WO2022004852A1 - 樹脂フィルム及びその製造方法 - Google Patents

樹脂フィルム及びその製造方法 Download PDF

Info

Publication number
WO2022004852A1
WO2022004852A1 PCT/JP2021/024995 JP2021024995W WO2022004852A1 WO 2022004852 A1 WO2022004852 A1 WO 2022004852A1 JP 2021024995 W JP2021024995 W JP 2021024995W WO 2022004852 A1 WO2022004852 A1 WO 2022004852A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
resin composition
solution
composition solution
polyimide
Prior art date
Application number
PCT/JP2021/024995
Other languages
English (en)
French (fr)
Inventor
治美 米虫
直樹 渡辺
郷司 前田
洋行 涌井
伝一朗 水口
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to CN202180037009.8A priority Critical patent/CN115697575A/zh
Priority to KR1020227026497A priority patent/KR20230031811A/ko
Priority to JP2021559601A priority patent/JPWO2022004852A1/ja
Publication of WO2022004852A1 publication Critical patent/WO2022004852A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/36Successively applying liquids or other fluent materials, e.g. without intermediate treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/12Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/02Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber
    • B05D7/04Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber to surfaces of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C41/12Spreading-out the material on a substrate, e.g. on the surface of a liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/34Component parts, details or accessories; Auxiliary operations
    • B29C41/36Feeding the material on to the mould, core or other substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2252/00Sheets
    • B05D2252/02Sheets of indefinite length

