WO2022005014A1 - 전도성 탄소 분말의 수분산성 향상 방법 및 전도성 탄소 분말의 콜로이드 용액 제조 방법 - Google Patents

전도성 탄소 분말의 수분산성 향상 방법 및 전도성 탄소 분말의 콜로이드 용액 제조 방법 Download PDF

Info

Publication number
WO2022005014A1
WO2022005014A1 PCT/KR2021/005982 KR2021005982W WO2022005014A1 WO 2022005014 A1 WO2022005014 A1 WO 2022005014A1 KR 2021005982 W KR2021005982 W KR 2021005982W WO 2022005014 A1 WO2022005014 A1 WO 2022005014A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon powder
plasma
conductive carbon
powder
present
Prior art date
Application number
PCT/KR2021/005982
Other languages
English (en)
French (fr)
Inventor
석동찬
정용호
유승열
Original Assignee
한국핵융합에너지연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국핵융합에너지연구원 filed Critical 한국핵융합에너지연구원
Priority to CN202180046891.2A priority Critical patent/CN115867615A/zh
Priority to JP2023500090A priority patent/JP2023533263A/ja
Priority to EP21834203.8A priority patent/EP4177313A4/en
Priority to US18/003,779 priority patent/US20230257269A1/en
Publication of WO2022005014A1 publication Critical patent/WO2022005014A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/48Carbon black
    • C09C1/485Preparation involving the use of a plasma or of an electric arc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/46Graphite
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/48Carbon black
    • C09C1/56Treatment of carbon black ; Purification
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/04Physical treatment, e.g. grinding, treatment with ultrasonic vibrations
    • C09C3/048Treatment with a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties

Definitions

  • the present invention relates to a method for improving hydrophilicity and water dispersibility of conductive carbon powder using carbon dioxide plasma, and a method for preparing a colloidal solution of conductive carbon powder.
  • Conductive carbon powder has excellent properties, such as high electrical conductivity and oxidation resistance, and is therefore applied in many fields, and its surface is lipophilic, so it is mainly used in non-aqueous, non-polar solvents.
  • dispersibility in aqueous solution must be high, so hydrophilic surface treatment of the powder is absolutely necessary.
  • a typical hydrophilic treatment method for carbon powder is a chemical liquid treatment method.
  • a treatment solution such as acetic acid, nitric acid and hydrogen peroxide, and reacting it, a hydroxyl group or an amino group is bonded to give a hydrophilic functional group to the surface.
  • this method has disadvantages in that it is not economically efficient because the surface treatment method is very difficult and many processes such as a purification process and drying process to remove residues are required.
  • there is an ozone treatment method in which the surface is treated in an ozone gas atmosphere, but there is a problem in that the carbon powder surface is denatured due to the strong oxidizing properties of ozone. Specifically, when only pure 100% O 2 (oxygen) is used, high concentration of ozone is generated. have.
  • Another object of the present invention is to provide a method for preparing a colloidal solution in which conductive carbon powder is stably well dispersed.
  • the method for improving the water dispersibility of conductive carbon powder for one purpose of the present invention is a novel method that can improve the water dispersibility of conductive carbon powder very easily compared to the prior art, by exposing the conductive carbon powder to a plasma jet or It is a method that can improve the water dispersibility of conductive carbon powder very easily with a simple process of reacting with the plasma-treated reaction gas.
  • the present invention can exhibit the effect of remarkably improving the water dispersibility of the conductive carbon powder just by reacting with the plasma-treated active gas.
  • the conductive carbon powder is not directly exposed to the formed plasma to react by disposing the plasma in the generating region, but by moving the plasma-treated gas and exposing it to the conductive carbon powder to react.
  • the plasma jet refers to ejecting the plasma generated in the plasma generating region in the form of a jet into the atmosphere.
  • the plasma treatment means placing the object to be treated in the plasma generating region and reacting it, but in the present invention, the plasma treatment is plasma-treated ionization, not directly exposing carbon powder by placing the carbon powder in the plasma generating region. It means exposing to carbon powder by using the gas.
  • a more effective method is to place conductive carbon powder in the plasma generating region and directly expose it to react
  • the applicant of the present invention experimentally found that when directly exposed to the plasma generating region, the carbon powder and plasma react to react with the carbon powder. The problem that the defect occurred was confirmed. Therefore, in the present invention, a process of exposing the conductive carbon powder to a plasma jet or reacting it with a plasma-treated reaction gas may be used in order to very stably modify the properties without defects.
  • the conductive carbon powder usable in the present invention may be a material composed only of carbon atoms.
  • graphene, graphite, carbon nanotube (TNT), carbon black, Ketjen black, and Denka black may be used.
  • the size or shape of the conductive carbon powder is not limited.
  • the conductive carbon powder may be a particle having a size of several nanometers to several hundreds of micrometers, but even if it has a size larger or smaller than this, it is not significantly limited in carrying out the present invention.
  • the shape of the conductive carbon powder may have a shape such as a sphere, a tetrahedron, a cube, an octahedron, and the like, but is not necessarily limited thereto.
  • the plasma may be carbon dioxide plasma.
  • plasma uses a mixed gas in which substances such as oxygen, nitrogen, and hydrogen are mixed in a specific ratio, but in the present invention, when 100% carbon dioxide plasma is used, carbon powder than when oxygen, nitrogen gas, or mixed gas is used It was confirmed that the water dispersibility of was remarkably formed.
  • a mixed gas is used, water dispersibility may be formed in the carbon powder, but it cannot be stably maintained in a colloidal state dispersed in a water-based solvent as in the present invention, and also exhibited a significant difference in the colloidal duration.
  • dielectric barrier discharge As a method of generating the plasma, methods such as dielectric barrier discharge, corona discharge, microwave discharge and arc discharge may be used, but preferably, dielectric barrier discharge (DBD) plasma may be used. However, it is not necessarily limited thereto.
  • DBD dielectric barrier discharge
  • the plasma treatment may be performed for 10 to 30 minutes.
  • the plasma treatment time is not limited as long as it is a sufficient time to impart dispersibility within a range in which denaturation and scratches do not occur on the surface of the conductive carbon powder.
  • conventional conductive carbon powder is used in many applications, and when it needs to be applied by dispersing it in a water-based solvent, because of the hydrophobic nature of the carbon powder, if it is not subjected to a surface treatment process, the carbon powder may agglomerate with each other or perform physical stirring. There was also a problem that the dispersion was not well. Therefore, the surface treatment process of the conductive carbon powder had to be performed. However, there are problems in that the surface treatment process is complicated or the carbon powder is very easily damaged.
  • the method for producing colloids of the present invention is a method that can solve these problems, by exposing conductive carbon particles to a plasma jet or reacting with a plasma-treated reaction gas, and adding conductive carbon colloidal powder obtained to a water-based solvent and stirring. .
  • the conductive carbon colloidal powder obtained by reacting with the plasma shows a state of dispersion in the solvent to some extent even when it is added to the water-based solvent without stirring, and the sealed container containing the colloidal powder and the water-based solvent is shaken by hand (Hand Shaking). Through simple stirring, a stably dispersed colloidal solution can be prepared without agglomeration of the eh powder.
  • the water dispersibility of carbon powder can be stably improved without defects in the carbon powder, and it can be continuously and stably dispersed in a water-based solvent. There is an effect that can be applied in the field.
  • FIG. 1 and 2 are views for explaining a method for improving water dispersibility of conductive carbon powder and a method for preparing a colloidal solution of conductive carbon powder according to the present invention.
  • FIG. 3 is a view for explaining an embodiment of the present invention.
  • FIG. 4 is a view showing an image taken immediately after the carbon powder prepared according to an embodiment of the present invention is put into water.
  • FIG. 5 is a view showing an image taken after the carbon powder prepared according to an embodiment of the present invention is put into water and stirred by applying a physical force.
  • FIG. 6 is a view showing the test results of water dispersibility safety characteristics according to time of the carbon powder prepared according to the embodiment of the present invention. It can be seen that the plasma-treated conductive carbon powder remains stably dispersed in water even after 60 minutes.
