WO2022005174A1 - 항-lag-3 항체 및 il-2를 포함하는 융합단백질 및 이의 용도 - Google Patents

항-lag-3 항체 및 il-2를 포함하는 융합단백질 및 이의 용도 Download PDF

Info

Publication number
WO2022005174A1
WO2022005174A1 PCT/KR2021/008198 KR2021008198W WO2022005174A1 WO 2022005174 A1 WO2022005174 A1 WO 2022005174A1 KR 2021008198 W KR2021008198 W KR 2021008198W WO 2022005174 A1 WO2022005174 A1 WO 2022005174A1
Authority
WO
WIPO (PCT)
Prior art keywords
fusion protein
cancer
seq
lag
antibody
Prior art date
Application number
PCT/KR2021/008198
Other languages
English (en)
French (fr)
Inventor
장명호
조영규
오영민
이혜선
하단비
심예인
김서호
Original Assignee
(주)지아이이노베이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)지아이이노베이션 filed Critical (주)지아이이노베이션
Priority to CN202180046803.9A priority Critical patent/CN115916831A/zh
Priority to JP2022575843A priority patent/JP2023531876A/ja
Priority to EP21834395.2A priority patent/EP4174088A4/en
Priority to US18/003,123 priority patent/US20230257438A1/en
Publication of WO2022005174A1 publication Critical patent/WO2022005174A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/39Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/54Interleukins [IL]
    • C07K14/55IL-2
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/31Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/30Non-immunoglobulin-derived peptide or protein having an immunoglobulin constant or Fc region, or a fragment thereof, attached thereto
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/33Fusion polypeptide fusions for targeting to specific cell types, e.g. tissue specific targeting, targeting of a bacterial subspecies