Definitions

  • the present invention relates to a resin film having good transparency, heat resistance, and mechanical strength, and a method for producing the same.
  • the present invention relates to a polyimide film and a method for producing the same, and a substrate for an optical member using this film is used for an electronic / optical device such as a liquid crystal display, an organic electroluminescence display, and an electronic paper.
  • Patent Document 1 As a method of imparting slipperiness to a film, there is a method of forming fine protrusions on the surface by adding an inorganic fine powder to the film as described in Patent Document 1.
  • Patent Document 2 there is a method of obtaining a film having improved slipperiness by forming irregularities on the surface of a support for applying a polyamic acid solution which is a raw material of a polyimide film.
  • Patent Document 3 As a slippery technology for polyimide films that require transparency, there is a method of adding fine particles such as alumina and silica having a volume average particle size in the range of 5 nm to 100 nm (Patent Document 3).
  • the protrusions formed on the film surface may deteriorate the optical characteristics.
  • the protrusions transferred to the film surface may deteriorate the optical characteristics.
  • the particle size is small, the amount of addition required to obtain the required slipperiness increases, and there is another problem that the increase in the amount of addition deteriorates the optical properties of the film.
  • the present invention has been made in view of the above-mentioned problems, and an object thereof is excellent in transparency that can be used as a transparent resin substrate used for applications of highly functional mobile phones, display devices and other various electronic devices. It is an object of the present invention to provide a method for producing a polyimide film which can be industrially produced, and a polyimide film.
  • the present inventors have conducted intensive research on the method for producing a resin film and the film before cutting. As a result, it has been found that by adopting the following configuration, it is possible to suppress appearance defects such as wrinkles when winding a film having excellent transparency into a roll shape, and to complete the present invention. I arrived.
  • the method for producing a resin film according to the present invention includes the following configurations.
  • Step A of applying the first resin composition solution to the central portion of the support Step B of applying the second resin composition solution containing the inorganic fine particles to both ends adjacent to the central portion.
  • Step C in which the first resin composition solution and the second resin composition solution are dried to obtain a pre-cut film laminate.
  • Step D in which the pre-cut film laminate is peeled off from the support to obtain a pre-cut film.
  • step D the step E of gripping both ends of the uncut film with a tenter type transport device, Step F of transporting the uncut film while grasping both ends of the uncut film, and After the step F, there is a step G for removing a part or all of the portion formed from the second resin composition solution from the uncut film.
  • a method for producing a resin film wherein the content of the inorganic fine particles at both ends is higher than the content of the inorganic fine particles at the center.
  • the method for producing a resin film according to [1] wherein the film thickness at both ends is larger than the film thickness at the center.
  • [3] The method for producing a resin film according to [1] or [2], wherein the first resin composition is a polyimide-based resin.
  • a central portion composed of the first resin composition and Both ends of the central portion have both end portions continuously formed from the central portion. Both ends thereof are composed of a second resin composition containing inorganic fine particles, and the content of the inorganic fine particles at both ends is higher than the content of the inorganic fine particles in the central portion before cutting. the film.
  • the pre-cut film according to [4] wherein the film thickness at both ends is larger than the film thickness at the center.
  • the pre-cut film according to [5] or [6], wherein the first resin composition is a polyimide-based resin.
  • the first resin composition solution is applied to the central portion of the support (step A), and the second resin composition solution containing inorganic fine particles is applied to both ends (step B).
  • the first resin composition solution and the second resin composition solution are dried to obtain a pre-cut film laminate (step C). Both ends of the uncut film laminate are portions formed only from the second resin composition solution.
  • the amount of the inorganic fine particles contained in the second resin composition solution is larger than the amount of the inorganic fine particles contained in the first resin composition solution.
  • the coefficient of friction at both ends can be made smaller than the coefficient of friction at the center.
  • the film thickness of both ends formed by the second resin composition solution is thicker than the film thickness of the central portion formed by the first resin composition. Since the film thickness at both ends is thicker than the film thickness at the center, both ends are in stronger contact with each other than at the center when the film is wound, and the film is wound without wrinkles or slack. be able to. Further, a step D of peeling the pre-cut film laminate from the support to obtain a pre-cut film, a step E of gripping both ends of the pre-cut film with a tenter type transport device after the step D, and the pre-cutting step.
  • a resin film is obtained through step G for removing all of the film.
  • the resin film from which a part of the portion formed from the second resin composition solution is removed is also referred to as a "partially cut film”
  • the resin film from which the entire portion is removed is also referred to as a "totally cut film”. That is, the resin film has a cut portion (cut surface).
  • the pre-cutting film and the partially cut film have excellent slipperiness at both ends even if the film has low slipperiness at the central portion. It can be used to wind up without any problems such as wrinkles.
  • the step E is a step of gripping both ends of the uncut film with the pins of the pin tenter type transport device.
  • the film thickness of the portion (both ends) formed from the second resin composition solution is the portion (central portion) formed from the first resin composition solution. It is preferable that the film thickness is larger than that of. As a result, the mechanical strength at both ends is improved, and for example, tearing due to the pins of the pin tenter type transfer device is more preferably suppressed.
  • the resin film is a polyimide resin film.
  • the pre-cut film and the partially cut film according to the present invention are The central part composed of the first resin composition and Both ends of the central portion have both end portions continuously formed from the central portion. Both ends thereof are made of a second resin composition having a higher content of inorganic fine particles than the first resin composition.
  • a more preferable configuration is characterized in that the film thickness at both ends is thicker than the film thickness at the center.
  • both ends of the uncut film are thicker than the central portion, they remain on the film when a part of both ends is removed to obtain a partially cut film.
  • both ends are wound, both ends are in stronger contact with each other than the central portion, and it is possible to wind the film without any trouble such as wrinkles by using a conventionally known winding device.
  • the first resin composition is preferably a polyimide resin.
  • the first resin composition is a polyimide resin
  • a polyimide resin film having a central portion having excellent transparency can be preferably obtained by removing a part of both ends after transporting by a tenter type transport device. Is possible.
  • a resin film capable of effectively suppressing winding defects such as wrinkles entering the film can be produced.
  • Methods, pre-cut films, and resin films can be provided.
  • FIG. 7 is a plan view of FIG. 7.
  • FIG. 9 is a plan view of FIG. It is sectional drawing which shows the case where the end portion of the coating film 64a slightly overlaps on the coating film 64b, and the end portion of the coating film 64b slightly overlaps on the coating film 64c. It is a side sectional view for demonstrating the application method of the resin composition solution which concerns on 4th Embodiment.
  • FIG. 12 is a plan view of FIG.
  • the method for producing a resin film is Step A of applying the first resin composition solution to the central portion of the support, Step B of applying the second resin composition solution containing the inorganic fine particles to both ends adjacent to the central portion. Step C, in which the first resin composition solution and the second resin composition solution are dried to obtain a pre-cut film laminate. Step D, in which the pre-cut film laminate is peeled off from the support to obtain a pre-cut film.
  • step D the step E of gripping both ends of the uncut film with a tenter type transport device, Step F of transporting the uncut film while grasping both ends of the uncut film, and After the step F, there is a step G for removing a part or all of the portion formed from the second resin composition solution from the uncut film.
  • the content of the inorganic fine particles at both ends is higher than the content of the inorganic fine particles at the center.
  • ⁇ Process A, Process B> In the method for producing a resin film according to the present embodiment, first, the first resin composition solution is applied to the central portion of the support (step A). Further, a second resin composition solution containing inorganic fine particles is applied to both ends adjacent to the central portion (step B). The step A and the step B may be performed at the same time, the step B may be performed after the step A, or the step A may be performed after the step B is performed. The second resin composition solution needs to be in contact with both ends of the first resin composition solution.
  • the support is not particularly limited, but a support having resistance to the solvent of the first resin composition solution and the second resin composition solution is preferable, and for example, PET (polyethylene terephthalate) and the like.
  • PET polyethylene terephthalate
  • Examples include resin films, metal drums, endless steel belts, and the like.
  • the coating method of the step A and the step B is not particularly limited, and examples thereof include a comma coating method, a T die coating method, a spin coating method, a spray coating method, a bar coating method, a knife coating method, and a dip method. Be done. Two of these methods may be combined.
  • the comma coat method, the T die coat method, or a combination thereof is preferable from the viewpoint of productivity.
  • step A and step B will be described.
  • FIG. 1 is a side sectional view for explaining a method of applying the resin composition solution according to the first embodiment
  • FIG. 2 is a plan view thereof.
  • the coating device 10 has a backup roll 12, a comma roll 14, and three coating liquid storage portions 16 (16a, 16b, 16c).
  • the coating liquid storage unit 16 (16a, 16b, 16c) has four side plates 18 (18a, 18b, 18c, 18d) for fractionating the coating liquid storage unit 16 and a back plate 20.
  • the coating liquid storage unit 16 (16a, 16b, 16c) can store the coating liquid 62 in the region surrounded by the back plate 20 and the side plate 18.
  • the second resin composition solutions 62a and 62c are stored in the coating liquid storage portions 16a and 16c located on both ends of the three coating liquid storage portions 16 (16a, 16b and 16c) and are located in the center.
  • the first resin composition solution 62b is stored in the coating liquid storage unit 16b.
  • the backup roll 12 continuously conveys the support 60 by rotating.
  • the support 60 conveyed by the backup roll 12 passes through the gap 22 formed between the backup roll 12 and the comma roll 14.
  • the coating liquid 62 (second resin composition solutions 62a, 62c, first resin composition solution 62b) is supplied onto the support 60 from the coating liquid storage unit 16.
  • a coating film 64 (64a, 64b, 64c) is formed. Specifically, the coating film 64 corresponding to the thickness obtained by subtracting the thickness of the support 60 from the gap 22 is formed.
  • the thickness of the coating film 64 can be controlled by a gap 22 or the like between the backup roll 12 and the comma roll 14.
  • FIG. 3 is a partially enlarged plan view of the vicinity of the side plate 18b shown in FIG.
  • Each coating liquid 62 (second resin composition solution 62a, 62c, first resin composition solution 62b) is applied onto the support 60 and then spreads in the width direction.
  • the second resin composition solution 62a applied in the vicinity of the side plate 18b spreads inward in the width direction (right side in FIGS. 2 and 3).
  • the first resin composition solution 62b applied in the vicinity of the side plate 18b spreads outward in the width direction (left side in FIGS. 2 and 3). Then, at the place where the side plate 18b in the flow direction (upper side in FIGS.
  • the second resin composition solution 62a (coating film 64a) and the first resin composition solution 62b (coating film 64b) are formed. Is connected.
  • the first resin composition solution 62b applied in the vicinity of the side plate 18c spreads outward in the width direction (right side in FIG. 2).
  • the second resin composition solution 62c applied in the vicinity of the side plate 18c spreads inward in the width direction (left side in FIG. 2).
  • the first resin composition solution 62b (coating film 64b) and the second resin composition solution 62c (coating film 64c) are connected at a position where the side plate 18c in the flow direction disappears.
  • the coating film 64a and the coating film 64b are connected, and the coating film 64b and the coating film 64c are connected.
  • Examples of the connection include a case where each resin composition solution constituting each coating film 64 is connected by being compatible with each other, a case where each coating film 64 is connected by an adhesive force at an interface, and the like.
  • connection mode of each coating film 64 is not particularly limited, but when each coating film is connected only on the side surface (see FIG. 4), when one of the coating films slightly overlaps with the other coating film (see FIG. 4). (See FIGS. 5 and 6). A more preferable connection mode is FIG. 4 or FIG. 5, and a particularly preferable connection mode is FIG.
  • FIG. 4 is a cross-sectional view showing a case where the film thickness at both ends and the film thickness at the center are substantially the same, and each coating film is connected only on the side surface.
  • the coating film 64a and the coating film 64b are connected only on the side surface.
  • the coating film 64b and the coating film 64c are connected only on the side surface.
  • the second resin composition solution 62a (coating film 64a) and the first resin composition solution 62b (coating film 64b), or the first The composition gradient region is formed by mixing the resin composition solution 62b (coating film 64b) of 1 and the second resin composition solution 62c (coating film 64c).
  • the width of the composition inclined region is preferably in the range of 10 to 2500 times the thickness of the coating film 64b in the portion other than the composition inclined region. It is more preferably 100 to 1000 times, still more preferably 250 to 500 times. For example, when the thickness of the coating film 64b is 20 ⁇ m, the width of the composition inclined region is preferably 0.2 mm (10 times the thickness of the coating film 64b) to 5 cm (2,500 times the thickness of the coating film 64b). .. Within this range, breakage from the composition inclined region is less likely to occur during production.
  • FIG. 5 is a cross-sectional view showing a case where the film thickness at both ends is larger than the film thickness at the center and the coating film 64a and the coating film 64c slightly overlap on the coating film 64b.
  • the end portion of the coating film 64a slightly overlaps the coating film 64b.
  • the end portion of the coating film 64c slightly overlaps with the coating film 64b.
  • the overlapping portion is the second resin composition solution 62a (coating film 64a) and the first resin composition solution 62b (coating film 64b), or the first resin composition solution 62b (coating film 64b) and the second resin.
  • a composition gradient region is formed by mixing the composition solution 62c (coating film 64c).
  • the width of the composition inclined region is preferably in the range of 10 to 2500 times the thickness of the coating film 64b in the portion other than the composition inclined region. It is more preferably 100 to 1000 times, still more preferably 250 to 500 times.
  • the width of the composition inclined region is preferably 0.2 mm (10 times the thickness of the coating film 64b) to 5 cm (2,500 times the thickness of the coating film 64b). .. Within this range, breakage from the composition inclined region is less likely to occur during production. Further, when the resin film is wound into a roll shape, the films in the central portion do not rub against each other, and wrinkles and sagging are less likely to occur.
  • FIG. 6 is a cross-sectional view showing a case where the film thickness at both ends is smaller than the film thickness at the center and the coating film 64b slightly overlaps the coating film 64a and the coating film 64c.
  • the end portion of the coating film 64b (the left end portion in FIG. 6) slightly overlaps the coating film 64a.
  • the end portion of the coating film 64b (the end portion on the right side in FIG. 6) slightly overlaps with the coating film 64c.
  • the width of the overlapping portion as in the case of FIG. 5, it is preferable that the width is in the range of 10 to 2500 times the coating film 64b of the portion which is not the composition inclined region. It is more preferably 100 to 1000 times, still more preferably 250 to 500 times. Within this range, breakage from the composition inclined region is less likely to occur during production.
  • the connection mode can be determined, for example, by the gap 22. If the gap 22 through which the second resin composition solutions 62a and 62c pass and the gap 22 through which the first resin composition solution 62b passes are the same, the connection mode shown in FIG. 4 is likely to be obtained. If the gap 22 through which the second resin composition solutions 62a and 62c pass is made slightly wider than the gap 22 through which the first resin composition solution 62b passes, the connection mode shown in FIG. 5 is likely to be obtained. If the gap 22 through which the first resin composition solution 62b passes is made slightly wider than the gap 22 through which the second resin composition solutions 62a and 62c pass, the connection mode shown in FIG. 6 is likely to be obtained.
  • the connection mode can be controlled not only by the gap 22 but also by the viscosities of the first resin composition solution 62b, the second resin composition solutions 62a and 62c, and the width of the side plate 18.
  • the step A and the step B are simultaneously performed by the coating device 10 described above.
  • FIG. 7 is a side sectional view for explaining a method of applying the resin composition solution according to the second embodiment
  • FIG. 8 is a plan view thereof.
  • the same reference numerals are given to the configurations common to the coating apparatus 10 of the first embodiment in the coating apparatus 30 of the second embodiment, and the description thereof will be omitted or simplified.
  • the coating apparatus 30 has a backup roll 12, a comma roll 14, and two coating liquid storage portions 16 (16a, 16c) on both sides in the width direction.
  • the coating liquid storage unit 16 (16a, 16c) can store the coating liquid 62 in the region surrounded by the back plate 20 and the side plate 18.
  • the second resin composition solutions 62a and 62c are stored in the two coating liquid storage portions 16 (16a and 16c).
  • the first resin composition solution is not stored in the coating liquid storage unit 16.
  • the backup roll 12 continuously conveys the support 60 by rotating.
  • the support 60 conveyed by the backup roll 12 passes through the gap 22 formed between the backup roll 12 and the comma roll 14.
  • the second resin composition solutions 62a and 62c are supplied onto the support 60 from the coating liquid storage portion 16, and the coating films 64a and 64c are formed.
  • the coating device 30 further includes a T die coater 32.
  • the T-die coater 32 is installed after the backup groll 12 and the comma roll 14.
  • the T-die coater 32 is installed so that the discharge port is located above the central portion of the support 60.
  • the T die coater 32 applies the first resin composition solution 62b to the central portion of the support 60.
  • the coating apparatus 30 described above first performs step B, and then performs step A.
  • the connection mode of each coating film 64 is likely to be the connection mode shown in FIG. 6, but is not limited thereto.
  • the first resin composition solution is first applied to the central portion of the support with a comma coater, and then the second resin composition solution is applied to both ends with a T-die coater. It may be applied.
  • FIG. 9 is a side sectional view for explaining a method of applying the resin composition solution according to the third embodiment
  • FIG. 10 is a plan view thereof.
  • the same reference numerals are given to the configurations common to the coating apparatus 30 of the second embodiment in the coating apparatus 40 of the third embodiment, and the description thereof will be omitted or simplified.
  • the coating device 40 includes a T die coater 42a, a T die coater 42b, and a T die coater 42c.
  • the T die coater 42a and the T die coater 42c are installed in front of the T die coater 42b.
  • the T-die coater 42a and the T-die coater 42c are each installed so that the discharge port is located above the end of the support 60.
  • the T die coater 42a is installed so that the discharge port is located above the left end portion of the support 60
  • the T die coater 42c is installed so that the discharge port is located above the right end portion of the support 60. It is installed in.
  • the T-die coater 42b is installed so that the discharge port is located above the central portion of the support 60.
  • the T die coater 42b coats the central portion of the support 60 with the first resin composition solution 62b.
  • the joining mode of each coating film 64 is likely to be the joining mode shown in FIG. 5, but is not limited thereto.
  • the second resin composition may be applied to both ends with a T-die coater, and then the first resin composition may be applied to the central portion with a T-die coater. ..
  • the bonding mode of each coating film 64 tends to be the bonding mode shown in FIG. 6, but the bonding mode is not limited to this.
  • the second resin composition is applied to one end with a T-die coater, then the first resin composition is applied to the center with a T-die coater, and then the other side.
  • the bonding mode of each coating film 64 tends to be the bonding mode shown in FIG. 11, but the bonding mode is not limited to this.
  • the end portion of the coating film 64a slightly overlaps the coating film 64b.
  • the end portion of the coating film 64b (the end portion on the right side in FIG. 11) slightly overlaps with the coating film 64c.
  • a plurality of T die coaters are arranged in a columnar manner, and the first resin composition and the second resin composition are arranged. It may be in the form of sequential application.
  • FIG. 12 is a side sectional view for explaining a method of applying the resin composition solution according to the fourth embodiment
  • FIG. 13 is a plan view thereof.
  • the same reference numerals are given to the configurations common to the coating apparatus 40 of the third embodiment in the coating apparatus 50 of the fourth embodiment, and the description thereof will be omitted or simplified.
  • the coating device 50 includes a T die coater 52 having a discharge port divided into three in the width direction.
  • the T-die coater 52 applies the first resin composition to the central portion of the support 60 and at the same time applies the second resin composition to both ends thereof.
  • the steps A and B in the fourth embodiment are forms in which the first resin composition and the second resin composition are simultaneously applied.
  • the joining mode of each coating film 64 is likely to be the joining mode shown in FIG. 4, but is not limited thereto.
  • the first resin composition solution and the second resin composition solution are dried to obtain a pre-cut film laminate (step C).
  • the drying conditions can be appropriately set within a range in which the solvent can be sufficiently volatilized.
  • the drying temperature is in the range of 60 ° C. to 140 ° C. and the drying time is in the range of 1 minute to 60 minutes. Can be done.
  • the drying conditions are particularly suitable when dimethylacetamide is used as a solvent because its boiling point is 165 ° C.
  • a step (step C-1) of winding the uncut film laminate together with the support in a roll shape may be performed.
  • the uncut film may be unwound again before the step D.
  • the content of the inorganic fine particles at both ends is higher than the content of the inorganic fine particles at the center. Therefore, in the configuration of FIG. 4 or 5, the slipperiness (coefficient of friction) at both ends is larger than the slipperiness at the central portion, so that wrinkles and sagging at the central portion can be prevented. ..
  • the uncut film laminate is peeled off from the support to obtain a pre-cut film (step D).
  • the method of peeling the pre-cut film laminate from the support is not particularly limited, but a method of winding from the end with tweezers or the like, making a cut in the pre-cut film laminate, and attaching an adhesive tape to one side of the cut portion.
  • a method of winding from the tape portion after wearing the film, a method of vacuum-adsorbing one side of the cut portion of the pre-cut film and then winding from that portion can be adopted.
  • As a method of winding it is desirable to wind it while winding it on a roll.
  • a method of cutting the pre-cut film laminate with a cutting tool such as a cutting tool
  • a method of cutting the pre-cut film laminate with a laser and a method of cutting the pre-cut film laminate with a water jet.
  • a method of cutting the body there are methods such as cutting the body, but the method is not particularly limited.
  • the uncut film may be unwound again before the step E.
  • the slipperiness (coefficient of friction) at both ends is larger than the slipperiness at the central portion, so that it is possible to prevent the occurrence of wrinkles and sagging at the central portion. can. If the steps C-1 and / or the D-1 are carried out, it is possible to provide a certain period after the drying step (step C) until the cutting step (step G) is carried out.
  • the solvent distribution in the thickness direction of the film can be equalized. This point will be described below. As shown in FIGS. 5 and 6, when the two coating films slightly overlap, the solvent distribution in the film immediately after drying on the support is such that the residual amount of the solvent in the coating film on the support side is on the surface side. More than the residual amount of solvent in the coating film. If the heating step (for example, step F described later) is performed in this state, a difference in the amount of solvent volatilized occurs, and there is a possibility that tearing is likely to occur at this portion (overlapping portion).
  • the steps C-1 and / or the D-1 to equalize the solvent distribution in the thickness direction of the overlapping portion, the residual amount of the solvent in the two types of coating films becomes relatively uniform. It can be made difficult to tear at the overlapping part.
  • the period of holding in the roll state is preferably 30 minutes or more, more preferably 3 hours or more. If the solvent is held in a rolled state for the above period, the solvent can be suitably diffused in the thickness direction. Further, when the steps C-1 and / or the D-1 are carried out, the uncut film is once wound up in the middle of the step, so that the production apparatus can be made compact.
  • the production line becomes considerably long, and the factory location may be restricted.
  • the manufacturing line can be divided into two, and the two divided lines can be arranged in parallel, so that a relatively compact manufacturing apparatus can be obtained. Furthermore, by winding the product once during manufacturing, it is possible to check the quality during the process.
  • both ends of the uncut film are gripped by a tenter type transport device (step E).
  • a tenter type transport device When a pin tenter type transport device is used as the tenter type transport device, both ends of the pre-cutting film are gripped by piercing a plurality of pins of the pin tenter type transport device.
  • a clip tenter type transport device When a clip tenter type transport device is used as the tenter type transport device, both ends of the uncut film are gripped by being sandwiched between a plurality of clips of the clip tenter type transport device.
  • the tenter-type transfer device conventionally known ones (for example, the tenter-type transfer device disclosed in Japanese Patent No. 4843996 and Japanese Patent No. 4821960) can be used.
  • the pre-cut film is conveyed while gripping both ends of the pre-cut film (step F). It may be heated during transportation.
  • the heating temperature is not particularly limited, but when the first resin composition solution and the second resin composition solution are polyimide resin composition solutions, for example, 150 ° C. to 500 ° C., 1 minute to 60 minutes. It can be within the range.
  • the uncut film may or may not be stretched in the width direction.
  • the uncut film usually shrinks in the width direction during transportation. Therefore, tensile tension is applied to the portion gripped by the tenter type transport device. Since the film thickness at both ends of the pre-cut film is preferably thicker than the film thickness at the central portion, it is possible to suppress tearing of the pre-cut film at the gripped portion (both ends). Further, in the uncut film, the tear strength at both ends (the portion formed from the second resin composition solution) is higher than the tear strength at the central portion (the portion formed from the second resin composition solution). If the size is increased, the tearing of the pre-cut film at the gripped portions (both ends) can be further suppressed. In particular, when a pin tenter type transport device is used as the tenter type transport device, tearing due to the pins of the pin tenter type transport device is more preferably suppressed.
  • step G a part or all of the portion formed from the second resin composition solution is removed from the uncut film to obtain a resin film (step G).
  • step G at least a part or all of the portion formed from the second resin composition solution may be removed, and the first resin composition together with the portion formed from the second resin composition solution.
  • the portion formed from the physical solution may also be partially removed. That is, the resin film may have a part or all of both ends removed from the "end / center / end" configuration, for example, "partially cut end / center / end”.
  • the film thickness (thickness) of the central portion of the uncut film is not particularly limited, but is preferably 5 ⁇ m to 125 ⁇ m, more preferably 7.5 ⁇ m to 75 ⁇ m, still more preferably 12.5 ⁇ m to 50 ⁇ m.
  • the film thickness (thickness) of both ends is not particularly limited, but is preferably 10 ⁇ m to 200 ⁇ m, more preferably 15 ⁇ m to 180 ⁇ m, and even more preferably 20 ⁇ m to 150 ⁇ m.
  • the film thicknesses at both ends may be the same or different, but are preferably the same.
  • the film thickness at both ends is preferably larger than the film thickness at the center.
  • the ratio of the film thickness at both ends to the film thickness at the center is preferably more than 1. It is more preferably 1.25 or more, and further preferably 1.5 or more because it is easy to prevent wrinkles and sagging in the central portion. Further, in order to prevent a difference in the dry state between both ends and the central portion, it is preferably 20 or less, more preferably 10 or less, and further preferably 5 or less.
  • the film thickness of the uncut film is the film thickness of the resin film.