  • FIG. 7 is a view showing the results of the water dispersibility characteristics of the comparative example using the mixed gas plasma of the present invention.
  • FIG. 8 is a view for explaining a layer separation rate experiment of the carbon powder prepared according to an embodiment of the present invention.
  • FIG. 9 is a graph showing the experimental results of the layer separation rate of the carbon powder prepared according to the embodiment of the present invention. It can be seen that the layer separation rate of the plasma-treated carbon powder is reduced by about 3 to 4 times compared to the untreated carbon powder.
  • FIG. 1 and 2 are views for explaining a method for improving water dispersibility of conductive carbon powder and a method for preparing a colloidal solution of conductive carbon powder according to the present invention.
  • the method for improving the water dispersibility of conductive carbon powder and the method for preparing a colloidal solution of conductive carbon powder of the present invention include exposing the conductive carbon powder to a plasma jet or reacting it with a plasma-treated reactive gas can do.
  • the plasma jet refers to ejecting the plasma generated in the plasma generating region in a jet shape into the atmosphere. It is characterized in that it is reacted with an active gas.
  • the conductive carbon powder is disposed in the plasma generating region and reacted directly, the generated plasma and the conductive carbon powder react to easily cause defects in the carbon powder. Therefore, in the present invention, it is possible to react with the conductive carbon powder by using a plasma-treated reactive gas or an active gas instead of the generated plasma.
  • FIG. 1 it shows a conductive carbon powder plasma treatment method in which the conductive carbon powder is reacted with a plasma-treated reaction gas.
  • plasma is generated after a plasma generating gas is injected into a plasma reactor, and the plasma-treated reaction gas or ionized gas is moved to a container in which conductive carbon powder is disposed to thereby generate the carbon.
  • the reaction may be performed by vortex rotation.
  • the water dispersibility of the carbon powder may be improved by exposing the conductive carbon powder to a plasma jet.
  • the plasma may use a dielectric barrier discharge (DBD) plasma
  • the plasma electrode may be composed of two parallel metal electrodes.
  • DBD dielectric barrier discharge
  • the plasma-treated reaction gas or ionized gas is ejected in the direction in which the carbon powder is arranged, thereby reacting with the carbon powder.
  • the shape and size of the conductive carbon powder are not particularly limited, the conductive carbon powder may be a powder having a size of several tens of nanometers, or may have a spherical shape.
  • the plasma may be a carbon dioxide plasma.
  • the plasma may be 100% carbon dioxide plasma.
  • 100% carbon dioxide plasma gas it is possible to effectively improve the water dispersibility of the carbon powder compared to the case of using a mixed gas containing nitrogen and oxygen.
  • a functional group exhibiting hydrophilicity, such as OOH, can act. Therefore, by this process, the conductive carbon powder plasma-treated according to the method of the present invention may exhibit hydrophilicity, thereby improving the water dispersibility of the conductive carbon powder.
  • the reaction time between the plasma and the carbon powder may be performed for about 10 to 30 minutes.
  • the plasma treatment time is not limited as long as it is sufficient time to impart dispersibility of the conductive carbon powder within a range in which denaturation and defects do not occur on the surface of the conductive carbon powder.
  • a carbon powder colloidal solution can be prepared by adding the plasma-treated carbon powder through the above steps to the conductive carbon colloidal powder in a water-based solvent and stirring.
  • the plasma-treated carbon powder can be dispersed in the solvent immediately after adding it to the water-based solvent, but a more effectively dispersed colloidal solution can be prepared by stirring.
  • the stirring is not particularly limited as long as it is a method capable of dispersing the carbon powder in the solvent.
  • the stirring may be performed using a magnetic bar, or methods such as rotary and vertical reciprocating stirring may be used.
  • water dispersibility and hydrophilicity can be imparted to the conductive carbon powder by an easier method than the conventional technique using plasma, which can be effectively applied to the field of applying the conductive carbon powder.
  • FIG. 3 is a view for explaining an embodiment of the present invention.
  • conductive carbon powder (Ketjen black, KB600 JD) having a size of about 30 to 40 nm is put into a reactor, and a plasma active gas generator using a multi-stage DBD electrode (30 Hz, 0.8 kW, CO 2 gas 1lpm) to generate 100% CO 2 plasma, and then move the generated CO 2 plasma to a reaction chamber to react with conductive carbon powder for about 30 minutes. Thereafter, the conductive carbon powder obtained through the reaction was obtained.
  • the powder was added to a container immersed in water, and for comparison, the powder was added to a container immersed in water for conductive carbon powder that had not been plasma-treated, so that each water dispersibility was was confirmed.
  • the results are shown in FIG. 4 .
  • FIG. 4 it shows the state immediately after each conductive carbon powder is put into water, where the non-plasma-treated carbon powder (left) is not dispersed and floats on the water, while the plasma-treated carbon powder (right) It can be seen that the silver is well dispersed in water, which is a solvent. Through this, it can be seen that the carbon powder has improved water dispersibility through CO 2 plasma treatment.
  • the plasma-treated conductive carbon powder is added to a container containing water, which is a solvent, and physically dispersed in water (Hand Shaking), 3, 10, 20, 30, 40, 50, and 60 min) were photographed.
  • the difference in layer separation was photographed by performing the same process as above for conductive carbon powder not subjected to plasma treatment, and the results are shown in FIG. 6 .
  • the plasma-treated conductive carbon powder remains stably dispersed in water even after 60 minutes, whereas in the non-plasma-treated conductive carbon powder, some carbon powders are on the water even after stirring. It can be confirmed that it is floating, and after about 10 minutes, it can be confirmed that the dispersed carbon powder begins to sink to the bottom. After about 60 minutes, it can be seen that most of the carbon powder is not dispersed in water and has sunk to the bottom of the glass. Through this, it can be seen that the conductive carbon powder plasma-treated through the method of the present invention has a property of stably maintaining water dispersibility over time.
  • the layer separation rate was specifically confirmed by measuring the light absorption with time of the plasma-treated conductive carbon powder. For comparison, the layer separation rate of conductive carbon powder not treated with plasma was also measured and then compared.
  • the apparatus used to measure the layer separation rate is shown in FIG. 8 , and the optical absorbance measurement will be described in detail with reference to FIG. 8 .
  • the light absorbance measurement was performed by adding CO 2 plasma-treated carbon powder and non-plasma-treated carbon powder to water, respectively, and then performing optical emission analysis (OES, Optical Emission Spectrometer) for layer separation over time. was used. 10 average values were obtained and compared in a wavelength band of 550 to 700 nm at a height of about 1 cm from the bottom of the cuvette. The results are shown in FIG. 9 .
  • the layer separation rate of the plasma-treated carbon powder is reduced by about 3 to 4 times compared to the untreated carbon powder.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

