway of the battery cells.
  • the heat is absorbed by the cooling medium, which will increase the temperature of the cooling medium to a certain extent.
  • the parameters of the cooling medium are sensitive to changes, especially the pressure, flow and liquid level of the cooling medium. Therefore, the thermal runaway of the battery can be accurately detected using the parameters of the cooling medium. For example, as shown in Figure 9, when the battery is thermally out of control, the pressure and flow of the cooling medium drop sharply, the pressure drops from about 0.05 MPa to 0 MPa, and the flow drops from about 1 L/min to 0 MPa.
  • step 720 at least one parameter of the cooling medium satisfies a preset condition, for example, it may include that the at least one parameter of the cooling medium satisfies any one of the following preset conditions: the parameter value reaches a corresponding threshold value, and the variation of the parameter value reaches a corresponding The threshold and parameter values are lost.
  • the parameter value of the cooling medium when the parameter value of the cooling medium reaches a certain threshold, or the variation of the parameter value reaches a certain threshold, or the parameter value is lost, it can be used as a condition for judging the occurrence of thermal runaway.
  • the pressure of the cooling medium satisfies the preset conditions, including: the pressure of the cooling medium drops to a first pressure threshold, the variation of the pressure of the cooling medium exceeds the second pressure threshold, or the data of the pressure of the cooling medium is lost.
  • the cooling medium may temporarily accumulate at the break of the heat conducting device when the battery is thermally out of control, causing the pressure of the cooling medium to rise instantaneously, but then gradually decrease to zero.
  • this change can still be detected by the pressure sensor.
  • the change in the pressure of the cooling medium detected by the pressure sensor exceeds the second pressure threshold, or the detected pressure of the cooling medium decreases to the first pressure threshold, it can be determined that the battery Thermal runaway occurs.
  • the flow rate of the cooling medium satisfies a preset condition, including: the flow rate of the cooling medium drops to a first flow rate threshold, the change in the flow rate of the cooling medium exceeds a second flow rate threshold, or the data of the flow rate of the cooling medium is lost.
  • the liquid level of the cooling medium satisfies a preset condition, including: the liquid level of the cooling medium drops to a first height threshold, the change in the liquid level of the cooling medium exceeds a second height threshold, or the liquid level of the cooling medium High data loss.
  • the temperature of the cooling medium at the output port of the heat conduction device satisfies a preset condition, including: the temperature of the cooling medium rises to a first temperature threshold, the change in the temperature of the cooling medium exceeds a second temperature threshold, or the temperature of the cooling medium of data is lost.
  • the sensor for monitoring the parameter may be damaged, and at this time, the parameter value may be lost. Therefore, when the parameter value of this parameter is lost, such as the pressure of the cooling medium, the liquid level and the flow rate suddenly become 0, it can also be considered that the battery has thermal runaway.
  • the battery is thermally out of control when it is determined that the cumulative variation of the parameter reaches the corresponding threshold, such as when the increase or decrease of the parameter reaches the corresponding threshold.
  • the battery is thermally out of control; it can also be determined that the battery is thermally out of control when it is determined that the change of the parameter within the preset time period reaches the corresponding threshold, for example, when the increase or decrease of the parameter within the preset time period reaches the corresponding threshold , determine the thermal runaway of the battery.
  • the above parameters of the cooling medium can be used individually or in combination to improve the robustness of thermal runaway detection. For example, when the pressure of the cooling medium satisfies the corresponding preset conditions, and the liquid level of the cooling medium satisfies the corresponding preset conditions, it is determined that the battery is thermally out of control; for another example, when the pressure of the cooling medium satisfies the corresponding preset conditions, And when the flow rate of the cooling medium satisfies the corresponding preset conditions, it is determined that the battery has thermal runaway; for another example, when the liquid level of the cooling medium satisfies the corresponding preset conditions, and the flow rate of the cooling medium satisfies the corresponding preset conditions, it is determined that the battery Thermal runaway occurs; for another example, when the pressure, liquid level, and flow rate of the cooling medium all meet their corresponding preset conditions, it is determined that thermal runaway occurs in the battery.
  • the above parameters of the cooling medium can also be used in combination with parameters such as the pressure and temperature of the battery cells.
  • the BMS generally manages the battery by monitoring the pressure and temperature of the battery cell. Therefore, when determining whether the battery has thermal runaway according to the above parameters of the cooling medium, the pressure and temperature of the battery cell can also be considered. For example, when one or more of the above parameters of the cooling medium reach corresponding conditions, and the pressure and/or temperature of the battery cells reach corresponding conditions, it is determined that thermal runaway occurs in the battery.
  • Parameters such as the pressure, liquid level, flow and temperature of the cooling medium can be monitored by sensors set in the thermal management system. There is no need to install a sensor on each battery cell to detect whether there is a thermal runaway of a battery cell in the battery, so this solution does not increase a large cost.
  • the pressure of the cooling medium may be obtained from a pressure sensor.
  • the pressure sensor is arranged at the input port or the output port of the heat conducting device, and is used to monitor the pressure of the cooling medium.
  • the input port and output port of the heat transfer device are used to input and output the cooling medium.
  • the pressure sensor is arranged at the input port or output port of the heat transfer device, which not only ensures the convenience of the installation location, but also makes the pressure change of the cooling medium easier to monitor. .
  • the flow rate of the cooling medium may be obtained from a flow sensor.
  • the flow sensor is arranged at the input port or the output port of the heat conduction device, and the flow sensor is used to monitor the flow rate of the cooling medium.
  • Disposing the flow sensor at the input port or the output port of the heat conduction device not only ensures the convenience of the installation location, but also makes it easier to monitor the flow change of the cooling medium.
  • the liquid level of the cooling medium may be obtained from the liquid level sensor.
  • the liquid level sensor is arranged on the storage tank for storing the cooling medium, and the liquid level sensor is used for monitoring the liquid level of the cooling medium stored in the storage tank.
  • the cooling medium is stored in the storage box, which is communicated with the input port of the heat conduction device.