  • the method for removing the portion formed from the second resin composition solution from the uncut film is not particularly limited, and a conventionally known slitter or the like can be used. At this time, a cut portion (cut surface) is generated.
  • first resin composition solution and the second resin composition solution (hereinafter, also simply referred to as “resin composition solution”) will be described.
  • the first resin composition solution and the second resin composition solution contain inorganic fine particles in a portion formed from the second resin composition solution in the uncut film and the resin film.
  • the composition is such that the content of the inorganic fine particles in the portion formed from the first resin composition solution is larger than the content of the inorganic fine particles.
  • the resin composition solution includes a polyimide resin composition solution, a polyamide resin composition solution, a polyamide-imide resin composition solution, a polyester resin composition solution, a polyolefin resin composition solution, and a polystyrene resin composition solution. And so on.
  • a polyimide resin composition solution is preferable because it has good transparency, heat resistance, and mechanical strength.
  • the polyimide resin composition solution may be a polyamic acid (polyimide precursor) solution or a polyimide solution.
  • a polyamic acid solution is used, heat treatment is performed in step F to cause a dehydration ring closure reaction to obtain a polyimide film.
  • a polyimide solution is used, a polyimide film is obtained by volatilizing the solvent in step C.
  • the polyimide film in the present invention is a polymer film having an imide bond in the main chain, preferably a polyimide film, a polyamide-imide film, or a polyamide film, more preferably a polyimide film or a polyamide-imide film, and further preferably. It is a polyimide film.
  • a polyimide film is a green film (“precursor”) in which a polyamic acid (polyimide precursor) solution obtained by reacting diamines and tetracarboxylic acids in a solvent is applied to a support for producing a polyimide film and dried.
  • the green film is heat-treated at high temperature on a support for producing a polyimide film or in a state of being peeled off from the support to perform a dehydration ring closure reaction. can get.
  • a polyimide solution obtained by a dehydration ring closure reaction between diamines and tetracarboxylic acids in a solvent is applied to a support for producing a polyimide film, dried, and a polyimide film containing 1 to 50% by mass of a solvent. Further, it can also be obtained by subjecting a polyimide film containing a solvent of 1 to 50% by mass to a high temperature and drying it on a support for producing a polyimide film or in a state of being peeled off from the support.
  • a polyamide-imide film is prepared by applying a polyamide-imide solution obtained by reacting diisocyanates and tricarboxylics in a solvent to a support for producing a polyamide-imide film and drying the mixture in an amount of 1 to 50% by mass.
  • a polyamide-imide film containing a solvent and further obtained by treating a polyamide-imide film containing 1 to 50% by mass of a solvent at a high temperature and drying it on a support for producing a polyamide-imide or in a state of being peeled off from the support. Be done.
  • a polyamide film is a polyamide containing 1 to 50% by mass of a solvent after applying a polyamide solution obtained by reacting diamines and dicarboxylic acids in a solvent to a support for producing a polyamide film and drying it. It is obtained by treating a polyamide film containing a solvent of 1 to 50% by mass at a high temperature and drying it on a support for producing a polyamide or in a state of being peeled off from the support.
  • tetracarboxylic acids examples include aromatic tetracarboxylic acids (including acid anhydrides thereof) and aliphatic tetracarboxylic acids (acid anhydrides thereof) usually used for polyimide synthesis, polyamideimide synthesis and polyamide synthesis.
  • aromatic tetracarboxylic acids including its acid anhydride
  • aromatic tricarboxylic acids including its acid anhydride
  • aliphatic tricarboxylic acids including its acid anhydride
  • alicyclic tricarboxylic acids including its acid anhydride
  • aromatic dicarboxylic acids aliphatic dicarboxylic acids, alicyclic dicarboxylic acids and the like can be used.
  • aromatic tetracarboxylic acid anhydrides and aliphatic tetracarboxylic acid anhydrides are preferable, aromatic tetracarboxylic acid anhydrides are more preferable from the viewpoint of heat resistance, and alicyclic type from the viewpoint of light transmission.
  • Tetracarboxylic acids are more preferred.
  • the tetracarboxylic acids are acid anhydrides, the number of anhydride structures in the molecule may be one or two, but those having two anhydride structures (dianhydride) are preferable. ) Is good.
  • Tetracarboxylic acids, tricarboxylic acids, and dicarboxylic acids may be used alone or in combination of two or more.
  • dianhydride having two acid anhydride structures is preferable, and in particular, 4,4'-(2,2-hexafluoroisopropylidene) diphthalic acid dianhydride and 4,4'-oxydiphthal.
  • Acid dianhydride is preferred.
  • the aromatic tetracarboxylic acids may be used alone or in combination of two or more. When heat resistance is important, the aromatic tetracarboxylic acids are preferably, for example, 50% by mass or more, more preferably 60% by mass or more, still more preferably 70% by mass or more, still more preferably 70% by mass or more of all tetracarboxylic acids. It is 80% by mass or more.
  • alicyclic tetracarboxylic acids examples include 1,2,3,4-cyclobutanetetracarboxylic acid, 1,2,3,4-cyclopentanetetracarboxylic acid, 1,2,3,4-cyclohexanetetracarboxylic acid, and 1 , 2,4,5-Cyclohexanetetracarboxylic acid, 3,3', 4,4'-bicyclohexyltetracarboxylic acid, bicyclo [2,2,1] heptane-2,3,5,6-tetracarboxylic acid, Bicyclo [2,2,2] octane-2,3,5,6-tetracarboxylic acid, bicyclo [2,2,2] octo-7-en-2,3,5,6-tetracarboxylic acid, tetrahydroanthracene -2,3,6,7-tetracarboxylic acid, tetradecahydro-1,4: 5,8: 9,10-trimethanoanth
  • a double-decker type silsesquioxane derivative containing an acid anhydride group represented by the structure of the formula (1) can also be mentioned.
  • dianhydride having two acid anhydride structures is preferable, and in particular, 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride and 1,2,3,4-cyclohexanetetracarboxylic are preferable.
  • 1,2,4,5-cyclohexanetetracarboxylic acid dianhydride is preferred, 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride, 1,2,4,5-cyclohexanetetracarboxylic Acid dianhydride is more preferred, and 1,2,3,4-cyclobutanetetracarboxylic acid dianhydride is even more preferred.
  • these may be used alone or in combination of two or more.
  • the alicyclic tetracarboxylic acids are preferably, for example, 50% by mass or more, more preferably 60% by mass or more, still more preferably 70% by mass or more, still more preferably 70% by mass or more of all tetracarboxylic acids. Is 80% by mass or more.
  • tricarboxylic acids examples include aromatic tricarboxylic acids such as trimellitic acid, 1,2,5-naphthalene tricarboxylic acid, diphenyl ether-3,3', 4'-tricarboxylic acid, and diphenylsulfone-3,3', 4'-tricarboxylic acid.
  • An acid or an alkylene such as a hydrogenated additive of the above aromatic tricarboxylic acid such as hexahydrotrimellitic acid, ethylene glycol bistrimerite, propylene glycol bistrimerite, 1,4-butanediol bistrimerite, polyethylene glycol bistrimerite.
  • Glycolbitrimeritate and these monoanhydrides and esterified products can be mentioned.
  • monoanhydride having one acid anhydride structure is preferable, and in particular, trimellitic acid anhydride and hexahydrotrimellitic acid anhydride are preferable. These may be used alone or in combination of two or more.
  • dicarboxylic acids examples include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, 4,4'-oxydibenzenecarboxylic acid, and the above aromatic dicarboxylic acid such as 1,6-cyclohexanedicarboxylic acid.
  • Hydrogen additives oxalic acid, succinic acid, glutaric acid, adipic acid, heptanedioic acid, octanedioic acid, azelaioic acid, sebacic acid, undecadioic acid, dodecanedioic acid, 2-methylsuccinic acid, and their acid salts.
  • an esterified product or the like can be mentioned.
  • aromatic dicarboxylic acids and hydrogen additives thereof are preferable, and terephthalic acid, 1,6-cyclohexanedicarboxylic acid, and 4,4'-oxydibenzenecarboxylic acid are particularly preferable.
  • the dicarboxylic acids may be used alone or in combination of two or more.
  • the diamines or isocyanates for obtaining a polyimide having high colorless transparency in the present invention are not particularly limited, and are aromatic diamines, aliphatic diamines, and fats usually used for polyimide synthesis, polyamide-imide synthesis, and polyamide synthesis. Cyclic diamines, aromatic diisocyanates, aliphatic diisocyanates, alicyclic diisocyanates and the like can be used. From the viewpoint of heat resistance, aromatic diamines are preferable, and from the viewpoint of transparency, alicyclic diamines are preferable. Further, when aromatic diamines having a benzoxazole structure are used, it is possible to exhibit high elastic modulus, low coefficient of thermal expansion, and low linear expansion coefficient as well as high heat resistance. Diamines and isocyanates may be used alone or in combination of two or more.
  • aromatic diamines examples include 2,2'-dimethyl-4,4'-diaminobiphenyl, 1,4-bis [2- (4-aminophenyl) -2-propyl] benzene, and 1,4-bis. (4-Amino-2-trifluoromethylphenoxy) benzene, 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl, 4,4'-bis (4-aminophenoxy) biphenyl, 4, 4'-bis (3-aminophenoxy) biphenyl, bis [4- (3-aminophenoxy) phenyl] ketone, bis [4- (3-aminophenoxy) phenyl] sulfide, bis [4- (3-aminophenoxy) Phenyl] sulfone, 2,2-bis [4- (3-aminophenoxy) Phenyl] sulfone, 2,2-bis [4- (3-aminophenoxy) Phenyl]
  • Part or all of the hydrogen atom on the aromatic ring of the diamine is a halogen atom, an alkyl group or an alkoxyl group having 1 to 3 carbon atoms, a cyano group, or a part or all of a hydrogen atom of an alkyl group or an alkoxyl group is a halogen atom.
  • Examples thereof include an alkyl halide group having 1 to 3 carbon atoms substituted with benzene, an aromatic diamine substituted with an alkoxyl group, and the like.
  • aromatic diamines having the benzoxazole structure are not particularly limited, and are, for example, 5-amino-2- (p-aminophenyl) benzoxazole and 6-amino-2- (p-aminophenyl) benzo.
  • aromatic diamines may be used alone or in combination of two or more.
  • alicyclic diamines examples include 1,4-diaminocyclohexane, 1,4-diamino-2-methylcyclohexane, 1,4-diamino-2-ethylcyclohexane, and 1,4-diamino-2-n-propyl.
  • Cyclohexane 1,4-diamino-2-isopropylcyclohexane, 1,4-diamino-2-n-butylcyclohexane, 1,4-diamino-2-isobutylcyclohexane, 1,4-diamino-2-sec-butylcyclohexane, Examples thereof include 1,4-diamino-2-tert-butylcyclohexane and 4,4'-methylenebis (2,6-dimethylcyclohexylamine).
  • 1,4-diaminocyclohexane and 1,4-diamino-2-methylcyclohexane are particularly preferable, and 1,4-diaminocyclohexane is more preferable.
  • the alicyclic diamines may be used alone or in combination of two or more.
  • diisocyanates examples include diphenylmethane-2,4'-diisocyanate, 3,2'-or 3,3'-or 4,2'-or 4,3'-or 5,2'-or 5,3'. -Or 6,2'-or 6,3'-dimethyldiphenylmethane-2,4'-diisocyanate, 3,2'-or 3,3'-or 4,2'-or 4,3'-or 5,2 '-Or 5,3'-or 6,2'-or 6,3'-diethyldiphenylmethane-2,4'-diisocyanate, 3,2'-or 3,3'-or 4,2'-or 4, 3'-or 5,2'-or 5,3'-or 6,2'-or 6,3'-dimethoxydiphenylmethane-2,4'-diisocyanate, diphenylmethane-4,4'-diisocyanate, diphenylmethane-3, 3'-diisocyanate, di
  • Didimethylbiphenyl-4,4'-diisocyanate, naphthalene-2,6-diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, and 1,4-cyclohexanediisocyanate are preferable.
  • the diisocyanates may be used alone or in combination of two or more.
  • the first resin composition solution and the second resin composition solution may be the same or different from each other.
  • the polyimide resin composition solution is adopted as the first resin composition solution
  • the polyimide resin composition solution is also used as the second resin composition solution from the viewpoint of close heat resistance and the like. It is preferable to use it. It is preferable that the second resin composition solution has a heat resistance equal to or higher than the heat resistance of the first resin composition solution.
  • the second resin composition solution used at both ends may be the same or different, but a polyimide resin composition solution having the same composition is preferable.
  • the first resin composition solution can contain inorganic fine particles. Since it is easy to obtain a highly transparent polyimide resin film, the content is preferably 0.1 ppm or more, more preferably 1 ppm or more, further preferably 5 ppm or more, and particularly preferably 10 ppm or more. Is. Further, since it does not reduce the transparency, it is preferably 1000 ppm or less, more preferably 800 ppm or less, further preferably 500 ppm or less, and particularly preferably 300 ppm or less. The method for measuring the content of the inorganic fine particles is according to the method of the example.
  • the second resin composition solution contains inorganic fine particles.
  • the content is preferably 1000 ppm or more, more preferably 3000 ppm or more, still more preferably 5000 ppm or more, because the slipperiness when made into a film roll is good. Further, from the viewpoint of cost, it is preferably 50,000 ppm or less, more preferably 30,000 ppm or less, and further preferably 20,000 ppm or less.
  • the method for measuring the content of the inorganic fine particles is according to the method of the example.
  • the content of the inorganic fine particles contained in the second resin composition solution is higher than the content of the inorganic fine particles contained in the first resin composition solution.
  • the first resin composition solution may or may not contain inorganic fine particles.
  • the ratio of the inorganic fine particles contained in the first resin composition solution and the second resin composition solution (second resin composition solution / first).
  • the resin composition solution of 1) is preferably 100 or more, more preferably 200 or more, still more preferably 300 or more, and particularly preferably 500 or more. Further, it is preferably 500,000 or less, more preferably 300,000 or less, and further preferably 100,000 or less.
  • the content of the inorganic fine particles contained in the first resin composition solution and the second resin composition solution is the content of the inorganic fine particles contained in the central portion and both ends of the uncut film and the resin film. It becomes.
  • the inorganic fine particles are not particularly limited, and examples thereof include silica, carbon, and ceramic, and silica is preferable. These may be used alone or in combination of two or more.
  • the average particle size of the inorganic fine particles is preferably 10 nm or more, more preferably 30 nm or more, and further preferably 50 nm or more. Further, it is preferably 1 ⁇ m or less, more preferably 500 nm or less, still more preferably 100 nm or less.
  • an organosilica sol “Snowtex (registered trademark) DMAc-ST-ZL” manufactured by Nissan Chemical Industries, Ltd. can be used.
  • the uncut film according to this embodiment is The central part composed of the first resin composition and Both ends of the central portion have both end portions continuously formed from the central portion. Both ends thereof are composed of a second resin composition containing inorganic fine particles. The amount of inorganic fine particles added at both ends is larger than the amount of inorganic fine particles added at the center.
  • the uncut film can be obtained by the steps A to C of the resin film manufacturing method according to the present embodiment.
  • cutting is to remove a part or all of the portion formed from the second resin composition solution, and specifically means trimming both ends in the width direction of the film.
  • first resin composition refers to a composition (sheet-like material) after the first resin composition solution is dried in the step C
  • second resin composition is the above-mentioned. The composition (sheet-like material) after the second resin composition solution is dried in the step C.
  • the width of both ends is not particularly limited as long as it can be gripped by a conventionally known tenter type transport device, and is generally more preferably 5 mm or more and preferably 10 mm. That is all.
  • the upper limit of the width is not particularly limited, and for example, the total of both ends may be 50% or less of the total width of the film, more preferably 30% or less, still more preferably 10% or less. Further, it is preferably 0.1% or more, more preferably 0.5% or more, still more preferably 1% or more.
  • the pre-cutting film according to this embodiment has been described above.
  • the central part composed of the first resin composition and Both ends of the central portion have both end portions continuously formed from the central portion. Both ends thereof are composed of a second resin composition containing inorganic fine particles, and the content of the inorganic fine particles at both ends is higher than the content of the inorganic fine particles in the central portion. Further, a resin film characterized by having cut portions (cut surfaces) at either both ends or the center portion.
  • the resin film is a film obtained by removing a part or all of a portion formed from the second resin composition solution from the uncut film, and a cut portion (cut surface) at either both ends or the center portion. Has. Specifically, it is obtained by removing a part or all of both ends from the configuration of "end / center / end", for example, “partially excised end / center / end", ". Partially excised end / central part / partially excised end ",” end / central part “,” partially excised end / central part ",” central part “, or” partially excised It has one of the "central parts" configurations.
  • the coefficient of static friction at the center of the uncut film and the resin film is preferably 1 to 2.7, more preferably 1.3 to 2.5.
  • the coefficient of friction at both ends is preferably 0.5 to 2.5, more preferably 0.7 to 2.0.
  • the ratio of the coefficient of friction between the central portion and both ends (central portion / both ends) is preferably 1 to 5, and more preferably 1.5 to 4. Within the above range, it is possible to suppress the occurrence of wrinkles and sagging when winding as a film roll.
  • the coefficient of friction is measured by the following measurement method.
  • the total light transmittance of the resin film is preferably 75% or more. It is more preferably 80% or more, further preferably 85% or more, further preferably 87% or more, and particularly preferably 88% or more.
  • the upper limit of the total light transmittance is not particularly limited, but industrially, 98% or less is sufficient, and 97% or less may be sufficient.
  • the haze ratio of the resin film is preferably 2 or less, more preferably 1.5 or less, further preferably 1 or less, and even more preferably 0.8 or less.
  • the lower limit of the haze rate is not particularly limited, but industrially, 0.01 or more is sufficient, and 0.05 or more may be sufficient.
  • the yellowness (YI) of the resin film is preferably 10 or less, more preferably 7 or less, and further preferably 5 or less.
  • the lower limit of the yellowness index is not particularly limited, but industrially, 0.1 or more is sufficient, and 0.2 or more may be sufficient.
  • the film thickness was measured using an electronic micrometer Millitron 1245D manufactured by Seiko em.
  • ⁇ Measurement method for total light transmittance and haze rate The total light transmittance and haze ratio of the film were measured using a HAZE meter NDH2000 manufactured by Nippon Denshoku Co., Ltd. and a CIE standard D65 light source. The same measurement was performed three times, and the arithmetic mean value was adopted.
  • YI yellowness of the film was measured using a color difference meter ZE2000 manufactured by Nippon Denshoku Co., Ltd. and a CIE standard C2 light source. The same measurement was performed three times, and the arithmetic mean value was adopted.
  • a mass portion of biphenyltetracarboxylic dianhydride (BPDA) was added over about 10 minutes, and the polymerization reaction was carried out by continuing stirring for 6 hours while adjusting the temperature so that it was in the temperature range of 20 to 40 ° C.
  • a viscous polyamic acid solution was obtained.
  • 410 parts by mass of DMAC was added to the obtained polyimide solution to dilute it, 25.83 parts by mass of isoquinoline was added as an imidization accelerator, and the polyamic acid solution was stirred at 30 to 40 ° C. Keep the temperature range, and add 122.5 parts by mass of acetic anhydride as an imidizing agent while slowly dropping it over about 10 minutes, and then keep the solution temperature at 30-40 ° C and stir for 12 hours.
  • the chemical imidization reaction was continuously carried out to obtain a polyimide solution.
  • 1000 parts by mass of the obtained polyimide solution containing the imidizing agent and the imidization accelerator was transferred to a reaction vessel equipped with a stirring device and a stirring blade, and the temperature was 15 to 25 ° C. while stirring at a speed of 120 rpm.
  • the temperature was maintained at the above, and 1500 parts by mass of methanol was added dropwise at a rate of 10 g / min.
  • turbidity of the polyimide solution was confirmed, and precipitation of powdery polyimide was confirmed.
  • 1500 parts by mass of methanol was added to complete the precipitation of polyimide.
  • the contents of the reaction vessel were filtered off by a suction filtration device, and further washed and filtered using 1000 parts by mass of methanol. Then, 50 parts by mass of the filtered polyimide powder was dried at 50 ° C. for 24 hours using a dryer equipped with a local exhaust device, and further dried at 260 ° C. for 2 hours to remove the remaining volatile components. , Polyimide powder was obtained. The reduced viscosity of the obtained polyimide powder was 2.1 dl / g. Next, 42 parts by mass of the obtained polyimide powder was dissolved in 168 parts by mass of DMAC to obtain a polyimide solution B1 having a solid content of 20% by mass.
  • Example 1 A polyamic acid solution A1 and a polyamic acid solution A2 were prepared. Using the comma coater shown in FIGS. 1 and 2, the clearance was adjusted so that the polyamic acid solution A1 had a final thickness of 25 ⁇ m in the central width of 500 mm of the PET film (A4100 manufactured by Toyobo Co., Ltd.) as a support. At the same time as the coating, the polyamic acid solution A2 was applied to each of both ends having a width of 50 mm so that the final film thickness was 35 ⁇ m. At this time, a side plate having a width of 10 mm was used. Then, it was dried at 100 to 110 ° C.
  • the PET film was wound around a 6-inch ABS core to obtain a polyamic acid film roll.
  • the polyamic acid film and the PET film were unwound from the obtained polyamic acid film roll, and the self-supporting polyamic acid film was peeled off from the PET film to obtain a polyamic acid film.
  • the obtained polyamic acid film is passed through a pin tenter having a pin sheet in which pins are arranged so that the pin spacing becomes constant when the pin sheets are lined up, and the film end is gripped by inserting the pin into the pin to break the film.
  • the first stage is 200 ° C for 3 minutes
  • the second stage is 250 ° C for 3 minutes.
  • the imidization reaction was allowed to proceed by heating under the conditions of 300 ° C. for 3 minutes as the third stage and 350 ° C. for 3 minutes as the fourth stage.
  • the film was cooled to room temperature in 2 minutes, and then a part of the end of the film formed by the polyamic acid solution A2 was slit and wound together with the center, leaving 25 mm at both ends, and the thickness was 25 ⁇ m and the width was 550 mm.
  • a polyimide film was obtained.
  • Example 2 A polyamic acid solution A1 and a polyamic acid solution A2 were prepared. With the comma coater shown in FIGS. 7 and 8, the polyamic acid solution A2 was applied to both ends on a mirror-finished stainless steel belt so that the final film thickness was 35 ⁇ m, and then the polyamic acid solution A1 was applied with a T-die. Was applied to the central portion with an adjusted clearance so that the final film thickness was 25 ⁇ m. At this time, the coating was applied so that the width of the central portion was 1000 mm and the width of both ends was 50 mm. Then, it was dried at 100 to 110 ° C.
  • the obtained uncut film is passed through a pin tenter having a pin sheet in which pins are arranged so that the pin spacing becomes constant when the pin sheets are lined up, and the film end is gripped by inserting the pin into the pin to break the film. Adjust the pin sheet spacing so that it does not occur and unnecessary tarmi is not generated, and transport it so that the final pin spacing is 1080 mm.
  • the first stage is 200 ° C for 3 minutes, and the second stage is 250 ° C for 3 minutes.
  • the imidization reaction was allowed to proceed by heating under the conditions of 300 ° C. for 3 minutes as the third stage and 350 ° C.
  • the film was cooled to room temperature in 2 minutes, and then a part of the end of the film formed by the polyamic acid solution A2 was slit to leave 25 mm at both ends and rolled into a 3-inch ABS resin core together with the center.
  • the polyimide film having a thickness of 25 ⁇ m, a width of 1050 mm, and a length of 500 m was obtained by continuously winding the film.
  • Example 3 A polyamic acid solution A1 and a polyamic acid solution A2 were prepared.
  • the polyamic acid solution A2 was applied to both ends of the T-die shown in FIGS. 9 and 10 on a mirror-finished stainless steel belt so that the final film thickness was 35 ⁇ m, and the polyamic acid solution A1 was centered on the T-die.
  • the clearance was adjusted and applied to the portion so that the final thickness was 25 ⁇ m.
  • the coating was applied so that the width of the central portion was 1000 mm and the width of both ends was 50 mm. Then, it was dried at 100 to 110 ° C. for 10 minutes, and after drying, it was peeled off from the support to obtain a self-supporting polyamic acid film.
  • the obtained uncut film is passed through a pin tenter having a pin sheet in which pins are arranged so that the pin spacing becomes constant when the pin sheets are lined up, and the film end is gripped by inserting the pin into the pin to break the film. Adjust the pin sheet spacing so that it does not occur and unnecessary tarmi is not generated, and transport it so that the final pin spacing is 1080 mm.
  • the first stage is 200 ° C for 3 minutes, and the second stage is 250 ° C for 3 minutes.
  • the imidization reaction was allowed to proceed by heating under the conditions of 300 ° C. for 3 minutes as the third stage and 350 ° C. for 3 minutes as the fourth stage.
  • the film was cooled to room temperature in 2 minutes, and then a part of the end of the film formed by the polyamic acid solution A2 was slit to leave 25 mm at both ends and rolled into a 3-inch ABS resin core together with the center.
  • the polyimide film having a thickness of 25 ⁇ m, a width of 1050 mm, and a length of 500 m was obtained by continuously winding the film.
  • Example 4 Polyimide solution B1 and polyimide solution B2 were prepared. Except for the fact that the polyimide solution B1 was applied instead of the polyamic acid solution A1 with the clearance adjusted so that the final film thickness was 45 ⁇ m, and the polyimide solution B2 was used instead of the polyamic acid solution A2 so that the final film thickness was 60 ⁇ m. In the same manner as in Example 1, a polyimide film having a thickness of 25 ⁇ m and a width of 550 mm was obtained.
  • Example 5 Polyimide solution C1 and polyimide solution C2 were prepared. Except for the fact that the polyimide solution C1 was applied instead of the polyamic acid solution A1 with the clearance adjusted so that the final film thickness was 20 ⁇ m, and the polyimide solution C2 was used instead of the polyamic acid solution A2 so that the final film thickness was 30 ⁇ m. The same procedure as in Example 1 was carried out to obtain a polyimide film having a thickness of 25 ⁇ m and a width of 550 mm.
  • Example 6 A polyamic acid solution D1 and a polyamic acid solution D2 were prepared. Except for the fact that the polyamic acid solution D1 was applied instead of the polyamic acid solution A1 with the clearance adjusted so that the final film thickness was 20 ⁇ m, and the polyimide solution D2 was used instead of the polyamic acid solution A2 so that the final film thickness was 30 ⁇ m. Was carried out in the same manner as in Example 1 to obtain a polyimide film having a thickness of 25 ⁇ m and a width of 550 mm.
  • Example 7 A polyamic acid solution E1 and a polyamic acid solution E2 were prepared. Instead of the polyamic acid solution A1, the polyamic acid solution E1 was applied with the clearance adjusted so as to have a final thickness of 22 ⁇ m, and the polyamic acid solution E2 was used instead of the polyamic acid solution A2 so as to have a final thickness of 35 ⁇ m.
  • a polyimide film having a thickness of 25 ⁇ m and a width of 550 mm was obtained in the same manner as in Example 1 except for the above.
  • Example 8 A polyimide film having a thickness of 25 ⁇ m and a width of 550 mm was obtained in the same manner as in Example 1 except that the polyamic acid solution A2 was applied so as to have a final film thickness of 25 ⁇ m.
  • Example 1 A polyimide film having a thickness of 25 ⁇ m and a width of 550 mm was obtained in the same manner as in Example 1 except that the polyamic acid solution A1 was used instead of the polyamic acid solution A2, and the entire width of the central portion and both ends was free of lubricant. ..
  • Example 2 A polyimide film having a thickness of 25 ⁇ m and a width of 550 mm was obtained in the same manner as in Example 1 except that the polyamic acid solution A2 was used instead of the polyamic acid solution A1. ..
  • TFMB 2,2'-Ditrifluoromethyl-4,4'-diaminobiphenyl
  • Example 9 A polyamic acid solution F1 and a polyamic acid solution F2 were prepared. Instead of the polyamic acid solution A1, the polyamic acid solution F1 was applied with the clearance adjusted so that the final thickness was 22 ⁇ m, and instead of the polyamic acid solution A2, the polyamic acid solution F2 was used so that the final thickness was 35 ⁇ m.
  • a polyimide film having a thickness of 25 ⁇ m and a width of 550 mm was obtained in the same manner as in Example 1 except for the above.
  • a double-decker type silsesquioxane derivative (AASQ1) containing an acid anhydride group represented by the structure of the formula (1) was obtained from Japan Material Technologies Corporation.
  • a nitrogen substitution in the reaction vessel equipped with a nitrogen introduction tube, a thermometer, and a stirring rod 327.2 parts by mass of pyromellitic dianhydride (PMDA), 490.2, was placed in the reaction vessel under a nitrogen atmosphere.
  • PMDA pyromellitic dianhydride
  • Example 10 A polyamic acid solution G1 and a polyamic acid solution G2 were prepared.
  • the polyamic acid solution G1 was applied instead of the polyamic acid solution A1 with the clearance adjusted so as to have a final thickness of 22 ⁇ m, and the polyamic acid solution G2 was used instead of the polyamic acid solution A2 so as to have a final film thickness of 35 ⁇ m.
  • a polyimide film having a thickness of 25 ⁇ m and a width of 550 mm was obtained in the same manner as in Example 1 except for the above.
  • Example 11 A polyamic acid solution H1 and a polyamic acid solution H2 were prepared.
  • the polyamic acid solution H1 was applied instead of the polyamic acid solution A1 with the clearance adjusted so as to have a final thickness of 22 ⁇ m, and the polyamic acid solution H2 was used instead of the polyamic acid solution A2 so as to have a final film thickness of 35 ⁇ m.
  • a polyimide film having a thickness of 25 ⁇ m and a width of 550 mm was obtained in the same manner as in Example 1 except for the above.
  • the thickness of both ends formed from the second resin composition solution is larger than the thickness of the central portion formed from the first resin composition solution, and the first
  • a lubricant to both ends formed from the resin composition solution of No. 2
  • the polyimide film of Example 8 has the same film thickness at the center and both ends, fine wrinkles are generated during winding, but a lubricant is added to both ends formed from the second resin composition solution. As a result, winding was possible without deteriorating the optical characteristics.
  • the polyimide films of Comparative Examples 1 to 3 since the addition of lubricants at both ends and the center was not appropriate, there was a problem of wrinkles or deterioration of optical characteristics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Moulding By Coating Moulds (AREA)
  • Laminated Bodies (AREA)