본 발명은 전도성 탄소 분말의 수분산성 향상 방법 및 전도성 탄소 분말의 콜로이드 용액 제조 방법을 개시한다. 본 발명은 전도성 탄소 분말을 플라즈마 제트에 노출시키거나 플라즈마 처리된 반응가스와 반응시키는 단계를 포함하고, 상기 단계는 플라즈마 처리된 반응가스(이온화된 가스)를 상기 전도성 탄소 분말과 반응시키는 것을 특징으로 하며, 플라즈마를 이용함으로써 용이하게 전도성 탄소 분말의 수분산성을 향상시킬 수 있다.

Description

전도성 탄소 분말의 수분산성 향상 방법 및 전도성 탄소 분말의 콜로이드 용액 제조 방법
본 발명은 이산화탄소 플라즈마를 이용한 전도성 탄소 분말의 친수성 및 수분산성 향상 방법 및 전도성 탄소 분말의 콜로이드 용액 제조 방법에 관한 것이다.
전도성 탄소 분말은 높은 전기전도도, 내산화성 등의 우수한 특성을 가지고 있어 많은 분야에 응용되고 있고, 표면이 친유성을 띄고 있어 비수계의 비극성 용매에 주로 사용되고 있다. 그러나 2차전지 전극, 도료, 인쇄용 잉크 등의 분야에서 사용되어 수용액과 함께 이용되는 경우에는 수용액에 대한 분산성이 높아야 하므로 분말의 친수성 표면 처리가 반드시 필요하다.
탄소 분말에 대한 친수 처리 방법은 대표적으로 화학적 액상처리방법이 있다. 초산, 질산 및 과산화수소 등과 같은 처리 용액에 탄소 분말을 침지하여 반응시킴으로써 수산기나 아미노기를 결합시켜 표면에 친수성 기능기를 부여한다. 그러나 이러한 방법은 표면처리 방법이 매우 까다롭고 잔여물을 제거하는 정제과정, 건조과정 등의 많은 공정을 거쳐야 하기 때문에 경제적으로 효율적이지 못한 단점이 있다. 다른 방법으로는 오존 가스 분위기 하에서 표면처리하는 오존 처리법이 있으나 오존의 강한 산화 특성으로 탄소 분말 표면이 변성되는 문제점이 있다. 구체적으로, 순수한 100% O 2(산소)만을 사용하는 경우에는 고농도의 오존이 발생하게 되는데 발생된 오존과 전도성 탄소 분말이 교반 접촉 시에는 표면이 열화 되어 불에 타는 현상(burning)이 일어나는 문제점이 있다.
본 발명의 일 목적은 이산화탄소 플라즈마를 이용함으로써 간단한 공정만으로도 탄소 분말의 수분산성을 용이하게 향상시킬 수 있는 방법을 제공하는 것이다.
본 발명의 다른 목적은 전도성 탄소 분말이 안정적으로 잘 분산된 콜로이드 용액의 제조 방법을 제공하는 것이다.
본 발명의 일 목적을 위한 전도성 탄소 분말의 수분산성 향상 방법은 종래 기술과 비교하여 매우 용이하게 전도성 탄소 분말의 수분산성을 향상시킬 수 있는 신규한 방법으로, 전도성 탄소 분말을 플라즈마 제트에 노출시키거나 플라즈마 처리된 반응가스와 반응시키는 간단한 공정만으로도 매우 용이하게 전도성 탄소 분말의 수분산성을 향상시킬 수 있는 방법이다. 다시 말해, 본 발명은 플라즈마 처리된 활성 가스와 반응시키는 것만으로도 전도성의 탄소 분말의 수분산성이 현저하게 향상되는 효과를 나타낼 수 있다.
본 발명에서는 전도성 탄소 분말을 플라즈마를 발생 영역에 배치시켜, 형성된 플라즈마에 직접적으로 노출시켜 반응시키는 것이 아닌, 플라즈마 처리된 가스를 이동시켜, 전도성 탄소 분말에 노출시킴으로써 반응시키는 것을 특징으로 한다. 여기서, 상기 플라즈마 제트란 플라즈마 발생 영역에서 생성된 플라즈마를 대기 중에 제트 모양으로 분출시키는 것을 의미하는 것이다.
일반적으로, 플라즈마 처리라 함은 플라즈마 발생 영역에 피처리물을 배치시켜 반응시키는 것을 의미하지만, 본 발명에서 플라즈마 처리는 플라즈마 발생 영역에 탄소 분말을 배치시켜 직접적으로 노출시키는 것이 아닌, 플라즈마 처리된 이온화된 가스를 이용하여 탄소 분말에 노출시키는 것을 의미한다. 전도성 탄소 분말을 플라즈마 발생 영역에 배치시켜 직접적으로 노출시켜 반응시키는 것이 더 효과적인 방법이라고 사료될 수는 있으나, 본 출원인은 실험적으로 플라즈마 발생 영역에 직접적으로 노출시키는 경우 탄소 분말과 플라즈마가 반응하여 탄소 분말에 결함이 생기는 문제점을 확인하였다. 따라서 본 발명에서는 전도성 탄소 분말의 결함 없이 매우 안정적으로 특성을 개질시키기 위해 플라즈마 제트에 노출시키거나 플라즈마 처리된 반응가스와 반응시키는 공정을 이용할 수 있다.
본 발명에서 사용할 수 있는 전도성 탄소 분말은 탄소 원자로만 이루어진 물질일 수 있다. 예를 들면, 그래핀(graphene), 흑연(graphite), 탄소나노튜브(TNT), 카본 블랙(Carbon Black), 케첸 블랙(Ketjen black) 및 덴카 블랙(Denka black) 등 일 수 있다. 본 발명에서는 전도성 탄소 분말의 크기나 모양을 제한하지는 않는다. 바람직하게는 전도성 탄소 분말은 수 나노미터 내지 수백 마이크로미터 사이즈의 입자일 수 있으나, 이보다 크거나 작은 크기를 가져도 본 발명을 수행하는 데 있어서 크게 제한되는 않는다. 또한, 전도성 탄소 분말의 모양은 구형(sphere), 사면체(tetrahedron), 육면체(cube), 팔면체(octahedron) 등과 같은 형태를 가질 수 있으나, 반드시 이에 제한되지는 않는다.
상기 플라즈마는 이산화탄소 플라즈마일 수 있다. 일반적으로, 플라즈마는 산소나 질소, 수소와 같은 물질들을 특정 비율로 혼합한 혼합가스를 이용하지만, 본 발명에서는 100% 이산화탄소 플라즈마를 이용한 경우에, 산소나 질소 가스 또는 혼합 가스를 이용한 경우보다 탄소 분말의 수분산성이 현저하게 형성된 것을 확인하였다. 혼합가스를 이용한 경우 탄소 분말에 수분산성이 형성될 수는 있으나, 본 발명과 같이 물 기반의 용매에 분산된 콜로이드 상태에서 안정적으로 유지할 수 없으며, 또한 콜로이드 지속 시간에서도 현저한 차이를 나타냈다. 이와 관련된 내용은 하기의 실시예와 비교예를 통해 자세하게 서술하기로 한다.
상기 플라즈마를 발생하는 방법은 유전체 장벽 방전, 코로나 방전, 마이크로웨이브 방전 및 아크방전 등과 같은 방법을 이용할 수 있으나, 바람직하게는, 유전체 장벽 방전 플라즈마(dielectric barrier discharge, DBD) 플라즈마일 수 있다. 그러나 이에 반드시 제한 하는 것은 아니다.
상기 플라즈마 처리는 10 내지 30분 동안 수행될 수 있다. 본 발명에서는 전도성 탄소 분말의 표면에 변성 및 흠집 등이 생기지 않는 범위 내에서 분산성을 부여할 수 있는 충분한 시간이면, 상기 플라즈마 처리 시간을 제한하지 않는다.
일반적으로 종래의 전도성 탄소 분말은 많은 응용 분야에 사용되는데, 물 기반의 용매에 분산시켜 응용해야하는 경우, 탄소 분말의 소수성 특성 때문에 표면 처리 과정을 거치지 않으면 탄소 분말이 서로 응집하거나 물리적인 교반을 수행하여도 분산이 잘 되지 않는 문제점이 있었다. 따라서 전도성 탄소 분말의 표면 처리 과정을 반드시 수행했어야만 했다. 그러나 표면 처리 과정이 복잡하거나 탄소 분말이 매우 쉽게 망가지는 문제점들이 있었다.