  • the battery is thermally out of control and the cooling medium in the heat conduction device is discharged from the interior of the heat conduction device, compared with the liquid level in the heat conduction device, the storage
  • the change of the liquid level in the tank is more sensitive, so setting the flow sensor on the storage tank can more accurately monitor the change of the liquid level of the cooling medium, and it is easier to install the liquid level sensor on the storage tank.
  • the temperature of the cooling medium may be obtained from a temperature sensor.
  • the temperature sensor is arranged at the output port of the heat-conducting device, and the temperature sensor is used to monitor the temperature of the cooling medium at the output port of the heat-conducting device.
  • the positions of the pressure sensor, liquid level sensor, flow sensor, and temperature sensor described above are only examples.
  • the embodiments of the present application do not limit the installation positions of the sensors. In practical applications, the sensors may also be set at other positions.
  • one sensor or multiple sensors may be provided to improve the accuracy of thermal runaway detection.
  • two pressure sensors may be respectively set at the input port and the output port of the heat conducting device, and whether the battery is thermally out of control is determined according to the parameter value output by at least one of the pressure sensors.
  • an embodiment of the present application further provides a BMS.
  • the BMS 1000 is applied to a battery, and the battery includes a heat conducting device.
  • a cooling medium is accommodated in the heat conducting device, and the cooling medium is used for cooling the battery. It should be understood that when thermal runaway of the battery occurs, the thermally conductive device can be destroyed, thereby allowing the cooling medium therein to be discharged from the interior of the thermally conductive device.
  • the BMS 1000 includes:
  • an obtaining unit 1010 configured to obtain at least one parameter of the cooling medium
  • the processing unit 1020 is configured to determine that thermal runaway occurs in the battery when the at least one parameter satisfies a preset condition.
  • thermal runaway occurs in the battery
  • the thermal conduction device in the battery will be damaged, thereby causing the parameters of the cooling medium contained therein to change. Therefore, according to the parameters of the cooling medium, the occurrence of thermal runaway of the battery can be effectively detected.
  • the at least one parameter acquired by the acquiring unit includes at least one of the following parameters: the pressure of the cooling medium, the flow rate of the cooling medium, and the liquid level of the cooling medium altitude, and the temperature of the cooling medium.
  • the at least one parameter meeting a preset condition includes: the at least one parameter meeting any one of the following preset conditions: the parameter value reaches a corresponding threshold value, and the change amount of the parameter value reaches a corresponding The threshold and parameter values are lost.
  • the at least one parameter includes the pressure of the cooling medium
  • the processing unit 1020 is specifically configured to: when the pressure of the cooling medium drops to a first pressure threshold, when the cooling medium When the variation of the pressure of the battery exceeds a second pressure threshold, or the data of the pressure of the cooling medium is lost, it is determined that thermal runaway occurs in the battery.
  • the acquisition unit is further configured to: acquire the pressure of the cooling medium from a pressure sensor, wherein the pressure sensor is arranged at the input port or the output port of the heat conducting device, and the A pressure sensor is used to monitor the pressure of the cooling medium.
  • the at least one parameter includes the flow rate of the cooling medium
  • the processing unit 1020 is specifically configured to: when the flow rate of the cooling medium drops to a first flow rate threshold, and when the flow rate of the cooling medium drops When the variation of the flow rate of the battery exceeds a second flow rate threshold, or the data of the flow rate of the cooling medium is lost, it is determined that the battery has thermal runaway.
  • the obtaining unit is further configured to: obtain the flow rate of the cooling medium from a flow sensor, wherein the flow sensor is arranged at an input port or an output port of the heat conducting device, and the A flow sensor is used to monitor the flow of the cooling medium.
  • the at least one parameter includes the liquid level of the cooling medium
  • the processing unit 1020 is specifically configured to: when the liquid level of the cooling medium drops to a first height threshold, When the variation of the liquid level of the cooling medium exceeds a second height threshold, or the data of the liquid level of the cooling medium is lost, it is determined that the battery is thermally out of control.
  • the acquisition unit is further configured to: acquire the liquid level of the cooling medium from a liquid level sensor, wherein the liquid level sensor is arranged in a storage tank for storing the cooling medium Above, the liquid level sensor is used to monitor the liquid level of the cooling medium stored in the storage tank.
  • the at least one parameter includes the temperature of the cooling medium
  • the processing unit 1020 is specifically configured to: when the temperature of the cooling medium rises to a first temperature threshold, and when the temperature of the cooling medium rises to a first temperature threshold When the variation of the temperature of the battery exceeds a second temperature threshold, or the data of the temperature of the cooling medium is lost, it is determined that the battery has thermal runaway.
  • the obtaining unit is further configured to obtain the temperature of the cooling medium from a temperature sensor, wherein the temperature sensor is arranged at the output port of the heat conducting device, and the temperature sensor uses for monitoring the temperature of the cooling medium at the outlet of the heat conducting device.
  • the processing unit 1020 is further configured to: output an indication signal to the vehicle controller for indicating that the battery is thermally out of control.
  • an embodiment of the present application further provides an apparatus 1100 for thermal runaway detection, including a memory 1110 and a processor 1120, wherein the memory 1110 is used to store instructions, and the processor 1120 is used to read the instructions and The aforementioned method is performed based on the instructions.
  • Embodiments of the present application further provide a readable storage medium for storing a computer program, where the computer program is used to execute the foregoing method.
  • the embodiment of the present application also provides a battery, including at least one battery cell and the battery management system BMS 500 shown in FIG. 5 .
  • the battery cell may be, for example, the battery cell 20 in the preceding figures.
  • An embodiment of the present application further provides a vehicle, where the vehicle includes a battery and a vehicle control system, where the vehicle control system is configured to receive an instruction sent by a BMS in the battery to indicate that the battery has thermal runaway Signal.
  • the vehicle may be, for example, the vehicle 1 in the preceding figures.
  • the vehicle control system is further configured to: issue an alarm signal according to the indication signal.
  • the alarm signal is a light signal or a sound signal.
  • multiple refers to two or more (including two), and similarly, “multiple groups” refers to two or more groups (including two groups), and “multiple sheets” refers to two or more sheets (includes two pieces).