Abstract

透明性に優れたフィルムを製造する際に、滑剤添加によるフィルム中央部のヘーズ率悪化を効果的に抑制することが可能な樹脂フィルムの製造方法を提供すること。 支持体の中央部に第1の樹脂組成物溶液を塗布する工程A、前記中央部に隣接する両端部に無機微粒子を含有する第2の樹脂組成物溶液を塗布する工程B、前記第1の樹脂組成物溶液と前記第2の樹脂組成物溶液とを乾燥させ、切断前フィルム積層体を得る工程C、前記切断前フィルム積層体を前記支持体から剥離し、切断前フィルムを得る工程D、前記工程Dの後、前記切断前フィルムの両端部をテンター式搬送装置により把持する工程E、前記切断前フィルムの両端部を把持した状態で、前記切断前フィルムを搬送する工程F、及び、前記工程Fの後、前記切断前フィルムから、前記第2の樹脂組成物溶液から形成された部分の一部または全部を取り除く工程Gを有し、前記両端部の無機微粒子の含有量が前記中央部の無機微粒子の含有量よりも多いことを特徴とする樹脂フィルムの製造方法。

Description

樹脂フィルム及びその製造方法
 本発明は、透明性、耐熱性、機械強度が良好な樹脂フィルム及びその製造方法に関するものである。特に、ポリイミドフィルム及びその製造方法に関するものであり、このフィルムを用いた光学部材用基板は液晶ディスプレイ、有機エレクトロルミネッセンスディスプレイ、電子ペーパーなどの電子・光デバイスに利用される。
 近年、高機能化する携帯電話やディスプレイ機器その他各種電子機器類の小型化、軽量化の進展に伴い、従来のガラス基板に代わってこれらの用途に使用される透明樹脂基板材料への期待が高まっている。
 これらに適用するためには、従来のガラス基板の特徴である透明性、耐熱性、強度のほかに、工業的に生産、使用可能な形態であることが要求される。
 これらのフィルムの品位を確保しつつ工業的に用いる際、重要な実用特性の一つとしてフィルムの易滑性が挙げられる。平滑な表面を持つフィルムにおいては、フィルム同士が接触した場合、非常に高い摩擦が発生し、このためフィルムをロール状に巻き取る際に滑り性が悪く、折れシワなどの外観不良が発生しやすい。フィルム支持体(例えばロール)とフィルムの易滑性、またフィルム同士の易滑性が確保されることにより、各工程における操作性、取り扱い性を向上させ、更にはフィルム上にシワなどの不良箇所の発生が回避できる。
 フィルムに易滑性を付与する方法としては、特許文献1に記載のようにフィルムに無機微細粉体を添加することにより表面に微細な突起を形成させるものがある。あるいは特許文献2のようにポリイミドフィルムの原料となるポリアミド酸溶液を塗布するための支持体の表面に凹凸を形成することにより易滑性が向上したフィルムを得る方法がある。
 透明が要求されるポリイミドフィルムにおける易滑化技術としてはアルミナやシリカなどの体積平均粒径が5nm~100nmの範囲にある微粒子を添加する方法(特許文献3)などがある。
特公平6-11800号公報 特開2002-234040号公報 特開2008-292751号公報
 しかしながら、特許文献1の方法ではフィルム表面に形成された突起が光学特性を悪化させてしまうことがある。特許文献2の方法も同様にフィルム表面に転写された突起が光学特性を悪化させてしまうことがある。また、特許文献3の方法では、粒径が小さいと必要な滑り性を得るために必要な添加量が増え、添加量の増加がフィルムの光学特性を悪化させてしまう別の問題がある。
 本発明は、上述した課題に鑑みてなされたものであり、その目的は、高機能化する携帯電話やディスプレイ機器その他各種電子機器類の用途に使用される透明樹脂基板として利用できる透明性に優れたポリイミドフィルムを、工業的に生産可能なポリイミドフィルムの製造方法、及びポリイミドフィルムを提供することにある。
 本発明者らは、樹脂フィルムの製造方法、及び、切断前フィルムについて鋭意研究を行った。その結果、下記の構成を採用することにより、透明性に優れたフィルムをロール状に巻き取る際に、シワ等の外観不良を抑制することが可能であることを見出し、本発明を完成するに至った。
 すなわち、本発明に係る樹脂フィルムの製造方法は、以下の構成を含む。
[1] 支持体の中央部に第1の樹脂組成物溶液を塗布する工程A、
 前記中央部に隣接する両端部に無機微粒子を含有する第2の樹脂組成物溶液を塗布する工程B、
 前記第1の樹脂組成物溶液と前記第2の樹脂組成物溶液とを乾燥させ、切断前フィルム積層体を得る工程C、
 前記切断前フィルム積層体を前記支持体から剥離し、切断前フィルムを得る工程D、
 前記工程Dの後、前記切断前フィルムの両端部をテンター式搬送装置により把持する工程E、
 前記切断前フィルムの両端部を把持した状態で、前記切断前フィルムを搬送する工程F、及び、
 前記工程Fの後、前記切断前フィルムから、前記第2の樹脂組成物溶液から形成された部分の一部または全部を取り除く工程Gを有し、
 前記両端部の無機微粒子の含有量が前記中央部の無機微粒子の含有量よりも多いことを特徴とする樹脂フィルムの製造方法。
[2] 前記両端部の膜厚が、前記中央部の膜厚より大きいことを特徴とする[1]記載の樹脂フィルムの製造方法。
[3] 前記第1の樹脂組成物がポリイミド系樹脂あることを特徴とする[1]または[2]に記載の樹脂フィルムの製造方法。
[4] 第1の樹脂組成物で構成される中央部と、
 前記中央部の両端に、前記中央部から連続して形成される両端部と
を有し、
 前記両端部は、無機微粒子を含有する第2の樹脂組成物で構成されており、前記両端部の無機微粒子の含有量が中央部の無機微粒子の含有量よりも多いことを特徴とする切断前フィルム。
[5] 前記両端部の膜厚が、前記中央部の膜厚より大きいことを特徴とする[4]に記載の切断前フィルム。
[6] 前記第1の樹脂組成物は、ポリイミド系樹脂であることを特徴とする[5]または[6]に記載の切断前フィルム。
[7] 前記[5]5または[6]に記載の切断前フィルムに切断部を有する一部切断フィルム。
 前記構成によれば、支持体の中央部に第1の樹脂組成物溶液を塗布し(工程A)、両端部に無機微粒子を含有する第2の樹脂組成物溶液を塗布し(工程B)、前記第1の樹脂組成物溶液と前記第2の樹脂組成物溶液とを乾燥させ、切断前フィルム積層体を得る(工程C)。切断前フィルム積層体の両端部は、第2の樹脂組成物溶液のみから形成された部分となる。ここで、第2の樹脂組成物溶液に含まれる無機微粒子の量が第1の樹脂組成物溶液に含まれる無機微粒子の量よりも多いことが必要である。これにより、前記両端部の摩擦係数が前記中央部の摩擦係数よりも小さくすることができる。さらに第2の樹脂組成物溶液によって形成される両端部の膜厚が第1の樹脂組成物によって形成される中央部の膜厚よりも厚いものであることが好ましい。両端部の膜厚が中央部の膜厚よりも厚くなることにより、フィルム巻取り時においては中央部よりも両端部が強く接触することになり、フィルムにシワやたるみ等が生じることなく巻き取ることができる。
 さらに前記切断前フィルム積層体を前記支持体から剥離し、切断前フィルムを得る工程D、前記工程Dの後、前記切断前フィルムの両端部をテンター式搬送装置により把持する工程E、前記切断前フィルムの両端部を把持した状態で、前記切断前フィルムを搬送する工程F、及び、前記工程Fの後、前記切断前フィルムから、前記第2の樹脂組成物溶液から形成された部分の一部または全部を取り除く工程Gを経て樹脂フィルムを得る。ここで、第2の樹脂組成物溶液から形成された部分の一部を取り除いた樹脂フィルムを「一部切断フィルム」、全部取り除いた樹脂フィルムを「全部切断フィルム」ともいう。すわなち樹脂フィルムは切断部(切断面)を有する。このような方法によれば、前記切断前フィルムおよび一部切断フィルムは、中央部の滑り性が低いフィルムであっても、両端部の滑り性が優れているため、従来公知の巻取り装置を用いてシワ等の不具合なく巻き取ることが可能となる。
 前記構成において、前記工程Eは、前記切断前フィルムの両端部を、ピンテンター式搬送装置のピンにより把持する工程であることが好ましい。
 前記切断前フィルムおよび一部切断フィルムは、前記第2の樹脂組成物溶液から形成された部分(両端部)の膜厚が、前記第1の樹脂組成物溶液から形成された部分(中央部)の膜厚よりも大きいことが好ましい。これにより、両端部の機械的強度が向上し、例えば、ピンテンター式搬送装置のピンによる裂けがより好適に抑制される。
 前記構成においては、前記樹脂フィルムがポリイミド系樹脂フィルムであることが好ましい。
 近年、透明性の高いポリイミド系樹脂フィルムに対して高い需要があり、このようなポリイミド系樹脂フィルムは、無機微粒子を添加することにより透明性が低くなることがある。従って、前記構成によれば、第1の樹脂組成物溶液(中央部)にも無機微粒子を含有させることで、特に、透明性に優れたポリイミド系樹脂フィルムを好適に得ることが可能となる。
 また、本発明にかかる切断前フィルムおよび一部切断フィルムは、
 第1の樹脂組成物で構成される中央部と、
 前記中央部の両端に、前記中央部から連続して形成される両端部とを有し、
 前記両端部は、前記第1の樹脂組成物よりも無機微粒子の含有量が多い第2の樹脂組成物で構成されている。より好ましい構成としては、前記両端部の膜厚が、前記中央部の膜厚よりも厚いことを特徴とする。
 前記構成によれば、両端部の無機微粒子の含有量が、中央部の無機微粒子の含有量よりも大きいため、中央部の滑り性が低いフィルムであっても、両端部の滑り性は優れている。
 また、より好ましい構成によれば、切断前フィルムの両端部は、中央部よりも膜厚が厚くなっているため、両端部の一部を取り除いて、一部切断フィルムを得る際、フィルムに残る両端部が巻取り時においては中央部よりも両端部が強く接触することになり、従来公知の巻取り装置を用いてシワ等の不具合なく巻き取ることが可能となる。
 前記構成において、前記第1の樹脂組成物は、ポリイミド系樹脂であることが好ましい。
 前記第1の樹脂組成物がポリイミド系樹脂であると、テンター式搬送装置により搬送した後に両端部の一部を取り除けば、透明性に優れた中央部を有するポリイミド系樹脂フィルムを好適に得ることが可能となる。
 本発明によれば、従来公知の巻取り装置を用いて透明性に優れたフィルムを巻き取る際に、フィルムに入るシワ等の巻取り不具合を効果的に抑制することが可能な樹脂フィルムの製造方法、切断前フィルム、及び、樹脂フィルムを提供することができる。
第1実施形態に係る樹脂組成物溶液の塗布方法を説明するための側面断面図である。 図1の平面図である。 図2に示したサイドプレート18b近傍の部分拡大平面図である。 各塗布膜が側面のみで接続する場合を示す断面図である。 塗布膜64a及び塗布膜64cが、塗布膜64b上にわずかに重複する場合を示す断面図である。 塗布膜64bが、塗布膜64a及び塗布膜64c上にわずかに重複する場合を示す断面図である。 第2実施形態に係る樹脂組成物溶液の塗布方法を説明するための側面断面図である。 図7の平面図である。 第3実施形態に係る樹脂組成物溶液の塗布方法を説明するための側面断面図である。 図9の平面図である。 塗布膜64aの端部がわずかに塗布膜64b上に重複し、塗布膜64bの端部がわずかに塗布膜64c上に重複する場合を示す断面図である。 第4実施形態に係る樹脂組成物溶液の塗布方法を説明するための側面断面図である。 図12の平面図である。
 以下、本発明の実施形態について説明する。
 [樹脂フィルムの製造方法]
 本実施形態に係る樹脂フィルムの製造方法は、
 支持体の中央部に第1の樹脂組成物溶液を塗布する工程A、
 前記中央部に隣接する両端部に無機微粒子を含有する第2の樹脂組成物溶液を塗布する工程B、
 前記第1の樹脂組成物溶液と前記第2の樹脂組成物溶液とを乾燥させ、切断前フィルム積層体を得る工程C、
 前記切断前フィルム積層体を前記支持体から剥離し、切断前フィルムを得る工程D、
 前記工程Dの後、前記切断前フィルムの両端部をテンター式搬送装置により把持する工程E、
 前記切断前フィルムの両端部を把持した状態で、前記切断前フィルムを搬送する工程F、及び、
 前記工程Fの後、前記切断前フィルムから、前記第2の樹脂組成物溶液から形成された部分の一部または全部を取り除く工程Gを有し、
 前記両端部の無機微粒子の含有量が前記中央部の無機微粒子の含有量よりも多い。
 <工程A、工程B>
 本実施形態に係る樹脂フィルムの製造方法においては、まず、支持体の中央部に第1の樹脂組成物溶液を塗布する(工程A)。また、前記中央部に隣接する両端部に無機微粒子を含有する第2の樹脂組成物溶液を塗布する(工程B)。前記工程Aと前記工程Bとは同時に行ってもよく、前記工程Aを行った後に前記工程Bを行ってもよく、前記工程Bを行った後に前記工程Aを行ってもよい。前記第2の樹脂組成物溶液は前記第1の樹脂組成物溶液の両端部に接触している必要がある。
 前記支持体としては、特に限定されないが、第1の樹脂組成物溶液、及び、第2の樹脂組成物溶液の溶媒に対して耐性を有するものが好ましく、例えば、PET(ポリエチレンテレフタレート)のような樹脂製のフィルムや、金属ドラム、エンドレススチールベルト等が挙げられる。
 前記工程A、及び、前記工程Bの塗布方法は、特に限定されず、例えば、コンマコート法、Tダイコート法、スピンコート法、スプレーコート法、バーコート法、ナイフコート法、ディップ法等が挙げられる。これらのうちから2種の方法を組み合わせても良い。コンマコート法、Tダイコート法、あるいはこれらの組み合わせであれば生産性の観点から好ましい。
 以下、工程A、及び、工程Bの具体例について説明する。
 [第1実施形態]
 図1は、第1実施形態に係る樹脂組成物溶液の塗布方法を説明するための側面断面図であり、図2は、その平面図である。
 図1、図2に示すように、塗布装置10は、バックアップロール12と、コンマロール14と、3つの塗布液貯留部16(16a、16b、16c)とを有する。
 塗布液貯留部16(16a、16b、16c)は、塗布液貯留部16を分画するための4つのサイドプレート18(18a、18b、18c、18d)と、バックプレート20とを有する。塗布液貯留部16(16a、16b、16c)は、バックプレート20とサイドプレート18とで取り囲まれた領域に塗布液62を貯留することが可能である。
 3つの塗布液貯留部16(16a、16b、16c)のうちの両端側に位置する塗布液貯留部16a、16cには、第2の樹脂組成物溶液62a、62cが貯留され、中央に位置する塗布液貯留部16bには、第1の樹脂組成物溶液62bが貯留される。
 バックアップロール12は、回転することにより支持体60を連続的に搬送する。バックアップロール12により搬送される支持体60は、バックアップロール12とコンマロール14との間に形成された隙間22を通過する。支持体60が隙間22を通過する際、塗布液貯留部16から支持体60上に塗布液62(第2の樹脂組成物溶液62a、62c、第1の樹脂組成物溶液62b)が供給され、塗布膜64(64a、64b、64c)が形成される。具体的には、隙間22から支持体60の厚さを差し引いた厚さに相当する塗布膜64が形成される。
 塗布膜64の厚さは、バックアップロール12とコンマロール14との間の隙間22等によりコントロールすることができる。
 図3は、図2に示したサイドプレート18b近傍の部分拡大平面図である。
 各塗布液62(第2の樹脂組成物溶液62a、62c、第1の樹脂組成物溶液62b)は、支持体60上に塗布された後、幅方向に拡がる。具体的には、図3に示すように、サイドプレート18b近傍に塗布された第2の樹脂組成物溶液62aは、幅方向内側(図2、図3では右側)に拡がる。一方、サイドプレート18b近傍に塗布された第1の樹脂組成物溶液62bは、幅方向外側(図2、図3では左側)に拡がる。そして、流れ方向(図2、図3では上側)のサイドプレート18bがなくなった箇所において第2の樹脂組成物溶液62a(塗布膜64a)と第1の樹脂組成物溶液62b(塗布膜64b)とが接続される。
 同様に、サイドプレート18c近傍に塗布された第1の樹脂組成物溶液62bは、幅方向外側(図2では右側)に拡がる。一方、サイドプレート18c近傍に塗布された第2の樹脂組成物溶液62cは、幅方向内側(図2では左側)に拡がる。そして、流れ方向のサイドプレート18cがなくなった箇所において第1の樹脂組成物溶液62b(塗布膜64b)と第2の樹脂組成物溶液62c(塗布膜64c)とが接続される。
 以上により、塗布膜64aと塗布膜64bとが接続されるとともに、塗布膜64bと塗布膜64cとが接続される。前記接続は、各塗布膜64を構成する各樹脂組成物溶液同士が相溶することにより接続される場合や、各塗布膜64の界面における接着力により接続される場合等が挙げられる。
 各塗布膜64の接続態様としては、特に限定されないが、各塗布膜が側面のみで接続する場合(図4参照)、いずれか一方の塗布膜が他方の塗布膜上にわずかに重複する場合(図5、図6参照)が挙げられる。より好ましい接続態様としては、図4または図5であり、特に好ましい接続態様としては図5である。
 図4は、両端部の膜厚と中央部の膜厚がほぼ同じ大きさであり、各塗布膜が側面のみで接続する場合を示す断面図である。
 図4に示す例では、塗布膜64aと塗布膜64bとが側面でのみ接続されている。また、塗布膜64bと塗布膜64cとが側面のみで接続されている。塗布直後は側面のみで接続されているが、後に続く工程Cの直前までに第2の樹脂組成物溶液62a(塗布膜64a)と第1の樹脂組成物溶液62b(塗布膜64b)、あるいは第1の樹脂組成物溶液62b(塗布膜64b)と第2の樹脂組成物溶液62c(塗布膜64c)が混じり合うことによって組成傾斜領域を作る。前記組成傾斜領域の幅は、組成傾斜領域ではない部分の塗布膜64bの厚さの10~2500倍の範囲であることが好ましい。より好ましくは100~1000倍であり、さらに好ましくは250~500倍である。例えば、塗布膜64bの厚さが20μmの場合、前記組成傾斜領域の幅は、0.2mm(塗布膜64bの厚さの10倍)~5cm(塗布膜64bの厚さの2500倍)が好ましい。この範囲であれば製造中に組成傾斜領域からの破断が起こりにくくなる。
 図5は、両端部の膜厚が、中央部の膜厚より大きく、塗布膜64a及び塗布膜64cが、塗布膜64b上にわずかに重複する場合を示す断面図である。
 図5に示す例では、塗布膜64aの端部がわずかに塗布膜64b上に重複している。また、塗布膜64cの端部がわずかに塗布膜64b上に重複している。重複部分は第2の樹脂組成物溶液62a(塗布膜64a)と第1の樹脂組成物溶液62b(塗布膜64b)、あるいは第1の樹脂組成物溶液62b(塗布膜64b)と第2の樹脂組成物溶液62c(塗布膜64c)が混じり合うことによって組成傾斜領域を作る。前記組成傾斜領域の幅は、組成傾斜領域ではない部分の塗布膜64bの厚さの10~2500倍の範囲であることが好ましい。より好ましくは100~1000倍であり、さらに好ましくは250~500倍である。例えば、塗布膜64bの厚さが20μmの場合、前記組成傾斜領域の幅は、0.2mm(塗布膜64bの厚さの10倍)~5cm(塗布膜64bの厚さの2500倍)が好ましい。この範囲であれば製造中に組成傾斜領域からの破断が起こりにくくなる。また、樹脂フィルムをロール状に巻き取る際に中央部の膜同士がこすれることがなく、シワやたるみ等が生じにくくなる。
 図6は、両端部の膜厚が、中央部の膜厚より小さく、塗布膜64bが、塗布膜64a及び塗布膜64c上にわずかに重複する場合を示す断面図である。
 図6に示す例では、塗布膜64bの端部(図6では左側の端部)がわずかに塗布膜64a上に重複している。また、塗布膜64bの端部(図6では右側の端部)がわずかに塗布膜64c上に重複している。重複部分の幅の一例としては、図5の場合と同様、組成傾斜領域ではない部分の塗布膜64bの10~2500倍の範囲であることが好ましい。より好ましくは100~1000倍であり、さらに好ましくは250~500倍である。この範囲であれば製造中に組成傾斜領域からの破断が起こりにくくなる。
 前記接続態様は、例えば、隙間22により決定できる。第2の樹脂組成物溶液62a、62cの通過する隙間22と、第1の樹脂組成物溶液62bの通過する隙間22とを同一とすれば、図4に示した態様の接続態様となりやすい。第2の樹脂組成物溶液62a、62cの通過する隙間22を、第1の樹脂組成物溶液62bの通過する隙間22よりもわずかに広くすれば、図5に示した態様の接続態様となりやすい。第1の樹脂組成物溶液62bの通過する隙間22を、第2の樹脂組成物溶液62a、62cの通過する隙間22よりもわずかに広くすれば、図6に示した態様の接続態様となりやすい。なお、前記接続態様は、隙間22のみならず、第1の樹脂組成物溶液62b、第2の樹脂組成物溶液62a、62cの粘度や、サイドプレート18の幅によってもコントロールすることができる。
 第1実施形態では、上記で説明した塗布装置10により、工程Aと工程Bとを同時に行う。
 以上、第1実施形態に係る工程A、及び、工程Bについて説明した。
 [第2実施形態]
 図7は、第2実施形態に係る樹脂組成物溶液の塗布方法を説明するための側面断面図であり、図8は、その平面図である。なお、第2実施形態の塗布装置30において第1実施形態の塗布装置10と共通する構成については同一の符号を付し、説明を省略又は簡単にすることとする。
 図7、図8に示すように、塗布装置30は、バックアップロール12と、コンマロール14と、幅方向の両側に2つの塗布液貯留部16(16a、16c)とを有する。塗布液貯留部16(16a、16c)は、バックプレート20とサイドプレート18とで取り囲まれた領域に塗布液62を貯留することが可能である。
 2つの塗布液貯留部16(16a、16c)には、第2の樹脂組成物溶液62a、62cが貯留される。なお、第1実施形態と異なり、第2実施形態に係る塗布装置30においては、塗布液貯留部16に第1の樹脂組成物溶液を貯留しない。
 バックアップロール12は、回転することにより支持体60を連続的に搬送する。バックアップロール12により搬送される支持体60は、バックアップロール12とコンマロール14との間に形成された隙間22を通過する。支持体60が隙間22を通過する際、塗布液貯留部16から支持体60上に第2の樹脂組成物溶液62a、62cが供給され、塗布膜64a、64cが形成される。
 塗布装置30は、さらに、Tダイコーター32を備える。Tダイコーター32は、バックアップグロール12、コンマロール14よりも後段に設置されている。Tダイコーター32は、支持体60の中央部上方に吐出口が位置するように設置されている。
 塗布膜64a、64cが形成された後の支持体60が搬送されてくると、Tダイコーター32は、支持体60の中央部に、第1の樹脂組成物溶液62bを塗布する。
 第2実施形態では、上記で説明した塗布装置30により、まず、工程Bを先に行い、その後、工程Aを行う。第2実施形態の場合、各塗布膜64の接続態様は、図6に示した接続態様となりやすいがこれに限定されない。なお、第2実施形態の変形例として、支持体の中央部に先にコンマコーターで第1の樹脂組成物溶液を塗布し、その後、両端部にTダイコーターで第2の樹脂組成物溶液を塗布することとしてもよい。
 以上、第2実施形態に係る工程A、及び、工程Bについて説明した。
 [第3実施形態]
 図9は、第3実施形態に係る樹脂組成物溶液の塗布方法を説明するための側面断面図であり、図10は、その平面図である。なお、第3実施形態の塗布装置40において第2実施形態の塗布装置30と共通する構成については同一の符号を付し、説明を省略又は簡単にすることとする。