본 발명의 콜로이드 제조 방법은 이러한 문제점들을 해결할 수 있는 방법으로 전도성 탄소 입자를 플라즈마 제트에 노출시키거나 플라즈마 처리된 반응가스와 반응시켜, 얻은 전도성 탄소 콜로이드 분말을 물 기반 용매에 첨가하고 교반시킴으로써 제조한다. 상기 플라즈마와 반응시켜 얻은 전도성 탄소 콜로이드 분말은 물 기반 용매에 교반없이 첨가하기만 해도 어느정도 용매에 분산된 상태를 나타내며, 콜로이드 분말과 물 기반 용매가 담긴 밀폐된 용기를 손으로 흔들어주는(Hand Shaking) 간단한 교반을 통해서eh 분말의 응집없이 안정적으로 분산된 콜로이드 용액을 제조할 수 있다.
본 발명에 따르면, 이산화탄소 플라즈마 처리를 통해 탄소 분말에 결함 없이 안정적으로 탄소 분말의 수분산성을 향상시킬 수 있고, 물 기반의 용매에서도 지속적이고 안정적으로 분산될 수 있어, 우수한 수분산성에 따른 물성으로 다양한 분야에 응용할 수 있는 효과가 있다.
도 1 및 2는 본 발명의 전도성 탄소 분말의 수분산성 향상 방법 및 전도성 탄소 분말의 콜로이드 용액 제조 방법을 설명하기 위한 도면이다.
도 3은 본 발명의 실시예를 설명하기 위한 도면이다.
도 4는 본 발명의 실시예에 따라 제조된 탄소 분말을 물에 투입한 직후의 상태를 촬영한 이미지를 나타낸 도면이다.
도 5는 본 발명의 실시예에 따라 제조된 탄소 분말을 물에 투입하여 물리적인 힘을 가하여 교반시킨 후의 상태를 촬영한 이미지를 나타낸 도면이다.
도 6은 본 발명의 실시예에 따라 제조된 탄소 분말의 시간에 따른 수분산성 안전성 특성 실험 결과를 나타낸 도면이다. 플라즈마 처리된 전도성 탄소 분말은 60분 경과 후에도 물에서 안정적으로 분산된 상태로 존재하는 것을 확인할 수 있다.
도 7은 본 발명의 혼합가스 플라즈마를 사용한 비교예의 수분산성 특성 결과를 나타낸 도면이다.
도 8은 본 발명의 실시예에 따라 제조된 탄소 분말의 층 분리 속도 실험을 설명하기 위한 도면이다.
도 9는 본 발명의 실시예에 따라 제조된 탄소 분말의 층 분리 속도 실험 결과를 나타내는 그래프이다. 플라즈마 처리한 탄소 분말의 층 분리 속도는 처리되지 않은 탄소 분말(Untreated)에 비해 약 3~4배 정도 감소함을 확인할 수 있다.
이하, 첨부한 도면을 참조하여 본 발명의 실시예에 대해 상세히 설명한다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다.
본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로서 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
도 1 및 2는 본 발명의 전도성 탄소 분말의 수분산성 향상 방법 및 전도성 탄소 분말의 콜로이드 용액 제조 방법을 설명하기 위한 도면이다.
도 1 및 2를 참조하면, 본 발명의 전도성 탄소 분말의 수분산성 향상 방법 및 전도성 탄소 분말의 콜로이드 용액 제조 방법은 전도성 탄소 분말을 플라즈마 제트에 노출시키거나 플라즈마 처리된 반응가스와 반응시키는 단계를 포함할 수 있다. 상기 플라즈마 제트는 플라즈마 발생 영역에서 생성된 플라즈마를 대기 중에 제트 모양으로 분출시키는 것을 의미하는 것으로, 본 발명에서는 상기 단계에서 전도성 탄소 분말은 발생된 플라즈마에 직접적으로 노출시켜 반응시키는 것이 아닌, 플라즈마 처리된 활성 가스와 반응시키는 것을 특징으로 한다. 플라즈마 발생 영역 내에 전도성 탄소 분말을 배치하여 직접적으로 반응시키는 경우, 발생된 플라즈마와 전도성 탄소 분말이 반응하여 탄소 분말에 결함이 생기기 쉽다. 따라서 본 발명에서는 발생된 플라즈마가 아닌 플라즈마 처리된 반응가스 또는 활성을 띤 가스를 이용하여 전도성 탄소 분말과 반응시킬 수 있다.
도 1을 참조하면, 전도성 탄소 분말을 플라즈마 처리된 반응가스와 반응시키는 전도성 탄소 분말 플라즈마 처리 방법을 나타낸다. 이를 구체적으로 설명하면, 먼저 플라즈마 생성 가스를 플라즈마 반응기(Plasma reactor)로 주입한 후 플라즈마를 생성시키기고, 상기 플라즈마 처리된 반응가스 또는 이온화된 가스를 전도성 탄소 분말이 배치된 용기로 이동시켜 상기 탄소 분말과 반응시킨다. 이 때, 반응은 볼텍스 회전(Vortex rotation)에 의해 수행될 수 있다.
이어서, 도 2를 참조하여 전도성 탄소 분말 플라즈마 처리의 다른 방법을 설명하기로 한다. 도 2를 참조하면, 전도성 탄소 분말을 플라즈마 제트에 노출시킴으로써 탄소 분말의 수분산성을 향상시킬 수 있다. 여기서, 플라즈마는 유전체 장벽 방전(DBD) 플라즈마를 이용할 수 있으며, 플라즈마 전극(plasma electrode)은 두 개의 평행한 금속 전극으로 구성될 수 있다. 상기 금속 전극에 전류를 가하게 되면 평행한 전극 사이에 플라즈마가 형성되고, 플라즈마 처리된 반응가스 또는 이온화된 가스를 탄소 분말이 배치된 방향으로 분출시킴으로써, 상기 탄소 분말과 반응시킬 수 있다.
상기 전도성 탄소 분말은 형태와 크기를 특별히 제한하지는 않으나, 상기 전도성 탄소 분말은 수십 나노미터 크기의 수준의 분말일 수 있으며, 구형의 형태일 수 있다.
한편, 상기 플라즈마는 이산화탄소 플라즈마 일 수 있다. 바람직하게는, 상기 플라즈마는 100% 이산화탄소 플라즈마 일 수 있다. 100%의 이산화탄소 플라즈마 가스를 이용하는 경우 질소, 산소를 포함하는 혼합가스를 이용하는 경우와 비교하여, 탄소 분말의 수분산성을 효과적으로 향상시킬 수 있다.
상기 단계 동안, 이산화탄소 플라즈마 처리된 반응가스는 이온화가 되어 CO, CO 3 라디칼을 생성할 수 있고, 이는 전도성 탄소 분말의 표면과 반응하여, 상기 전도성 탄소 분말의 표면에 C-O, C=O, C-OOH 등의 친수성을 나타내는 기능기를 작용시킬 수 있다. 따라서 이러한 과정에 의해 본 발명의 방법에 따라 플라즈마 처리된 전도성 탄소 분말은 친수성을 나타낼 수 있고, 이로 인해 전도성 탄소 분말의 수분산성이 향상시킬 수 있다.
상기 플라즈마와 탄소 분말의 반응 시간, 즉 상기 플라즈마 처리는 약 10 내지 30분 동안 수행될 수 있다. 그러나 본 발명에서는 전도성 탄소 분말의 표면에 변성 및 결함 등이 생기지 않는 범위 내에서 전도성 탄소 분말의 분산성을 부여할 수 있는 충분한 시간이면, 상기 플라즈마 처리 시간을 제한하지 않는다.
상기 단계를 통해 플라즈마 처리된 탄소 분말을 상기 전도성 탄소 콜로이드 분말을 물 기반 용매에 첨가하고 교반시킴으로써 탄소 분말 콜로이드 용액을 제조할 수 있다. 플라즈마 처리되지 않은 탄소 분말과 비교하여, 플라즈마 처리된 탄소 분말을 물 기반 용매에 첨가한 직후에도 용매에 분산될 수는 있으나, 교반시킴으로써 더 효과적으로 분산된 콜로이드 용액을 제조할 수 있다. 상기 교반은 용매에 탄소 분말을 분산시킬 수 있는 방법이면 크게 제한하지는 않는다. 예를 들어, 상기 교반은 마그네틱 바를 이용하여 수행하거나, 회전식 및 수직 왕복형 교반등과 같은 방법을 이용할 수 있다.
본 발명에 따르면, 플라즈마를 이용하여 종래의 기술보다 용이한 방법으로 전도성 탄소 분말에 수분산성 및 친수성을 부여할 수 있으며, 이는 전도성 탄소 분말을 응용하는 분야에 효과적으로 응용할 수 있다.
이하에서, 구체적인 실시예들 및 비교예들을 통해서 본 발명에 대해서 보다 상세히 설명하기로 한다. 다만, 본 발명의 실시예들은 본 발명의 일부 실시 형태에 불과한 것으로서, 본 발명의 범위가 하기 실시예들에 한정되는 것은 아니다.
실시예
도 3은 본 발명의 실시예를 설명하기 위한 도면이다.
도 3을 참조하면, 본 발명의 실시예는 약 30 내지 40 nm의 크기를 갖는 전도성 탄소 분말(Ketjen black, KB600 JD)을 반응기에 넣고, 다단 DBD 전극을 사용한 플라즈마 활성가스 발생장치(30 Hz, 0.8 kW, CO 2 가스 1lpm)를 이용하여 100% CO 2 플라즈마를 생성한 뒤, 상기 생성된 CO 2 플라즈마를 반응 챔버로 이동시켜 전도성 탄소 분말과 약 30분 동안 반응시켰다. 이후에, 반응을 통해 얻어진 전도성 탄소 분말을 수득하였다.
상기에서 플라즈마 처리된 전도성 탄소 분말의 수분산성을 확인하기 위해 물에 담긴 용기에 분말을 첨가하였고, 비교를 위해 플라즈마 처리되지 않은 전도성 탄소 분말을 물에 담긴 용기에 분말을 첨가하여, 각각의 수분산성을 확인하였다. 그 결과를 도 4에 나타냈다.
도 4를 참조하면, 각각의 전도성 탄소 분말을 물에 투입한 직후의 상태를 나타내며, 여기서 플라즈마 처리되지 않은 탄소 분말(좌측)은 분산되지 않고 물 위에 떠있는 반면, 플라즈마 처리된 탄소 분말(우측)은 용매인 물에서 잘 분산되어 있는 상태를 확인할 수 있다. 이를 통해 탄소 분말은 CO 2 플라즈마 처리를 통해 수분산성이 향상된 것을 알 수 있다.
이어서, 각각의 탄소 분말이 담긴 용기를 물리적으로 교반(Hand Shaking)시킨 후 각각의 수분산성을 확인하였다. 그 결과를 도 5에 나타냈다.
도 5를 참조하면, 물리적으로 교반을 가하여도 플라즈마 처리되지 않은 탄소 분말(좌측)은 물 위에 떠있거나 쉽게 분산되지 못하는 상태를 보이나, 플라즈마 처리된 탄소 분말(우측)은 용기의 바닥이나 물 위에 분산되지 않은 탄소분말이 존재하지 않고 용매인 물에서 잘 분산되어 있는 것을 확인할 수 있다.
플라즈마 처리된 전도성 탄소 분말의 시간에 따른 수분산성 지속 특성을 확인하기 위해, 용매인 물이 담긴 용기에 플라즈마 처리된 전도성 탄소 분말을 첨가하고, 물에 물리적으로 분산(Hand Shaking)시킨 후, 시간(3, 10, 20, 30, 40, 50 및 60분)에 따른 층 분리 차이를 사진 촬영하였다. 또한, 비교를 위해 플라즈마 처리하지 않은 전도성 탄소 분말을 상기와 동일한 과정을 수행하여 층 분리 차이를 촬영하였고, 그 결과를 도 6에 나타냈다.
도 6을 참조하면, 플라즈마 처리된 전도성 탄소 분말은 60분 경과 후에도 물에서 안정적으로 분산된 상태로 존재하는 것을 확인할 수 있는 반면, 플라즈마 처리되지 않은 전도성 탄소 분말은 교반시킨 이후에도 물 위에 일부 탄소 분말들이 떠 있는 것을 확인할 수 있으며, 약 10분이 경과된 후에는 분산되었던 탄소 분말들이 바닥으로 가라앉기 시작하는 것을 확인할 수 있다. 약 60분 경과 후에는 대부분의 탄소 분말이 물에 분산되지 못하고 유리 바닥 부분으로 가라앉은 것을 확인할 수 있다. 이를 통해서, 본 발명의 방법을 통해 플라즈마 처리된 전도성 탄소 분말은 시간에 따라 수분산성이 안정적으로 지속되는 특성을 갖는 것을 알 수 있다.
비교예
질소(N 2)/Air 혼합가스 플라즈마(N 2/air는 1/0.033 Ipm, 혼합가스 중 산소의 농도는 0.66% 비율)를 사용한 것을 제외하고는, 본 발명의 실시예와 동일한 공정을 수행하여 본 발명의 비교예에 따른 플라즈마 처리된 탄소 분말을 얻었다. 상기에서 얻은 전도성 탄소 분말의 수분산성 특성을 확인하기 위해, 물에 분산시킨 후 시간의 경과(10 및 30분)에 따른 층 분리 차이를 촬영하였다. 그 결과를 도 7에 나타냈다.
도 7을 참조하면, 10분 경과(좌) 및 30분 경과(우)된 콜로이드 용액을 살펴보면, 콜로이드 용액에서 소량의 탄소 분말만 물에 분산되어 있을 뿐 대부분 밑으로 가라 앉아 있거나, 물 위에 떠있는 것을 확인할 수 있다. 또한 상기 도 6과 비교하여, 혼합가스 플라즈마로 처리된 탄소 분말은 시간이 지남에 따라 층 분리되는 속도가 이산화탄소 플라즈마로 처리된 탄소 분말의 층 분리 속도보다 매우 빠른 것을 알 수 있다. 이를 통해서, 혼합가스로 플라즈마를 처리한 경우에는 탄소 분말이 수분산성을 갖는다고 보기 어렵고, 수분산성을 지속적으로 갖고 있다고 보기도 어려운 것을 알 수 있다.
추가적으로, 플라즈마 처리된 전도성 탄소 분말의 시간에 따른 광 흡수도를 측정하여 층 분리 속도를 구체적으로 확인하였다. 비교를 위해 플라즈마 처리되지 않은 전도성 탄소 분말의 층 분리 속도 또한 측정한 후 비교하였다. 층 분리 속도를 측정하기 위해 사용된 장치를 도 8에 나타냈으며, 도 8을 참조하여 광 흡수도 측정을 자세하게 설명한다.
도 8을 참조하면, 광흡수도 측정은 CO 2 플라즈마 처리한 탄소 분말 및 플라즈마 처리되지 않은 탄소 분말을 물에 각각 투입한 후, 시간에 따른 층 분리를 광 방출 분석(OES, Optical Emission Spectrometer)을 이용하여 측정하였다. 큐벳(Cuvette)의 바닥부터 약 1cm 높이에서 550 내지 700 nm 파장대역으로 10개 평균값을 취득하여 비교하였다. 그 결과를 도 9에 나타냈다.
도 9를 참조하면, 플라즈마 처리한 탄소 분말의 층 분리 속도는 처리되지 않은 탄소 분말(Untreated)에 비해 약 3~4 배 정도 감소함을 확인할 수 있다. 이를 통해서, 본 발명의 방법을 이용하여 전도성 탄소 분말을 처리하는 경우, 용매에 분산 시킨 후에도 층이 분리되지 않고 지속적으로 분산될 수 있음을 알 수 있다.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (10)