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种热失控检测的方法和电池管理系统,能够有效检测电池的热失控的发生。该方法包括:获取电池的冷却介质的至少一个参数(710),所述电池包括导热装置,所述导热装置中容纳所述有冷却介质;在所述至少一个参数满足预设条件时,确定所述电池发生热失控(720)。

Description

热失控检测的方法和电池管理系统 技术领域
本申请实施例涉及电池技术领域,并且更具体地,涉及热失控检测的方法和电池管理系统。
背景技术
节能减排是汽车产业可持续发展的关键。在这种情况下,电动车辆由于其节能环保的优势成为汽车产业可持续发展的重要组成部分。而对于电动车辆而言,电池技术又是关乎其发展的一项重要因素。
在电池技术的发展中,除了提高电池的性能外,安全问题也是一个不可忽视的问题。当电池发生热失控等危害安全的事件时,需要及时检测出热失控的发生,以提醒乘客躲避危险情况。因此,如何有效地检测电池的热失控,成为电池技术中一个亟待解决的技术问题。
发明内容
本申请实施例提供一种热失控检测的方法和电池管理系统,能够有效检测电池的热失控。
第一方面,提供了一种热失控检测的方法,所述方法包括:获取电池的冷却介质的至少一个参数,所述电池包括导热装置,所述导热装置中容纳所述有冷却介质;在所述至少一个参数满足预设条件时,确定所述电池发生热失控。
该实施例中,当电池发生热失控时,会引发电池中的导热装置被破坏,从而引起其中容纳的冷却介质的参数发生变化。因此,根据该冷却介质的参数,可以有效检测电池的热失控。
在一种可能的实现方式中,所述至少一个参数包括以下参数中的至少一种:所述冷却介质的压力、所述冷却介质的流量、所述冷却介质的液面高度、以及所述冷却介质的温度。
由于导热装置被破坏时,冷却介质的压力、流量、液面高度和温度这几个参数的变化最为敏感,因此,利用这几个参数能够精确地检测电池的热失控。
在一种可能的实现方式中,所述至少一个参数满足预设条件,包括:所述至少一个参数满足以下预设条件中的任意一个:参数值达到对应的阈值、参数值的变化量达到对应的阈值、以及参数值丢失。
该实施例中,当参数值达到一定阈值、或者参数值的变化量达到一定阈值、或者因传感器被破坏而导致参数值丢失,都可以作为判断热失控发生的条件。在实际应用中,可以基于不同参数的变化规律和变化速度等,采用合适的条件用作判断电池是否发生热失控。
在一种可能的实现方式中,所述至少一个参数包括所述冷却介质的压力,其中,所述冷却介质的压力满足预设条件,包括:所述冷却介质的压力下降至第一压力阈值、所述冷却介质的压力的变化量超过第二压力阈值、或者所述冷却介质的压力的数据丢失。
在一种可能的实现方式中,所述方法还包括:从压力传感器获取所述冷却介质的压力,其中,所述压力传感器设置在所述导热装置的输入口或输出口处,所述压力传感器用于监测所述冷却介质的压力。
导热装置的输入口和输出口用于输入和输出冷却介质,将压力传感器设置在导热装置的输入口或输出口,即保证了安装位置的便利,也使得冷却介质的压力变化更容易被监测到。
在一种可能的实现方式中,所述至少一个参数包括所述冷却介质的流量,所述冷却介质的流量满足预设条件,包括:所述冷却介质的流量下降至第一流量阈值、所述冷却介质的流量的变化量超过第二流量阈值、或者所述冷却介质的流量的数据丢失。
在一种可能的实现方式中,所述方法还包括:从流量传感器获取所述冷却介质的流量,其中,所述流量传感器设置在所述导热装置的输入口或输出口处,所述流量传感器用于监测所述冷却介质的流量。
将流量传感器设置在导热装置的输入口或输出口,即保证了安装位置的便利,也使得冷却介质的流量变化更容易被监测到。
在一种可能的实现方式中,所述至少一个参数包括所述冷却介质的液面高度,所述冷却介质的液面高度满足预设条件,包括:所述冷却介质的液面高度下降至第一高度阈值、所述冷却介质的液面高度的变化量超过第二高度阈值、或者所述冷却介质的液面高度的数据丢失。
在一种可能的实现方式中,所述方法还包括:从液位传感器获取所述冷 却介质的液面高度,其中,所述液位传感器设置在用于储存所述冷却介质的存储箱上,所述液位传感器用于监测所述存储箱中存储的所述冷却介质的液面高度。
冷却介质存储在存储箱中,存储箱与导热装置的输入口连通,当电池发生热失控导致导热装置中的冷却介质从导热装置的内部排出时,存储箱中的液面高度的变化最敏感,因此将流量传感器设置在存储箱上,可以更准确地监测到冷却介质的液面高度的变化。
在一种可能的实现方式中,所述至少一个参数包括所述冷却介质的温度,所述冷却介质的温度满足预设条件,包括:所述冷却介质的温度上升至第一温度阈值、所述冷却介质的温度的变化量超过第二温度阈值、或者所述冷却介质的温度的数据丢失。
在一种可能的实现方式中,所述方法还包括:从温度传感器获取所述冷却介质的温度,其中,所述温度传感器设置在所述导热装置的输出口处,所述温度传感器用于监测所述冷却介质在所述导热装置的输出口处的温度。
在一种可能的实现方式中,所述方法还包括:向整车控制器输出用于指示所述电池发生热失控的指示信号。
第二方面,提供了一种电池管理系统,所述电池管理系统包括:
获取单元,用于获取电池的冷却介质的至少一个参数,所述电池包括导热装置,所述导热装置中容纳所述有冷却介质;
处理单元,用于在所述至少一个参数满足预设条件时,确定所述电池发生热失控。
在一种可能的实现方式中,所述获取单元获取的所述至少一个参数包括以下参数中的至少一种:所述冷却介质的压力、所述冷却介质的流量、所述冷却介质的液面高度、以及所述冷却介质的温度。
在一种可能的实现方式中,所述至少一个参数满足预设条件,包括:所述至少一个参数满足以下预设条件中的任意一个:参数值达到对应的阈值、参数值的变化量达到对应的阈值、以及参数值丢失。
在一种可能的实现方式中,所述至少一个参数包括所述冷却介质的压力,其中,所述处理单元具体用于:在所述冷却介质的压力下降至第一压力阈值、所述冷却介质的压力的变化量超过第二压力阈值、或者所述冷却介质的压力的数据丢失时,确定所述电池发生热失控。
在一种可能的实现方式中,所述处理单元还用于:从压力传感器获取所述冷却介质的压力,其中,所述压力传感器设置在所述导热装置的输入口或输出口处,所述压力传感器用于监测所述冷却介质的压力。
在一种可能的实现方式中,所述至少一个参数包括所述冷却介质的流量,其中,所述处理单元具体用于:在所述冷却介质的流量下降至第一流量阈值、所述冷却介质的流量的变化量超过第二流量阈值、或者所述冷却介质的流量的数据丢失时,确定所述电池发生热失控。
在一种可能的实现方式中,所述处理单元还用于:从流量传感器获取所述冷却介质的流量,其中,所述流量传感器设置在所述导热装置的输入口或输出口处,所述流量传感器用于监测所述冷却介质的流量。
在一种可能的实现方式中,所述至少一个参数包括所述冷却介质的液面高度,其中,所述处理单元具体用于:在所述冷却介质的液面高度下降至第一高度阈值、所述冷却介质的液面高度的变化量超过第二高度阈值、或者所述冷却介质的液面高度的数据丢失时,确定所述电池发生热失控。
在一种可能的实现方式中,所述处理单元还用于:从所述液位传感器获取所述冷却介质的液面高度,其中,所述液位传感器设置在用于储存所述冷却介质的存储箱上,所述液位传感器用于监测所述存储箱中存储的所述冷却介质的液面高度。
在一种可能的实现方式中,所述至少一个参数包括所述冷却介质的温度,其中,所述处理单元具体用于:在所述冷却介质的温度上升至第一温度阈值、所述冷却介质的温度的变化量超过第二温度阈值、或者所述冷却介质的温度的数据丢失时,确定所述电池发生热失控。
在一种可能的实现方式中,所述处理单元还用于:从温度传感器获取所述冷却介质的温度,其中,所述温度传感器设置在所述导热装置的输出口处,所述温度传感器用于监测所述冷却介质在所述导热装置的输出口处的温度。
在一种可能的实现方式中,所述处理单元还用于:向整车控制器输出用于指示所述电池发生热失控的指示信号。
第三方面,提供了一种电池,包括:
至少一个电池单体;以及,
根据上述第二方面和第二方面的任意可能的实现方式中的电池管理系统。
第四方面,提供了一种热失控检测的装置,包括存储器和处理器,所述存储器用于存储指令,所述处理器用于读取所述指令并基于所述指令执行上述第一方面和第一方面的任意可能的实现方式中的方法。