 塗布装置40は、Tダイコーター42a、Tダイコーター42b、Tダイコーター42cを備える。Tダイコーター42a、Tダイコーター42cは、Tダイコーター42bよりも前段に設置されている。
 Tダイコーター42a、Tダイコーター42cは、それぞれ、支持体60の端部上方に吐出口が位置するように設置されている。図10では、Tダイコーター42aは、支持体60の左側端部上方に吐出口が位置するように設置され、Tダイコーター42cは、支持体60の右側端部上方に吐出口が位置するように設置されている。
 Tダイコーター42bは、支持体60の中央部上方に吐出口が位置するように設置されている。
 塗布膜64a、64cが形成された後の支持体60が搬送されてくると、Tダイコーター42bは、支持体60の中央部に、第1の樹脂組成物溶液62bを塗布する。
 第3実施形態の場合、各塗布膜64の接合態様は、図5に示した接合態様となりやすいがこれに限定されない。また、第3実施形態の変形例として、第2の樹脂組成物をTダイコーターで両端部に塗布し、その後に第1の樹脂組成物をTダイコーターで中央部に塗布することとしても良い。この場合は各塗布膜64の接合態様は、図6に示した接合態様となりやすいがこれに限定されない。
 さらに、別の変形例として、第2の樹脂組成物をTダイコーターで片側の端部に塗布し、その後に第1の樹脂組成物をTダイコーターで中央部に塗布、続けてもう片側の端部に第2の樹脂組成物をTダイコーターで片側の端部に塗布することも可能である。この場合は各塗布膜64の接合態様は、図11に示した接合態様となりやすいがこれに限定されない。
 図11に示す例では、塗布膜64aの端部がわずかに塗布膜64b上に重複している。また、塗布膜64bの端部(図11では右側の端部)がわずかに塗布膜64c上に重複している。
 第3実施形態、及び、その変形例に示すように、工程A、及び、工程Bは、複数のTダイコーターを縦列的に配置し、第1の樹脂組成物と第2の樹脂組成物を逐次塗布する形態であってもよい。
 [第4実施形態]
 図12は、第4実施形態に係る樹脂組成物溶液の塗布方法を説明するための側面断面図であり、図13は、その平面図である。なお、第4実施形態の塗布装置50において第3実施形態の塗布装置40と共通する構成については同一の符号を付し、説明を省略又は簡単にすることとする。
 塗布装置50は、幅方向に3つに分割された吐出口を有するTダイコーター52を備える。Tダイコーター52は、支持体60の中央部に第1の樹脂組成物を塗布すると同時に両端部に第2の樹脂組成物を塗布する。
 図12、図13に示すように、第4実施形態における工程A、及び、工程Bは、第1の樹脂組成物と第2の樹脂組成物とを同時塗布する形態である。第4実施形態の場合、各塗布膜64の接合態様は、図4に示した接合態様となりやすいがこれに限定されない。
 <工程C>
 前記工程A、及び、前記工程Bの後、前記第1の樹脂組成物溶液と前記第2の樹脂組成物溶液とを乾燥させ、切断前フィルム積層体を得る(工程C)。乾燥条件としては、溶媒を充分に揮発させることができる範囲内で適宜設定することができ、一例として、乾燥温度60℃~140℃の範囲、乾燥時間1分~60分の範囲内とすることができる。前記乾燥条件は、特に、ジメチルアセトアミドを溶媒として使用する場合、その沸点が165℃であることから好適である。
 工程Cの後、工程Dの前に、前記切断前フィルム積層体を前記支持体ごとロール状に巻き取る工程(工程C-1)を行ってもよい。この場合、工程Dの前に、再度前記切断前フィルムを巻き出せばよい。また、本発明では、両端部の無機微粒子の含有量が、中央部の無機微粒子の含有量よりも多い。そのため、前記図4または図5の構成であれば、両端部の滑り性(摩擦係数)が中央部の滑り性よりも大きくなるため、中央部のシワやたるみ等の発生を防止することができる。
 <工程D>
 前記工程Cの後、前記切断前フィルム積層体を前記支持体から剥離し、切断前フィルムを得る(工程D)。前記切断前フィルム積層体を前記支持体から剥離する方法としては、特に制限されないが、ピンセットなどで端から捲る方法、切断前フィルム積層体に切り込みを入れ、切り込み部分の1辺に粘着テープを貼着させた後にそのテープ部分から捲る方法、切断前フィルムの切り込み部分の1辺を真空吸着した後にその部分から捲る方法等が採用できる。捲る方法としては、ロールに巻き取りながら捲ることが望ましい。
 前記切断前フィルム積層体に切り込みを入れる方法としては、刃物などの切削具によって切断前フィルム積層体を切断する方法や、レーザーにより切断前フィルム積層体を切断する方法、ウォータージェットにより切断前フィルム積層体を切断する方法などがあるが、特に限定されるものではない。例えば、上述した方法を採用するにあたり、切削具に超音波を重畳させたり、往復動作や上下動作などを付け加えて切削性能を向上させる等の手法を適宜採用することもできる。
 工程Dの後、工程Eの前に、前記切断前フィルムをロール状に巻き取る工程(工程D-1)を行ってもよい。この場合、工程Eの前に、再度前記切断前フィルムを巻き出せばよい。前記切断前フィルムを巻き取る際には、合紙(ブロッキング防止フィルム)を挟んで巻き取ることが好ましい。この際、前記図4または図5の構成であれば、両端部の滑り性(摩擦係数)が中央部の滑り性よりも大きくなるため、中央部のシワやたるみ等の発生を防止することができる。
 前記工程C-1及び/又は前記D-1の工程を実施すれば、乾燥工程(工程C)の後、切断工程(工程G)を実施するまでに一定の期間を設けることが可能となる。
 乾燥工程(工程C)の後に前記切断フィルム積層体を一度巻き取り、一定の期間その状態で保持することにより、フィルムの厚さ方向の溶剤分布を均等化することができる。この点につき、以下説明する。
 図5、図6に示すように、2つの塗布膜がわずかに重複する場合、支持体上で乾燥させた直後のフィルム中の溶剤分布は、支持体側の塗布膜の溶剤残存量が、表面側の塗布膜の溶剤残存量よりも多い。この状態で、加熱工程(例えば後述する工程F)を行うと、溶剤揮発量に差が生じ、この部分(重複部分)で裂けやすくなるおそれがある。
 そこで、前記工程C-1及び/又は前記D-1を実施し、重複部分の厚さ方向の溶剤分布を均等化することにより、二種の塗布膜の溶剤残存量が比較的均等となり、この重複部分で裂け難くすることができる。
 前記工程C-1の後、及び/又は、前記工程D-1の後、ロール状態で保持する期間としては、好ましくは30分以上、さらに好ましくは3時間以上である。ロール状態で前記期間保持すると、溶剤を好適に厚さ方向に拡散させることができる。
 また、前記工程C-1及び/又は前記D-1を実施すると、工程の途中で、一度、前記切断前フィルムを巻き取ることになるので、生産装置をコンパクトにすることができる。すなわち、全ての工程を連続的に接続する場合、相当に長い製造ラインとなり、工場立地などに制限が出る場合がある。一方、製造途中で巻き取り工程を実施すれば、製造ラインを二分することができ、二分した2つのラインを並列に配置することが可能となり、比較的コンパクトな製造装置とすることができる。 
 さらに、製造途中で一度巻き取ることで、工程中での品質チェックが可能となる。
 <工程E>
 前記工程Dの後、前記切断前フィルムの両端をテンター式搬送装置により把持する(工程E)。具体的には、テンター式搬送装置として、ピンテンター式搬送装置を用いる場合には、前記切断前フィルムの両端部を、ピンテンター式搬送装置の複数のピンに突き刺すことより把持する。また、テンター式搬送装置として、クリップテンター式搬送装置を用いる場合には、前記切断前フィルムの両端部を、クリップテンター式搬送装置の複数のクリップで挟むことにより把持する。テンター式搬送装置としては、従来公知のもの(例えば、特許第4843996号公報、特許第4821960号公報に開示のテンター式搬送装置など)を使用することができる。
 <工程F>
 前記工程Eの後、前記切断前フィルムの両端部を把持した状態で、前記切断前フィルムを搬送する(工程F)。搬送の際には、加熱してもよい。加熱温度は、特に限定されないが、前記第1の樹脂組成物溶液及び前記第2の樹脂組成物溶液がポリイミド系樹脂組成物溶液である場合、例えば150℃~500℃、1分~60分の範囲内とすることができる。
 なお、工程E、工程Fにおいては、幅方向に切断前フィルムを延伸してもよく、延伸しなくてもよい。
 前記工程Fでは、通常、搬送の際に前記切断前フィルムが幅方向に縮む。そのため、テンター式搬送装置に把持されている部分に引張張力がかかることになる。前記切断前フィルムは、好ましくは、両端部の膜厚が中央部の膜厚よりも厚いため、把持した部分(両端部)における前記切断前フィルムの裂けを抑制することができる。また、前記切断前フィルムは、両端部(第2の樹脂組成物溶液から形成された部分)の引裂強度を、中央部(第2の樹脂組成物溶液から形成された部分)の引裂強度よりも大きくなるようにすれば、把持した部分(両端部)における前記切断前フィルムの裂けをさらに抑制することもできる。特に、テンター式搬送装置として、ピンテンター式搬送装置を用いる場合には、ピンテンター式搬送装置のピンによる裂けがより好適に抑制される。
 <工程G>
 前記工程Fの後、前記切断前フィルムから、前記第2の樹脂組成物溶液から形成された部分の一部または全部を取り除き、樹脂フィルムを得る(工程G)。工程Gにおいては、少なくとも前記第2の樹脂組成物溶液から形成された部分の一部または全部を取り除けばよく、前記第2の樹脂組成物溶液から形成された部分とともに、前記第1の樹脂組成物溶液から形成された部分も一部取り除かれてもよい。すなわち、前記樹脂フィルムは、「端部/中央部/端部」の構成から両端部の一部または全部を取り除けば良いのであり、例えば、「一部切除した端部/中央部/端部」、「一部切除した端部/中央部/一部切除した端部」、「端部/中央部」、「一部切除した端部/中央部」、「中央部」、または、「一部切除した中央部」のいずれでも構わない。
 前記切断前フィルムにおける中央部の膜厚(厚さ)としては、特に限定されないが、5μm~125μmが好ましく、7.5μm~75μmがより好ましく、12.5μm~50μmがさらに好ましい。また、両端部の膜厚(厚さ)としては、特に限定されないが、10μm~200μmが好ましく、15μm~180μmがより好ましく、20μm~150μmがさらに好ましい。各両端部の膜厚は同じであっても異なっても良いが、同じであることが好ましい。前記各両端部の膜厚は、中央部の膜厚よりも大きいことが好ましい。各両端部の膜厚と中央部の膜厚の比率(両端部/中央部)は、1超であることが好ましい。中央部のシワやたるみを防止しやすくなることから、より好ましくは1.25以上であり、さらに好ましくは1.5以上である。また、両端部と中央部の乾燥状態に差がでないようにするため、20以下であることが好ましく、より好ましくは10以下であり、さらに好ましくは5以下である。前記切断前フィルムにおける膜厚が、樹脂フィルムの膜厚となる。
 前記切断前フィルムから、前記第2の樹脂組成物溶液から形成された部分を取り除く方法としては、特に限定されず、従来公知のスリッター等を用いることができる。この時、切断部(切断面)が発生する。
 以上、本実施形態に係る樹脂フィルムの製造方法によれば、本発明によれば、従来公知の巻取り装置を用いて透明性に優れたフィルムを巻き取る際に、フィルムに入るシワ等の巻取り不具合を効果的に抑制することが可能になる。
 以下、前記第1の樹脂組成物溶液、及び、前記第2の樹脂組成物溶液(以下、単に「樹脂組成物溶液」ともいう。)について説明する。
 前記第1の樹脂組成物溶液、及び、前記第2の樹脂組成物溶液は、前記切断前フィルムおよび前記樹脂フィルムにおいて、前記第2の樹脂組成物溶液から形成された部分の無機微粒子の含有量が、前記第1の樹脂組成物溶液から形成された部分の無機微粒子の含有量よりも大きくなる構成のものであれば、特に限定されない。
 前記樹脂組成物溶液としては、ポリイミド系樹脂組成物溶液、ポリアミド系樹脂組成物溶液、ポリアミドイミド系樹脂組成物溶液、ポリエステル系樹脂組成物溶液、ポリオレフィン系樹脂組成物溶液、ポリスチレン系樹脂組成物溶液等が挙げられる。なかでも、透明性、耐熱性、機械強度が良好であることから、ポリイミド系樹脂組成物溶液が好ましい。
 前記ポリイミド系樹脂組成物溶液は、ポリアミド酸(ポリイミド前駆体)溶液であってもよく、ポリイミド溶液であってもよい。ポリアミド酸溶液を用いる場合、工程Fにおいて熱処理することにより、脱水閉環反応を行わせて、ポリイミドのフィルムとなる。ポリイミド溶液を用いる場合、工程Cにおいて溶媒を揮発させることにより、ポリイミドのフィルムとなる。
 本発明におけるポリイミドフィルムは、主鎖にイミド結合を有する高分子のフィルムであり、好ましくはポリイミドフィルム、ポリアミドイミドフィルム、ポリアミドフィルムであり、より好ましくはポリイミドフィルム、ポリアミドイミドフィルムであり、更に好ましくはポリイミドフィルムである。
 一般的に、ポリイミドフィルムは、溶媒中でジアミン類とテトラカルボン酸類を反応させて得られるポリアミド酸(ポリイミド前駆体)溶液を、ポリイミドフィルム作製用支持体に塗布、乾燥してグリーンフィルム(「前駆体フィルム」または「ポリアミド酸フィルム」或いはともいう)となし、さらにポリイミドフィルム作製用支持体上で、若しくは該支持体から剥がした状態でグリーンフィルムを高温熱処理して脱水閉環反応を行わせることで得られる。また、別の方法として、溶媒中でジアミン類とテトラカルボン酸類との脱水閉環反応により得られるポリイミド溶液をポリイミドフィルム作製用支持体に塗布、乾燥して1~50質量%の溶媒を含むポリイミドフィルムとなし、さらにポリイミドフィルム作製用支持体上で、若しくは該支持体から剥がした状態で1~50質量%の溶媒を含むポリイミドフィルムを高温処理して乾燥させることでも得られる。
 また、一般的に、ポリアミドイミドフィルムは、溶媒中でジイソシアネート類とトリカルボン類とを反応させて得られるポリアミドイミド溶液を、ポリアミドイミドフィルム作製用支持体に塗布、乾燥して1~50質量%の溶媒を含むポリアミドイミドフィルムとなし、さらにポリアミドイミド作製用支持体上で、若しくは該支持体から剥がした状態で1~50質量%の溶媒を含むポリアミドイミドフィルムを高温処理して乾燥させることで得られる。
 また、一般的に、ポリアミドフィルムは、溶媒中でジアミン類とジカルボン酸類とを反応させて得られるポリアミド溶液をポリアミドフィルム作製用支持体に塗布、乾燥して1~50質量%の溶媒を含むポリアミドフィルムとなし、さらにポリアミド作製用支持体上で、若しくは該支持体から剥がした状態で1~50質量%の溶媒を含むポリアミドフィルムを高温処理して乾燥させることで得られる。
 前記テトラカルボン酸類、トリカルボン酸類、ジカルボン酸類としては、ポリイミド合成、ポリアミドイミド合成、ポリアミド合成に通常用いられる芳香族テトラカルボン酸類(その酸無水物を含む)、脂肪族テトラカルボン酸類(その酸無水物を含む)、脂環式テトラカルボン酸類(その酸無水物を含む)、芳香族トリカルボン酸類(その酸無水物を含む)、脂肪族トリカルボン酸類(その酸無水物を含む)、脂環式トリカルボン酸類(その酸無水物を含む)、芳香族ジカルボン類、脂肪族ジカルボン酸類、脂環式ジカルボン酸類等を用いることができる。中でも、芳香族テトラカルボン酸無水物類、脂肪族テトラカルボン酸無水物類が好ましく、耐熱性の観点からは芳香族テトラカルボン酸無水物類がより好ましく、光透過性の観点からは脂環式テトラカルボン酸類がより好ましい。テトラカルボン酸類が酸無水物である場合、分子内に無水物構造は1個であってもよいし2個であってもよいが、好ましくは2個の無水物構造を有するもの(二無水物)がよい。テトラカルボン酸類、トリカルボン酸類、ジカルボン酸類は単独で用いてもよいし、二種以上を併用してもよい。
 本発明における無色透明性の高いポリイミドを得るための芳香族テトラカルボン酸類としては、ピロメリット酸、4,4’-(2,2-ヘキサフルオロイソプロピリデン)ジフタル酸、4,4’-オキシジフタル酸、3,4’-オキシジフタル酸、ビス(1,3-ジオキソ-1,3-ジヒドロ-2-ベンゾフラン-5-カルボン酸)1,4-フェニレン、ビス(1,3-ジオキソ-1,3-ジヒドロ-2-ベンゾフラン-5-イル)ベンゼン-1,4-ジカルボキシレート、4,4’-[4,4’-(3-オキソ-1,3-ジヒドロ-2-ベンゾフラン-1,1-ジイル)ビス(ベンゼン-1,4-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、4,4’-[(3-オキソ-1,3-ジヒドロ-2-ベンゾフラン-1,1-ジイル)ビス(トルエン-2,5-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、4,4’-[(3-オキソ-1,3-ジヒドロ-2-ベンゾフラン-1,1-ジイル)ビス(1,4-キシレン-2,5-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、4,4’-[4,4’-(3-オキソ-1,3-ジヒドロ-2-ベンゾフラン-1,1-ジイル)ビス(4-イソプロピル―トルエン-2,5-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、4,4’-[4,4’-(3-オキソ-1,3-ジヒドロ-2-ベンゾフラン-1,1-ジイル)ビス(ナフタレン-1,4-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、4,4’-[4,4’-(3H-2,1-ベンズオキサチオール-1,1-ジオキシド-3,3-ジイル)ビス(ベンゼン-1,4-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、4,4’-ベンゾフェノンテトラカルボン酸、4,4’-[(3H-2,1-ベンズオキサチオール-1,1-ジオキシド-3,3-ジイル)ビス(トルエン-2,5-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、4,4’-[(3H-2,1-ベンズオキサチオール-1,1-ジオキシド-3,3-ジイル)ビス(1,4-キシレン-2,5-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、4,4’-[4,4’-(3H-2,1-ベンズオキサチオール-1,1-ジオキシド-3,3-ジイル)ビス(4-イソプロピル―トルエン-2,5-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、4,4’-[4,4’-(3H-2,1-ベンズオキサチオール-1,1-ジオキシド-3,3-ジイル)ビス(ナフタレン-1,4-ジイルオキシ)]ジベンゼン-1、2-ジカルボン酸、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸、3,3’,4,4’-ビフェニルテトラカルボン酸、2,3,3’,4’-ビフェニルテトラカルボン酸、2,2’,3,3’-ビフェニルテトラカルボン酸、2,2’-ジフェノキシ-4,4’,5,5’-ビフェニルテトラカルボン酸、ピロメリット酸、4,4’-[スピロ(キサンテン-9,9’-フルオレン)-2,6-ジイルビス(オキシカルボニル)]ジフタル酸、4,4’-[スピロ(キサンテン-9,9’-フルオレン)-3,6-ジイルビス(オキシカルボニル)]ジフタル酸、などのテトラカルボン酸及びこれらの酸無水物が挙げられる。これらの中でも、2個の酸無水物構造を有する二無水物が好適であり、特に、4,4’-(2,2-ヘキサフルオロイソプロピリデン)ジフタル酸二無水物、4,4’-オキシジフタル酸二無水物が好ましい。なお、芳香族テトラカルボン酸類は単独で用いてもよいし、二種以上を併用してもよい。芳香族テトラカルボン酸類は、耐熱性を重視する場合には、例えば、全テトラカルボン酸類の50質量%以上が好ましく、より好ましくは60質量%以上、さらに好ましくは70質量%以上、なおさらに好ましくは80質量%以上である。
 脂環式テトラカルボン酸類としては、1,2,3,4-シクロブタンテトラカルボン酸、1,2,3,4-シクロペンタンテトラカルボン酸、1,2,3,4-シクロヘキサンテトラカルボン酸、1,2,4,5-シクロヘキサンテトラカルボン酸、3,3’,4,4’-ビシクロヘキシルテトラカルボン酸、ビシクロ[2,2、1]ヘプタン-2,3,5,6-テトラカルボン酸、ビシクロ[2,2,2]オクタン-2,3,5,6-テトラカルボン酸、ビシクロ[2,2,2]オクト-7-エン-2,3,5,6-テトラカルボン酸、テトラヒドロアントラセン-2,3,6,7-テトラカルボン酸、テトラデカヒドロ-1,4:5,8:9,10-トリメタノアントラセン-2,3,6,7-テトラカルボン酸、デカヒドロナフタレン-2,3,6,7-テトラカルボン酸、デカヒドロ-1,4:5,8-ジメタノナフタレン-2,3,6,7-テトラカルボン酸、デカヒドロ-1,4-エタノ-5,8-メタノナフタレン-2,3,6,7-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸(別名「ノルボルナン-2-スピロ-2’-シクロペンタノン-5’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸」)、メチルノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-(メチルノルボルナン)-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロヘキサノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸(別名「ノルボルナン-2-スピロ-2’-シクロヘキサノン-6’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸」)、メチルノルボルナン-2-スピロ-α-シクロヘキサノン-α’-スピロ-2’’-(メチルノルボルナン)-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロプロパノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロブタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロヘプタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロオクタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロノナノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロデカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロウンデカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロドデカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロトリデカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロテトラデカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロペンタデカノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-(メチルシクロペンタノン)-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、ノルボルナン-2-スピロ-α-(メチルシクロヘキサノン)-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸、などのテトラカルボン酸及びこれらの酸無水物が挙げられる。また、式(1)の構造で表される酸無水物基含有のダブルデッカー型シルセスキオキサン誘導体なども挙げられる。これらの中でも、2個の酸無水物構造を有する二無水物が好適であり、特に、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロヘキサンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物が好ましく、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物がより好ましく、1,2,3,4-シクロブタンテトラカルボン酸二無水物がさらに好ましい。なお、これらは単独で用いてもよいし、二種以上を併用してもよい。脂環式テトラカルボン酸類は、透明性を重視する場合には、例えば、全テトラカルボン酸類の50質量%以上が好ましく、より好ましくは60質量%以上、さらに好ましくは70質量%以上、なおさらに好ましくは80質量%以上である。