Definitions

  • the present invention relates to a fusion protein comprising an anti-LAG-3 antibody and IL-2 and uses thereof. Specifically, the present invention relates to a novel fusion protein having cancer treatment or prevention efficacy.
  • Cancer immunotherapy is a method of treating cancer by using the immune system in the body. Cancer immunotherapy can trigger the immune system to attack cancer cells by targeting antigens such as cancer cell surface proteins. In particular, it has been reported that anticancer immunity can be activated by blocking the immune checkpoint pathway. Immune checkpoints are one of the main mechanisms by which tumor cells result in immune evasion. Thus, inhibition or blockade of immune checkpoints may increase T cell activation, thereby enhancing anti-tumor immunity.
  • IL-2 is mainly synthesized by CD4+ helper T cells among activated T cells.
  • IL-2 stimulates proliferation and differentiation of T cells, produces cytotoxic T lymphocytes (CTLs) and cytotoxic cells of peripheral blood lymphocytes and lymphokine activated killer cells (LAKs) cell) to induce differentiation.
  • CTLs cytotoxic T lymphocytes
  • LAKs lymphokine activated killer cells
  • IL-2 has a dual function in the immune response in that it is important for maintaining immune tolerance as well as mediating the increase and activation of immune cells. It has also been reported that IL-2 may not be optimal for inhibiting tumor growth. The reason is that in the presence of IL-2, activation-induced cell death (AICD) can occur in the generated cytotoxic T lymphocytes, and the immune response can be suppressed by IL-2 dependent regulatory T cells (Tregs). (Imai et al ., Cancer Sci 98, 416-423, 2007).
  • LAG-3 is known to have a mechanism similar to PD-1.
  • LAG-3 is an immune checkpoint inhibitor expressed in T cells and NK cells and has a structure similar to that of CD4, but has 30 additional amino acids in the D1 domain and is known to have high affinity with MHC class II (MHCII).
  • the present inventors studied to develop a new combination fusion protein that enhances the activity of immune cells, and as a result, it was confirmed that the fusion protein including the anti-LAG-3 antibody and the IL-2 variant effectively regulates the immune cells. did Based on this, the present invention was completed by confirming that the fusion protein is effective as an anticancer agent.
  • one aspect of the present invention provides a fusion protein comprising an antibody that specifically binds to LAG-3 and an IL-2 protein or a variant thereof.
  • Another aspect of the present invention provides a polynucleotide encoding the fusion protein, an expression vector comprising the polynucleotide, and a transformed cell into which the expression vector is introduced.
  • Another aspect of the present invention comprises the steps of culturing the transformed cells; and recovering the fusion protein; provides a method for preparing a fusion protein comprising.
  • Another aspect of the present invention provides the fusion protein and pharmaceutical uses thereof.
  • Another aspect of the present invention provides the use of the fusion protein for treating or preventing cancer for the treatment or prevention of cancer.
  • Another aspect of the present invention provides a method for treating or preventing cancer comprising administering the fusion protein to a subject.
  • Another aspect of the present invention provides the use of the fusion protein for preparing a medicament for treating or preventing cancer.
  • the fusion protein comprising the anti-LAG-3 antibody and the IL-2 variant according to the present invention can not only regulate the mechanism related to LAG-3, but also function the same or similar to that of IL-2. That is, the fusion protein can regulate the binding of LAG-3 and MHCII, as well as activate immune cells. Therefore, the fusion protein can be used as an anticancer agent.
  • 3 is a picture confirming the production of GI-104E1 by SDS-PAGE.
  • GI-104E1 or It is a schematic diagram of the mechanism of action of GI-104E2 and the experimental method.
  • FIG. 8 is a view confirming whether GI-104E1 binds to LAG-3 and inhibits LAG-3-MHCII-mediated signaling through LAG-3 blockade assay.
  • 9 is a view confirming whether GI-104E2 binds to LAG-3 and inhibits LAG-3-MHCII-mediated signaling through LAG-3 blockade assay.
  • 10 is vehicle (PBS), anti-LAG-3 antibody, Fc-IL-2v2, anti-LAG-3 antibody and Fc-IL-2v2 co-administration to mice subcutaneously transplanted with CT26 cancer cells, and anti-LAG- 3 and the fusion protein (GI-104E1) containing IL-2v2 was administered once a week for 3 weeks, respectively, and is a graph showing the observed tumor volume.
  • 11 is a co-administration of Vehicle (PBS), anti-LAG-3 antibody, Fc-IL-2v2, anti-LAG-3 antibody and Fc-IL-2v2 to mice subcutaneously implanted with CT26 cancer cells, and anti-LAG- 3 and a graph showing the tumor volume of each individual after administration of the fusion protein (GI-104E1) containing IL-2v2, respectively.
  • PBS Vehicle
  • anti-LAG-3 antibody Fc-IL-2v2
  • Fc-IL-2v2 anti-LAG-3 antibody
  • Fc-IL-2v2 anti-LAG-3 antibody
  • Fc-IL-2v2 anti-LAG-3 antibody
  • Fc-IL-2v2 anti-LAG-3 antibody
  • Fc-IL-2v2 anti-LAG-3 antibody
  • Fc-IL-2v2 anti-LAG-3 antibody
  • Fc-IL-2v2 Fc-IL-2v2
  • FIG. 12 is a graph showing the tumor volume of each individual in a group administered with Vehicle (PBS) to mice subcutaneously implanted with CT26 cancer cells.
  • PBS Vehicle
  • FIG. 13 is a graph showing the tumor volume of each individual in a group administered with anti-LAG-3 antibody to mice subcutaneously transplanted with CT26 cancer cells.
  • FIG. 14 is a graph showing the tumor volume of each individual in a group administered with Fc-IL-2v2 to mice subcutaneously transplanted with CT26 cancer cells.
  • 15 is a graph showing the tumor volume of each individual in a group in which an anti-LAG-3 antibody and Fc-IL-2v2 were co-administered to mice subcutaneously transplanted with CT26 cancer cells.
  • 16 is a graph showing the tumor volume of each individual in a group administered with a fusion protein (GI-104E1) containing anti-LAG-3 and IL-2v2 to mice subcutaneously transplanted with CT26 cancer cells.
  • a fusion protein GI-104E1
  • Figure 17 shows the co-administration of Vehicle (PBS), anti-LAG-3 antibody, Fc-IL-2v2, anti-LAG-3 antibody and Fc-IL-2v2 to mice subcutaneously transplanted with CT26 cancer cells, and anti-LAG- 3 and after administration of the fusion protein (GI-104E1) containing IL-2v2 once a week for 3 weeks, 32 days after the first administration, the mean tumor volume growth of the group administered with the vehicle ) is a graph showing the number of individuals with tumor growth inhibition of 30% or more, 50% or more, and 80% or more per group.
  • Figure 18 shows the co-administration of Vehicle (PBS), anti-LAG-3 antibody, Fc-IL-2v2, anti-LAG-3 antibody and Fc-IL-2v2 to mice subcutaneously transplanted with CT26 cancer cells, and anti-LAG- 3 and a graph showing the observed survival rate when the fusion protein (GI-104E1) containing IL-2v2 was administered once a week for 3 weeks, respectively.
  • PBS Vehicle
  • Anti-LAG-3 antibody Fc-IL-2v2
  • Fc-IL-2v2 anti-LAG-3 antibody
  • Fc-IL-2v2 anti-LAG-3 antibody
  • Fc-IL-2v2 anti-LAG-3 antibody
  • 19 is a vehicle (PBS), anti-LAG-3 antibody, Fc-IL-2v3, anti-LAG-3 antibody and Fc-IL-2v3 co-administration to mice subcutaneously transplanted with CT26 cancer cells, and anti-LAG- 3 and IL-2v3-containing fusion protein (GI-104E2) is administered once a week for 3 weeks, respectively, and is a graph showing the observed tumor volume.
  • PBS vehicle
  • anti-LAG-3 antibody anti-LAG-3 antibody
  • Fc-IL-2v3, anti-LAG-3 antibody and Fc-IL-2v3 co-administration to mice subcutaneously transplanted with CT26 cancer cells
  • anti-LAG- 3 and IL-2v3-containing fusion protein GI-104E2
  • 21 is a graph showing the tumor volume of each individual in a group administered with Vehicle (PBS) to mice subcutaneously implanted with CT26 cancer cells.
  • PBS Vehicle
  • 22 is a graph showing the tumor volume of each individual in a group administered with anti-LAG-3 antibody to mice subcutaneously transplanted with CT26 cancer cells.
  • FIG. 23 is a graph showing the tumor volume of each individual in a group administered with Fc-IL-2v3 to mice subcutaneously transplanted with CT26 cancer cells.
  • FIG. 24 is a graph showing the tumor volume of each individual in a group in which an anti-LAG-3 antibody and Fc-IL-2v3 were co-administered to mice subcutaneously transplanted with CT26 cancer cells.
  • 25 is a graph showing the tumor volume of each individual in a group administered with a fusion protein (GI-104E2) containing anti-LAG-3 and IL-2v3 to mice subcutaneously transplanted with CT26 cancer cells.
  • a fusion protein GI-104E2
  • Figure 26 is vehicle (PBS), anti-LAG-3 antibody, Fc-IL-2v3, anti-LAG-3 antibody and Fc-IL-2v3 co-administration to mice subcutaneously transplanted with CT26 cancer cells, and anti-LAG- 3 and the fusion protein (GI-104E2) containing IL-2v3 was administered once a week for 3 weeks, after 32 days from the first administration, based on the average tumor volume growth of the group administered with the vehicle It is a graph showing the number of individuals whose tumor growth inhibition is 30% or more, 50% or more, 80% or more.
  • Fusion protein comprising anti-LAG-3 antibody and IL-2
  • One aspect of the present invention provides a fusion protein comprising an antibody that specifically binds to LAG-3 and an IL-2 protein.
  • At least one IL-2 protein may be bound to the anti-LAG-3 antibody.
  • the fusion protein may include one or two IL-2 or variants thereof.
  • the anti-LAG-3 antibody and IL-2 may be coupled through a linker.
  • LAG-3 is called CD223 or lymphocyte activation gene 3 (Lymphocyte activation gene 3). This protein is encoded by the LAG-3 gene. LAG-3 is known to have a mechanism similar to that of PD-1. In addition, LAG-3 is an immune checkpoint inhibitor expressed in T cells and NK cells and has a structure similar to that of CD4, but has 30 additional amino acids in the D1 domain, so it has high affinity with MHC class II. Because of these structural properties, it is known that LAG-3 also inhibits T cell activation.
  • the anti-LAG-3 antibody may be an antibody that specifically binds to the LAG-3.
  • the fragment of the antibody may be used in any form as long as it contains an antigen-binding domain capable of specifically binding to LAG-3.
  • HCDR1, HCDR2 and HCDR3 of the heavy chain variable region of the anti-LAG-3 antibody may include the amino acid sequences of SEQ ID NO: 1, SEQ ID NO: 2 and SEQ ID NO: 3, respectively.
  • LCDR1, LCDR2 and LCDR3 of the light chain variable region of the anti-LAG-3 antibody may include the amino acid sequences of SEQ ID NO: 5, SEQ ID NO: 6 and SEQ ID NO: 7, respectively.
  • the antibody that specifically binds to LAG-3 may include a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 4 and a light chain variable region comprising the amino acid sequence of SEQ ID NO: 8.
  • IL-2 or "interleukin-2” includes, unless otherwise stated, mammals, including primates (eg, humans) and rodents (eg, mice and rats). means any wild-type IL-2 obtained from any vertebrate source.
  • the IL-2 may be obtained from animal cells, but includes those obtained from recombinant cells capable of producing IL-2.
  • the IL-2 may be wild-type IL-2 or a mutant thereof.
  • IL-2 or a variant thereof is collectively referred to as "IL-2 protein” or "IL-2 polypeptide”.
  • IL-2, IL-2 proteins, IL-2 polypeptides, and IL-2 variants specifically bind to, for example, the IL-2 receptor. This specific binding can be confirmed by methods known to those skilled in the art.
  • the IL-2 may be in a mature form. Specifically, the mature IL-2 may not include a signal sequence, and may include a fragment in which a portion of the N-terminus or C-terminus of wild-type IL-2 is truncated. In this case, the IL-2 may have the amino acid sequence of SEQ ID NO: 22.
  • the term "IL-2 mutant” refers to a form in which some amino acids of full-length IL-2 or a fragment of IL-2 are substituted. That is, the IL-2 variant may have an amino acid sequence different from that of wild-type IL-2 or a fragment thereof. However, the IL-2 variant may have an activity equivalent to or similar to that of wild-type IL-2.
  • IL-2 activity may refer to, for example, specific binding to an IL-2 receptor, and this specific binding may be measured by a method known to those skilled in the art.
  • the IL-2 mutant may be one in which a portion of the amino acid of wild-type IL-2 is substituted.
  • the IL-2 variant by amino acid substitution at least one of the 38th, 42nd, 45th, 61st and 72nd amino acids in the amino acid sequence of SEQ ID NO: 22 may be substituted.
  • the IL-2 variant may be one in which at least one of the 38th, 42nd, 45th, 61st, or 72nd amino acids in the amino acid sequence of SEQ ID NO: 22 is substituted with another amino acid. According to one embodiment, as long as IL-2 activity is maintained, one, two, or three amino acids may be substituted.
  • the IL-2 variant may be in a form in which two amino acids are substituted. Specifically, the IL-2 variant may be one in which the 38th and 42nd amino acids are substituted in the amino acid sequence of SEQ ID NO: 22. Also, in one embodiment, the IL-2 variant may be one in which the 38th and 45th amino acids are substituted in the amino acid sequence of SEQ ID NO: 22. Also, in one embodiment, the IL-2 variant may be one in which the 38th and 61st amino acids are substituted in the amino acid sequence of SEQ ID NO: 22. Also, in one embodiment, the IL-2 variant may be one in which the 38th and 72nd amino acids are substituted in the amino acid sequence of SEQ ID NO: 22.
  • the IL-2 variant may be one in which the 42nd and 45th amino acids are substituted in the amino acid sequence of SEQ ID NO: 22. Also, in one embodiment, the IL-2 variant may be one in which the 42nd and 61st amino acids are substituted in the amino acid sequence of SEQ ID NO: 22. Also, in one embodiment, the IL-2 variant may be one in which the 42nd and 72nd amino acids are substituted in the amino acid sequence of SEQ ID NO: 22. Also, in one embodiment, the IL-2 variant may be one in which the 45th and 61st amino acids are substituted in the amino acid sequence of SEQ ID NO: 22.
  • the IL-2 variant may be one in which the 45th and 72nd amino acids are substituted in the amino acid sequence of SEQ ID NO: 22. Also, in one embodiment, the IL-2 variant may be one in which the 61st and 72nd amino acids are substituted in the amino acid sequence of SEQ ID NO: 22.
  • the IL-2 variant may be in a form in which three amino acids are substituted. Specifically, the IL-2 variant may be one in which the 38th, 42nd and 45th amino acids are substituted in the amino acid sequence of SEQ ID NO: 22. Also, in one embodiment, the IL-2 variant may be one in which the 38th, 42nd and 61st amino acids are substituted in the amino acid sequence of SEQ ID NO: 22. Also, in one embodiment, the IL-2 variant may be one in which the 38th, 42nd and 72nd amino acids are substituted in the amino acid sequence of SEQ ID NO: 22.
  • the IL-2 variant may be one in which the 38th, 45th and 61st amino acids are substituted in the amino acid sequence of SEQ ID NO: 22. Also, in one embodiment, the IL-2 variant may be one in which the 38th, 45th and 72nd amino acids are substituted in the amino acid sequence of SEQ ID NO: 22. Also, in one embodiment, the IL-2 variant may be one in which the 38th, 61st and 72nd amino acids are substituted in the amino acid sequence of SEQ ID NO: 22. Also, in one embodiment, the IL-2 variant may be one in which the 42nd, 45th, and 61st amino acids are substituted in the amino acid sequence of SEQ ID NO: 22.
  • the IL-2 variant may be one in which the 42nd, 45th, and 72nd amino acids are substituted in the amino acid sequence of SEQ ID NO: 22. Also, in one embodiment, the IL-2 variant may be one in which the 45th, 61st, and 72nd amino acids are substituted in the amino acid sequence of SEQ ID NO: 22.
  • the "other amino acids" introduced by the substitution are alanine, arginine, asparagine, aspartic acid, cysteine, glutamic acid, glutamine. , histidine, isoleucine, leucine, lysine, methionine, phenyl alanine, proline, serine, threonine, tryptophan ( tryptophan), tyrosine (tyrosine) and valine (valine) may be any one selected from the group consisting of.
  • the 38th position in the amino acid sequence of SEQ ID NO: 22 cannot be substituted with arginine
  • the 42nd position cannot be substituted with phenylalanine
  • the 45th position cannot be substituted with tyrosine.
  • the 61st position cannot be substituted with glutamic acid
  • the 72nd position cannot be substituted with leucine.
  • arginine which is the 38th amino acid in the amino acid sequence of SEQ ID NO: 22, may be substituted with an amino acid other than arginine.
  • arginine which is the 38th amino acid in the amino acid sequence of SEQ ID NO: 22, may be substituted with alanine (R38A).
  • phenylalanine which is the 42nd amino acid in the amino acid sequence of SEQ ID NO: 22, may be substituted with an amino acid other than phenylalanine.
  • phenylalanine which is the 42nd amino acid in the amino acid sequence of SEQ ID NO: 22, may be substituted with alanine (F42A).
  • tyrosine which is the 45th amino acid in the amino acid sequence of SEQ ID NO: 22, may be substituted with an amino acid other than tyrosine.
  • tyrosine which is the 45th amino acid in the amino acid sequence of SEQ ID NO: 22, may be substituted with alanine (Y45A).
  • glutamic acid which is the 61st amino acid in the amino acid sequence of SEQ ID NO: 22, may be substituted with an amino acid other than glutamic acid.
  • glutamic acid which is the 61st amino acid in the amino acid sequence of SEQ ID NO: 22, may be substituted with arginine (E61R).
  • leucine which is the 72nd amino acid in the amino acid sequence of SEQ ID NO: 22, may be substituted with an amino acid other than leucine.
  • leucine which is the 72nd amino acid in the amino acid sequence of SEQ ID NO: 22, may be substituted with glycine (L72G).
  • the IL-2 variant may have at least one substitution selected from the group consisting of R38A, F42A, Y45A, E61R and L72G in the amino acid sequence of SEQ ID NO: 22.
  • the IL-2 variant may have amino acid substitutions at two or three positions at a position selected from the group consisting of R38A, F42A, Y45A, E61R and L72G.
  • the IL-2 variant may be in a form in which two amino acids are substituted.
  • the IL-2 mutant may be substituted with R38A and F42A.
  • the IL-2 mutant may be substituted with R38A and Y45A.
  • the IL-2 mutant may be substituted with R38A and E61R.
  • the IL-2 mutant may be substituted with R38A and L72G.
  • the IL-2 mutant may be substituted with F42A and Y45A.
  • the IL-2 mutant may be substituted with F42A and E61R.
  • the IL-2 mutant may be substituted with F42A and L72G.
  • the IL-2 mutant may be substituted with E61R and L72G.
  • the IL-2 variant may be in a form in which three amino acids are substituted.
  • the IL-2 mutant may be substituted with R38A, F42A and Y45A.
  • the IL-2 mutant may be substituted with R38A, F42A and E61R.
  • the IL-2 mutant may be substituted with R38A, F42A and L72G.
  • the IL-2 variant may be substituted with R38A, Y45A and E61R.
  • the IL-2 variant may be substituted with R38A, Y45A and L72G.
  • the IL-2 mutant may be substituted with F42A, Y45A and E61R.
  • the IL-2 mutant may be substituted with F42A, Y45A and L72G. Also, in one embodiment, the IL-2 mutant may be substituted with F42A, E61R and L72G. Also, in one embodiment, the IL-2 mutant may be substituted with Y45A, E61R and L72G.
  • the IL-2 variant may have the amino acid sequence of SEQ ID NO: 20 or SEQ ID NO: 21.
  • the IL-2 variant may be characterized in that it has low toxicity in vivo.
  • the low toxicity in the living body may be a side effect caused by binding of IL-2 to the alpha chain (IL-2R ⁇ ) of the IL-2 receptor.
  • IL-2R ⁇ alpha chain
  • Various IL-2 variants have been developed to improve the side effects caused by the IL-2 and IL-2R ⁇ binding, and those IL-2 variants disclosed in U.S. Patent No. 5,229,109 and Korean Patent Publication No. 10-1667096 can be used.
  • the IL-2 variant described in the present application has low in vivo toxicity compared to wild-type IL-2 due to low binding affinity to the alpha chain (IL-2R ⁇ ) of the IL-2 receptor.
  • the fusion protein may include an immunoglobulin Fc region.
  • the Fc domain of the immunoglobulin includes a heavy chain constant region 2 (CH2) and a heavy chain constant region 3 (CH3) of the immunoglobulin.
  • the immunoglobulin may be IgG, IgA, IgE, IgD or IgM, preferably IgG4.
  • the Fc domain of the immunoglobulin may be a wild-type Fc domain as well as an Fc domain variant.
  • the term "Fc domain variant" as used herein is different from the glycosylation pattern of the wild-type Fc domain, increased sugar chains compared to the wild-type Fc domain, decreased sugar chains compared to the wild-type Fc domain, or the sugar chains are removed ( It may be in a deglycosylated form.
  • an aglycosylated Fc domain is also included.
  • the Fc domain or variant may have a number of sialic acid, fucosylation, and glycosylation adjusted through culture conditions or host genetic manipulation.
  • the sugar chain of the Fc domain of an immunoglobulin can be modified by a conventional method such as a chemical method, an enzymatic method, and a genetic engineering method using microorganisms.
  • the Fc domain variant may be a mixed form of the immunoglobulin Fc region of IgG, IgA, IgE, IgD or IgM.
  • the Fc domain variant may be a form in which some amino acids of the Fc domain are substituted with other amino acids.
  • the Fc region may have the amino acid sequence of SEQ ID NO: 14.
  • the fusion protein of the present invention is a fusion protein comprising a light chain variable region and light chain constant region 1 (CL1) of an anti-LAG-3 antibody and a heavy chain variable region, heavy chain constant region 1 (CH1), Fc of an anti-LAG-3 antibody domain and IL-2 protein.
  • CL1 light chain variable region and light chain constant region 1
  • CH1 heavy chain constant region 1
  • Fc Fc of an anti-LAG-3 antibody domain
  • IL-2 protein at least one IL-2 protein may be included in the anti-LAG-3 antibody.
  • the fusion protein includes two IL-2 proteins.
  • the IL-2 protein may be in a form bound to the C-terminus of the anti-LAG-3 antibody.
  • the fusion protein comprising the Fc domain and the IL-2 protein may be a dimer in which two fusion proteins of the following structural formula (1) are bound:
  • the N' is the N-terminus of the fusion protein
  • X is an anti-LAG-3 antibody or fragment thereof
  • Y is an IL-2 protein
  • linker (1) and linker (2) are peptide linkers
  • o and p are each independently O or 1.
  • the anti-LAG-3 antibody and the IL-2 protein are as described above.
  • IL-2 or a variant thereof may be bound to the Fc region bound to the C-terminus of the anti-LAG-3 antibody.
  • the IL-2 or a variant thereof and the Fc region may be coupled through a linker.
  • the peptide linker (1) may consist of 1 to 50 consecutive amino acids, or 3 to 30 consecutive amino acids, or 5 to 15 amino acids. In one embodiment, the peptide linker (1) may consist of 12 amino acids. In addition, the peptide linker (1) may include at least one cysteine. Specifically, it may contain 1, 2 or 3 cysteines. In addition, the peptide linker (1) may be derived from the hinge of an immunoglobulin. In one embodiment, the peptide linker (1) may be a peptide linker consisting of the amino acid sequence of SEQ ID NO: 13.
  • the peptide linker (2) may consist of 1 to 30 consecutive amino acids, or 2 to 20 consecutive amino acids, or 2 to 10 amino acids.
  • the peptide linker (2) may be (G4S)n (in this case, n is an integer of 1 to 10). In this case, in (G4S)n, n may be 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10.
  • the peptide linker may be a peptide linker consisting of the amino acid sequence of SEQ ID NO: 19.
  • fusion protein of the structural formula (1) may include proteins of the following structural formulas (1-1) and (1-2):
  • the N' is the N-terminus of the fusion protein
  • X' is a heavy chain region of the anti-LAG-3 antibody, and includes a heavy chain variable region and CH1,
  • X '' is a light chain region of the anti-LAG-3 antibody, including a light chain variable region and CL,
  • Y is an IL-2 protein
  • linker (1) and linker (2) are peptide linkers
  • o and p are each independently O or 1.
  • heavy chain variable region and the light chain variable region are the same as described above.
  • Each amino acid sequence of the region constituting the fusion protein is as shown in Tables 1 and 2 below. Specifically, Table 1 describes the amino acid sequence for anti-hLAG-3(1E09)VL-kappa+CL. Table 2 describes the amino acid sequences of anti-hLAG-3(1E09)VH+CH1, hIgG4Fc and hIL-2v2/hIL-2v3.
  • Another aspect of the present invention provides a polynucleotide encoding the above-described fusion protein.
  • the polynucleotide may include a nucleotide sequence encoding the fusion protein of Structural Formulas (1-1) and (1-2) described above.
  • the polynucleotide encoding the heavy chain region of the polynucleotide may include the nucleotide sequence of SEQ ID NO: 17 or SEQ ID NO: 23.
  • the polynucleotide encoding the light chain region may include SEQ ID NO: 18.
  • one or more bases may be mutated by substitution, deletion, insertion, or a combination thereof.