第五方面,提供了一种可读存储介质,用于存储计算机程序,所述计算机程序用于执行上述第一方面和第一方面的任意可能的实现方式中的方法。
第六方面,提供了一种车辆,所述车辆包括:
根据第三方面所述的电池;以及,
整车控制系统,用于接收所述电池中的电池管理系统发送的用于指示所述电池发生热失控的指示信号。
在一种可能的实现方式中,所述整车控制系统还用于:根据所述指示信号,发出报警信号。
在一种可能的实现方式中,所述报警信号为光信号或者声音信号。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是BMS监测热失控的示意性框图;
图2是本申请实施例的车辆的示意图;
图3是本申请实施例的电池的结构示意图;
图4是本申请实施例的电池模块的结构示意图;
图5是本申请实施例的电池单体的分解图;
图6是本申请实施例的电池的分解图;
图7是本申请实施例的热失控检测的方法的示意性流程图;
图8是基于图7所示的方法的BMS监测热失控的示意性框图;
图9是电池发生热失控时冷却介质的压力和流量的变化情况的示意图;
图10是本申请实施例的BMS的示意性框图;
图11是本申请实施例的热失控检测的装置的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
电池技术的发展要同时考虑多方面的设计因素,例如,能量密度、循环寿命、放电容量、充放电倍率等性能参数,另外,还需要考虑电池的安全性。
电池中包括多个电池单体,当其中的一个或多个电池单体发生热失控,例如火灾、爆炸或烟雾时,热量会传递到相邻的电池单体,也即,电池单体的热失控可能传播到周围的电池单体,从而引起连锁反应。在热量扩散过程中,随时可能导致火灾或者爆炸等危险情况的发生。
国际电动汽车安全技术法规(electric vehicle safety-global technical regulation,EVS-GTR)热扩散专项小组在第一阶段研究中得到的结论是,要求对于配备有具有易燃电解质的车载可充电储能系统(rechargeable energy storage system,REESS)的车辆,车辆乘员不得暴露于由会导致电池单体热失控的内部短路触发的热扩散引起的任何危险环境。为确保这一点,应满足一些基本要求,例如,车辆应提供一个预先警告的指示以允许乘员疏散,或者在由会导致电池单体热失控的内部短路触发的热扩散引起的乘员舱内的危险情况存在之前5分钟提供预先警告的指示。在新发布的电动汽车用动力蓄电池安全要求中,要求电池单体的热失控引起的热扩散而导致乘员舱发生危险之前的五分钟内,应提供报警信号。
因此,必须对电池的热失控进行有效检测,并及时提醒车辆乘员躲避危险情况。
目前的电池中,一般会通过低压监控系统监控每个电池单体的电压,并且每隔几个电池单体设置一个传感器对电池单体的温度进行监控,通过电池的温度和电压的变化确定是否发生热失控。例如图1所示,电池管理系统(battery management system,BMS)负责监控电池单体的温度和电压,并根据温度变化和电压变化判定是否发生热失控。当判定有电池单体发生热失控时,BMS可以向整车控制器(vehicle control unit,VCU)发送指示信号,从而VCU发出报警信号以提醒乘员躲避危险。
采用图1所示的方式,当热失控发生时,可能存在如下问题:发生热失控的电池单体的电压下降与正常放电时电池单体的电压下降特征重合时,难以利用电压下降的特征判定电池单体是否发生热失控;发生热失控的电池单体上恰好没有布置温度传感器时,难以利用温度信号判断是否发生热失控;电池单体发生热失控的瞬间喷出的高温高速气体极易造成电压传感器和温度传感器的物理破坏,导致即使能够根据电池单体的温度变化和电压变化判 断是否发生热失控,也由于传感器的破坏而导致信号传输中断。可见,利用电池的温度变化和电压变化确定是否发生热失控存在一定的漏判和误判。
为此,本申请提出了一种热失控检测的方法,能够更加准确地检测电池的热失控,降低漏判和误判的概率。
本申请实施例的热失控检测的方法可以应用于电池。其中,该电池中的电池单体发生热失控,也称该电池发生热失控。
其中,电池中包括导热装置,例如冷却板或液冷板。该导热装置中容纳有冷却介质。其中,该冷却介质可以用于给该电池降温。应理解,当该电池发生热失控时,该导热装置能够被破坏,从而使其中的冷却介质从导热装置的内部排出。
电池中的每个电池单体上设置有泄压机构,例如防爆阀。电池单体上的泄压机构对电池的安全性有着重要影响。例如,当发生短路、过充等现象时,可能会导致电池单体内部发生热失控从而气压骤升。这种情况下通过泄压机构可以将内部温度及气压向外释放,以防止电池单体爆炸、起火。
电池单体的排放物为高压和高热的排放物,其中包括高压和高热的气体、液体或固体的燃烧物例如金属屑等。目前的泄压机构设计方案中,主要关注将电池单体内部的高压和高热释放,即将所述排放物排出到电池单体外部。然而,为了保证电池的输出电压或电流,往往需要多个电池单体且多个电池单体之间通过汇流部件进行电连接。从电池单体内部排出的排出物有可能导致其余电池单体发生短路现象,例如,当排出的金属屑电连接两个汇流部件时会引起电池发生短路,因而存在安全隐患。
鉴于此,本申请提出一种热失控检测的方案,通过将该泄压机构与导热装置配合,来实现电池热失控检测的目的。例如,将泄压机构设置于电池单体的一个壁上,该导热装置的表面附接于该电池单体的相同壁上。该泄压机构用于在该电池单体的内部压力达到阈值时泄放内部压力,从而使该导热装置的表面被破坏。
当该导热装置因电池单体发生热失控而被破坏时,其中的冷却介质会从该导热装置的内部排出,通过对该冷却介质进行监测,即能够判断是否发生热失控。
进一步地,利用泄压机构,使得从电池单体内部排出的排放物可以破坏导热装置,使导热装置内部的冷却介质排出,可以对排放物进行冷却,进一 步降低排放物的危险性。
此外,本申请实施例中,电池单体的泄压机构和电池单体的电极端子设置于电池单体的不同壁上,这样可以使得排放物更加远离电极端子,从而减小排放物对电极端子和汇流部件的影响,因此能够增强电池的安全性。
本申请实施例描述的技术方案均适用于各种使用电池的装置,例如,电动车辆、船舶、航天器等,例如,航天器包括飞机、火箭、航天飞机和宇宙飞船等。
应理解,本申请实施例描述的技术方案不仅仅局限适用于上述所描述的设备,还可以适用于所有使用电池的设备,但为描述简洁,下述实施例均以电动车辆为例进行说明。
例如图2所示,为本申请实施例可能应用的车辆1的结构示意图,所述车辆1可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1的内部可以设置电池10,例如,在车辆1的底部或车头或车尾可以设置电池10。电池10可以用于车辆1的供电,例如,电池10可以作为所述车辆1的操作电源,用于车辆1的电路系统比如用于车辆1的启动、导航和运行时的工作用电需求。电池10不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,替代或部分地替代燃油或天然气为车辆1提供驱动动力。
为了满足不同的使用电力需求,电池可以包括多个电池单体。其中,多个电池单体之间可以串联或并联或混联,混联是指串联和并联的混合。电池也可以称为电池包。多个电池单体可以先串联或并联或混联组成电池模块,多个电池模块再串联或并联或混联组成电池。也就是说,多个电池单体可以直接组成电池,也可以先组成电池模块,电池模块再组成电池。
图3所示为本申请实施例的一种可能的电池的结构示意图。如图3所示,电池10可以包括多个电池单体20。电池10还可以包括罩体或称箱体,罩体内部为中空结构,多个电池单体10容纳于罩体内。如图3所示,罩体可以包括扣合在一起的111和112。
电池10还可以包括其他结构,在此不再一一赘述。例如,该电池10还可以包括汇流部件,汇流部件用于实现多个电池单体20之间的电连接,例如并联或串联或混联。具体地,汇流部件可通过连接电池单体20的电极端子实现电池单体20之间的电连接。进一步地,汇流部件可通过焊接固定于 电池单体20的电极端子。多个电池单体20的电能可进一步通过导电机构穿过罩体而引出。其中,该导电机构例如也可属于汇流部件。