Figure JPOXMLDOC01-appb-C000001
 トリカルボン酸類としては、トリメリット酸、1,2,5-ナフタレントリカルボン酸、ジフェニルエーテル-3,3’,4’-トリカルボン酸、ジフェニルスルホン-3,3’,4’-トリカルボン酸などの芳香族トリカルボン酸、或いはヘキサヒドロトリメリット酸などの上記芳香族トリカルボン酸の水素添加物、エチレングリコールビストリメリテート、プロピレングリコールビストリメリテート、1,4-ブタンジオールビストリメリテート、ポリエチレングリコールビストリメリテートなどのアルキレングリコールビストリメリテート、及びこれらの一無水物、エステル化物が挙げられる。これらの中でも、1個の酸無水物構造を有する一無水物が好適であり、特に、トリメリット酸無水物、ヘキサヒドロトリメリット酸無水物が好ましい。尚、これらは単独で使用してもよいし複数を組み合わせて使用してもよい。
 ジカルボン酸類としては、テレフタル酸、イソフタル酸、オルソフタル酸、ナフタレンジカルボン酸、4、4’-オキシジベンゼンカルボン酸などの芳香族ジカルボン酸、或いは1,6-シクロヘキサンジカルボン酸などの上記芳香族ジカルボン酸の水素添加物、シュウ酸、コハク酸、グルタル酸、アジピン酸、ヘプタン二酸、オクタン二酸、アゼライン酸、セバシン酸、ウンデカ二酸、ドデカン二酸、2-メチルコハク酸、及びこれらの酸塩化物或いはエステル化物などが挙げられる。これらの中で芳香族ジカルボン酸及びその水素添加物が好適であり、特に、テレフタル酸、1,6-シクロヘキサンジカルボン酸、4、4’-オキシジベンゼンカルボン酸が好ましい。尚、ジカルボン酸類は単独で使用してもよいし複数を組み合わせて使用してもよい。
 本発明における無色透明性の高いポリイミドを得るためのジアミン類或いはイソシアネート類としては、特に制限はなく、ポリイミド合成、ポリアミドイミド合成、ポリアミド合成に通常用いられる芳香族ジアミン類、脂肪族ジアミン類、脂環式ジアミン類、芳香族ジイソシアネート類、脂肪族ジイソシアネート類、脂環式ジイソシアネート類等を用いることができる。耐熱性の観点からは、芳香族ジアミン類が好ましく、透明性の観点からは脂環式ジアミンが好ましい。また、ベンゾオキサゾール構造を有する芳香族ジアミン類を用いると、高い耐熱性とともに、高弾性率、低熱収縮性、低線膨張係数を発現させることが可能になる。ジアミン類及びイソシアネート類は、単独で用いてもよいし二種以上を併用してもよい。
 芳香族ジアミン類としては、例えば、2,2’-ジメチル-4,4’-ジアミノビフェニル、1,4-ビス[2-(4-アミノフェニル)-2-プロピル]ベンゼン、1,4-ビス(4-アミノ-2-トリフルオロメチルフェノキシ)ベンゼン、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、ビス[4-(3-アミノフェノキシ)フェニル]ケトン、ビス[4-(3-アミノフェノキシ)フェニル]スルフィド、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、m-フェニレンジアミン、o-フェニレンジアミン、p-フェニレンジアミン、m-アミノベンジルアミン、p-アミノベンジルアミン、4-アミノ-N-(4-アミノフェニル)ベンズアミド、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、2,2’-トリフルオロメチル-4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルスルフィド、3,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルホキシド、3,4’-ジアミノジフェニルスルホキシド、4,4’-ジアミノジフェニルスルホキシド、3,3’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、ビス[4-(4-アミノフェノキシ)フェニル]メタン、1,1-ビス[4-(4-アミノフェノキシ)フェニル]エタン、1,2-ビス[4-(4-アミノフェノキシ)フェニル]エタン、1,1-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、1,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、1,3-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、1,1-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、1,3-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、1,4-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、2,3-ビス[4-(4-アミノフェノキシ)フェニル]ブタン、2-[4-(4-アミノフェノキシ)フェニル]-2-[4-(4-アミノフェノキシ)-3-メチルフェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)-3-メチルフェニル]プロパン、2-[4-(4-アミノフェノキシ)フェニル]-2-[4-(4-アミノフェノキシ)-3,5-ジメチルフェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)-3,5-ジメチルフェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス[4-(4-アミノフェノキシ)フェニル]ケトン、ビス[4-(4-アミノフェノキシ)フェニル]スルフィド、ビス[4-(4-アミノフェノキシ)フェニル]スルホキシド、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]エーテル、ビス[4-(4-アミノフェノキシ)フェニル]エーテル、1,3-ビス[4-(4-アミノフェノキシ)ベンゾイル]ベンゼン、1,3-ビス[4-(3-アミノフェノキシ)ベンゾイル]ベンゼン、1,4-ビス[4-(3-アミノフェノキシ)ベンゾイル]ベンゼン、4,4’-ビス[(3-アミノフェノキシ)ベンゾイル]ベンゼン、1,1-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、1,3-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、3,4’-ジアミノジフェニルスルフィド、2,2-ビス[3-(3-アミノフェノキシ)フェニル]-1,1,1,3,3,3-ヘキサフルオロプロパン、ビス[4-(3-アミノフェノキシ)フェニル]メタン、1,1-ビス[4-(3-アミノフェノキシ)フェニル]エタン、1,2-ビス[4-(3-アミノフェノキシ)フェニル]エタン、ビス[4-(3-アミノフェノキシ)フェニル]スルホキシド、4,4’-ビス[3-(4-アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4’-ビス[3-(3-アミノフェノキシ)ベンゾイル]ジフェニルエーテル、4,4’-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ベンゾフェノン、4,4’-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ジフェニルスルホン、ビス[4-{4-(4-アミノフェノキシ)フェノキシ}フェニル]スルホン、1,4-ビス[4-(4-アミノフェノキシ)フェノキシ-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノフェノキシ)フェノキシ-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノ-6-トリフルオロメチルフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノ-6-フルオロフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノ-6-メチルフェノキシ)-α,α-ジメチルベンジル]ベンゼン、1,3-ビス[4-(4-アミノ-6-シアノフェノキシ)-α,α-ジメチルベンジル]ベンゼン、3,3’-ジアミノ-4,4’-ジフェノキシベンゾフェノン、4,4’-ジアミノ-5,5’-ジフェノキシベンゾフェノン、3,4’-ジアミノ-4,5’-ジフェノキシベンゾフェノン、3,3’-ジアミノ-4-フェノキシベンゾフェノン、4,4’-ジアミノ-5-フェノキシベンゾフェノン、3,4’-ジアミノ-4-フェノキシベンゾフェノン、3,4’-ジアミノ-5’-フェノキシベンゾフェノン、3,3’-ジアミノ-4,4’-ジビフェノキシベンゾフェノン、4,4’-ジアミノ-5,5’-ジビフェノキシベンゾフェノン、3,4’-ジアミノ-4,5’-ジビフェノキシベンゾフェノン、3,3’-ジアミノ-4-ビフェノキシベンゾフェノン、4,4’-ジアミノ-5-ビフェノキシベンゾフェノン、3,4’-ジアミノ-4-ビフェノキシベンゾフェノン、3,4’-ジアミノ-5’-ビフェノキシベンゾフェノン、1,3-ビス(3-アミノ-4-フェノキシベンゾイル)ベンゼン、1,4-ビス(3-アミノ-4-フェノキシベンゾイル)ベンゼン、1,3-ビス(4-アミノ-5-フェノキシベンゾイル)ベンゼン、1,4-ビス(4-アミノ-5-フェノキシベンゾイル)ベンゼン、1,3-ビス(3-アミノ-4-ビフェノキシベンゾイル)ベンゼン、1,4-ビス(3-アミノ-4-ビフェノキシベンゾイル)ベンゼン、1,3-ビス(4-アミノ-5-ビフェノキシベンゾイル)ベンゼン、1,4-ビス(4-アミノ-5-ビフェノキシベンゾイル)ベンゼン、2,6-ビス[4-(4-アミノ-α,α-ジメチルベンジル)フェノキシ]ベンゾニトリル、4,4’-[9H-フルオレン-9,9-ジイル]ビスアニリン(別名「9,9-ビス(4-アミノフェニル)フルオレン」)、スピロ(キサンテン-9,9’-フルオレン)-2,6-ジイルビス(オキシカルボニル)]ビスアニリン、4,4’-[スピロ(キサンテン-9,9’-フルオレン)-2,6-ジイルビス(オキシカルボニル)]ビスアニリン、4,4’-[スピロ(キサンテン-9,9’-フルオレン)-3,6-ジイルビス(オキシカルボニル)]ビスアニリン、9,10-ビス(4-アミノフェニル)アデニン、2,4-ビス(4-アミノフェニル)シクロブタン-1,3-ジカルボン酸ジメチル、式(2)の構造で表されるアミノ基含有のダブルデッカー型シルセスキオキサン誘導体、および上記芳香族ジアミンの芳香環上の水素原子の一部もしくは全てが、ハロゲン原子、炭素数1~3のアルキル基またはアルコキシル基、シアノ基、またはアルキル基またはアルコキシル基の水素原子の一部もしくは全部がハロゲン原子で置換された炭素数1~3のハロゲン化アルキル基またはアルコキシル基で置換された芳香族ジアミン等が挙げられる。また、前記ベンゾオキサゾール構造を有する芳香族ジアミン類としては、特に限定はなく、例えば、5-アミノ-2-(p-アミノフェニル)ベンゾオキサゾール、6-アミノ-2-(p-アミノフェニル)ベンゾオキサゾール、5-アミノ-2-(m-アミノフェニル)ベンゾオキサゾール、6-アミノ-2-(m-アミノフェニル)ベンゾオキサゾール、2,2’-p-フェニレンビス(5-アミノベンゾオキサゾール)、2,2’-p-フェニレンビス(6-アミノベンゾオキサゾール)、1-(5-アミノベンゾオキサゾロ)-4-(6-アミノベンゾオキサゾロ)ベンゼン、2,6-(4,4’-ジアミノジフェニル)ベンゾ[1,2-d:5,4-d’]ビスオキサゾール、2,6-(4,4’-ジアミノジフェニル)ベンゾ[1,2-d:4,5-d’]ビスオキサゾール、2,6-(3,4’-ジアミノジフェニル)ベンゾ[1,2-d:5,4-d’]ビスオキサゾール、2,6-(3,4’-ジアミノジフェニル)ベンゾ[1,2-d:4,5-d’]ビスオキサゾール、2,6-(3,3’-ジアミノジフェニル)ベンゾ[1,2-d:5,4-d’]ビスオキサゾール、2,6-(3,3’-ジアミノジフェニル)ベンゾ[1,2-d:4,5-d’]ビスオキサゾール等が挙げられる。これらの中で、特に、2,2’-ジトリフルオロメチル-4,4’-ジアミノビフェニル、4-アミノ-N-(4-アミノフェニル)ベンズアミド、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノベンゾフェノンが好ましい。尚、芳香族ジアミン類は単独で使用してもよいし複数を組み合わせて使用してもよい。
Figure JPOXMLDOC01-appb-C000002
 脂環式ジアミン類としては、例えば、1,4-ジアミノシクロヘキサン、1,4-ジアミノ-2-メチルシクロヘキサン、1,4-ジアミノ-2-エチルシクロヘキサン、1,4-ジアミノ-2-n-プロピルシクロヘキサン、1,4-ジアミノ-2-イソプロピルシクロヘキサン、1,4-ジアミノ-2-n-ブチルシクロヘキサン、1,4-ジアミノ-2-イソブチルシクロヘキサン、1,4-ジアミノ-2-sec-ブチルシクロヘキサン、1,4-ジアミノ-2-tert-ブチルシクロヘキサン、4,4’-メチレンビス(2,6-ジメチルシクロヘキシルアミン)等が挙げられる。これらの中で、特に、1,4-ジアミノシクロヘキサン、1,4-ジアミノ-2-メチルシクロヘキサンが好ましく、1,4-ジアミノシクロヘキサンがより好ましい。尚、脂環式ジアミン類は単独で使用してもよいし複数を組み合わせて使用してもよい。
 ジイソシアネート類としては、例えば、ジフェニルメタン-2,4’-ジイソシアネート、3,2’-または3,3’-または4,2’-または4,3’-または5,2’-または5,3’-または6,2’-または6,3’-ジメチルジフェニルメタン-2,4’-ジイソシアネート、3,2’-または3,3’-または4,2’-または4,3’-または5,2’-または5,3’-または6,2’-または6,3’-ジエチルジフェニルメタン-2,4’-ジイソシアネート、3,2’-または3,3’-または4,2’-または4,3’-または5,2’-または5,3’-または6,2’-または6,3’-ジメトキシジフェニルメタン-2,4’-ジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート、ジフェニルメタン-3,3’-ジイソシアネート、ジフェニルメタン-3,4’-ジイソシアネート、ジフェニルエーテル-4,4’ -ジイソシアネート、ベンゾフェノン-4,4’-ジイソシアネート、ジフェニルスルホン-4,4’-ジイソシアネート、トリレン-2,4-ジイソシアネート、トリレン-2,6-ジイソシアネート、m-キシリレンジイソシアネート、p-キシリレンジイソシアネート、ナフタレン-2,6-ジイソシアネート、4,4’-(2,2ビス(4-フェノキシフェニル)プロパン)ジイソシアネート、3,3’-または2,2’-ジメチルビフェニル-4,4’-ジイソシアネート、3,3’-または2,2’-ジエチルビフェニル-4,4’-ジイソシアネート、3,3’-ジメトキシビフェニル-4,4’-ジイソシアネート、3,3’-ジエトキシビフェニル-4,4’-ジイソシアネートなどの芳香族ジイソシアネート類、及びこれらのいずれかを水素添加したジイソシアネート(例えば、イソホロンジイソシアネート、1,4-シクロヘキサンジイソシアネート、1,3-シクロヘキサンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、ヘキサメチレンジイソシアネート)などが挙げられる。これらの中では、低吸湿性、寸法安定性、価格及び重合性の点からジフェニルメタン-4,4’-ジイソシアネート、トリレン-2,4-ジイソシアネート、トリレン-2,6-ジイソシアネート、3,3’-ジメチルビフェニル-4,4’-ジイソシアネートやナフタレン-2,6-ジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、1,4-シクロヘキサンジイソシアネートが好ましい。尚、ジイソシアネート類は単独で使用してもよいし複数を組み合わせて使用してもよい。
 前記第1の樹脂組成物溶液、及び、前記第2の樹脂組成物溶液は、それぞれ同じものであっても良いし、異なるものであっても良い。なかでも、前記第1の樹脂組成物溶液としてポリイミド系樹脂組成物溶液を採用する場合には、耐熱性が近しい等の観点から、第2の樹脂組成物溶液としてもポリイミド系樹脂組成物溶液を用いることが好ましい。第1の樹脂組成物溶液の耐熱性と同等以上の耐熱性を第2の樹脂組成物溶液が有していることが好ましい。また両端部に使用される第2の樹脂組成物溶液は、それぞれ同じものであっても良いし、異なるものであっても良いが、同じ組成のポリイミド系樹脂組成物溶液であることが好ましい。
 前記第1の樹脂組成物溶液は、無機微粒子を含有することができる。透明性の高いポリイミド系樹脂フィルムを得られやすくなることから、含有量は0.1ppm以上であることが好ましく、より好ましくは1ppm以上であり、さらに好ましくは5ppm以上であり、特に好ましくは10ppm以上である。また、透明性を低下させないことから、1000ppm以下であることが好ましく、より好ましくは800ppm以下であり、さらに好ましくは500ppm以下であり、特に好ましくは300ppm以下である。無機微粒子の含有量の測定方法は実施例の方法による。
 前記第2の樹脂組成物溶液は、無機微粒子を含有する。フィルムロールにした際の滑り性が良好となることから、含有量は1000ppm以上であることが好ましく、より好ましくは3000ppm以上であり、さらに好ましくは5000ppm以上である。また、コストの観点から、50000ppm以下であることが好ましく、より好ましくは30000ppm以下であり、さらに好ましくは20000ppm以下である。無機微粒子の含有量の測定方法は実施例の方法による。
 前記第2の樹脂組成物溶液に含まれる無機微粒子の含有量は、前記第1の樹脂組成物溶液に含まれる無機微粒子の含有量よりも多い。前記第1の樹脂組成物溶液は、無機微粒子を含有させても、させなくても良い。前記第1の樹脂組成物溶液が無機微粒子を含有する際、前記第1の樹脂組成物溶液と前記第2の樹脂組成物溶液に含まれる無機微粒子の比率(第2の樹脂組成物溶液/第1の樹脂組成物溶液)は、100以上であることが好ましく、より好ましくは200以上であり、さらに好ましくは300以上であり、特に好ましくは500以上である。また、500000以下であることが好ましく、より好ましくは300000以下であり、さらに好ましくは100000以下である。
 前記第1の樹脂組成物溶液および前記第2の樹脂組成物溶液に含有する無機微粒子の含有量は、前記切断前フィルムおよび前記樹脂フィルムにおける、中央部および両端部に含まれる無機微粒子の含有量となる。
 無機微粒子としては、特に限定されないが、シリカ、カーボン、セラミック等が挙げられ、中でもシリカであることが好ましい。これらを単独で使用しても良いし、2種類以上を併用してもよい。無機微粒子の平均粒子径は10nm以上であることが好ましく、より好ましくは30nm以上であり、さらに好ましくは50nm以上である。また、1μm以下であることが好ましく、より好ましくは500nm以下であり、さらに好ましくは100nm以下である。無機微粒子の市販品としては、例えば、日産化学工業製のオルガノシリカゾル「スノーテックス(登録商標)DMAc-ST-ZL」などが使用できる。これはジメチルアセトアミドに無機微粒子分散されたものになる。平均粒子径70~100nm、分散液粘度1-10mPa・Sであり、SiOが20質量%含まれる。
 [切断前フィルム]
 本実施形態に係る切断前フィルムは、
 第1の樹脂組成物で構成される中央部と、
 前記中央部の両端に、前記中央部から連続して形成される両端部と
を有し、
 前記両端部は、無機微粒子を含有する第2の樹脂組成物で構成されており、
 前記両端部の無機微粒子添加量が、前記中央部の無機微粒子添加量よりも大きい。
 前記切断前フィルムは、本実施形態に係る樹脂フィルム製造方法の前記工程A~前記工程Cにより得ることができる。
 ここで、「切断」とは、第2の樹脂組成物溶液から形成された部分の一部または全部を取り除くことであり、具体的には、フィルムの幅方向両端のトリミングをいう。また、「第1の樹脂組成物」は、前記工程Cにおいて第1の樹脂組成物溶液を乾燥させた後の組成物(シート状物)をいい、「第2の樹脂組成物」は、前記工程Cにおいて第2の樹脂組成物溶液を乾燥させた後の組成物(シート状物)をいう。
 前記両端部の幅(各端部の幅)は、従来公知のテンター式搬送装置にて把持することが可能な幅であれば、特に限定されず、一般的には、5mm以上より好ましくは10mm以上である。前記幅の上限は特に限定されず、例えば両端の合計がフィルム全幅の50%以下であればよく、より好ましくは30%以下であり、さらに好ましくは10%以下である。また、0.1%以上が好ましく、より好ましくは0.5%以上、さらに好ましくは1%以上である。
 以上、本実施形態に係る切断前フィルムについて説明した。
 [樹脂フィルム]
 第1の樹脂組成物で構成される中央部と、
 前記中央部の両端に、前記中央部から連続して形成される両端部と
を有し、
 前記両端部は、無機微粒子を含有する第2の樹脂組成物で構成されており、前記両端部の無機微粒子の含有量が中央部の無機微粒子の含有量よりも多く、
 さらに両端部または中央部のいずれかに切除部(切断面)を有することを特徴とする樹脂フィルム。