  1. 전도성 탄소 분말을 플라즈마 제트에 노출시키거나 플라즈마 처리된 반응가스와 반응시키는 단계를 포함하고,
    전도성 탄소 분말의 수분산성 향상 방법.
  2. 제1항에 있어서,
    상기 플라즈마는 이산화탄소 플라즈마인 것을 특징으로 하는,
    전도성 탄소 분말의 수분산성 향상 방법.
  3. 제1항에 있어서,
    상기 플라즈마는 DBD(dielectric barrier discharge) 플라즈마인 것을 특징으로 하는,
    전도성 탄소 분말의 수분산성 향상 방법.
  4. 제1항에 있어서,
    상기 플라즈마 처리는 10 내지 30분 동안 수행되는 것을 특징으로 하는,
    전도성 탄소 분말의 수분산성 향상 방법.
  5. 제1항에 있어서,
    상기 전도성 탄소 분말은 그래핀(graphene), 흑연(graphite), 탄소나노튜브(TNT), 카본 블랙(Carbon Black), 케첸 블랙(Ketjen black) 및 덴카 블랙(Denka black) 중에서 선택된 어느 하나인 것을 특징으로 하는,
    전도성 탄소 분말의 수분산성 향상 방법.
  6. 전도성 탄소 입자를 플라즈마 제트에 노출시키거나 플라즈마 처리된 반응가스와 반응시켜, 전도성 탄소 콜로이드 분말을 얻는 제1 단계; 및
    상기 전도성 탄소 콜로이드 분말을 물 기반 용매에 첨가하고 교반시킴으로써 탄소 분말 콜로이드 용액을 제조하는 제2 단계;를 포함하고,
    탄소 분말 콜로이드 용액 제조 방법.
  7. 제6항에 있어서,
    상기 플라즈마는 이산화탄소 플라즈마인 것을 특징으로 하는,
    탄소 분말 콜로이드 용액 제조 방법.
  8. 제6항에 있어서,
    상기 플라즈마는 DBD(dielectric barrier discharge) 플라즈마인 것을 특징 으로 하는,
    탄소 분말 콜로이드 용액 제조 방법.
  9. 제6항에 있어서,
    상기 플라즈마 처리는 10 내지 30분 동안 수행되는 것을 특징으로 하는,
    탄소 분말 콜로이드 용액 제조 방법.
  10. 제6항에 있어서,
    상기 전도성 탄소 분말은 그래핀(graphene), 흑연(graphite), 탄소나노튜브(TNT), 카본 블랙(Carbon Black), 케첸 블랙(Ketjen black) 및 덴카 블랙(Denka black) 중에서 선택된 어느 하나인 것을 특징으로 하는,
    탄소 분말 콜로이드 용액 제조 방법.
PCT/KR2021/005982 2020-07-01 2021-05-13 전도성 탄소 분말의 수분산성 향상 방법 및 전도성 탄소 분말의 콜로이드 용액 제조 방법 WO2022005014A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180046891.2A CN115867615A (zh) 2020-07-01 2021-05-13 导电性碳粉的水分散性提高方法以及导电性碳粉的胶体溶液制备方法
JP2023500090A JP2023533263A (ja) 2020-07-01 2021-05-13 導電性炭素粉末の水分散性向上方法及び導電性炭素粉末のコロイド溶液製造方法
EP21834203.8A EP4177313A4 (en) 2020-07-01 2021-05-13 METHOD FOR IMPROVING DISPERSIBILITY OF CONDUCTIVE CARBON POWDER IN WATER AND METHOD FOR PREPARING COLLOIDAL SOLUTION OF CONDUCTIVE CARBON POWDER
US18/003,779 US20230257269A1 (en) 2020-07-01 2021-05-13 Method of improving aqueous dispersibility of conductive carbon powder, and method of preparing colloid solution of conductive carbon powder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0080726 2020-07-01
KR1020200080726A KR102441127B1 (ko) 2020-07-01 2020-07-01 전도성 탄소 분말의 수분산성 향상 방법 및 전도성 탄소 분말의 콜로이드 용액 제조 방법