根据不同的电力需求,电池单体20的数量可以设置为任意数值。多个电池单体20可通过串联、并联或混联的方式连接以实现较大的容量或功率。由于每个电池10中包括的电池单体20的数量可能较多,为了便于安装,可以将电池单体20分组设置,每组电池单体20组成电池模块。例如图4所示,电池可以包括多个电池模块,这些电池模块可通过串联、并联或混联的方式进行连接。
本申请实施例对电池单体的材料和形状不做限定。例如,电池单体20可以是锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等。又例如,电池单体20可以呈圆柱体、扁平体、长方体或其它形状等。
图5所示为本申请实施例的一种可能的电池单体20的结构示意图。如图5所示,电池单体20包括壳体211、盖板212、电极组件22以及连接构件23。壳体211的壁和盖板212均称为电池单体20的壁。如图5所示,电池单体的壁21a上设置泄压机构213。为了便于展示,图5中将壁21a与壳体211分离,但这并不限定壳体211的底侧具有开口。泄压机构213用于电池单体20的内部压力达到阈值时泄放内部压力。
泄压机构213可以为壁21a的一部分,也可以与壁21a为分体式结构,通过例如焊接的方式固定在壁21a上。当泄压机构213为壁21a的一部分时,例如,泄压机构213可以通过在壁21a上设置刻痕的方式形成,与该刻痕的对应的壁21a厚度小于泄压机构213除刻痕处其他区域的厚度。刻痕处是泄压机构213最薄弱的位置。当电池单体20产生的气体太多使得壳体211内部压力升高并达到阈值时,泄压机构213可以在刻痕处发生破裂而导致壳体211内外相通,气体压力通过泄压机构213的裂开向外释放,从而避免电池单体20发生爆炸。
如图5所示,在泄压机构213设置于电池单体20的壁21a的情况下,电池单体20的另一壁上设置有电极端子214。例如,壁21a可以为电池单体20的底壁,而另一壁可以为电池单体20的顶壁即盖板212。
将泄压机构213和电极端子214设置于电池单体20的不同壁上,可以使得电池单体20的排放物更加远离电极端子214,从而减小排放物对电极 端子214和汇流部件的影响,能够增强电池的安全性。
进一步地,在电极端子214设置于电池单体20的盖板212上时,将泄压机构213设置于电池单体20的底壁,可以使得电池单体20的排放物向电池10底部排放。这样,一方面可以利用电池10底部的热管理系统等降低排放物的危险性;另一方面,电池10底部通常会远离用户,从而能够降低对用户的危害。
泄压机构213可以为各种可能的泄压结构,本申请实施例对此不做限定。例如,泄压机构213可以为温敏泄压机构,温敏泄压机构被配置为在设有泄压机构213的电池单体20的内部温度达到阈值时能够熔化;和/或,泄压机构213可以为压敏泄压机构,压敏泄压机构被配置为在设有泄压机构213的电池单体20的内部气压达到阈值时能够破裂。
例如图6所示的电池10的分解图,电池10中包括多个电池单体20,电池10中各部件的描述可以参见前述各实施例,为了简洁,此处不再赘述。如图6所示,导热装置13设置有与泄压机构213相对设置的凹槽134,凹槽134的底壁较导热装置13的其他区域薄弱,容易被排放物破坏。因此,排放物可以破坏凹槽134的底壁,从而使导热装置13内的冷却介质从导热装置13内部排出。凹槽134的开口可以面向壁21a。凹槽134的开口也可以背向壁21a,这时凹槽134的底壁同样容易被排放物破坏。导热装置13可以由导热材料形成冷却介质的流道。冷却介质在流道中流动,并通过导热材料传导热量从而对电池单体20降温。
基于泄压机构213和导热装置13的配合,以下描述本申请实施例的热失控检测的方法,其中未详细描述的部分可参见前述各实施例。
图7是本申请实施例的热失控检测的方法的示意性流程图。如图7所示,热失控检测的方法700包括:
在步骤710中,获取电池的冷却介质的至少一个参数。
在步骤720中,在该冷却介质的至少一个参数满足预设条件时,确定电池发生热失控。
当电池发生热失控时,会引发电池中的导热装置被破坏,从而引起其中容纳的冷却介质的参数发生变化。因此,根据该冷却介质的参数,可以有效检测电池的热失控的发生。
进一步地,当在步骤720中确定电池发生热失控时,可以向VCU输出 用于指示该电池发生热失控的指示信号。
图7中所示的方法700可以由BMS执行。例如图8所示,BMS负责从热管理系统获取冷却介质的至少一个参数,并在该冷却介质的至少一个参数满足预设条件时,确定电池发生热失控。BMS确定电池发生热失控时,向VCU输出用于指示该电池发生热失控的指示信号。VCU收到该指示信号后,发出报警信号。该报警信号例如可以是声音信号或者光信号。
本申请实施例中利用热管理系统,例如冷却系统,对电池进行热管理。在一种可能的实现方式中,该热管理系统包括:导热装置例如冷却板或液冷板、存储箱、电子水泵、冷却器、传感器等部件。
其中,导热装置可以是围绕电池的散热管路即流道,该导热装置与电池单体上的泄压机构配合使用。当该电池单体发生热失控时,电池单体上的泄压机构可以泄放内部压力,并瞬时(通常小于1秒)冲破导热装置,从而使导热装置中的冷却介质从内部流出。存储箱与导热装置连通,用于存储冷却介质。电子水泵用于通过电驱动调整泵推压力,以调节导热装置中冷却介质的流动速度等。冷却器中采用空调系统中的冷媒,用于吸收导热装置中冷却介质的热量,达到散热、降温的目的。
该实施例中,冷却介质的至少一个参数例如可以包括以下参数中的至少一种:冷却介质的压力、冷却介质的流量、冷却介质的液面高度、以及冷却介质的温度。
当电池单体发生热失控导致导热装置被破坏时,导热装置中的冷却介质由于重力作用会从导热装置的破损处流出,存储箱中存储的冷却介质的液面高度会显著下降甚至达到0;冷却介质的流量也会因冷却介质的流失而变小;冷却介质的压力也会变小,比如从水泵对其产生的压力变为重力产生的压力;并且由于电池单体发生热失控时产生的热量被冷却介质吸收,会使冷却介质的温度有一定升高。
由于导热装置被破坏时,冷却介质的参数变化较为敏感,特别是冷却介质的压力、流量和液面高度。因此,利用冷却介质的参数能够精确地检测电池的热失控。例如图9所示,当电池发生热失控时,冷却介质的压力和流量急剧下降,压力从0.05MPa左右下降至0MPa,流量从1L/min左右下降至0MPa。
在步骤720中,冷却介质的至少一个参数满足预设条件,例如可以包括 该冷却介质的至少一个参数满足以下预设条件中的任意一个:参数值达到对应的阈值、参数值的变化量达到对应的阈值、以及参数值丢失。
该实施例中,当冷却介质的参数值达到一定阈值、或者参数值的变化量达到一定阈值、或者参数值丢失,都可以作为判断热失控发生的条件。
举例来说,冷却介质的压力满足预设条件,包括:该冷却介质的压力下降至第一压力阈值、冷却介质的压力的变化量超过第二压力阈值、或者冷却介质的压力的数据丢失。
存在一种情况,当电池发生热失控时,冷却介质可能会在导热装置的破损处出现短暂聚积,从而导致冷却介质的压力瞬间升高,但是之后会逐渐降低为0。但是这种变化仍可以被压力传感器检测到,当压力传感器检测到的冷却介质的压力的变化量超过第二压力阈值,或者检测到的冷却介质的压力降低至第一压力阈值时,可以确定电池发生热失控。
又例如,冷却介质的流量满足预设条件,包括:冷却介质的流量下降至第一流量阈值、冷却介质的流量的变化量超过第二流量阈值、或者所述冷却介质的流量的数据丢失。
又例如,冷却介质的液面高度满足预设条件,包括:冷却介质的液面高度下降至第一高度阈值、冷却介质的液面高度的变化量超过第二高度阈值、或者冷却介质的液面高度的数据丢失。
又例如,冷却介质在导热装置的输出口处的温度满足预设条件,包括:冷却介质的温度上升至第一温度阈值、冷却介质的温度的变化量超过第二温度阈值、或者冷却介质的温度的数据丢失。
可见,通过比较冷却介质的参数的大小和/或参数的变化量与相应阈值之间的大小关系,可以方便地确定电池是否发生热失控。在实际应用中,可以基于不同参数的变化规律和变化速度等,采用合适的条件用作判断电池是否发生热失控。
另外,当导热装置被破坏导致冷却介质从导热装置内部流出时,可能使监测该参数的传感器损坏,这时会导致参数值丢失。因此,当该参数的参数值丢失例如冷却介质的压力、液面高度和流量突然变为0时,也可以认为电池发生了热失控。