 樹脂フィルムは、前記切断前フィルムから、前記第2の樹脂組成物溶液から形成された部分の一部または全部を取り除いたフィルムであり、両端部および中央部のいずれかに切除部(切断面)を有する。具体的には、「端部/中央部/端部」の構成から両端部の一部または全部を取り除いたものであり、例えば、「一部切除した端部/中央部/端部」、「一部切除した端部/中央部/一部切除した端部」、「端部/中央部」、「一部切除した端部/中央部」、「中央部」、または、「一部切除した中央部」のいずれかの構成を有する。このうち、「一部切除した端部/中央部/端部」、「一部切除した端部/中央部/一部切除した端部」、「端部/中央部」または「一部切除した端部/中央部」の構成が一部切断フィルムであり、「中央部」または「一部切除した中央部」の構成が全部切断フィルムである。
 前記切断前フィルムおよび前記樹脂フィルムにおける中央部の静摩擦係数は1~2.7であることが好ましく、より好ましくは1.3~2.5である。また、各両端部の摩擦係数は0.5~2.5であることが好ましく、より好ましくは0.7~2.0である。また、中央部と両端部の摩擦係数の比率(中央部/両端部)は、1~5であることが好ましく、より好ましくは1.5~4である。前記範囲内であれば、フィルムロールとして巻き取る際、シワやたるみの発生を抑制することができる。なお、摩擦係数は以下の測定方法による。
 樹脂フィルムの全光線透過率は、75%以上であることが好ましい。より好ましくは80%以上であり、さらに好ましくは85%以上であり、より一層好ましくは87%以上であり、特に好ましくは88%以上である。全光線透過率の上限は特に制限されないが、工業的には98%以下であれば十分であり、97%以下であっても差し支えない。
 樹脂フィルムのヘーズ率は、2以下であることが好ましく、より好ましくは1.5以下であり、さらに好ましくは1以下であり、より一層好ましくは0.8以下である。ヘーズ率の下限は特に限定されないが、工業的には0.01以上であれば十分であり、0.05以上であっても差し支えない。
 樹脂フィルムの黄色度(YI)は、10以下であることが好ましく、より好ましくは7以下であり、さらに好ましくは5以下である。黄色度指数の下限は特に限定されないが、工業的には0.1以上であれば十分であり、0.2以上であっても差し支えない。
 以下、本発明に関し実施例を用いて詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。
<膜厚の測定方法>
 フィルムの厚みはセイコーem社製の電子マイクロメーター ミリトロン1245Dを用いて測定した。
<摩擦係数(静摩擦係数)の測定方法>
 JIS K7125(1999)-プラスチックフィルムおよびシート摩擦係数試験方法に基づき測定を実施した。フィルム表面同士を重ね合わせて、その上に100gの重りをのせて、重ね合わせた下側のフィルムを台に固定し、上側のフィルムを200mm/分にて移動させ、摩擦係数を測定した。
<全光線透過率、ヘーズ率測定方法>
 フィルムの全光線透過率およびヘーズ率は日本電色社製のHAZEメーター NDH2000を用い、CIE標準D65光源を用いて測定した。尚、同様の測定を3回行い、その算術平均値を採用した。
<黄色度(YI)の測定方法>
 フィルムの黄色度は日本電色社製の色差計ZE2000を用い、CIE標準C2光源を用いて測定した。尚、同様の測定を3回行い、その算術平均値を採用した。
〔合成例1(ポリアミド酸溶液A1の調製)〕
 窒素導入管、還流管、攪拌棒を備えた反応容器内を窒素置換した後、32.02質量部の2,2’-ジトリフルオロメチル-4,4’-ジアミノビフェニル(TFMB)を、279.9質量部のN,N-ジメチルアセトアミド(DMAc)に溶解させ、次いで、9.81質量部の1,2,3,4-シクロブタンテトラカルボン酸無二水物(CBDA)及び15.51質量部の4,4’-オキシジフタル酸二無水物(ODPA)をそれぞれ固体のまま分割添加した後、室温で24時間攪拌した。その後、DMAcで濃度調整し、固形分20質量%、還元粘度3.1dl/gのポリアミド酸溶液A1を得た。
〔合成例2(ポリアミド酸溶液A2の調製)〕
 合成例1と同様の操作で得たポリアミド酸溶液A1に、ジメチルアセトアミド分散シリカゾル(日産化学製DMAc-ST-ZL)を樹脂成分に対して5000ppm添加して、ポリアミド酸溶液A2を調製した。
〔合成例3(ポリイミド溶液B1の調製)〕
 窒素導入管、温度計、攪拌棒を備えた反応容器内を窒素置換した後、前記反応容器内に窒素雰囲気下、551質量部のN,N-ジメチルアセトアミド(DMAC)と64.1質量部の2,2’-ジトリフルオロメチル-4,4’-ジアミノビフェニル(TFMB)とを入れて攪拌し、TFMBをDMAC中に溶解させた。次いで、反応容器内を攪拌しながら、窒素気流下で、44.4質量部の4,4’-(2,2-ヘキサフルオロイソプロピリデン)ジフタル酸二無水物(6FDA)、及び、29.4質量部のビフェニルテトラカルボン酸二無水物(BPDA)を10分程度かけて投入し、そのまま温度が20~40℃の温度範囲となるように調整しながら6時間攪拌を続けて重合反応を行い、粘稠なポリアミド酸溶液を得た。
 次に、得られたポリアミド酸溶液に410質量部のDMACを加えて希釈した後、イミド化促進剤として25.83質量部のイソキノリンを加えて、ポリアミド酸溶液を攪拌しながら30~40℃の温度範囲に保ち、そこにイミド化剤として、122.5質量部の無水酢酸を約10分間かけてゆっくりと滴下しながら投入し、その後、更に液温を30~40℃に保って12時間攪拌を続けて化学イミド化反応を行って、ポリイミド溶液を得た。
 次に、得られたイミド化剤、及び、イミド化促進剤を含むポリイミド溶液1000質量部を、攪拌装置と攪拌翼を備えた反応容器に移し変え、120rpmの速度で攪拌しながら15~25℃の温度に保ち、そこに1500質量部のメタノールを10g/分の速度で滴下させた。約800質量部のメタノールを投入したところでポリイミド溶液の濁りが確認され、粉体状のポリイミドの析出が確認された。引き続き1500質量部全量のメタノールを投入し、ポリイミドの析出を完了させた。続いて、反応容器の内容物を、吸引濾過装置により濾別し、更に1000質量部のメタノールを用いて洗浄・濾別した。その後、濾別したポリイミド粉体50質量部を局所排気装置のついた乾燥機を用いて、50℃で24時間乾燥させ、更に260℃で2時間乾燥させて、残りの揮発成分を除去して、ポリイミド粉体を得た。得られたポリイミド粉体の還元粘度は2.1dl/gであった。次に、得られたポリイミド粉体42質量部を168質量部のDMACに溶解させて、固形分20質量%となるポリイミド溶液B1を得た。
〔合成例4(ポリイミド溶液B2の調製)〕
 合成例3と同様の操作で得たポリイミド溶液B1に、ジメチルアセトアミド分散シリカゾル(日産化学製DMAc-ST-ZL)を樹脂成分に対して5000ppm添加して、ポリイミド溶液B2を調製した。
〔合成例5(ポリイミド溶液C1の調整)〕
 窒素導入管、ディーン・スターク装置、還流管、温度計、攪拌棒を備えた反応容器に、窒素ガスを導入しながら、12.42質量部の4,4’-ジアミノジフェニルスルホン(4,4’-DDS)、12.42質量部の3,3’-ジアミノジフェニルスルホン(3,3’-DDS)、75質量部のガンマブチロラクトン(GBL)を加えた。続いて24.82質量部の4,4’-オキシジフタル酸無二水物(ODPA)、5.88質量部のビフェニルテトラカルボン酸二無水物(BPDA)、33.5質量部のGBL、39質量部のトルエンを室温で加えた後、内温160℃まで昇温し、160℃で1時間加熱還流を行い、イミド化を行った。イミド化完了後、180℃まで昇温し、トルエンを抜き出しながら反応を続けた。12時間反応後、オイルバスを外して室温に戻し固形分が20質量%となるようにGBLを114.9質量部加え、還元粘度0.6dl/gのポリイミド溶液C1を得た。
〔合成例6(ポリイミド溶液C2の調製)〕
 合成例5と同様の操作で得たポリイミド溶液B1に、ジメチルアセトアミド分散シリカゾル(日産化学製DMAc-ST-ZL)を樹脂成分に対して5000ppm添加して、ポリイミド溶液C2を調製した。
〔合成例7(ポリアミド酸溶液D1の調整)〕
 窒素導入管、ディーン・スターク装置、還流管、温度計、攪拌棒を備えた反応容器に窒素ガスを導入しながら、38.44質量部のノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物(CpODA)、34.85質量部の9,9-ビス(4-アミノフェニル)フルオレン(BAFL)、3.60質量部のトリエチルアミン、146.5質量部のN-メチル-2-ピロリドン(NMP)、146.5質量部のガンマブチロラクトン(GBL)、360質量部のトルエンを室温で加えた後、内温180℃まで昇温し、トルエンを留去しながら180℃で3時間加熱イミド化を行って、ポリイミド溶液を得た。
 次に、得られたポリイミド溶液250質量部を攪拌装置と攪拌翼を備えた反応容器に移し変え、120rpmの速度で攪拌しながら15~25℃の温度に保ち、そこに5000質量部のアセトンを10g/分の速度で滴下させた。約250質量部を投入したところでポリイミド溶液の濁りが確認され、粉体状のポリイミドの析出が確認された。引き続き、残りの250質量部のアセトンを投入し、ポリイミドの析出を完了させた。続いて、反応容器の内容物を、吸引濾過装置により濾別し、更に200質量部のメタノールを用いて洗浄・濾別した。その後、濾別したポリイミド粉体30質量部を局所排気装置のついた乾燥機を用いて、50℃で24時間乾燥させ、更に260℃で2時間乾燥させて、残りの揮発成分を除去して、ポリイミド粉体を得た。得られたポリイミド粉体の還元粘度は0.7dl/gであった。次に、得られたポリイミド粉体4.2質量部を16.8質量部のNMPに溶解させて、固形分20質量%となる還元粘度0.7dl/gのポリアミド酸溶液D1を得た。
〔合成例8(ポリアミド酸溶液D2の調製)〕
 合成例7と同様の操作で得たポリアミド酸溶液D1に、ジメチルアセトアミド分散シリカゾル(日産化学製DMAc-ST-ZL)を樹脂成分に対して5000ppm添加して、ポリアミド酸溶液D2を調製した。
〔合成例9(ポリアミド酸溶液E1の調製)〕
 窒素導入管、温度計、攪拌棒を備えた反応容器内を窒素置換した後、前記反応容器内に窒素雰囲気下、196.1質量部の1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA)、227.3質量部の4-アミノ-N-(4-アミノフェニル)ベンズアミド(DABAN)、及び、1694質量部のN,N-ジメチルアセトアミドを仕込んで溶解させた後、室温で24時間攪拌し、固形分20質量部となる還元粘度4.5dl/gのポリアミド酸溶液E1を得た。
〔合成例10(ポリイミド溶液E2の調製)〕
 合成例7と同様の操作で得たポリイミド溶液D1に、ジメチルアセトアミド分散シリカゾル(日産化学製DMAc-ST-ZL)を樹脂成分に対して5000ppm添加して、ポリイミド溶液E2を調製した。
 (実施例1)
 ポリアミド酸溶液A1及びポリアミド酸溶液A2を準備した。図1、図2に示したコンマコーターを用い、支持体であるPETフィルム(東洋紡(株)製A4100)の中央部幅500mmにポリアミド酸溶液A1を最終膜厚25μmになるようクリアランスを調整して塗布すると同時に、その両端部それぞれ50mm幅にポリアミド酸溶液A2を最終膜厚が35μmになるように塗布した。この時、サイドプレートの幅は、10mmのものを用いた。
 次いで100~110℃で10分間乾燥してポリアミド酸フィルムとし、乾燥後にPETフィルムごと6インチのABSコアに巻き取り、ポリアミド酸フィルムロールを得た。得られたポリアミド酸フィルムロールからポリアミド酸フィルムとPETフィルムとを巻き出し、PETフィルムから自己支持性となったポリアミド酸フィルムを剥離し、ポリアミド酸フィルムを得た。
 得られたポリアミド酸フィルムを、ピンシートが並んだ際にピン間隔が一定となるようにピンを配置したピンシートを有するピンテンターに通し、フィルム端部をピンにさしこむ事により把持し、フィルムが破断しないように、かつ不必要なタルミ生じないようにピンシート間隔を調整し、最終ピン間隔が570mmとなるように搬送し、第1段として200℃で3分、第2段として250℃で3分、第3段として300℃で3分、第4段として350℃で3分の条件で加熱を施して、イミド化反応を進行させた。その後、2分間で室温にまで冷却し、続いてポリアミド酸溶液A2によって形成されたフィルム端部の一部をスリットして両端部をそれぞれ25mm残して中央部とともに巻取り、厚み25μm、幅550mmのポリイミドフィルムを得た。
 (実施例2)
 ポリアミド酸溶液A1及びポリアミド酸溶液A2を準備した。図7、図8に示したコンマコーターにて両端部にポリアミド酸溶液A2を鏡面仕上げしたステンレススチールベルト上に最終膜厚が35μmとなるように塗布し、続いてTダイにてポリアミド酸溶液A1を中央部に最終膜厚25μmになるようクリアランスを調整して塗布した。この時、中央部幅は1000mm、両端部はそれぞれ50mmの幅となるように塗布した。
 次いで100~110℃で10分間乾燥し、乾燥後に支持体から剥離し、自己支持性となったポリアミド酸フィルムを得た。
 得られた切断前フィルムを、ピンシートが並んだ際にピン間隔が一定となるようにピンを配置したピンシートを有するピンテンターに通し、フィルム端部をピンにさしこむ事により把持し、フィルムが破断しないように、かつ不必要なタルミ生じないようにピンシート間隔を調整し、最終ピン間隔が1080mmとなるように搬送し、第1段として200℃で3分、第2段として250℃で3分、第3段として300℃で3分、第4段として350℃で3分の条件で加熱を施して、イミド化反応を進行させた。その後、2分間で室温にまで冷却し、続いてポリアミド酸溶液A2によって形成されたフィルム端部の一部をスリットして両端部をそれぞれ25mm残して中央部とともに、3インチABS樹脂製コアにロール状に連続的に巻取り、厚み25μm、幅1050mm、長さ500mのポリイミドフィルムを得た。
 (実施例3)
 ポリアミド酸溶液A1及びポリアミド酸溶液A2を準備した。図9、図10に示したTダイにて両端部にポリアミド酸溶液A2を鏡面仕上げしたステンレススチールベルト上に最終膜厚が35μmとなるように塗布し、Tダイにてポリアミド酸溶液A1を中央部に最終膜厚25μmになるようクリアランスを調整して塗布した。この時、中央部幅は1000mm、両端部はそれぞれ50mmの幅となるように塗布した。
 次いで100~110℃で10分間乾燥し、乾燥後に支持体から剥離し、自己支持性となったポリアミド酸フィルムを得た。
 得られた切断前フィルムを、ピンシートが並んだ際にピン間隔が一定となるようにピンを配置したピンシートを有するピンテンターに通し、フィルム端部をピンにさしこむ事により把持し、フィルムが破断しないように、かつ不必要なタルミ生じないようにピンシート間隔を調整し、最終ピン間隔が1080mmとなるように搬送し、第1段として200℃で3分、第2段として250℃で3分、第3段として300℃で3分、第4段として350℃で3分の条件で加熱を施して、イミド化反応を進行させた。その後、2分間で室温にまで冷却し、続いてポリアミド酸溶液A2によって形成されたフィルム端部の一部をスリットして両端部をそれぞれ25mm残して中央部とともに、3インチABS樹脂製コアにロール状に連続的に巻取り、厚み25μm、幅1050mm、長さ500mのポリイミドフィルムを得た。
 (実施例4)
 ポリイミド溶液B1及びポリイミド溶液B2を準備した。ポリアミド酸溶液A1の代わりにポリイミド溶液B1を最終膜厚45μmになるようにクリアランスを調整して塗布、ポリアミド酸溶液A2の代わりにポリイミド溶液B2を最終膜厚60μmになるように使用したこと以外は実施例1と同様にして、厚み25μm、幅550mmのポリイミドフィルムを得た。
 (実施例5)
 ポリイミド溶液C1及びポリイミド溶液C2を準備した。ポリアミド酸溶液A1の代わりにポリイミド溶液C1を最終膜厚20μmになるようにクリアランスを調整し塗布し、ポリアミド酸溶液A2の代わりにポリイミド溶液C2最終膜厚30μmになるようにを使用したこと以外は実施例1と同様に実施し、厚み25μm、幅550mmのポリイミドフィルムを得た。
 (実施例6)
 ポリアミド酸溶液D1及びポリアミド酸溶液D2を準備した。ポリアミド酸溶液A1の代わりにポリアミド酸溶液D1を最終膜厚20μmになるようにクリアランスを調整し塗布し、ポリアミド酸溶液A2の代わりにポリイミド溶液D2を最終膜厚30μmになるように使用したこと以外は実施例1と同様に実施し、厚み25μm、幅550mmのポリイミドフィルムを得た。
 (実施例7)
 ポリアミド酸溶液E1及びポリアミド酸溶液E2を準備した。ポリアミド酸溶液A1の代わりにポリアミド酸溶液E1を最終膜厚22μmになるようにクリアランスを調整し塗布し、ポリアミド酸溶液A2の代わりにポリアミド酸溶液E2を最終膜厚35μmになるように使用したこと以外は実施例1と同様に実施し、厚み25μm、幅550mmのポリイミドフィルムを得た。
 (実施例8)
 ポリアミド酸溶液A2を最終膜厚25μmになるように塗工したこと以外は実施例1と同様にして、厚み25μm、幅550mmのポリイミドフィルムを得た。
 (比較例1)
 ポリアミド酸溶液A2の代わりにポリアミド酸溶液A1を使用したこと以外は実施例1と同様にして、中央部、両端部の全幅にわたり滑剤が含有されていない厚み25μm、幅550mmのポリイミドフィルムを得た。
 (比較例2)
 ポリアミド酸溶液A1の代わりにポリアミド酸溶液A2を使用したこと以外は実施例1と同様にして、中央部、両端部の全幅にわたり滑剤が含有されている厚み25μm、幅550mmのポリイミドフィルムを得た。
 (比較例3)
 ポリアミド酸溶液A1及びA2を使い、両端部にA1、中央部にA2を塗工したこと以外は実施例1と同様にして中央部に滑剤が含まれ、両端部に滑剤が含まれていない厚み25μm、幅550mmのポリイミドフィルムを得た。
〔合成例11(ポリアミド酸溶液F1の調製)〕
 窒素導入管,温度計,攪拌棒を備えた反応容器内を窒素置換した後、反応容器に窒素雰囲気下、980.6質量部の1,2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA)、1029質量部の3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA),465.3質量部の4,4’-オキシジフタル酸(ODPA)、3202。4質量部の2,2’-ジトリフルオロメチル-4,4’-ジアミノビフェニル(TFMB)、32171質量部のN,N-ジメチルアセトアミドを仕込んで溶解させた後、室温で24時間攪拌し重合反応を行い、還元粘度3.50dl/gのポリアミド酸溶液F1を得た。
〔合成例12(ポリイミド溶液F2の調製)〕
 合成例11と同様の操作で得たポリイミド溶液F1に、ジメチルアセトアミド分散シリカゾル(日産化学製DMAc-ST-ZL)を樹脂成分に対して5000ppm添加して、ポリイミド溶液F2を調製した。
 (実施例9)
 ポリアミド酸溶液F1及びポリアミド酸溶液F2を準備した。ポリアミド酸溶液A1の代わりにポリアミド酸溶液F1を最終膜厚22μmになるようにクリアランスを調整し塗布し、ポリアミド酸溶液A2の代わりにポリアミド酸溶液F2を最終膜厚35μmになるように使用したこと以外は実施例1と同様に実施し、厚み25μm、幅550mmのポリイミドフィルムを得た。
〔合成例13(ポリアミド酸溶液G1の調製)〕
 式(1)の構造で表される酸無水物基含有のダブルデッカー型シルセスキオキサン誘導体(AASQ1)を日本材料技研(株)製より入手した。
Figure JPOXMLDOC01-appb-C000003
 次に、窒素導入管,温度計,攪拌棒を備えた反応容器内を窒素置換した後、反応容器に窒素雰囲気下、327.2質量部のピロメリット酸二無水物(PMDA)、490.2質量部の2,2’-ジトリフルオロメチル-4,4’-ジアミノビフェニル(TFMB),45.4質量部のAASQ1、5340質量部のN-メチル-2-ピロリドンを仕込んで溶解させた後、室温で24時間攪拌し重合反応を行い、還元粘度1.46dl/gのポリアミド酸溶液G1を得た。
〔合成例14(ポリアミド酸溶液G2の調製)〕
 合成例13と同様の操作で得たポリアミド酸溶液G1に、ジメチルアセトアミド分散シリカゾル(日産化学製DMAc-ST-ZL)を樹脂成分に対して5000ppm添加して、ポリアミド酸溶液G2を調製した。
〔合成例15(ポリアミド酸溶液H1の調整)〕
 式(2)の構造で表されるアミノ基含有のダブルデッカー型シルセスキオキサン誘導体(AMSQ1)を、特開2006-265243号公報に記載された方法で製造した。
Figure JPOXMLDOC01-appb-C000004
 次に、窒素導入管,温度計,攪拌棒を備えた反応容器内を窒素置換した後、反応容器に窒素雰囲気下、325.6質量部のピロメリット酸二無水物(PMDA)、470.8質量部の2,2’-ジトリフルオロメチル-4,4’-ジアミノビフェニル(TFMB),39.9質量部のAMSQ1、6880質量部のN-メチル-2-ピロリドンを仕込んで溶解させた後、室温で24時間攪拌し重合反応を行い、還元粘度3.50dl/gのポリアミド酸溶液H1を得た。
〔合成例16(ポリアミド酸溶液H2の調製)〕
 合成例15と同様の操作で得たポリアミド酸溶液H1に、ジメチルアセトアミド分散シリカゾル(日産化学製DMAc-ST-ZL)を樹脂成分に対して5000ppm添加して、ポリアミド酸溶液H2を調製した。
 (実施例10)
 ポリアミド酸溶液G1及びポリアミド酸溶液G2を準備した。ポリアミド酸溶液A1の代わりにポリアミド酸溶液G1を最終膜厚22μmになるようにクリアランスを調整し塗布し、ポリアミド酸溶液A2の代わりにポリアミド酸溶液G2を最終膜厚35μmになるように使用したこと以外は実施例1と同様に実施し、厚み25μm、幅550mmのポリイミドフィルムを得た。
 (実施例11)
 ポリアミド酸溶液H1及びポリアミド酸溶液H2を準備した。ポリアミド酸溶液A1の代わりにポリアミド酸溶液H1を最終膜厚22μmになるようにクリアランスを調整し塗布し、ポリアミド酸溶液A2の代わりにポリアミド酸溶液H2を最終膜厚35μmになるように使用したこと以外は実施例1と同様に実施し、厚み25μm、幅550mmのポリイミドフィルムを得た。
<フィルム巻き取り時の評価(フィルムの状態)>
 ○:巻き取り時にしわ、および、巻きずれなし
 △:巻き取り時に微細なしわ、または、巻きずれあり
 ×:巻き取り時に折れシワが入り巻取りできなかった
Figure JPOXMLDOC01-appb-T000005
 実施例1~11のポリイミドフィルムは、第2の樹脂組成物溶液から形成された両端部の膜厚が、第1の樹脂組成物溶液から形成された中央部の膜厚よりも大きく、また第2の樹脂組成物溶液から形成された両端部に滑剤が添加されることにより、光学特性を劣化させることなくシワなく巻き取ることが可能であった。実施例8のポリイミドフィルムは、中央部と両端部の膜厚が同じため、巻き取り時に微細なしわが発生したものの、第2の樹脂組成物溶液から形成された両端部に滑剤が添加されることにより、光学特性を劣化させることなく巻き取りが可能であった。一方、比較例1~3のポリイミドフィルムは、両端部と中央部の滑剤の添加が適正ではないため、シワ発生もしくは光学特性の劣化の問題が生じた。

Claims (7)

  1.  支持体の中央部に第1の樹脂組成物溶液を塗布する工程A、
     前記中央部に隣接する両端部に無機微粒子を含有する第2の樹脂組成物溶液を塗布する工程B、
     前記第1の樹脂組成物溶液と前記第2の樹脂組成物溶液とを乾燥させ、切断前フィルム積層体を得る工程C、
     前記切断前フィルム積層体を前記支持体から剥離し、切断前フィルムを得る工程D、
     前記工程Dの後、前記切断前フィルムの両端部をテンター式搬送装置により把持する工程E、
     前記切断前フィルムの両端部を把持した状態で、前記切断前フィルムを搬送する工程F、及び、
     前記工程Fの後、前記切断前フィルムから、前記第2の樹脂組成物溶液から形成された部分の一部または全部を取り除く工程Gを有し、
     前記両端部の無機微粒子の含有量が前記中央部の無機微粒子の含有量よりも多いことを特徴とする樹脂フィルムの製造方法。
  2.  前記両端部の膜厚が、前記中央部の膜厚より大きいことを特徴とする請求項1に記載の樹脂フィルムの製造方法。
  3.  前記第1の樹脂組成物がポリイミド系樹脂あることを特徴とする請求項1または2に記載の樹脂フィルムの製造方法。
  4.  第1の樹脂組成物で構成される中央部と、
     前記中央部の両端に、前記中央部から連続して形成される両端部と
    を有し、
     前記両端部は、無機微粒子を含有する第2の樹脂組成物で構成されており、前記両端部の無機微粒子の含有量が中央部の無機微粒子の含有量よりも多いことを特徴とする切断前フィルム。
  5.  前記両端部の膜厚が、前記中央部の膜厚より大きいことを特徴とする請求項4に記載の切断前フィルム。
  6.  前記第1の樹脂組成物は、ポリイミド系樹脂であることを特徴とする請求項5または6に記載の切断前フィルム。
  7.  請求項5または6に記載の切断前フィルムに切断部を有する一部切断フィルム。
     
     
PCT/JP2021/024995 2020-07-03 2021-07-01 樹脂フィルム及びその製造方法 WO2022004852A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180037009.8A CN115697575A (zh) 2020-07-03 2021-07-01 树脂膜及其制造方法
KR1020227026497A KR20230031811A (ko) 2020-07-03 2021-07-01 수지 필름 및 그 제조 방법
JP2021559601A JPWO2022004852A1 (ja) 2020-07-03 2021-07-01

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020115576 2020-07-03
JP2020-115576 2020-07-03

Publications (1)

Publication Number Publication Date
WO2022004852A1 true WO2022004852A1 (ja) 2022-01-06

Family

ID=79316392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/024995 WO2022004852A1 (ja) 2020-07-03 2021-07-01 樹脂フィルム及びその製造方法

Country Status (5)

Country Link
JP (1) JPWO2022004852A1 (ja)
KR (1) KR20230031811A (ja)
CN (1) CN115697575A (ja)
TW (1) TW202202308A (ja)
WO (1) WO2022004852A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022239494A1 (ja) * 2021-05-12 2022-11-17 東洋紡株式会社 樹脂フィルムの製造方法、及び、切断前フィルム
WO2024135780A1 (ja) * 2022-12-23 2024-06-27 東洋紡株式会社 ポリイミドフィルム、積層体、フレキシブル電子デバイス、及びフレキシブル電子デバイスの製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011248198A (ja) * 2010-05-28 2011-12-08 Toppan Printing Co Ltd 光学フィルム及びその製造方法
JP2014159137A (ja) * 2013-02-20 2014-09-04 Dainippon Printing Co Ltd フィルム材及びフィルム材の製造方法
JP2015098139A (ja) * 2013-11-19 2015-05-28 大日本印刷株式会社 機能性フィルムの製造方法及び機能性フィルム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0611800A (ja) 1992-06-26 1994-01-21 Konica Corp ロールフィルム収納カートリッジの組立方法及び装置
JP3947994B2 (ja) 2000-12-06 2007-07-25 東レ・デュポン株式会社 ポリイミドフィルム、その製造方法および用途
JP5209233B2 (ja) 2007-05-24 2013-06-12 日東電工株式会社 位相差フィルム、偏光板、液晶パネルおよび液晶表示装置
JP2016093868A (ja) * 2014-11-14 2016-05-26 コニカミノルタ株式会社 樹脂フィルムの製造方法
JP6494844B1 (ja) * 2017-10-31 2019-04-03 住友化学株式会社 樹脂フィルムの製造方法および微小キズが少ない樹脂フィルム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011248198A (ja) * 2010-05-28 2011-12-08 Toppan Printing Co Ltd 光学フィルム及びその製造方法
JP2014159137A (ja) * 2013-02-20 2014-09-04 Dainippon Printing Co Ltd フィルム材及びフィルム材の製造方法
JP2015098139A (ja) * 2013-11-19 2015-05-28 大日本印刷株式会社 機能性フィルムの製造方法及び機能性フィルム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022239494A1 (ja) * 2021-05-12 2022-11-17 東洋紡株式会社 樹脂フィルムの製造方法、及び、切断前フィルム
WO2024135780A1 (ja) * 2022-12-23 2024-06-27 東洋紡株式会社 ポリイミドフィルム、積層体、フレキシブル電子デバイス、及びフレキシブル電子デバイスの製造方法

Also Published As

Publication number Publication date
JPWO2022004852A1 (ja) 2022-01-06
CN115697575A (zh) 2023-02-03
KR20230031811A (ko) 2023-03-07
TW202202308A (zh) 2022-01-16

Similar Documents

Publication Publication Date Title
WO2022004852A1 (ja) 樹脂フィルム及びその製造方法
WO2022102451A1 (ja) ポリイミドフィルムおよびその製造方法
JP7006860B1 (ja) 樹脂フィルムの製造方法、及び、切断前フィルム
JP7268791B2 (ja) 積層体
JP7287536B2 (ja) ポリイミドフィルムおよびその製造方法
JP7502724B2 (ja) 樹脂フィルム及び樹脂フィルムの製造方法
WO2022102450A1 (ja) 無色多層ポリイミドフィルム、積層体、フレキシブル電子デバイスの製造方法
WO2022239494A1 (ja) 樹脂フィルムの製造方法、及び、切断前フィルム
JP7287535B2 (ja) ポリイミドフィルムおよびその製造方法
WO2021241574A1 (ja) 透明高耐熱フィルムを含む積層体
WO2023157839A1 (ja) 積層体
WO2023249053A1 (ja) フィルムの製造方法
JP2023177342A (ja) フィルムの製造方法
WO2022102449A1 (ja) ポリイミドフィルムおよびその製造方法
WO2021192789A1 (ja) 積層体
WO2021256298A1 (ja) 無色多層ポリイミドフィルム、積層体、フレキシブル電子デバイスの製造方法
WO2023243693A1 (ja) 積層体
JP2023001599A (ja) 積層体

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021559601

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21834302

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21834302

Country of ref document: EP

Kind code of ref document: A1