  • a synthesis method well known in the art for example, the method described in the literature (Engels and Uhlmann, Angew Chem Int Ed Engl., 37:73-127, 1988) can be used. and a triester, phosphite, phosphoramidite and H-phosphate method, PCR and other auto-primer methods, and an oligonucleotide synthesis method on a solid support.
  • the polypeptide is at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about 99%, or at least about 100% identity.
  • the polynucleotide may further include a nucleic acid encoding a signal sequence or a leader sequence.
  • signal sequence refers to a signal peptide that directs secretion of a target protein.
  • the signal peptide is cleaved after translation in the host cell.
  • the signal sequence is an amino acid sequence that initiates the movement of the protein through the ER (endoplasmic reticulum) membrane.
  • the signal sequence is well-known in the art, and typically contains 16 to 30 amino acid residues, but may include more or fewer amino acid residues.
  • a typical signal peptide consists of three regions: a basic N-terminal region, a central hydrophobic region, and a more polar C-terminal region.
  • the central hydrophobic region contains 4 to 12 hydrophobic residues that anchor the signal sequence through the membrane lipid bilayer during migration of the immature polypeptide.
  • the signal sequence is cleaved in the lumen of the ER by cellular enzymes commonly known as signal peptidases.
  • the signal sequence may be tissue Plasminogen Activation (tPa), a signal sequence of Herpes simplex virus glycoprotein D (HSV gDs), an IgG signal sequence, or a growth hormone secretion signal sequence.
  • tPa tissue Plasminogen Activation
  • HSV gDs Herpes simplex virus glycoprotein D
  • IgG signal sequence an IgG signal sequence
  • a growth hormone secretion signal sequence e.gG signal sequence
  • a secretion signal sequence used in higher eukaryotic cells, including mammals, may be used.
  • the signal sequence may be used by using a signal sequence included in wild-type IL-2, or by substituting a codon having a high expression frequency in the host cell.
  • the light chain signal sequence of the 14.18 antibody (Gillies et al., J. Immunol. Meth 1989. 125: 191-202), the heavy chain signal sequence of the MOPC141 antibody (Sakano et al., Nature, 1980. 286: 676- 683) and other signal sequences known in the art (see, eg, Watson et al., Nucleic Acid Research, 1984. 12:5145-5164).
  • Another aspect of the present invention provides a vector comprising the polynucleotide.
  • the polynucleotide encoding the heavy chain region and the polynucleotide encoding the light chain region may be loaded into different vectors.
  • the polynucleotide encoding the heavy chain region and the polynucleotide encoding the light chain region may be loaded into one vector.
  • the heavy chain region of the polynucleotide may include the nucleotide sequence of SEQ ID NO: 17 or 23, and the light chain region may include SEQ ID NO: 18. In one embodiment, it may include SEQ ID NO: 17 and SEQ ID NO: 18. In one embodiment, it may include SEQ ID NO: 23 and SEQ ID NO: 18.
  • the vector may be two vectors each including a combination of the polynucleotides of the heavy chain and the light chain, or a bicistronic vector including all of the polynucleotides of the combination.
  • the vector can be introduced into a host cell, recombination and insertion into the host cell genome. or said vector is understood as a nucleic acid means comprising a polynucleotide sequence capable of spontaneous replication as an episome.
  • the vector may be operably linked to an appropriate promoter so that the polynucleotide can be expressed in a host cell, and linear nucleic acids, plasmids, phagemids, cosmids, RNA vectors, viral vectors, mini-chromosomes and analogs thereof include Examples of viral vectors include, but are not limited to, retroviruses, adenoviruses, and adeno-associated viruses.
  • the vector may be plasmid DNA, phage DNA, etc., commercially developed plasmids (pUC18, pBAD, pIDTSAMRT-AMP, etc.), E. coli-derived plasmids (pYG601BR322, pBR325, pUC118, pUC119, etc.), Bacillus subtilis plasmids (pUB110, pTP5, etc.), yeast-derived plasmids (YEp13, YEp24, YCp50, etc.), phage DNA (Charon4A, Charon21A, EMBL3, EMBL4, ⁇ gt10, ⁇ gt11, ⁇ ZAP, etc.), animal virus vectors (retroviruses) ), adenovirus, vaccinia virus, etc.), insect virus vectors (baculovirus, etc.). Since the vector exhibits different protein expression levels and modifications depending on the host cell, it is preferable to select and use a host cell most suitable
  • the term "gene expression” or "expression” of a target protein is understood to mean transcription of a DNA sequence, translation of an mRNA transcript, and secretion of a fusion protein product or fragment thereof.
  • a useful expression vector may be RcCMV (Invitrogen, Carlsbad) or a variant thereof.
  • the expression vector contains a human cytomegalovirus (CMV) promoter to promote continuous transcription of a target gene in mammalian cells and a bovine growth hormone polyadenylation signal sequence to increase the stable-state level of RNA after transcription. can do.
  • CMV human cytomegalovirus
  • Another aspect of the present invention provides a transformed cell into which the vector is introduced.
  • the host cell of the transformed cell may include, but is not limited to, a cell of prokaryotic, eukaryotic, mammalian, plant, insect, fungal or cellular origin.
  • a cell of prokaryotic, eukaryotic, mammalian, plant, insect, fungal or cellular origin As an example of the prokaryotic cell, E. coli may be used.
  • yeast may be used as an example of eukaryotic cells.
  • the mammalian cells include CHO cells, F2N cells, COS cells, BHK cells, Bowes melanoma cells, HeLa cells, 911 cells, AT1080 cells, A549 cells, SP2/0 cells, and human lymphoblastoid cells.
  • NSO cells HT-1080 cells, PERC.6 cells, HEK 293 cells or HEK293T cells may be used, but is not limited thereto, and any cell usable as a mammalian host cell known to those skilled in the art may be used.
  • the CaCl 2 precipitation method when introducing an expression vector into a host cell, the CaCl 2 precipitation method, the CaCl 2 precipitation method using a reducing material such as DMSO (dimethyl sulfoxide), the Hanahan method, electroporation method, calcium phosphate precipitation method , protoplast fusion method, agitation method using silicon carbide fiber, agrobacterium mediated transformation method, transformation method using PEG, dextran sulfate, lipofectamine and drying/inhibition mediated transformation method can be used.
  • a target object can be delivered into a cell using virus particles.
  • the vector can be introduced into the host cell by gene bombardment or the like.
  • the glycosylation-related gene possessed by the host cell is manipulated through a method known to those skilled in the art, and the sugar chain pattern of the fusion protein (e.g., sialic acid, fucosylation, glycosylation) can be adjusted.
  • the sugar chain pattern of the fusion protein e.g., sialic acid, fucosylation, glycosylation
  • Another aspect of the present invention comprises the steps of culturing the transformed cells; It provides a method for preparing a fusion protein comprising an anti-LAG-3 antibody and IL-2 or a variant thereof, comprising obtaining the above-described fusion protein from the culture medium.
  • culture refers to a method of growing microorganisms in an artificially and appropriately controlled environmental condition.
  • the method of culturing the transformed cells can be performed using a method well known in the art.
  • the culture is not particularly limited as long as it can be produced by expressing the fusion protein of the present invention.
  • the culture may be continuously cultured in a batch process or in a fed batch or repeated fed batch process.
  • the step of recovering the fusion protein from the culture may be performed by a method known in the art.
  • the recovery method is not particularly limited as long as it can recover the produced fusion protein of the present invention.
  • the recovery method is centrifugation, filtration, extraction, spraying, drying, evaporation, precipitation, crystallization, electrophoresis, fractional dissolution (eg ammonium sulfate precipitation), chromatography (eg ion exchange, affinity , hydrophobicity and size exclusion) and the like.
  • a pharmaceutical composition for treating or preventing cancer comprising the fusion protein.
  • cancer is classified as a disease in which normal tissue cells proliferate unrestrictedly for some reason and continue to develop rapidly regardless of the living phenomenon of the living body or the surrounding tissue state
  • cancer in the present invention is Various cancers of the human body, such as stomach cancer, liver cancer, lung cancer, colorectal cancer, breast cancer, prostate cancer, ovarian cancer, pancreatic cancer, cervical cancer, thyroid cancer, laryngeal cancer, acute myeloid leukemia, brain tumor, neuroblastoma, retinoblastoma, head and neck cancer, salivary gland cancer and It may be any one cancer selected from the group consisting of lymphoma, but is not limited to the above type. In addition, for the purpose of the present invention, it may be a cancer that is resistant to radiation, but is not limited thereto.
  • prevention refers to any action that inhibits the occurrence of cancer or delays the onset of cancer by administration of the pharmaceutical composition.
  • treatment refers to any action that improves or beneficially changes the symptoms of cancer by administration of the pharmaceutical composition.
  • the pharmaceutical composition of the present invention may further include a pharmaceutically acceptable carrier.
  • the pharmaceutically acceptable carrier may be any non-toxic material suitable for delivery to a patient. Distilled water, alcohol, fats, waxes and inert solids may be included as carriers. Pharmaceutically acceptable adjuvants (buffers, dispersants) may also be included in the pharmaceutical composition.
  • the pharmaceutical composition may be prepared as a parenteral formulation according to the route of administration by a conventional method known in the art, including a pharmaceutically acceptable carrier.
  • pharmaceutically acceptable means that it does not inhibit the activity of the active ingredient and does not have toxicity beyond what the application (prescription) target can adapt.
  • the pharmaceutical composition When the pharmaceutical composition is prepared for parenteral use, it may be formulated in the form of injections, transdermal administrations, nasal inhalants and suppositories together with suitable carriers according to methods known in the art.
  • a suitable carrier may be sterile water, ethanol, polyol such as glycerol or propylene glycol, or a mixture thereof, preferably Ringer's solution, PBS (phosphate buffered saline) containing triethanolamine, or sterilized for injection. Water, an isotonic solution such as 5% dextrose, etc. may be used.
  • Formulation of pharmaceutical compositions is known in the art, and specifically, reference may be made to the literature [Remington's Pharmaceutical Sciences (19th ed., 1995)] and the like. This document is considered a part of this specification.
  • the pharmaceutical composition of the present invention is administered in a pharmaceutically effective amount.
  • administration refers to introducing a predetermined substance to an individual by an appropriate method, and the administration route of the composition may be administered through any general route as long as it can reach a target tissue.
  • Intraperitoneal administration, intravenous administration, intramuscular administration, subcutaneous administration, intradermal administration, topical administration, intranasal administration may be administered intrarectally, but is not limited thereto.
  • the term "individual” refers to all animals including humans, rats, mice, livestock, and the like. Preferably, it may be a mammal including a human.
  • the term "pharmaceutically effective amount” means an amount sufficient to treat a disease at a reasonable benefit/risk ratio applicable to medical treatment and not to cause side effects, and the effective dose level is determined by the patient's gender, age, and weight. , health condition, disease type, severity, drug activity, sensitivity to drug, administration method, administration time, administration route, and excretion rate, treatment period, factors including drugs used in combination or concomitantly, and other medical fields. It can be readily determined by one of ordinary skill in the art according to known factors.
  • the daily dose may be in the range of 0.01 ⁇ g/kg to 10 g/kg, or in the range of 0.01 mg/kg to 1 g/kg. Administration may be performed once or divided into several times a day. These dosages should not be construed as limiting the scope of the invention in any respect.
  • Another aspect of the present invention provides the use of the fusion protein for treating or preventing cancer for the treatment or prevention of cancer.
  • the fusion protein, cancer, treatment and prevention are the same as described above.
  • Another aspect of the present invention provides a method for treating or preventing cancer comprising administering the fusion protein to a subject.
  • the fusion protein, administration, cancer, treatment and prevention are the same as described above.
  • the subject may be a mammal, preferably a human.
  • the subject may be a patient suffering from cancer or an individual having a high likelihood of suffering from cancer.
  • the administration route, dosage, and frequency of administration of the fusion protein can be administered to a subject in various ways and amounts depending on the patient's condition and presence or absence of action, and the optimal administration method, dosage, and frequency of administration can be determined by those skilled in the art. An appropriate range can be selected.
  • the fusion protein may be administered in combination with other drugs or biologic active substances with known therapeutic effects for the disease to be treated, or formulated in the form of a combination preparation with other drugs.
  • anti-hLAG-3VL anti-hLAG-3(1E09)VL-kappa+CL
  • Polynucleotide (SEQ ID NO: 18) comprising a nucleotide sequence encoding a fusion protein (SEQ ID NO: 16) and anti-hLAG-3VH (anti-hLAG-3(1E09)VH+CH1), Fc domain (F02(hIgG4Fc)) , a linker (G4S linker) and a polynucleotide (SEQ ID NO: 17) containing a nucleotide sequence encoding a fusion protein (SEQ ID NO: 27) containing human IL-2v2 in this order from the N-terminus of GenScript's Expression and Optimization service It was loaded into pcDNA3.4 vector (Invitrogen) through After introducing the vector into CHO cells (HD CHO-S), it was cultured for 14 days at 37° C., CO 2 8%, serum-free HD CHO-S TM expression medium. The culture medium was collected and the fusion protein was purified using affinity chromatography (Affinity pur
  • the separated purified fusion protein was subjected to SDS-PAGE and western blot under reduced (R) or non-reduced (NR) conditions, and molecular weight and purity were confirmed through HPLC analysis ( FIGS. 3 and 5 ).
  • the concentration was measured through Bradford assay, and it was confirmed that the fusion protein at a concentration of 0.69 mg/ml was included.
  • a fusion protein comprising anti-hLAG-3VL (anti-hLAG-3(1E09)VL-kappa+CL) in this order from the N-terminus (SEQ ID NO: 16)
  • a polynucleotide (SEQ ID NO: 18) comprising a nucleotide sequence encoding a
  • the polynucleotide (SEQ ID NO: 29) containing the nucleotide sequence encoding the fusion protein (SEQ ID NO: 15) containing the same was loaded into pcDNA3.4 vector (Invitrogen) through GenScript's Expression and Optimization service.
  • HD CHO-S After introducing the vector into CHO cells (HD CHO-S), it was cultured for 14 days at 37° C., CO 2 8%, serum-free HD CHO-STM expression medium. The culture medium was collected and the fusion protein was purified using affinity chromatography (Affinity purification column) containing MabSelect SuRe TM LX.
  • a fusion protein dimer comprising an Fc domain and an IL-2 variant, an Fc domain (SEQ ID NO: 14), a linker (SEQ ID NO: 19) and two amino acids substituted IL-2 variant (2M) (R38A, F42A) (SEQ ID NO: 20), the polynucleotide (SEQ ID NO: 25) containing the nucleotide sequence encoding the fusion protein (SEQ ID NO: 11) in this order from the N-terminus was prepared by ThermoFisher Scientific's Invitrogen GeneArt Gene Synthesis service. Polynucleotides were synthesized and loaded into pcDNA3.4 vector (Invitrogen).
  • the vector was introduced into CHO cells (Expi-CHO TM ) to express the fusion protein of SEQ ID NO: 11.
  • the fusion protein dimer was purified by collecting the culture solution after 7 days of incubation in an environment of 37° C., 125 rpm, and CO 2 8% concentration.
  • a fusion protein comprising an Fc domain and an IL-2 variant, an Fc domain (SEQ ID NO: 14), a linker (SEQ ID NO: 19) and three amino acids substituted IL-2 variant (3M) (R38A, F42A, E61R) (SEQ ID NO: 21), the polynucleotide (SEQ ID NO: 26) containing the nucleotide sequence encoding the fusion protein (SEQ ID NO: 24) in this order from the N-terminus was prepared by ThermoFisher Scientific's Invitrogen GeneArt Gene Synthesis service. Polynucleotides were synthesized and loaded into pcDNA3.4 vector (Invitrogen).
  • the vector was introduced into CHO cells (Expi-CHO TM ) to express the fusion protein of SEQ ID NO: 24.
  • the fusion protein was purified by collecting the culture medium after culturing for 7 days in an environment of 37° C., 125 rpm, and a concentration of CO 2 8%.
  • anti-hLAG-3VL anti-hLAG-3(1E09)VL-kappa+CL
  • Polynucleotide (SEQ ID NO: 18) comprising a nucleotide sequence encoding a fusion protein (SEQ ID NO: 16) and anti-hLAG-3VH (anti-hLAG-3(1E09)VH+CH1), Fc domain (F02(hIgG4Fc)) , a linker (G4S linker) and a polynucleotide (SEQ ID NO: 23) comprising a nucleotide sequence encoding a fusion protein (SEQ ID NO: 28) containing human IL-2v3 in this order from the N-terminus of GenScript's Expression and Optimization service It was loaded into pcDNA3.4 vector (Invitrogen) through After introducing the vector into CHO cells (HD CHO-S), it was cultured for 14 days at 37° C., CO 2 8%, serum-free HD CHO-STM expression medium. The culture medium was collected and the fusion protein was purified using affinity chromatography (Affinity purification
  • the separated purified fusion protein was subjected to SDS-PAGE and western blot under reduced (R) or non-reduced (NR) conditions, and molecular weight and purity were confirmed through HPLC analysis ( FIGS. 4 and 6 ).
  • the concentration was measured through Bradford assay, and it was confirmed that the fusion protein at a concentration of 0.51 mg/ml was included.
  • LAG-3 is an immune checkpoint inhibitor expressed in T cells and NK cells. It has a structure similar to CD4, but has 30 additional amino acids in the D1 domain, so it has high affinity with MHC class II. Because of these structural properties, LAG-3 is known to inhibit T cell activation.
  • the T cell activation function for the fusion protein was checked using the LAG-3 blockade bioassay system (Promega, JA1115). Specifically, 1 vial of MHCII APC cells stored in liquid nitrogen was thawed in a constant temperature bath at 37 ° C for 2 minutes, then put into 14.5 ml of cell recovery medium (90% DMEM + 10% FBS) containing TCR activating antigen and mixed well. . MHCII APC suspension was put into each well of a 96-well white cell culture plate (Corning cat no. 3917), 100 ⁇ l each, and cultured at 37° C., 5% CO 2 in an incubator for 24 hours.
  • the 96-well white culture plate containing the MHCII APC cells cultured for 24 hours was taken out, and the culture medium in the plate was removed. Thereafter, 40 ⁇ l of positive controls 1E09 (Relatlimab surrogates) and GI-104E1 were treated at various concentrations per well, and 40 ⁇ l of assay buffer was added to the negative control group. After that, the cover was placed and stored at room temperature until the LAG-3 effector cells were prepared.
  • GI-104E1 can activate T cell function by binding to LAG-3 expressed in effector T cells and inhibiting the function of LAG-3 (FIG. 8).
  • GI-104E2 binds to LAG-3 expressed in effector T cells and inhibits the function of LAG-3, thereby inhibiting T cell function. It was confirmed that it can be activated (FIG. 9).
  • mice Female, 7 weeks received from Orient Bio were acclimatized for 7 days, 5x10 6 cells of the CT26 cancer cell line (ATCC, USA) were diluted in 1 ml PBS, and 100 ⁇ l of each mouse Allograft was administered by subcutaneous administration in the right back region. After transplanting cancer cells and measuring the tumor volume after a certain period of time has elapsed, the individuals reaching about 50 mm 3 to 120 mm 3 are selected, and then, 8 mice in each group to be equal based on the size and weight of the tumor of the selected mice. classified. Then, as shown in Table 3, a test group was constituted and the test substance was administered intraperitoneally. After the first administration, it was administered once a week for a total of 3 times. The size of the transplanted tumor was measured twice a week, and the tumor volume was measured for 4 weeks.
  • CT26 cancer cell line ATCC, USA
  • Dosage (mg/kg) Dosage (mL/kg) route of administration dosing frequency number of N G1 Vehicle(PBS) - 5 abdominal cavity Once a week, 3 weeks 8 G2 anti-LAG-3 antibody 2.5 5 abdominal cavity Once a week, 3 weeks 8 G3 Fc-IL-2v2 1.4 5 abdominal cavity Once a week, 3 weeks 8 G4 Anti-LAG-3 antibody + Fc-IL-2v2 2.5+1.4 5 abdominal cavity Once a week, 3 weeks 8 G5 GI-104E1 3 5 abdominal cavity Once a week, 3 weeks 8
  • the measurement results were graphically represented using the mean and standard deviation (SD) values of each group.
  • SD standard deviation
  • statistical significance of tumor volume reduction compared to Vehicle #p ⁇ 0.05, ####p ⁇ 0.0001
  • GI-104E1 The statistical significance (*p ⁇ 0.05, **p ⁇ 0.01, ***p ⁇ 0.001, ****p ⁇ 0.0001) of the difference in tumor volume compared to the administration group was analyzed.
  • the group administered with GI-104E1 at a dose of 3 mg/kg significantly inhibited the growth of the tumor in the CT26 cancer cell line implanted mice (#p ⁇ 0.05, # ###p ⁇ 0.0001, two-way analysis of variance (ANOVA)).
  • GI-104E1 administration significantly inhibited tumor growth even when compared to administration of anti-LAG-3 antibody and Fc-IL-2v2 in moles equivalent to GI-104E1.
  • GI-104E1 showed a significant tumor suppressive effect at the mid-point and end of the experiment compared to the experimental group in which the anti-LAG-3 antibody and Fc-IL-2v2 were co-administered (*p ⁇ 0.05, **p ⁇ 0.01) , ***p ⁇ 0.001, ****p ⁇ 0.0001, two-way analysis of variance (ANOVA)) ( FIGS. 10-16 ).
  • the survival rate of the experimental group to which GI-104E1 was administered and the other experimental control group and the negative control group administered the experimental group were analyzed based on the occurrence of death or tumor volume of 2,000 mm 3 of the subject, and statistical analysis of the difference in survival rate between the experimental groups Significance was analyzed by Mantel-Cox test. As a result, it was confirmed that the experimental group administered with GI-104E1 showed a higher survival rate than that of the other experimental control and negative control groups, and the difference in survival rate between these experimental groups was statistically significant (****p ⁇ 0.0001) (Fig. 18).
  • mice female, 7 weeks received from Orient Bio were subjected to an adaptation period of 7 days, and then 5x10 6 cells of the CT26 cancer cell line (ATCC, USA) were diluted in 1 ml PBS, and 100 ⁇ l per individual was placed on the right side of the mouse. Allograft was administered by subcutaneous administration in the back region. After transplanting cancer cells and measuring the tumor volume after a certain period of time has elapsed, the individuals reaching about 50 mm 3 to 120 mm 3 are selected, and then 3 mice per group to be equal based on the size and weight of the selected mouse tumor. classified. Then, as shown in Table 4, a test group was constituted and the test substance was administered intraperitoneally. After the first administration, it was administered once a week for a total of 3 times. The size of the transplanted tumor was measured twice a week, and the tumor volume was measured for 4 weeks.
  • CT26 cancer cell line ATCC, USA
  • the group administered with GI-104E2 at a dose of 6 mg/kg inhibited tumor growth at the intermediate observation point and the end point of the experiment in CT26 cancer cell line implanted mice.
  • the GI-104E2 administration group showed an excellent tumor growth inhibitory effect when compared to administration of anti-LAG-3 antibody and Fc-IL-2v3 in moles equivalent to 6 mg/kg of GI-104E2.
  • GI-104E2 exhibited an excellent tumor suppressive effect at the intermediate observation time and the end point of the experiment compared to the experimental group in which the anti-LAG-3 antibody and Fc-IL-2v3 were co-administered ( FIGS. 19 to 25 ).
  • the survival rate of the experimental group administered with GI-104E2, the other experimental control group, and the experimental group administered with the negative control group was analyzed based on the occurrence of death or 2,000 mm 3 of the tumor volume of the test subject. As a result, it was confirmed that the experimental group administered with GI-104E2 exhibited a higher survival rate than the experimental group administered with other experimental controls and negative controls (FIG. 27).

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Toxicology (AREA)
  • Zoology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

본 발명은 항-LAG-3 항체 및 IL-2 또는 이의 변이체를 포함하는 융합단백질에 관한 것이다. 본 발명의 융합단백질에서 항-LAG-3 항체 부분이 LAG-3와 결합하여 LAG-3와 MHCⅡ와의 결합을 조절할 수 있다. 또한, IL-2 단백질 또는 이의 변이체는 T 세포의 활성을 조절할 수 있다. 따라서, 상기 융합단백질을 포함하는 약학 조성물은 체내의 면역활성을 증가시켜 항암제로 이용 가능하여 산업적으로 활용 가능성이 높다.

Description

항-LAG-3 항체 및 IL-2를 포함하는 융합단백질 및 이의 용도
본 발명은 항-LAG-3 항체 및 IL-2를 포함하는 융합단백질 및 이의 용도에 관한 것이다. 구체적으로, 본 발명은 암 치료 또는 예방 효능을 갖는 신규한 융합단백질에 관한 것이다.
암 면역요법(cancer immunotherapy)은 체내 면역 작용을 이용하여 암을 치료하는 방법이다. 암 면역요법은 면역계가 암 세포 표면 단백질과 같은 항원들을 표적으로 이용하여 암 세포를 공격하도록 유발할 수 있다. 특히, 면역 체크포인트 경로의 차단을 통해 항암 면역을 활성화시킬 수 있다는 점이 보고되었다. 면역 체크포인트는 종양 세포가 면역 회피를 초래하는 주요 메커니즘 중 하나이다. 따라서, 면역 체크포인트의 저해 또는 차단은 T 세포 활성화를 증가시킬 수 있고, 이에 의해 항-종양 면역을 강화할 수 있다.
한편, IL-2는 활성화된 T 세포 중 특히, CD4+ 헬퍼 T 세포(helper T cell)에 의해 주로 합성된다. IL-2는 T 세포의 증식 및 분화를 자극하고, 세포독성 T 림프구(cytotoxic T lymphocyte, CTL)의 생성 및 말초혈 림프구의 세포독성 세포 및 림포카인-활성화 살해 세포(lymphokine activated killer cell, LAK cell)로의 분화를 유도한다.
그러나, IL-2는 면역세포의 증가 및 활성을 매개할 뿐만 아니라, 면역 관용(immune tolerance)을 유지하는데 중요하다는 점에서 면역 반응에서 이중적 기능을 갖는다. 또한, IL-2는 종양의 성장을 억제하는데 최적이 아닐 수 있는 것으로 보고되었다. 그 이유는 IL-2의 존재 시, 생성된 세포독성 T 림프구에 AICD(activation-induced cell death)가 일어날 수 있고, 면역 반응이 IL-2 의존성 조절 T 세포(Treg)에 의해 억제될 수 있기 때문이다(Imai et al., Cancer Sci 98, 416-423, 2007).
한편, LAG-3는 PD-1과 유사한 기전을 가진다고 알려져 있다. LAG-3는 T 세포 및 NK 세포에서 발현하는 면역관문억제제로 CD4와 구조가 비슷하지만 D1 도메인에 30개의 추가적인 아미노산을 가지고 있어 MHC class II(MHCII)와 친화성이 높다고 알려져 있다.
이에, 본 발명자들은 면역세포의 활성을 증진시키는 새로운 조합의 융합단백질을 개발하기 위해 연구한 결과, 항-LAG-3 항체 및 IL-2 변이체를 포함하는 융합단백질이 면역세포를 효과적으로 조절함을 확인하였다. 이를 기반으로, 상기 융합단백질이 항암제로 효과가 있다는 점을 확인하여 본 발명을 완성하였다.
상기 목적 달성을 위해, 본 발명의 일 측면은, LAG-3에 특이적으로 결합하는 항체 및 IL-2 단백질 또는 이의 변이체를 포함하는 융합단백질을 제공한다.
본 발명의 다른 측면은, 상기 융합단백질을 코딩하는 폴리뉴클레오티드, 상기 폴리뉴클레오티드를 포함하는 발현 벡터 및 상기 발현 벡터가 도입된 형질전환 세포를 제공한다.
본 발명의 또 다른 측면은, 상기 형질전환 세포를 배양하는 단계; 및 융합단백질을 회수하는 단계;를 포함하는 융합단백질을 제조 하는 방법을 제공한다.
본 발명의 또 다른 측면은, 상기 융합단백질 및 이의 약학적 용도를 제공한다.
본 발명의 또 다른 측면은, 암을 치료하거나 예방하기 위한 상기 융합단백질의 암 치료 또는 예방용 용도를 제공한다.
본 발명의 또 다른 측면은, 상기 융합단백질을 개체에 투여하는 단계를 포함하는 암 치료 또는 예방하는 방법을 제공한다.
본 발명의 또 다른 측면은, 암을 치료하거나 예방용 약제를 제조하기 위한 상기 융합단백질의 용도를 제공한다.
본 발명에 따른 항-LAG-3 항체 및 IL-2 변이체를 포함하는 융합단백질은 LAG-3와 관련된 기작을 조절할 수 있을 뿐 아니라, IL-2와 동일 또는 유사한 기능을 할 수 있다. 즉, 상기 융합단백질은 LAG-3와 MHCII의 결합을 조절할 수 있을 뿐 아니라, 면역세포를 활성화시킬 수 있다. 따라서, 상기 융합단백질은 항암제로 활용이 가능하다.
도 1은 일 실시예인 항-hLAG-3 항체-hIgG4 Fc-hIL-2v2 융합단백질(GI-104E1)의 구조를 도식화한 것이다.
도 2는 일 실시예인 항-hLAG-3 항체-hIgG4 Fc-hIL-2v3 융합단백질(GI-104E2)의 구조를 도식화한 것이다.
도 3은 GI-104E1을 생산한 후 이를 SDS-PAGE로 확인한 그림이다.
도 4는 GI-104E2를 생산한 후 이를 SDS-PAGE로 확인한 그림이다.
도 5는 GI-104E1을 생산한 후 이를 웨스턴 블랏으로 확인한 그림이다.
도 6은 GI-104E2를 생산한 후 이를 웨스턴 블랏으로 확인한 그림이다.
도 7은 GI-104E1 또는 GI-104E2의 작용 기전 및 실험의 방법을 도식화한 것이다.
도 8은 LAG-3 blockade assay를 통해 GI-104E1이 LAG-3에 결합하여 LAG-3-MHCII 매개 신호전달을 억제하는지를 확인한 도면이다.
도 9는 LAG-3 blockade assay를 통해 GI-104E2가 LAG-3에 결합하여 LAG-3-MHCII 매개 신호전달을 억제하는지를 확인한 도면이다.
도 10은 CT26 암세포를 피하 이식한 마우스에 Vehicle(PBS), 항-LAG-3 항체, Fc-IL-2v2, 항-LAG-3 항체 및 Fc-IL-2v2의 병용투여, 및 항-LAG-3 및 IL-2v2를 포함하는 융합단백질(GI-104E1)을 각각 주 1회, 3주간 투여하며 관찰한 종양부피(tumor volume)를 나타내는 그래프이다.
도 11은 CT26 암세포를 피하 이식한 마우스에 Vehicle(PBS), 항-LAG-3 항체, Fc-IL-2v2, 항-LAG-3 항체 및 Fc-IL-2v2의 병용투여, 및 항-LAG-3 및 IL-2v2를 포함하는 융합단백질(GI-104E1)을 각각 투여한 후, 각 개체들의 종양부피를 나타내는 그래프이다.
도 12는 CT26 암세포를 피하 이식한 마우스에 Vehicle(PBS)을 투여한 군의 각 개체들의 종양부피를 나타내는 그래프이다.
도 13은 CT26 암세포를 피하 이식한 마우스에 항-LAG-3 항체를 투여한 군의 각 개체들의 종양부피를 나타내는 그래프이다.
도 14는 CT26 암세포를 피하 이식한 마우스에 Fc-IL-2v2를 투여한 군의 각 개체들의 종양부피를 나타내는 그래프이다.
도 15는 CT26 암세포를 피하 이식한 마우스에 항-LAG-3 항체 및 Fc-IL-2v2를 병용투여한 군의 각 개체들의 종양부피를 나타내는 그래프이다.
도 16은 CT26 암세포를 피하 이식한 마우스에 항-LAG-3 및 IL-2v2를 포함하는 융합단백질(GI-104E1)을 투여한 군의 각 개체들의 종양부피를 나타내는 그래프이다.
도 17은 CT26 암세포를 피하 이식한 마우스에 Vehicle(PBS), 항-LAG-3 항체, Fc-IL-2v2, 항-LAG-3 항체 및 Fc-IL-2v2의 병용투여, 및 항-LAG-3 및 IL-2v2를 포함하는 융합단백질(GI-104E1)을 각각 주 1회, 3주간 투여한 후, 첫 투여일로부터 32일 후, Vehicle을 투여한 군의 평균 종양부피 성장(mean tumor volume growth)을 기준으로 군당 개체들의 종양 성장 억제(tumor growth inhibition)가 30% 이상, 50% 이상, 80% 이상인 개체들의 수를 나타내는 그래프이다.
도 18은 CT26 암세포를 피하 이식한 마우스에 Vehicle(PBS), 항-LAG-3 항체, Fc-IL-2v2, 항-LAG-3 항체 및 Fc-IL-2v2의 병용투여, 및 항-LAG-3 및 IL-2v2를 포함하는 융합단백질(GI-104E1)을 각각 주 1회, 3주간 투여하며 관찰한 생존율을 나타내는 그래프이다.
도 19는 CT26 암세포를 피하 이식한 마우스에 Vehicle(PBS), 항-LAG-3 항체, Fc-IL-2v3, 항-LAG-3 항체 및 Fc-IL-2v3의 병용투여, 및 항-LAG-3 및 IL-2v3를 포함하는 융합단백질(GI-104E2)을 각각 주 1회, 3주간 투여하며 관찰한 종양부피를 나타내는 그래프이다.
도 20은 CT26 암세포를 피하 이식한 마우스에 Vehicle(PBS), 항-LAG-3 항체, Fc-IL-2v3, 항-LAG-3 항체 및 Fc-IL-2v3의 병용투여, 및 항-LAG-3 및 IL-2v3를 포함하는 융합단백질(GI-104E2)을 각각 투여 후, 투여군별 각 개체들의 종양부피를 나타내는 그래프이다.
도 21은 CT26 암세포를 피하 이식한 마우스에 Vehicle(PBS)를 투여한 군의 각 개체들의 종양부피를 나타내는 그래프이다.
도 22는 CT26 암세포를 피하 이식한 마우스에 항-LAG-3 항체를 투여한 군의 각 개체들의 종양부피를 나타내는 그래프이다.
도 23은 CT26 암세포를 피하 이식한 마우스에 Fc-IL-2v3를 투여한 군의 각 개체들의 종양부피를 나타내는 그래프이다.
도 24는 CT26 암세포를 피하 이식한 마우스에 항-LAG-3 항체 및 Fc-IL-2v3을 병용투여한 군의 각 개체들의 종양부피를 나타내는 그래프이다.
도 25는 CT26 암세포를 피하 이식한 마우스에 항-LAG-3 및 IL-2v3를 포함하는 융합단백질(GI-104E2)을 투여한 군의 각 개체들의 종양부피를 나타내는 그래프이다.
도 26은 CT26 암세포를 피하 이식한 마우스에 Vehicle(PBS), 항-LAG-3 항체, Fc-IL-2v3, 항-LAG-3 항체 및 Fc-IL-2v3의 병용투여, 및 항-LAG-3 및 IL-2v3를 포함하는 융합단백질(GI-104E2)을 각각 주 1회, 3주간 투여한 후, 첫 투여일로부터 32일 후, Vehicle을 투여한 군의 평균 종양부피 성장을 기준으로 군당 개체들의 종양 성장 억제가 30% 이상, 50% 이상, 80% 이상인 개체들의 수를 나타내는 그래프이다.
도 27은 CT26 암세포를 피하 이식한 마우스에 Vehicle(PBS), 항-LAG-3 항체, Fc-IL-2v3, 항-LAG-3 항체 및 Fc-IL-2v3의 병용투여, 및 항-LAG-3 및 IL-2v3를 포함하는 융합단백질(GI-104E2)을 각각 주 1회, 3주간 투여하며 관찰한 생존율을 나타내는 그래프이다.
항-LAG-3 항체 및 IL-2를 포함하는 융합단백질
본 발명의 일 측면은, LAG-3에 특이적으로 결합하는 항체 및 IL-2 단백질을 포함하는 융합단백질을 제공한다.
이때, 상기 항-LAG-3 항체에 IL-2 단백질은 적어도 하나가 결합된 형태일 수 있다. 일 구체예로, 상기 융합단백질은 IL-2 또는 이의 변이체를 한 개 또는 두 개 포함할 수 있다. 이때, 항-LAG-3 항체 및 IL-2는 링커를 통해 결합될 수 있다.
본 발명의 명세서에서 사용한 용어, "LAG-3"는 CD223 또는 림프구 활성화 유전자 3(Lymphocyte activation gene 3)으로 불린다. 상기 단백질은 LAG-3 유전자에 의해 코딩된다. LAG-3는 PD-1과 유사한 기전을 가진다고 알려져 있다. 또한, LAG-3는 T 세포 및 NK 세포에서 발현하는 면역관문억제제로 CD4와 구조가 비슷하지만 D1 도메인에 30개의 추가적인 아미노산을 가지고 있어 MHC class Ⅱ와 친화성이 높다. 이러한 구조적 특성 때문에 LAG-3도 T 세포 활성화를 억제시킨다고 알려져 있다.
본 발명에서 항-LAG-3 항체는 상기 LAG-3에 특이적으로 결합하는 항체일 수 있다. 또한, 항체의 단편은 LAG-3에 특이적으로 결합할 수 있는 항원결합도메인을 포함하는 한 어떠한 형태로도 이용될 수 있다. 이때, 항-LAG-3 항체의 중쇄가변영역의 HCDR1, HCDR2 및 HCDR3는 각각 서열번호 1, 서열번호 2 및 서열번호 3의 아미노산 서열을 포함할 수 있다. 이때, 항-LAG-3 항체의 경쇄가변영역의 LCDR1, LCDR2 및 LCDR3는 각각 서열번호 5, 서열번호 6 및 서열번호 7의 아미노산 서열을 포함할 수 있다.
일 실시예에서 상기 LAG-3에 특이적으로 결합하는 항체는 서열번호 4의 아미노산 서열을 포함하는 중쇄가변영역 및 서열번호 8의 아미노산 서열을 포함하는 경쇄가변영역을 포함할 수 있다.
본 명세서에서 사용하는 용어, "IL-2" 또는 "인터루킨-2"는 달리 언급되지 않는 한, 포유동물, 예를 들어, 영장류(예, 인간) 및 설치류(예, 마우스 및 래트)를 포함하여 임의의 척추동물 공급원으로부터 수득한 임의의 야생형 IL-2를 의미한다. 상기 IL-2는 동물 세포에서 수득된 것일 수도 있으나, IL-2를 생산할 수 있는 재조합 세포로부터 수득된 것도 포함한다. 또한, 상기 IL-2는 야생형 IL-2 또는 이의 변이체일 수 있다.
본 명세서에서는 IL-2 혹은 이의 변이체를 총칭하여 "IL-2 단백질" 혹은 "IL-2 폴리펩타이드"의 용어로 표현하기도 한다. IL-2, IL-2 단백질, IL-2 폴리펩타이드, 및 IL-2 변이체는 예를 들어 IL-2 수용체(receptor)에 특이적으로 결합한다. 이 특이적인 결합은 당업자에게 알려진 방법을 통해 확인할 수 있다.
상기 IL-2는 성숙된 형태일 수 있다. 구체적으로, 상기 성숙된 IL-2는 신호서열을 포함하지 않는 것일 수 있으며, 야생형 IL-2의 N-말단 또는 C-말단의 일부가 결실된(truncated) 단편을 포함할 수 있다. 이때, 상기 IL-2는 서열번호 22의 아미노산 서열을 가질 수 있다.
본 명세서에서 사용하는 용어, "IL-2 변이체"는 전장(full-length) IL-2 또는 IL-2의 단편의 아미노산 일부가 치환된 형태를 의미한다. 즉, IL-2 변이체는 야생형 IL-2 또는 이의 단편과 다른 아미노산 서열을 가질 수 있다. 그러나, 상기 IL-2 변이체는 야생형 IL-2와 동등하거나 유사한 활성을 가질 수 있다. 여기에서, "IL-2 활성"은 예를 들어 IL-2 수용체에 특이적으로 결합하는 것을 의미할 수 있으며, 이 특이적 결합은 당업자에게 알려진 방법을 통해 측정할 수 있다.
구체적으로, 상기 IL-2 변이체는 야생형 IL-2의 아미노산 일부가 치환된 것일 수 있다. 아미노산 치환에 의한 IL-2 변이체의 일 구체예로는 서열번호 22의 아미노산 서열에서 38번째, 42번째, 45번째, 61번째 및 72번째 아미노산 중 적어도 하나가 치환된 것일 수 있다.
구체적으로, 상기 IL-2 변이체는 서열번호 22의 아미노산 서열에서 38번째, 42번째, 45번째, 61번째 또는 72번째 아미노산 중 적어도 어느 하나가 다른 아미노산으로 치환된 것일 수 있다. 일 구체예에 따르면, IL-2 활성이 유지되는 한, 한 개, 두 개, 세 개의 아미노산이 치환될 수 있다.
일 구체예로 상기 IL-2 변이체는 두 군데의 아미노산이 치환된 형태일 수 있다. 구체적으로, 상기 IL-2 변이체는 서열번호 22의 아미노산 서열에서 38번째 및 42번째 아미노산이 치환된 것일 수 있다. 또한, 일 구체예로 상기 IL-2 변이체는 서열번호 22의 아미노산 서열에서 38번째 및 45번째 아미노산이 치환된 것일 수 있다. 또한, 일 구체예로 상기 IL-2 변이체는 서열번호 22의 아미노산 서열에서 38번째 및 61번째 아미노산이 치환된 것일 수 있다. 또한, 일 구체예로 상기 IL-2 변이체는 서열번호 22의 아미노산 서열에서 38번째 및 72번째 아미노산이 치환된 것일 수 있다. 또한, 일 구체예로 상기 IL-2 변이체는 서열번호 22의 아미노산 서열에서 42번째 및 45번째 아미노산이 치환된 것일 수 있다. 또한, 일 구체예로 상기 IL-2 변이체는 서열번호 22의 아미노산 서열에서 42번째 및 61번째 아미노산이 치환된 것일 수 있다. 또한, 일 구체예로 상기 IL-2 변이체는 서열번호 22의 아미노산 서열에서 42번째 및 72번째 아미노산이 치환된 것일 수 있다. 또한, 일 구체예로 상기 IL-2 변이체는 서열번호 22의 아미노산 서열에서 45번째 및 61번째 아미노산이 치환된 것일 수 있다. 또한, 일 구체예로 상기 IL-2 변이체는 서열번호 22의 아미노산 서열에서 45번째 및 72번째 아미노산이 치환된 것일 수 있다. 또한, 일 구체예로 상기 IL-2 변이체는 서열번호 22의 아미노산 서열에서 61번째 및 72번째 아미노산이 치환된 것일 수 있다.
나아가, 상기 IL-2 변이체는 세 군데의 아미노산이 치환된 형태일 수 있다. 구체적으로, 상기 IL-2 변이체는 서열번호 22의 아미노산 서열에서 38번째, 42번째 및 45번째 아미노산이 치환된 것일 수 있다. 또한, 일 구체예로 상기 IL-2 변이체는 서열번호 22의 아미노산 서열에서 38번째, 42번째 및 61번째 아미노산이 치환된 것일 수 있다. 또한, 일 구체예로 상기 IL-2 변이체는 서열번호 22의 아미노산 서열에서 38번째, 42번째 및 72번째 아미노산이 치환된 것일 수 있다. 또한, 일 구체예로 상기 IL-2 변이체는 서열번호 22의 아미노산 서열에서 38번째, 45번째 및 61번째 아미노산이 치환된 것일 수 있다. 또한, 일 구체예로 상기 IL-2 변이체는 서열번호 22의 아미노산 서열에서 38번째, 45번째 및 72번째 아미노산이 치환된 것일 수 있다. 또한, 일 구체예로 상기 IL-2 변이체는 서열번호 22의 아미노산 서열에서 38번째, 61번째 및 72번째 아미노산이 치환된 것일 수 있다. 또한, 일 구체예로 상기 IL-2 변이체는 서열번호 22의 아미노산 서열에서 42번째, 45번째 및 61번째 아미노산이 치환된 것일 수 있다. 또한, 일 구체예로 상기 IL-2 변이체는 서열번호 22의 아미노산 서열에서 42번째, 45번째 및 72번째 아미노산이 치환된 것일 수 있다. 또한, 일 구체예로 상기 IL-2 변이체는 서열번호 22의 아미노산 서열에서 45번째, 61번째 및 72번째 아미노산이 치환된 것일 수 있다.
이때, 상기 치환에 의해 도입되는 "다른 아미노산"은 알라닌(alanine), 아르기닌(arginine), 아스파라긴(Asparagine), 아스파르트산(aspartic acid), 시스테인(cysteine), 글루탐산(glutamic acid), 글루타민(glutamine), 히스티딘(histidine), 이소루신(isoleucine), 루신(leucine), 리신(lysine), 메티오닌(methionine), 페닐알라닌(phenyl alanine), 프롤린(proline), 세린(serine), 트레오닌(threonine), 트립토판(tryptophan), 티로신(tyrosine) 및 발린(valine)으로 이루어진 군으로부터 선택되는 어느 하나일 수 있다. 단, 상기 IL-2 변이체의 아미노산 치환에 있어서, 상기 서열번호 22의 아미노산 서열에서 38번째는 아르기닌으로 치환될 수 없으며, 42번째는 페닐알라닌으로 치환될 수 없고, 45번째는 티로신으로 치환될 수 없으며, 61번째는 글루탐산으로 치환될 수 없고, 72번째는 루신으로 치환될 수 없다.
상기 IL-2 변이체의 아미노산 치환에 있어서, 서열번호 22의 아미노산 서열에서 38번째 아미노산인 아르기닌은 아르기닌을 제외한 다른 아미노산으로 치환될 수 있다. 바람직하게는, 상기 IL-2 변이체의 아미노산 치환에 있어서, 서열번호 22의 아미노산 서열에서 38번째 아미노산인 아르기닌은 알라닌으로 치환(R38A)될 수 있다.
상기 IL-2 변이체의 아미노산 치환에 있어서, 서열번호 22의 아미노산 서열에서 42번째 아미노산인 페닐알라닌은 페닐알라닌을 제외한 다른 아미노산으로 치환될 수 있다. 바람직하게는, 상기 IL-2 변이체의 아미노산 치환에 있어서, 서열번호 22의 아미노산 서열에서 42번째 아미노산인 페닐알라닌은 알라닌으로 치환(F42A)될 수 있다.
상기 IL-2 변이체의 아미노산 치환에 있어서, 서열번호 22의 아미노산 서열에서 45번째 아미노산인 티로신은 티로신을 제외한 다른 아미노산으로 치환될 수 있다. 바람직하게는, 상기 IL-2 변이체의 아미노산 치환에 있어서, 서열번호 22의 아미노산 서열에서 45번째 아미노산인 티로신은 알라닌으로 치환(Y45A)될 수 있다.
상기 IL-2 변이체의 아미노산 치환에 있어서, 서열번호 22의 아미노산 서열에서 61번째 아미노산인 글루탐산은 글루탐산을 제외한 다른 아미노산으로 치환될 수 있다. 바람직하게는, 상기 IL-2 변이체의 아미노산 치환에 있어서, 서열번호 22의 아미노산 서열에서 61번째 아미노산인 글루탐산은 아르기닌으로 치환(E61R)될 수 있다.
상기 IL-2 변이체의 아미노산 치환에 있어서, 서열번호 22의 아미노산 서열에서 72번째 아미노산인 루신은 루신을 제외한 다른 아미노산으로 치환될 수 있다. 바람직하게는, 상기 IL-2 변이체의 아미노산 치환에 있어서, 서열번호 22의 아미노산 서열에서 72번째 아미노산인 루신은 글리신으로 치환(L72G)될 수 있다.
구체적으로, 상기 IL-2 변이체는 서열번호 22의 아미노산 서열에서 R38A, F42A, Y45A, E61R 및 L72G로 구성된 군으로부터 선택되는 적어도 어느 하나의 치환이 일어난 것일 수 있다. 바람직하게, 상기 IL-2 변이체는 R38A, F42A, Y45A, E61R 및 L72G로 구성된 군에서 선택되는 위치에서 두 군데 또는 세 군데의 위치에서 아미노산 치환이 일어날 수 있다.
상기 IL-2 변이체는 두 군데의 아미노산이 치환된 형태일 수 있다. 구체적으로, 상기 IL-2 변이체는 R38A 및 F42A로 치환이 일어난 것일 수 있다. 또한, 일 구체예로 상기 IL-2 변이체는 R38A 및 Y45A로 치환이 일어난 것일 수 있다. 또한, 일 구체예로 상기 IL-2 변이체는 R38A 및 E61R로 치환이 일어난 것일 수 있다. 또한, 일 구체예로 상기 IL-2 변이체는 R38A 및 L72G로 치환이 일어난 것 일 수 있다. 또한, 일 구체예로 상기 IL-2 변이체는 F42A 및 Y45A로 치환이 일어난 것일 수 있다. 또한, 일 구체예로 상기 IL-2 변이체는 F42A 및 E61R로 치환이 일어난 것일 수 있다. 또한, 일 구체예로 상기 IL-2 변이체는 F42A 및 L72G로 치환이 일어난 것일 수 있다. 또한, 일 구체예로 상기 IL-2 변이체는 E61R 및 L72G로 치환 이 일어난 것일 수 있다.
나아가, 상기 IL-2 변이체는 세 군데의 아미노산이 치환된 형태일 수 있다. 구체적으로, 상기 IL-2 변이체는 R38A, F42A 및 Y45A로 치환이 일어난 것일 수 있다. 또한, 일 구체예로 상기 IL-2 변이체는 R38A, F42A 및 E61R로 치환이 일어난 것일 수 있다. 또한, 일 구체예로 상기 IL-2 변이체는 R38A, F42A 및 L72G로 치환이 일어난 것일 수 있다. 또한, 일 구체예로 상기 IL-2 변이체는 R38A, Y45A 및 E61R로 치환이 일어난 것일 수 있다. 또한, 일 구체예로 상기 IL-2 변이체는 R38A, Y45A 및 L72G로 치환이 일어난 것일 수 있다. 또한, 일 구체예로 상기 IL-2 변이체는 F42A, Y45A 및 E61R로 치환이 일어난 것일 수 있다. 또한, 일 구체예로 상기 IL-2 변이체는 F42A, Y45A 및 L72G로 치환이 일어난 것일 수 있다. 또한, 일 구체예로 상기 IL-2 변이체는 F42A, E61R 및 L72G로 치환이 일어난 것일 수 있다. 또한, 일 구체예로 상기 IL-2 변이체는 Y45A, E61R 및 L72G로 치환이 일어난 것일 수 있다.
일 실시예에서, 상기 IL-2 변이체는 서열번호 20 또는 서열번호 21의 아미노산 서열을 가질 수 있다.
또한, 상기 IL-2 변이체는 생체 내에서 낮은 독성을 가지는 것을 특징으로 하는 것일 수 있다. 이때, 상기 생체 내에서 낮은 독성이란, IL-2가 IL-2 수용체의 알파 체인(IL-2Rα)과 결합하여 유발되는 부작용일 수 있다. 상기 IL-2와 IL-2Rα 결합에 의한 부작용을 개선시키기 위해서 다양한 IL-2 변이체가 개발되었으며, 이러한 IL-2 변이체는 미국특허 제5,229,109호 및 대한민국 등록특허공보 제10-1667096호에 개시된 것들을 사용할 수 있다. 특히, 본 출원에서 기술되는 IL-2의 변이체는 IL-2 수용체의 알파 체인(IL-2Rα)과 결합력이 낮아 생체내 독성이 야생형 IL-2에 비해 낮다.
상기 융합단백질은 면역글로불린 Fc 영역을 포함할 수 있다. 이때, 상기 면역글로불린의 Fc 도메인은 면역글로불린의 중쇄 불변 영역 2(CH2) 및 중쇄 불변 영역 3(CH3)을 포함한다. 상기 면역글로불린은 IgG, IgA, IgE, IgD 또는 IgM일 수 있으며, 바람직하게는 IgG4일 수 있다.
또한, 상기 면역글로불린의 Fc 도메인은 야생형 Fc 도메인뿐만 아니라, Fc 도메인 변이체일 수 있다. 또한, 본 명세서에서 사용하는 용어 "Fc 도메인 변이체"는 야생형 Fc 도메인의 당쇄 형태(glycosylation pattern)와 다르거나, 야생형 Fc 도메인에 비해 증가된 당쇄, 야생형 Fc 도메인에 비해 감소한 당쇄, 또는 당쇄가 제거(deglycosylated)된 형태일 수 있다. 또한, 무당쇄(aglycosylated) Fc 도메인도 포함된다. Fc 도메인 혹은 변이체는 배양조건 혹은 호스트의 유전자 조작을 통해 조정된 숫자의 시알산(sialic acid), 퓨코실화(fucosylation), 당화(glycosylation)를 갖도록 한 것일 수 있다.
또한, 화학적 방법, 효소적 방법 및 미생물을 사용한 유전공학적 엔지니어링 방법 등과 같이 통상적인 방법으로 면역글로불린의 Fc 도메인의 당쇄를 변형시킬 수 있다. 또한, 상기 Fc 도메인 변이체는 면역글로불린은 IgG, IgA, IgE, IgD 또는 IgM의 Fc 영역이 혼합된 형태일 수 있다. 또한, 상기 Fc 도메인 변이체는 상기 Fc 도메인의 일부 아미노산이 다른 아미노산으로 치환된 형태일 수 있다.
일 실시예에서 상기 Fc 영역은 서열번호 14의 아미노산 서열을 가질 수 있다.
본 발명의 융합단백질은 항-LAG-3 항체의 경쇄 가변 영역 및 경쇄 불변 영역 1(CL1)을 포함하는 융합단백질과 항-LAG-3 항체의 중쇄 가변 영역, 중쇄 불변 영역 1(CH1), Fc 도메인 및 IL-2 단백질을 포함할 수 있다. 이때, 상기 IL-2 단백질은 항-LAG-3 항체에 적어도 1개가 포함될 수 있다. 일 구체예에서 상기 융합단백질은 IL-2 단백질을 2개 포함한다. 또한, 일 구체예에서 상기 IL-2 단백질은 항-LAG-3 항체의 C 말단에 결합된 형태일 수 있다.
구체적으로, 상기 Fc 도메인 및 IL-2 단백질을 포함하는 융합단백질은 하기 구조식 (1)의 융합단백질이 두 개 결합된 이량체일 수 있다:
N'-X-[링커(1)]o-Fc 영역 단편 또는 이의 변이체-[링커(2)]p-Y-C' (1)
이때, 상기 구조식 (1)에 있어서,
상기 N'은 융합단백질의 N-말단이고,
상기 C'는 융합단백질의 C-말단이며,
상기 X는 항-LAG-3 항체 또는 이의 단편이고,
상기 Y는 IL-2 단백질이며,
상기 링커(1) 및 링커(2)는 펩타이드 링커이고,
상기 o 및 p는 각각 독립적으로, O 또는 1이다.
이때, 항-LAG-3 항체 및 IL-2 단백질은 상술한 바와 같다. 또한, 상기 융합단백질에서 IL-2 또는 이의 변이체는 항-LAG-3 항체의 C-말단에 결합된 Fc 영역에 결합될 수 있다. 이때, 상기 IL-2 또는 이의 변이체와 Fc 영역은 링커를 통해 결합할 수 있다.
상기 펩타이드 링커(1)은 1 내지 50개의 연속된 아미노산, 또는 3 내지 30개의 연속된 아미노산, 또는 5 내지 15개의 아미노산으로 이루어질 수 있다. 일 구체예로 상기 펩타이드 링커(1)은 12개의 아미노산으로 이루어질 수 있다. 또한, 펩타이드 링커(1)은 적어도 하나의 시스테인을 포함할 수 있다. 구체적으로, 1개, 2개 또는 3개의 시스테인을 포함할 수 있다. 또한, 상기 펩타이드 링커(1)은 면역글로불린의 힌지에서 유래된 것일 수 있다. 일 구체예에서는, 상기 펩타이드 링커(1)이 서열번호 13의 아미노산 서열로 이루어진 펩타이드 링커일 수 있다.
상기 펩타이드 링커(2)는 1 내지 30개의 연속된 아미노산, 또는 2 내지 20개의 연속된 아미노산, 또는 2 내지 10개의 아미노산으로 이루어질 수 있다. 일 구체예로 상기 펩타이드 링커(2)는 (G4S)n(이때, n은 1 내지 10의 정수) 일 수 있다. 이때, (G4S)n에서 n은 1, 2, 3, 4, 5, 6, 7, 8, 9 또는 10일 수 있다. 일 실시예로, 상기 펩타이드 링커는 서열번호 19의 아미노산 서열로 이루어진 펩타이드 링커일 수 있다.
또한, 상기 구조식 (1)의 융합단백질은 하기 구조식 (1-1) 및 구조식 (1-2)의 단백질을 포함할 수 있다:
N'-X'-[링커(1)]o-Fc 영역 단편 또는 이의 변이체-[링커(2)]p-Y-C' (1-1)
N'-X''-C' (1-2)
이때, 상기 구조식에 있어서,
상기 N'은 융합단백질의 N-말단이고,
상기 C'는 융합단백질의 C-말단이며,
상기 X'는 항-LAG-3 항체의 중쇄영역으로서, 중쇄가변영역 및 CH1을 포함하며,
상기 X''는 항-LAG-3 항체의 경쇄영역으로서, 경쇄가변영역 및 CL을 포함하며,
상기 Y는 IL-2 단백질이며,
상기 링커(1) 및 링커(2)는 펩타이드 링커이고,
상기 o 및 p는 각각 독립적으로, O 또는 1이다.
또한, 상기 중쇄가변영역 및 경쇄가변영역은 상술한 바와 같다.
상기 융합단백질을 구성하는 영역의 각각의 아미노산 서열은 하기 표 1 및 표 2에 나타내는 바와 같다. 구체적으로, 표 1은 항-hLAG-3(1E09)VL-kappa+CL에 대한 아미노산 서열을 기술한 것이다. 표 2는 항-hLAG-3(1E09)VH+CH1, hIgG4Fc 및 hIL-2v2/hIL-2v3의 아미노산 서열을 기술한 것이다.
구분 아미노산 서열 서열번호
항-hLAG-3(1E09)VL-kappa+CL DIQMTQSPSSLSPSVGDRVTITCQASQEISIYLNWYQQKPGKAPKLLIYDASNLETGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQTYITPYTFGQGTKLDIK RTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC 16
구분 아미노산 서열 서열번호
항-hLAG-3(1E09)VH+CH1 QVQLVQSGGDLVKPGGSLRLSCAASGFSFSDHYMNWIRQAPGKGLEWVAYIDTSATYIYYADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARDNWGSLDYWGQGALVTVSS ASTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRV 12
제1링커 AESKYGPPCPPCP 13
F02(hIgG4Fc) APEAAGGPSVFLFPPKPKDQLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVLHEALHNHYTQKSLSLSLG 14
제2링커 GGGGS 19
hIL-2v2 APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTAMLTAKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT 20
hIL-2v3 APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTAMLTAKFYMPKKATELKHLQCLERELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT 21
IL-2 APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT 22
IgG4 Fc-linker-IL-2v2 AESKYGPPCPPCPAPEAAGGPSVFLFPPKPKDQLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVLHEALHNHYTQKSLSLSLG
GGGGS
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTAMLTAKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT
11
IgG4 Fc-linker-IL-2v3 AESKYGPPCPPCPAPEAAGGPSVFLFPPKPKDQLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVLHEALHNHYTQKSLSLSLG
GGGGS
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTAMLTAKFYMPKKATELKHLQCLERELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTLT
24
융합단백질을 코딩하는 폴리뉴클레오티드
본 발명의 또 다른 측면은, 상술한 융합단백질을 암호화하는 폴리뉴클레오티드를 제공한다.
이때, 상기 폴리뉴클레오티드는 상술한 구조식 (1-1) 및 구조식 (1-2)의 융합단백질을 코딩하는 염기서열을 포함할 수 있다.
구체적으로, 상기 폴리뉴클레오티드 중 중쇄영역을 코딩하는 폴리뉴클레오티드는 서열번호 17 또는 서열번호 23의 염기서열을 포함할 수 있다. 또한, 경쇄영역을 코딩하는 폴리뉴클레오티드는 서열번호 18을 포함하는 것일 수 있다.
상기 폴리뉴클레오티드는 동일한 폴리펩타이드를 코딩한다면, 하나 이상의 염기가 치환, 결실, 삽입 또는 이들의 조합에 의해 변이될 수 있다. 폴리뉴클레오티드 서열을 화학적으로 합성하여 제조하는 경우, 당업계에 널리 공지된 합성법, 예를 들어 문헌(Engels and Uhlmann, Angew Chem IntEd Engl.,37:73-127, 1988)에 기술된 방법을 이용할 수 있으며, 트리에스테르, 포스파이트, 포스포르아미다이트 및 H-포스페이트 방법, PCR 및 기타 오토프라이머 방법, 고체 지지체상의 올리고뉴클레오티드 합성법 등을 들 수 있다.
일 구체예에 따르면, 상기 폴리펩타이드는 서열번호 17, 서열번호 18 또는 23의 염기서열과 적어도 약 70%, 적어도 약 75%, 적어도 약 80%, 적어도 약 85%, 적어도 약 86%, 적어도 약 87%, 적어도 약 88%, 적어도 약 89%, 적어도 약 90%, 적어도 약 91%, 적어도 약 92%, 적어도 약 93%, 적어도 약 94%, 적어도 약 95%, 적어도 약 96%, 적어도 약 97%, 적어도 약 98%, 적어도 약 99%, 또는 적어도 약 100%의 동일성을 가지는 핵산 서열을 포함할 수 있다.
상기 폴리뉴클레오티드는 신호서열(signal sequence) 또는 리더 서열(leader sequence)을 코딩하는 핵산을 추가적으로 포함할 수 있다. 여기에서 사용된 용어 "신호서열"은 목적 단백질의 분비를 지시하는 신호펩타이드를 의미한다. 상기 신호펩타이드는 숙주 세포에서 번역된 후에 절단된다. 구체적으로, 상기 신호서열은 ER(endoplasmic reticulum) 막을 관통하는 단백질의 이동을 개시하는 아미노산 서열이다.
신호서열은 당업계에 그 특징이 잘 알려져 있으며, 통상 16 내지 30개의 아미노산 잔기를 포함하나, 그보다 더 많거나 적은 아미노산 잔기를 포함할 수 있다. 통상적인 신호 펩타이드는 기본 N-말단 영역, 중심의 소수성 영역, 및 보다 극성인(polar) C-말단 영역의 세 영역으로 구성된다. 중심 소수성 영역은 미성숙 폴리펩타이드가 이동하는 동안 막지질 이중층을 통하여 신호서열을 고정시키는 4 내지 12개의 소수성 잔기를 포함한다.
개시 이후에, 신호서열은 흔히 신호 펩티다아제(signal peptidases)로 알려진 세포 효소에 의하여 ER의 루멘(lumen) 내에서 절단된다. 이때, 상기 신호서열은 tPa(tissue Plasminogen Activation), HSV gDs(signal sequence of Herpes simplex virus glycoprotein D), IgG 신호서열 또는 성장 호르몬(growth hormone)의 분비신호서열일 수 있다. 바람직하게, 포유동물 등을 포함하는 고등 진핵 세포에서 사용되는 분비 신호서열을 사용할 수 있다. 또한, 상기 신호서열은 야생형 IL-2에 포함된 신호서열을 사용하거나, 숙주세포에서 발현 빈도가 높은 코돈으로 치환하여 사용할 수 있다. 일 구체예로 14.18 항체의 경쇄 신호서열(Gillies et al., J. Immunol. Meth 1989. 125:191-202), MOPC141 항체의 중쇄 신호서열(Sakano et al., Nature, 1980. 286: 676-683) 및 당업계에 알려진 다른 신호서열(예, Watson et al., Nucleic Acid Research, 1984. 12:5145-5164를 참조)을 포함할 수 있다.
융합단백질을 코딩하는 폴리뉴클레오티드가 적재된 벡터
본 발명의 또 다른 측면은, 상기 폴리뉴클레오티드를 포함하는 벡터를 제공한다.
이때, 중쇄영역을 코딩하는 폴리뉴클레오티드와 경쇄영역을 코딩하는 폴리뉴클레오티드는 서로 다른 벡터에 적재될 수 있다. 또는 중쇄영역을 코딩하는 폴리뉴클레오티드와 경쇄영역을 코딩하는 폴리뉴클레오티드는 하나의 벡터에 적재될 수 있다
상기 폴리뉴클레오티드는 전술한 바와 같다. 이때, 폴리뉴클레오티드의 중쇄영역은 서열번호 17 또는 23의 염기서열을 포함하며, 경쇄영역은 서열번호 18을 포함하는 것일 수 있다. 일 구체예로 서열번호 17 및 서열번호 18을 포함할 수 있다. 일 구체예로 서열번호 23 및 서열번호 18을 포함할 수 있다. 이때, 벡터는 상기 중쇄 및 경쇄의 폴리뉴클레오티드 조합을 각각 포함하는 2개의 벡터, 또는 상기 조합의 폴리뉴클레오티드를 모두 포함하는 바이시스트로닉 벡터일 수 있다.
상기 벡터는 숙주 세포에 도입되어 숙주 세포 유전체 내로 재조합 및 삽입될 수 있다. 또는 상기 벡터는 에피좀으로서 자발적으로 복제될 수 있는 폴리뉴클레오티드 서열을 포함하는 핵산 수단으로 이해된다. 이때, 벡터는 숙주세포에서 상기 폴리뉴클레오티드가 발현될 수 있도록 적절한 프로모터에 작동가능하도록 연결된 것일 수 있으며, 선형 핵산, 플라스미드, 파지미드, 코스미드, RNA 벡터, 바이러스 벡터, 미니-염색체 및 이의 유사체들을 포함한다. 바이러스 벡터의 예로는 레트로바이러스, 아데노바이러스 및 아데노-관련 바이러스를 포함하나 이에 제한되지 않는다.
구체적으로, 상기 벡터는 플라스미드 DNA, 파아지 DNA 등이 될 수 있고, 상업적으로 개발된 플라스미드(pUC18, pBAD, pIDTSAMRT-AMP 등), 대장균 유래 플라스미드(pYG601BR322, pBR325, pUC118, pUC119 등), 바실러스 서브틸리스 유래 플라스미드(pUB110, pTP5 등), 효모-유래 플라스미드(YEp13, YEp24, YCp50 등), 파아지 DNA(Charon4A, Charon21A, EMBL3, EMBL4, λgt10, λgt11, λZAP 등), 동물 바이러스 벡터(레트로바이러스(retrovirus), 아데노바이러스(adenovirus), 백시니아 바이러스(vaccinia virus) 등), 곤충 바이러스 벡터(배큘로바이러스(baculovirus) 등) 등이 될 수 있다. 상기 벡터는 숙주 세포에 따라서 단백질의 발현량과 수식 등이 다르게 나타나므로, 목적에 가장 적합한 숙주세포를 선택하여 사용함이 바람직하다.
본 명세서에서 사용하는 용어, 목적 단백질의 "유전자 발현" 또는 "발현"은 DNA 서열의 전사, mRNA 전사체의 번역 및 융합단백질 생산물 또는 이의 단편의 분비를 의미하는 것으로 이해된다. 유용한 발현 벡터는 RcCMV(Invitrogen, Carlsbad) 또는 이의 변이체일 수 있다. 상기 발현 벡터는 포유류 세포에서 목적 유전자의 연속적인 전사를 촉진하기 위한 인간 CMV(cytomegalovirus) 프로모터 및 전사 후 RNA의 안정상태 수준을 높이기 위한 우태 성장 인자(bovine growth hormone) 폴리 아데닐레이션 신호서열을 포함할 수 있다.
융합단백질을 발현하는 형질전환된 세포
본 발명의 또 다른 측면은, 상기 벡터가 도입된 형질전환 세포를 제공한다.
상기 형질전환 세포의 숙주세포로서, 원핵세포, 진핵세포, 포유동물, 식물, 곤충, 균류 또는 세포성 기원의 세포를 포함할 수 있지만 이에 한정되지 않는다. 상기 원핵세포의 일 예로는 대장균을 사용할 수 있다. 또한, 진핵세포의 일 예로는 효모를 사용할 수 있다. 또한, 상기 포유동물 세포로 CHO 세포, F2N 세포, COS 세포, BHK 세포, 바우스(Bowes) 흑색종 세포, HeLa 세포, 911 세포, AT1080 세포, A549 세포, SP2/0 세포, 인간 림프아구(human lymphoblastoid), NSO 세포, HT-1080 세포, PERC.6 세포, HEK 293 세포 또는 HEK293T 세포 등을 사용할 수 있으나, 이에 한정되지 않으며, 당업자에게 알려진 포유동물 숙주 세포로 사용 가능한 세포는 모두 이용 가능하다.
또한, 숙주세포로 발현벡터를 도입하는 경우, CaCl2 침전법, CaCl2 침전법에 DMSO(dimethyl sulfoxide)라는 환원물질을 사용함으로써 효율을 높인 Hanahan 방법, 전기천공법(electroporation), 인산칼슘 침전법, 원형질 융합법, 실리콘 카바이드 섬유를 이용한 교반법, 아그로박테리아 매개된 형질전환법, PEG를 이용한 형질전환법, 덱스트란 설페이트, 리포펙타민 및 건조/억제 매개된 형질전환 방법 등 이 사용될 수 있다. 또한, 감염(infection)을 수단으로 하여 바이러스 입자를 사용하여 목적물을 세포 내로 전달시킬 수 있다. 또한, 유전자 밤바드먼트 등에 의해 벡터를 숙주세포 내로 도입할 수 있다.
전술한 바와 같이, 융합단백질의 치료제로서의 특성을 최적화하거나 기타 다른 목적을 위해, 호스트 세포가 갖고 있는 당화(glycosylation) 관련 유전자를 당업자에게 알려져 있는 방법을 통해 조작하여 융합단백질의 당쇄 패턴(예를 들어, 시알 산, 퓨코실화, 당화)을 조정할 수 있다.
융합단백질의 제조 방법
본 발명의 또 다른 측면은, 상기 형질전환 세포를 배양하는 단계; 상기 배양액으로부터 상술한 융합단백질을 수득하는 단계를 포함하는 항-LAG-3 항체 및 IL-2 또는 이의 변이체를 포함하는 융합단백질을 제조하는 방법을 제공한다.
본 명세서에서 사용하는 용어, "배양"이란, 미생물을 인공적으로 적당히 조절한 환경조건에서 생육시키는 방법을 의미한다.
상기 형질전환 세포를 배양하는 방법은 당업계에 널리 알려져 있는 방법을 이용하여 수행할 수 있다. 구체적으로, 상기 배양은 본 발명의 융합단백질을 발현시켜서 생산할 수 있는 한 특별히 이에 제한되지 않는다. 구체적으로, 상기 배양은 배치 공정 또는 주입 배치 또는 반복 주입 배치 공정(fed batch or repeated fed batch process)에서 연속식으로 배양할 수 있다.
또한, 배양물로부터 상기 융합단백질을 회수하는 단계는 당업계에 공지된 방법에 의해 수행될 수 있다. 구체적으로, 상기 회수 방법은 생산된 본 발명의 융합단백질을 회수할 수 있는 한, 특별히 이에 제한되지 않는다. 바람직하게는, 상기 회수 방법은 원심분리, 여과, 추출, 분무, 건조, 증발, 침전, 결정화, 전기영동, 분별용해(예를 들면 암모늄설페이트 침전), 크로마토그래피(예를 들면 이온 교환, 친화성, 소수성 및 크기배제) 등의 방법일 수 있다.
융합단백질의 용도
본 발명의 또 다른 측면으로, 상기 융합단백질을 포함하는 암 치료 또는 예방용 약학 조성물을 제공한다.
본 명세서에서 사용하는 용어, "암"은 정상인 조직세포가 어떤 원인으로 무제한 증식하여 그 생체의 생활현상이나 주위의 조직상태 등에 관계없이 급속한 발육을 계속하는 질환으로 구분되며, 본 발명에서의 암은 인체의 각종 암, 예컨대 위암, 간암, 폐암, 대장암, 유방암, 전립선암, 난소암, 췌장암, 자궁경부암, 갑상선암, 후두암, 급성 골수성 백혈병, 뇌종양, 신경모세포종, 망막 모세포종, 두경부암, 침샘암 및 림프종으로 구성된 군으로부터 선택되는 어느 하나의 암일 수 있으나, 상기 종류에 한정되지는 않는다. 또한, 본 발명의 목적상 방사선에 저항성을 가지는 암일 수 있으나, 이에 제한되는 것은 아니다.
상기 용어 "예방"은 상기 약학적 조성물의 투여에 의해 암의 발생을 억제하거나 그의 발병을 지연시키는 모든 행위를 말한다. 상기 용어 "치료"는 상기 약학적 조성물의 투여에 의해 암의 증세가 호전되거나 이롭게 변경하는 모든 행위를 말한다.
상기 본 발명의 약학적 조성물은 약학적으로 허용가능한 담체를 추가로 포함할 수 있다. 상기 약학적으로 허용 가능한 담체는 환자에게 전달하기에 적절한 비-독성 물질이면 어떠한 담체라도 가능하다. 증류수, 알코올, 지방, 왁스 및 비활성 고체가 담체로 포함될 수 있다. 약물학적으로 허용되는 애쥬번트(완충제, 분산제) 또한 약학적 조성물에 포함될 수 있다.
구체적으로, 상기 약학적 조성물은 약제학적으로 허용되는 담체를 포함하여 당업계에 공지된 통상의 방법으로 투여 경로에 따라 비경구용 제형으로 제조될 수 있다. 여기서 "약제학적으로 허용되는" 의미는 유효성분의 활성을 억제하지 않으면서 적용(처방) 대상이 적응 가능한 이상의 독성을 지니지 않는다는 의미이다.
상기 약학적 조성물이 비경구용 제형으로 제조될 경우, 적합한 담체와 함께 당업계에 공지된 방법에 따라 주사제, 경피 투여제, 비강 흡입제 및 좌제의 형태로 제제화될 수 있다. 주사제로 제제화할 경우 적합한 담체로서는 멸균수, 에탄올, 글리세롤이나 프로필렌 글리콜 등의 폴리올 또는 이들의 혼합물을 사용할 수 있으며, 바람직하게는 링거 용액, 트리에탄올 아민이 함유된 PBS(phosphate buffered saline)나 주사용 멸균수, 5% 덱스트로스 같은 등장 용액 등을 사용할 수 있다. 약제학적 조성물의 제제화와 관련하여서는 당업계에 공지되어 있으며, 구체적으로 문헌[Remington's Pharmaceutical Sciences(19th ed., 1995)] 등을 참조할 수 있다. 상기 문헌은 본 명세서의 일부로서 간주된다.
한편, 본 발명의 약학적 조성물은 약학적으로 유효한 양으로 투여한다. 본 명세서에서 사용하는 용어 "투여"란, 적절한 방법으로 개체에게 소정의 물질을 도입하는 것을 의미하며, 상기 조성물의 투여 경로는 목적 조직에 도달할 수 있는 한 어떠한 일반적인 경로를 통하여 투여될 수 있다. 복강내 투여, 정맥내 투여, 근육내 투여, 피하 투여, 피내 투여, 국소 투여, 비내 투여, 직장내 투여될 수 있으나, 이에 한정되지는 않는다.
상기 용어 "개체"란 인간을 포함한 쥐, 생쥐, 가축 등의 모든 동물을 의미한다. 바람직하게는, 인간을 포함한 포유동물일 수 있다.
상기 용어 "약학적으로 유효한 양"이란 의학적 치료에 적용 가능한 합리적인 수혜/위험 비율로 질환을 치료하기에 충분하며 부작용을 일으키지 않을 정도의 양을 의미하며, 유효 용량 수준은 환자의 성별, 연령, 체중, 건강상태, 질병의 종류, 중증도, 약물의 활성, 약물에 대한 민감도, 투여 방법, 투여 시간, 투여 경로, 및 배출 비율, 치료 기간, 배합 또는 동시에 사용되는 약물을 포함한 요소 및 기타 의학 분야에 잘 알려진 요소에 따라 당업자에 의해 용이하게 결정될 수 있다. 1일 0.01 ㎍/㎏ 내지 10 g/㎏ 범위, 또는 0.01 ㎎/㎏ 내지 1 g/㎏ 범위로 투여할 수 있다. 투여는 1일 1회 또는 수회로 나누어 이루어질 수 있다. 이러한 투여량은 어떠한 측면으로든 본 발명의 범위를 제한하는 것으로 해석되어서는 아니 된다.
본 발명의 또 다른 측면은, 암을 치료하거나 예방하기 위한 상기 융합단백질의 암 치료 또는 예방용 용도를 제공한다. 여기서 융합단백질, 암, 치료 및 예방은 전술한 바와 같다.
본 발명의 또 다른 측면은, 상기 융합단백질을 개체에 투여하는 단계를 포함하는 암 치료 또는 예방하는 방법을 제공한다. 여기서 융합단백질, 투여, 암, 치료 및 예방은 전술한 바와 같다. 상기 개체는 포유동물일 수 있으며, 바람직하게는 인간일 수 있다. 또한, 상기 개체는 암을 앓는 환자이거나 암을 앓을 가능성이 큰 개체일 수 있다.
상기 융합단백질의 투여경로, 투여량 및 투여횟수는 환자의 상태 및 바작용의 유무에 따라 다양한 방법 및 양으로 대상에게 투여될 수 있고, 최적의 투여방법, 투여량 및 투여횟수는 통상의 기술자가 적절한 범위로 선택할 수 있다. 또한, 상기 융합단백질은 치료하고자 하는 질환에 대하여 치료효과가 공지된 다른 약물 또는 생가학적 활성물질과 병용하여 투여되거나, 다른 약물과의 조합 제제 형태로 제형화될 수 있다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
I. 융합단백질의 제조
제조예 1. 항-hLAG-3 항체-hIgG4 Fc-hIL-2v2 융합단백질의 제조: GI-104E1
항-hLAG-3 항체 및 hIL-2v2를 포함하는 융합단백질을 생산하기 위하여, 항-hLAG-3VL(항-hLAG-3(1E09)VL-kappa+CL)을 N-말단으로부터 이 순서대로 포함하는 융합단백질(서열번호 16)을 코딩하는 염기서열을 포함하는 폴리뉴클레오티드(서열번호 18)와 항-hLAG-3VH(항-hLAG-3(1E09)VH+CH1), Fc 도메인(F02(hIgG4Fc)), 링커(G4S linker) 및 인간 IL-2v2를 N-말단으로부터 이 순서대로 포함하는 융합단백질(서열번호 27)을 코딩하는 염기서열을 포함하는 폴리뉴클레오티드(서열번호 17)를 GenScript사의 Expression and Optimization 서비스를 통해 pcDNA3.4 벡터(Invitrogen)에 적재하였다. 상기 벡터를 CHO 세포(HD CHO-S)에 도입한 후 37℃, CO2 8%, serum-free HD CHO-STM expression Medium에서 14일간 배양하였다. 배양액을 수거하여 MabSelect SuReTMLX가 포함된 친화크로마토그래피(Affinity purification column)를 이용하여 융합단백질을 정제하였다.
분리 정제된 융합단백질을 reduced(R) 또는 non-reduced(NR) 조건하에서 SDS-PAGE 및 western blot을 실행하였고 HPLC 분석을 통하여 분자량 및 순도를 확인하였다(도 3 및 도 5). Bradford assay를 통하여 농도를 측정하였으며 0.69 mg/㎖ 농도의 융합단백질이 포함된 것을 확인하였다.
제조예 2. 대조항체의 제조(항-hLAG-3 항체, α-LAG-3)
대조군인 항-hLAG-3 항체를 생산하기 위하여, 항-hLAG-3VL(항-hLAG-3(1E09)VL-kappa+CL)을 N-말단으로부터 이 순서대로 포함하는 융합단백질(서열번호 16)을 코딩하는 염기서열을 포함하는 폴리뉴클레오티드(서열번호 18)와 항-hLAG-3VH(항-hLAG-3(1E09)VH+CH1) 및 Fc 도메인(F02(hIgG4Fc))을 N-말단으로부터 이 순서대로 포함하는 융합단백질(서열번호 15)을 코딩하는 염기서열을 포함하는 폴리뉴클레오티드(서열번호 29)를 GenScript사의 Expression and Optimization 서비스를 통해 pcDNA3.4 벡터(Invitrogen)에 적재하였다. 상기 벡터를 CHO 세포(HD CHO-S)에 도입한 후 37℃, CO2 8%, serum-free HD CHO-STM expression Medium에서 14일간 배양하였다. 배양액을 수거하여 MabSelect SuReTMLX가 포함된 친화크로마토그래피(Affinity purification column)를 이용하여 융합단백질을 정제하였다.
제조예 3. hIgG4 Fc-hIL-2v2의 제조: Fc-IL-2v2
Fc 도메인 및 IL-2 변이체를 포함하는 융합단백질 이량체를 생산하기 위하여, Fc 도메인(서열번호 14), 링커(서열번호 19) 및 두 개의 아미노산이 치환된 IL-2 변이체(2M)(R38A, F42A)(서열번호 20)를 포함하는 융합단백질(서열번호 11)을 코딩하는 염기서열을 N-말단으로부터 이 순서대로 포함하는 폴리뉴클레오티드(서열번호 25)를 ThermoFisher Scientific사의 Invitrogen GeneArt Gene Synthesis 서비스를 통해 폴리뉴클레오티드를 합성하여 pcDNA3.4 벡터(Invitrogen)에 적재하였다. 또한, 상기 벡터를 CHO 세포(Expi-CHOTM)에 도입하여 서열번호 11의 융합단백질을 발현시켰다. 벡터를 도입한 후 37℃, 125 rpm, CO2 8%의 농도인 환경에서 7일 배양 후 배양액을 수거하여 융합단백질 이량체를 정제하였다.
제조예 4. hIgG4 Fc-hIL-2v3의 제조: Fc-IL-2v3
Fc 도메인 및 IL-2 변이체를 포함하는 융합단백질을 생산하기 위하여, Fc 도메인(서열번호 14), 링커(서열번호 19) 및 세 개의 아미노산이 치환된 IL-2 변이체(3M)(R38A, F42A, E61R)(서열번호 21)를 포함하는 융합단백질(서열번호 24)을 코딩하는 염기서열을 N-말단으로부터 이 순서대로 포함하는 폴리뉴클레오티드(서열번호 26)를 ThermoFisher Scientific사의 Invitrogen GeneArt Gene Synthesis 서비스를 통해 폴리뉴클레오티드를 합성하여 pcDNA3.4 벡터(Invitrogen)에 적재하였다. 또한, 상기 벡터를 CHO 세포(Expi-CHOTM)에 도입하여 서열번호 24의 융합단백질을 발현시켰다. 벡터를 도입한 후 37℃, 125 rpm, CO2 8%의 농도인 환경에서 7일 배양 후 배양액을 수거하여 융합단백질을 정제하였다.
제조예 5. 항-hLAG-3 항체-hIgG4 Fc-hIL-2v3 융합단백질 제조: GI-104E2
항-LAG-3 항체 및 hIL-2v3을 포함하는 융합단백질을 생산하기 위하여, 항-hLAG-3VL(항-hLAG-3(1E09)VL-kappa+CL)을 N-말단으로부터 이 순서대로 포함하는 융합단백질(서열번호 16)을 코딩하는 염기서열을 포함하는 폴리뉴클레오티드(서열번호 18)와 항-hLAG-3VH(항-hLAG-3(1E09)VH+CH1), Fc 도메인(F02(hIgG4Fc)), 링커(G4S linker) 및 인간 IL-2v3을 N-말단으로부터 이 순서대로 포함하는 융합단백질(서열번호 28)을 코딩하는 염기서열을 포함하는 폴리뉴클레오티드(서열번호 23)를 GenScript사의 Expression and Optimization 서비스를 통해 pcDNA3.4 벡터(Invitrogen)에 적재하였다. 상기 벡터를 CHO 세포(HD CHO-S)에 도입한 후 37℃, CO2 8%, serum-free HD CHO-STM expression Medium에서 14일간 배양하였다. 배양액을 수거하여 MabSelect SuReTMLX가 포함된 친화크로마토그래피(Affinity purification column)를 이용하여 융합단백질을 정제하였다.
분리 정제된 융합단백질을 reduced(R) 또는 non-reduced(NR) 조건하에서 SDS-PAGE 및 western blot을 실행하였고 HPLC 분석을 통하여 분자량 및 순도를 확인하였다(도 4 및 도 6). Bradford assay를 통하여 농도를 측정하였으며 0.51 mg/㎖ 농도의 융합단백질이 포함된 것을 확인하였다.
II. 융합단백질의 면역 활성 효과 확인
실험예 1. LAG-3 blockade assay를 통한 융합단백질의 T 세포 활성화 기능 확인
실험예 1.1. GI-104E1이 T 세포의 기능에 미치는 영향 확인
LAG-3는 T 세포 및 NK 세포에서 발현하는 면역관문억제제로 CD4와 구조가 유사하지만 D1 도메인에 30개의 추가적인 아미노산을 가지고 있어 MHC class II와 친화성이 높다. 이러한 구조적 특성 때문에 LAG-3는 T 세포 활성화를 억제시킨다고 알려져 있다.
본 실험에서는 융합단백질에 대한 T 세포 활성화 기능을 LAG-3 blockade bioassay system(Promega, JA1115)을 이용하여 확인하고자 하였다. 구체적으로, 액체질소에 보관 중인 MHCII APC 세포 1 vial을 37℃ 항온수조에서 2분 동안 녹인 후 TCR activating antigen이 들어있는 cell recovery medium(90% DMEM + 10% FBS) 14.5 ㎖에 넣고 잘 혼합해 주었다. MHCII APC 현탁액을 96-웰 white cell culture plate(Corning cat no. 3917)의 각 웰당 100 ㎕씩 넣고 37℃, 5% CO2 배양기에서 24시간 배양하였다.
24시간 배양한 MHCII APC 세포가 들어있는 96-웰 white culture plate을 꺼내어 plate 안의 배양액을 제거하였다. 이후, 다양한 농도로 양성대조군인 1E09(Relatlimab surrogates)과 GI-104E1을 웰당 40 ㎕씩 처리하였으며, 음성 대조군의 경우는 에세이 버퍼 40 ㎕를 넣었다. 이후 LAG-3 effector 세포가 준비되기 전까지 커버를 씌운 후 상온에 보관하였다.
액체질소에 보관 중인 LAG-3 effector 세포 1 vial을 37℃ 항온수조에서 2분 동안 녹인 후 7 ㎖의 에세이 버퍼(90% RPMI + 10% FBS)에 넣고 잘 혼합해 주었다. 혼합한 현탁액을 상온에 보관 중인 96-웰 white cell culture plate에 40 ㎕씩 넣고 37℃, 5% CO2 배양기에서 5시간 반응시켰다. 반응이 끝난 후 상온에 10분간 반응시킨 후 거품이 생기지 않게 주의하며 Bio-Glo reagent를 80 ㎕씩 넣었다. 백그라운드 신호를 보정하기 위하여 가장자리 바깥 웰 중 2군데에 Bio-Glo reagent를 넣은 후 5-10분간 상온에서 반응시켰다. 이후 GIoMax® Discover System(Promega, USA)을 이용하여 luminescence를 측정하였다.
그 결과, GI-104E1이 effector T 세포에서 발현하는 LAG-3와 결합하여 LAG-3의 기능을 억제시킴으로써 T 세포 기능을 활성화시킬 수 있음을 확인하였다(도 8).
실험예 1.2. GI-104E2가 T 세포의 기능에 미치는 영향 확인
상기 실험예 1.1과 동일한 방법으로 GI-104E2에 대하여 LAG-3 blockade assay를 수행한 결과, GI-104E2가 effector T 세포에서 발현하는 LAG-3와 결합하여 LAG-3의 기능을 억제시킴으로써 T 세포 기능을 활성화시킬 수 있음을 확인하였다(도 9).
실험예 2. 융합단백질의 항암효과 확인
실험예 2.1. 마우스 유래 대장암세포 식립 마우스에서의 GI-104E1의 항암효과 확인
오리엔트 바이오에서 분양 받은 BALB/c 마우스(암컷, 7주)를 7일의 적응기간을 거친 후에, CT26 암세포주(ATCC, U.S.A.) 5x106 세포를 1 ㎖ PBS에 희석하여 개체 당 100 ㎕씩 마우스의 우측 등 부위의 피하에 투여하여 동종이식하였다. 암세포를 이식하고 일정기간 경과 후에 종양의 부피를 측정하여 약 50 mm3 내지 120 mm3에 도달한 개체들을 선별한 후, 선별한 마우스의 종양의 크기 및 체중을 기초로 하여 균등하도록 각 군당 8마리씩 분류하였다. 그 다음, 표 3과 같이 시험군을 구성하고 시험물질을 복강으로 투여하였다. 첫 투여 이후 일주일에 한 번씩 총 3회 투여하였다. 이식된 종양 크기는 모두 주 2회, 4주간 종양부피를 측정하였다.
그룹 Drug 투여용량
(mg/kg)
투여용량
(mL/kg)
투여경로 투여횟수 N수
G1 Vehicle(PBS) - 5 복강 주 1회, 3주간 8
G2 항-LAG-3 항체 2.5 5 복강 주 1회, 3주간 8
G3 Fc-IL-2v2 1.4 5 복강 주 1회, 3주간 8
G4 항-LAG-3 항체 + Fc-IL-2v2 2.5+1.4 5 복강 주 1회, 3주간 8
G5 GI-104E1 3 5 복강 주 1회, 3주간 8
측정 결과는 각 군의 평균(mean) 및 표준편차(SD) 값을 이용하여 그래프로 나타내었다. 또한, 이중분산분석(Two-way analysis of variance)과 Dunnett T3 test를 사용하여, Vehicle에 대비하여 나타나는 종양부피 저하의 통계적 유의성(#p≤0.05, ####p≤0.0001) 및 GI-104E1 투여군에 대비하여 나타나는 tumor volume 차이의 통계적 유의성(*p≤0.05, **p≤0.01, ***p≤0.001, ****p≤0.0001)을 분석하였다.
그 결과, CT26 암세포주 식립 마우스에서 음성대조군에 비해 3 mg/kg 용량의 GI-104E1을 투여한 군이 중간관찰시점 및 실험종료시점에서 유의미하게 종양의 성장을 억제하였다(#p≤0.05, ####p≤0.0001, Two-way analysis of variance(ANOVA)). 또한, GI-104E1과 상등하는 몰(mole)수의 항-LAG-3 항체 투여 및 Fc-IL-2v2 투여와 비교시에도 GI-104E1 투여가 유의미하게 종양의 성장을 억제하였다. 특히, 항-LAG-3 항체 및 Fc-IL-2v2를 병용투여한 실험군에 비해서도 중간관찰시점과 실험종료시점에서 GI-104E1이 유의미한 종양 억제 효과를 나타냈다(*p≤0.05, **p≤0.01, ***p≤0.001, ****p≤0.0001, Two-way analysis of variance(ANOVA))(도 10 내지 도 16).
시험종료시점에 종양 성장률 변화를 관찰하였을 때, 50% 이상의 종양 성장률의 감소를 보이는 경우가 음성대조군에서 1 개체, 항-LAG-3 항체를 투여한 군에서 1개체, Fc-IL-2v2에서 0 개체, 및 항-LAG-3 항체와 Fc-IL-2v2를 병용투여한 군에서 0 개체였다. 그에 비해 GI-104E1을 투여한 실험군의 경우, 7 개체에서 50% 이상의 종양 성장률 감소를 보였으며, 80% 이상의 종양 성장률의 감소를 보인 개체가 5 인 것을 확인하였다(도 17).
또한, GI-104E1을 투여한 실험군과 다른 실험대조군 및 음성대조군을 투여한 실험군의 생존율을 실험개체의 폐사 또는 종양부피의 2,000 mm3를 개체의 발생을 기준으로 분석하였고, 실험군 간의 생존율 차이의 통계적 유의성은 Mantel-Cox test로 분석하였다. 그 결과, GI-104E1을 투여한 실험군에서 다른 실험대조군 및 음성대조군을 투여한 실험군보다 높은 생존율을 나타냄을 확인하였고 이러한 실험군간의 생존율 차이는 통계적으로 유의하였다(****p≤0.0001)(도 18).
실험예 2.2. 마우스 유래 대장암세포 식립 마우스에서의 GI-104E2의 항암효과 확인
오리엔트 바이오에서 분양 받은 BALB/c 마우스(암컷, 7주)를 7일의 적응기간을 거친 후에 CT26 암세포주(ATCC, U.S.A.) 5x106 세포를 1 ㎖ PBS에 희석하여 개체 당 100 ㎕씩 마우스의 우측 등 부위의 피하에 투여하여 동종이식하였다. 암세포를 이식하고 일정기간 경과 후에 종양의 부피를 측정하여 약 50 mm3 내지 120 mm3에 도달한 개체들을 선별한 후, 선별한 마우스의 종양의 크기 및 체중을 기초로 하여 균등하도록 각 군당 3마리씩 분류하였다. 그 다음, 표 4와 같이 시험군을 구성하고 시험물질을 복강으로 투여하였다. 첫 투여 이후 일주일에 한 번씩 총 3회 투여하였다. 이식된 종양 크기는 모두 주 2회, 4주간 종양부피를 측정하였다.
그룹 Drug 투여용량
(mg/kg)
투여용량
(mL/kg)
투여경로 투여횟수 N수
G1 Vehicle(PBS) - 5 복강 주 1회, 3주간 3
G2 항-LAG-3 항체 5 5 복강 주 1회, 3주간 3
G3 Fc-IL-2v3 2.8 5 복강 주 1회, 3주간 3
G4 항-LAG-3 항체 + Fc-IL-2v3 5 + 2.8 5 복강 주 1회, 3주간 3
G5 GI-104E2 6 5 복강 주 1회, 3주간 3
그 결과, CT26 암세포주 식립 마우스에서 음성대조군에 비해 6 mg/kg 용량의 GI-104E2를 투여한 군이 중간관찰시점 및 실험종료시점에서 종양의 성장을 억제하였다. 또한 같은 6 mg/kg의 GI-104E2와 상등하는 몰(mole)수의 항-LAG-3 항체 투여 및 Fc-IL-2v3 투여와 비교시에도 GI-104E2 투여군에서 우수한 종양 성장 억제 효과가 나타났다. 특히, 항-LAG-3 항체 및 Fc-IL-2v3를 병용투여한 실험군에 비해서도 중간관찰시점과 실험종료시점에서 GI-104E2가 우수한 종양 억제 효과를 나타냈다(도 19 내지 도 25).
또한, 시험종료시점에 종양 성장률 변화를 관찰하였을 때, 50% 이상의 종양 성장률의 감소를 보이는 경우가 음성대조군에서 1 개체, 항-LAG-3 항체를 투여한 군에서 0개체, Fc-IL-2v3에서 1 개체, 및 항-LAG-3 항체와 Fc-IL-2v3를 병용투여한 군에서 1 개체였다. 그에 비해 GI-104E2를 투여한 실험군의 경우 모든 개체에서 50% 이상의 종양 성장률 감소가 나타났으며, 80% 이상의 종양 성장률 감소가 나타난 개체도 1 인 것을 확인하였다(도 26).
GI-104E2를 투여한 실험군과 다른 실험대조군 및 음성대조군을 투여한 실험군의 생존율을 실험개체의 폐사 또는 종양부피의 2,000 mm3를 개체의 발생을 기준으로 분석하였다. 그 결과, GI-104E2를 투여한 실험군에서 다른 실험대조군 및 음성대조군을 투여한 실험군보다 높은 생존율을 나타냄을 확인하였다(도 27).