应理解,对于冷却介质的参数的变化量的监测,可以在确定该参数的变化量累积达到对应的阈值时,确定电池发生热失控,比如该参数的上升量或 者下降量达到对应的阈值时确定电池发生热失控;也可以在确定该参数在预设时长内的变化量达到对应的阈值时,确定电池发生热失控,比如该参数在预设时长内的上升量或者下降量达到对应的阈值时,确定电池发生热失控。
上述冷却介质的各个参数可以单独使用,也可以组合使用,以提高热失控检测的鲁棒性。例如,当冷却介质的压力满足相应的预设条件,并且冷却介质的液面高度满足相应的预设条件时,确定电池发生热失控;又例如,当冷却介质的压力满足相应的预设条件,并且冷却介质的流量满足相应的预设条件时,确定电池发生热失控;又例如,冷却介质的液面高度满足相应的预设条件,并且冷却介质的流量满足相应的预设条件时,确定电池发生热失控;又例如,冷却介质的压力、液面高度和流量均满足各自对应的预设条件时,确定电池发生热失控。
进一步地,冷却介质的上述参数还可以与电池单体的压力和温度等参数结合使用。BMS一般会通过监控电池单体的压力和温度来对电池进行管理,因此,在根据冷却介质的上述参数确定电池是否发生热失控时,也可以考虑电池单体的压力和温度。例如,当冷却介质的上述参数中的一个或多个达到相应的条件,并且电池单体的压力和/或温度达到相应的条件时,确定电池发生热失控。
冷却介质的压力、液面高度、流量和温度等参数可以通过热管理系统中设置的传感器来监测。无需在每个电池单体上都安装传感器,就可以检测出电池中是否有电池单体发生热失控,因此采用该方案不会增加较大的成本。
例如,在方法700中,可以从压力传感器获取冷却介质的压力。其中,该压力传感器设置在导热装置的输入口或输出口处,并用于监测冷却介质的压力。
导热装置的输入口和输出口用于输入和输出冷却介质,将压力传感器设置在导热装置的输入口或输出口,即保证了安装位置的便利,也使得冷却介质的压力变化更容易被监测到。
又例如,在方法700中,可以从流量传感器获取冷却介质的流量。其中,流量传感器设置在导热装置的输入口或输出口处,流量传感器用于监测冷却介质的流量。
将流量传感器设置在导热装置的输入口或输出口,即保证了安装位置的便利,也使得冷却介质的流量变化更容易被监测到。
又例如,在方法700中,可以从液位传感器获取冷却介质的液面高度。其中,液位传感器设置在用于储存冷却介质的存储箱上,液位传感器用于监测存储箱中存储的冷却介质的液面高度。
冷却介质存储在存储箱中,存储箱与导热装置的输入口连通,当电池发生热失控导致导热装置中的冷却介质从导热装置的内部排出时,相比于导热装置中的液面高度,存储箱中的液面高度的变化更为敏感,因此将流量传感器设置在存储箱上,可以更准确地监测到冷却介质的液面高度的变化,并且在存储箱上更易安装液位传感器。
又例如,在方法700中,可以从温度传感器获取冷却介质的温度。其中,温度传感器设置在导热装置的输出口处,温度传感器用于监测冷却介质在导热装置的输出口处的温度。
上面描述的压力传感器、液位传感器、流量传感器和温度传感器的位置仅仅为示例,本申请实施例对传感器的安装位置不做限定,在实际应用中,也可以将传感设置在其他位置。
并且,本申请实施例中,可以设置一个传感器,或者设置多个传感器以提高热失控检测的准确性。例如,可以在导热装置的输入口和输出口分别设置两个压力传感器,并在根据其中至少一个压力传感器输出的参数值确定电池是否发生热失控。
如图10所示,本申请实施例还提供了一种BMS,BMS 1000应用于电池,该电池包括导热装置。其中,该导热装置中容纳有冷却介质,该冷却介质用于给该电池降温。应理解,当该电池发生热失控时,该导热装置能够被破坏,从而使其中的冷却介质从该导热装置的内部排出。
如图10所示,BMS 1000包括:
获取单元1010,用于获取冷却介质的至少一个参数;
处理单元1020,用于在该至少一个参数满足预设条件时,确定电池发生热失控。
当电池发生热失控时,会引发电池中的导热装置被破坏,从而引起其中容纳的冷却介质的参数发生变化。因此,根据该冷却介质的参数,可以有效检测电池的热失控的发生。
在一种可能的实现方式中,所述获取单元获取的所述至少一个参数包括以下参数中的至少一种:所述冷却介质的压力、所述冷却介质的流量、所述 冷却介质的液面高度、以及所述冷却介质的温度。
在一种可能的实现方式中,所述至少一个参数满足预设条件,包括:所述至少一个参数满足以下预设条件中的任意一个:参数值达到对应的阈值、参数值的变化量达到对应的阈值、以及参数值丢失。
在一种可能的实现方式中,所述至少一个参数包括所述冷却介质的压力,其中,处理单元1020具体用于:在所述冷却介质的压力下降至第一压力阈值、在所述冷却介质的压力的变化量超过第二压力阈值、或者所述冷却介质的压力的数据丢失时,确定所述电池发生热失控。
在一种可能的实现方式中,所述获取单元还用于:从压力传感器获取所述冷却介质的压力,其中,所述压力传感器设置在所述导热装置的输入口或输出口处,所述压力传感器用于监测所述冷却介质的压力。
在一种可能的实现方式中,所述至少一个参数包括所述冷却介质的流量,其中,处理单元1020具体用于:在所述冷却介质的流量下降至第一流量阈值、在所述冷却介质的流量的变化量超过第二流量阈值、或者所述冷却介质的流量的数据丢失时,确定所述电池发生热失控。
在一种可能的实现方式中,所述获取单元还用于:从流量传感器获取所述冷却介质的流量,其中,所述流量传感器设置在所述导热装置的输入口或输出口处,所述流量传感器用于监测所述冷却介质的流量,。
在一种可能的实现方式中,所述至少一个参数包括所述冷却介质的液面高度,其中,处理单元1020具体用于:在所述冷却介质的液面高度下降至第一高度阈值、在所述冷却介质的液面高度的变化量超过第二高度阈值、或者所述冷却介质的液面高度的数据丢失时,确定所述电池发生热失控。
在一种可能的实现方式中,所述获取单元还用于:从液位传感器获取所述冷却介质的液面高度,其中,所述液位传感器设置在用于储存所述冷却介质的存储箱上,所述液位传感器用于监测所述存储箱中存储的所述冷却介质的液面高度。
在一种可能的实现方式中,所述至少一个参数包括所述冷却介质的温度,其中,处理单元1020具体用于:在所述冷却介质的温度上升至第一温度阈值、在所述冷却介质的温度的变化量超过第二温度阈值、或者所述冷却介质的温度的数据丢失时,确定所述电池发生热失控。
在一种可能的实现方式中,所述获取单元还用于:从温度传感器获取所 述冷却介质的温度,其中,所述温度传感器设置在所述导热装置的输出口处,所述温度传感器用于监测所述冷却介质在所述导热装置的输出口处的温度,。
在一种可能的实现方式中,处理单元1020还用于:向整车控制器输出用于指示所述电池发生热失控的指示信号。
应理解,BMS 1000执行热失控检测的具体方式以及产生的有益效果可以参见方法实施例中的相关描述,为了简洁,不再赘述。
如图11所示,本申请实施例还提供了一种热失控检测的装置1100,包括存储器1110和处理器1120,其中,存储器1110用于存储指令,处理器1120用于读取所述指令并基于所述指令执行前述方法。
本申请实施例还提供了一种可读存储介质,用于存储计算机程序,所述计算机程序用于执行前述方法。
本申请实施例还提供了一种电池,包括至少一个电池单体和图5所示的电池管理系统BMS 500。其中,电池单体例如可以是前述附图中的电池单体20。
本申请实施例还提供了一种车辆,所述车辆包括电池和整车控制系统,所述整车控制系统用于接收所述电池中的BMS发送的用于指示所述电池发生热失控的指示信号。该车辆例如可以是前述附图中的车辆1。
在一种可能的实现方式中,所述整车控制系统还用于:根据所述指示信号,发出报警信号。
在一种可能的实现方式中,所述报警信号为光信号或者声音信号。
除非另有定义,本本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实 施例可以与其它实施例相结合。
本申请中的术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中的字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请中出现的“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。