Publications (1)

Publication Number Publication Date
WO2022005014A1 true WO2022005014A1 (ko) 2022-01-06

Family

ID=79316366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/005982 WO2022005014A1 (ko) 2020-07-01 2021-05-13 전도성 탄소 분말의 수분산성 향상 방법 및 전도성 탄소 분말의 콜로이드 용액 제조 방법

Country Status (6)

Country Link
US (1) US20230257269A1 (ko)
EP (1) EP4177313A4 (ko)
JP (1) JP2023533263A (ko)
KR (1) KR102441127B1 (ko)
CN (1) CN115867615A (ko)
WO (1) WO2022005014A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003300716A (ja) * 2001-11-14 2003-10-21 Toray Ind Inc 炭素質材料の処理方法、カーボンナノチューブ分散液、溶液を得る方法。
KR20050088554A (ko) * 2004-03-02 2005-09-07 광주과학기술원 분말형 탄소구조체의 표면처리 장치 및 방법
KR20090006912A (ko) * 2007-07-13 2009-01-16 홍용철 플라즈마를 이용한 탄소나노튜브 개질 방법 및 장치
KR20160021133A (ko) * 2013-06-19 2016-02-24 옵셰스트바 에스 아그라니첸니 아트베츠트벤나스티유 ″플라즈마-에스카″ 나노스케일 탄소의 콜로이드 용액 제조방법

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS592711B2 (ja) * 1981-03-28 1984-01-20 学校法人 近畿大学 改質カ−ボンブラックの製造法
JPS59199764A (ja) * 1983-04-27 1984-11-12 Kinkidaigaku 疎水性有機物の改質方法
JP4868109B2 (ja) * 2004-11-25 2012-02-01 東海カーボン株式会社 カーボンブラック水分散体の製造方法
JP5057261B2 (ja) * 2005-10-25 2012-10-24 東海カーボン株式会社 カーボンブラック水性分散体及びその製造方法
CN101428789B (zh) * 2008-12-04 2013-01-16 东华大学 碳纳米管表面大气压、常温等离子体改性的处理方法
JP2013001882A (ja) * 2011-06-21 2013-01-07 Ulvac Japan Ltd グラフェンインク及びその製造方法
US8916067B2 (en) * 2011-10-19 2014-12-23 The Aerospace Corporation Carbonaceous nano-scaled materials having highly functionalized surface
MX2017009981A (es) * 2015-02-03 2018-01-25 Monolith Mat Inc Sistema generador de negro de humo.
JP6892075B2 (ja) * 2017-08-31 2021-06-18 公立大学法人兵庫県立大学 カーボンナノフィラー分散液及び複合材料
CN110105793A (zh) * 2019-06-19 2019-08-09 焦作市和兴化学工业有限公司 一种乙炔炭黑修饰改性的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003300716A (ja) * 2001-11-14 2003-10-21 Toray Ind Inc 炭素質材料の処理方法、カーボンナノチューブ分散液、溶液を得る方法。
KR20050088554A (ko) * 2004-03-02 2005-09-07 광주과학기술원 분말형 탄소구조체의 표면처리 장치 및 방법
KR20090006912A (ko) * 2007-07-13 2009-01-16 홍용철 플라즈마를 이용한 탄소나노튜브 개질 방법 및 장치
KR20160021133A (ko) * 2013-06-19 2016-02-24 옵셰스트바 에스 아그라니첸니 아트베츠트벤나스티유 ″플라즈마-에스카″ 나노스케일 탄소의 콜로이드 용액 제조방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP4177313A4 *
TRULLI, M. G. ET AL.: "Towards highly stable aqueous dispersions of multi-walled carbon nanotubes: the effect of oxygen plasma functionalization", JOURNAL OF COLLOID AND INTERFACE SCIENCE, vol. 491, 2017, pages 255 - 264, XP029886317, DOI: 10.1016/j.jcis.2016.12.039 *

Also Published As

Publication number Publication date
US20230257269A1 (en) 2023-08-17
EP4177313A1 (en) 2023-05-10
KR102441127B1 (ko) 2022-09-07
EP4177313A4 (en) 2024-10-02
KR20220003195A (ko) 2022-01-10
JP2023533263A (ja) 2023-08-02
CN115867615A (zh) 2023-03-28

Similar Documents

Publication Publication Date Title
JP4070244B2 (ja) 表面変性された炭化物質
Ghezzi et al. Pattern formation in colloidal monolayers at the air–water interface
US8048275B2 (en) Method of solubilizing carbon nanomaterial
US9546092B2 (en) Functionalized graphene sheets having high carbon to oxygen ratios
US9920185B2 (en) Surface energy modified particles, method of making, and use thereof
JP5851755B2 (ja) 微粒子分散方法及び分散物
WO2022005014A1 (ko) 전도성 탄소 분말의 수분산성 향상 방법 및 전도성 탄소 분말의 콜로이드 용액 제조 방법
CN111483988A (zh) 一种抗氧化黑磷纳米片的制备方法
Bulavchenko et al. The formation of free ions and electrophoretic mobility of Ag and Au nanoparticles in n-hexadecane–chloroform mixtures at low concentrations of AOT
Inoue et al. Aqueous dispersion of hexagonal boron nitride via plasma processing in a hydroquinone solution
GB2129007A (en) Pigments and pigment-containing base compositions
CN100365076C (zh) 原位接枝有机化合物的纳米炭黑及其制造方法
JP2000095965A (ja) カーボンブラックの改質方法
CN1328074A (zh) 含导电聚合物组分-绝缘组分的复合材料水胶乳及其制法和应用
JPH0578110A (ja) 炭素質粉粒体の表面改質法
Damasceno et al. Why only solubility parameters? Liquid-phase exfoliation from the point of view of colloidal chemistry
Wang et al. Treatment of wastewater with high conductivity by pulsed discharge plasma
Morea et al. Surface characterization (XPS and SIMS) of emersed polybithiophene electrodes
CA2264851A1 (en) Corona method and apparatus for altering carbon containing compounds
Kalu et al. In situ degradation of polyhalogenated aromatic hydrocarbons by electrochemically generated superoxide ions
JP2004224950A (ja) 複合化カーボンブラックの製造方法
KR102491248B1 (ko) 질량 분석 장치, 질량 분석 방법 및 반도체 웨이퍼의 분석 방법
Hu et al. Aqueous dispersions of oligomer-grafted carbon nanomaterials with controlled surface charge and minimal framework damage
Dong et al. Adsorption of Myrj 45 on copper phthalocyanine pigment nanoparticles and effect on their dispersion stability in aqueous solution
JPH03249736A (ja) 電気泳動表示装置用表示液及びその表示液を用いた電気泳動表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21834203

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023500090

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021834203

Country of ref document: EP

Effective date: 20230201