Claims (18)

  1. LAG-3에 특이적으로 결합하는 항체 및 IL-2 단백질을 포함하는 융합단백질.
  2. 제1항에 있어서,
    상기 LAG-3에 특이적으로 결합하는 항체는
    서열번호 1의 HCDR1, 서열번호 2의 HCDR2, 및 서열번호 3의 HCDR3을 포함하는 중쇄가변영역; 및
    서열번호 5의 LCDR1, 서열번호 6의 LCDR2, 및 서열번호 7의 LCDR3을 포함하는 경쇄가변영역을 포함하는 것인, 융합단백질.
  3. 제1항에 있어서,
    상기 LAG-3에 특이적으로 결합하는 항체는 서열번호 4의 아미노산 서열을 포함하는 중쇄가변영역 및 서열번호 8의 아미노산 서열을 포함하는 경쇄가변영역을 포함하는 것인, 융합단백질.
  4. 제1항에 있어서,
    상기 융합단백질은 2개의 IL-2 단백질을 포함하는 것인, 융합단백질.
  5. 제1항에 있어서,
    상기 IL-2 단백질은 IL-2 변이체인 것인, 융합단백질.
  6. 제5항에 있어서,
    상기 IL-2 변이체는 R38A, F42A, Y45A, E61R, L72G 및 이의 조합으로 구성된 군에서 선택되는 위치에서 아미노산 치환이 일어난 것인, 융합단백질.
  7. 제5항에 있어서,
    상기 IL-2 변이체는 서열번호 20 또는 서열번호 21의 아미노산 서열을 가지는 것인, 융합단백질.
  8. 제1항에 있어서,
    상기 LAG-3에 특이적으로 결합하는 항체 및 IL-2 단백질은 링커에 의해 결합된 것인, 융합단백질.
  9. 제8항에 있어서,
    상기 링커는 펩타이드 링커인, 융합단백질.
  10. 제1항 내지 제9항 중 어느 한 항의 융합단백질을 코딩하는 폴리뉴클레오티드.
  11. 제10항의 폴리뉴클레오티드를 포함하는 발현 벡터.
  12. 제11항의 벡터가 도입된 형질전환 세포.
  13. 제12항의 형질전환 세포를 배양하는 단계; 및
    배양액으로부터 융합단백질을 회수하는 단계;를 포함하는 융합단백질을 제조하는 방법.
  14. 제1항 내지 제9항 중 어느 한 항의 융합단백질을 포함하는 암 치료 또는 예방용 약학 조성물.
  15. 제14항에 있어서,
    상기 암은 위암, 간암, 폐암, 대장암, 유방암, 전립선암, 난소암, 췌장암, 자궁경부암, 갑상선암, 후두암, 급성 골수성 백혈병, 뇌종양, 신경모세포종, 망막 모세포종, 두경부암, 침샘암 및 림프종으로 구성된 군에서 선택되는 어느 하나인, 약학 조성물.
  16. 암을 치료하거나 예방하기 위한 제1항 내지 제9항 중 어느 한 항의 융합단백질의 용도.
  17. 암 치료 또는 예방용 약제를 제조하기 위한 제1항 내지 제9항 중 어느 한 항의 융합단백질의 용도.
  18. 제1항 내지 제9항 중 어느 한 항의 융합단백질을 개체에 투여하는 단계를 포함하는 암 치료 또는 예방 방법.
PCT/KR2021/008198 2020-06-30 2021-06-29 항-lag-3 항체 및 il-2를 포함하는 융합단백질 및 이의 용도 WO2022005174A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180046803.9A CN115916831A (zh) 2020-06-30 2021-06-29 包含抗lag-3抗体和il-2的融合蛋白及其用途
JP2022575843A JP2023531876A (ja) 2020-06-30 2021-06-29 抗lag-3抗体とil-2とを含む融合タンパク質及びその使用
EP21834395.2A EP4174088A4 (en) 2020-06-30 2021-06-29 FUSION PROTEIN WITH ANTI-LAG-3 ANTIBODIES AND IL-2 AND USE THEREOF
US18/003,123 US20230257438A1 (en) 2020-06-30 2021-06-29 Fusion protein comprising anti-lag-3 antibody and il-2, and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0079978 2020-06-30
KR20200079978 2020-06-30

Publications (1)

Publication Number Publication Date
WO2022005174A1 true WO2022005174A1 (ko) 2022-01-06

Family

ID=78271260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/008198 WO2022005174A1 (ko) 2020-06-30 2021-06-29 항-lag-3 항체 및 il-2를 포함하는 융합단백질 및 이의 용도

Country Status (7)

Country Link
US (1) US20230257438A1 (ko)
EP (1) EP4174088A4 (ko)
JP (1) JP2023531876A (ko)
KR (2) KR102313505B1 (ko)
CN (1) CN115916831A (ko)
TW (1) TWI800861B (ko)
WO (1) WO2022005174A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021096275A1 (ko) * 2019-11-15 2021-05-20 주식회사 제넥신 변형된 인터루킨-7 및 tgf 베타 수용체 ii를 포함하는 융합단백질 및 이의 용도
CN114874324B (zh) * 2022-05-13 2023-02-03 苏州旭光科星抗体生物科技有限公司 一种检测可溶性lag-3蛋白含量的酶联免疫检测试剂盒及应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5229109A (en) 1992-04-14 1993-07-20 Board Of Regents, The University Of Texas System Low toxicity interleukin-2 analogues for use in immunotherapy
KR101667096B1 (ko) 2011-02-10 2016-10-18 로슈 글리카트 아게 돌연변이 인터루킨-2 폴리펩티드
KR20190032355A (ko) * 2016-06-20 2019-03-27 키맵 리미티드 항-pd-l1 및 il-2 사이토카인
WO2019191295A1 (en) * 2018-03-28 2019-10-03 Bristol-Myers Squibb Company Interleukin-2/interleukin-2 receptor alpha fusion proteins and methods of use
KR20200002678A (ko) * 2018-06-29 2020-01-08 주식회사 와이바이오로직스 Lag-3에 특이적으로 결합하는 단클론항체 및 이의 용도
WO2020113403A1 (en) * 2018-12-04 2020-06-11 Beijing Percans Oncology Co. Ltd. Cytokine fusion proteins

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL3606946T3 (pl) * 2017-04-03 2022-11-28 F. Hoffmann-La Roche Ag Immunokoniugaty przeciwciała anty-PD-1 ze zmutowaną IL-2 lub z IL-15
EP3781597A1 (en) * 2018-04-18 2021-02-24 Xencor, Inc. Lag-3 targeted heterodimeric fusion proteins containing il-15/il-15ra fc-fusion proteins and lag-3 antigen binding domains
PE20201418A1 (es) * 2018-09-17 2020-12-09 Gi Innovation Inc Proteina de fusion que comprende proteina il-2 y proteina cd80 y uso de la misma
CN113924311A (zh) * 2019-01-07 2022-01-11 印希比股份有限公司 包含修饰的il-2多肽的多肽及其用途
US20220235133A1 (en) * 2019-06-24 2022-07-28 Nanjing GenScript Biotech Co., Ltd. Monoclonal antibody-cytokine fusion protein dimer and application thereof
BR112022012112A2 (pt) * 2019-12-20 2022-09-06 Regeneron Pharma Agonistas de il2 e métodos de uso dos mesmos

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5229109A (en) 1992-04-14 1993-07-20 Board Of Regents, The University Of Texas System Low toxicity interleukin-2 analogues for use in immunotherapy
KR101667096B1 (ko) 2011-02-10 2016-10-18 로슈 글리카트 아게 돌연변이 인터루킨-2 폴리펩티드
KR20190032355A (ko) * 2016-06-20 2019-03-27 키맵 리미티드 항-pd-l1 및 il-2 사이토카인
WO2019191295A1 (en) * 2018-03-28 2019-10-03 Bristol-Myers Squibb Company Interleukin-2/interleukin-2 receptor alpha fusion proteins and methods of use
KR20200002678A (ko) * 2018-06-29 2020-01-08 주식회사 와이바이오로직스 Lag-3에 특이적으로 결합하는 단클론항체 및 이의 용도
WO2020113403A1 (en) * 2018-12-04 2020-06-11 Beijing Percans Oncology Co. Ltd. Cytokine fusion proteins

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
"Remington's Pharmaceutical Sciences", 1995
ENGELSUHLMANN, ANGEW CHEM INT ED ENGL., vol. 37, 1988, pages 73 - 127
GILLIES ET AL., J. IMMUNOL. METH, vol. 125, 1989, pages 191 - 202
IMAI ET AL., CANCER SCI, vol. 98, 2007, pages 416 - 423
MATTHEW KRAMAN, MUSTAPHA FAROUDI, NATALIE L. ALLEN, KATARZYNA KMIECIK, DANIEL GLIDDON, CLAIRE SEAL, ALEXANDER KOERS, MATEUSZ M. WY: "FS118, a Bispecific Antibody Targeting LAG-3 and PD-L1, Enhances T-Cell Activation Resulting in Potent Antitumor Activity", CLINICAL CANCER RESEARCH, vol. 26, no. 13, 1 July 2020 (2020-07-01), US, pages 3333 - 3344, XP055722366, ISSN: 1078-0432, DOI: 10.1158/1078-0432.CCR-19-3548 *
SAKANO ET AL., NATURE, vol. 286, 1980, pages 676 - 683
See also references of EP4174088A4
WATSON ET AL., NUCLEIC ACID RESEARCH, vol. 12, 1984, pages 5145 - 5164

Also Published As

Publication number Publication date
KR20220002160A (ko) 2022-01-06
US20230257438A1 (en) 2023-08-17
TWI800861B (zh) 2023-05-01
JP2023531876A (ja) 2023-07-26
TW202208437A (zh) 2022-03-01
EP4174088A4 (en) 2024-01-24
KR102313505B1 (ko) 2021-10-18
EP4174088A1 (en) 2023-05-03
CN115916831A (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
WO2020060122A1 (ko) Il-2 단백질 및 cd80 단백질을 포함하는 융합단백질 및 이의 용도
WO2016200219A1 (en) Modified interleukin-7 protein and uses thereof
WO2015156649A1 (ko) 섬유증 억제 활성을 가지는 펩티드 및 이를 포함하는 조성물
WO2022005174A1 (ko) 항-lag-3 항체 및 il-2를 포함하는 융합단백질 및 이의 용도
WO2021096275A1 (ko) 변형된 인터루킨-7 및 tgf 베타 수용체 ii를 포함하는 융합단백질 및 이의 용도
WO2014133324A1 (ko) 신규한 인슐린 아날로그 및 이의 용도
WO2021153979A1 (ko) 항-taa 항체, 항-pd-l1 항체 및 il-2를 포함하는 융합단백질 및 이의 용도
WO2023136518A1 (ko) Cd80 세포외도메인 및 항 lag3 항체 단편을 포함하는 융합단백질 및 이의 용도
WO2018186706A1 (ko) Nk 세포 활성화 융합 단백질, nk 세포 및 이들을 포함하는 약제학적 조성물
WO2022010319A1 (ko) 글루카곤-유사 펩타이드-1 및 인터루킨-1 수용체 길항제를 포함하는 융합단백질 및 이의 용도
WO2017188653A1 (en) Fusion protein comprising ccl3 variant and use thereof cross-reference to related applications
WO2016027990A1 (ko) Dusp5를 유효성분으로 모두 포함하는 골대사성 질환의 예방 또는 치료용 약학적 조성물
WO2021107603A2 (en) Long-acting gdf15 fusion protein and pharmaceutical composition comprising same
WO2023234743A1 (ko) 항-tigit 항체를 포함하는 이중 특이적 항체 및 이의 용도
WO2021194186A1 (ko) Vgll1 펩타이드를 포함하는 암 치료용 조성물
EP4122953A1 (en) Fusion protein comprising il-2 protein and cd80 protein fragment or variant thereof, and uses thereof
WO2023249425A1 (ko) 항-cd73 항체 및 il-2를 포함하는 융합단백질 및 이의 용도
WO2023229303A1 (ko) Igsf1의 c-말단에 결합하는 항체 및 이의 용도
KR102400884B1 (ko) 변형된 인터루킨-7 및 인터루킨-2를 포함하는 융합단백질 및 이의 용도
WO2024085280A1 (ko) 신규한 키뉴레니나제 및 이의 용도
WO2022245183A1 (en) Composition for preventing or treating non-alcoholic fatty liver disease or non-alcoholic steatohepatitis comprising growth differentiation factor-15 variant
WO2023048516A1 (ko) Pd-1 및 il-21을 포함하는 융합단백질 이량체 및 이의 용도
WO2021187897A1 (ko) Il-2 단백질 및 cd80 단백질을 포함하는 융합단백질 제제
WO2022015049A1 (ko) IgE Fc 수용체 알파서브유닛의 세포외 도메인 및 항-IL-4R 항체를 포함하는 융합단백질 및 이의 용도
WO2021080400A1 (ko) 미나리 유래 폴리펩티드 및 상기 폴리펩티드를 포함하는 약학적 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21834395

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022575843

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021834395

Country of ref document: EP

Effective date: 20230130