Claims (26)

  1. 一种热失控检测的方法,其特征在于,所述方法包括:
    获取电池的冷却介质的至少一个参数,所述电池包括导热装置,所述导热装置中容纳所述有冷却介质;
    在所述至少一个参数满足预设条件时,确定所述电池发生热失控。
  2. 根据权利要求1所述的方法,其特征在于,所述至少一个参数包括以下参数中的至少一种:
    所述冷却介质的压力、所述冷却介质的流量、所述冷却介质的液面高度、以及所述冷却介质的温度。
  3. 根据权利要求1或2所述的方法,其特征在于,所述至少一个参数满足预设条件,包括:
    所述至少一个参数满足以下预设条件中的任意一个:参数值达到对应的阈值、参数值的变化量达到对应的阈值、以及参数值丢失。
  4. 根据权利要求3所述的方法,其特征在于,所述至少一个参数包括所述冷却介质的压力,其中,所述冷却介质的压力满足预设条件,包括:
    所述冷却介质的压力下降至第一压力阈值、所述冷却介质的压力的变化量超过第二压力阈值、或者所述冷却介质的压力的数据丢失。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    从压力传感器获取所述冷却介质的压力,其中,所述压力传感器设置在所述导热装置的输入口或输出口处,所述压力传感器用于监测所述冷却介质的压力。
  6. 根据权利要求2至5中任一项所述的方法,其特征在于,所述至少一个参数包括所述冷却介质的流量,所述冷却介质的流量满足预设条件,包括:
    所述冷却介质的流量下降至第一流量阈值、所述冷却介质的流量的变化量超过第二流量阈值、或者所述冷却介质的流量的数据丢失。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    从流量传感器获取所述冷却介质的流量,其中,所述流量传感器设置在所述导热装置的输入口或输出口处,所述流量传感器用于监测所述冷却介质的流量。
  8. 根据权利要求2至7中任一项所述的方法,其特征在于,所述至少 一个参数包括所述冷却介质的液面高度,所述冷却介质的液面高度满足预设条件,包括:
    所述冷却介质的液面高度下降至第一高度阈值、所述冷却介质的液面高度的变化量超过第二高度阈值、或者所述冷却介质的液面高度的数据丢失。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    从液位传感器获取所述冷却介质的液面高度,其中,所述液位传感器设置在用于储存所述冷却介质的存储箱上,所述液位传感器用于监测所述存储箱中存储的所述冷却介质的液面高度。
  10. 根据权利要求2至9中任一项所述的方法,其特征在于,所述至少一个参数包括所述冷却介质的温度,所述冷却介质的温度满足预设条件,包括:
    所述冷却介质的温度上升至第一温度阈值、所述冷却介质的温度的变化量超过第二温度阈值、或者所述冷却介质的温度的数据丢失。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    从温度传感器获取所述冷却介质的温度,其中,所述温度传感器设置在所述导热装置的输出口处,所述温度传感器用于监测所述冷却介质在所述导热装置的输出口处的温度。
  12. 根据权利要求1至11中任一项所述的方法,其特征在于,所述方法还包括:
    向整车控制器输出用于指示所述电池发生热失控的指示信号。
  13. 一种电池管理系统,其特征在于,所述电池管理系统包括:
    获取单元,用于获取电池的冷却介质的至少一个参数,所述电池包括导热装置,所述导热装置中容纳所述有冷却介质;
    处理单元,用于在所述至少一个参数满足预设条件时,确定所述电池发生热失控。
  14. 根据权利要求13所述的电池管理系统,其特征在于,所述获取单元获取的所述至少一个参数包括以下参数中的至少一种:
    所述冷却介质的压力、所述冷却介质的流量、所述冷却介质的液面高度、以及所述冷却介质的温度。
  15. 根据权利要求13或14所述的电池管理系统,其特征在于,所述至少一个参数满足预设条件,包括:
    所述至少一个参数满足以下预设条件中的任意一个:参数值达到对应的阈值、参数值的变化量达到对应的阈值、以及参数值丢失。
  16. 根据权利要求15所述的电池管理系统,其特征在于,所述至少一个参数包括所述冷却介质的压力,其中,所述处理单元具体用于:
    在所述冷却介质的压力下降至第一压力阈值、所述冷却介质的压力的变化量超过第二压力阈值、或者所述冷却介质的压力的数据丢失时,确定所述电池发生热失控。
  17. 根据权利要求16所述的电池管理系统,其特征在于,所述获取单元还用于:
    从压力传感器获取所述冷却介质的压力,其中,所述压力传感器设置在所述导热装置的输入口或输出口处,所述压力传感器用于监测所述冷却介质的压力。
  18. 根据权利要求14至17中任一项所述的电池管理系统,其特征在于,所述至少一个参数包括所述冷却介质的流量,其中,所述处理单元具体用于:
    在所述冷却介质的流量下降至第一流量阈值、所述冷却介质的流量的变化量超过第二流量阈值、或者所述冷却介质的流量的数据丢失时,确定所述电池发生热失控。
  19. 根据权利要求18所述的电池管理系统,其特征在于,所述获取单元还用于:
    从流量传感器获取所述冷却介质的流量,其中,所述流量传感器设置在所述导热装置的输入口或输出口处,所述流量传感器用于监测所述冷却介质的流量,。
  20. 根据权利要求14至19中任一项所述的电池管理系统,其特征在于,所述至少一个参数包括所述冷却介质的液面高度,其中,所述处理单元具体用于:
    在所述冷却介质的液面高度下降至第一高度阈值、所述冷却介质的液面高度的变化量超过第二高度阈值、或者所述冷却介质的液面高度的数据丢失时,确定所述电池发生热失控。
  21. 根据权利要求20所述的电池管理系统,其特征在于,所述获取单元还用于:
    从液位传感器获取所述冷却介质的液面高度,其中,所述液位传感器设 置在用于储存所述冷却介质的存储箱上,所述液位传感器用于监测所述存储箱中存储的所述冷却介质的液面高度。
  22. 根据权利要求14至21中任一项所述的电池管理系统,其特征在于,所述至少一个参数包括所述冷却介质的温度,其中,所述处理单元具体用于:
    在所述冷却介质的温度上升至第一温度阈值、所述冷却介质的温度的变化量超过第二温度阈值、或者所述冷却介质的温度的数据丢失时,确定所述电池发生热失控。
  23. 根据权利要求22所述的电池管理系统,其特征在于,所述获取单元还用于:
    从温度传感器获取所述冷却介质的温度,其中,所述温度传感器设置在所述导热装置的输出口处,所述温度传感器用于监测所述冷却介质在所述导热装置的输出口处的温度。
  24. 根据权利要求13至23中任一项所述的电池管理系统,其特征在于,所述处理单元还用于:
    向整车控制器输出用于指示所述电池发生热失控的指示信号。
  25. 一种可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序用于执行根据权利要求1至14中任一项所述的热失控检测的方法。
  26. 一种电池,其特征在于,包括:
    至少一个电池单体;以及,
    根据权利要求13至24中任一项所述的电池管理系统。
PCT/CN2020/101448 2020-07-10 2020-07-10 热失控检测的方法和电池管理系统 WO2022006902A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020227019093A KR20220097962A (ko) 2020-07-10 2020-07-10 열폭주 감지 방법 및 배터리 관리 시스템
CN202080044886.3A CN114175350B (zh) 2020-07-10 2020-07-10 热失控检测的方法和电池管理系统
US15/734,718 US11342601B2 (en) 2020-07-10 2020-07-10 Thermal runaway detection method and battery management system
JP2022537762A JP7506157B2 (ja) 2020-07-10 2020-07-10 熱暴走検出方法及び電池管理システム
PCT/CN2020/101448 WO2022006902A1 (zh) 2020-07-10 2020-07-10 热失控检测的方法和电池管理系统
EP20803076.7A EP3965208B1 (en) 2020-07-10 2020-07-10 Thermal runaway detection method and battery management system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/101448 WO2022006902A1 (zh) 2020-07-10 2020-07-10 热失控检测的方法和电池管理系统

Publications (1)

Publication Number Publication Date
WO2022006902A1 true WO2022006902A1 (zh) 2022-01-13

Family

ID=79172998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/101448 WO2022006902A1 (zh) 2020-07-10 2020-07-10 热失控检测的方法和电池管理系统

Country Status (6)

Country Link
US (1) US11342601B2 (zh)
EP (1) EP3965208B1 (zh)
JP (1) JP7506157B2 (zh)
KR (1) KR20220097962A (zh)
CN (1) CN114175350B (zh)
WO (1) WO2022006902A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114919457A (zh) * 2022-05-30 2022-08-19 梅赛德斯-奔驰集团股份公司 用于车辆的动力电池系统和热评估方法
CN115933601A (zh) * 2022-12-19 2023-04-07 中国第一汽车股份有限公司 热管理系统的测试装置、测试方法、动力电池系统及车辆
WO2024137537A1 (en) * 2022-12-21 2024-06-27 Joy Global Underground Mining Llc Thermal runaway mitigation in electric mining machines
US20240291057A1 (en) * 2023-02-24 2024-08-29 Samsung Sdi Co., Ltd. Method and device for detecting thermal runaway of battery pack
CN116338473B (zh) * 2023-05-30 2023-08-08 苏州精控能源科技有限公司 热失控扩散的圆柱锂电池测试方法、装置、介质、设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040257089A1 (en) * 2003-06-20 2004-12-23 Koji Aridome Temperature abnormality detecting apparatus and method for secondary battery
CN102496747A (zh) * 2011-11-18 2012-06-13 中国检验检疫科学研究院 动力电池热管理装置和方法
CN106252753A (zh) * 2016-08-25 2016-12-21 简式国际汽车设计(北京)有限公司 动力电池过热保护方法、装置、系统及动力电池
CN107732339A (zh) * 2017-10-27 2018-02-23 吉利汽车研究院(宁波)有限公司 用于车辆动力电池包的检测系统及其检测方法、车辆
CN109546234A (zh) * 2017-11-29 2019-03-29 蜂巢能源科技有限公司 动力电池热管理控制方法、动力电池热管理系统及车辆
CN109799005A (zh) * 2018-12-20 2019-05-24 北京长城华冠汽车科技股份有限公司 电池内部温度估计方法、装置、系统和车辆

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9093726B2 (en) * 2009-09-12 2015-07-28 Tesla Motors, Inc. Active thermal runaway mitigation system for use within a battery pack
JP5589078B2 (ja) * 2010-08-06 2014-09-10 パナソニック株式会社 電池モジュール
US9306247B2 (en) 2013-12-18 2016-04-05 Atieva, Inc. Method of detecting battery pack damage
JP2017147128A (ja) 2016-02-17 2017-08-24 三菱重工業株式会社 電池モジュール、および、電池システム
US10668832B2 (en) * 2017-09-12 2020-06-02 Chongqing Jinkang New Energy Vehicle Co., Ltd. Temperature control apparatus for electric vehicle battery packs
FR3104829B1 (fr) * 2019-12-17 2024-04-26 Commissariat Energie Atomique Accumulateur électrochimique, notamment un accumulateur métal-ion, à emballage souple ou rigide intégrant des canaux de refroidissement, module et procédé de fabrication associés.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040257089A1 (en) * 2003-06-20 2004-12-23 Koji Aridome Temperature abnormality detecting apparatus and method for secondary battery
CN102496747A (zh) * 2011-11-18 2012-06-13 中国检验检疫科学研究院 动力电池热管理装置和方法
CN106252753A (zh) * 2016-08-25 2016-12-21 简式国际汽车设计(北京)有限公司 动力电池过热保护方法、装置、系统及动力电池
CN107732339A (zh) * 2017-10-27 2018-02-23 吉利汽车研究院(宁波)有限公司 用于车辆动力电池包的检测系统及其检测方法、车辆
CN109546234A (zh) * 2017-11-29 2019-03-29 蜂巢能源科技有限公司 动力电池热管理控制方法、动力电池热管理系统及车辆
CN109799005A (zh) * 2018-12-20 2019-05-24 北京长城华冠汽车科技股份有限公司 电池内部温度估计方法、装置、系统和车辆

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3965208A4 *

Also Published As

Publication number Publication date
JP7506157B2 (ja) 2024-06-25
US11342601B2 (en) 2022-05-24
CN114175350A (zh) 2022-03-11
KR20220097962A (ko) 2022-07-08
EP3965208A4 (en) 2022-03-09
JP2023506657A (ja) 2023-02-17
CN114175350B (zh) 2023-12-22
EP3965208A1 (en) 2022-03-09
US20220013818A1 (en) 2022-01-13
EP3965208B1 (en) 2022-10-05

Similar Documents

Publication Publication Date Title
WO2022006902A1 (zh) 热失控检测的方法和电池管理系统
JP7422790B2 (ja) 電池のケース、電池、電力消費装置、電池製造方法及び装置
EP2302727B1 (en) Active thermal runaway mitigation system for use within a battery pack
US9413031B2 (en) Apparatus and system for an internal fuse in a battery cell
JP5405037B2 (ja) バッテリ装置
CN106505268B (zh) 一种新能源汽车动力电池安全系统
EP3772428B1 (en) Battery pack housing producing an acoustic warning signal in case of thermal runaway
JP7417741B2 (ja) 電池の筐体、電池、電力消費機器、筐体の製造方法及び装置
US20220320673A1 (en) Battery, power consumption device, method and device for producing battery
JP6103332B2 (ja) バッテリー安全装置
CN218299895U (zh) 电池及用电装置
US11799138B2 (en) Apparatus for detecting thermal runaway of battery for electric vehicle
JP7417763B2 (ja) 電池、電力消費装置、電池を製造する方法と装置
JP2005322471A (ja) 電池安全弁の状態を検知する検知装置、その検知装置を有する電池および集合電池
RU2805466C1 (ru) Способ обнаружения теплового разгона и система управления батареей
CN215834593U (zh) 一种锂离子电池智能冷却降温系统
CN115000574A (zh) 一种动力电池安全系统及其监控方法
WO2022205080A1 (zh) 电池、用电装置、制备电池的方法和装置
US11260725B2 (en) Method and system for preventing ingestion of contaminated ambient air into a passenger compartment of a vehicle
KR20200092872A (ko) 차량의 승객실로 오염된 외기의 유입을 방지하기 위한 방법 및 시스템
CN216563281U (zh) 动力电池及两轮电动车
US20240079667A1 (en) Apparatus for Detecting Thermal Runaway of Battery for Electric Vehicle
CN220367977U (zh) 电池包消防预警系统
US20240154203A1 (en) System and method for early-stage detection of thermal runaway in lithium-ion batteries
RU2793962C1 (ru) Батарея, энергопотребляющее устройство, способ и устройство для изготовления батареи

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020803076

Country of ref document: EP

Effective date: 20201116

ENP Entry into the national phase

Ref document number: 20227019093

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022537762

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE